WO2013057115A1 - Système et procédé de contrôle de la qualité d'un objet - Google Patents

Système et procédé de contrôle de la qualité d'un objet Download PDF

Info

Publication number
WO2013057115A1
WO2013057115A1 PCT/EP2012/070510 EP2012070510W WO2013057115A1 WO 2013057115 A1 WO2013057115 A1 WO 2013057115A1 EP 2012070510 W EP2012070510 W EP 2012070510W WO 2013057115 A1 WO2013057115 A1 WO 2013057115A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection zone
inspected
laser
product
measurement
Prior art date
Application number
PCT/EP2012/070510
Other languages
English (en)
Inventor
Hubert Voillaume
Original Assignee
European Aeronautic Defence And Space Company Eads France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Aeronautic Defence And Space Company Eads France filed Critical European Aeronautic Defence And Space Company Eads France
Priority to CN201280050168.2A priority Critical patent/CN104114992B/zh
Priority to RU2014119933A priority patent/RU2620868C2/ru
Priority to EP12775479.4A priority patent/EP2769196A1/fr
Priority to CA2852791A priority patent/CA2852791A1/fr
Priority to MX2014004569A priority patent/MX338117B/es
Priority to SG11201400932PA priority patent/SG11201400932PA/en
Priority to US14/349,187 priority patent/US20140249663A1/en
Priority to BR112014009088A priority patent/BR112014009088A2/pt
Publication of WO2013057115A1 publication Critical patent/WO2013057115A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/043Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using fluoroscopic examination, with visual observation or video transmission of fluoroscopic images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/643Specific applications or type of materials object on conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/645Specific applications or type of materials quality control

Definitions

  • the invention relates to a system and a method for evaluating the quality of an object manufactured in particular on a high-speed production line.
  • the objective of the present invention is therefore to propose a system and a method for the automatic evaluation of the quality of a product or a part resulting from a production line, simple in their design and in their operating mode. , fast and to group together all control and evaluation operations on a single item to save on recurring labor costs and cycle times.
  • the invention aims in particular a system for automatic and flexible evaluation of the quality of a product or a piece capable of absorbing high production rates while protecting the operator or operators present on the production line of any laser light leaks that may occur by reflecting laser beams on the part or product to inspect, especially when they have complex shapes.
  • Another object of the present invention is an installation for manufacturing a part or a product or an assembly comprising such a control system placed at the end of the chain.
  • the invention relates to a system for controlling the quality of an object.
  • this control system comprises: a security enclosure comprising an input port through which said object to be inspected is introduced into said enclosure and at least one output port, said enclosure having an inspection zone,
  • a transport device for conveying said object to be inspected into said inspection zone and ensuring its evacuation through said at least one exit port
  • said security enclosure is made of an opaque material for the wavelengths of said laser beams in operation, respectively, for the wavelengths of said operating laser beams and said X-rays, to prevent radiation leakage.
  • This control system thus advantageously makes it possible to concentrate on a single item all the stages of evaluation of the quality of a part, a product or an assembly. It also ensures the protection of the operator (s) working on the production line of accidental laser light and / or X-ray leakage.
  • said transport device comprising a conveyor belt, said weighing device is placed under this band,
  • the object structure analysis assembly in said inspection area comprises an X-ray source and a sensor, the object to be inspected being placed in said inspection area between said X-ray source and said X-ray source and said sensor sensor,
  • said non-contacting dimensional measurement assembly of the object in said inspection area comprises a laser interferometry dimensional measurement assembly and / or a projection set of a light pattern and detection by a stereovision system, the system comprises a presence detector for stopping said transport device when the object to be inspected is placed in said inspection zone,
  • the system comprises a central unit connected to a recording medium comprising at least one information file previously recorded on this recording medium to define the reference parameters of said object , said central unit receiving each of said signals for comparison with said reference parameters, the system comprises a device for marking said object when the evaluation of its quality reveals one or more defects,
  • the system further comprises a control unit for the surface appearance of the object and / or an Optical Coherence Tomography (OCT) device.
  • OCT Optical Coherence Tomography
  • This last device makes it possible, for example, to control the resin flashes in the spokes of the folded curved pieces.
  • the invention also relates to an installation for the production of an object, this installation being equipped with a system for controlling the quality of this object as described above.
  • the invention also relates to a method for evaluating the quality of an object in which said object is positioned in an inspection zone and then at least the first of the following steps is carried out on this object placed in this inspection zone:
  • the result obtained is compared with one or more reference measurements, if they correspond to the uncertainties of measurement, we proceed to the next step, if they are distinct, we put the object to the rebus.
  • a first laser beam is sent on said object to generate ultrasonic waves in said object to be inspected, said object is illuminated with a second laser beam so that part of this second beam is reflected by said object and this part of the second reflected beam is measured by interferometry, all of these laser beams passing through the same optical reading head.
  • FIG. 1 shows schematically in profile a quality control system of an object according to a particular embodiment of the invention
  • FIG. 2 is a partial and enlarged view of the transport device of Figure 1;
  • Figures 1 and 2 schematically show a quality control system of an object according to a preferred embodiment of the invention.
  • This control system is placed at the end of the production line of products 1, the products being conveyed to the system by a conveying device 2 which is here a conveyor belt.
  • the products 1 to be inspected are deposited on this treadmill without very precise positioning.
  • Each product 1 enters a security enclosure 3 through an input port 4 of this enclosure, arrives in an inspection zone 5 of this enclosure where it is detected by a presence detector (not shown) which then stops the device. 2 to allow the evaluation of its quality.
  • the product 1 to be inspected which is in the inspection zone 5, is ready to be evaluated sequentially by an arrangement of measuring and control devices.
  • the conveying device 2 After this evaluation of the quality of the product 1 and if the latter is found to comply with manufacturing tolerances both in terms of dimensions and surface quality and shape, the conveying device 2 restarts and evacuated by a output port 6.
  • the defective product is marked with a marking device (not shown) prior to its evacuation through the exit port 6.
  • a marking device not shown
  • the marking of the product 1 exhibiting one or more defects can be done by projecting a paint on its surface.
  • the product 1 to be inspected is weighed by a weighing apparatus 7.
  • the weighing apparatus 7 is here a scale placed under the conveyor belt 2 .
  • This weighing of the product 1 may allow pre-sorting of the products 1 in the event of a defect.
  • Overloading of the product 1 with respect to a reference weight may mean the presence of a foreign body.
  • an underload of the product 1 with respect to this reference weight may mean the presence of air bubbles and / or excessive porosity of the latter.
  • the weighing apparatus 7 supplies an electric signal in response to the weighing of the product 1, this electrical signal representative of the weight of the product 1 thus determined, being sent to a central unit (not shown) connected to a recording medium (not shown) comprising at least one data file or a library of data files previously recorded on this recording medium to define the reference parameters of the product 1 to be inspected.
  • This central unit here comprises a microprocessor configured to perform the comparison between the measurement signals received from the different evaluation devices of the system and the reference parameters.
  • the three-dimensional measurements of this product 1 are then determined by means of a non-contact dimensional measurement assembly of the product 1 placed in the inspection zone 5.
  • This set of non-contact dimensional measurement comprises here a set of measurement by projection of a luminous pattern such as a band or a cross on the surface of the product 1 and the detection of this luminous pattern by a stereovision system comprising at least two cameras 8, 9 simultaneously taking shots of the projected light pattern on the surface of the product 1.
  • These cameras 8, 9 are for example CCD matrix.
  • Each of these cameras 8, 9 sends a signal representative of the measurement acquired by the corresponding camera to the central unit which determines from these signals the dimensions of the product 1. These dimensions are then compared to the reference dimensions of the product 1 stored on the recording medium.
  • the structure of the product 1 present in the inspection zone 5 is analyzed.
  • a set of analysis of the structure of the object in said inspection zone comprising:
  • a first laser source 10 intended to generate a first laser beam for creating ultrasonic waves in the product 1,
  • a second laser source 1 1 intended to generate a second laser beam for illuminating the product 1 to be inspected
  • an interferometer 12 for measuring a part of the second beam reflected by the product 1 placed in the inspection zone 5, this interferometer 12 being able to generate an electrical signal representative of this measurement, which is sent to the central unit for comparison with a reference parameter.
  • first and second laser sources 10, 11 and the interferometer 12 are optically coupled to a measuring head 13 placed in the chamber 3, this measuring head 13 comprising an optical scanner for scanning the surface of the product 1 to inspect.
  • This optical scanner here includes two mirrors mounted on galvanometer.
  • the first laser source 10 which is here a carbon dioxide (CO 2 ) laser, generates a first laser beam of wavelength 10.6 ⁇ having an energy of the order of 200 mJ.
  • This first beam is received by the optical scanner of the measuring head 13 which directs it to the product 1 placed in the inspection zone 5 so as to allow the scan of this product 1.
  • This first laser beam generates ultrasonic waves in the product 1 to be inspected.
  • the second beam emitted by the second laser source 1 1 optically coupled to the same optical measurement head 13, is also sent by this measuring head 13 to the product 1 to inspect. Part of this second beam is then reflected by the product 1 being out of phase by the ultrasonic waves generated by the first beam in this product 1.
  • the reflected laser beam is then received by the interferometer 12 capable of generating an electrical signal representative of this reflected beam portion thus measured.
  • This electrical signal is sent to the central processing unit for comparison with one or more reference parameters of the product 1.
  • the treadmill 2 advances to evacuate this product 1 and place in the inspection zone 5, a new product 1 to inspect.
  • the optical scanner may comprise a single scanning mirror along an axis perpendicular to the longitudinal axis of the treadmill 2.
  • the treadmill is then used as a second scanning axis so as to allow the scan of each product 1.
  • the interferometer 12 is here a Fabry-Perot interferometer and / or a two-wave mixing interferometer (TWM).
  • the security enclosure 3 is made of an opaque material for the wavelengths of the laser beams in operation to prevent any leakage of laser light that could harm the health of operators operating on the production line.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

L'invention concerne un système de contrôle de la qualité d'un objet en sortie d'une installation de production. Selon l'invention, ce système comprend: - une enceinte comportant un port d'entrée par lequel ledit objet à inspecter est introduit dans ladite enceinte et au moins un port de sortie, ladite enceinte ayant une zone d'inspection (5), - un dispositif de transport pour acheminer ledit objet à inspecter dans ladite zone d'inspection (5) et assurer son évacuation au travers dudit au moins un port de sortie, - un appareil de pesée (7) pour peser ledit objet dans ladite zone d'inspection (5), - un ensemble de mesure dimensionnelle sans contact de l'objet dans ladite zone d'inspection (5), - un ensemble d'analyse de la structure de l'objet dans ladite zone d'inspection (5) par faisceaux lasers, respectivement et/ou par rayons X, et - ladite enceinte est réalisée dans un matériau opaque pour les longueurs d'onde desdits faisceaux lasers en fonctionnement, respectivement, pour les longueurs d'onde desdits faisceaux lasers en fonctionnement et lesdits rayons X, pour prévenir toute fuite de rayonnement.

Description

Système et procédé de contrôle de la qualité d'un objet
L'invention concerne un système et un procédé d'évaluation de la qualité d'un objet fabriqué notamment sur une chaîne de production à forte cadence.
Certains domaines industriels tels que l'aéronautique ou encore l'aérospatiale, requièrent que chaque pièce composant une structure soit réalisée avec une très grande précision dans ses dimensions, sa forme ou encore son aspect de surface et de savoir si chacune de ces pièces respecte bien les tolérances de fabrication requises.
Il est en effet capital dans des domaines techniques tels que celui de l'aéronautique de s'assurer de l'absence de défauts dans une pièce de sorte que ce défaut ne se propage pas suite aux sollicitations de service.
On connaît ainsi différentes méthodes permettant d'évaluer la qualité de fabrication d'une pièce ou d'un produit.
L'inspection manuelle des pièces ou produits issus d'une chaîne de fabrication est rarement mise en œuvre dans des domaines industriels tels que l'aéronautique, car elle est trop consommatrice de temps et certains défauts restent par ailleurs difficilement repérables à l'œil nu de sorte qu'un contrôle manuel dépend principalement de l'expérience du contrôleur.
Ces interventions manuelles sont donc longues, coûteuses et présentent une marge d'erreur incompatible avec les exigences toujours plus élevées des domaines industriels tels que l'aéronautique et le spatial.
On connaît également des méthodes de contrôle automatisé parmi lesquelles on citera notamment celle mettant en œuvre des dispositifs de palpation pour déterminer les dimensions et la forme d'une pièce ou d'un produit fini.
Toutefois, ces dispositifs de palpation sont complexes, peu flexibles et mal adaptés à des pièces de petites dimensions.
De plus, le contrôle de ces petites pièces lorsqu'elles sont de forme complexe est très difficilement automatisable.
L'automatisation requiert également une programmation qui peut s'avérer lourde.
On connaît encore des méthodes d'évaluation de la qualité d'une pièce par ultrasons.
Toutefois, une petite dérive dans la géométrie de la pièce ou du produit, acceptable dans les critères qualité, peut conduire à des problèmes de positionnement rédhibitoires lorsqu'il s'agit de contrôler par ultrasons car le faisceau acoustique doit en permanence être perpendiculaire à la surface de cette pièce ou de ce produit.
L'objectif de la présente invention est donc de proposer un système et un procédé pour l'évaluation automatique de la qualité d'un produit ou d'une pièce issus d'une chaîne de fabrication, simple dans leur conception et dans leur mode opératoire, rapide et permettant de regrouper l'ensemble des opérations de contrôle et d'évaluation sur un seul poste pour gagner sur les coûts de main d'œuvre récurrents et sur les temps de cycle.
L'invention vise notamment un système d'évaluation automatique et flexible de la qualité d'un produit ou d'une pièce capable d'absorber de fortes cadences de fabrication tout en protégeant le ou les opérateurs présents sur la chaîne de fabrication d'éventuelles fuites de lumière laser qui pourraient survenir par réflexion des faisceaux lasers sur la pièce ou le produit à inspecter, notamment lorsque ceux-ci ont des formes complexes.
Un autre objet de la présente invention est une installation de fabrication d'une pièce ou d'un produit ou encore d'un assemblage comprenant un tel système de contrôle placé en bout de chaîne.
A cet effet, l'invention concerne un système de contrôle de la qualité d'un objet.
Selon l'invention, ce système de contrôle comprend: - une enceinte de sécurité comportant un port d'entrée par lequel ledit objet à inspecter est introduit dans ladite enceinte et au moins un port de sortie, ladite enceinte ayant une zone d'inspection,
- un dispositif de transport pour acheminer ledit objet à inspecter dans ladite zone d'inspection et assurer son évacuation au travers dudit au moins un port de sortie,
- un appareil de pesée pour peser ledit objet dans ladite zone d'inspection,
- un ensemble de mesure dimensionnelle sans contact de l'objet dans ladite zone d'inspection,
- un ensemble d'analyse de la structure de l'objet dans ladite zone d'inspection par faisceaux lasers, respectivement et/ou par rayons X, et
- ladite enceinte de sécurité est réalisée dans un matériau opaque pour les longueurs d'onde desdits faisceaux lasers en fonctionnement, respectivement, pour les longueurs d'onde desdits faisceaux lasers en fonctionnement et lesdits rayons X, pour prévenir toute fuite de rayonnement.
Ce système de contrôle permet ainsi avantageusement de concentrer sur un seul poste l'ensemble des étapes d'évaluation de la qualité d'une pièce, d'un produit ou d'un assemblage. Elle assure également la protection du ou des opérateurs travaillant sur la chaîne de fabrication de fuites accidentelles de lumière laser et/ou de rayons X.
Dans différents modes de réalisation particuliers de ce système d'évaluation, chacun ayant ses avantages particuliers et susceptibles de nombreuses combinaisons techniques possibles:
- ledit dispositif de transport comportant une bande de convoyage, ledit dispositif de pesée est placé sous cette bande,
l'ensemble d'analyse de la structure de l'objet dans ladite zone d'inspection comprend une source de rayons X et un capteur, l'objet à inspecter étant placé dans ladite zone d'inspection entre ladite source de rayons X et ledit capteur,
ledit ensemble de mesure dimensionnelle sans contact de l'objet dans ladite zone d'inspection comprend un ensemble de mesure dimensionnelle par interférométrie laser et/ou un ensemble de mesure par projection d'un motif lumineux et détection par un système de stéréovision, le système comprend un détecteur de présence pour stopper ledit dispositif de transport lorsque l'objet à inspecter est placé dans ladite zone d'inspection,
ledit appareil de pesée émettant un signal en réponse à la pesée dudit objet, ledit ensemble de mesure dimensionnelle sans contact de l'objet émettant un signal de mesure dimensionnelle de l'objet et ledit ensemble d'analyse de la structure de l'objet émettant un signal relatif à la mesure d'analyse structurelle dudit objet, le système comporte une unité centrale reliée à un support d'enregistrement comprenant au moins un fichier d'informations préalablement enregistré sur ce support d'enregistrement pour définir les paramètres de référence dudit objet, ladite unité centrale recevant chacun desdits signaux pour les comparer auxdits paramètres de référence, le système comprend un dispositif de marquage dudit objet lorsque l'évaluation de sa qualité révèle un ou plusieurs défauts,
- le système comprend de plus un ensemble de contrôle de l'aspect de surface de l'objet et/ou un dispositif de tomographie par cohérence optique (OCT - "Optical cohérent Tomography").
Ce dernier dispositif permet par exemple de contrôler les flashs de résine dans les rayons des pièces courbes pliées.
L'invention concerne également une installation pour la production d'un objet, cette installation étant équipée d'un système de contrôle de la qualité de cet objet tel que décrit précédemment.
L'invention concerne encore un procédé d'évaluation de la qualité d'un objet dans lequel on positionne ledit objet dans une zone d'inspection puis on réalise au moins la première des étapes suivantes sur cet objet placé dans cette zone d'inspection:
a) on pèse ledit objet,
b) on réalise une mesure dimensionnelle sans contact dudit objet, c) on réalise une analyse structurelle dudit objet, et
- à l'issue de chacune de ces étapes, on compare le résultat obtenu avec une ou plusieurs mesures de référence, si elles correspondent aux incertitudes de mesure près, on passe à l'étape suivante, si elles sont distinctes, on met l'objet au rébus.
Avantageusement, on contrôle en plus l'aspect de surface de cet objet. De préférence, à l'étape d'analyse structurelle dudit objet, on envoie un premier faisceau laser sur ledit objet pour générer des ondes ultrasonores dans ledit objet à inspecter, on illumine ledit objet avec un second faisceau laser de sorte qu'une partie de ce deuxième faisceau soit réfléchie par ledit objet et on mesure par interférométrie cette partie du deuxième faisceau réfléchie, l'ensemble de ces faisceaux laser passant par une même tête de lecture optique.
L'invention sera décrite plus en détail en référence aux dessins annexés dans lesquels:
- la figure 1 représente schématiquement de profil un système de contrôle de la qualité d'un objet selon un mode de réalisation particulier de l'invention ;
- la figure 2 est une vue partielle et élargie du dispositif de transport de la Figure 1 ;
Les Figures 1 et 2 montrent schématiquement un système de contrôle de la qualité d'un objet selon un mode de réalisation préféré de l'invention.
Ce système de contrôle est placé en bout de ligne de production de produits 1 , les produits étant acheminés vers le système par un dispositif de convoyage 2 qui est ici un tapis roulant. Les produits 1 à inspecter sont déposés sur ce tapis roulant sans positionnement très précis.
Chaque produit 1 pénètre dans une enceinte 3 de sécurité par un port d'entrée 4 de cette enceinte, arrive dans une zone d'inspection 5 de cette enceinte où il est détecté par un détecteur de présence (non représenté) qui stoppe alors le dispositif de convoyage 2 pour permettre l'évaluation de sa qualité.
Le produit 1 à inspecter qui se trouve dans la zone d'inspection 5, est prêt à être évalué séquentiellement par un arrangement de dispositifs de mesure et de contrôle.
A l'issue de cette évaluation de la qualité du produit 1 et si ce dernier est trouvé conforme aux tolérances de fabrication tant en terme de dimensions que de qualité de surface et de forme, le dispositif de convoyage 2 redémarre et l'évacué par un port de sortie 6.
S'il est analysé comme étant non conforme, le produit défectueux est marqué par un dispositif de marquage (non représenté) préalablement à son évacuation par le port de sortie 6. A titre illustratif, le marquage du produit 1 présentant un ou plusieurs défauts peut se faire par projection d'une peinture à sa surface.
Dans une première étape d'évaluation de la qualité du produit 1 issu de la ligne de production, le produit 1 à inspecter est pesé par un appareil de pesée 7. L'appareil de pesée 7 est ici une balance placée sous le tapis roulant 2.
Cette pesée du produit 1 peut permettre un pré-tri des produits 1 en cas de défaut. Une surcharge du produit 1 par rapport à un poids de référence pourra signifier la présence de corps étranger. A l'inverse, une sous-charge du produit 1 par rapport à ce poids de référence pourra signifier une présence de bulles d'air et/ou une porosité excessive de ce dernier.
Afin de procéder à cette comparaison, l'appareil de pesée 7 fournit un signal électrique en réponse à la pesée du produit 1 , ce signal électrique représentatif du poids du produit 1 ainsi déterminé, étant envoyé à une unité centrale (non représentée) reliée à un support d'enregistrement (non représenté) comprenant au moins un fichier de données ou une bibliothèque de fichiers de données préalablement enregistrés sur ce support d'enregistrement pour définir les paramètres de référence du produit 1 à inspecter.
Cette unité centrale comporte ici un micro processeur configuré pour réaliser la comparaison entre les signaux de mesure reçus des différents dispositifs d'évaluation du système et les paramètres de référence.
Si le poids mesuré est égal au poids de référence aux incertitudes de mesure près, on détermine alors les mesures tridimensionnelles de ce produit 1 grâce à un ensemble de mesure dimensionnelle sans contact du produit 1 placé dans la zone d'inspection 5.
Cet ensemble de mesure dimensionnelle sans contact comprend ici un ensemble de mesure par projection d'un motif lumineux tel qu'une bande ou une croix à la surface du produit 1 et la détection de ce motif lumineux par un système de stéréovision comportant au moins deux caméras 8, 9 prenant simultanément des prises de vue du motif lumineux projeté à la surface du produit 1 . Ces caméras 8, 9 sont par exemple à matrice CCD.
Cette méthode de mesure dimensionnelle étant connue de l'état de l'art, elle ne sera pas décrite en détails ci-après. On rappellera simplement que la stéréovision permet de déterminer la position spatiale de points à partir des coordonnées de leurs images dans deux vues différentes afin de réaliser des mesures tridimensionnelles du produit 1 .
Chacune de ces caméras 8, 9 envoie un signal représentatif de la mesure acquise par la caméra correspondante à l'unité centrale qui détermine à partir de ces signaux les dimensions du produit 1 . Ces dimensions sont ensuite comparées aux dimensions de référence du produit 1 stockées sur le support d'enregistrement.
Si les dimensions ainsi déterminées du produit 1 correspondent aux dimensions de référence aux incertitudes de mesure près, on analyse alors la structure du produit 1 présent dans la zone d'inspection 5.
Pour cela, on met en œuvre un ensemble d'analyse de la structure de l'objet dans ladite zone d'inspection comprenant :
- une première source laser 10 destinée à générer un premier faisceau laser pour créer des ondes ultrasonores dans le produit 1 ,
- une deuxième source laser 1 1 destinée à générer un deuxième faisceau laser pour illuminer le produit 1 à inspecter,
- un interféromètre 12 pour mesurer une partie du deuxième faisceau réfléchie par le produit 1 placé dans la zone d'inspection 5, cet interféromètre 12 étant apte à générer un signal électrique représentatif de cette mesure, lequel est envoyé vers l'unité centrale pour comparaison avec un paramètre de référence.
Ces première et deuxième sources laser 10, 1 1 ainsi que l'interféromètre 12 sont couplées optiquement à une tête de mesure 13 placée dans l'enceinte 3, cette tête de mesure 13 comportant un scanner optique permettant de balayer la surface du produit 1 à inspecter. Ce scanner optique comprend ici deux miroirs montés sur galvanomètre.
La première source laser 10 qui est ici un laser au dioxyde de carbone (C02), génère un premier faisceau laser de longueur d'onde 10,6 μιτι ayant une énergie de l'ordre de 200 mJ. Ce premier faisceau est reçu par le scanner optique de la tête de mesure 13 qui le dirige vers le produit 1 placé dans la zone d'inspection 5 de manière à autoriser le scan de ce produit 1 . Ce premier faisceau laser génère des ondes ultrasonores dans le produit 1 à inspecter.
Le deuxième faisceau émis par la deuxième source laser 1 1 couplée optiquement à la même tête de mesure optique 13, est également envoyé par cette tête de mesure 13 vers le produit 1 à inspecter. Une partie de ce deuxième faisceau est alors réfléchie par le produit 1 en étant déphasée par les ondes ultrasonores générées par le premier faisceau dans ce produit 1 .
Le faisceau laser réfléchi est alors reçu par l'interféromètre 12 apte à générer un signal électrique représentatif de cette partie de faisceau réfléchi ainsi mesurée. Ce signal électrique est envoyé vers l'unité centrale pour traitement en vue de sa comparaison avec un ou plusieurs paramètres de référence du produit 1 .
Si le produit 1 s'avère conforme, le tapis roulant 2 avance pour évacuer ce produit 1 et placer dans la zone d'inspection 5, un nouveau produit 1 à inspecter.
Alternativement, le scanner optique peut comporter un seul miroir de balayage suivant un axe perpendiculaire à l'axe longitudinal du tapis roulant 2. Le tapis roulant est alors utilisé comme second axe de balayage de manière à autoriser le scan de chaque produit 1 .
Le deuxième faisceau laser est émis ici par un laser solide pompé par diode, tel qu'un laser Nd :YAG émettant un faisceau laser de longueur d'onde λ = 1064 nm et d'une puissance typiquement de 150W. L'interféromètre 12 est ici un interféromètre de Fabry-Perot et/ou un interféromètre de mélange à deux ondes (TWM - "Two-wave mixing interferometer").
L'enceinte de sécurité 3 est réalisée dans un matériau opaque pour les longueurs d'onde des faisceaux lasers en fonctionnement pour prévenir toute fuite de lumière laser susceptible de nuire à la santé des opérateurs en activité sur la ligne de production.

Claims

REVENDICATIONS
1 . Système de contrôle de la qualité d'un objet, caractérisé en ce qu'il comprend
- une enceinte de sécurité (3) comportant un port d'entrée par lequel ledit objet à inspecter est introduit dans ladite enceinte et au moins un port de sortie, ladite enceinte ayant une zone d'inspection (5),
- un dispositif de transport pour acheminer ledit objet à inspecter dans ladite zone d'inspection (5) et assurer son évacuation au travers dudit au moins un port de sortie,
- un appareil de pesée (7) pour peser ledit objet dans ladite zone d'inspection (5),
- un ensemble de mesure dimensionnelle sans contact de l'objet dans ladite zone d'inspection (5), comprenant un ensemble de mesure dimensionnelle par interférométrie laser et/ou un ensemble de mesure par projection d'un motif lumineux et détection par un système de stéréovision (8, 9),
- un ensemble d'analyse de la structure de l'objet dans ladite zone d'inspection (5) par faisceaux lasers, respectivement et/ou par rayons X, et en ce que
- ladite enceinte de sécurité (3) est réalisée dans un matériau opaque pour les longueurs d'onde desdits faisceaux lasers en fonctionnement, respectivement, pour les longueurs d'onde desdits faisceaux lasers en fonctionnement et lesdits rayons X, pour prévenir toute fuite de rayonnement.
2. Système selon la revendication 1 , caractérisé en ce que ledit ensemble d'analyse de la structure de l'objet dans ladite zone d'inspection (5) comprend:
- une première source laser (10) destinée à générer un premier faisceau laser pour créer des ondes ultrasonores dans ledit objet à inspecter, - une deuxième source laser (1 1 ) destinée à générer un deuxième faisceau laser pour illuminer ledit objet à inspecter,
- un interféromètre (12) pour mesurer une partie du deuxième faisceau réfléchie par ledit objet à inspecter, ledit interféromètre (12) étant apte à générer un signal électrique relatif à cette mesure, - lesdites sources laser (10, 1 1 ) et ledit interféromètre (12) étant couplées optiquement à une tête de mesure optique (13) placée dans ladite enceinte (3), ladite tête de mesure (13) comportant un scanner optique.
3. Système selon la revendication 1 ou 2, caractérisé en ce que ledit ensemble d'analyse de la structure de l'objet dans ladite zone d'inspection (5) comprend une source de rayons X et un capteur, l'objet à inspecter positionné dans ladite zone d'inspection (5) étant placé entre ladite source de rayons X et ledit capteur.
4. Système selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend un détecteur de présence pour stopper ledit dispositif de transport lorsque l'objet à inspecter est placé dans ladite zone d'inspection (5)
5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit appareil de pesée (7) émettant un signal en réponse à la pesée dudit objet, ledit ensemble de mesure dimensionnelle sans contact de l'objet émettant un signal de mesure dimensionnelle de l'objet et ledit ensemble d'analyse de la structure de l'objet émettant un signal relatif à la mesure d'analyse structurelle dudit objet, le système comporte une unité centrale reliée à un support d'enregistrement comprenant au moins un fichier d'informations préalablement enregistré sur ce support d'enregistrement pour définir les paramètres de référence dudit objet, ladite unité centrale recevant chacun desdits signaux pour les comparer auxdits paramètres de référence.
6. Système selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend un dispositif de marquage dudit objet lorsque l'évaluation de sa qualité révèle un ou plusieurs défauts.
7. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend de plus un ensemble de contrôle de l'aspect de surface de l'objet et/ou un dispositif de tomographie par cohérence optique.
8. Installation pour la production d'un objet équipée d'un système de contrôle de la qualité dudit objet selon l'une quelconque des revendications 1 à 7.
9. Procédé d'évaluation de la qualité d'un objet dans lequel on positionne ledit objet dans une zone d'inspection (5) puis on réalise au moins la première desdites étapes suivantes sur cet objet placé dans cette zone d'inspection (5):
a) on pèse ledit objet,
b) on réalise une mesure dimensionnelle sans contact dudit objet dans ladite zone d'inspection (5) avec un ensemble de mesure dimensionnelle sans contact comprenant un ensemble de mesure dimensionnelle par interférométrie laser et/ou un ensemble de mesure par projection d'un motif lumineux et détection par un système de stéréovision (8, 9),
c) on réalise une analyse structurelle dudit objet, et en ce que
- à l'issue de chacune de ces étapes, on compare le résultat obtenu avec une ou plusieurs mesures de référence, si elles correspondent aux incertitudes de mesure près, on passe à l'étape suivante, si elles sont distinctes, on met l'objet au rébus.
10. Procédé selon la revendication 9, caractérisé en ce qu'on contrôle en plus l'aspect de surface de cet objet.
1 1 . Procédé selon la revendication 9 ou 10, caractérisé en ce qu'à l'étape d'analyse structurelle dudit objet, on envoie un premier faisceau laser sur ledit objet pour générer des ondes ultrasonores dans ledit objet à inspecter, on illumine ledit objet avec un second faisceau laser de sorte qu'une partie de ce deuxième faisceau soit réfléchie par ledit objet et on mesure par interférométrie cette partie du deuxième faisceau réfléchie, l'ensemble de ces faisceaux laser passant par une même tête de lecture optique.
PCT/EP2012/070510 2011-10-17 2012-10-16 Système et procédé de contrôle de la qualité d'un objet WO2013057115A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201280050168.2A CN104114992B (zh) 2011-10-17 2012-10-16 用于控制物体质量的系统和方法
RU2014119933A RU2620868C2 (ru) 2011-10-17 2012-10-16 Система и способ контроля качества изделия
EP12775479.4A EP2769196A1 (fr) 2011-10-17 2012-10-16 Système et procédé de contrôle de la qualité d'un objet
CA2852791A CA2852791A1 (fr) 2011-10-17 2012-10-16 Systeme et procede de controle de la qualite d'un objet
MX2014004569A MX338117B (es) 2011-10-17 2012-10-16 Sistema y metodo para controlar la calidad de un objeto.
SG11201400932PA SG11201400932PA (en) 2011-10-17 2012-10-16 System and method for controlling the quality of an object
US14/349,187 US20140249663A1 (en) 2011-10-17 2012-10-16 System and method for controlling the quality of an object
BR112014009088A BR112014009088A2 (pt) 2011-10-17 2012-10-16 sistema e método para controlar a qualidade de um objeto

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1159357 2011-10-17
FR1159357A FR2981450B1 (fr) 2011-10-17 2011-10-17 Systeme et procede de controle de la qualite d'un objet

Publications (1)

Publication Number Publication Date
WO2013057115A1 true WO2013057115A1 (fr) 2013-04-25

Family

ID=47049154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/070510 WO2013057115A1 (fr) 2011-10-17 2012-10-16 Système et procédé de contrôle de la qualité d'un objet

Country Status (10)

Country Link
US (1) US20140249663A1 (fr)
EP (1) EP2769196A1 (fr)
CN (1) CN104114992B (fr)
BR (1) BR112014009088A2 (fr)
CA (1) CA2852791A1 (fr)
FR (1) FR2981450B1 (fr)
MX (1) MX338117B (fr)
RU (1) RU2620868C2 (fr)
SG (1) SG11201400932PA (fr)
WO (1) WO2013057115A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3054288A4 (fr) * 2014-09-02 2017-08-02 Nuctech Company Limited Appareil d'inspection en ligne de qualité de produit par rayons x

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290416B (zh) * 2016-08-26 2020-01-10 合肥泰禾光电科技股份有限公司 一种x射线食品异物检测系统
FR3073043B1 (fr) * 2017-10-27 2019-11-15 Tiama Procede et installation de controle dimensionnel en ligne d'objets manufactures
CN108088407B (zh) * 2017-12-15 2020-11-10 成都光明光电股份有限公司 光学玻璃制品形貌偏差校正方法及系统
EP3502672B1 (fr) * 2017-12-20 2022-02-09 Fundación Tecnalia Research & Innovation Procédés et systèmes d'inspection visuelle
EP3553508A3 (fr) * 2018-04-13 2019-12-04 Malvern Panalytical B.V. Appareil et procédé d'imagerie à rayons x
CA3101489A1 (fr) * 2018-06-07 2019-12-12 Wilco Ag Procede d'inspection
US10408606B1 (en) 2018-09-24 2019-09-10 Faro Technologies, Inc. Quality inspection system and method of operation
CA3116716A1 (fr) 2018-10-19 2020-07-09 Inkbit, LLC Metrologie a grande vitesse
US11354466B1 (en) 2018-11-02 2022-06-07 Inkbit, LLC Machine learning for additive manufacturing
WO2020093030A1 (fr) 2018-11-02 2020-05-07 Inkbit, LLC Fabrication additive intelligente
EP3856481A2 (fr) 2018-11-16 2021-08-04 Inkbit, LLC Impression 3d par jet d'encre de résines à composants multiples
WO2020106944A1 (fr) * 2018-11-21 2020-05-28 Aaron Weber Métrologie de contrôle de qualité pharmaceutique à grande vitesse
AU2020205973A1 (en) 2019-01-08 2021-07-15 Inkbit, LLC Reconstruction of surfaces for additive manufacturing
CA3124884A1 (fr) 2019-01-08 2020-07-16 Inkbit, LLC Reconstruction de profondeur dans la fabrication additive
EP3709006A1 (fr) * 2019-03-15 2020-09-16 Primetals Technologies France SAS Système de contrôle visuel pour un produit étendu
US11712837B2 (en) 2019-11-01 2023-08-01 Inkbit, LLC Optical scanning for industrial metrology
US10994477B1 (en) 2019-11-01 2021-05-04 Inkbit, LLC Optical scanning for industrial metrology
US10926473B1 (en) 2020-02-20 2021-02-23 Inkbit, LLC Multi-material scanning for additive fabrication
CN111288902B (zh) * 2020-02-21 2021-09-10 苏州大学 一种双视场光相干断层扫描成像系统及材料厚度检测法
JP7433467B2 (ja) * 2020-07-01 2024-02-19 浜松ホトニクス株式会社 高速検査用の傾斜型光干渉断層撮影イメージング
US10994490B1 (en) 2020-07-31 2021-05-04 Inkbit, LLC Calibration for additive manufacturing by compensating for geometric misalignments and distortions between components of a 3D printer
CN112880787B (zh) * 2021-01-08 2023-03-31 重庆开谨科技有限公司 一种用于车辆称重传感器的波形处理方法
CN114923935A (zh) * 2022-04-02 2022-08-19 上海奕瑞光电子科技股份有限公司 在线3d扫描系统及在线3d扫描方法
DE102022111511A1 (de) 2022-05-09 2023-11-09 Wipotec Gmbh Inspektionsvorrichtung mit darin integrierter Röntgen- und Wägevorrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4232201A1 (de) * 1992-09-25 1994-03-31 Sp Reifenwerke Gmbh Vorrichtung zur Querschnittsvermessung von Fahrzeugreifen
EP1033570A2 (fr) * 1999-03-03 2000-09-06 Bridgestone Corporation Méthode et dispositif pour inspecter l' intérieur d' un pneu
EP1500917A2 (fr) * 2003-07-24 2005-01-26 Steinbichler Optotechnik Gmbh Procédé et dispositif d'essai de pneus
EP1626271A1 (fr) * 2004-08-14 2006-02-15 Collmann GmbH & Co. Spezialmaschinenbau KG Méthode d'examen par rayon X pour roues de véhicule
US20080075227A1 (en) * 2004-05-26 2008-03-27 Ralf Christoph Coordinate Measuring Apparatus And Method For Measuring An Object
EP1950527A1 (fr) * 2005-11-16 2008-07-30 Ishida Co., Ltd. Dispositif d'inspection a rayons x
DE102008037356A1 (de) * 2008-08-12 2010-03-04 Mähner, Bernward Prüfanlage und Verfahren zum Prüfen von Reifen
EP2198703A2 (fr) * 2008-12-16 2010-06-23 Ishida Co., Ltd. Appareil pour déterminer la masse/le poids des articles sur une courroie de transport par radiographie et pour ensuite trier les articles suivant la masse/le poids

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589141A (en) * 1984-03-12 1986-05-13 Texas Instruments Incorporated Apparatus for automatically inspecting printed labels
US4819783A (en) * 1986-07-29 1989-04-11 Cochlea Corporation Automated inspection system and method
US4906098A (en) * 1988-05-09 1990-03-06 Glass Technology Development Corporation Optical profile measuring apparatus
JP2714277B2 (ja) * 1991-07-25 1998-02-16 株式会社東芝 リード形状計測装置
US5414512A (en) * 1993-03-10 1995-05-09 Grant Engineering, Inc. Method and apparatus for viewing a shearographic image
US6175415B1 (en) * 1997-02-19 2001-01-16 United Technologies Corporation Optical profile sensor
US6633384B1 (en) * 1998-06-30 2003-10-14 Lockheed Martin Corporation Method and apparatus for ultrasonic laser testing
US6967716B1 (en) * 1999-04-23 2005-11-22 Pressco Technology Inc. Apparatus and method for inspecting multi-layer plastic containers
US6894775B1 (en) * 1999-04-29 2005-05-17 Pressco Technology Inc. System and method for inspecting the structural integrity of visibly clear objects
US8023724B2 (en) * 1999-07-22 2011-09-20 Photon-X, Inc. Apparatus and method of information extraction from electromagnetic energy based upon multi-characteristic spatial geometry processing
WO2001086365A1 (fr) * 2000-05-12 2001-11-15 Ishida Co., Ltd. Systeme de gestion de production et systeme de verification d'etats de fonctionnement de dispositifs de production
US6378387B1 (en) * 2000-08-25 2002-04-30 Aerobotics, Inc. Non-destructive inspection, testing and evaluation system for intact aircraft and components and method therefore
US7344082B2 (en) * 2002-01-02 2008-03-18 Metrologic Instruments, Inc. Automated method of and system for dimensioning objects over a conveyor belt structure by applying contouring tracing, vertice detection, corner point detection, and corner point reduction methods to two-dimensional range data maps of the space above the conveyor belt captured by an amplitude modulated laser scanning beam
US7089131B2 (en) * 2002-03-22 2006-08-08 Lear Corporation Inspection and verification system and method
US20030229463A1 (en) * 2002-06-05 2003-12-11 Chun-Chen Chen Systematic method and system for quality control
US7355709B1 (en) * 2004-02-23 2008-04-08 Kla-Tencor Technologies Corp. Methods and systems for optical and non-optical measurements of a substrate
DE102004026357B4 (de) * 2004-05-26 2022-11-17 Werth Messtechnik Gmbh Vorrichtung und Verfahren zum Messen eines Objektes
US8294809B2 (en) * 2005-05-10 2012-10-23 Advanced Scientific Concepts, Inc. Dimensioning system
US7838858B2 (en) * 2005-05-31 2010-11-23 Nikon Corporation Evaluation system and method of a search operation that detects a detection subject on an object
FR2897303B1 (fr) * 2006-02-15 2009-11-13 Michelin Soc Tech Ensemble de roue et de pneumatique et procede de mesure en dynamique de parametres topologiques de la surface interne de la partie pertinente de pneumatique
EP1975603A1 (fr) * 2007-03-27 2008-10-01 Visys NV Procédé et système à utiliser pour inspecter et/ou retirer des objets non appropriés d'un flux de produits et appareil de tri mettant en oeuvre celui-ci
US7917241B2 (en) * 2007-08-01 2011-03-29 Tel Epion Inc. Method and system for increasing throughput during location specific processing of a plurality of substrates
KR101380491B1 (ko) * 2007-12-06 2014-04-01 록히드 마틴 코포레이션 레이저-초음파 및 적외선 서모그래피를 이용하는 비파괴적 검사
US8054470B2 (en) * 2008-05-15 2011-11-08 Lockheed Martin Corporation Method and apparatus for spectroscopic characterization of samples using a laser-ultrasound system
JP5352144B2 (ja) * 2008-07-22 2013-11-27 株式会社荏原製作所 荷電粒子ビーム検査方法及び装置
CN101685073B (zh) * 2008-09-26 2011-07-20 软控股份有限公司 载重轮胎x光机测试装置及其方法
US8765493B2 (en) * 2012-11-20 2014-07-01 Ultratech, Inc. Methods of characterizing semiconductor light-emitting devices based on product wafer characteristics

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4232201A1 (de) * 1992-09-25 1994-03-31 Sp Reifenwerke Gmbh Vorrichtung zur Querschnittsvermessung von Fahrzeugreifen
EP1033570A2 (fr) * 1999-03-03 2000-09-06 Bridgestone Corporation Méthode et dispositif pour inspecter l' intérieur d' un pneu
EP1500917A2 (fr) * 2003-07-24 2005-01-26 Steinbichler Optotechnik Gmbh Procédé et dispositif d'essai de pneus
US20080075227A1 (en) * 2004-05-26 2008-03-27 Ralf Christoph Coordinate Measuring Apparatus And Method For Measuring An Object
EP1626271A1 (fr) * 2004-08-14 2006-02-15 Collmann GmbH & Co. Spezialmaschinenbau KG Méthode d'examen par rayon X pour roues de véhicule
EP1950527A1 (fr) * 2005-11-16 2008-07-30 Ishida Co., Ltd. Dispositif d'inspection a rayons x
DE102008037356A1 (de) * 2008-08-12 2010-03-04 Mähner, Bernward Prüfanlage und Verfahren zum Prüfen von Reifen
EP2198703A2 (fr) * 2008-12-16 2010-06-23 Ishida Co., Ltd. Appareil pour déterminer la masse/le poids des articles sur une courroie de transport par radiographie et pour ensuite trier les articles suivant la masse/le poids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3054288A4 (fr) * 2014-09-02 2017-08-02 Nuctech Company Limited Appareil d'inspection en ligne de qualité de produit par rayons x
US10078056B2 (en) 2014-09-02 2018-09-18 Nuctech Company Limited X-ray product quality online inspection device

Also Published As

Publication number Publication date
MX338117B (es) 2016-04-01
CN104114992B (zh) 2019-02-05
FR2981450A1 (fr) 2013-04-19
FR2981450B1 (fr) 2014-06-06
BR112014009088A2 (pt) 2017-04-18
RU2014119933A (ru) 2015-11-27
RU2620868C2 (ru) 2017-05-30
SG11201400932PA (en) 2014-09-26
US20140249663A1 (en) 2014-09-04
CN104114992A (zh) 2014-10-22
MX2014004569A (es) 2014-11-25
EP2769196A1 (fr) 2014-08-27
CA2852791A1 (fr) 2013-04-25

Similar Documents

Publication Publication Date Title
EP2769196A1 (fr) Système et procédé de contrôle de la qualité d'un objet
US11105754B2 (en) Multi-parameter inspection apparatus for monitoring of manufacturing parts
EP2368105B1 (fr) Procede de controle non destructif d'une piece mecanique
CA2413930C (fr) Procede de detection et d'identification de defauts dans un cordon de soudure realise par faisceau laser
KR101346648B1 (ko) 용접 공정 동안 용접 품질의 광학적 평가 방법 및 장치
TWI476365B (zh) 用於使位置資料與超音波資料相關之方法及評估服役中之飛行器零件的方法
US12017278B2 (en) Multi-parameter inspection apparatus for monitoring of manufacturing parts using a polarization image detector
JP4373219B2 (ja) 製品の空間選択的なオンライン質量または容積測定を実行するための装置および方法
FR2659039A1 (fr) Procede et appareil de surveillance optique du traitement des materiaux par laser.
EP3055681B1 (fr) Procede et dispositif pour inspecter les soudures d'emballages
WO2013139718A1 (fr) Procédé et dispositif de contrôle d'un matériau composite par ultrasons laser
KR20150008453A (ko) 표면 피처들 맵핑
FR2910621A1 (fr) Procede et dispositif de controle de la qualite d'un cordon de soudure
JP2012515913A (ja) 光学測定方法およびシステム
EP2828644B1 (fr) Procédé et dispositif de contrôle non destructif de la santé matière notamment dans les congés d'une pièce composite
CN110779927B (zh) 一种基于超声调制的亚表面缺陷检测装置及方法
EP0622610B1 (fr) Procédé et dispositif d'étalonnage pour un ensemble de mesure du profil transversal d'épaisseur d'un produit plat
JP2002530644A (ja) 非接触トポグラフ解析装置および解析方法
WO2024056955A1 (fr) Dispositif et procede de controle de planeite d'une tole metallique
JP2008164532A (ja) 表面検査装置および表面検査方法
JP5880957B2 (ja) レーザー光により表面の変化を検出する装置
KR101664470B1 (ko) 빔 스플리터의 후면 반사를 이용한 다중 광경로 레이저 광학계
EP3658314A1 (fr) Procedes et dispositifs de fabrication et d'inspection ultrasonore en fabrication additive
WO2024085188A1 (fr) Système de mesure, système de découpe de viande, procédé de mesure et programme
EP1531482A2 (fr) Dispositif et procédé de contrôle d'aspect extérieur de crayons de combustible pour réacteur nucléaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12775479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2852791

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14349187

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012775479

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/004569

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014119933

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014009088

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014009088

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140414