WO2013057913A1 - Non-contact power supply apparatus and primary coil block for non-contact power supply apparatus - Google Patents

Non-contact power supply apparatus and primary coil block for non-contact power supply apparatus Download PDF

Info

Publication number
WO2013057913A1
WO2013057913A1 PCT/JP2012/006579 JP2012006579W WO2013057913A1 WO 2013057913 A1 WO2013057913 A1 WO 2013057913A1 JP 2012006579 W JP2012006579 W JP 2012006579W WO 2013057913 A1 WO2013057913 A1 WO 2013057913A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary coil
primary
coil
power feeding
central axis
Prior art date
Application number
PCT/JP2012/006579
Other languages
French (fr)
Japanese (ja)
Inventor
博之 柳生
秀明 安倍
太田 智浩
Original Assignee
パナソニック 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック 株式会社 filed Critical パナソニック 株式会社
Publication of WO2013057913A1 publication Critical patent/WO2013057913A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • the present invention relates to a non-contact power feeding device and a primary coil block of the non-contact power feeding device.
  • contactless power supply systems using an electromagnetic induction system have a wide mounting surface and efficiently supply power to a power receiving device regardless of the position on the wide mounting surface of an electric device equipped with a power receiving device.
  • a non-contact power feeding device that can perform the above operation.
  • a wide mounting surface is divided into a plurality of power feeding areas, and a primary coil is provided for each power feeding area.
  • a non-contact electric power feeder excites the primary coil of the electric power feeding area of a power feeding apparatus facing the secondary coil provided in the power receiving apparatus.
  • the secondary power is supplied to the secondary coil of the power receiving device of the electric device, regardless of the power supply area on the mounting surface.
  • the primary coil of one power supply area is one of the other power supply areas. Since it is provided adjacent to the secondary coil, the magnetic fluxes of the primary coils adjacent to each other interfere with each other.
  • the secondary coil of the power receiving device when the secondary coil of the power receiving device is disposed at a position shifted from the primary coil of the non-contact power feeding device, the secondary coil is a magnetic flux of another primary coil adjacent to the primary coil. As a result, there arises a problem that the power reception loss of the secondary power increases.
  • the secondary power of the secondary coil L2 is small when the secondary coil is arranged near the middle position of the adjacent primary coils. Depending on the position where the electrical device is placed, the power supply efficiency changes greatly.
  • the power feeding device includes a dense array layer of two primary coils, and the two layers of the array layer so that the center of the coil of one layer is shifted from the center of the coil of the other layer.
  • the power supply apparatus includes a dense array layer of two primary coils, there is a problem that the thickness of the entire coil increases and the entire apparatus becomes large.
  • the number of coils increases, the number of objects to be controlled increases, the control becomes complicated, and the circuit scale increases, leading to an increase in cost.
  • the excitation control has to be performed up to an extra coil, the efficiency has been reduced.
  • the present invention has been made in order to solve the above-described problem, and its purpose is to increase the number of primary coils, and to increase the number of primary coils, and the secondary coil of the power receiving device according to the position where the electrical equipment is placed. It is an object of the present invention to provide a non-contact power supply device that can reduce fluctuations in the amount of power received by the power supply and supply power with high efficiency. Furthermore, the objective of this invention is providing the primary coil block of the non-contact electric power feeder used for the non-contact electric power feeder.
  • a non-contact power feeding device that feeds secondary power to a secondary coil provided in a power receiving device of an electrical device using an electromagnetic induction phenomenon.
  • the contactless power supply device includes a plurality of power supply areas.
  • the contactless power supply device includes a plurality of primary coils respectively provided corresponding to the plurality of power supply areas. , Wound around a central axis, each primary coil has an outer shape biased in a direction perpendicular to the central axial direction, and the plurality of primary coils are orthogonal to the central axial direction.
  • a non-contact power feeding device in which a part of the outer surface of the primary coil corresponding to the power feeding areas adjacent to each other overlaps each other when viewed from the central axis direction. Is done.
  • each of the primary coils preferably has a quadrangular cross section.
  • each primary coil has an outer shape that expands from one winding end toward the other winding end, and adjacent primary coils have different coil orientations. It is preferable that they are arranged.
  • each primary coil has an outer shape of a regular polygonal frustum shape, and the primary coils adjacent to each other have different coil directions and are outside the primary coils adjacent to each other.
  • the side surfaces are preferably arranged so as to overlap each other.
  • each primary coil preferably has a regular octagonal truncated pyramid shape.
  • a primary coil block of a non-contact power feeding device that feeds secondary power to a secondary coil provided in a power receiving device of an electrical device using an electromagnetic induction phenomenon,
  • a primary coil having first and second winding ends and wound around a central axis, wherein the primary coil has an outer shape biased in a direction perpendicular to the central axis direction;
  • a primary coil block of a non-contact power feeding device including a primary coil, a magnetic body disposed at the first winding end, and a cover made of an insulating material disposed at the second winding end. Is done.
  • the primary coil has a quadrangular cross section, and a central axis of the primary coil is biased in a direction perpendicular to the one side at an intermediate position of one side of the cross section. It is preferable that
  • the primary coil has a quadrangular cross section, and a central axis of the primary coil is biased in a diagonal direction of the cross section.
  • the primary coil is wound so that the central axis coincides with the central point of the magnetic body and the central point of the cover.
  • a primary coil block of a non-contact power feeding device that feeds secondary power to a secondary coil provided in a power receiving device of an electrical device using an electromagnetic induction phenomenon
  • a primary coil having a regular polygonal frustum-shaped outer shape, the primary coil having first and second winding ends, and a magnetic coil disposed at the first winding end.
  • a primary coil block of a non-contact power feeding device including a body and a cover made of an insulating material and disposed at the second winding end.
  • the primary coil preferably has a regular octagonal truncated pyramid shape.
  • power is efficiently supplied from the non-contact power feeding device to the secondary coil of the power receiving device regardless of the position of the mounting surface on which the electric device is mounted without increasing the number of primary coils. Can be supplied.
  • the whole perspective view which shows the non-contact electric power feeder and electric equipment of the non-contact electric power feeding system of 1st Embodiment of this invention.
  • the side view of the primary coil block of 1st Embodiment of this invention The top view which shows the combination of the some primary coil block of 1st Embodiment of this invention.
  • the side view which shows the combination of the some primary coil block of 1st Embodiment of this invention.
  • Sectional drawing which shows the secondary coil of 1st Embodiment of this invention. It is a figure explaining the movement of the secondary coil from the one position on the mutually adjacent primary coil to the other position, (a) is a figure which shows the movement of the secondary coil on the conventional primary coil (B) is a figure which shows the movement of the secondary coil on the primary coil of this embodiment.
  • the graph which shows the output of the secondary coil with respect to a position when a secondary coil moves on the conventional primary coil and the primary coil of 1st Embodiment, respectively.
  • the disassembled perspective view of the primary coil block of 2nd Embodiment of this invention The top view of the primary coil block of 2nd Embodiment of this invention.
  • the side view of the primary coil block of 2nd Embodiment of this invention The top view which shows the combination of the some primary coil block of 2nd Embodiment of this invention.
  • (A) is a perspective view of the 1st primary coil block of 3rd Embodiment of this invention
  • (b) is a perspective view of the 2nd primary coil block of 3rd Embodiment of this invention.
  • the disassembled perspective view of the 1st primary coil block of 3rd Embodiment of this invention is a perspective view of the 1st primary coil block of 3rd Embodiment of this invention.
  • the side view of the primary coil of the 1st primary coil block of 3rd Embodiment of this invention The disassembled perspective view of the 2nd primary coil block of 3rd Embodiment of this invention.
  • the side view of the primary coil of the 2nd primary coil block of 3rd Embodiment of this invention The top view which shows the combination of the some 1st and 2nd primary coil block of 3rd Embodiment of this invention.
  • the side view which shows the combination of the some 1st and 2nd primary coil block of 3rd Embodiment of this invention.
  • the whole perspective view of the primary coil block for demonstrating another example.
  • the non-contact power feeding system includes a non-contact power feeding device (hereinafter simply referred to as a power feeding device) 1 and an electric device (hereinafter simply referred to as a device) E that is fed in a non-contact manner from the power feeding device 1. Including.
  • the power feeding device 1 has a rectangular plate-shaped housing 2, and the upper surface of the housing 2 is a flat surface and forms a placement surface 3 on which the device E is placed.
  • the mounting surface 3 is divided into a plurality of rectangular power feeding areas AR1, and in this embodiment, twelve power feeding areas AR1 arranged in an array of 3 columns and 4 rows are formed on the mounting surface 3. Yes.
  • the primary coil block 5 is disposed at a position in the housing 2 corresponding to each power supply area AR1, as indicated by a broken line in FIG.
  • each primary coil block 5 includes a primary coil L1, a magnetic body 6 fixed to a lower coil surface of the primary coil L1, and an upper coil of the primary coil L1. And a cover 7 fixed to the surface.
  • the magnetic body 6 is a square plate made of a soft magnetic material. By connecting and fixing the magnetic body 6 to one (lower side) winding end of the primary coil L1, the lower coil surface of the primary coil L1 is connected to the magnetic body 6 and fixed.
  • the cover 7 is a resin square plate made of an insulating material. By connecting and fixing the cover 7 to the other (upper) winding end of the primary coil L1, the upper coil surface of the primary coil L1 is connected to the cover 7 and fixed.
  • the cover 7 has a rectangular shape that is the same shape as the magnetic body 6.
  • the primary coil L1 fixed between the magnetic body 6 and the cover 7 is formed of a coil having the same square cross section as the magnetic body 6 and the cover 7.
  • the primary coil L1 having a rectangular cross section is wound from the magnetic body 6 toward the upper cover 7, and the horizontal direction (mounting) as the central axis Cx (see FIG. 4) of the primary coil L1 moves upward. In a direction parallel to the surface 3).
  • the deviation is such that the central axis Cx of the primary coil L1 is in the diagonal direction of the rectangular coil cross section when viewed from the axial direction (direction perpendicular to the mounting surface 3). Be biased. Therefore, the magnetic body 6 and the cover 7 do not face each other and face each other while being shifted in the diagonal direction.
  • the magnetic body 6 (cover 7) and the primary coil L ⁇ b> 1 are regular squares having a side length DX ⁇ b> 0 of 42 mm and the other side length DY ⁇ b> 0 of 42 mm. Is set.
  • the length H in the axial direction is set to 4.5 mm.
  • the cover 7 is arranged with respect to the magnetic body 6 at a position displaced 20 mm on the right side and 20 mm on the rear side.
  • the upper coil surface of the primary coil L1 is disposed at a position displaced 20 mm on the right side and 20 mm on the rear side with respect to the lower coil surface of the primary coil L1.
  • the central axis Cx of the primary coil L1 is, as shown in FIG. 4, the center point of the magnetic body 6 (center point P0 of the lower coil surface) and the center point of the cover 7 (of the upper coil surface). A straight line passing through the center point P1).
  • the primary coil block 5 configured in this way is arranged at a position in the housing 2 corresponding to each power supply area AR1.
  • FIG. 7 shows a layout of four primary coil blocks 5 adjacent to each other.
  • the primary coil blocks 5 are provided side by side so that the biasing directions coincide with each other. That is, when the magnetic bodies 6 of the four primary coil blocks 5 are arranged adjacent to each other (in a 2 ⁇ 2 array), the covers 7 of the four primary coil blocks 5 are adjacent to each other on the upper side. To be arranged.
  • the primary coil L1 has two adjacent primary coils L1 as shown in FIG.
  • the outer side surfaces overlap each other when viewed from above the primary coil L1.
  • the outer surfaces of the four adjacent primary coils L1 also overlap each other when viewed from above the primary coil L1.
  • the outer surfaces of the primary coils L1 adjacent to each other overlap each other at the boundary portion of the plurality of power feeding areas AR1 formed on the mounting surface 3, and this boundary portion has a certain width D. Have.
  • the magnetic flux between the primary coils L1 adjacent to each other is averaged, and the magnetic flux density can be made uniform.
  • a basic power supply unit circuit (not shown) for the primary coil block 5 (primary coil L1) of each power supply area AR1 is provided at a position in the housing 2 outside the power supply area AR1. ing.
  • Each basic power supply unit circuit drives and excites the primary coil L1 of the corresponding primary coil block 5 alone or in cooperation with the other primary coil L1, and is mounted on the power supply area AR1. To contactless power supply.
  • the device E that receives power supply from the power supply device 1 by electromagnetic induction includes a housing 10, a power reception area AR ⁇ b> 2 for the power supply area AR ⁇ b> 1 of the power supply device 1 formed on the lower surface of the housing 10, and Secondary coil L2.
  • the secondary coil L2 is attached to a magnetic body 11 made of a square plate-like magnetic material.
  • the outer shape of the rectangular plate-like magnetic body 11 is a regular square having the same shape as the magnetic body 6 of the primary coil block 5.
  • the cross section of the secondary coil L2 attached to the magnetic body 11 forms the same square as the primary coil L1.
  • the magnetic body 11 attached to the secondary coil L2 is arrange
  • the power feeding device 1 of the device E when the power feeding device 1 of the device E is placed immediately above the primary coil L1 of the primary coil block 5, the power feeding device 1 feeds and excites the primary coil L1. Therefore, when the power supply device 1 of the device E is placed immediately above the plurality of primary coils L1 that are adjacent to each other and overlap, the power supply device 1 supplies the plurality of primary coils L1 and excites them. To do.
  • the secondary power received by the secondary coil L2 is rectified by a rectifier circuit provided in the power receiving device 12 mounted in the housing 10 at a position adjacent to the secondary coil L2, and DC / DC It is converted into a desired DC voltage by a converter and supplied to a load (not shown) of the device E.
  • the power feeding device 1 is connected to the device E (2 A plurality of primary coils L1 straddling the boundary located immediately below the secondary coil L2) are driven and excited.
  • the magnetic flux between the primary coils L1 adjacent to each other is averaged.
  • the magnetic flux density can be made uniform, and the secondary coil L2 receives the secondary power by feeding and exciting the primary coil L1.
  • the secondary power received by the secondary coil L2 is rectified by a rectifier circuit provided in the power receiving device 12, converted into a desired DC voltage by a DC / DC converter, and supplied to the load of the device E.
  • FIG. 10 (a) shows four conventional primary coils La excited.
  • the coil surface of the secondary coil L2 is 2 from the position facing the coil surface of the front left primary coil La to the position facing the coil surface of the rear left primary coil La. The next coil L2 is moved.
  • the output from the secondary coil L2 with respect to the position of the secondary coil L2 was obtained as shown by the output voltage line V1 in FIG.
  • the output in FIG. 11 is represented by “%”, and 100% means that the output power of the primary coil L1 is received 100% by the secondary coil.
  • the secondary coil L2 when the secondary coil L2 is present at a position where the primary coil La and the secondary coil L2 face each other, the secondary coil L2 When the secondary coil L2 exists at an intermediate position between the primary coil L1 and the primary coil L1, the output of the secondary coil L2 is minimized. Due to the movement of the position of the secondary coil L2, the output of the secondary coil L2 is reduced by about 57%.
  • FIG. 10B shows four excited primary coils L1 of the present embodiment.
  • the coil surface of the secondary coil L2 faces the lower coil surface of the rear left primary coil L1 from the position facing the lower coil surface of the front left primary coil L1.
  • the secondary coil L2 is moved to the corresponding position.
  • the output of the secondary coil L2 is 50% at the position where the primary coil L1 and the secondary coil L2 face each other. However, the output is minimized at an intermediate position between the primary coil L1 and the primary coil L1. Due to the movement of this position, the output of the secondary coil L2 is reduced by 41%.
  • the primary coil L1 of this embodiment compared with the conventional primary coil La, according to the position on the primary coil L1 (mounting surface 3) on which the secondary coil L2 (device E) is mounted. It can also be seen that the fluctuation in the output from the secondary coil L2 is small.
  • each of the plurality of primary coils L1 provided corresponding to each of the plurality of power feeding areas AR1 is wound around the central axis, and the direction of the central axis is The outer shape is biased in the orthogonal direction.
  • the plurality of primary coils are provided along a direction orthogonal to the central axis direction, and when a part of the outer surface of the primary coil L1 corresponding to the adjacent feeding area AR1 is viewed from the central axis direction, Overlap each other.
  • the outer surfaces of the primary coils L1 adjacent to each other overlap each other at the boundary portion of the plurality of power feeding areas AR1 formed on the mounting surface 3, and this boundary portion has a constant width D. .
  • the magnetic flux between the adjacent primary coils L1 is averaged, and the magnetic flux density can be made uniform.
  • the central axis Cx of the primary coil L1 is biased in the diagonal direction of the coil cross section, the four outer sides of the primary coil L1 are overlaid on the outer sides of the other adjacent primary coils L1. Can be wrapped. Therefore, more efficient power feeding to the secondary coil L2 can be realized.
  • the primary coil L1 wound around the central axis has an outer shape biased in a direction orthogonal to the central axis direction, and the primary coil of the adjacent power feeding area AR1
  • the outer surfaces of L1 overlap each other. That is, this configuration is different from a configuration in which two primary coils L1 are simply stacked in the thickness direction. Therefore, an increase in the thickness of the coil can be suppressed, and the power supply device 1 can be reduced in size.
  • the primary coil block 5 has characteristics different from those of the first embodiment, and other configurations are the same as those of the first embodiment. Therefore, for convenience of explanation, the primary coil block 5 different from the first embodiment will be described in detail, and a detailed description of portions common to the first embodiment will be omitted.
  • the magnetic body 6 and the cover 7 included in the primary coil block 5 have the same regular square shape as in the first embodiment.
  • positioned between the magnetic body 6 and the cover 7 also has the same square cross-sectional shape as 1st Embodiment.
  • the magnetic body 6 and the cover 7 are different from the first embodiment, and are arranged to face each other without being biased.
  • the primary coil L1 disposed between the magnetic body 6 and the cover 7 is a square from the lower magnetic body 6 toward the intermediate position between the magnetic body 6 and the cover 7 as in the first embodiment.
  • the second cross section is biased in the first direction along the diagonal line of the coil cross section of the shape, and is opposite to the first direction along the diagonal line from the intermediate position of the magnetic body 6 and the cover 7 toward the upper cover 7. Biased in the direction.
  • the coil center axis Cx of the primary coil L1 is, as shown in FIG. 13, the center point P0 of the lower coil surface with the center point Pm of the coil surface at the intermediate position between the magnetic body 6 and the cover 7 as the bending point. To the bent straight line passing through the center point P1 of the upper coil surface.
  • the center point Pm of the coil surface at the intermediate position between the magnetic body 6 and the cover 7 of the primary coil L1 is the center point P0 of the lower coil surface (the center of the upper coil surface).
  • the point P1 it is arranged at a position displaced 20 mm on the right side and 20 mm on the far side in FIG.
  • the coil surface at the intermediate position between the magnetic body 6 and the cover 7 is disposed at a position displaced 20 mm on the right side and 20 mm on the far side in FIG. 15 with respect to the upper and lower coil surfaces of the primary coil L1.
  • the primary coil block 5 configured in this way is arranged in the corresponding power feeding area AR1 in the housing 2.
  • FIG. 16 and 17 show a layout view and a side view of four primary coil blocks 5 adjacent to each other.
  • the primary coil blocks 5 are provided side by side with the directions in which they are biased. That is, the magnetic bodies 6 (covers 7) of the four primary coil blocks 5 are arranged adjacent to each other.
  • the outer surface of the right primary coil L1 and recessed in the biasing direction protrudes from the outer surface of the left primary coil L1 and biased.
  • the outer surface is fitted.
  • the outer surface of the primary coil L1 on the back side in FIG. 17 that is recessed in the biasing direction protrudes in the biasing direction on the outer surface of the primary coil L1 on the front side in FIG.
  • the outer surface is fitted. That is, as shown in FIGS. 16 and 17, the four primary coil blocks 5 can overlap the outer surfaces of the four adjacent primary coils L1 when viewed from above.
  • the outer surfaces of the primary coils L1 adjacent to each other overlap each other at the boundary portion of the plurality of power feeding areas AR1 formed on the mounting surface 3, and the boundary portion has a constant width D.
  • the magnetic flux between the primary coils L1 adjacent to each other is averaged, and the magnetic flux density can be made uniform.
  • the primary coil block 5 has characteristics different from those of the first embodiment, and other configurations are the same as those of the first embodiment. Therefore, for convenience of explanation, different primary coil blocks will be described in detail, and detailed description of portions common to the first embodiment will be omitted.
  • the non-contact power feeding device includes a first primary coil block 5a and a second primary coil block 5b.
  • First primary coil block 5a As shown in FIG. 19, the first primary coil block 5a has a regular octagonal pyramid-shaped outer shape disposed between a magnetic body 6a disposed on the lower side and a cover 7a disposed on the upper side.
  • Including a primary coil L1a The primary coil L1a has an octagonal cross section, and is formed so that the cross-sectional shape becomes smaller from the lower magnetic body 6a toward the upper cover 7a. That is, the primary coil L1a has an octagonal frustum-shaped outer shape whose diameter decreases toward the upper side.
  • the lower outer size Db of the lower coil surface near the magnetic body 6a of the primary coil L1a is set to 60 mm
  • the upper outer size Dt of the upper coil surface close to the cover 7a is set to 10 mm. Has been.
  • the magnetic body 6a is a regular octagonal plate made of a soft magnetic material. By connecting and fixing the magnetic body 6a to one (lower) winding end of the primary coil L1a, the magnetic body 6a is connected and fixed to the lower coil surface of the primary coil L1a.
  • the cover 7a is a regular octagonal plate made of resin made of an insulating material. By connecting and fixing the cover 7a to the other (upper) winding end of the primary coil L1a, the cover 7a is connected and fixed to the upper coil surface of the primary coil L1a.
  • the central axis of the regular octagonal pyramidal primary coil L1a passes through the center point of the lower coil surface and the center point of the upper coil surface.
  • the second primary coil block 5b has an inverted regular octagonal truncated pyramid shape disposed between the magnetic body 6b disposed on the lower side and the cover 7b disposed on the upper side.
  • the primary coil L1b having the outer shape is included.
  • the primary coil L1b has an octagonal cross section, and is formed so that the cross-sectional shape increases as it goes from the lower magnetic body 6b to the upper cover 7b. That is, the primary coil L1b has an outer shape of an inverted regular octagonal truncated pyramid that increases in diameter toward the upper side.
  • the lower outer size Db of the lower coil surface near the magnetic body 6b of the primary coil L1b is set to 10 mm
  • the upper outer size Dt of the upper coil surface close to the cover 7b is set to 60 mm. Has been.
  • the magnetic body 6b is a regular octagonal plate made of a soft magnetic material. By connecting and fixing the magnetic body 6b with one (lower side) winding end of the primary coil L1b, the magnetic body 6b is connected and fixed to the lower coil surface of the primary coil L1b.
  • the cover 7b is a resin-made regular octagonal plate made of an insulating material. By connecting and fixing the cover 7b to the other (upper) winding end of the primary coil L1b, the cover 7b is connected and fixed to the upper coil surface of the primary coil L1b.
  • the central axis of the inverted regular octagonal pyramidal primary coil L1b passes through the center point of the lower coil surface and the center point of the upper coil surface.
  • first primary coil block 5a and the second primary coil block 5b Next, an arrangement method of the first primary coil block 5a and the second primary coil block 5b will be described.
  • first primary coil block 5a and the second primary coil block 5b arranged in the four power feeding areas AR1 adjacent to each other will be described.
  • 23 and 24 show a layout view and a side view of two first primary coil blocks 5a and two second primary coil blocks 5b adjacent to each other.
  • a virtual square in which two primary coils L1a (first primary coil block 5a) whose diameter is expanded on the lower side surround the first and second primary coil blocks 5a and 5b. Arranged on the first diagonal of the frame. At this time, the magnetic body 6a of the first primary coil block 5a is disposed on the lower side, and the cover 7a is disposed on the upper side. Then, one side of the magnetic body 6a of the first primary coil block 5a adjacent to each other on the first diagonal line is brought into contact with each other.
  • the two primary coils L1b (second primary coil block 5b) whose upper diameter is enlarged are arranged on the second diagonal line orthogonal to the first diagonal line.
  • the magnetic body 6b of the second primary coil block 5b is disposed on the lower side, and the cover 7b is disposed on the upper side. Then, one side of the cover 7b of the second primary coil block 5b adjacent to each other on the second diagonal line is brought into contact with each other.
  • the first primary coil block 5a is a regular octagonal pyramid-shaped primary coil L1a whose diameter is reduced toward the upper side
  • the second primary coil block 5b is an inverse whose diameter is increased toward the upper side.
  • This is a regular octagonal frustum-shaped primary coil L1b.
  • the outer surfaces of the primary coil L1a and the primary coil L1b partially overlap each other. That is, the outer surfaces of the two first primary coil blocks 5a adjacent to each other overlap the outer surfaces of the two second primary coil blocks 5b adjacent to each other when viewed from above. .
  • the outer surfaces of the primary coils L1a and L1b adjacent to each other overlap each other at the boundary portion of the plurality of power feeding areas AR1 formed on the mounting surface 3, and this boundary portion Has a constant width D.
  • this boundary portion Has a constant width D.
  • the present embodiment can obtain the effects (1) to (3) as in the first embodiment.
  • the central axis Cx of the primary coil L1 having a square cross section is biased in the diagonal direction of the coil cross section.
  • the central axis Cx of the primary coil L1 having a quadrangular cross section is biased in a direction perpendicular to the one side at an intermediate position on one side of the coil cross section.
  • the primary coil block 5 may be formed.
  • the primary coil blocks 5 need to be provided in a line in the direction of bias.
  • twelve power supply areas AR1 are formed on the placement surface 3 of the power supply apparatus 1.
  • the present invention is not limited to this, and the power supply apparatus 1 includes two or more power supply areas AR1. You may prepare.
  • the first primary coil block 5a having a regular octagonal truncated pyramid shape and the second primary coil block 5b having a regular inverted octagonal truncated pyramid shape are used.
  • the first primary coil block (second primary coil block) is a regular polygonal frustum shape such as a regular triangular frustum shape (a regular and reverse triangular frustum shape), a regular hexagonal frustum shape (a regular and reverse hexagonal frustum shape), etc. It may have a (reverse polygon frustum shape).
  • the first primary coil block (second primary coil block) having a regular polygonal frustum shape is the first primary coil having a truncated cone shape (reverse frustoconical shape). It is assumed to include a block (second primary coil block).

Abstract

A primary coil (L1) fixedly provided between a magnetic body (6) and a cover (7) has the same quadrangular cross-section as the magnetic body (6) and the cover (7). The primary coil (L1) having the quadrangular cross-section is wound from the magnetic body (6) toward the upper-side cover (7), and the central axis of the coil is upwardly increasingly biased in the horizontal direction. The central axis of the primary coil (L1) is biased in the direction of the diagonal line of the cross-section of the coil.

Description

非接触給電装置及び非接触給電装置の1次コイルブロックNon-contact power feeder and primary coil block of non-contact power feeder
 本発明は、非接触給電装置及び非接触給電装置の1次コイルブロックに関するものである。 The present invention relates to a non-contact power feeding device and a primary coil block of the non-contact power feeding device.
 近年、電磁誘導方式による非接触給電システムでは、広い載置面を有し、受電装置を備えた電気機器をその広い載置面のどの位置に載置しても、受電装置に効率よく給電することのできる非接触給電装置の要求が高まっている。 2. Description of the Related Art In recent years, contactless power supply systems using an electromagnetic induction system have a wide mounting surface and efficiently supply power to a power receiving device regardless of the position on the wide mounting surface of an electric device equipped with a power receiving device. There is an increasing demand for a non-contact power feeding device that can perform the above operation.
 この実現のために、広い載置面が複数の給電エリアに区分され、その給電エリア毎に、1次コイルが設けられる。そして、電気機器が載置面に載置されたとき、非接触給電装置は、受電装置に設けられた2次コイルと対向する、給電装置の給電エリアの1次コイルを励磁する。これによって、電気機器が載置面のどの給電エリアに載置されても、電気機器の受電装置の2次コイルに2次電力が給電される。 For this purpose, a wide mounting surface is divided into a plurality of power feeding areas, and a primary coil is provided for each power feeding area. And when an electric equipment is mounted in the mounting surface, a non-contact electric power feeder excites the primary coil of the electric power feeding area of a power feeding apparatus facing the secondary coil provided in the power receiving apparatus. As a result, the secondary power is supplied to the secondary coil of the power receiving device of the electric device, regardless of the power supply area on the mounting surface.
 しかしながら、広い載置面を区分することにより形成された複数の給電エリア毎に設けられた1次コイルを含む非接触給電装置では、一つの給電エリアの1次コイルが、他の給電エリアの1次コイルと隣接して設けられていることから、相互に隣接する1次コイルの磁束が互いに干渉しあう。 However, in a non-contact power supply apparatus including a primary coil provided for each of a plurality of power supply areas formed by dividing a wide placement surface, the primary coil of one power supply area is one of the other power supply areas. Since it is provided adjacent to the secondary coil, the magnetic fluxes of the primary coils adjacent to each other interfere with each other.
 そのため、受電装置の2次コイルが、非接触給電装置の1次コイルに対してずれた位置に配置されたとき、該2次コイルは、該1次コイルと隣接する他の1次コイルの磁束の影響を受けて、2次電力の受電損失が大きくなる問題が生じる。 Therefore, when the secondary coil of the power receiving device is disposed at a position shifted from the primary coil of the non-contact power feeding device, the secondary coil is a magnetic flux of another primary coil adjacent to the primary coil. As a result, there arises a problem that the power reception loss of the secondary power increases.
 例えば、2次コイルが相互に隣接する1次コイルの中間位置付近に配置された時には、2次コイルL2の2次電力は小さい。電気機器が載置される位置に応じて、給電効率が大きく変化する。 For example, the secondary power of the secondary coil L2 is small when the secondary coil is arranged near the middle position of the adjacent primary coils. Depending on the position where the electrical device is placed, the power supply efficiency changes greatly.
 換言すれば、電気機器が、非接触給電装置の載置面に載置される位置に依存して、給電効率が大きく変化することから、従来の非接触給電装置は実用的ではなかった。 In other words, since the power supply efficiency varies greatly depending on the position where the electric device is placed on the mounting surface of the non-contact power supply device, the conventional non-contact power supply device is not practical.
 そこで、特許文献1では、給電装置は、2層の1次コイルの稠密アレイ層を含み、1つの層のコイルの中心が、他の層のコイルの中心とずれるように、2層のアレイ層を重ねることにより、上記の問題を解決している。 Therefore, in Patent Document 1, the power feeding device includes a dense array layer of two primary coils, and the two layers of the array layer so that the center of the coil of one layer is shifted from the center of the coil of the other layer. By repeating the above, the above problem is solved.
米国特許第7164255号公報U.S. Pat. No. 7,164,255
 しかしながら、上記給電装置は、2層の1次コイルの稠密アレイ層を含むので、コイル全体の厚さが増加し、装置全体が大型化する問題があった。また、コイルの数が多くなることから、制御対象が多くなり制御が複雑化するとともに、回路規模が大きくなりコストアップにつながる。しかも、余計なコイルまで励磁制御しなければならないことから、効率低下を招来していた。 However, since the power supply apparatus includes a dense array layer of two primary coils, there is a problem that the thickness of the entire coil increases and the entire apparatus becomes large. In addition, since the number of coils increases, the number of objects to be controlled increases, the control becomes complicated, and the circuit scale increases, leading to an increase in cost. In addition, since the excitation control has to be performed up to an extra coil, the efficiency has been reduced.
 本発明は、上記問題を解消するためになされたものであって、その目的は、1次コイルの数を増やすことなく、電気機器が載置される位置に応じた、受電装置の2次コイルにより受電される電力量の変動を低減し、高効率に電力を供給することができる非接触給電装置を提供することにある。さらに、本発明の目的は、その非接触給電装置に使用される非接触給電装置の1次コイルブロックを提供することにある。 The present invention has been made in order to solve the above-described problem, and its purpose is to increase the number of primary coils, and to increase the number of primary coils, and the secondary coil of the power receiving device according to the position where the electrical equipment is placed. It is an object of the present invention to provide a non-contact power supply device that can reduce fluctuations in the amount of power received by the power supply and supply power with high efficiency. Furthermore, the objective of this invention is providing the primary coil block of the non-contact electric power feeder used for the non-contact electric power feeder.
 上記課題を解決するために、本発明の第1の側面によれば、電磁誘導現象を利用して電気機器の受電装置に設けられた2次コイルに2次電力を給電する非接触給電装置であって、前記非接触給電装置は、複数の給電エリアを含む、前記非接触給電装置において、前記複数の給電エリアにそれぞれ対応して設けられた複数の1次コイルを備え、各1次コイルは、中心軸線の周りに巻回されており、各1次コイルが、中心軸線方向と直交する方向に偏倚された外形を有し、前記複数の1次コイルが、前記中心軸線方向と直交する方向に沿って併設されて、相互に隣接する給電エリアに対応する1次コイルの外側面の一部が、前記中心軸線方向から見た場合に、互いにオーバーラップしている、非接触給電装置が提供される。 In order to solve the above-described problem, according to a first aspect of the present invention, there is provided a non-contact power feeding device that feeds secondary power to a secondary coil provided in a power receiving device of an electrical device using an electromagnetic induction phenomenon. The contactless power supply device includes a plurality of power supply areas. In the contactless power supply device, the contactless power supply device includes a plurality of primary coils respectively provided corresponding to the plurality of power supply areas. , Wound around a central axis, each primary coil has an outer shape biased in a direction perpendicular to the central axial direction, and the plurality of primary coils are orthogonal to the central axial direction. Provided is a non-contact power feeding device in which a part of the outer surface of the primary coil corresponding to the power feeding areas adjacent to each other overlaps each other when viewed from the central axis direction. Is done.
 また、上記構成において、前記各1次コイルは、四角形状の断面を有することが好ましい。 In the above configuration, each of the primary coils preferably has a quadrangular cross section.
 また、上記構成において、前記各1次コイルは、一方の巻端から他方の巻端に向かうほど拡開する外形を有し、相互に隣接する1次コイルは、互いに異なるコイル向きを有するように配置されていることが好ましい。 In the above configuration, each primary coil has an outer shape that expands from one winding end toward the other winding end, and adjacent primary coils have different coil orientations. It is preferable that they are arranged.
 また、上記構成において、前記各1次コイルは、正多角錐台形状の外形を有し、相互に隣接する1次コイルは、互いに異なるコイル向きを有するとともに、相互に隣接する1次コイルの外側面が互いにオーバーラップするように配置されていることが好ましい。 Further, in the above configuration, each primary coil has an outer shape of a regular polygonal frustum shape, and the primary coils adjacent to each other have different coil directions and are outside the primary coils adjacent to each other. The side surfaces are preferably arranged so as to overlap each other.
 また、上記構成において、前記各1次コイルは、正八角錐台形状の外形を有することが好ましい。 Further, in the above configuration, each primary coil preferably has a regular octagonal truncated pyramid shape.
 本発明の第二の側面によれば、電磁誘導現象を利用して電気機器の受電装置に設けられた2次コイルに2次電力を給電する非接触給電装置の1次コイルブロックであって、第1及び第2の巻端を有し、中心軸線の周りに巻回された1次コイルであって、前記1次コイルが、中心軸線方向と直交する方向に偏倚された外形を有する、前記1次コイルと、前記第1の巻端に配置された磁性体と、前記第2の巻端に配置された、絶縁材料よりなるカバーとを備える、非接触給電装置の1次コイルブロックが提供される。 According to a second aspect of the present invention, there is provided a primary coil block of a non-contact power feeding device that feeds secondary power to a secondary coil provided in a power receiving device of an electrical device using an electromagnetic induction phenomenon, A primary coil having first and second winding ends and wound around a central axis, wherein the primary coil has an outer shape biased in a direction perpendicular to the central axis direction; Provided is a primary coil block of a non-contact power feeding device including a primary coil, a magnetic body disposed at the first winding end, and a cover made of an insulating material disposed at the second winding end. Is done.
 また、上記構成において、前記1次コイルは、四角形状の断面を有し、前記1次コイルの中心軸線が、前記断面の一側辺の中間位置において、該一側辺と直交する方向に偏倚されていることが好ましい。 Further, in the above configuration, the primary coil has a quadrangular cross section, and a central axis of the primary coil is biased in a direction perpendicular to the one side at an intermediate position of one side of the cross section. It is preferable that
 また、上記構成において、前記1次コイルは、四角形状の断面を有し、前記1次コイルの中心軸線が、前記断面の対角線方向に偏倚されていることが好ましい。 In the above configuration, it is preferable that the primary coil has a quadrangular cross section, and a central axis of the primary coil is biased in a diagonal direction of the cross section.
 また、上記構成において、前記1次コイルは、前記中心軸線が、前記磁性体の中心点、及び前記カバーの中心点と一致するように巻回されていることが好ましい。 In the above configuration, it is preferable that the primary coil is wound so that the central axis coincides with the central point of the magnetic body and the central point of the cover.
 本発明の第三の側面によれば、電磁誘導現象を利用して電気機器の受電装置に設けられた2次コイルに2次電力を給電する非接触給電装置の1次コイルブロックであって、正多角錐台形状の外形を有する1次コイルであって、該1次コイルは、第1および第2の巻端を有する、前記1次コイルと、前記第1の巻端に配置された磁性体と、前記第2の巻端に配置された、絶縁材料よりなるカバーとを備える、非接触給電装置の1次コイルブロックが提供される。 According to a third aspect of the present invention, there is provided a primary coil block of a non-contact power feeding device that feeds secondary power to a secondary coil provided in a power receiving device of an electrical device using an electromagnetic induction phenomenon, A primary coil having a regular polygonal frustum-shaped outer shape, the primary coil having first and second winding ends, and a magnetic coil disposed at the first winding end. There is provided a primary coil block of a non-contact power feeding device including a body and a cover made of an insulating material and disposed at the second winding end.
 また、上記構成において、前記1次コイルは、正八角錐台形状の外形を有することが好ましい。 In the above configuration, the primary coil preferably has a regular octagonal truncated pyramid shape.
 本発明によれば、1次コイルの数を増やすことなく、電気機器が載置される載置面の位置を問わず、非接触給電装置から受電装置の2次コイルに対して高効率に電力を供給することができる。 According to the present invention, power is efficiently supplied from the non-contact power feeding device to the secondary coil of the power receiving device regardless of the position of the mounting surface on which the electric device is mounted without increasing the number of primary coils. Can be supplied.
本発明の第1実施形態の非接触給電システムの非接触給電装置と電気機器を示す全体斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The whole perspective view which shows the non-contact electric power feeder and electric equipment of the non-contact electric power feeding system of 1st Embodiment of this invention. 本発明の第1実施形態の1次コイルブロックの全体斜視図。The whole perspective view of the primary coil block of a 1st embodiment of the present invention. 本発明の第1実施形態の1次コイルブロックの分解斜視図。The disassembled perspective view of the primary coil block of 1st Embodiment of this invention. 本発明の第1実施形態の1次コイルの平面図。The top view of the primary coil of 1st Embodiment of this invention. 本発明の第1実施形態の1次コイルブロックの平面図。The top view of the primary coil block of 1st Embodiment of this invention. 本発明の第1実施形態の1次コイルブロックの側面図。The side view of the primary coil block of 1st Embodiment of this invention. 本発明の第1実施形態の複数の1次コイルブロックの組み合わせを示す平面図。The top view which shows the combination of the some primary coil block of 1st Embodiment of this invention. 本発明の第1実施形態の複数の1次コイルブロックの組み合わせを示す側面図。The side view which shows the combination of the some primary coil block of 1st Embodiment of this invention. 本発明の第1実施形態の2次コイルを示す断面図。Sectional drawing which shows the secondary coil of 1st Embodiment of this invention. 相互に隣接する1次コイル上における一方の位置から他方の位置までの2次コイルの移動を説明する図であって、(a)は従来の1次コイル上における2次コイルの移動を示す図、(b)は本実施形態の1次コイル上における2次コイルの移動を示す図。It is a figure explaining the movement of the secondary coil from the one position on the mutually adjacent primary coil to the other position, (a) is a figure which shows the movement of the secondary coil on the conventional primary coil (B) is a figure which shows the movement of the secondary coil on the primary coil of this embodiment. 2次コイルが、従来の1次コイル上及び第1実施形態の1次コイル上をそれぞれ移動する際の、位置に対する2次コイルの出力を示すグラフ。The graph which shows the output of the secondary coil with respect to a position when a secondary coil moves on the conventional primary coil and the primary coil of 1st Embodiment, respectively. 本発明の第2実施形態の1次コイルブロックの全体斜視図。The whole primary coil block perspective view of a 2nd embodiment of the present invention. 本発明の第2実施形態の1次コイルブロックの分解斜視図。The disassembled perspective view of the primary coil block of 2nd Embodiment of this invention. 本発明の第2実施形態の1次コイルブロックの平面図。The top view of the primary coil block of 2nd Embodiment of this invention. 本発明の第2実施形態の1次コイルブロックの側面図。The side view of the primary coil block of 2nd Embodiment of this invention. 本発明の第2実施形態の複数の1次コイルブロックの組み合わせを示す平面図。The top view which shows the combination of the some primary coil block of 2nd Embodiment of this invention. 本発明の第2実施形態の複数の1次コイルブロックの組み合わせを示す側面図。The side view which shows the combination of the some primary coil block of 2nd Embodiment of this invention. (a)は本発明の第3実施形態の第1の1次コイルブロックの斜視図、(b)は本発明の第3実施形態の第2の1次コイルブロックの斜視図。(A) is a perspective view of the 1st primary coil block of 3rd Embodiment of this invention, (b) is a perspective view of the 2nd primary coil block of 3rd Embodiment of this invention. 本発明の第3実施形態の第1の1次コイルブロックの分解斜視図。The disassembled perspective view of the 1st primary coil block of 3rd Embodiment of this invention. 本発明の第3実施形態の第1の1次コイルブロックの1次コイルの側面図。The side view of the primary coil of the 1st primary coil block of 3rd Embodiment of this invention. 本発明の第3実施形態の第2の1次コイルブロックの分解斜視図。The disassembled perspective view of the 2nd primary coil block of 3rd Embodiment of this invention. 本発明の第3実施形態の第2の1次コイルブロックの1次コイルの側面図。The side view of the primary coil of the 2nd primary coil block of 3rd Embodiment of this invention. 本発明の第3実施形態の複数の第1及び第2の1次コイルブロックの組み合わせを示す平面図。The top view which shows the combination of the some 1st and 2nd primary coil block of 3rd Embodiment of this invention. 本発明の第3実施形態の複数の第1及び第2の1次コイルブロックの組み合わせを示す側面図。The side view which shows the combination of the some 1st and 2nd primary coil block of 3rd Embodiment of this invention. 別例を説明するための1次コイルブロックの全体斜視図。The whole perspective view of the primary coil block for demonstrating another example.
(第1実施形態)
 以下、本発明の第1実施形態による非接触給電システムの非接触給電装置が図面を参照して説明される。
(First embodiment)
Hereinafter, a non-contact power feeding device of a non-contact power feeding system according to a first embodiment of the present invention will be described with reference to the drawings.
 図1に示されるように、非接触給電システムは、非接触給電装置(以下、単に給電装置という)1と、その給電装置1から非接触で給電される電気機器(以下、単に機器という)Eとを含む。 As shown in FIG. 1, the non-contact power feeding system includes a non-contact power feeding device (hereinafter simply referred to as a power feeding device) 1 and an electric device (hereinafter simply referred to as a device) E that is fed in a non-contact manner from the power feeding device 1. Including.
 給電装置1は、四角形の板状の筐体2を有し、筐体2の上面は、平面であり、かつ機器Eが載置される載置面3を形成している。載置面3は、複数の四角形状の給電エリアAR1に区分され、本実施形態では、3列及び4行のアレイ状に配置された12個の給電エリアAR1が載置面3に形成されている。 The power feeding device 1 has a rectangular plate-shaped housing 2, and the upper surface of the housing 2 is a flat surface and forms a placement surface 3 on which the device E is placed. The mounting surface 3 is divided into a plurality of rectangular power feeding areas AR1, and in this embodiment, twelve power feeding areas AR1 arranged in an array of 3 columns and 4 rows are formed on the mounting surface 3. Yes.
 各給電エリアAR1に対応する筐体2内の位置には、図1の破線で示されるように、1次コイルブロック5が配置されている。 The primary coil block 5 is disposed at a position in the housing 2 corresponding to each power supply area AR1, as indicated by a broken line in FIG.
 各1次コイルブロック5は、図2、図3に示されるように、1次コイルL1と、1次コイルL1の下側コイル面に固定された磁性体6と、1次コイルL1の上側コイル面に固定されたカバー7とを含む。 As shown in FIGS. 2 and 3, each primary coil block 5 includes a primary coil L1, a magnetic body 6 fixed to a lower coil surface of the primary coil L1, and an upper coil of the primary coil L1. And a cover 7 fixed to the surface.
 磁性体6は、本実施形態では軟磁性材料よりなる四角板体である。磁性体6を1次コイルL1の一方(下側)の巻端と連結し、固定することによって、1次コイルL1の下側コイル面が磁性体6と連結され、固定される。カバー7は、本実施形態では絶縁材料よりなる樹脂製の四角板体である。カバー7を1次コイルL1の他方(上側)の巻端と連結し、固定することによって、1次コイルL1の上側コイル面がカバー7と連結され、固定される。カバー7は、本実施形態では、磁性体6と同じ形状の四角形状を有する。 In this embodiment, the magnetic body 6 is a square plate made of a soft magnetic material. By connecting and fixing the magnetic body 6 to one (lower side) winding end of the primary coil L1, the lower coil surface of the primary coil L1 is connected to the magnetic body 6 and fixed. In the present embodiment, the cover 7 is a resin square plate made of an insulating material. By connecting and fixing the cover 7 to the other (upper) winding end of the primary coil L1, the upper coil surface of the primary coil L1 is connected to the cover 7 and fixed. In this embodiment, the cover 7 has a rectangular shape that is the same shape as the magnetic body 6.
 磁性体6とカバー7との間に固設された1次コイルL1は、磁性体6及びカバー7と同じ四角形状の断面を有するコイルで形成されている。四角形状の断面を有する1次コイルL1は、磁性体6から上側のカバー7に向かって巻回され、1次コイルL1の中心軸線Cx(図4参照)が上側に向かうほど水平方向(載置面3と平行な方向)に偏倚する。 The primary coil L1 fixed between the magnetic body 6 and the cover 7 is formed of a coil having the same square cross section as the magnetic body 6 and the cover 7. The primary coil L1 having a rectangular cross section is wound from the magnetic body 6 toward the upper cover 7, and the horizontal direction (mounting) as the central axis Cx (see FIG. 4) of the primary coil L1 moves upward. In a direction parallel to the surface 3).
 詳述すると、偏倚は、図4に示されるように、1次コイルL1の中心軸線Cxが、軸線方向(載置面3と垂直な方向)から見て、四角形状のコイル断面の対角線方向に偏倚されている。従って、磁性体6とカバー7とは、正対せず、対角線方向にずれて対向する。 More specifically, as shown in FIG. 4, the deviation is such that the central axis Cx of the primary coil L1 is in the diagonal direction of the rectangular coil cross section when viewed from the axial direction (direction perpendicular to the mounting surface 3). Be biased. Therefore, the magnetic body 6 and the cover 7 do not face each other and face each other while being shifted in the diagonal direction.
 本実施形態では、図5、図6に示されるように、磁性体6(カバー7)及び1次コイルL1は、一辺の長さDX0が42mm、他辺の長さDY0が42mmの正四角形に設定されている。そして、軸線方向の長さHが4.5mmに設定されている。 In this embodiment, as shown in FIGS. 5 and 6, the magnetic body 6 (cover 7) and the primary coil L <b> 1 are regular squares having a side length DX <b> 0 of 42 mm and the other side length DY <b> 0 of 42 mm. Is set. The length H in the axial direction is set to 4.5 mm.
 このとき、カバー7は、磁性体6に対して、右側に20mm、後側に20mm偏倚した位置に配置される。換言すると、1次コイルL1の上側コイル面は、1次コイルL1の下側コイル面に対して、右側に20mm、後側に20mm偏倚した位置に配置される。 At this time, the cover 7 is arranged with respect to the magnetic body 6 at a position displaced 20 mm on the right side and 20 mm on the rear side. In other words, the upper coil surface of the primary coil L1 is disposed at a position displaced 20 mm on the right side and 20 mm on the rear side with respect to the lower coil surface of the primary coil L1.
 さらに、換言すると、1次コイルL1の中心軸線Cxは、図4に示されるように、磁性体6の中心点(下側コイル面の中心点P0)とカバー7の中心点(上側コイル面の中心点P1)を通る直線である。 Furthermore, in other words, the central axis Cx of the primary coil L1 is, as shown in FIG. 4, the center point of the magnetic body 6 (center point P0 of the lower coil surface) and the center point of the cover 7 (of the upper coil surface). A straight line passing through the center point P1).
 そして、このように構成された1次コイルブロック5は、各給電エリアAR1に対応する筐体2内の位置に配置される。 The primary coil block 5 configured in this way is arranged at a position in the housing 2 corresponding to each power supply area AR1.
 次に、1次コイルブロック5の配置方法について説明する。なお、説明の便宜上、隣接する4つの給電エリアAR1に配置される1次コイルブロック5について説明する。 Next, the arrangement method of the primary coil block 5 will be described. For convenience of explanation, the primary coil block 5 arranged in the four adjacent power feeding areas AR1 will be described.
 図7は、相互に隣接する4個の1次コイルブロック5の配置図を示す。図7に示されるように、1次コイルブロック5は、偏倚する方向が相互に一致するように併設される。即ち、4個の1次コイルブロック5の磁性体6が互いに隣接するように(2×2のアレイ状に)配置されると、上側において4個の1次コイルブロック5のカバー7が互いに隣接するように配置される。 FIG. 7 shows a layout of four primary coil blocks 5 adjacent to each other. As shown in FIG. 7, the primary coil blocks 5 are provided side by side so that the biasing directions coincide with each other. That is, when the magnetic bodies 6 of the four primary coil blocks 5 are arranged adjacent to each other (in a 2 × 2 array), the covers 7 of the four primary coil blocks 5 are adjacent to each other on the upper side. To be arranged.
 このとき、4個の1次コイルブロック5は、1次コイルL1が四角形状のコイル断面の対角線方向に偏倚しているため、図8に示されるように、隣接する2つの1次コイルL1の外側面が、1次コイルL1の上方から見て、互いにオーバーラップする。しかも、隣接する4つの1次コイルL1の外側面も、1次コイルL1の上方から見て、互いにオーバーラップする。 At this time, since the four primary coil blocks 5 are offset in the diagonal direction of the rectangular coil cross section, the primary coil L1 has two adjacent primary coils L1 as shown in FIG. The outer side surfaces overlap each other when viewed from above the primary coil L1. Moreover, the outer surfaces of the four adjacent primary coils L1 also overlap each other when viewed from above the primary coil L1.
 従って、載置面3に形成された複数の給電エリアAR1の境界部分において、相互に隣接する1次コイルL1の外側面が、互いにオーバーラップしており、この境界部分は、一定の幅Dを有する。その結果、相互に隣接する1次コイルL1間の磁束が平均化され磁束密度を均一化させることができる。 Accordingly, the outer surfaces of the primary coils L1 adjacent to each other overlap each other at the boundary portion of the plurality of power feeding areas AR1 formed on the mounting surface 3, and this boundary portion has a certain width D. Have. As a result, the magnetic flux between the primary coils L1 adjacent to each other is averaged, and the magnetic flux density can be made uniform.
 なお、各給電エリアAR1から外れた筐体2内の位置には、各給電エリアAR1の1次コイルブロック5(1次コイルL1)のための、基本給電ユニット回路(図示せず)が設けられている。各基本給電ユニット回路は、対応する1次コイルブロック5の1次コイルL1を単独でまたは他の1次コイルL1と協働して駆動して励磁し、給電エリアAR1に載置された機器Eに対して非接触給電をする。 In addition, a basic power supply unit circuit (not shown) for the primary coil block 5 (primary coil L1) of each power supply area AR1 is provided at a position in the housing 2 outside the power supply area AR1. ing. Each basic power supply unit circuit drives and excites the primary coil L1 of the corresponding primary coil block 5 alone or in cooperation with the other primary coil L1, and is mounted on the power supply area AR1. To contactless power supply.
 一方、給電装置1から電磁誘導で給電を受ける機器Eは、筐体10と、その筐体10の下面に形成された給電装置1の給電エリアAR1に対する受電エリアAR2と、その筐体10内の2次コイルL2とを含む。 On the other hand, the device E that receives power supply from the power supply device 1 by electromagnetic induction includes a housing 10, a power reception area AR <b> 2 for the power supply area AR <b> 1 of the power supply device 1 formed on the lower surface of the housing 10, and Secondary coil L2.
 2次コイルL2は、図9に示されるように、四角板状の磁性材料よりなる磁性体11に取着されている。四角板状の磁性体11の外形は、本実施形態では、1次コイルブロック5の磁性体6と同一形状の正四角形をなしている。 As shown in FIG. 9, the secondary coil L2 is attached to a magnetic body 11 made of a square plate-like magnetic material. In this embodiment, the outer shape of the rectangular plate-like magnetic body 11 is a regular square having the same shape as the magnetic body 6 of the primary coil block 5.
 磁性体11に取着された2次コイルL2の断面は、本実施形態では、1次コイルL1と同一の正四角形をなしている。そして、2次コイルL2に取着された磁性体11は、筐体10内であって受電エリアAR2の位置に配置及び固定される。 In the present embodiment, the cross section of the secondary coil L2 attached to the magnetic body 11 forms the same square as the primary coil L1. And the magnetic body 11 attached to the secondary coil L2 is arrange | positioned and fixed in the position of the power receiving area AR2 within the housing | casing 10. FIG.
 そして、機器Eが給電装置1の載置面3に載置されたとき、2次コイルL2の直下に位置する1次コイルブロック5の1次コイルL1が給電され、励磁される。 And when the apparatus E is mounted on the mounting surface 3 of the power feeding device 1, the primary coil L1 of the primary coil block 5 positioned immediately below the secondary coil L2 is fed and excited.
 つまり、給電装置1は、1次コイルブロック5の1次コイルL1の直上に機器Eの給電装置1が載置されたとき、該1次コイルL1を給電して励磁する。従って、相互に隣接し、かつオーバーラップした複数の1次コイルL1の直上に機器Eの給電装置1が載置されたとき、給電装置1は、その複数の1次コイルL1を給電して励磁する。 That is, when the power feeding device 1 of the device E is placed immediately above the primary coil L1 of the primary coil block 5, the power feeding device 1 feeds and excites the primary coil L1. Therefore, when the power supply device 1 of the device E is placed immediately above the plurality of primary coils L1 that are adjacent to each other and overlap, the power supply device 1 supplies the plurality of primary coils L1 and excites them. To do.
 そして、2次コイルL2により受電された2次電力は、筐体10内であって2次コイルL2に隣接した位置に実装された受電装置12に設けられた整流回路で整流され、DC/DCコンバータで所望の直流電圧に変換されて機器Eの負荷(図示せず)に供給される。 The secondary power received by the secondary coil L2 is rectified by a rectifier circuit provided in the power receiving device 12 mounted in the housing 10 at a position adjacent to the secondary coil L2, and DC / DC It is converted into a desired DC voltage by a converter and supplied to a load (not shown) of the device E.
 次に、上記のように構成された、給電装置1の作用について説明する。 Next, the operation of the power feeding device 1 configured as described above will be described.
 今、機器E(2次コイルL2)が、給電装置1の載置面3上の、給電エリアAR1と給電エリアAR1との境界部分に載置されると、給電装置1は、機器E(2次コイルL2)の直下に位置する境界を跨ぐ複数の1次コイルL1を駆動して励磁する。 Now, when the device E (secondary coil L2) is placed on the placement surface 3 of the power feeding device 1 at the boundary portion between the power feeding area AR1 and the power feeding area AR1, the power feeding device 1 is connected to the device E (2 A plurality of primary coils L1 straddling the boundary located immediately below the secondary coil L2) are driven and excited.
 一定の幅Dを有するこの境界部分において、相互に隣接する1次コイルL1の外側面が、互いにオーバーラップしていることから、相互に隣接する1次コイルL1間の磁束が平均化される。その結果、磁束密度の均一化が実現でき、これら1次コイルL1の給電及び励磁よって、2次コイルL2は2次電力を受電する。そして、2次コイルL2により受電された2次電力は、受電装置12に設けられた整流回路で整流され、DC/DCコンバータで所望の直流電圧に変換されて機器Eの負荷に供給される。 Since the outer surfaces of the primary coils L1 adjacent to each other overlap each other in this boundary portion having a constant width D, the magnetic flux between the primary coils L1 adjacent to each other is averaged. As a result, the magnetic flux density can be made uniform, and the secondary coil L2 receives the secondary power by feeding and exciting the primary coil L1. The secondary power received by the secondary coil L2 is rectified by a rectifier circuit provided in the power receiving device 12, converted into a desired DC voltage by a DC / DC converter, and supplied to the load of the device E.
 ここで、本実施形態の4個の1次コイルL1が隣接して配置された場合と、4個の従来の1次コイルが隣接して配置された場合とで、2次コイルL2の受電効率の比較検証を行った。 Here, the power reception efficiency of the secondary coil L2 in the case where the four primary coils L1 of the present embodiment are arranged adjacent to each other and the case where the four conventional primary coils are arranged adjacent to each other. A comparative verification was conducted.
 図10(a)は、励磁された4個の従来の1次コイルLaを示す。そして、図10(a)において、2次コイルL2のコイル面が、前左側の1次コイルLaのコイル面と正対する位置から、後左側の1次コイルLaのコイル面と正対する位置まで2次コイルL2を移動させる。 FIG. 10 (a) shows four conventional primary coils La excited. In FIG. 10A, the coil surface of the secondary coil L2 is 2 from the position facing the coil surface of the front left primary coil La to the position facing the coil surface of the rear left primary coil La. The next coil L2 is moved.
 そして、この時、2次コイルL2の位置に対する2次コイルL2からの出力が、図11の出力電圧線V1に示されるように得られた。なお、図11の出力は「%」で表され、100%は、1次コイルL1の出力電力が2次コイルで100%受電されたことを意味する。 At this time, the output from the secondary coil L2 with respect to the position of the secondary coil L2 was obtained as shown by the output voltage line V1 in FIG. The output in FIG. 11 is represented by “%”, and 100% means that the output power of the primary coil L1 is received 100% by the secondary coil.
 図11の出力電圧線V1から明らかなように、従来の1次コイルLaの場合、1次コイルLaと2次コイルL2とが正対する位置に2次コイルL2が存在する場合、2次コイルL2の出力が100%となり、1次コイルL1と1次コイルL1の中間位置に2次コイルL2が存在する場合、2次コイルL2の出力が最小となる。この2次コイルL2の位置の移動により、2次コイルL2の出力は、約57%減少する。 As apparent from the output voltage line V1 of FIG. 11, in the case of the conventional primary coil La, when the secondary coil L2 is present at a position where the primary coil La and the secondary coil L2 face each other, the secondary coil L2 When the secondary coil L2 exists at an intermediate position between the primary coil L1 and the primary coil L1, the output of the secondary coil L2 is minimized. Due to the movement of the position of the secondary coil L2, the output of the secondary coil L2 is reduced by about 57%.
 図10(b)は、励磁された4個の本実施形態の1次コイルL1を示す。そして、図10(b)において、2次コイルL2のコイル面が、前左側の1次コイルL1の下側コイル面と正対する位置から、後左側の1次コイルL1の下側コイル面と正対する位置まで2次コイルL2を移動させる。 FIG. 10B shows four excited primary coils L1 of the present embodiment. In FIG. 10B, the coil surface of the secondary coil L2 faces the lower coil surface of the rear left primary coil L1 from the position facing the lower coil surface of the front left primary coil L1. The secondary coil L2 is moved to the corresponding position.
 そして、2次コイルの位置に対する2次コイルL2からの出力が、図11の出力電圧線V2に示されるように得られた。 And the output from the secondary coil L2 with respect to the position of the secondary coil was obtained as shown by the output voltage line V2 in FIG.
 図11の出力電圧線V2から明らかなように、本実施形態の1次コイルL1の場合、1次コイルL1と2次コイルL2とが正対する位置で、2次コイルL2の出力が50%となるものの、1次コイルL1と1次コイルL1の中間位置で出力が最小となる。この位置の移動により、2次コイルL2の出力は、41%減少する。 As apparent from the output voltage line V2 of FIG. 11, in the case of the primary coil L1 of this embodiment, the output of the secondary coil L2 is 50% at the position where the primary coil L1 and the secondary coil L2 face each other. However, the output is minimized at an intermediate position between the primary coil L1 and the primary coil L1. Due to the movement of this position, the output of the secondary coil L2 is reduced by 41%.
 従って、本実施形態の1次コイルL1の場合、従来の1次コイルLaに比べて、2次コイルL2(機器E)を載置する1次コイルL1(載置面3)上の位置に応じた、2次コイルL2からの出力の変動は小さいことがわかる。 Therefore, in the case of the primary coil L1 of this embodiment, compared with the conventional primary coil La, according to the position on the primary coil L1 (mounting surface 3) on which the secondary coil L2 (device E) is mounted. It can also be seen that the fluctuation in the output from the secondary coil L2 is small.
 次に、上記のように構成された実施形態の効果を以下に記載する。 Next, the effects of the embodiment configured as described above will be described below.
 (1)上記実施形態によれば、複数の給電エリアAR1にそれぞれ対応して設けられた複数の1次コイルL1の各々は、中心軸線の周りに巻回されており、かつ、中心軸線方向と直交する方向に偏倚された外形を有する。複数の1次コイルは、中心軸線方向と直交する方向に沿って併設されて、隣接する給電エリアAR1に対応する1次コイルL1の外側面の一部が、中心軸線方向から見た場合に、互いにオーバーラップしている。 (1) According to the above embodiment, each of the plurality of primary coils L1 provided corresponding to each of the plurality of power feeding areas AR1 is wound around the central axis, and the direction of the central axis is The outer shape is biased in the orthogonal direction. The plurality of primary coils are provided along a direction orthogonal to the central axis direction, and when a part of the outer surface of the primary coil L1 corresponding to the adjacent feeding area AR1 is viewed from the central axis direction, Overlap each other.
 従って、載置面3に形成された複数の給電エリアAR1の境界部分において、相互に隣接する1次コイルL1の外側面が互いにオーバーラップしており、この境界部分は、一定の幅Dを有する。これにより、隣接する1次コイルL1間の磁束が平均化され磁束密度を均一化させることができる。 Therefore, the outer surfaces of the primary coils L1 adjacent to each other overlap each other at the boundary portion of the plurality of power feeding areas AR1 formed on the mounting surface 3, and this boundary portion has a constant width D. . Thereby, the magnetic flux between the adjacent primary coils L1 is averaged, and the magnetic flux density can be made uniform.
 その結果、機器Eが載置される載置面3上の位置に応じた、2次コイルL2により受電される2次電力の変動を低減することができる。即ち、機器Eが載置される載置面3上の位置による、2次コイルL2により受電される2次電力の偏りを非常に小さくできる。換言すれば、機器Eを載置面3に載置する際、その載置位置を気にすることなく機器Eを載置することができる。 As a result, it is possible to reduce fluctuations in the secondary power received by the secondary coil L2 according to the position on the placement surface 3 on which the device E is placed. That is, the bias of the secondary power received by the secondary coil L2 due to the position on the placement surface 3 on which the device E is placed can be greatly reduced. In other words, when the device E is placed on the placement surface 3, the device E can be placed without worrying about the placement position.
 しかも、1次コイルL1の中心軸線Cxが、コイルの断面の対角線方向に偏倚されているので、当該1次コイルL1の四方の外側面を、隣接する他の1次コイルL1の外側面とオーバーラップさせることができる。従って、より効率よい2次コイルL2への給電を実現することができる。 Moreover, since the central axis Cx of the primary coil L1 is biased in the diagonal direction of the coil cross section, the four outer sides of the primary coil L1 are overlaid on the outer sides of the other adjacent primary coils L1. Can be wrapped. Therefore, more efficient power feeding to the secondary coil L2 can be realized.
 (2)上記実施形態によれば、各給電エリアAR1に1つの1次コイルL1が設けられているだけなので、1次コイルL1の数を増やすことなく励磁される磁束の空白箇所をなくすことができる。その結果、1次コイルL1の数が少ない分だけ、コイル数が低減できるとともに、コイルの制御が容易になり回路規模の小型化及び給電装置1のコストダウン化を図ることができる。 (2) According to the above embodiment, since only one primary coil L1 is provided in each power supply area AR1, it is possible to eliminate a blank portion of the magnetic flux to be excited without increasing the number of primary coils L1. it can. As a result, the number of coils can be reduced as much as the number of primary coils L1, and the control of the coils is facilitated, so that the circuit scale can be reduced and the cost of the power feeding apparatus 1 can be reduced.
 (3)上記実施形態によれば、中心軸線の周りに巻回された1次コイルL1が、中心軸線方向と直交する方向に偏倚された外形を有し、隣接する給電エリアAR1の1次コイルL1の外側面が、互いにオーバーラップしている。つまり、この構成は、2つの1次コイルL1が厚さ方向に単に積層されている構成とは相違する。従って、コイルの厚さの増加を抑えることができ、給電装置1の小型化を図ることができる。
(第2実施形態)
 次に、本発明の第2実施形態が図面を参照して説明される。
(3) According to the above embodiment, the primary coil L1 wound around the central axis has an outer shape biased in a direction orthogonal to the central axis direction, and the primary coil of the adjacent power feeding area AR1 The outer surfaces of L1 overlap each other. That is, this configuration is different from a configuration in which two primary coils L1 are simply stacked in the thickness direction. Therefore, an increase in the thickness of the coil can be suppressed, and the power supply device 1 can be reduced in size.
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to the drawings.
 本実施形態では、1次コイルブロック5が、第1実施形態とは異なる特徴を有し、他の構成は第1実施形態と同じである。そのため、説明の便宜上、第1実施形態とは異なる1次コイルブロック5について詳細に説明し、第1実施形態と共通する部分の詳細な説明は省略する。 In the present embodiment, the primary coil block 5 has characteristics different from those of the first embodiment, and other configurations are the same as those of the first embodiment. Therefore, for convenience of explanation, the primary coil block 5 different from the first embodiment will be described in detail, and a detailed description of portions common to the first embodiment will be omitted.
 本実施形態では、図12、図13に示されるように、1次コイルブロック5に含まれる磁性体6及びカバー7は、第1実施形態と同じ正四角形を有する。また、磁性体6とカバー7との間に配置される1次コイルL1も、第1実施形態と同じ四角形の断面形状を有する。 In this embodiment, as shown in FIGS. 12 and 13, the magnetic body 6 and the cover 7 included in the primary coil block 5 have the same regular square shape as in the first embodiment. Moreover, the primary coil L1 arrange | positioned between the magnetic body 6 and the cover 7 also has the same square cross-sectional shape as 1st Embodiment.
 そして、磁性体6とカバー7とは、第1実施形態と相違し、互いに偏倚せず、正対して配置されている。一方、磁性体6とカバー7との間に配置される1次コイルL1は、下側の磁性体6から磁性体6とカバー7の中間位置に向かって、第1実施形態と同様に、四角形状のコイル断面の対角線に沿った第1の方向に偏倚され、磁性体6とカバー7の中間位置から上側のカバー7に向かって、対角線に沿った第1の方向とは反対の第2の方向に偏倚されている。 And the magnetic body 6 and the cover 7 are different from the first embodiment, and are arranged to face each other without being biased. On the other hand, the primary coil L1 disposed between the magnetic body 6 and the cover 7 is a square from the lower magnetic body 6 toward the intermediate position between the magnetic body 6 and the cover 7 as in the first embodiment. The second cross section is biased in the first direction along the diagonal line of the coil cross section of the shape, and is opposite to the first direction along the diagonal line from the intermediate position of the magnetic body 6 and the cover 7 toward the upper cover 7. Biased in the direction.
 従って、1次コイルL1のコイル中心軸線Cxは、図13に示されるように、磁性体6とカバー7の中間位置におけるコイル面の中心点Pmを屈曲点とする下側コイル面の中心点P0から上側コイル面の中心点P1を通る屈曲直線となる。 Therefore, the coil center axis Cx of the primary coil L1 is, as shown in FIG. 13, the center point P0 of the lower coil surface with the center point Pm of the coil surface at the intermediate position between the magnetic body 6 and the cover 7 as the bending point. To the bent straight line passing through the center point P1 of the upper coil surface.
 つまり、図14、図15に示されるように、1次コイルL1の磁性体6とカバー7の中間位置におけるコイル面の中心点Pmは、下側コイル面の中心点P0(上側コイル面の中心点P1)に対して、右側に20mm、図15における奥側に20mm偏倚した位置に配置される。換言すると、磁性体6とカバー7の中間位置におけるコイル面は、1次コイルL1の上下両コイル面に対して、右側に20mm、図15における奥側に20mm偏倚した位置に配置される。 That is, as shown in FIGS. 14 and 15, the center point Pm of the coil surface at the intermediate position between the magnetic body 6 and the cover 7 of the primary coil L1 is the center point P0 of the lower coil surface (the center of the upper coil surface). With respect to the point P1), it is arranged at a position displaced 20 mm on the right side and 20 mm on the far side in FIG. In other words, the coil surface at the intermediate position between the magnetic body 6 and the cover 7 is disposed at a position displaced 20 mm on the right side and 20 mm on the far side in FIG. 15 with respect to the upper and lower coil surfaces of the primary coil L1.
 そして、このように構成された1次コイルブロック5は、筐体2内であって対応する各給電エリアAR1に配置される。 And the primary coil block 5 configured in this way is arranged in the corresponding power feeding area AR1 in the housing 2.
 次に、1次コイルブロック5の配置方法について説明する。なお、説明の便宜上、相互に隣接する4つの給電エリアAR1に配置される1次コイルブロック5について説明する。 Next, the arrangement method of the primary coil block 5 will be described. For convenience of explanation, the primary coil block 5 disposed in the four power feeding areas AR1 adjacent to each other will be described.
 図16、図17は、相互に隣接する4個の1次コイルブロック5の配置図及び側面図を示す。図15に示されるように、1次コイルブロック5は、を偏倚する方向を相互に合わせて併設される。即ち、4個の1次コイルブロック5の磁性体6(カバー7)が互いに隣接するように配置される。 16 and 17 show a layout view and a side view of four primary coil blocks 5 adjacent to each other. As shown in FIG. 15, the primary coil blocks 5 are provided side by side with the directions in which they are biased. That is, the magnetic bodies 6 (covers 7) of the four primary coil blocks 5 are arranged adjacent to each other.
 その結果、図16、図17において、右側の1次コイルL1の外側面であって偏倚方向に凹設された外側面に、左側の1次コイルL1の外側面であって偏倚方向に突出した外側面が、嵌合される。同様に、図17の奥側の1次コイルL1の外側面であって偏倚方向に凹設された外側面に、図17の前側の1次コイルL1の外側面であって偏倚方向に突出した外側面が嵌合される。つまり、4個の1次コイルブロック5は、図16、図17に示されるように、隣接する4つの1次コイルL1の外側面を、上方から見て互いにオーバーラップさせることができる。 As a result, in FIGS. 16 and 17, the outer surface of the right primary coil L1 and recessed in the biasing direction protrudes from the outer surface of the left primary coil L1 and biased. The outer surface is fitted. Similarly, the outer surface of the primary coil L1 on the back side in FIG. 17 that is recessed in the biasing direction protrudes in the biasing direction on the outer surface of the primary coil L1 on the front side in FIG. The outer surface is fitted. That is, as shown in FIGS. 16 and 17, the four primary coil blocks 5 can overlap the outer surfaces of the four adjacent primary coils L1 when viewed from above.
 従って、載置面3に形成された複数の給電エリアAR1の境界部分において、相互に隣接する1次コイルL1の外側面が互いにオーバーラップしており、この境界部分は一定の幅Dを有する。その結果、相互に隣接する1次コイルL1間の磁束が平均化され磁束密度を均一化させることができる。 Therefore, the outer surfaces of the primary coils L1 adjacent to each other overlap each other at the boundary portion of the plurality of power feeding areas AR1 formed on the mounting surface 3, and the boundary portion has a constant width D. As a result, the magnetic flux between the primary coils L1 adjacent to each other is averaged, and the magnetic flux density can be made uniform.
 このように本実施形態も、第1実施形態と同様に、(1)~(3)の効果を得ることができる。
(第3実施形態)
 次に、本発明の第3実施形態を図面に従って説明する。
As described above, this embodiment can also obtain the effects (1) to (3) as in the first embodiment.
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to the drawings.
 本実施形態では、1次コイルブロック5が、第1実施形態と異なる特徴を有し、他の構成は第1実施形態と同じである。そのため、説明の便宜上、異なる1次コイルブロックについて詳細に説明し、第1実施形態と共通する部分の詳細な説明は省略する。 In the present embodiment, the primary coil block 5 has characteristics different from those of the first embodiment, and other configurations are the same as those of the first embodiment. Therefore, for convenience of explanation, different primary coil blocks will be described in detail, and detailed description of portions common to the first embodiment will be omitted.
 本実施形態による非接触給電装置は、図18(a)(b)に示されるように、第1の1次コイルブロック5aと第2の1次コイルブロック5bとを備えている。
(第1の1次コイルブロック5a)
 第1の1次コイルブロック5aは、図19に示されるように、下側に配置された磁性体6aと、上側に配置されたカバー7aとの間に配置された、正八角錐台形状の外形を有する1次コイルL1aを含む。1次コイルL1aは、八角形状の断面を有し、下側の磁性体6aから上側のカバー7aに向かうほど、断面形状が小さくなるように形成されている。つまり、1次コイルL1aは、上側に向かうほど縮径する八角錐台形状の外形を有する。
As shown in FIGS. 18A and 18B, the non-contact power feeding device according to the present embodiment includes a first primary coil block 5a and a second primary coil block 5b.
(First primary coil block 5a)
As shown in FIG. 19, the first primary coil block 5a has a regular octagonal pyramid-shaped outer shape disposed between a magnetic body 6a disposed on the lower side and a cover 7a disposed on the upper side. Including a primary coil L1a. The primary coil L1a has an octagonal cross section, and is formed so that the cross-sectional shape becomes smaller from the lower magnetic body 6a toward the upper cover 7a. That is, the primary coil L1a has an octagonal frustum-shaped outer shape whose diameter decreases toward the upper side.
 そして、図20に示されるように、1次コイルL1aの、磁性体6aに近い下側コイル面の下側外形サイズDbが60mm、カバー7aに近い上側コイル面の上側外形サイズDtが10mmに設定されている。 As shown in FIG. 20, the lower outer size Db of the lower coil surface near the magnetic body 6a of the primary coil L1a is set to 60 mm, and the upper outer size Dt of the upper coil surface close to the cover 7a is set to 10 mm. Has been.
 磁性体6aは、軟磁性材料よりなる正八角形の板体である。磁性体6aを、1次コイルL1aの一方(下側)の巻端と連結し、固定することによって、磁性体6aは、1次コイルL1aの下側コイル面と連結されて、固定される。正八角形の磁性体6aは、1次コイルL1aの下側外形サイズDb(=60mm)と同じ外形サイズを有するように形成されている。 The magnetic body 6a is a regular octagonal plate made of a soft magnetic material. By connecting and fixing the magnetic body 6a to one (lower) winding end of the primary coil L1a, the magnetic body 6a is connected and fixed to the lower coil surface of the primary coil L1a. The regular octagonal magnetic body 6a is formed to have the same outer size as the lower outer size Db (= 60 mm) of the primary coil L1a.
 カバー7aは、絶縁材料よりなる樹脂製の正八角形の板体である。カバー7aを1次コイルL1aの他方(上側)の巻端と連結し、固定することによって、カバー7aは、1次コイルL1aの上側コイル面と連結され、固定される。正八角形のカバー7aは、1次コイルL1aの上側外形サイズDt(=10mm)と同じ外形サイズを有するように形成されている。 The cover 7a is a regular octagonal plate made of resin made of an insulating material. By connecting and fixing the cover 7a to the other (upper) winding end of the primary coil L1a, the cover 7a is connected and fixed to the upper coil surface of the primary coil L1a. The regular octagonal cover 7a is formed to have the same outer size as the upper outer size Dt (= 10 mm) of the primary coil L1a.
 このように構成された第1の1次コイルブロック5aは、正八角錐台形状の1次コイルL1aの中心軸線が下側コイル面の中心点と上側コイル面の中心点を通過する。
(第2の1次コイルブロック5b)
 第2の1次コイルブロック5bは、図21に示されるように、下側に配置された磁性体6bと、上側に配置されたカバー7bとの間に配置された、逆正正八角錐台形状の外形を有する1次コイルL1bを含む。1次コイルL1bは、八角形状の断面を有し、下側の磁性体6bから上側のカバー7bに向かうほど、断面形状が大きくなるように形成されている。つまり、1次コイルL1bは、上側に向かうほど拡径する逆正八角錐台形状の外形を有する。
In the first primary coil block 5a configured as described above, the central axis of the regular octagonal pyramidal primary coil L1a passes through the center point of the lower coil surface and the center point of the upper coil surface.
(Second primary coil block 5b)
As shown in FIG. 21, the second primary coil block 5b has an inverted regular octagonal truncated pyramid shape disposed between the magnetic body 6b disposed on the lower side and the cover 7b disposed on the upper side. The primary coil L1b having the outer shape is included. The primary coil L1b has an octagonal cross section, and is formed so that the cross-sectional shape increases as it goes from the lower magnetic body 6b to the upper cover 7b. That is, the primary coil L1b has an outer shape of an inverted regular octagonal truncated pyramid that increases in diameter toward the upper side.
 そして、図22に示されるように、1次コイルL1bの、磁性体6bに近い下側コイル面の下側外形サイズDbが10mm、カバー7bに近い上側コイル面の上側外形サイズDtが60mmに設定されている。 Then, as shown in FIG. 22, the lower outer size Db of the lower coil surface near the magnetic body 6b of the primary coil L1b is set to 10 mm, and the upper outer size Dt of the upper coil surface close to the cover 7b is set to 60 mm. Has been.
 磁性体6bは、軟磁性材料よりなる正八角形の板体である。磁性体6bを、1次コイルL1bの一方(下側)の巻端と連結し、固定することによって、磁性体6bは、1次コイルL1bの下側コイル面と連結され、固定される。正八角形の磁性体6bは、1次コイルL1bの下側外形サイズDb(=10mm)と同じ外形サイズを有するように形成されている。 The magnetic body 6b is a regular octagonal plate made of a soft magnetic material. By connecting and fixing the magnetic body 6b with one (lower side) winding end of the primary coil L1b, the magnetic body 6b is connected and fixed to the lower coil surface of the primary coil L1b. The regular octagonal magnetic body 6b is formed to have the same outer size as the lower outer size Db (= 10 mm) of the primary coil L1b.
 カバー7bは、絶縁材料よりなる樹脂製の正八角形の板体である。カバー7bを、1次コイルL1bの他方(上側)の巻端と連結し、固定することによって、カバー7bは、1次コイルL1bの上側コイル面と連結され、固定される。正八角形のカバー7bは、1次コイルL1bの上側外形サイズDt(=60mm)と同じ外形サイズを有するように形成されている。 The cover 7b is a resin-made regular octagonal plate made of an insulating material. By connecting and fixing the cover 7b to the other (upper) winding end of the primary coil L1b, the cover 7b is connected and fixed to the upper coil surface of the primary coil L1b. The regular octagonal cover 7b is formed to have the same outer size as the upper outer size Dt (= 60 mm) of the primary coil L1b.
 このように構成された第2の1次コイルブロック5bは、逆正八角錐台形状の1次コイルL1bの中心軸線が下側コイル面の中心点と上側コイル面の中心点を通過する。 In the second primary coil block 5b configured as described above, the central axis of the inverted regular octagonal pyramidal primary coil L1b passes through the center point of the lower coil surface and the center point of the upper coil surface.
 次に、第1の1次コイルブロック5a及び第2の1次コイルブロック5bの配置方法について説明する。なお、説明の便宜上、相互に隣接する4つの給電エリアAR1に配置される第1の1次コイルブロック5a及び第2の1次コイルブロック5bについて説明する。 Next, an arrangement method of the first primary coil block 5a and the second primary coil block 5b will be described. For convenience of explanation, the first primary coil block 5a and the second primary coil block 5b arranged in the four power feeding areas AR1 adjacent to each other will be described.
 図23、図24は、相互に隣接する2個の第1の1次コイルブロック5aと2個の第2の1次コイルブロック5bの配置図及び側面図を示す。 23 and 24 show a layout view and a side view of two first primary coil blocks 5a and two second primary coil blocks 5b adjacent to each other.
 図23に示されるように、下側が拡径された2個の1次コイルL1a(第1の1次コイルブロック5a)が、第1及び第2の1次コイルブロック5a、5bを囲う仮想四角枠の第1の対角線上に配置される。このとき、第1の1次コイルブロック5aの磁性体6aは下側に、カバー7aは上側に位置するように配置される。そして、第1の対角線上で相互に隣接する第1の1次コイルブロック5aの磁性体6aの1辺を互いに当接させる。 As shown in FIG. 23, a virtual square in which two primary coils L1a (first primary coil block 5a) whose diameter is expanded on the lower side surround the first and second primary coil blocks 5a and 5b. Arranged on the first diagonal of the frame. At this time, the magnetic body 6a of the first primary coil block 5a is disposed on the lower side, and the cover 7a is disposed on the upper side. Then, one side of the magnetic body 6a of the first primary coil block 5a adjacent to each other on the first diagonal line is brought into contact with each other.
 一方、上側が拡径された2個の1次コイルL1b(第2の1次コイルブロック5b)が、第1の対角線と直交する第2の対角線上に配置される。このとき、第2の1次コイルブロック5bの磁性体6bは下側に、カバー7bは上側に位置するように配置される。そして、第2の対角線上で相互に隣接する第2の1次コイルブロック5bのカバー7bの1辺を互いに当接させている。 On the other hand, the two primary coils L1b (second primary coil block 5b) whose upper diameter is enlarged are arranged on the second diagonal line orthogonal to the first diagonal line. At this time, the magnetic body 6b of the second primary coil block 5b is disposed on the lower side, and the cover 7b is disposed on the upper side. Then, one side of the cover 7b of the second primary coil block 5b adjacent to each other on the second diagonal line is brought into contact with each other.
 このとき、第1の1次コイルブロック5aは、上に向かうほど縮径する正八角錐台形状の1次コイルL1aであり、第2の1次コイルブロック5bは、上に向かうほど拡径する逆正八角錐台形状の1次コイルL1bである。従って、1次コイルL1aと1次コイルL1bの外側面が、互いに一部オーバーラップする。つまり、相互に隣接する2個の第1の1次コイルブロック5aの外側面は、相互に隣接した2個の第2の1次コイルブロック5bの外側面と上方から見てオーバーラップしている。 At this time, the first primary coil block 5a is a regular octagonal pyramid-shaped primary coil L1a whose diameter is reduced toward the upper side, and the second primary coil block 5b is an inverse whose diameter is increased toward the upper side. This is a regular octagonal frustum-shaped primary coil L1b. Accordingly, the outer surfaces of the primary coil L1a and the primary coil L1b partially overlap each other. That is, the outer surfaces of the two first primary coil blocks 5a adjacent to each other overlap the outer surfaces of the two second primary coil blocks 5b adjacent to each other when viewed from above. .
 従って、本実施形態においても、載置面3に形成された複数の給電エリアAR1の境界部分において、相互に隣接する1次コイルL1a,L1bの外側面が互いにオーバーラップしており、この境界部分は、一定の幅Dを有する。その結果、相互に隣接する1次コイルL1a,L1b間の磁束が平均化され磁束密度を均一化させることができる。 Therefore, also in the present embodiment, the outer surfaces of the primary coils L1a and L1b adjacent to each other overlap each other at the boundary portion of the plurality of power feeding areas AR1 formed on the mounting surface 3, and this boundary portion Has a constant width D. As a result, the magnetic flux between the primary coils L1a and L1b adjacent to each other is averaged, and the magnetic flux density can be made uniform.
 このように本実施形態も、第1実施形態と同様に、(1)~(3)の効果を得ることができる。 As described above, the present embodiment can obtain the effects (1) to (3) as in the first embodiment.
 尚、上記実施形態は以下のように変更してもよい。 The above embodiment may be modified as follows.
 ○上記第1実施形態の1次コイルブロック5では、四角形状の断面を有する1次コイルL1の中心軸線Cxが、コイル断面の対角線方向に偏倚させた。 In the primary coil block 5 of the first embodiment, the central axis Cx of the primary coil L1 having a square cross section is biased in the diagonal direction of the coil cross section.
 これを、図25に示されるように、四角形状の断面を有する1次コイルL1の中心軸線Cxを、コイル断面の一側辺の中間位置において、該一側辺と直交する方向に偏倚させることにより、1次コイルブロック5を形成してもよい。この場合、1次コイルブロック5は、偏倚する方向に1列に併設される必要がある。 As shown in FIG. 25, the central axis Cx of the primary coil L1 having a quadrangular cross section is biased in a direction perpendicular to the one side at an intermediate position on one side of the coil cross section. Thus, the primary coil block 5 may be formed. In this case, the primary coil blocks 5 need to be provided in a line in the direction of bias.
 ○上記実施形態では、給電装置1の載置面3に、12個の給電エリアAR1が形成されたが、これに限定されるものではなく、給電装置1は、2つ以上の給電エリアAR1を備えてもよい。 In the above embodiment, twelve power supply areas AR1 are formed on the placement surface 3 of the power supply apparatus 1. However, the present invention is not limited to this, and the power supply apparatus 1 includes two or more power supply areas AR1. You may prepare.
 ○上記第3実施形態では、正八角錐台形状の第1の1次コイルブロック5aと正逆八角錐台形状の第2の1次コイルブロック5bが用いられた。第1の1次コイルブロック(第2の1次コイルブロック)は、正三角錐台形状(正逆三角錐台形状)、正六角錐台形状(正逆六角錐台形状)等、正多角錐台形状(正逆多角錐台形状)を有してもよい。 In the third embodiment, the first primary coil block 5a having a regular octagonal truncated pyramid shape and the second primary coil block 5b having a regular inverted octagonal truncated pyramid shape are used. The first primary coil block (second primary coil block) is a regular polygonal frustum shape such as a regular triangular frustum shape (a regular and reverse triangular frustum shape), a regular hexagonal frustum shape (a regular and reverse hexagonal frustum shape), etc. It may have a (reverse polygon frustum shape).
 勿論、正多角錐台形状(正逆多角錐台形状)の第1の1次コイルブロック(第2の1次コイルブロック)は、円錐台形状(逆円錐台形状)の第1の1次コイルブロック(第2の1次コイルブロック)を含むものとする。 Of course, the first primary coil block (second primary coil block) having a regular polygonal frustum shape (normal and reverse polygonal frustum shape) is the first primary coil having a truncated cone shape (reverse frustoconical shape). It is assumed to include a block (second primary coil block).

Claims (11)

  1.  電磁誘導現象を利用して電気機器の受電装置に設けられた2次コイルに2次電力を給電する非接触給電装置であって、前記非接触給電装置は、複数の給電エリアを含む、前記非接触給電装置において、
     前記複数の給電エリアにそれぞれ対応して設けられた複数の1次コイルを備え、
     各1次コイルは、中心軸線の周りに巻回されており、各1次コイルが、中心軸線方向と直交する方向に偏倚された外形を有し、前記複数の1次コイルが、前記中心軸線方向と直交する方向に沿って併設されて、相互に隣接する給電エリアに対応する1次コイルの外側面の一部が、前記中心軸線方向から見た場合に、互いにオーバーラップしている、非接触給電装置。
    A non-contact power feeding device that feeds secondary power to a secondary coil provided in a power receiving device of an electrical device using an electromagnetic induction phenomenon, wherein the non-contact power feeding device includes a plurality of power feeding areas, In the contact power supply device,
    A plurality of primary coils provided corresponding to the plurality of power feeding areas respectively;
    Each primary coil is wound around a central axis, each primary coil has an outer shape biased in a direction perpendicular to the central axis direction, and the plurality of primary coils are the central axis A portion of the outer surface of the primary coil that is provided along the direction orthogonal to the direction and that corresponds to the feeding areas adjacent to each other overlaps each other when viewed from the central axis direction. Contact power supply device.
  2.  請求項1に記載の非接触給電装置において、
     前記各1次コイルは、四角形状の断面を有する、非接触給電装置。
    The contactless power supply device according to claim 1,
    Each said primary coil is a non-contact electric power feeder which has a square-shaped cross section.
  3.  請求項1に記載の非接触給電装置において、
     前記各1次コイルは、一方の巻端から他方の巻端に向かうほど拡開する外形を有し、相互に隣接する1次コイルは、互いに異なるコイル向きを有するように配置されている、非接触給電装置。
    The contactless power supply device according to claim 1,
    Each primary coil has an outer shape that expands from one winding end toward the other winding end, and the primary coils adjacent to each other are arranged to have different coil directions. Contact power supply device.
  4.  請求項3に記載の非接触給電装置において、
     前記各1次コイルは、正多角錐台形状の外形を有し、相互に隣接する1次コイルは、互いに異なるコイル向きを有するとともに、相互に隣接する1次コイルの外側面が互いにオーバーラップするように配置されている、非接触給電装置。
    In the non-contact electric power feeder of Claim 3,
    Each of the primary coils has a regular polygonal frustum-shaped outer shape, the primary coils adjacent to each other have different coil directions, and the outer surfaces of the primary coils adjacent to each other overlap each other. A non-contact power feeding device arranged as described above.
  5.  請求項4に記載の非接触給電装置において、
     前記各1次コイルは、正八角錐台形状の外形を有する、非接触給電装置。
    In the non-contact electric power feeder of Claim 4,
    Each said primary coil is a non-contact electric power feeder which has a regular octagonal frustum-shaped external shape.
  6.  電磁誘導現象を利用して電気機器の受電装置に設けられた2次コイルに2次電力を給電する非接触給電装置の1次コイルブロックであって、
     第1及び第2の巻端を有し、中心軸線の周りに巻回された1次コイルであって、前記1次コイルが、中心軸線方向と直交する方向に偏倚された外形を有する、前記1次コイルと、
     前記第1の巻端に配置された磁性体と、
     前記第2の巻端に配置された、絶縁材料よりなるカバーと
    を備える、非接触給電装置の1次コイルブロック。
    A primary coil block of a non-contact power feeding device that feeds secondary power to a secondary coil provided in a power receiving device of an electrical device using an electromagnetic induction phenomenon,
    A primary coil having first and second winding ends and wound around a central axis, wherein the primary coil has an outer shape biased in a direction perpendicular to the central axis direction; A primary coil;
    A magnetic body disposed at the first winding end;
    The primary coil block of a non-contact electric power feeder provided with the cover which consists of an insulating material arrange | positioned at the said 2nd winding end.
  7.  請求項6に記載の非接触給電装置の1次コイルブロックにおいて、
     前記1次コイルは、四角形状の断面を有し、前記1次コイルの中心軸線が、前記断面の一側辺の中間位置において、該一側辺と直交する方向に偏倚されている、非接触給電装置の1次コイルブロック。
    In the primary coil block of the non-contact power feeding device according to claim 6,
    The primary coil has a quadrangular cross section, and a central axis of the primary coil is biased in a direction perpendicular to the one side at an intermediate position of one side of the cross section. Primary coil block of the power feeding device.
  8.  請求項6に記載の非接触給電装置の1次コイルブロックにおいて、
     前記1次コイルは、四角形状の断面を有し、前記1次コイルの中心軸線が、前記断面の対角線方向に偏倚されている、非接触給電装置の1次コイルブロック。
    In the primary coil block of the non-contact power feeding device according to claim 6,
    The primary coil block of the non-contact power feeding device, wherein the primary coil has a rectangular cross section, and a central axis of the primary coil is biased in a diagonal direction of the cross section.
  9.  請求項6~8のいずれか1つに記載の非接触給電装置の1次コイルブロックにおいて、
     前記1次コイルは、前記中心軸線が、前記磁性体の中心点、及び前記カバーの中心点と一致するように巻回されている、非接触給電装置の1次コイルブロック。
    In the primary coil block of the non-contact power feeding device according to any one of claims 6 to 8,
    The primary coil is a primary coil block of a non-contact power feeding device, in which the central axis is wound so that the central axis coincides with the central point of the magnetic body and the central point of the cover.
  10.  電磁誘導現象を利用して電気機器の受電装置に設けられた2次コイルに2次電力を給電する非接触給電装置の1次コイルブロックであって、
     正多角錐台形状の外形を有する1次コイルであって、該1次コイルは、第1および第2の巻端を有する、前記1次コイルと、
     前記第1の巻端に配置された磁性体と、
     前記第2の巻端に配置された、絶縁材料よりなるカバーと
    を備える、非接触給電装置の1次コイルブロック。
    A primary coil block of a non-contact power feeding device that feeds secondary power to a secondary coil provided in a power receiving device of an electrical device using an electromagnetic induction phenomenon,
    A primary coil having an outer shape of a regular polygonal frustum, wherein the primary coil has first and second winding ends;
    A magnetic body disposed at the first winding end;
    The primary coil block of a non-contact electric power feeder provided with the cover which consists of an insulating material arrange | positioned at the said 2nd winding end.
  11.  請求項10に記載の非接触給電装置の1次コイルブロックにおいて、
     前記1次コイルは、正八角錐台形状の外形を有する、非接触給電装置の1次コイルブロック。
    In the primary coil block of the non-contact power feeding device according to claim 10,
    The primary coil is a primary coil block of a non-contact power feeding device having a regular octagonal truncated pyramid shape.
PCT/JP2012/006579 2011-10-17 2012-10-15 Non-contact power supply apparatus and primary coil block for non-contact power supply apparatus WO2013057913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011228149A JP5954698B2 (en) 2011-10-17 2011-10-17 Non-contact power feeder and primary coil block of non-contact power feeder
JP2011-228149 2011-10-17

Publications (1)

Publication Number Publication Date
WO2013057913A1 true WO2013057913A1 (en) 2013-04-25

Family

ID=48140581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006579 WO2013057913A1 (en) 2011-10-17 2012-10-15 Non-contact power supply apparatus and primary coil block for non-contact power supply apparatus

Country Status (3)

Country Link
JP (1) JP5954698B2 (en)
TW (1) TW201330443A (en)
WO (1) WO2013057913A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197613A (en) * 2013-03-29 2014-10-16 富士通株式会社 Inductor device and method of manufacturing inductor device
WO2015094964A1 (en) * 2013-12-17 2015-06-25 Qualcomm Incorporated Coil topologies for inductive power transfer
EP3133616A1 (en) * 2015-08-21 2017-02-22 ABB Technology AG Inductive power transfer system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200055426A (en) * 2018-11-13 2020-05-21 주식회사 히타치엘지 데이터 스토리지 코리아 Printed Circuit Board Coil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684647A (en) * 1992-09-02 1994-03-25 Nippon Telegr & Teleph Corp <Ntt> Inductance element
JP2004047701A (en) * 2002-07-11 2004-02-12 Jfe Steel Kk Planar magnetic element for noncontact charger
JP2005005535A (en) * 2003-06-12 2005-01-06 Seiko Epson Corp Electromagnetic induction coil
JP2009164293A (en) * 2007-12-28 2009-07-23 Nec Tokin Corp Non-contact power transmission device
WO2010118191A1 (en) * 2009-04-08 2010-10-14 Access Business Group International Llc Selectable coil array
JP2010263690A (en) * 2009-05-01 2010-11-18 Panasonic Electric Works Co Ltd Transmission system
JP2011155835A (en) * 2002-05-13 2011-08-11 Access Business Group Internatl Llc System and primary unit for contact-less power transfer, portable electric or electronic apparatus, and adaptor assembly therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684647A (en) * 1992-09-02 1994-03-25 Nippon Telegr & Teleph Corp <Ntt> Inductance element
JP2011155835A (en) * 2002-05-13 2011-08-11 Access Business Group Internatl Llc System and primary unit for contact-less power transfer, portable electric or electronic apparatus, and adaptor assembly therefor
JP2004047701A (en) * 2002-07-11 2004-02-12 Jfe Steel Kk Planar magnetic element for noncontact charger
JP2005005535A (en) * 2003-06-12 2005-01-06 Seiko Epson Corp Electromagnetic induction coil
JP2009164293A (en) * 2007-12-28 2009-07-23 Nec Tokin Corp Non-contact power transmission device
WO2010118191A1 (en) * 2009-04-08 2010-10-14 Access Business Group International Llc Selectable coil array
JP2010263690A (en) * 2009-05-01 2010-11-18 Panasonic Electric Works Co Ltd Transmission system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197613A (en) * 2013-03-29 2014-10-16 富士通株式会社 Inductor device and method of manufacturing inductor device
WO2015094964A1 (en) * 2013-12-17 2015-06-25 Qualcomm Incorporated Coil topologies for inductive power transfer
US9837204B2 (en) 2013-12-17 2017-12-05 Qualcomm Incorporated Coil topologies for inductive power transfer
EP3402030A1 (en) * 2013-12-17 2018-11-14 Qualcomm Incorporated Coil topologies for inductive power transfer
US10340078B2 (en) 2013-12-17 2019-07-02 Witricity Corporation Coil topologies for inductive power transfer
EP3133616A1 (en) * 2015-08-21 2017-02-22 ABB Technology AG Inductive power transfer system

Also Published As

Publication number Publication date
TW201330443A (en) 2013-07-16
JP2013089728A (en) 2013-05-13
JP5954698B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP6963045B2 (en) Contactless power supply system
JP5467569B2 (en) Non-contact power feeding device
US9105393B2 (en) Amorphous core transformer
WO2013057913A1 (en) Non-contact power supply apparatus and primary coil block for non-contact power supply apparatus
JP6185616B2 (en) Transformer core
US10748699B2 (en) Coil device
JP6352858B2 (en) Transformer
CN103890876A (en) Apparatus for inductively transmitting electrical energy
US20140210585A1 (en) Variable core electromagnetic device
CN107808732B (en) Electric reactor
JP2006351679A (en) Reactor device
JP4391584B1 (en) Three-phase high frequency transformer
JP5906457B2 (en) Contactless power supply
JP2013046439A (en) Non-contact power supply system and power reception device mounted on electric apparatus
JP7365120B2 (en) stationary induction equipment
JP6890210B2 (en) Static device
KR20170010169A (en) Core of transformer
JP2015015417A (en) Power transmitting or power receiving device
JP5945002B2 (en) Transformers and converters
JP2015222752A (en) Coil device
WO2015178049A1 (en) Base and electricity-generating device
JP6359311B2 (en) Coil unit
CN111357067B (en) Transformer for use in rail vehicles
JP6424710B2 (en) Contactless power transmission coil and contactless power transmission device
KR102091530B1 (en) Transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841373

Country of ref document: EP

Kind code of ref document: A1