WO2020106944A1 - Métrologie de contrôle de qualité pharmaceutique à grande vitesse - Google Patents

Métrologie de contrôle de qualité pharmaceutique à grande vitesse

Info

Publication number
WO2020106944A1
WO2020106944A1 PCT/US2019/062590 US2019062590W WO2020106944A1 WO 2020106944 A1 WO2020106944 A1 WO 2020106944A1 US 2019062590 W US2019062590 W US 2019062590W WO 2020106944 A1 WO2020106944 A1 WO 2020106944A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical manufacture
signal
pharmaceutical
depth
optical signal
Prior art date
Application number
PCT/US2019/062590
Other languages
English (en)
Inventor
Aaron Weber
Desai CHEN
Walter H. Zengerle Iii
Kiril Vidimce
Wojciech Matusik
Original Assignee
Aaron Weber
Chen Desai
Zengerle Walter H Iii
Kiril Vidimce
Wojciech Matusik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aaron Weber, Chen Desai, Zengerle Walter H Iii, Kiril Vidimce, Wojciech Matusik filed Critical Aaron Weber
Publication of WO2020106944A1 publication Critical patent/WO2020106944A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence

Definitions

  • a method is directed to characterizing a continuously moving pharmaceutical manufacture via interferometry-based scanning.
  • the method includes forming a depth characterization of the pharmaceutical manufacture along a scan line on the surface of the pharmaceutical manufacture. During the scanning, the pharmaceutical manufacture undergoes continuous motion.
  • the method further includes combining the determined depth characterization along the scan lines of the plurality of scan lines to form a depth map representing at least a depth of a portion associated with a location on the surface of the pharmaceutical manufacture in the third direction on a grid of locations arranged in the first and second directions.
  • Forming the depth characterizations includes scanning a frequency dispersed pulsed optical signal in a first direction across the continuously moving pharmaceutical manufacture, the
  • the method may further include concurrently scanning the signal forming multiple scan lines on the object.
  • Each scan line may have a scan line offset in the first direction from the other scan lines.
  • Scanning the signal forming multiple scan lines may include splitting said signal into multiple signals, and scanning each of the multiple signals across the pharmaceutical manufacture by reflecting it off a moving mirror surface.
  • Each scan line may have a corresponding moving mirror surface off of which to be reflected.
  • Scanning the signal forming multiple scan lines may include passing each of the multiple signals through a corresponding lens of multiple lenses disposed in the first direction. At least some lens of the multiple lenses may be offset in the second direction from another of the lenses.
  • a Q is the center wavelength of the pulse and t 0 is its time position in the stretched pulse.
  • the optical signal produced by the optical source 102 is received as input for the interferometry subsystem 112.
  • the interferometry subsystem 112 receives an optical signal in its optical fiber interferometer 104, which selves as a splitter component splitting the optical signal into a sample optical signal 113 to be received by the scanner 118 and a reference signal 105, which is combined with sensed signal 115 from the scanner.
  • the sample signal 113 and reference signal 115 are split with a 90: 10 power ratio to account for attenuation in scanning the object.
  • the number of laser pulses between the detection of the reference edge and the start of scan signal gives a temporal reference ST corresponding to the relative physical location of the scan laser at the time at which the start-of-scan signal is received. This allows the start-of-scan signal to be used to generate an absolute physical reference for the scan laser pulses. This procedure can be done once as a pre-calibration and can be manually tuned as necessary.
  • one approach is to keep the relative height of the scanning optics of the scanner 118 above the scamied object constant as the height of the part increases during fabrication. Either the platform holding the object can move down away from the scanning optics as the object is fabricated and more material is deposited or the scanning optics can move up away from the part as its thickness increases.
  • the output of the interferometry subsystem 112 is a combination of a fixed delayed version of the reference signal, and variable delayed version of the sample signal, where the variable delay is a function of the travel path from the scanner to the object and back and any fixed delay in the optical components of the scanner 118.
  • a detector at the input to the signal processing subsystem 124 will sense a high intensity, while if they are out of phase, the detector will sense a low intensity. Because the wavelength of the si gnals varies during each pulse, the intensity will var during each pulse as well. This variation in intensity during each pulse is used by the signal processor 124 to determine the depth of each spot on each scan line on the object.
  • temporally modulated photocurrent from a detector corresponding to a single reflective sample height can be written as follows:
  • the signal from the detector is continuously streamed to an analog to digital converter (ADC). If the dispersion element is not linear with respect to wave number then the interference signal is renormalized to be linear with respect to wavenumber.
  • the digitized interference signal is converted to depth information by taking the inverse discrete Fourier transform of the signal. A peak in the transform provides the depth information at the point.
  • the synchronization signals received from the optical source 102, representing the start time of each pulse, from the scanner 118 representing the start of each scan line, and from the platform representing the x axis position of the object, are used to determine an (x,y, ⁇ ) coordinate for each spot on a scan line. These locations are then interpolated onto a regular grid in the - y plane, to form the output depth map 126.
  • the outputs of the two interferometer subsystems 112A and 112B are passed to a signal processor 724, which independently processes each of the signals as in the signal processor 124, but then prior to interpolation maps each set of spots onto a common grid.
  • the scan lines 152A and 152B overlap in the x direction, which permits a signal processor to“stitch” together the depth maps (or volumetric scans) from the different scanner subsystems to form a consistent depth map across the entire object.
  • more than two seamier subsystems may be used to increase the scannable width of the object.
  • the signal processor 724 takes into account synchronization signals from each of the scanner subsystems, whose mirrors are not necessari ly synchronized, and therefore the start of each scan line 152A and 152B may not be synchronized.
  • the signal processor 724 determines a registration of the two sets of scan lines, for example, using overlapped regions of the scanned object, or using a calibration phase before the fabrication of the object begins.
  • each of the scanners 118A-B and their corresponding lens 116A-B are arranged in line along the fixed y' axis.
  • the lenses may be offset in the x ' direction such that lenses 116A and 116C are on the same x' point, and lens 116B is offset in the x' direction.
  • the operation of the system is identical to the multiple scanner approach described above, with the signal processor 724 taking into account this x' offset when interpolating the depth information at spots on the scan lines to form the depth map on a regular grid.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un procédé et un appareil destinés à caractériser une fabrication pharmaceutique à déplacement continu par balayage fondé sur l'interférométrie. Le procédé comprend la formation d'une caractérisation de profondeur de la fabrication pharmaceutique le long d'une ligne de balayage sur la surface de la fabrication pharmaceutique. Pendant le balayage, la fabrication pharmaceutique subit un mouvement continu. Le procédé comprend en outre la combinaison de la caractérisation de profondeur déterminée le long des lignes de balayage de la pluralité de lignes de balayage afin de former une carte de profondeur représentant au moins une profondeur d'une partie associée à un emplacement sur la surface de la fabrication pharmaceutique dans la troisième direction sur une grille d'emplacements agencés dans les première et deuxième directions. La formation des caractérisations de profondeur consiste à balayer un signal optique pulsé dispersé en fréquence dans une première direction à travers la fabrication pharmaceutique à déplacement continu, la fabrication pharmaceutique se déplaçant dans une deuxième direction sensiblement orthogonale à la première direction. Le signal optique balayé forme une ligne de balayage sur une surface de la fabrication pharmaceutique dans une troisième direction sensiblement orthogonale à la première direction et à la deuxième direction.
PCT/US2019/062590 2018-11-21 2019-11-21 Métrologie de contrôle de qualité pharmaceutique à grande vitesse WO2020106944A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862770364P 2018-11-21 2018-11-21
US62/770,364 2018-11-21

Publications (1)

Publication Number Publication Date
WO2020106944A1 true WO2020106944A1 (fr) 2020-05-28

Family

ID=68944393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/062590 WO2020106944A1 (fr) 2018-11-21 2019-11-21 Métrologie de contrôle de qualité pharmaceutique à grande vitesse

Country Status (1)

Country Link
WO (1) WO2020106944A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024056168A1 (fr) * 2022-09-14 2024-03-21 Research Center Pharmaceutical Engineering Gmbh Interférométrie à faible cohérence dans la fabrication d'un produit pharmaceutique non revêtu

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090279098A1 (en) * 2007-01-22 2009-11-12 School Juridical Person Kitasato Institute Optical coherence tomography apparatus
US20130182260A1 (en) * 2009-04-20 2013-07-18 D4D Technologies, Llc Swept source optical coherence tomography (OCT) method and system
US20140249663A1 (en) * 2011-10-17 2014-09-04 European Aeronautic Defence And Space Company Eads France System and method for controlling the quality of an object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090279098A1 (en) * 2007-01-22 2009-11-12 School Juridical Person Kitasato Institute Optical coherence tomography apparatus
US20130182260A1 (en) * 2009-04-20 2013-07-18 D4D Technologies, Llc Swept source optical coherence tomography (OCT) method and system
US20140249663A1 (en) * 2011-10-17 2014-09-04 European Aeronautic Defence And Space Company Eads France System and method for controlling the quality of an object

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DANIEL MARKL ET AL: "Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images", MEASUREMENT SCIENCE AND TECHNOLOGY, IOP, BRISTOL, GB, vol. 26, no. 3, 2 February 2015 (2015-02-02), pages 35701, XP020281675, ISSN: 0957-0233, [retrieved on 20150202], DOI: 10.1088/0957-0233/26/3/035701 *
DANIEL MARKL ET AL: "In-line quality control of moving objects by means of spectral-domain OCT", OPTICS AND LASERS IN ENGINEERING, vol. 59, 1 August 2014 (2014-08-01), AMSTERDAM, NL, pages 1 - 10, XP055671920, ISSN: 0143-8166, DOI: 10.1016/j.optlaseng.2014.02.008 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024056168A1 (fr) * 2022-09-14 2024-03-21 Research Center Pharmaceutical Engineering Gmbh Interférométrie à faible cohérence dans la fabrication d'un produit pharmaceutique non revêtu

Similar Documents

Publication Publication Date Title
US8736847B2 (en) Method and apparatus for imaging
EP2252859B1 (fr) Imagerie 3d de type ladar à balayage rapide avec formation de faisceau numérique compact
US20180267151A1 (en) LIDAR Based 3-D Imaging With Structured Light And Integrated Illumination And Detection
EP0247833B1 (fr) Méthode et système pour reproduction rapide à trois dimensions d'un objet à une unité de reconnaissance optique
US20110013198A1 (en) Dimensional probe and methods of use
JP2007538243A (ja) 試料を調査するための装置及び方法
US20200124403A1 (en) High-speed metrology
WO2020106944A1 (fr) Métrologie de contrôle de qualité pharmaceutique à grande vitesse
JPH05503787A (ja) 表面形状の測定装置
JP5724133B2 (ja) 構造測定方法および構造測定装置
GB2486098A (en) A terahertz investigation system and method
US11092427B2 (en) Metrology and profilometry using light field generator
US4052129A (en) Method of and apparatus for measuring the wavelength of a source of radiant energy
US20210348912A1 (en) Swept source optical coherence tomography imaging system
KR101415857B1 (ko) 표면 형상 검사 장치
JP2020094939A (ja) 検査装置、製造システム、検査方法、及び製造方法
KR101794779B1 (ko) 펨토초 레이저를 이용한 다수 타겟 동시 거리 측정 시스템 및 이를 이용한 공간 좌표 측정 방법
KR101375731B1 (ko) 표면 형상 검사 장치
WO2024209942A1 (fr) Procédé de mesure d'interférence optique
US12135373B2 (en) Systems and methods for LIDAR sensing
US20220334260A1 (en) Systems and methods for lidar sensing
US20230221249A1 (en) System and method for determining at least one property of a porous medium
US20230213618A1 (en) Lidar system having a linear focal plane, and related methods and apparatus
JP2780868B2 (ja) 放散的に反射する対象物の表面輪郭を決定する方法および装置
US20140071434A1 (en) Optical tomographic image acquisition apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823835

Country of ref document: EP

Kind code of ref document: A1