WO2013058009A1 - 海水の浸透取水におけるろ過層の洗浄装置 - Google Patents

海水の浸透取水におけるろ過層の洗浄装置 Download PDF

Info

Publication number
WO2013058009A1
WO2013058009A1 PCT/JP2012/070532 JP2012070532W WO2013058009A1 WO 2013058009 A1 WO2013058009 A1 WO 2013058009A1 JP 2012070532 W JP2012070532 W JP 2012070532W WO 2013058009 A1 WO2013058009 A1 WO 2013058009A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
seawater
clogging
water
filtration layer
Prior art date
Application number
PCT/JP2012/070532
Other languages
English (en)
French (fr)
Inventor
英幸 新里
井上 隆之
清和 向井
等 三村
Original Assignee
日立造船株式会社
株式会社ナガオカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社, 株式会社ナガオカ filed Critical 日立造船株式会社
Priority to CN201280036438.4A priority Critical patent/CN103702732B/zh
Priority to US14/347,525 priority patent/US9345993B2/en
Priority to ES201490022A priority patent/ES2515690B2/es
Priority to AU2012324258A priority patent/AU2012324258B2/en
Publication of WO2013058009A1 publication Critical patent/WO2013058009A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4626Construction of spray heads specially adapted for regeneration of the filter material or for filtrate discharging
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/04Methods or installations for obtaining or collecting drinking water or tap water from surface water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4605Regenerating the filtering material in the filter by scrapers, brushes, nozzles or the like placed on the cake-side of the stationary filtering material and only contacting the external layer
    • B01D24/4621Regenerating the filtering material in the filter by scrapers, brushes, nozzles or the like placed on the cake-side of the stationary filtering material and only contacting the external layer by nozzles acting on the cake side of the filter material, or by fluids acting in co-current direction with the feed stream
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/008Mobile apparatus and plants, e.g. mounted on a vehicle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • E02B3/023Removing sediments
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8858Submerged units
    • E02F3/8866Submerged units self propelled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention causes clogging accumulated or taken in the surface layer portion of the sand filtration layer in order to continuously carry out the permeation water intake method for taking seawater permeating through the sand filtration layer of the seabed.
  • the present invention relates to a cleaning device that removes substances and prevents clogging.
  • the reverse osmosis method using a reverse osmosis membrane has become the mainstream in the seawater desalination plant, which is a representative plant for seawater intake, instead of the evaporative fresh water generation method.
  • this reverse osmosis method in order to suppress performance deterioration due to fouling (clogging) of the reverse osmosis membrane due to impurities, clean seawater with less impurities is required as a pretreatment for desalination.
  • a direct water intake method in which seawater is taken from a water intake 1 provided on the seabed via a water conduit 2 is currently widely used.
  • 3 in FIG. 7 is a pump for taking in seawater
  • 4 is a reverse osmosis membrane apparatus.
  • the direct water intake method collects all waste, suspended matter, living organisms, etc. at the same time as seawater, so when the jellyfish or red tide is abnormal, when oil spills occur, or when turbidity increases due to high waves, the intake is stopped You may have to.
  • the direct water intake method has a strong adhesion of marine organisms such as barnacles and mussels to water intakes and conduits, so regular cleaning, for example, addition of chemicals to prevent adhesion such as chlorine, and the amount of biological It is necessary to increase the tube diameter in consideration of the above.
  • the seabed is excavated offshore several hundred meters from the shoreline and a depth of several tens of meters, and the excavated part is composed of supporting gravel layers 5a and 5b and filtered sand 5c as shown in FIG.
  • This is a method of taking in the seawater that has been filtered and permeated and purified from the intake pipe 6 installed in the supporting gravel layer 5a by refilling the bottom of the seabed again while forming the sand filtration layer 5.
  • This indirect water intake method does not cause any problems with the direct water intake method, but the initial cost is high, and clogging substances (silt, etc.) are trapped in the surface layer of the sand filtration layer, resulting in clogging. The spread has been delayed due to the problem of volume reduction.
  • the seawater infiltration flow rate expressed in the sand filtration layer on the seabed is 1 to 8 m / day
  • the water depth of the sand filtration layer is the sand depth of the surface layer portion of the sand filtration layer.
  • An infiltration method has been proposed in which the water depth is deeper than the full movement limit water depth that moves 50 cm or more and shallower than the surface movement limit water depth that moves 1 cm or more (Patent Document 1).
  • Patent Document 1 the osmotic water intake method proposed in Patent Document 1 has a very slow filtration rate of 1 to 8 m / day for seawater, so it is vast to take a large amount of seawater in a short period of time. Requires a large area, increases the construction scale, and increases the initial cost.
  • Patent Document 1 removes clogging substances (silt, etc.) deposited on the surface of the sand filtration layer using natural waves and flows, so The installation location was limited to sea areas where seawater flow due to tidal currents and waves was active.
  • the applicant first increased the seawater infiltration speed to as high as possible at 400 m / day or less, thereby increasing the amount of water intake in a short period of time.
  • a seawater osmotic filtration method was proposed that can significantly reduce the water intake area and significantly reduce the construction scale.
  • the problem to be solved by the present invention is that, conventionally, there has been no cleaning device suitable for preventing clogging of the sand filtration layer for infiltration of seawater, so the location of the sand filtration layer is due to waves and tidal currents. It was limited to places where seawater flow was active.
  • the conventional cleaning equipment used in river catchment burial is a system that blows out air from cleaning pipes, so when applied to sea areas where there is little seawater flow due to waves and tidal currents, sand filtration
  • the clogging substances (silt, etc.) rolled up in the sea above the bed and high-concentration turbid water containing filter sand drifted around the sand filter bed, which may cause environmental problems.
  • the present invention solves the above problems, enables the sand filtration layer to be installed in a sea area where there is little seawater flow due to waves and tidal currents, and reduces the risk of contaminating the environment around the sand filtration layer. It was made for the purpose of providing. Moreover, it aims at providing the washing
  • the cleaning device of the present invention comprises: A cleaning device that prevents clogging by removing clogging substances accumulated or taken in the surface layer portion of a sand filtration layer that performs seawater infiltration water intake, Moving means for moving the surface of the sand filtration layer; Stirring means for stirring the surface layer part to a required depth, and rolling up the clogging substance together with the filtered sand of the surface layer part in seawater in a muddy water absorption pit; Suction and discharge means for sucking turbid water wound up in seawater in the muddy water absorption pit by the stirring means, and discharging the muddy water to the outside of the muddy water absorption pit;
  • the main feature is that it has
  • the clogging substance (silt or the like) deposited or taken in the surface layer portion is stirred together with the filtered sand by mixing the surface layer portion of the sand filtration layer with a required depth by the stirring means. It is rolled up in the sea water. At this time, the turbid water in a state where the clogging substance (silt or the like) and the filtered sand are mixed is wound up in the turbid water absorption pit, so that the concentrated turbid water does not drift around the sand filtration layer.
  • the clogging substance trapped in the surface layer of the sand filtration layer is sucked by the stirring means and suction discharging means executed in the turbid water absorption pit and discharged out of the system, so the influence on the surrounding environment is reduced. can do.
  • the sand filtration layer can be installed in a sea area where seawater flow is small. Therefore, even when the seawater permeation rate is increased to as high as possible at 400 m / day or less, the permeation rate can be maintained, so that the permeation water intake method with a significantly reduced water intake area can be stably implemented.
  • turbid water containing clogging substances (such as silt) discharged to the outside of the muddy water absorption pit by the suction discharge means is collected outside the system so as not to adversely affect the environment surrounding the sand filtration layer. Ideally.
  • the suction discharge means uses the sedimentation rate difference between the clogging substance and the filtered sand from the turbid water in which the clogging substance wound up in the seawater in the muddy water absorption pit and the filtered sand are mixed. Is configured to selectively suck. In this way, the filter sand necessary to maintain the filtration performance is kept as it is on the surface of the sand filtration layer, while sucking only the clogging substances that cause clogging selectively. Since it can be discharged to the outside, the influence on the surrounding environment is reduced.
  • the suction / discharge means is configured to further dilute the turbid water in a state where the clogging substance is selectively sucked, to disperse the turbid water in a plurality of places, and to discharge it to the outside of the turbid water absorption pit. In this way, since the discharged waste water is diluted and dispersed, the influence on the surrounding environment is further reduced and the visual is not noticeable.
  • FIG. 1 is a schematic view showing the appearance of a sand filtration layer cleaning device 11 of the first embodiment.
  • the cleaning device 11 of the first embodiment uses a drive wheel 12 having a crawler track as a moving means for moving the surface of the sand filtration layer.
  • the cleaning device 11 follows the traveling program set in advance on the surface of the sand filtration layer, and at the set time, moves the surface of the specific sand filtration layer horizontally at a predetermined speed while moving the permeation surface under the passing device. It is an automatic self-propelled cleaning device that performs cleaning under predetermined conditions.
  • the timing and time of washing are set to the optimum settings so that clogging with clogging substances does not occur according to the water quality, water temperature, season, etc. of the sea area where the sand filtration layer is installed. Basically, cleaning is repeatedly performed for a certain period of time according to a set program, but the timing and time can be changed at any time.
  • 21 is a seawater inlet for taking seawater into the apparatus from the outside
  • 18 is a diluted suspension water discharge pipe extending in a direction crossing the traveling direction of the cleaning apparatus 11
  • 33 is a diluted suspension water discharge.
  • the drainage discharged from the discharge port 18a of the pipe 18 is shown. Since the diluted suspension water discharge pipe 18 is provided with a plurality of discharge ports 18a as shown in FIG. 1, the diluted waste water is dispersed and becomes inconspicuous, and the influence on the environment is reduced.
  • FIG. 2 is an explanatory diagram of the internal structure of the cleaning device 11, omitting the power parts such as the drive wheel 12 and the motor, and showing only the mechanism related to the cleaning function.
  • an arrow A indicates the traveling direction of the cleaning device 11.
  • the filtration sand layer 41 indicates a filtered sand layer
  • 42 indicates a supporting gravel layer in which the intake pipe 43 is embedded.
  • the filtration sand layer 41 and the supporting gravel layer 42 form a filtration layer in which the seawater permeation rate is increased to a maximum possible speed of 400 m / day or less.
  • the cleaning device 11 of the first embodiment stirs the surface layer portion of the sand filtration layer by a required depth, and as a stirring means for winding up the clogging substance in the seawater in the muddy water absorption pit 20 together with the filtration sand of the surface layer portion, A pump 13 and a jet nozzle 14 are used.
  • seawater is taken into the inside of the cleaning device 11 from the seawater inlet 21 by the pump 13, and water accompanied by pressure by the action of the pump 13 passes through the connecting pipe 13 a from the jet nozzle 14 to the high water pressure jet water stream 31. Erupted as.
  • the jet angle of the jet nozzle 14 is set so that the jet water stream 31 strikes the surface 41a of the filtered sand layer 41 in a substantially perpendicular direction. Further, the water pressure of the jet water stream 31 is set so that the filtration sand can be stirred by the depth d in which the clogging substance may be taken in the entire depth D of the filtration sand layer 41. ing. By adjusting the water pressure in this way, the cleaning depth by the water ejected from the jet nozzle 14 can be set to a depth at which the minimum necessary amount of filtered sand is agitated.
  • the clogging material deposited or taken in the surface layer portion of the filter sand layer 41 is stirred by the jet water stream 31 together with the filter sand. Then, the filter sand stirred by the jet water stream 31 and the clogging substance trapped in the filter sand are rolled up into the seawater in the muddy water absorption pit 20.
  • the turbid mixed water 32 in a state where the clogging substance and the filtered sand are mixed up stays inside the turbid water absorption pit 20. Therefore, in the present invention, turbid water having a high concentration does not drift around the sand filtration layer when the stirring means is executed.
  • the suspension water absorption hole is provided as a suction discharge means for sucking the turbid water wound up in the seawater in the turbid water absorption pit 20 by the stirring means and discharging it to the outside of the turbid water absorption pit 20.
  • a pipe 15, a pump 16, an ejector 17, and a diluted suspension water discharge pipe 18 are used.
  • the turbid mixed water 32 wound up in the turbid water absorption pit 20 contains clogging substances that cause clogging, and does not cause clogging.
  • the filter sand necessary to maintain this is also included.
  • the suction / discharge means of the first embodiment uses the difference in sedimentation speed between the clogging substance and the filtered sand from the turbid water in a state where the clogging substance and the filtered sand rolled up in the seawater in the muddy water absorption pit 20 are mixed. The clogging substance is selectively sucked.
  • the filter sand has a particle size in the range of, for example, 0.4 to 0.6 mm and has a high settling speed.
  • the clogging substance has a particle size of, for example, 0.04 mm or less and a slow sedimentation speed, and thus remains in a floating state even after, for example, 15 seconds.
  • the turbid mixed water 32 is sucked by the pump 16 through the turbid water absorbing perforated pipe 15 at the timing when the clogging substance is selectively sucked as described above. Then, the suspended water accompanied by pressure by the action of the pump 16 is sent to the ejector 17 through the connecting pipe 16a.
  • the suspended water sent to the ejector 17 is mixed with natural seawater sucked from the inflow port 17a by the action of the ejector 17, whereby the suspended water is further diluted. Then, the diluted suspension water is sent to the diluted suspension water discharge pipe 18 having a shape as shown in FIG. 1, and is dispersed and discharged from the plurality of discharge ports 18a.
  • Reference numeral 33 denotes waste water that is diluted and dispersed and discharged. In consideration of the marine environmental conservation, it is desirable to provide as many outlets 18a as possible and to provide intervals.
  • reference numeral 19 denotes a casing that opens on the lower end side facing the sand filtration layer and forms the outline of the cleaning device 11, and 22 denotes a partition wall that is attached to the outer periphery of the lower end of the casing 19. .
  • the sedimentation and separation processes of the sand and clogging substances contained in the turbid mixed water 32 that rolls up when stirred by the jet water stream 31 are all performed in a sealed space in the turbid water absorption pit 20. .
  • the partition wall 22 is a member for sealing a gap between the outer periphery of the lower end of the housing 19 and the surface of the sand filtration layer in order to ensure the sealing property of the muddy water absorption pit 20, for example, a flexible material such as rubber or resin. It is made of a material with properties.
  • the turbid water absorption pit 20 of the present invention remarkably prevents turbid water with high turbidity in a state where the clogging material rolled up in seawater and the filter sand are mixed and diffuses and contaminates directly in the vicinity. Suppressing and considering the surrounding environment. Further, the suction / discharge means of the first embodiment treats turbid components (turbid water) generated immediately after stirring in the turbid water absorption pit 20 as much as possible for the purpose of preservation of the marine environment. Can be suppressed. In addition, when the clogging substance is directly discharged to the vicinity, it is mixed with natural seawater by the ejector 17 and diluted, and then dispersed and discharged to a plurality of locations by the suspension water discharge pipe 18. The influence can be reduced.
  • the cleaning device itself was provided with a power source such as a battery for driving a motor for rotating the drive wheel 12.
  • a power source such as a battery for driving a motor for rotating the drive wheel 12.
  • the cleaning device 11 of the second embodiment shown in FIG. 4 has a wide and long range by securing a power source from the floating body 24 provided with the solar panel 24a, the storage battery 24b, and the float 24c via the cable 25. It can cope with time washing.
  • a generator not only solar power generation such as the solar panel 24a but also a wind power generator, a wave power generator, an ocean temperature difference generator, a tidal current generator, etc. that can be mounted on a floating body can be regenerated. Natural energy can be used.
  • the filtration sand layer 41 containing the clogging substance is stirred and washed only by the water flow ejected from the jet nozzle 14.
  • the cleaning device 11 of the second embodiment uses a jet water flow by an air mixed flow type nozzle in order to further increase the cleaning depth.
  • the mixed air flows into the air mixed flow type nozzle in the cleaning device 11 via the air inlet pipe 26 in which the air inlet 26 a at the tip floats on the sea by the action of the float 26 b. Supply.
  • the turbid water sent to the diluted suspension water discharge pipe 18 was dispersed and discharged from the discharge port 18a after dilution.
  • the discharge port 18a of the diluted suspension water discharge pipe 18 is connected to the drain pipe 23, and the diluted waste water is collected in the floating body 24 on the sea.
  • the floating body 24 is provided with a suction pump.
  • Numeral 24d indicates a receiver that receives GPS data. By specifying the current position from the GPS data, it can be determined whether the cleaning device 11 is traveling in the correct area. Note that transmission and reception of signals between the floating body 24 and the cleaning device 11 can be performed via the cable 25.
  • the cleaning device itself does not need to have both a cleaning mechanism and a moving mechanism.
  • generators such as an engine, a motor, a battery, a pump, a solar panel, and a device such as a GPS
  • it may be configured such that a cleaning device that is installed on a trolley and includes only a minimum cleaning mechanism is moved on the seabed.
  • turbid components generated immediately after stirring are treated as much as possible in the turbid water absorption pit 20 so that diffusion to the surroundings can be suppressed. Further, since the drainage can be once collected in the floating body 24 and then sent to another dedicated wastewater treatment facility, there is no possibility of affecting the surrounding environment.
  • cleaning apparatus 11 of 3rd Example of this invention is demonstrated.
  • the filtration sand containing the clogging substance is stirred and washed in the muddy water absorption pit 20 by the water flow ejected from the jet nozzle 14, whereas the washing apparatus 11 of the third embodiment shown in FIG.
  • the filter medium cleaner 27 a is provided on the floating body 27, and the filter medium cleaner 27 is used for cleaning.
  • the filtered sand in which the clogged substance is captured is sucked together with the filtered sand through the suction pipe 28 to the filter medium cleaning machine 27a. Therefore, the suction port 28 a of the suction pipe 28 is positioned near the surface 41 a of the filtered sand layer 41 in the muddy water absorption pit 20. Further, the filtered sand cleaned by removing the clogging substance in the filter medium cleaning machine 27 a is sent to the cleaning device 11 through the delivery pipe 29 and backfilled in the sand filtration layer 41. Therefore, the delivery port 29 a of the delivery pipe 29 is positioned near the surface 41 a of the filtered sand layer 41.
  • the cleaning device 11 of the third embodiment repeats suction and backfilling of filtration sand while moving in the direction of arrow A together with the floating body 27.
  • clogging can be reliably prevented by removing clogging substances accumulated or taken in the surface of the sand filtration layer, so that the seawater permeation rate is 400 m / day or less, for example. Even when the speed is increased to as high a speed as possible, the permeation speed can be maintained.
  • the required water intake area will be 20,000 m 2 if the conventional infiltration method has an infiltration rate of 5 m / day. If the osmotic water intake method and the cleaning device of the present invention can be combined to maintain the osmotic water intake rate of 100 m / day, the required water intake area can be dramatically reduced to 1/20, 1,000 m 2 . Therefore, the construction at the time of installation can be made smaller, and the influence on the surrounding environment at the time of construction can be alleviated.
  • a cleaning device having a shape as shown in FIG. 1 is disclosed, but the external shape is not limited thereto.
  • the cleaning mechanism portion including the muddy water absorption pit 20 may be wider than the driving mechanism portion including the driving wheel 12 so that the cleaning can be performed efficiently.
  • the jet water stream 31 ejected from the jet nozzle 14 is applied in a direction substantially perpendicular to the permeation surface of the sand filtration layer.
  • the turbid mixed water 32 included may flow slightly in the direction of the turbid water absorption pit 20 and may be slightly inclined in the direction opposite to the traveling direction of the cleaning device 11.
  • the self-propelled cleaning device 11 is disclosed.
  • the cleaning device of the present invention may be configured to move by being pulled by a trolley moving on the sea.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Filtration Of Liquid (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

【課題】砂ろ過層の表層に捕捉された目詰まり物質を取り除くのに適した洗浄装置を提供する。 【解決手段】砂ろ過層の表面を移動するための移動手段として駆動車輪12を備えた洗浄装置11である。砂ろ過層の表層部を所要の深さだけ攪拌し、目詰まり物質を濁水吸水ピット20内の海水中にろ過砂と共に巻き上げる攪拌手段として、ポンプ13及びジェットノズル14を備える。攪拌手段により濁水吸水ピット20内の海水中に巻き上げられた濁水を吸引し、濁水吸水ピット20の外部に排出する吸引排出手段として、懸濁水吸水用有孔管15、ポンプ16、エジェクター17、希釈懸濁水排出管18を備える。 【効果】砂ろ過層を適時洗浄することにより目詰まりを防止し、海水浸透速度を高速に維持できる。濁水吸水ピット内に巻き上げられた目詰まり物質を含む濁水を吸引し、系外に排出するので、周辺環境への影響も小さくなる。

Description

海水の浸透取水におけるろ過層の洗浄装置
 本発明は、海底の砂ろ過層内を浸透してくる海水を取水する浸透取水法を継続的に実施するために、前記砂ろ過層の表層部に堆積又は取り込まれた目詰まりの原因となる物質を取り除いて目詰まりを防止する洗浄装置に関するものである。
 海水取水を行う代表的なプラントである海水淡水化プラントにおいて、近年、蒸発型造水法に代わり、逆浸透膜による逆浸透法が主流になってきている。この逆浸透法の場合、不純物による逆浸透膜のファウリング(目詰まり)による性能劣化を抑制するために、淡水化の前処理として、不純物のより少ない清浄な海水が求められる。
 海水を取水する方法として、現在は、図7に示すように、例えば海底に設けた取水口1から導水管2を介して海水を取水する直接取水法が多く採用されている。なお、図7中の3は海水を取水するためのポンプ、4は逆浸透膜装置である。
 しかしながら、直接取水法は、海水と同時にごみ、懸濁物、生物等を全て取水するので、クラゲや赤潮の異常発生時、油の流出事故時、高波による濁度の増大時には、取水を停止しなければならない場合がある。また、直接取水法は、取水口や導水管へのフジツボ、イガイ等の海洋生物の付着が激しいので、定期的な清掃、例えば塩素等の付着防止の薬品の添加、全管路における生物付着代を考慮した管径の増大等が必要である。また、直接取水法において、海洋生物の付着防止のために海水中に塩素を投入した場合は、環境汚染や塩素を遠因とした逆浸透膜でのバイオファウリング発生の問題がある。さらに、取水した海水を逆浸透膜で処理する場合には、凝集剤を添加した海水をろ過する砂ろ過施設が必要となるので、砂ろ過施設に溜まった汚泥を処理する施設が必要になる。
 そこで、近年、取水する海水の前処理として、凝集剤等の薬品を使用しないで、図8に示すように、海底の砂ろ過層5内を浸透してくる海水を取水する間接取水法が注目されている。
 この間接取水法は、汀線より数百m、水深十数mの沖合にて海底を掘削し、当該掘削部に、図9に示すように、支持砂利層5a及び5b、ろ過砂5cで構成された砂ろ過層5を形成しながら、再び同じ海底面まで埋め戻すことで、支持砂利層5a中に設置した取水配管6から、ろ過浸透して浄化された海水を取水する方法である。この間接取水法は、直接取水法の問題は一切発生しないが、イニシャルコストが高いことと、砂ろ過層の表層に目詰まり物質(シルトなど)が捕捉されることで目詰まりが発生して取水量が低下する問題により、普及拡大が遅れている。
 具体的には、間接取水法の一例として、海底の砂ろ過層内に発現される海水浸透流速を1~8m/日とし、前記砂ろ過層の水深は、当該砂ろ過層の表層部分の砂が50cm以上移動する完全移動限界水深よりも深く、かつ1cm以上移動する表層移動限界水深よりも浅くする浸透取水法が提案されている(特許文献1)。しかし、この特許文献1で提案された浸透取水法は、海水の浸透取水速度が1~8m/日という非常に緩速なろ過速度であるため、短期間で大量の海水を取水するには広大な面積を必要とし、工事規模が大きくなり、イニシャルコストが高くなる。
 加えて、特許文献1で提案された浸透取水法は、砂ろ過層の表面に堆積した目詰まり物質(シルトなど)を自然の波や流れを利用して取り除くものであるため、浸透取水設備の設置場所が、潮流や波浪による海水の流動が活発な海域に限られていた。
 そこで、出願人は、まず前者の課題を解決するために、海水浸透速度を400m/日以下のできるだけ大きい速度に高速化することで、短期間での取水量が大量になり、従来に比べて取水面積を大幅に削減し、工事規模を格段に減少させることが可能な海水の浸透ろ過方法を提案した。
 また、後者の課題については、波浪や潮流による海水流動が少ない海域に砂ろ過層を設置する場合、砂ろ過層の表層に捕捉された目詰まり物質(シルトなど)は人為的に取り除いて洗浄する必要がある。この人為的な洗浄装置に関し、従来、河川においては、図10に示すように、河川7aの河床下に砂利層7c及び集水管8と砂層7bを埋め戻して構成される集水埋渠の目詰まりを防止するために、砂利層7c中にエアーを噴出可能な孔9aを有した洗浄用配管9を埋設する場合がある。
 しかし、波浪や潮流による海水流動が少ない海域の砂ろ過層に、図10に示すようなエアー方式の洗浄用配管を適用した場合、砂ろ過層の上方の海中に巻き上げた目詰まり物質(シルトなど)及びろ過砂を含む濃度の高い濁水がそのまま砂ろ過層の周辺に漂い、環境上問題となる場合がある。
日本特許第3899788号公報
 本発明が解決しようとする問題点は、従来は、海水の浸透取水を行う砂ろ過層の目詰まりを防止するのに適した洗浄装置がなかったため、砂ろ過層の設置場所が波浪や潮流による海水流動が活発な場所に限られていた点である。また、従来、河川の集水埋渠で利用されている洗浄装置は、洗浄用配管からエアーを噴出させる方式であるため、これを波浪や潮流による海水流動が少ない海域に適用した場合、砂ろ過層の上方の海中に巻き上げた目詰まり物質(シルトなど)及びろ過砂を含む濃度の高い濁水が砂ろ過層の周辺に漂い、環境上問題となる場合があった点である。
 特に、出願人が提案した浸透取水法のように、例えば海水浸透速度を400m/日以下のできるだけ大きい速度にまで高速化する場合は、目詰まりが砂ろ過層の内部にも進行しやすく、発生頻度も高くなる。よって、この高速浸透性を維持するためには、砂ろ過層の目詰まりの原因となる目詰まり物質(シルトなど)を適時適正に除去する必要がある。
 本発明は、上記の課題を解決し、砂ろ過層を波浪や潮流による海水流動が少ない海域にも設置可能とし、砂ろ過層の周辺の環境を汚染するおそれも低減できる砂ろ過層の洗浄装置を提供することを目的としてなされたものである。また、砂ろ過層の浸透面に対し、適時、目詰まりの状況に応じた適切な洗浄を行うことで、海水の浸透取水法における高速浸透性を維持できる洗浄装置を提供することを目的とするものである。
 本発明の洗浄装置は、
 海水の浸透取水を行う砂ろ過層の表層部に堆積又は取り込まれた目詰まり物質を取り除いて目詰まりを防止する洗浄装置であって、
 前記砂ろ過層の表面を移動するための移動手段と、
 前記表層部を所要の深さだけ攪拌し、前記目詰まり物質を濁水吸水ピット内の海水中に前記表層部のろ過砂と共に巻き上げる攪拌手段と、
 前記攪拌手段により前記濁水吸水ピット内の海水中に巻き上げられた濁水を吸引し、前記濁水吸水ピットの外部に排出する吸引排出手段と、
 を備えたことを最も主要な特徴としている。
 上記の本発明によれば、撹拌手段によって砂ろ過層の表層部を所要の深さだけ撹拌することにより、表層部に堆積又は取り込まれた目詰まり物質(シルトなど)はろ過砂と共に濁水吸水ピット内の海水中に巻き上げられる。このとき、目詰まり物質(シルトなど)とろ過砂が混合した状態の濁水は、濁水吸水ピット内に巻き上げられるので、濃度の高い濁水が砂ろ過層の周辺に漂うことはない。
 本発明は、砂ろ過層の表層に捕捉された目詰まり物質を、濁水吸水ピット内で実行される撹拌手段と吸引排出手段によって吸引し、系外に排出するので、周辺環境への影響を小さくすることができる。また、目詰まり物質を適時適正に取り除いて目詰まりを防止できるので、砂ろ過層を海水流動が少ない海域にも設置できるようになる。よって、海水浸透速度を400m/日以下のできるだけ大きい速度にまで高速化する場合でも、その浸透速度を維持できるので、従来よりも取水面積を大幅に削減した浸透取水法を安定的に実施できる。
本発明の砂ろ過層の洗浄装置の外観を示した概略図である。 本発明の砂ろ過層の洗浄装置の内部構造の説明図であり、移動手段やモーター等の動力部は省略し、洗浄機能に関係する機構のみを示した図である。 海水中における沈降速度を粒径別に比較したグラフである。 本発明の第2実施例の洗浄装置の構成を説明する図である。 本発明の第3実施例の洗浄装置の構成を説明する図である。 本発明の洗浄装置の外観形状の他の例を示す図である。 従来の直接取水法の概略説明図である。 従来の間接取水法の概略説明図である。 海底浸透部の概略構成図である。 河川において利用されている洗浄用配管の説明図である。
 本発明において、吸引排出手段によって濁水吸水ピットの外部に排出する目詰まり物質(シルトなど)を含む濁水は、砂ろ過層の周囲の環境に悪影響を及ぼすことがないように、系外に回収することが理想的である。
 もっとも、自然環境内での物質収支の観点からは、目詰まり物質を含む濁水とはいえ、元々の自然環境へ戻すとの意味合いで、吸水した濁水を直接的に周辺海域に放流するべきとの考え方もある。
 一方で、目詰まり物質を含む濁水の放流については、近隣への視的配慮と環境上の配慮が強く求められる場合も多い。したがって、吸引排出手段によって排出する濁水を系外に回収せずに放流する場合は、希釈化及び複数地点への拡散放流をすることが望ましい。
 すなわち、吸引排出手段は、濁水吸水ピット内の海水中に巻き上げられた目詰まり物質とろ過砂が混合した状態の濁水から、目詰まり物質とろ過砂の沈降速度差を利用して、目詰まり物質を選択的に吸引する構成とする。このようにすれば、ろ過性能を維持するために必要なろ過砂はできるだけ吸引しないようにして砂ろ過層の表面にそのまま残すと共に、目詰まりの原因となる目詰まり物質のみを選択的に吸引し、外部に放流することができるので、周辺環境への影響が小さくなる。
 また、前記吸引排出手段は、目詰まり物質を選択的に吸引した状態の濁水をさらに希釈し、複数箇所に分散して、濁水吸水ピットの外部に排出する構成とする。このようにすれば、放流する排水は希釈・分散化されたものとなるので、周辺環境への影響はさらに小さくなる上、視覚上も目立たない。
 以下、本発明を実施するための形態を、図1~図6を用いて詳細に説明する。
 図1は第1実施例の砂ろ過層の洗浄装置11の外観を示した概略図である。
 第1実施例の洗浄装置11は、砂ろ過層の表面を移動するための移動手段として、履帯を備えた駆動車輪12を用いている。洗浄装置11は、砂ろ過層の表面を予め設定された走行プログラムに従い、設定時刻になると特定の砂ろ過層の表面を所定のスピードで水平方向に移動しながら、通過する装置下の浸透面を所定の条件で洗浄する自動自走式の洗浄装置である。
 洗浄のタイミングや時間は、砂ろ過層が設置される海域の水質、水温、季節などの条件に応じて、目詰まり物質による目詰まりが発生しない最適な設定としている。また、基本的には設定されたプログラムに従って一定期間毎に一定時間の洗浄が繰り返し行われるが、タイミングや時間は随時変更することができる。
 21は、外部から装置内に海水を取り込むための海水流入口を、18は、洗浄装置11の進行方向と交差する方向に延設された希釈懸濁水排出管を、33は、希釈懸濁水排出管18の排出口18aから夫々放流される排水を示している。希釈懸濁水排出管18には、図1に示すように排出口18aが複数設けられているため、希釈された排水は分散されて更に目立たないものとなり、環境への影響も小さくなる。
 図2は、洗浄装置11の内部構造の説明図であり、駆動車輪12やモーター等の動力部は省略し、洗浄機能に関係する機構のみを示している。なお、図2において、矢印Aは洗浄装置11の進行方向を示している。
 41はろ過砂層を、42は取水配管43が埋設された支持砂利層を示している。このろ過砂層41と支持砂利層42によって、海水浸透速度を400m/日以下のできるだけ大きい速度に高速化したろ過層を形成している。
 第1実施例の洗浄装置11は、砂ろ過層の表層部を所要の深さだけ攪拌し、目詰まり物質を濁水吸水ピット20内の海水中に前記表層部のろ過砂と共に巻き上げる攪拌手段として、ポンプ13及びジェットノズル14を用いている。
 すなわち、海水は、ポンプ13によって海水流入口21から洗浄装置11の内部に取り込まれ、ポンプ13の作用によって圧力を伴った水は、接続管13aを介してジェットノズル14から高水圧のジェット水流31として噴出される。
 ジェットノズル14の噴出角度は、ジェット水流31が、ろ過砂層41の表面41aへ概ね直角方向に当たるように設定している。また、このジェット水流31の水圧は、ろ過砂層41全体の深さDのうち、目詰まり物質が取り込まれている可能性がある深さdだけろ過砂を撹拌できるように、その水圧を設定している。このように水圧を調整することで、ジェットノズル14から噴出される水による洗浄深度は、必要最小限のろ過砂が撹拌される深度とすることができる。
 高水圧のジェット水流31を当てることにより、ろ過砂層41の表層部に堆積又は取り込まれた目詰まり物質は、ろ過砂と共にジェット水流31により攪拌される。そして、ジェット水流31によって撹拌されたろ過砂及びこのろ過砂に捕捉されていた目詰まり物質は、濁水吸水ピット20内の海水中に巻き上がる。
 図2に示すとおり、本発明では、目詰まり物質及びろ過砂が混合した状態の濁質混合水32が巻き上がるのは、濁水吸水ピット20の内部にとどまる。よって、本発明では、撹拌手段を実行した段階で濃度の高い濁水が砂ろ過層の周囲に漂流することはない。
 第1実施例の洗浄装置11では、攪拌手段により濁水吸水ピット20内の海水中に巻き上げられた濁水を吸引し、濁水吸水ピット20の外部に排出する吸引排出手段として、懸濁水吸水用有孔管15、ポンプ16、エジェクター17、希釈懸濁水排出管18を用いている。
 濁水吸水ピット20内に巻き上げられた濁質混合水32の中には、目詰まりの原因となる目詰まり物質が含まれているほか、目詰まりの原因とはならず、むしろ、海水のろ過性能を維持するのに必要なろ過砂も含まれている。
 そこで、第1実施例の吸引排出手段は、濁水吸水ピット20内の海水中に巻き上げられた目詰まり物質とろ過砂が混合した状態の濁水から、目詰まり物質とろ過砂の沈降速度差を利用して、目詰まり物質を選択的に吸引するように構成した。
 具体的には、図3のグラフに示すように、ろ過砂は、粒径が例えば0.4~0.6mmの範囲であって沈降速度が速いため、例えば15秒後には60cm以上沈降しているが、目詰まり物質は、粒径が例えば0.04mm以下であって沈降速度が遅いため、例えば15秒後においても浮遊状態にある。したがって、多数の孔が列設された懸濁水吸水用有孔管15を設ける高さ位置と、ポンプ16を駆動させて濁質混合水32を吸引するタイミングを調整することにより、目詰まり物質が海水中に多く存在する位置及びタイミングで吸引排出手段を実行すれば、目詰まり物質のみを選択的に吸引し、ろ過砂はできるだけ吸引せずにろ過砂層41の表面41aに残すことが可能となる。
 濁質混合水32は、上記のとおり、目詰まり物質が選択的に吸引されるタイミングで濁水吸水用有孔管15を介してポンプ16によって吸引される。そして、ポンプ16の作用によって圧力を伴った懸濁水は、接続管16aを介してエジェクター17に送水される。
 エジェクター17に送られた懸濁水は、エジェクター17の作用により流入口17aから吸引された自然海水と混合され、これにより懸濁水はさらに希釈される。そして、希釈された懸濁水は、図1に示したような形状の希釈懸濁水排出管18に送出され、複数の排出口18aから分散して放出される。33は、希釈されると共に分散して放出された排水を示している。海洋の環境保全を考慮した場合、排出口18aはできる限り多数設けると共に間隔を置くことが望ましい。
 なお、図2において、19は、砂ろ過層に面した下端側が開口し、洗浄装置11の外郭を形成する筐体を、22は、筐体19の下端外周に取り付けられた隔壁を示している。本発明では、ジェット水流31によって攪拌された際に巻き上がる濁質混合水32に含まれる砂分と目詰まり物質の沈降及び分離処理は、すべて濁水吸水ピット20内の密閉された空間内で行う。隔壁22は、濁水吸水ピット20の密閉性を確保するために、筐体19の下端外周と砂ろ過層の表面との間の隙間をシールするための部材であり、例えばゴムや樹脂等の柔軟性を有する素材で構成される。
 このように、本発明の濁水吸水ピット20は、海水中に巻き上げられた目詰まり物質とろ過砂が混合した状態の濁度の高い濁水が、近傍に直接的に拡散し汚染することを格段に抑制し、周辺環境に配慮した構造のものである。また、第1実施例の吸引排出手段は、海洋環境の保全を目的に、攪拌直後に発生する濁質分(濁水)は可能な限り濁水吸水ピット20内にて処理するので、周囲への拡散を抑制できる。また、目詰まり物質を直接的に付近への放流を行う場合は、エジェクター17により自然海水と混合して希釈の上、懸濁水排出管18により複数の箇所に分散放流するので、周辺環境への影響を小さくすることができる。
 次に、図4を参照して、本発明の第2実施例の洗浄装置11の構成を、第1実施例とは異なる点を中心に説明する。
 第1実施例は、駆動車輪12を回転させるモーターを駆動するためのバッテリー等の電源を洗浄装置自体に備えていた。これに対し、図4に示す第2実施例の洗浄装置11は、ソーラーパネル24aと蓄電池24bとフロート24cを備えた海上の浮体24からケーブル25を介して電源を確保することにより、広範囲かつ長時間の洗浄にも対応できるものである。
 ここで、発電機としては、ソーラーパネル24aのような太陽光発電だけでなく、浮体上に搭載可能な風力発電機、波力発電機、海洋温度差発電機、潮流発電機など、再生可能な自然エネルギーを用いることができる。
 また、第1実施例では、ジェットノズル14から噴出させる水流のみによって目詰まり物質を含むろ過砂層41を撹拌洗浄していた。これに対し、第2実施例の洗浄装置11は、洗浄深度をさらに深くするために、空気混流式ノズルによるジェット水流を用いている。この場合、混流する空気は、例えば図4に示すように、フロート26bの作用によって先端の吸気口26aが海上に浮かんでいるエアー流入管26を介して、洗浄装置11内の空気混流式ノズルに供給する。
 さらに、第1実施例では、希釈懸濁水排出管18に送出された濁水は、希釈後に排出口18aから分散して放出していた。これに対し、第2実施例の洗浄装置11では、希釈懸濁水排出管18の排出口18aは排水管23と接続されており、希釈後の排水は海上の浮体24に回収している。この場合、浮体24には、吸引ポンプを設ける。
 また、24dは、GPSのデータを受信する受信機を示している。GPSのデータから現在位置を特定することにより、洗浄装置11が正しいエリアを走行しているかを判断できる。なお、浮体24と洗浄装置11間の信号の送受信は、ケーブル25を介して行うことができる。
 このように、本発明は、洗浄装置自体が洗浄機構と移動機構を共に具備している必要はなく、例えばエンジン、モーター、バッテリー、ポンプ、ソーラーパネル等の発電機、GPSなどの機器は、第2実施例のように台船上に設置し、必要最低限の洗浄用機構のみを備えた洗浄装置を海底で移動させる構成であっても良い。
 第2実施例では、海洋環境の保全を目的に、攪拌直後に発生する濁質分(濁水)は可能な限り濁水吸水ピット20内にて処理するので、周囲への拡散を抑制できる。また、排水は浮体24に一旦回収の上、他の専用排水処理設備へ送水できるので、周辺環境に影響を及ぼすおそれもない。
 次に、図5を参照して、本発明の第3実施例の洗浄装置11の構成を説明する。
 第1実施例では、ジェットノズル14から噴出させる水流によって目詰まり物質を含むろ過砂を濁水吸水ピット20内で撹拌洗浄していたのに対し、図5に示す第3実施例の洗浄装置11は、浮体27上に濾材洗浄機27aを設け、この濾材洗浄機27で洗浄するものである。
 すなわち、第3実施例の洗浄装置11では、目詰まり物質が捕捉されたろ過砂を、ろ過砂ごと吸引管28を介して濾材洗浄機27aまで吸引する。そのため、吸引管28の吸引口28aは、濁水吸水ピット20内のろ過砂層41の表面41a付近に位置させている。また、濾材洗浄機27a内で目詰まり物質を取り除いて洗浄したろ過砂は、送出管29を介して洗浄装置11まで送出し、砂ろ過層41に埋め戻すものである。そのため、送出管29の送出口29aは、ろ過砂層41の表面41a付近に位置させている。
 このように、第3実施例の洗浄装置11は、浮体27と共に矢印Aの方向に移動しながら、ろ過砂の吸引と埋め戻しを繰り返すものである。
 このような構成により、ろ過砂自体の洗浄を行う場合においても、ろ過砂の吸引と埋め戻しは濁水吸水ピット20内で行われるので、ろ過砂の吸引と埋め戻しに伴い発生する濁水32によって砂ろ過層の周辺が汚染されることはない。また、排水は浮体27上の濾材洗浄機27aで回収の上、他の専用排水処理設備へ送水できるので、周辺環境に影響を及ぼすおそれもない。
 以上の本発明の洗浄装置を利用することにより、砂ろ過層の表層に堆積又は取り込まれた目詰まり物質を取り除くことにより目詰まりを確実に防止できるので、海水浸透速度を例えば400m/日以下のできるだけ大きい速度にまで高速化する場合でも、その浸透速度を維持することができる。
 例えば10万t/日の取水量が求められる設備の場合、浸透速度が5m/日の従来の浸透取水法であれば、必要な取水エリアの面積は20,000m2 となるが、出願人が提案した浸透取水法と本発明の洗浄装置を組み合わせることにより浸透速度が100m/日の浸透取水を維持できれば、必要な取水エリアの面積は1/20の1,000m2 にまで格段に削減できる。よって、設置時の工事も小規模化が可能になって、工事時の周囲環境への影響も各段に緩和できる。
 本発明は、前記の例に限るものではなく、各請求項に記載の技術的思想の範疇であれば適宜実施の形態を変更しても良いことは言うまでもない。
 例えば、第1実施例では、図1に示すような形状の洗浄装置を開示したが、外観形状はこれに限らない。例えば、図6に示すように、駆動車輪12を備えた駆動機構部よりも、濁水吸水ピット20を含む洗浄機構部を幅広にして、効率的に洗浄できるように構成しても良い。
 また、第1実施例では、ジェットノズル14から噴出するジェット水流31は砂ろ過層の浸透面に対し概ね直角方向に当てる例を開示したが、ジェット水流31の噴出方向は、巻き上げたろ過砂を含む濁質混合水32が濁水吸水ピット20の方向にスムーズに流れるように、洗浄装置11の進行方向とは逆向きに若干角度を持たせても良い。
 また、第1実施例では、自走式の洗浄装置11を開示したが、本発明の洗浄装置は海上を移動する台船に牽引されて移動する構成でも良い。
 また、第1実施例では、撹拌手段としてポンプ13とジェットノズル14による水流撹拌を用いる場合の例を開示したが、本発明はこれに限らない。撹拌手段としては、回転翼やスパイラル翼などを備えた機械的な耕運式の撹拌によることも可能である。
 11 洗浄装置
 12 駆動車輪
 13 ポンプ
 14 ジェットノズル
 15 懸濁水吸水用有孔管
 16 ポンプ
 17 エジェクター
 17a 流入口
 18 希釈懸濁水排出管
 18a 排出口
 19 筐体
 20 濁水吸水ピット
 21 海水流入口
 22 隔壁

Claims (4)

  1.  海水の浸透取水を行う砂ろ過層の表層部に堆積又は取り込まれた目詰まり物質を取り除いて目詰まりを防止する洗浄装置であって、
     前記砂ろ過層の表面を移動するための移動手段と、
     前記表層部を所要の深さだけ攪拌し、前記目詰まり物質を濁水吸水ピット内の海水中に前記表層部のろ過砂と共に巻き上げる攪拌手段と、
     前記攪拌手段により前記濁水吸水ピット内の海水中に巻き上げられた濁水を吸引し、前記濁水吸水ピットの外部に排出する吸引排出手段と、
     を備えたことを特徴とする洗浄装置。
  2.  前記吸引排出手段は、前記濁水吸水ピット内の海水中に巻き上げられた目詰まり物質とろ過砂が混合した状態の濁水から、目詰まり物質とろ過砂の沈降速度差を利用して、目詰まり物質を選択的に吸引することを特徴とする請求項1に記載の洗浄装置。
  3.  前記濁水吸水ピットは、海水中に巻き上げられた目詰まり物質とろ過砂が混合した状態の濁度の高い濁水が、砂ろ過層の近傍に直接的に拡散することを抑制する構造であることを特徴とする請求項1に記載の洗浄装置。
  4.  前記吸引排出手段は、目詰まり物質を選択的に吸引した状態の濁水をさらに希釈し、複数箇所に分散して、前記濁水吸水ピットの外部に排出することを特徴とする請求項2に記載の洗浄装置。
PCT/JP2012/070532 2011-10-20 2012-08-10 海水の浸透取水におけるろ過層の洗浄装置 WO2013058009A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280036438.4A CN103702732B (zh) 2011-10-20 2012-08-10 海水渗透取水中过滤层的清洗设备
US14/347,525 US9345993B2 (en) 2011-10-20 2012-08-10 Cleaning apparatus for filtration layer in seawater infiltration intake
ES201490022A ES2515690B2 (es) 2011-10-20 2012-08-10 Aparato limpiador para capa filtrante en captación por infiltración de agua de mar
AU2012324258A AU2012324258B2 (en) 2011-10-20 2012-08-10 Cleaning apparatus for filtration layer in seawater infiltration intake

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011230916A JP5822644B2 (ja) 2011-10-20 2011-10-20 海水の浸透取水におけるろ過層の洗浄装置
JP2011-230916 2011-10-20

Publications (1)

Publication Number Publication Date
WO2013058009A1 true WO2013058009A1 (ja) 2013-04-25

Family

ID=48140666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070532 WO2013058009A1 (ja) 2011-10-20 2012-08-10 海水の浸透取水におけるろ過層の洗浄装置

Country Status (6)

Country Link
US (1) US9345993B2 (ja)
JP (1) JP5822644B2 (ja)
CN (1) CN103702732B (ja)
AU (1) AU2012324258B2 (ja)
ES (1) ES2515690B2 (ja)
WO (1) WO2013058009A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112411467A (zh) * 2020-10-26 2021-02-26 中国港湾工程有限责任公司 码头结构

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6160226B2 (ja) * 2013-05-16 2017-07-12 宇部興産株式会社 塩素含有土のセメント原料化方法
JP6138594B2 (ja) * 2013-06-04 2017-05-31 日立造船株式会社 海水浸透取水における移動式懸濁物質回収装置
JP6144574B2 (ja) 2013-08-23 2017-06-07 日立造船株式会社 海水淡水化システムおよび海水淡水化方法
JP6530205B2 (ja) 2015-03-12 2019-06-12 日立造船株式会社 浸透取水システム
GB2543764A (en) * 2015-10-26 2017-05-03 Stephen Nunny Robert Bed level maintenance in sediment-floored water areas using autonomous underwater vehicle technology
NL2016470B1 (en) * 2016-03-22 2017-10-05 Univ Delft Tech Device for dredging by water injection.
GB2551317A (en) * 2016-06-07 2017-12-20 Ide Technologies Ltd Environmentally friendly water intake and pretreatment system
ES2694727A1 (es) * 2017-06-24 2018-12-26 Aquatic Sweeper, S.L. Dispositivo limpiador de fondos acuáticos.
WO2021040510A1 (en) * 2019-08-30 2021-03-04 Petroliam Nasional Berhad (Petronas) In-vessel sand removal system
GB202007660D0 (en) 2019-11-18 2020-07-08 Harwich Haven Authority Dredging method and apparatus
CN112832324B (zh) * 2021-02-24 2022-03-11 河南省水利勘测设计研究有限公司 浮坞泵站取水坑施工方法
US11933260B2 (en) 2021-10-04 2024-03-19 Christopher Lory Whetzel Assembly and methods for pumping water to shore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355571A (en) * 1976-10-29 1978-05-20 Hitachi Metals Ltd Surface washer for filtering sand
JP2003080010A (ja) * 2001-09-11 2003-03-18 Risui Koki Kk 浄水場における砂表層の堆積物除去装置と浄水場における砂表層の堆積物除去装置の使用方法
JP2005161229A (ja) * 2003-12-04 2005-06-23 Shimizu Gokin Seisakusho:Kk 砂濾過装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1767729A (en) * 1929-04-01 1930-06-24 Morris L Bayard Filter-sand-washing machine
US3412862A (en) * 1967-09-07 1968-11-26 Merle P. Chaplin Method and apparatus for cleaning areas overlain by a water body
US3925202A (en) * 1974-04-25 1975-12-09 Hydromation Filter Co Method of and apparatus for filtering water
JPS555752A (en) * 1978-06-29 1980-01-16 Miura Eng Internatl Kk Sand filter
SE511870C2 (sv) * 1998-04-08 1999-12-06 Weda Poolcleaner Ab Metod och anordning för bottenrening av bassänger med sandbotten
JP3899788B2 (ja) 2000-08-10 2007-03-28 株式会社大林組 海水取水システムおよび海水取水方法
JP4303012B2 (ja) * 2002-06-14 2009-07-29 株式会社ナガオカ 水処理装置および水処理方法
JP5201481B2 (ja) * 2008-06-19 2013-06-05 株式会社ナガオカ 水処理装置および水処理装置濾材層の洗浄方法
CN201512826U (zh) * 2009-09-28 2010-06-23 郭永晨 砂滤墙式分体雨水处理系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355571A (en) * 1976-10-29 1978-05-20 Hitachi Metals Ltd Surface washer for filtering sand
JP2003080010A (ja) * 2001-09-11 2003-03-18 Risui Koki Kk 浄水場における砂表層の堆積物除去装置と浄水場における砂表層の堆積物除去装置の使用方法
JP2005161229A (ja) * 2003-12-04 2005-06-23 Shimizu Gokin Seisakusho:Kk 砂濾過装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112411467A (zh) * 2020-10-26 2021-02-26 中国港湾工程有限责任公司 码头结构

Also Published As

Publication number Publication date
CN103702732A (zh) 2014-04-02
AU2012324258A1 (en) 2014-02-06
ES2515690A2 (es) 2014-10-29
ES2515690B2 (es) 2016-06-06
CN103702732B (zh) 2015-04-29
ES2515690R1 (es) 2015-04-14
JP2013086058A (ja) 2013-05-13
AU2012324258B2 (en) 2015-07-23
US9345993B2 (en) 2016-05-24
US20140238924A1 (en) 2014-08-28
JP5822644B2 (ja) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5822644B2 (ja) 海水の浸透取水におけるろ過層の洗浄装置
JP5822623B2 (ja) 海水の浸透ろ過方法及び浸透取水ユニット
US7241382B2 (en) Method and system for filtering sediment-bearing fluids
US7468082B2 (en) Self cleaning gas filtering system and method
US20070144969A1 (en) Method and system for filtering sediment-bearing fluids
JP2007319002A (ja) 藻類処理船および藻類処理システム
US20070187328A1 (en) Method and system for filtering sediment-bearing fluids
KR20140135393A (ko) 수중 오염원의 제거장치 및 제거방법
KR101538477B1 (ko) 해수담수화를 위한 해수 전처리 장치 및 해수 전처리 방법
CN104452878A (zh) 一种粗滤式浮船取水装置
JP6084897B2 (ja) 浮体式懸濁物質回収装置及び方法
JP2012246711A (ja) 海水の浸透取水ろ過方法及び砂層表面の目詰まり防止装置
JP5869375B2 (ja) 海水浸透取水装置
JP3899788B2 (ja) 海水取水システムおよび海水取水方法
KR101444401B1 (ko) 준설사업 중 배출되는 배출수 여과장치
JP6138594B2 (ja) 海水浸透取水における移動式懸濁物質回収装置
CN203112545U (zh) 一种涡凹气浮系统
KR101662430B1 (ko) 수로식 폐수처리장치
JP2006152798A (ja) 海水取水システムおよび海水取水方法
KR101666718B1 (ko) 해수담수화 장치 및 해수담수화 방법
KR20130036975A (ko) 슬러지의 수분 및 녹조와 부유물 처리장치 그리고 이를 이용한 슬러지 수분 및 녹조와 부유물 처리방법
KR20180019362A (ko) 간소화된 해수 담수화 플랜트
JP2005058957A (ja) 浮体式水域浄化処理装置
JP3643007B2 (ja) 水面流発生装置
CN113463594A (zh) 一种用于区域河道水生态环境整治装置及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012324258

Country of ref document: AU

Date of ref document: 20120810

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P201490022

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 14347525

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842254

Country of ref document: EP

Kind code of ref document: A1