WO2013057936A1 - ガス遮断器 - Google Patents

ガス遮断器 Download PDF

Info

Publication number
WO2013057936A1
WO2013057936A1 PCT/JP2012/006629 JP2012006629W WO2013057936A1 WO 2013057936 A1 WO2013057936 A1 WO 2013057936A1 JP 2012006629 W JP2012006629 W JP 2012006629W WO 2013057936 A1 WO2013057936 A1 WO 2013057936A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
rod
circuit breaker
gas circuit
seal
Prior art date
Application number
PCT/JP2012/006629
Other languages
English (en)
French (fr)
Inventor
網田 芳明
旭 島村
隆介 落合
丸島 敬
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2013539530A priority Critical patent/JP5735123B2/ja
Priority to BR112014009426-8A priority patent/BR112014009426B1/pt
Priority to CN201280051708.9A priority patent/CN103907168B/zh
Priority to EP12841501.5A priority patent/EP2770519B1/en
Priority to IN3043DEN2014 priority patent/IN2014DN03043A/en
Publication of WO2013057936A1 publication Critical patent/WO2013057936A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/30Power arrangements internal to the switch for operating the driving mechanism using fluid actuator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/46Interlocking mechanisms
    • H01H33/50Interlocking mechanisms for interlocking two or more parts of the mechanism for operating contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H33/565Gas-tight sealings for moving parts penetrating into the reservoir
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/40Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas

Definitions

  • Embodiment of this invention is related with the gas circuit breaker provided with the rod and link which transmit the operation force of an operation mechanism to a movable electrode part.
  • Puffer type gas circuit breakers are used in gas insulated switchgear installed in substations and switch stations.
  • the gas circuit breaker is provided with a container in which an insulating gas is sealed, and a fixed electrode portion and a movable electrode portion are arranged opposite to each other so as to be able to contact and separate within the container, that is, in an atmosphere of the insulating gas.
  • the gas circuit breaker is provided with an operating mechanism on the atmosphere side outside the container.
  • the operation mechanism is a mechanism for operating the movable electrode unit by applying an operating force to the movable electrode unit inside the container.
  • the gas circuit breaker is provided with a combination of multiple rotatable links and linearly moving rods in order to transmit and convert the displacement output, which is the operating force of the operating mechanism, into displacement on the movable electrode side. It has been. Further, when the output displacement of the operation mechanism is shorter than the displacement of the movable electrode portion, a lever that amplifies the output displacement of the operation mechanism may be connected to the rod. By connecting the lever to the rod, the movement stroke of the rod can be secured by swinging the lever.
  • Operation rods and seal rods are known as rods that perform linear motion.
  • the operating rod is a rod that applies a driving force to the movable electrode portion, and the entire rod is disposed in the container.
  • the seal rod is a rod that penetrates the partition wall of the container and is slidably disposed on a seal bearing (having a gas seal function) fixed to the partition wall of the container.
  • the cross-sectional area (section modulus) of the rod tends to be set large. If the diameter of the rod is increased, the mass of the rod increases in proportion to this, which causes a reduction in the operating speed of the rod.
  • the embodiment of the present invention has been made to solve the above-described problems.
  • the purpose of this embodiment is to improve the operating speed of the rod that transmits the operating force from the operating mechanism to the movable electrode part, to realize the application of the operating mechanism with low driving energy, and to be compact and economical and reliable.
  • the object is to provide an excellent gas circuit breaker.
  • the gas circuit breaker of the present embodiment includes the following (a) to (j).
  • (E) A lever having one end rotatably attached to the first link.
  • a seal rod that is rotatably mounted near the center of the lever and is slidably supported by the seal bearing.
  • Sectional drawing which shows the injection
  • Sectional drawing which shows the interruption
  • the partial expanded sectional view of FIG. The elements on larger scale which show the intermediate position of an injection
  • the partial expanded sectional view of FIG. The graph which shows the calculation result of the stroke and force F3y of a movable electrode part in the interruption
  • the graph which shows the calculation result of the stroke and force F3y of a movable electrode part in the interruption
  • FIG. 1 shows a state in which the gas circuit breaker is turned on
  • FIG. 3 to 5 are partial enlarged views of the link mechanism incorporated in the gas circuit breaker, in which FIG. 3 shows a closing state
  • FIG. 4 shows an intermediate state between the closing state and the closing state
  • FIG. 5 shows a blocking state
  • 6 to 10 are graphs for explaining the operational effects of the first embodiment.
  • the puffer-type gas circuit breaker As shown in FIGS. 1 and 2, the puffer-type gas circuit breaker according to the first embodiment is provided with a container 1 sealed with an insulating gas. A movable electrode portion 2 and a fixed electrode portion 3 that are freely contactable and separable are disposed inside the container 1 so as to face each other.
  • the movable electrode portion 2 is composed of a movable arc electrode 2a and a movable main electrode 2b
  • the fixed electrode portion 3 is composed of a fixed arc electrode 3a and a fixed main electrode 3b.
  • the support 6 is fixed inside the partition wall 1a of the container 1 (insulating gas atmosphere side).
  • An insulating portion 6 a for performing electrical insulation is provided on a part of the support portion 6.
  • a mechanism support 1b is fixed to the outside (atmosphere side) of the partition wall 1a of the container 1. Further, the partition wall 1a of the container 1 is provided with a seal bearing 1c having a gas sealing function.
  • An operation mechanism 8 is disposed on the mechanism support 1 b of the container 1.
  • the operating mechanism 8 is a mechanism that operates by applying an operating force to the movable electrode unit 2.
  • the operation mechanism 8 uses an elastic body such as a spring or a fluid pressure, and an output unit 16 that outputs an operation force is rotatably installed.
  • An insulating nozzle 4 is fitted to the movable electrode portion 2, and a pressure chamber 7 for pressurizing an insulating gas is disposed.
  • the pressure chamber 7 is configured to eject insulating gas from between the movable arc electrode 2a and the insulating nozzle 4 in accordance with the shut-off operation by compressing the insulating gas in the chamber.
  • two rods 5 and 14 and three links 10, 12, and 15 are amplified as members for transmitting the operating force of the operating mechanism 8 to the movable electrode portion 2 side.
  • An amplification lever 11 is provided. These members are connected by six pins 10a, 10b, 12a, 12b, 14a, 14b.
  • the rod, lever, and link are arranged in the order of the operation rod 5, the first link 10, the amplification lever 11, the second link 12, the seal rod 14, and the third link 15 from the movable electrode portion 2 side to the operation mechanism 8 side.
  • the end near the movable electrode portion 2 is defined as the front end
  • the end near the operation mechanism 8 is defined as the rear end.
  • the operation rod 5 is slidably supported by the support portion 6 of the partition wall 1a of the container 1.
  • the distal end portion of the operation rod 5 is fitted to the movable electrode portion 2.
  • a first pin 10a is attached to the rear end portion of the operating rod 5, and the tip end portion of the first link 10 is rotatably connected via the first pin 10a.
  • a second pin 10b is attached to the rear end portion of the first link 10, and the upper end portion of the amplification lever 11 is rotatably connected via the second pin 10b. That is, the 1st pin 10a and the 2nd pin 10b are installed in the both ends of the 1st link 10, the operation rod 5 and the 1st link 10 are connected by the 1st pin 10a, and the 1st link is connected by the 2nd pin 10b. 10 and the amplification lever 11 are connected.
  • a third pin 12a is attached to the lower end portion of the amplification lever 11, and the tip end portion of the second link 12 is rotatably connected via the third pin 12a.
  • the 4th pin 12b is attached to the rear-end part of the 2nd link 12, and the support bearing 13 is connected by this 4th pin 12b.
  • the support bearing 13 is a portion that supports the second link 12, and is fixed to the inside of the partition wall 1 a of the container 1 with an insulating spacer 9 interposed therebetween.
  • the third pin 12a and the fourth pin 12b are installed at both ends thereof, the amplification lever 11 and the second link 12 are connected by the former, and the second link 12 and the support bearing are connected by the latter. 13 are connected.
  • the second pin 10 b and the third pin 12 a are attached to the upper and lower ends of the amplification lever 11, and in addition, the fifth pin 14 a is attached to substantially the center of the amplification lever 11. . Therefore, the amplification lever 11 is provided with three pins 10b, 12b, and 14a. The first link is connected to the second pin 10b, the second link 12 is connected to the third pin 12a, and the fifth link The tip of the seal rod 14 is rotatably connected by the pin 14a.
  • tip part of the 3rd link 15 is rotatably connected with respect to the rear-end part via the 6th pin 14b. That is, a fifth pin 14a and a sixth pin 14b are installed at both ends of the seal rod 14, and the amplification lever 11 is connected in the former and the third link 15 is connected in the latter.
  • the seal rod 14 is slidably disposed at the center of the seal bearing 1 c in the partition wall 1 a of the container 1. Further, the output portion 16 of the operation mechanism 8 is connected to the rear end portion of the third link 15.
  • a straight line connecting the centers of the second pin 10b and the first pin 10a (shown in FIGS. 1 and 2) engaged with the first link 10 is defined as a first straight line 10c (shown in FIG. 3).
  • first straight line 10c and the operation axis 14c extending in the sliding direction of the seal rod 14 are substantially the same. It is set to be parallel or to intersect on the seal rod 14 side when viewed from the amplification lever 11.
  • the positional relationship among the second link 12, the amplification lever 11, and the seal rod 14 is set as follows. As shown in FIGS. 3 to 5, a straight line connecting the center of the fourth pin 12b and the third pin 12a included in the second link 12 is a second straight line 12c. When the movable electrode portion 2 and the fixed electrode portion 3 are in the closing state, the second straight line 12c and the operation axis 14c of the seal rod 14 are substantially parallel to each other, or the operation rod is viewed from the amplification lever 11. It is set to intersect on the 5th side.
  • the angle formed between the second straight line 12c on the second link 12 and the operation axis 14c of the seal rod 14 and in the input state is defined as a support link initial angle ⁇ .
  • the support link initial angle ⁇ is a positive value counterclockwise with respect to a straight line parallel to the operation axis 14c.
  • the first link 10 and the second link 12, the amplification lever 11, and the seal rod 14 satisfy the above positional relationship, and the support link initial angle ⁇ is -2 ° to 0 °. It is set in the range of °. The reason why the support link initial angle is set within this range will be described in detail later with reference to the graphs of FIGS.
  • the seal rod 14 connected to the third link 15 also moves in the arrow A direction, and the amplification lever 11 connected to the seal rod 14 rotates in the clockwise direction around the third pin 12a.
  • the first link 10 connected to the amplification lever 11 moves in the arrow A direction, and the operation rod 5 and the movable electrode portion 2 connected to the operation rod 5 also move in the arrow A direction.
  • the movable electrode portion 2 is separated from the fixed electrode portion 3.
  • the operation in the vicinity of the amplification lever 11 shifts from the closing state shown in FIG. 3 to the blocking state shown in FIG. 5 through the intermediate position shown in FIG.
  • the output unit 16 of the operation mechanism 8 completes the movement of a certain distance
  • the movement from the third link 15 to the movable electrode 2 is also completed, and the blocking operation is finished.
  • the ratio of the moving distance between the seal rod 14 and the operating rod 5 is the distance between the third pin 12a and the fifth pin 14a, the third pin 12a and the second pin among the three pins attached to the amplification lever 11. It is proportional to the ratio to the distance between the pins 10b.
  • the operating force F m of the operating mechanism 8 acts in the shut-off direction indicated by the arrow A as shown in FIG.
  • the force F m is applied to the sealing rod 14 through the third link 15, near the center of the amplification lever 11, the fifth pin 14a, the force F 3 along the axis of motion 14c of the sealing rod 14 A force F 3y in the vertical direction acts on the operating axis 14c.
  • the direction of the operation axis 14c is taken as the x-axis, and the direction perpendicular thereto is taken as the y-axis.
  • the force F 1 due to the inertial force of the movable electrode portion 2 and the pressure of the insulating gas compressed inside the pressure chamber 7 acts on the second pin 10 b provided on the first link 10. To do.
  • the first straight line 10 c along the first link 10 intersects the operation axis 14 c of the seal rod 14 on the seal rod 14 side when viewed from the amplification lever 11.
  • the seal rod 14 Since the seal rod 14 is supported by the seal bearing 1c, when the seal rod 14 moves in the direction of the arrow A, the seal rod 14 maintains a substantially linear motion. In that case, when the amplification lever 11 rotates around the third pin 12a, the linear motion of the seal rod 14 is constrained. Therefore, when the seal rod 14 moves linearly, the second link 12 slightly swings, so that the amplification lever 11 also swings, and the fifth pin 14a connecting the amplification lever 11 and the seal rod 14 becomes the seal rod. 14 linear motions are followed. That is, when the seal rod 14 moves in the direction of arrow A, the amplification lever 11 rotates around the fifth pin 14a while swinging slightly.
  • the rotation radius of the second pin 10b is shorter than the rotation radius around the third pin 12a of the amplification lever 11 by the distance between the fifth pin 14a and the third pin 12a. Therefore, the displacement of the first link 10 in the y-axis direction (the displacement of the second pin 10b in the y-axis direction) decreases. Therefore, the y-axis direction component F1y of the force F1 applied to the first link 10 can be small.
  • the force F 2 along the second straight line 12 c acts on the third pin 12 a attached to the second link 12.
  • the second straight line 12 c along the second link 12 is substantially parallel to the operation axis 14 c of the seal rod 14 or intersects the operation rod 5 side when viewed from the amplification lever 11. Since the seal rod 14 is supported by the seal bearing 1c, when the seal rod 14 moves in the direction of arrow A, the seal rod 14 maintains a substantially linear motion. In that case, when the amplification lever 11 rotates around the third pin 12a, the linear motion of the seal rod 14 is constrained.
  • the second link 12 swings slightly so as to absorb the displacement in the y-axis direction that occurs when the amplification lever 11 rotates about the third pin 12a.
  • the radius of rotation of the third pin 12a is the distance between the fifth pin 14a and the third pin 12a. Since the fifth pin 14a is substantially at the center of the amplification lever 11, it can be said that the displacement of the second link 12 (third pin 12a) in the y-axis direction is approximately the same as that of the first link 10. Therefore, even if the amplification lever 11 is swung, the displacement of the second link 12 in the vertical direction is small like the first link 10. Therefore, the y-axis direction component F 2y of F 2 applied to the second link 12 can also be small.
  • reference numeral 1d shown in FIGS. 3 to 5 is a sliding support end with respect to the seal rod.
  • Z is a section modulus of the seal rod 14.
  • the support link initial angle ⁇ since angle formed between axis of motion 14c of the second straight line 12c and the seal rod 14 at the time of turn-on state, the direction of the force F 2 along the second straight line 12c, the support link It varies depending on the initial angle ⁇ .
  • the y-axis direction component F 2y of the force F 2 is an element that determines the force F 3y in the vertical direction. Therefore, the magnitude of the support link initial angle ⁇ affects the vertical force F 3y .
  • FIG. 6 shows the calculation results of the stroke of the movable electrode portion 2 and the time history of the force F 3y in the vertical direction during the shut-off operation of the gas circuit breaker.
  • the seal rod 14 can ensure an excellent operating speed and prevent a decrease in the shut-off speed of the gas circuit breaker. It becomes possible to do.
  • FIG. 8 shows the calculation results of the stroke of the movable electrode portion 2 and the bending stress ⁇ of the seal rod 14 during the breaking operation of the gas circuit breaker.
  • the maximum value and the minimum value of the bending stress ⁇ are ⁇ max and ⁇ min , respectively, the strength of the seal rod 14 improves as the absolute value decreases. Therefore, by setting the support link initial angle ⁇ so that the absolute value of the maximum and minimum values of the bending stress ⁇ becomes smaller, the strength of the seal rod 14 can be improved, and the diameter and weight of the seal rod 14 can be reduced. It becomes.
  • FIG. 10 shows the relationship when the sum of the absolute values of F max and F min is F abs and the support link initial angle ⁇ changes.
  • FIG. 10 shows the relationship when the sum of the absolute values of ⁇ max and ⁇ min is ⁇ abs and the support link initial angle ⁇ changes.
  • the speed and force of the movable part (including the movable electrode part 2 and the link mechanism) in the closing operation are generally less than half of the interruption operation. For this reason, it is sufficient to design the strength of each component member of the link mechanism with the force generated during the blocking operation.
  • the second link 12 is fixed to the partition wall 1 a of the container 1 via the support bearing 13. For this reason, the operability of the second link 12 and each member connected thereto is improved, and excellent operational reliability can be obtained.
  • the rod for the rod that performs a linear operation, a guide and a roller that reduce bending stress, and a case portion provided with the guide are not used. Therefore, the rod can be reduced in weight, and the small operation mechanism 8 with small driving energy can be employed. Thereby, the gas circuit breaker as a whole can be made more compact, which is economically advantageous.
  • the support bearing 13 is attached to the container 1 via the insulating spacer 9. Therefore, the second link 12 attached to the support bearing 13 can be disposed close to the container 1. Therefore, it is not necessary to increase the insulation distance between the second link 12 and the container 1, the container 1 itself can be downsized, and the gas circuit breaker can be further downsized.
  • the frictional force F f between the seal bearing 1c and the seal rod 14 is minimized by setting the support link initial angle ⁇ to ⁇ 2 ° to 0 °. And has gained a quick shut-off speed. In addition, it is possible to reduce the bending stress ⁇ acting on the seal rod 14, and also from this point, the breaking speed of the gas circuit breaker can be greatly improved.
  • the second link 12 and the seal rod 14 can be adjusted by adjusting the thickness dimension of the spacer 9. It is possible to easily adjust the support link initial angle ⁇ which is an angle formed by. Therefore, the shutoff speed of the gas circuit breaker can be improved appropriately.
  • FIG. 11 is a partially enlarged view of the gas circuit breaker in a charged state
  • FIG. 12 is a side sectional view seen from the direction of arrow C in FIG.
  • symbol is attached
  • the guide roller 17 is rotatably disposed on the fifth pin 14 a of the seal rod 14.
  • the guide plate 18 is fixed to the partition wall 1a, and a long hole 18a is disposed therein.
  • the longitudinal direction of the long hole 18a is parallel to the operation axis 14c.
  • the guide roller 17 is slidably inserted and supported in the elongated hole 18a.
  • Blocking operation In the second embodiment configured as described above, the blocking operation from the input state shown in FIG. 11 will be described. Each component performs the same movement as the blocking operation of the first embodiment, and the guide roller 17 moves along the elongated hole 18a while rotating. At this time, the vertical force F3y is transmitted to the elongated hole 18a via the guide roller 17, but receives the reaction force of the same magnitude from the elongated hole 18a.
  • the throwing operation in the second embodiment is almost the same as that of the first embodiment, and can be easily analogized from FIG. 11 and FIGS. 1 to 5 used in the first embodiment. Description is omitted.
  • the vertical force F 3y does not act on the seal bearing 1c. Therefore, it is possible to frictional force Ff can be prevented almost becomes zero, the cutoff rate reduction due to the increase in the frictional force F f.
  • the rolling friction coefficient is generally 1/100 or less of the sliding friction coefficient. For this reason, the increase in the frictional force due to rolling is very small, and it hardly affects the decrease in the shutoff speed.
  • the guide roller 17 that slides and supports the seal rod 14 is disposed on the fifth pin 14a of the seal rod 14. Therefore, it is necessary to increase the total length of the seal rod 14 by adding a guide structure. Absent. Further, in the second embodiment, since the guide plate 18 is employed, it can be configured at a lower cost than a cylindrical guide member.
  • the vertical force F 3y can be reduced also in the second embodiment. Therefore, it is not necessary to form the guide plate 18 and the guide roller 17 firmly, and the guide plate 18 and the guide roller 17 can be constructed at a lower cost, and the frictional force due to rolling can be further reduced. Accordingly, it is possible to reliably prevent a reduction in the shutoff speed of the gas circuit breaker.
  • the present invention can be applied to a gas circuit breaker as a compact rod having a high operating speed, excellent in economy and reliability.

Abstract

操作機構の操作力を可動電極部に伝えるロッドの動作速度の向上を図る。 絶縁性ガスを封入した容器内に格納された可動電極部に連結する操作ロッドの一端に第1リンクの一端を連結する。第1リンクの他端には増幅レバーの一端を連結し、増幅レバーの他端には第2リンクの一端を連結する。第2のリンクの他端には容器の隔壁に固定された支持軸受の一端を連結し、増幅レバーのほぼ中央にはシールロッドの一端を連結する。シールロッドの他端には第3リンクの一端を連結し、第3リンクの他端は操作機構の出力部に連結する。第2リンク12上の第2の直線12cとシールロッド14の動作軸線14cとの成す角度である支持リンク初期角度θについては、-2°から0°の範囲に設定する。

Description

ガス遮断器
 本発明の実施形態は、操作機構の操作力を可動電極部に伝えるロッドやリンクを備えたガス遮断器に関するものである。
 変電所や開閉所に設置されるガス絶縁開閉装置には、パッファ形などのガス遮断器が用いられている。ガス遮断器には絶縁性ガスを密封した容器が設けられ、この容器内部つまり絶縁性ガスの雰囲気中に、固定電極部および可動電極部が接離自在に対向配置されている。またガス遮断器には、容器外部である大気側に操作機構が設置されている。操作機構は容器内部の可動電極部に操作力を与えることで可動電極部を動作させる機構である。
 さらにガス遮断器には、操作機構の操作力である変位出力を可動電極部側の変位に伝達・変換するために、回動自在なリンクや、直線的に移動するロッドが複数組み合わされて設けられている。また、操作機構の出力変位が可動電極部の変位に対して短い場合には、操作機構の出力変位を増幅させるレバーがロッドに連結されることがある。レバーをロッドに接続することで、レバーの揺動によりロッドの移動ストロークを確保することが可能である。
 直線運動を行うロッドとしては、操作ロッドやシールロッドが知られている。操作ロッドは可動電極部に駆動力を与えるロッドであり、ロッド全体が容器内に配置されている。一方、シールロッドとは、容器の隔壁を貫通するロッドであり、容器の隔壁に固定されたシール軸受(ガスシール機能を有する)に摺動自在に配置されている。
特許第1896131号 特許第3538274号 特開平9-63425号公報
 従来のガス遮断器には、次のような課題が指摘されている。ガス遮断器では操作機構の操作力を可動電極部に伝える場合、直線的に移動するロッドと、回転するリンクとを組み合わせて用いるため、ロッドの動作軸線に動作方向と直交する方向に分力が発生する。
 特に、ロッドに変位増幅用のレバーを接続した場合、ロッドにはレバーの慣性力が大きな荷重となって加わるので、大きな分力が発生する。この分力はロッドを摺動支持する部分に作用するので、ロッドに対する摩擦力が増大する。その結果、ロッドの動作速度は遅くなった。
 また、前記分力によりロッドには曲げ応力も発生し、ロッドが変形するおそれがある。したがって、ロッドの変形を防止すべく、ロッドの断面積(断面係数)を大きく設定する傾向にある。ロッドが大径化すれば、それに比例してロッドの質量も増大し、ロッドの動作速度を低下させる要因となった。
 ロッドの動作速度はガス遮断器の遮断速度に直接影響するため、ロッドの動作速度を確保することは不可欠である。そこで従来では、ロッドの動作速度を確保するために、駆動エネルギーの大きい大形の操作機構が採用されている。しかし、操作機構が大形化すれば、コストの増大とガス遮断器全体の大形化を招くといった不具合が生じた。
 本発明の実施形態は、上述の課題を解決するためになされたものである。本実施形態の目的は、操作機構からの操作力を可動電極部に伝えるロッドの動作速度の向上を図り、駆動エネルギーの小さい操作機構の適用を実現して、コンパクトで且つ経済性および信頼性に優れたガス遮断器を提供することにある。
 上記目的を達成するために、本実施形態のガス遮断器は、次の(a)~(j)を有することを特徴とする。
(a)絶縁性ガスを密封した容器内に、接離自在となるよう対向配置された可動電極部および固定電極部。
(b)前記容器の隔壁の外側に取り付けられ出力部から前記可動電極部に対し操作力を出力する操作機構。
(c)一端部が前記可動電極部に取り付けられた操作ロッド。
(d)一端部が前記操作ロッドに回転自在に取り付けられ第1リンク。
(e)一端部が前記第1リンクに回転自在に取り付けられたレバー。
(f)絶縁性を有するスペーサを介して前記容器の隔壁に固定された支持軸受。
(g)一端部が前記レバーに回転自在に取り付けられ、他端部が前記支持軸受に回転自在に取り付けられた第2リンク。
(h)前記容器の隔壁を貫通するシール軸受。
(i)前記レバーの中央付近に回転自在に取り付けられ前記シール軸受に摺動自在に支持されたシールロッド。
(j)一端部が前記シールロッドに回転自在に取り付けられ、他端部が前記操作機構の出力部に取り付けられた第3リンク。
第1の実施形態の投入状態を示す断面図。 第1の実施形態の遮断状態を示す断面図。 図1の部分拡大断面図。 投入状態と遮断状態の中間位置を示す部分拡大図。 図2の部分拡大断面図。 支持リンク初期角度θを0°に設定した場合の遮断動作状態における可動電極部のストロークと力F3yの計算結果を示すグラフ。 支持リンク初期角度θを-5°に設定した場合の遮断動作状態における可動電極部のストロークと力F3yの計算結果を示すグラフ。 支持リンク初期角度θを0°に設定した場合の遮断動作状態における可動電極部のストロークとシールロッドの曲げ応力σの計算結果を示すグラフ。 支持リンク初期角度θを-5°に設定した場合の遮断動作状態における可動電極部のストロークとシールロッドの曲げ応力σの計算結果を示すグラフ。 支持リンク初期角度θと力F3yの最大値と最小値の絶対値の和Fabsとの関係を示すグラフ。 第2の実施形態の投入状態を示す部分拡大図。 図11の側面図。
(1)第1の実施形態
 図1~図10を用いて第1の実施形態に係るパッファ形ガス遮断器を説明する。図1ではガス遮断器の投入状態、図2ではガス遮断器の遮断状態を示している。図3~図5ではガス遮断器に組み込まれたリンク機構の部分拡大図であり、図3が投入状態、図4が投入状態と遮断状態の中間状態、図5が遮断状態を示している。図6~図10は第1の実施形態における作用効果を説明するためのグラフである。
[構成]
(ガス遮断器の概要)
 図1および図2に示すように、第1の本実施形態に係るパッファ形ガス遮断器には、絶縁性ガスが密封された容器1が設けられている。容器1の内部には接離自在な可動電極部2と固定電極部3を対向配置させている。
 可動電極部2は可動アーク電極2aと可動主電極2bから構成され、固定電極部3は固定アーク電極3aと固定主電極3bから構成されている。可動電極部2の動作に伴い、可動主電極2bと固定主電極3bが接離し、可動アーク電極2aと固定アーク電極3aが接離するようになっている。
 容器1の隔壁1aの内側(絶縁性ガス雰囲気側)には支持部6が固定されている。支持部6の一部には電気的な絶縁を行うための絶縁部6aが設けられている。容器1の隔壁1aの外側(大気側)には機構支え1bが固定されている。また、容器1の隔壁1aにはガスシール機能を有するシール軸受1cが設けられている。
(操作機構)
 容器1の機構支え1bには操作機構8が配置されている。操作機構8は、可動電極部2に操作力を与えて動作させる機構である。操作機構8は、ばね等の弾性体を用いたものや流体の圧力を用いたものが使用されており、操作力を出力する出力部16が回転自在に設置されている。
(可動電極部)
 可動電極部2には絶縁ノズル4が嵌着され、さらには絶縁性ガスを加圧するための圧力室7が配置されている。圧力室7は室内の絶縁性ガスを圧縮することにより、遮断動作に伴い可動アーク電極2aと絶縁ノズル4との間から絶縁性ガスを噴出するように構成されている。
 第1の実施形態には、操作機構8の操作力を可動電極部2側に伝えるための部材として、2本のロッド5、14と、3つのリンク10、12、15と、変位を増幅するための増幅レバー11とが設けられている。これらの部材は、6本のピン10a、10b、12a、12b、14a、14bにより連結されている。
 ロッド、レバーおよびリンクは、可動電極部2側から操作機構8側に向かって、操作ロッド5、第1リンク10、増幅レバー11、第2リンク12およびシールロッド14、第3リンク15の順に配置されている。なお、以下の説明では、リンク機構に含まれるロッドおよびリンクに関しては、可動電極部2寄りの端部を先端部、操作機構8寄りの端部を後端部と定義する。
 操作ロッド5は容器1の隔壁1aの支持部6に摺動自在に支持されている。操作ロッド5の先端部は可動電極部2に嵌着されている。操作ロッド5の後端部には第1ピン10aが取り付けられており、この第1ピン10aを介して第1リンク10の先端部が回転自在に連結されている。
 第1リンク10の後端部には第2ピン10bが取り付けられており、この第2ピン10bを介して増幅レバー11の上端部が回転自在に連結されている。つまり、第1リンク10の両端に第1ピン10a、第2ピン10bが設置されており、第1ピン10aによって操作ロッド5と第1リンク10とが連結され、第2ピン10bによって第1リンク10と増幅レバー11とが連結されている。
 増幅レバー11の下端部には第3ピン12aが取り付けられており、この第3ピン12aを介して第2リンク12の先端部が回転自在に連結されている。第2リンク12の後端部には第4ピン12bが取り付けられており、この第4ピン12bにより支持軸受13が連結されている。支持軸受13は、第2リンク12を支持する部分であり、容器1の隔壁1aの内側に対し絶縁性のスペーサ9を挟んで固定されている。第2リンク12についてまとめると、その両端に第3ピン12a、第4ピン12bが設置されており、前者によって増幅レバー11と第2リンク12とが連結され、後者によって第2リンク12と支持軸受13とが連結されている。
 前述したように、増幅レバー11の上下の端部には第2ピン10bと第3ピン12aが取り付けられるが、それに加えて、増幅レバー11のほぼ中央に第5ピン14aが、取り付けられている。したがって、増幅レバー11には、3本のピン10b、12b、14aが設けられており、第2ピン10bにより第1リンクが、第3ピン12aにより第2リンク12が連結されると共に、第5ピン14aによってシールロッド14の先端部が回転自在に連結されている。
 シールロッド14は、後端部に対し第6ピン14bを介して第3リンク15の先端部が回転自在に連結されている。すなわち、シールロッド14の両端には第5ピン14a、第6ピン14bが設置されており、前者にて増幅レバー11が連結され、後者にて第3リンク15が連結される。また、シールロッド14は容器1の隔壁1aにおいてシール軸受1cの中心部に摺動自在に配置されている。さらに、第3リンク15の後端部には操作機構8の出力部16が連結されている。
 また、第1リンク10と増幅レバー11とシールロッド14との位置関係について、図1~図5を用いて説明する。第1リンク10に係合された第2ピン10bと第1ピン10a(図1、図2に図示)の中心を結んだ直線を、第1の直線10cとする(図3に図示)。可動電極部2と固定電極部3とが投入状態にあるとき、図3に示すように、前記第1の直線10cと、シールロッド14の摺動方向に延びる動作軸線14cとは、両者がほぼ平行、あるいは、増幅レバー11から見てシールロッド14側で交差するように設定されている。
 さらに、第2リンク12と増幅レバー11とシールロッド14の位置関係は次のように設定されている。図3~図5に示すように、第2リンク12に含まれる第4ピン12bと第3ピン12aの中心を結ぶ直線を第2の直線12cとする。可動電極部2と固定電極部3とが投入状態にあるとき、前記第2の直線12cと、シールロッド14の動作軸線14cとは、両者がほぼ平行、あるいは、増幅レバー11から見て操作ロッド5側で交差するように設定されている。
 第2リンク12上の第2の直線12cとシールロッド14の動作軸線14cとの成す角度であって、投入状態時のものを、支持リンク初期角度θと定義する。支持リンク初期角度θは、動作軸線14cと平行な直線に対し左回りを正値とする。第1の実施形態では、第1のリンク10および第2リンク12と、増幅レバー11と、シールロッド14とが上記の位置関係を満たし、且つ前記支持リンク初期角度θが、-2°から0°の範囲に設定されている。支持リンク初期角度をこの範囲に設定した理由については、図6~図10のグラフを用いて後段で詳しく述べることにする。
 (遮断動作)
 第1の実施形態における遮断動作について、図1に示す投入状態から図2に示す遮断状態に至る過程を説明する。図1に示す投入状態において、操作機構8が外部から遮断指令を受け取ると、出力部16が回転して、出力部16に連結された第3リンク15が矢印Aの方向に移動を開始する。
 第3リンク15に連なるシールロッド14も矢印A方向に移動し、シールロッド14に連結された増幅レバー11は第3ピン12aを中心として、時計回転方向に回転する。増幅レバー11の回動に伴って、増幅レバー11に連なる第1リンク10は、矢印A方向に移動し、操作ロッド5とそれに連なる可動電極部2もまた、矢印A方向に移動する。以上のような移動過程において、固定電極部3から可動電極部2が開離する。
 増幅レバー11付近の動作は、図3に示す投入状態から図4に示す中間位置を経て、図5に示す遮断状態に移行する。操作機構8の出力部16が一定距離の移動を完了すると、第3リンク15から可動電極2までの移動も完了し、遮断動作が終了する。なお、シールロッド14と操作ロッド5の移動距離の比は、増幅レバー11に取り付けられた3つのピンのうち、第3ピン12aと第5ピン14a間の距離と、第3ピン12aと第2ピン10b間の距離との比に、比例する。
(遮断動作時に各部に作用する力)
 遮断動作開始時に各部に作用する力としては、図3に示すように操作機構8の操作力Fが矢印Aで示す遮断方向に作用する。前記操作力Fが第3リンク15を介してシールロッド14にかけられたとき、増幅レバー11の中央付近において、第5ピン14aには、シールロッド14の動作軸線14cに沿った力Fと、前記動作軸線14cに対し垂直方向の力F3yとが作用する。ここで、動作軸線14cの方向をx軸にとり、それに垂直な方向をy軸にとる。
 また、増幅レバー11の上端部では、可動電極部2の慣性力と圧力室7内部で圧縮される絶縁性ガスの圧力による力Fが、第1リンク10に設けた第2ピン10bに作用する。投入時において、第1リンク10に沿った第1の直線10cは、シールロッド14の動作軸線14cに対し、増幅レバー11から見てシールロッド14側で交差している。
 シールロッド14は、シール軸受1cにより支持されているため矢印A方向に移動する際には、ほぼ直線運動を維持することとなる。その場合、増幅レバー11が第3ピン12aを中心に回転すると、シールロッド14の直線運動を拘束することになる。そのため、シールロッド14が直線運動する際には、第2リンク12が微小に揺動することにより、増幅レバー11も揺動し、増幅レバー11とシールロッド14を結ぶ第5ピン14aがシールロッド14の直線運動に追随するようにしている。すなわち、増幅レバー11は、シールロッド14が矢印A方向に移動する際には、微小に揺動しつつ第5ピン14aを中心に回転することとなる。よって、第2ピン10bの回転半径は、増幅レバー11の第3ピン12aを中心に回転する場合に比較して、その回転半径が第5ピン14aと第3ピン12aの間の距離分短くなるため、第1リンク10のy軸方向の変位(第2ピン10bのy軸方向の変位)は、減少する。したがって、第1リンク10にかかる力F1のy軸方向成分F1yは、小さくて済む。
 さらに、増幅レバー11の下端部では、第2の直線12cに沿ったFの力が、第2リンク12に取り付けられた第3ピン12aに作用する。投入時において、第2リンク12に沿った第2の直線12cは、シールロッド14の動作軸線14cに対し、両者はほぼ平行、あるいは増幅レバー11から見て操作ロッド5側で交差している。シールロッド14は、シール軸受1cにより支持されているため矢印A方向に移動する際には、ほぼ直線運動を維持することとなる。その場合、増幅レバー11が第3ピン12aを中心に回転すると、シールロッド14の直線運動を拘束することになる。そのため、シールロッド14が直線運動する際には、増幅レバー11が第3ピン12aを中心に回転した際に生じるy軸方向の変位分を吸収するように、第2リンク12が微小に揺動する。前記したように、増幅レバー11は、シールロッド14が矢印A方向に移動する際には、微小に揺動しつつ第5ピン14aを中心に回転することとなる。そのため、第3ピン12aの回転半径は第5ピン14aと第3ピン12aとの距離となる。第5ピン14aが増幅レバー11のほぼ中央にあることから、第2リンク12(第3ピン12a)のy軸方向の変位は、第1リンク10と同じ程度であると言える。したがって、増幅レバー11が揺動しても、第1リンク10と同様、第2リンク12の垂直方向の変位は少ない。したがって、第2リンク12にかかるFのy軸方向成分F2yもまた、小さくて済む。
 増幅レバー11の中央付近に作用する垂直方向の力F3yは、増幅レバー11の上端部に作用するF1yと、増幅レバー11の下端部に作用するF2yとの和であり、F3y=F1y+F2yの関係が成立する。第1の実施形態では、F1y、F2yが共に小さいため、垂直方向の力F3yも小さくなる。
 ところで、図3~図5に示した符号1dは、シールロッド14に対する摺動支持端である。増幅レバー11中央に位置する第5ピン14aの中心から、この摺動支持端1dまでの距離をSとすると、摺動支持端1dにおいてシールロッド14に作用する曲げモーメントMは、M=F3y・Sで求めることができる。これにより、シールロッド14の曲げ応力σは、σ=M/Zで求められる。Zはシールロッド14の断面係数である。
 シール軸受1cとシールロッド14との間の摩擦力Fは摩擦係数をμとすると、F=μ・F3yという関係が成立する。このとき、摩擦力Fが大きいと、遮断動作時の抵抗力が増大し遮断速度の低下原因となる。そこで、摩擦係数μは一定とすると、摩擦力Fを小さくするためには、動作軸線14cに対し垂直方向の力F3yを小さくすることが重要である。
 また、支持リンク初期角度θとは、投入状態時における第2の直線12cとシールロッド14の動作軸線14cとが成す角度なので、第2の直線12cに沿った力Fの方向は、支持リンク初期角度θによって変化する。力Fのy軸方向成分F2yは、垂直方向の力F3yを決定する要素である。したがって、支持リンク初期角度θの大きさは、垂直方向の力F3yに影響を及ぼすことになる。
 支持リンク初期角度θが垂直方向の力F3yに与える影響について、図6~図7を参照して説明する。図6は、ガス遮断器の遮断動作時における可動電極部2のストロークと、垂直方向の力F3yの時刻歴の計算結果を示している。このときの支持リンク初期角度θは、θ=0°である。ガス遮断器の遮断動作が開始されると、垂直方向の力F3yの絶対値が零から徐々に大きくなり、遮断動作の後半では操作機構8内の制動装置(図示せず)の作用により、垂直方向の力F3yの方向が逆転する。その後、ガス遮断器の遮断動作が完了すると、垂直方向の力F3yは再び零となる。
 図7は、支持リンク初期角度θをθ=-5°に設定した場合の遮断動作時の可動電極2のストロークと垂直方向の力F3yの時刻歴の計算結果を示したグラフである。図7と図6と比較すると、図7では、垂直方向の力F3yは、遮断動作開始時には零からプラス側に変化し、その後徐々に小さくなっていくことが分かる。
 ここで、図6、図7に示すように、垂直方向の力F3yの最大値と最小値をそれぞれFmaxとFminとすると、その絶対値が小さいほど、シールロッド14の摩擦力Fが小さくなることが分かる。そこで、シールロッド14の摩擦力Fが小さくなるように支持リンク初期角度θを設定すれば、シールロッド14は優れた動作速度を確保することができ、ガス遮断器の遮断速度の低下を防止することが可能になる。
 また、支持リンク初期角度θが垂直方向の力F3yに影響を与えるので、シールロッド14の曲げ応力σにも影響を与えると言える。この点について、図8および図9を用いて説明する。図8はガス遮断器の遮断動作時における可動電極部2のストロークとシールロッド14の曲げ応力σの計算結果を示す。このときの支持リンク初期角度θは、θ=0°である。ガス遮断器の遮断動作が開始されると、曲げ応力σの絶対値が零から徐々に大きくなり、遮断動作の後半では操作機構8内の制動装置(図示せず)の作用により、曲げ応力σの方向が逆転する。その後、ガス遮断器の遮断動作が完了すると、曲げ応力σは再び零となる。
 図9では支持リンク初期角度θがθ=-5°における遮断動作時の可動電極2のストロークとシールロッドの曲げ応力σの計算結果を示している。図9と図8を比較すると、図9では曲げ応力σは遮断動作開始時には零からプラス側に変化し、その後徐々に小さくなっていくことが分かる。ここで、図8に示すように曲げ応力σの最大値と最小値をそれぞれσmaxとσminとすると、その絶対値が小さいほど、シールロッド14の強度が向上する。したがって、曲げ応力σの最大値と最小値の絶対値が小さくなるように支持リンク初期角度θを設定することで、シールロッド14の強度向上を図り、シールロッド14の小径化・軽量化が可能となる。
 上記FmaxとFminの絶対値の和をFabsとし、支持リンク初期角度θが変化した場合の関係を図10に示す。また、上記σmaxとσminの絶対値の和をσabsとし、支持リンク初期角度θが変化した場合の関係を図10に示す。図10から分かるように、Fabsとσabsが最も小さくなる支持リンク初期角度θが存在することが分かる。すなわち、図10のグラフに示すように、支持リンク初期角度θが-2°から0°の範囲において、Fabsとσabsが最も小さくなっている。そこで第1の実施形態では、支持リンク初期角度θを-2°から0°の範囲に設定している。
 (投入動作)
 図2に示す遮断状態から図1に示す投入状態に至る投入動作について説明する。図2に示す遮断状態において、操作機構8が外部から投入指令を受け取ると、出力部16が回転して、出力部16に連結された第3リンク15が矢印B方向に移動を開始する。第3リンク15に連なるシールロッド14も矢印Bの方向に移動し、増幅レバー11は第3ピン12aを中心として、反時計回転方向に回転をする。第1リンク10は増幅レバー11の回動により矢印Bの方向に移動し、操作ロッド5とそれに連なる可動電極部2も移動する。この移動過程において可動電極部2が固定電極部3に閉合する。
 なお、パッファ形ガス遮断器において、投入動作における可動部(可動電極部2とリンク機構を含めて)の速度と力は、一般的に遮断動作の半分以下となる。このため、リンク機構の各構成部材の強度設計は、遮断動作時に発生する力で実施すれば十分である。
[作用効果]
 以上のように構成された第1の実施形態の作用効果は、次の通りである。
(1)第1の実施形態は、第2リンク12を、支持軸受13を介して容器1の隔壁1aに固定している。このため、第2リンク12ならびにこれに連結する各部材の動作性が向上し、優れた動作信頼性を得ることができる。
(2)また、第1の実施形態では、直線動作を行うロッドに対し、曲げ応力を軽減するガイドやローラ、さらには前記ガイドを付けたケース部等を用いていない。したがって、ロッドの軽量化が実現し、駆動エネルギーの小さい小形の操作機構8を採用可能である。これにより、ガス遮断器全体としてもコンパクト化を進めることができ、経済的に有利である。
(3)第1の実施形態は、絶縁性を有するスペーサ9を介して支持軸受13を容器1に取り付けている。そのため、支持軸受13に取り付ける第2リンク12を、容器1に接近して配置することが可能である。したがって、第2リンク12と容器1との絶縁距離を大きく取る必要がなく、容器1自体を小形化することが可能となり、ガス遮断器をいっそう小形化することができる。
(4)操作機構8からの操作力を増幅レバー11にて減力するので、第1リンク10には大きな操作力が直接作用することがない。このため、強度的に弱い絶縁物を第1リンク10に適用することが可能となり、機械強度的に信頼性が向上する。
(5)増幅レバー11の中央付近に作用する垂直方向の力F3yを小さくすることができ、シールロッド14の摩擦力Ffおよびシールロッド14に対する曲げ応力は低減する。その結果、シールロッド14の断面積を小さくしても変形の心配がなく、シールロッド14の小径化・軽量化を図ることができる。これにより、シールロッド14の動作速度は格段に向上する。
(6)しかも、第1の実施形態では、支持リンク初期角度θを-2°~0°に設定することで、シール軸受1cとシールロッド14との間の摩擦力Fを最小化させることができ、迅速な遮断速度を獲得している。また、シールロッド14に作用する曲げ応力σを低減させることも可能であり、この点からもガス遮断器の遮断速度を大幅に向上させることができる。
(7)さらに、第1の実施形態においては、スペーサ9によって支持軸受13を容器1隔壁1aに固定するので、スペーサ9の厚さ寸法を調整することにより、第2リンク12とシールロッド14とが成す角である支持リンク初期角度θを容易に調整することが可能である。したがって、ガス遮断器の遮断速度を適切に向上させることができる。
(2)第2の実施形態
 図11~図12を用いて第2の実施形態に係るパッファ形ガス遮断器を説明する。図11ではガス遮断器の投入状態の部分拡大図、図12は図11の矢印Cの方向から見た側面断面図である。なお、第1の実施形態の形態と同一または類似の部分には共通の符号を付し、重複する説明は省略する。
[構成]
 図11および図12に示すように、ガイドローラ17はシールロッド14の第5ピン14aに回転自在に配置されている。ガイド板18は隔壁1aに固定されており、その内部に長穴18aが配置されている。長穴18aの長手方向は動作軸線14cに平行である。ガイドローラ17は長穴18aに摺動自在に挿入、支持されている。
(遮断動作)
 このように構成された第2の実施形態において、図11に示す投入状態からの遮断動作について説明する。各構成部材は第1の実施形態の遮断動作と同様な動きを行い、ガイドローラ17は回転しながら長穴18aに沿って移動を行う。この時、垂直方向の力F3yは、ガイドローラ17を介して長穴18aに伝えられるが、長穴18aから同じ大きさの反力を受ける。なお、第2の実施形態における投入動作は、第1の実施形態のそれとほぼ同様の動作を行い、図11と第1の実施形態に用いた図1~図5により、容易に類推できるため、説明を省略する。
[作用効果]
 上記のような第2の実施形態は、前記第1の実施形態が持つ作用効果に加えて、次のような独自の作用効果がある。すなわち、シールロッド14には曲げモーメントMが作用しなくなり、M=0となる。これによりシールロッド14の曲げ応力σもσ=0となる。従って、シールロッド14の断面係数Zを大きくする必要はなくなる。その結果、シールロッド14の小径化・軽量化をより進めることが可能となる。
 また、第2の実施形態では、垂直方向の力F3yがシール軸受1cに作用しなくなる。そのため、摩擦力Ffがほぼ零となり、摩擦力Fの増大による遮断速度低下を防止することが可能となる。ただし、ガイドローラ17と長穴18aの接触による摩擦力が発生するが、一般的に転がり摩擦係数は、摺動摩擦係数の1/100以下である。このため、転がりによる摩擦力増大は微小であり、遮断速度の低下にはほとんど影響は与えない。
 また、第2の実施形態は、シールロッド14を摺動支持するガイドローラ17は、シールロッド14の第5ピン14aに配置するため、ガイド構造の追加によりシールロッド14の全長を長くする必要がない。また、第2の実施形態では、ガイド板18を採用しているので、円筒形などのガイド部材に比べて、低コストで構成することができる。
 さらに、上記第1の実施形態で説明した支持リンク初期角度θを適切に取れば、第2の実施形態においても、垂直方向の力F3yを小さくすることが可能となる。したがって、ガイド板18とガイドローラ17を強固に構成する必要がなく、より低コストで構成できると共に、転がりによる摩擦力の更なる低減が可能となる。したがって、ガス遮断器の遮断速度の低下を確実に防止することができる。
(3)他の実施形態
 なお、上記の実施形態は、本明細書において一例として提示したものであって、発明の範囲を限定することを意図するものではない。すなわち、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことが可能である。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。例えば、上記第2の実施形態では、ガイドローラ17を長穴18aに沿ってガイドさせていたが、第5ピン14aを直接、長穴18aに沿うようにガイドさせても良い。
 本発明は、ロッドの動作速度の良い、コンパクトで且つ経済性及び信頼性に優れたものとしてガス遮断器に適用出来る。
1…容器
1a…隔壁
1b…機構支え
1c…シール軸受
2…可動電極部
3…固定電極部
5…操作ロッド
8…操作機構
9…スペーサ
10…第1リンク
10a…第1ピン
10b…第2ピン
10c…第1の直線
11…増幅レバー
12…第2リンク
12a…第3ピン
12b…第4ピン
12c…第2の直線
13…支持軸受
14…シールロッド
14a…第5ピン
14b…第6ピン
15…第3リンク
16…出力部
17…ガイドローラ
18…ガイド板
18a…長穴

Claims (9)

  1.  絶縁性ガスを密封した容器内に、接離自在となるよう対向配置された可動電極部および固定電極部と、
     前記容器の隔壁の外側に取り付けられ出力部から前記可動電極部に対し操作力を出力する操作機構と、
     一端部が前記可動電極部に取り付けられた操作ロッドと、
     一端部が前記操作ロッドに回転自在に取り付けられ第1リンクと、
     一端部が前記第1リンクに回転自在に取り付けられたレバーと、
     絶縁性を有するスペーサを介して前記容器の隔壁に固定された支持軸受と、
     一端部が前記レバーに回転自在に取り付けられ、他端部が前記支持軸受に回転自在に取り付けられた第2リンクと、
     前記容器の隔壁を貫通するシール軸受と、
     前記レバーの中央付近に回転自在に取り付けられ前記シール軸受に摺動自在に支持されたシールロッドと、
     一端部が前記シールロッドに回転自在に取り付けられ、他端部が前記操作機構の出力部に取り付けられた第3リンクと、を備えたことを特徴とするガス遮断器。
  2.  前記電極部が投入状態にあるとき、前記第1リンクの長手方向に沿った中心線と、前記シールロッドの動作軸線とが、前記レバーに対し前記シールロッド側で交差し、
     前記第2リンクの長手方向に沿った中心線と、前記シールロッドの動作軸線とが、前記レバーに対し前記操作ロッド側で交差すること、を特徴とする請求項1に記載のガス遮断器。
  3.  前記電極部が投入状態にあるとき、前記第1リンクの長手方向に沿った中心線と、前記シールロッドの動作軸線とが、前記レバーに対し前記シールロッド側で交差し、
     前記第2リンクの長手方向に沿った中心線と、前記シールロッドの動作軸線とが、ほぼ平行であること、を特徴とする請求項1に記載のガス遮断器。
  4.  前記隔壁に長穴を有するガイド板を固着し、
     前記レバーと前記シールロッドとの連結部分に連結ピンを取り付け、
     前記ガイド板の前記長穴に前記連結ピンを摺動自在に挿入し、
     前記長穴の長手方向は前記シールロッドの直線運動の方向に一致すること、を特徴とする請求項1乃至請求項3のいずれか一項に記載のガス遮断器。
  5.  前記連結ピンにガイドローラを回転自在に配置し、前記ガイド板の前記長穴と前記ガイドローラが摺動自在に連結されること、を特徴とする請求項4に記載のガス遮断器。
  6.  前記第1リンクが電気的な絶縁物で構成されたこと、を特徴とする請求項1乃至請求項5のいずれか一項に記載のガス遮断器。
  7.  前記支持軸受と前記容器の隔壁との間に絶縁性を有するスペーサを挿入したこと、を特徴とする請求項1乃至請求項6のいずれか一項に記載のガス遮断器。
  8.  前記操作機構の駆動源に弾性体を用いたこと、を特徴とする請求項1乃至請求項7のいずれか一項に記載のガス遮断器。
  9.  前記操作機構の駆動源に流体の圧力を用いたこと、を特徴とする請求項1乃至請求項7のいずれか一項に記載のガス遮断器。 
PCT/JP2012/006629 2011-10-21 2012-10-17 ガス遮断器 WO2013057936A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013539530A JP5735123B2 (ja) 2011-10-21 2012-10-17 ガス遮断器
BR112014009426-8A BR112014009426B1 (pt) 2011-10-21 2012-10-17 disjuntor a gás
CN201280051708.9A CN103907168B (zh) 2011-10-21 2012-10-17 气体断路器
EP12841501.5A EP2770519B1 (en) 2011-10-21 2012-10-17 Gas circuit breaker
IN3043DEN2014 IN2014DN03043A (ja) 2011-10-21 2012-10-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-232279 2011-10-21
JP2011232279 2011-10-21

Publications (1)

Publication Number Publication Date
WO2013057936A1 true WO2013057936A1 (ja) 2013-04-25

Family

ID=48135113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006629 WO2013057936A1 (ja) 2011-10-21 2012-10-17 ガス遮断器

Country Status (7)

Country Link
US (1) US8963039B2 (ja)
EP (1) EP2770519B1 (ja)
JP (1) JP5735123B2 (ja)
CN (1) CN103907168B (ja)
BR (1) BR112014009426B1 (ja)
IN (1) IN2014DN03043A (ja)
WO (1) WO2013057936A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006952A1 (en) * 2016-07-06 2018-01-11 Abb Schweiz Ag Fast earthing switch device for hv applications
DE102016213158A1 (de) 2016-07-19 2018-01-25 Siemens Aktiengesellschaft Schaltgeräteanordnung
EP3285276B1 (en) * 2016-08-19 2021-09-29 General Electric Technology GmbH Drive rod and method of manufacturing a drive rod
KR102171601B1 (ko) * 2019-01-04 2020-10-29 효성중공업 주식회사 가스절연개폐기용 전극구동장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113928U (ja) * 1982-01-29 1983-08-04 日新電機株式会社 ロ−ラガイド連結機構
JPS6321719A (ja) * 1986-07-14 1988-01-29 三菱電機株式会社 ガス遮断器用連結装置
JPH0963425A (ja) * 1995-08-21 1997-03-07 Mitsubishi Electric Corp ガス絶縁開閉器
JP2000003643A (ja) * 1998-06-15 2000-01-07 Mitsubishi Electric Corp 開閉装置
JP2008091254A (ja) * 2006-10-03 2008-04-17 Toshiba Corp 開閉器の操作機構
JP2010160921A (ja) * 2009-01-06 2010-07-22 Japan Ae Power Systems Corp ガス遮断器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320611A (ja) * 1994-05-23 1995-12-08 Hitachi Ltd ガス絶縁開閉装置
JP3538274B2 (ja) * 1996-01-09 2004-06-14 ティーエム・ティーアンドディー株式会社 開閉器の連結装置
FR2821696B1 (fr) * 2001-03-01 2003-04-25 Alstom Disjoncteur haute tension ayant une commande a ressorts avec un ressort additionnel de recuperation d'energie
KR100770099B1 (ko) * 2006-04-17 2007-10-24 금아유압 주식회사 가스 절연 개폐 장치용 조작장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113928U (ja) * 1982-01-29 1983-08-04 日新電機株式会社 ロ−ラガイド連結機構
JPS6321719A (ja) * 1986-07-14 1988-01-29 三菱電機株式会社 ガス遮断器用連結装置
JPH0963425A (ja) * 1995-08-21 1997-03-07 Mitsubishi Electric Corp ガス絶縁開閉器
JP2000003643A (ja) * 1998-06-15 2000-01-07 Mitsubishi Electric Corp 開閉装置
JP2008091254A (ja) * 2006-10-03 2008-04-17 Toshiba Corp 開閉器の操作機構
JP2010160921A (ja) * 2009-01-06 2010-07-22 Japan Ae Power Systems Corp ガス遮断器

Also Published As

Publication number Publication date
EP2770519B1 (en) 2017-04-26
EP2770519A1 (en) 2014-08-27
US20130098875A1 (en) 2013-04-25
BR112014009426B1 (pt) 2021-03-16
CN103907168A (zh) 2014-07-02
JP5735123B2 (ja) 2015-06-17
BR112014009426A2 (pt) 2017-04-18
IN2014DN03043A (ja) 2015-05-08
EP2770519A4 (en) 2015-07-08
JPWO2013057936A1 (ja) 2015-04-02
CN103907168B (zh) 2016-11-23
US8963039B2 (en) 2015-02-24

Similar Documents

Publication Publication Date Title
JP5735123B2 (ja) ガス遮断器
WO2011001624A1 (ja) 投入抵抗接点付きガス遮断器及びその投入、遮断方法
KR101759452B1 (ko) 가스 차단기
WO2013021642A1 (ja) 開閉装置およびその操作機構
WO2011138819A1 (ja) 真空バルブ
KR101608185B1 (ko) 전력용 가스 차단기
KR101395151B1 (ko) 차단기용 스프링 조작기 및 차단기
US8912870B2 (en) Switchgear and switchgear operating mechanism
US11676784B2 (en) Vacuum interrupter
JP2010526974A (ja) バルブ
US8933358B2 (en) Power transmission device for vacuum interrupter and vacuum breaker having the same
JP2010232032A (ja) ガス遮断器用操作機構
WO2013042687A1 (ja) 開閉装置の操作機構、及び開閉装置
US10199188B2 (en) Gas circuit breaker
JP2004281175A (ja) ガス遮断器
JP6535610B2 (ja) ガス遮断器
US20150354255A1 (en) Lock arrangement for a motor vehicle
KR101566470B1 (ko) 가스절연 차단기용 스프링 조작기
CN106312957A (zh) 动力工具
JP6476073B2 (ja) ガス遮断器
WO2018216084A1 (ja) 開閉装置
CN201130612Y (zh) 一种直动滚动型操动装置
KR101739005B1 (ko) 차단기용 스프링 조작기
JP2018181502A (ja) ガス遮断器
JP6626771B2 (ja) ガス遮断器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539530

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012841501

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012841501

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014009426

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014009426

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140417