WO2013056524A1 - 一种富氧环境下的等离子无油点火系统 - Google Patents

一种富氧环境下的等离子无油点火系统 Download PDF

Info

Publication number
WO2013056524A1
WO2013056524A1 PCT/CN2012/071195 CN2012071195W WO2013056524A1 WO 2013056524 A1 WO2013056524 A1 WO 2013056524A1 CN 2012071195 W CN2012071195 W CN 2012071195W WO 2013056524 A1 WO2013056524 A1 WO 2013056524A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
plasma
burner
ignition system
pulverized coal
Prior art date
Application number
PCT/CN2012/071195
Other languages
English (en)
French (fr)
Inventor
郑路
张建文
李月华
赵洋
Original Assignee
上海锅炉厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海锅炉厂有限公司 filed Critical 上海锅炉厂有限公司
Priority to EP12824756.6A priority Critical patent/EP2770257A4/en
Priority to US13/808,108 priority patent/US9181919B2/en
Priority to AU2012244364A priority patent/AU2012244364B2/en
Publication of WO2013056524A1 publication Critical patent/WO2013056524A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/02Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs for igniting solid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2207/00Ignition devices associated with burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the invention belongs to the field of thermal boilers and relates to boiler accessories, in particular to a plasma oil-free ignition system in an oxygen-rich environment. Background technique
  • the traditional method of power plant boiler ignition is commonly used for oil gun ignition.
  • the fuel gun is first turned on. After the oil is burned in the furnace for a certain period of time, the furnace is heated to the ignition temperature of the pulverized coal gas stream. At this time, the coal powder is blown into the furnace to carry out the oil-coal mixed combustion.
  • the boiler reaches 50% load and the pulverized coal gas flow can be stably burned, the fuel oil is gradually removed to complete the boiler ignition start process.
  • many companies at home and abroad have developed plasma oil-free ignition technology, and have been widely used in many power station boilers.
  • plasma ignition technology has higher requirements for coal quality.
  • the reason is that the dry ash-free content of bituminous coal is high (generally 30% ⁇ 35%), pulverized coal.
  • the airflow is easily ignited.
  • Plasma ignition technology has poor adaptability to coals with low volatile content such as anthracite, lean coal and inferior bituminous coal.
  • the energy of the plasma generator is usually around 100 ⁇ 200KW, which is not enough to ignite the pulverized coal.
  • the actual operation shows that the boiler adopts plasma ignition technology.
  • the fly ash has a high carbon content, and a large amount of pulverized coal is not burned out, especially for the hard-to-burn coal type, the burning performance is even worse.
  • Unburned coal powder tends to accumulate in the corrugated plate of the air preheater or the catalyst injection point of the SCR reactor, which easily causes secondary combustion of unburned pulverized coal, causing major accidents and economic losses.
  • the plasma oil-free ignition system in an oxygen-rich environment is a simple structure and a wide adaptability of coal types, and is particularly suitable for plasma oil-free ignition systems in an oxygen-rich environment of low volatile coal species.
  • the present invention provides a plasma oil-free ignition system in an oxygen-rich environment, comprising a plasma generator and a burner, the plasma oil-free ignition system comprising a set of sleeves disposed in the burner, the sleeve set and The burner is coaxially set.
  • the plasma generator is inserted into the sleeve set in a coaxial or radial manner.
  • the sleeve set comprises a plurality of coaxially sleeved sleeves, the sleeve set comprising at least one sleeve.
  • the sleeve has a circular or rectangular cross-sectional shape.
  • annular space is formed between adjacent sleeves and between the sleeve and the burner.
  • the lengths of the sleeves are the same, or different, the different positions between the sleeves are combined to form an annular space of different length or thickness, and the pulverized coal gas stream and oxygen are thoroughly mixed in these annular spaces.
  • the pulverized coal gas stream and oxygen are thoroughly mixed in these annular spaces.
  • An oxygen conduit is mounted on the sleeve, and the burner is provided with an oxygen conduit, and the oxygen conduit can function as a pulverized coal concentration ring.
  • Oxygen enters the annular space between the sleeves and between the sleeve and the burner through the oxygen conduit, forming a local oxygen-rich zone in the annular space and subsequent adjacent spaces through which the gas flows, enhancing the combustion of the pulverized coal gas stream .
  • the oxygen conduit is disposed in a direction facing the direction of the pulverized coal gas stream.
  • the oxygen conduit has a cross-sectional shape of a circle, an ellipse, a diamond, a triangle, a wedge or a trapezoid.
  • the wall surface of the oxygen conduit facing the direction of the pulverized coal gas flow is a flat surface or a curved wall surface.
  • the oxygen conduit is welded with wear-resistant metal on the wall facing the direction of the pulverized coal gas flow, or is worn with wear-resistant ceramics or wear-resistant cast steel material. Prevents wear and protects the life of the oxygen conduit.
  • the oxygen conduit is provided with a plurality of annular grooves in the wall facing away from the pulverized coal gas flow, or a plurality of openings are provided, or a plurality of oxygen nozzles are provided. Oxygen enters the burner through an annular groove, an opening, and an oxygen nozzle to blend with the pulverized coal.
  • the jet direction of the oxygen nozzle is at an angle of 0° to 80° with the flow direction of the pulverized coal gas stream.
  • the flow direction of oxygen is different from the direction of flow of the pulverized coal gas stream, which can cause appropriate disturbances to facilitate the thorough mixing of oxygen and pulverized coal gas streams.
  • a backflow oxygen conduit is installed at the nozzle of the burner. The backflow oxygen conduit is passed directly into the furnace. Oxygen enters the furnace through the backflow oxygen conduit. By supplementing the oxygen, a local oxygen-rich combustion zone is formed at the burner nozzle to enhance the combustion of the pulverized coal stream in the burner and furnace.
  • the back gas oxygen conduit is provided with a plurality of annular grooves on the wall facing the furnace direction, or a plurality of openings, or a plurality of oxygen nozzles.
  • Oxygen enters the furnace through the annular groove, or the opening, or the oxygen nozzle enters the furnace to form a local oxygen-rich combustion zone at the burner nozzle, which enhances the combustion of the pulverized coal gas stream in the burner and the furnace, and improves the wall surface heat load in the combustion zone. , improve the burnout rate of pulverized coal and reduce the possibility of boiler fire extinguishing.
  • the oxygen flow rate in the oxygen conduit is adjustable. According to different coal types and coal quality, adjust the amount of oxygen injected into the annular space between different sleeves, so that the oxygen-rich concentration in different local oxygen-enriched zones in the burner can be adjusted, so that different local rich in the burner
  • the combustion intensity of the oxygen zone is controllable, ensuring controlled combustion of the pulverized coal gas stream in the burner, releasing a large amount of heat without burning the burner itself.
  • the oxygen conduit may also be supplied with air, nitrogen or carbon dioxide gas, and after the boiler is ignited, the oxygen conduit is purged to prevent clogging of coal powder or ash.
  • the plasma ejected by the plasma generator forms a local high temperature region in which the high temperature plasma and the pulverized coal gas flow are filled.
  • the pulverized coal particles rapidly release volatiles under the action of high-temperature plasma, and the oxygen contained in the air carrying the coal powder reacts rapidly with the volatiles, rapidly burning and releasing heat.
  • a certain amount of oxygen is supplied to the burner through the oxygen conduit in the burner to form a local oxygen-rich zone, and the oxyfuel combustion of the volatile matter or coke or a mixture of the two is realized, so that the combustion of the pulverized coal gas stream is more intense and released. More heat is generated, and the wind pulverized coal gas stream is quickly ignited and stabilized.
  • the invention has the advantages that: the power plant boiler can be completely ignited without fuel oil, and can directly ignite the pulverized coal gas flow, especially for the power coal having the characteristics of low volatile matter, low calorific value and high ash, which are characteristic of inferior coal, adopting the invention
  • the burner can be ignited directly and has a high burnout rate.
  • the burner of the present invention can act as an ignition burner for a boiler or as a main burner for a boiler.
  • the invention has simple structure, reasonable design, moderate investment and operation cost, and high cost performance.
  • FIG. 1 is a schematic structural view of a plasma oil-free ignition burner system provided by the present invention (axial cloth) Set);
  • FIG. 2 is a schematic structural view (radial arrangement) of a plasma oil-free ignition burner system provided by the present invention
  • Figure 3 is a schematic cross-sectional view showing the structure of an oxygen conduit
  • Figure 4 is an enlarged schematic view showing the structure of the oxygen conduit
  • Figure 5 is a schematic cross-sectional view showing the structure of an oxygen conduit
  • Figure 6 is a schematic cross-sectional view showing the structure of an oxygen conduit
  • Figure 7 is a schematic cross-sectional view showing the structure of an oxygen conduit
  • Figure 8 is a schematic cross-sectional view showing the structure of an oxygen conduit
  • Figure 9 is a schematic cross-sectional view showing the structure of an oxygen conduit
  • Figure 10 is a schematic cross-sectional view showing the structure of an oxygen conduit
  • Figure 11 is a schematic cross-sectional view showing the structure of an oxygen conduit
  • Figure 12 is a schematic cross-sectional view showing the structure of an oxygen conduit. Specific form
  • the present invention provides a plasma oil-free ignition system in an oxygen-rich environment, comprising a plasma generator 1 and a burner 2.
  • the burner 2 contains a sleeve 9 and a sleeve 10, and the plasma generator 1, the burner 2, the sleeve 9 and the sleeve 10 are arranged in a coaxial direction.
  • the oxygen conduit 3 functions as a pulverized coal concentration ring in addition to supplying oxygen, and the oxygen conduit 3
  • the wear-resistant metal is welded to the outer wall of the pipe in the direction of the pulverized coal gas flow.
  • the annular wall 101 is arranged on the pipe wall of the oxygen conduit 3 facing away from the pulverized coal gas flow, and the oxygen enters the annular space A through the annular groove 101 and is mixed with the pulverized coal. Forming a local oxygen-rich zone in the annular space A and adjacent regions.
  • the oxygen conduit 4 is mounted on the inner wall of the left end of the sleeve 10.
  • annular space C between the sleeve 10 and the burner 2, and the oxygen conduit 8 is installed in the burner.
  • the oxygen conduit 4 and the oxygen conduit 8 are similar to the oxygen conduit 3, and the outer tube wall facing the direction of the pulverized coal gas flow can function as a pulverized coal concentration ring, away from the wall of the pulverized coal gas flow direction.
  • An annular groove 101 is arranged.
  • the pulverized coal gas stream and oxygen can be fully blended in the annular space B and the annular space C. Mixing, forming a local oxygen-rich zone in the annular space B, the annular space C, and adjacent regions.
  • the pulverized coal gas flows into the burner 2, and is divided into three parts into the annular space A, the annular space B and the annular space C, and the plasma generator 1 generates a high-temperature plasma to be formed in the sleeve 9.
  • the plasma generator 1 generates a high-temperature plasma to be formed in the sleeve 9.
  • rapid pyrolysis of pulverized coal particles releases volatiles, and the volatiles burn rapidly.
  • a partial oxygen-rich zone can be formed in the sleeve 9, further promoting the combustion of the pulverized coal gas stream.
  • a local oxygen-enriched zone can be formed in the annular space B and the annular space C and adjacent spaces to promote rapid combustion of the pulverized coal.
  • the degree of oxygen enrichment in the local oxygen-rich zone can be controlled to control the burning intensity of the pulverized coal in the burner.
  • a gas flow oxygen conduit 11 is disposed at the burner 2, and an annular groove 101 is disposed on the wall of the back gas oxygen conduit 11 facing the boiler furnace.
  • Oxygen can be injected into the furnace through the annular groove 101 to support combustion, forming a local oxygen-rich combustion zone at the burner nozzle, strengthening the combustion of the pulverized coal gas stream in the furnace, increasing the wall surface heat load in the combustion zone, and improving the burnout of the coal powder.
  • the rate reduces the possibility of boiler fire extinguishing, and finally makes the primary air flow quickly ignite and stabilize combustion.
  • the oxygen valve 12 is closed, the purge air valve 13 is opened, the compressed air is purged through the oxygen conduit, and the oxygen conduit, the annular groove 101, and the like are purged. Prevent the oxygen pipe from being clogged with pulverized coal or ash.
  • the purge medium can also be nitrogen or carbon dioxide gas.
  • the present embodiment differs from the first embodiment in that the plasma generator 1 is inserted into the plasma burner from the radial direction of the burner 2, and the high temperature plasma ejected by the plasma generator It can be filled in the sleeve 9.
  • this embodiment differs from the first embodiment in that the cross-sectional shape of the oxygen conduits 3, 4, 8 is a triangular shape, and the wall surface facing the direction of the pulverized coal gas flow is a curved surface.
  • An annular groove 101 is disposed on the wall facing away from the direction of the pulverized coal gas flow, and oxygen enters the burner through the annular groove 101 and is mixed with the pulverized coal.
  • the difference between this embodiment and the embodiment 1 is that the annular duct 101 is disposed on the wall surface facing away from the pulverized coal gas flow direction in the cross-sectional shape of the oxygen conduits 3, 4, and 8, and the oxygen passes through the annular groove 101. Enter the burner and mix with pulverized coal.
  • Example 5 the annular duct 101 is disposed on the wall surface facing away from the pulverized coal gas flow direction in the cross-sectional shape of the oxygen conduits 3, 4, and 8, and the oxygen passes through the annular groove 101. Enter the burner and mix with pulverized coal.
  • the difference between this embodiment and the embodiment 1 is that eight oxygen openings 102 are arranged on the wall of the oxygen conduits 3, 4, 8 facing away from the pulverized coal gas flow, and oxygen enters the burner through the oxygen opening 102. Mixed with coal powder.
  • this embodiment differs from the first embodiment in that the cross-sectional shape of the oxygen conduits 3, 4, 8 is a triangular shape, and the wall surface facing the direction of the pulverized coal gas flow is a curved surface.
  • Eight oxygen openings 102 are disposed in the wall of the oxygen conduit from the direction of the pulverized coal gas flow, and oxygen is introduced into the burner through the oxygen opening 102 to be mixed with the pulverized coal.
  • the difference between the embodiment and the embodiment 1 is that the cross-sectional shape of the oxygen conduits 3, 4, 8 is trapezoidal, and eight oxygen openings 102 are arranged on the wall of the oxygen conduit away from the direction of the pulverized coal gas flow. Oxygen enters the burner through the oxygen opening 102 and is blended with the pulverized coal.
  • the difference between this embodiment and the embodiment 1 is that eight oxygen nozzles 103 are arranged on the wall of the oxygen conduits 3, 4, 8 facing away from the pulverized coal gas flow, and oxygen enters the burner through the oxygen nozzle 103. Powder blending.
  • the present embodiment differs from the first embodiment in that the cross-sectional shape of the oxygen conduits 3, 4, 8 is a triangular shape, and the wall surface facing the direction of the pulverized coal gas flow is a curved surface.
  • Eight oxygen nozzles 103 are disposed on the wall of the oxygen conduit facing away from the pulverized coal gas flow, and oxygen is introduced into the burner through the oxygen nozzle 103 to be mixed with the pulverized coal.
  • the difference between the embodiment and the embodiment 1 is that the cross-sectional shape of the oxygen conduits 3, 4, 8 is trapezoidal, and eight oxygen nozzles 103 are arranged on the wall of the oxygen conduit away from the direction of the pulverized coal gas flow.
  • the burner is introduced into the burner through the oxygen nozzle 103 to be mixed with the pulverized coal.

Abstract

一种富氧环境下的等离子无油点火系统,包含等离子发生器(1)和燃烧器(2),该等离子无油点火系统还包含一组设置在燃烧器(2)内的套筒组,套筒组与燃烧器(2)同轴设置;套筒组包含若干同轴套设的套筒(9、10);相邻套筒(9、10)之间以及套筒(10)和燃烧器(2)之间形成环形空间(A、B、C);套筒(9、10)上安装有氧气导管(3、4),燃烧器(2)上安装有氧气导管(8)。本发明结构简单,煤种适应广泛,适用于低挥发份煤种的富氧环境下的等离子无油点火系统。

Description

一种富氧环境下的等离子无油点火系统
技术领域
本发明属于热力锅炉领域, 涉及锅炉附件, 尤其涉及一种富氧环境下的 等离子无油点火系统。 背景技术
传统的电站锅炉点火普遍采用的方式为油枪点火。 锅炉点火启动时先点 燃油枪, 油在炉膛中燃烧一定时间后将炉膛加热到煤粉气流的着火温度, 此 时将煤粉吹入炉膛进行油煤混烧。 当锅炉达到 50%以上负荷, 煤粉气流可以 稳定燃烧时, 将燃料油逐渐切除, 完成锅炉点火启动过程。 为了节约成本, 降低电站锅炉的燃料油耗量, 国内外很多公司开发了等离子无油点火技术, 并在很多电站锅炉上得到广泛的应用。
但是, 由于我国不同产地的动力用煤煤质差异很大, 等离子点火在实际 应用中, 存在一些不足:
第一, 等离子点火技术对煤质的要求比较高。 目前在国内以烟煤为动力 用煤的电站锅炉上, 都有大量成功的等离子点火应用实例, 究其原因是烟煤 的干燥无灰基挥发份含量高(一般在 30%〜35%), 煤粉气流容易被点燃。而 等离子点火技术对无烟煤、 贫煤和劣质烟煤等挥发份含量较低的煤种适应性 较差, 国内鲜有贫煤锅炉成功应用等离子点火技术的实例, 目前还没有无烟 煤锅炉成功应用等离子点火技术的实例。
第二,锅炉点火时,由于等离子发生器的能量通常在 100〜200KW左右, 不足以将煤粉全部点燃。 实际运行情况显示, 锅炉采用等离子点火技术, 在 锅炉启动初期, 飞灰含碳量高, 大量煤粉没有燃尽, 尤其对于难燃尽的煤种, 燃尽性能更差。未燃尽的煤粉易积聚在空预器的波形板或 SCR反应器的催化 剂喷入处, 容易造成未燃尽煤粉的二次燃烧, 引起重大事故和经济损失。
第三, 锅炉点火时, 为保证稳定点燃煤粉, 实际运行时通常采用较高的 煤粉浓度, 所以锅炉启动时负荷较高, 锅炉升温速度较快, 易造成蒸汽恻气 发明内容
本发明提供的一种富氧环境下的等离子无油点火系统,是一种结构简单, 煤种适应广泛, 尤其适用于低挥发份煤种的富氧环境下的等离子无油点火系 为了达到上述目的,本发明提供一种富氧环境下的等离子无油点火系统, 包含等离子发生器和燃烧器, 该等离子无油点火系统包含一组设置在燃烧器 内的套筒组, 该套筒组与燃烧器同轴设置。
所述的等离子发生器以同轴或者径向方式插入套筒组。
所述的套筒组包含若干同轴套设的套筒,该套筒组中至少包含一个套筒。 所述的套筒横截面形状为圆形或者矩形。
相邻套筒之间以及套筒和燃烧器之间形成环形空间。 根据不同的煤种和 煤质, 若干套筒的长度相同, 或者不同, 套筒之间不同的位置组合, 形成不 同长度或者厚度的环形空间, 煤粉气流和氧气在这些环形空间内充分混合, 以利于煤粉气流在燃烧器内充分点燃。
所述的套筒上安装有氧气导管, 所述的燃烧器上安装有氧气导管, 氧气 导管可以起到煤粉浓缩环的作用。 氧气通过氧气导管进入套筒之间以及套筒 和燃烧器之间的环形空间内, 在该环形空间内及气流所流经的后续相邻空间 内形成局部富氧区, 强化煤粉气流的燃烧。
所述的氧气导管设置在迎着煤粉气流方向的一恻。
所述的氧气导管的截面形状为圆形、 椭圆形、 菱形、 三角形、 楔形或者 梯形。
所述的氧气导管内迎着煤粉气流方向的壁面是平面或者是弧形壁面。 所述的氧气导管在迎着煤粉气流方向的管壁上堆焊耐磨金属, 或者铺设 耐磨陶瓷, 或者采用耐磨铸钢材料。 防止磨损, 保护氧气导管寿命。
所述的氧气导管在背离煤粉气流方向的管壁上设置有若干环形槽, 或者 设置若干开孔, 或者设置若干氧气喷嘴。 氧气通过环形槽、 开孔、 氧气喷嘴 进入燃烧器与煤粉掺混。
所述的氧气喷嘴的喷射方向与煤粉气流的流动方向呈 0°〜80°的角度。 氧气的流动方向同煤粉气流的流动方向不同, 可以造成适当的扰动, 以利于 氧气和煤粉气流的充分混合。 所述的燃烧器的喷口处安装有背气流氧气导管。 背气流氧气导管直接通 入炉膛, 氧气通过背气流氧气导管进入炉膛, 通过补充氧气, 在燃烧器喷口 处形成局部富氧燃烧区, 强化煤粉气流在燃烧器和炉膛内的燃烧。
所述的背气氧气导管在面向炉膛方向的管壁上设置有若干环形槽, 或者 设置若干开孔, 或者设置若干氧气喷嘴。 氧气通过环形槽, 或者开孔, 或者 氧气喷嘴进入炉膛助燃, 在燃烧器喷口处形成局部富氧燃烧区, 强化煤粉气 流在燃烧器和炉膛内的燃烧, 提高了燃烧区区域的壁面热负荷, 提高了煤粉 的燃尽率, 减少了锅炉灭火的可能性。
所述的氧气导管中的氧气流量是可以调节的。 根据不同的煤种和煤质, 调节喷入不同套筒之间环形空间内的氧气量, 使燃烧器内不同的局部富氧区 内的富氧浓度可调节, 使燃烧器内不同的局部富氧区的燃烧强度可控, 确保 煤粉气流在燃烧器内可控制的燃烧, 释放出大量热量的同时, 不至于烧坏燃 烧器本身。
所述的氧气导管也可以通入空气、 氮气或者二氧化碳气, 在锅炉点火完 毕后, 对氧气导管进行吹扫, 防止煤粉或者灰渣堵塞。
在本发明的燃烧器内, 等离子发生器喷出的等离子体形成一个局部高温 区, 高温等离子体和煤粉气流充满其中。 煤粉颗粒在高温等离子体的作用下 迅速释放出挥发份, 携带煤粉的空气中所含的氧气迅速与挥发份发生化学反 应, 快速燃烧并释放出热量。 这时通过燃烧器内的氧气导管向燃烧器内补充 一定量的氧气, 形成局部的富氧区, 实现挥发份或者焦炭或者二者混合物的 富氧燃烧, 使煤粉气流的燃烧更剧烈, 释放出更多的热量, 最终迅速点燃一 次风煤粉气流并使之稳定燃烧。
本发明的优点是: 电站锅炉点火可以完全不用燃料油, 可以直接点燃煤 粉气流, 尤其是针对具有低挥发份、 低热值、 高灰份这些典型劣质煤特征的 动力用煤, 采用本发明的燃烧器可以直接点燃, 并且燃尽率高。 本发明的燃 烧器即可以充当锅炉的点火燃烧器, 也可以充当锅炉的主燃烧器。 本发明结 构简单, 设计合理, 投资和运行费用适中, 性价比高。 附图说明
图 1 是本发明提供的等离子无油点火燃烧器系统结构示意图 (轴向布 置);
图 2 是本发明提供的等离子无油点火燃烧器系统结构示意图 (径向布 置);
图 3是氧气导管结构的剖面示意图;
图 4是氧气导管结构的放大示意图;
图 5是氧气导管结构的剖面示意图;
图 6是氧气导管结构的剖面示意图;
图 7是氧气导管结构的剖面示意图;
图 8是氧气导管结构的剖面示意图;
图 9是氧气导管结构的剖面示意图;
图 10是氧气导管结构的剖面示意图;
图 11是氧气导管结构的剖面示意图;
图 12是氧气导管结构的剖面示意图。 具体实 式
以下根据图 1〜图 12, 具体说明本发明的较佳实施例。
实施例 1
如图 1、 图 3和图 4所示, 本发明提供一种富氧环境下的等离子无油点 火系统,包括等离子发生器 1和燃烧器 2。燃烧器 2内含有套筒 9和套筒 10, 等离子发生器 1、 燃烧器 2、 套筒 9和套筒 10采用同轴方向方式布置。 套筒 9和等离子发生器 1之间存在一个环形空间 A, 氧气导管 3安装在套筒 9左 端的内壁上, 氧气导管 3除了提供氧气外, 也起到煤粉浓缩环的作用, 氧气 导管 3的迎着煤粉气流方向的管壁外恻堆焊耐磨金属, 氧气导管 3背离煤粉 气流方向的管壁上布置有环形槽 101, 氧气通过环形槽 101进入环形空间 A 与煤粉掺混,在环形空间 A及相邻区域内形成局部富氧区。套筒 10和套筒 9 之间存在一个环形空间 B, 氧气导管 4安装在套筒 10左端的内壁上, 套筒 10和燃烧器 2之间存在一个环形空间 C, 氧气导管 8安装在燃烧器 2的内壁 上, 氧气导管 4和氧气导管 8类似于氧气导管 3, 其迎着煤粉气流方向的外 管壁都可以起到煤粉浓缩环的作用, 背离煤粉气流方向的管壁上, 布置有环 形槽 101。 同理, 煤粉气流和氧气可以在环形空间 B、 环形空间 C内充分掺 混, 在环形空间 B、 环形空间 C及相邻区域形成局部富氧区。
等离子无油点火系统工作时, 煤粉气流进入燃烧器 2内, 并分为 3部分 进入环形空间 A、环形空间 B和环形空间 C内, 等离子发生器 1产生高温等 离子体在套筒 9内形成一个局部高温区,煤粉颗粒快速热裂解释放出挥发份, 并且挥发份迅速燃烧, 通过改变调节阀 5的开度, 可在套筒 9内形成局部的 富氧区, 进一步促使煤粉气流燃烧, 通过改变调节阀 6的开度和调节阀 7的 开度, 可以在环形空间 B和环形空间 C及相邻空间内形成局部富氧区, 促使 煤粉迅速燃烧。 同时可以控制局部富氧区的富氧程度, 对燃烧器内煤粉的燃 烧强度进行控制。 燃烧器 2喷口处布置有背气流氧气导管 11, 背气流氧气导 管 11面向锅炉炉膛的壁面上布置有环形槽 101。氧气可以通过环形槽 101喷 入炉膛助燃, 在燃烧器喷口处形成局部富氧燃烧区, 强化煤粉气流在炉膛内 的燃烧, 提高了燃烧区区域的壁面热负荷, 提高了煤粉的燃尽率, 减少了锅 炉灭火的可能性, 最终使一次风气流迅速点燃稳定燃烧。
完成点火过程后, 等离子点火燃烧器作为主燃烧器使用时, 关闭氧气阀 门 12,打开吹扫空气阀门 13,使吹扫压缩空气通过氧气导管,并对氧气导管、 环形槽 101等进行吹扫, 防止氧气导管别煤粉或者灰渣堵塞。 吹扫介质也可 采用氮气或者二氧化碳气体。
实施例 2
如图 2、 图 3和图 4所示, 本实施例与实施例 1的区别在于, 等离子发 生器 1从燃烧器 2的径向方向插入等离子燃烧器, 并且等离子发生器喷出的 高温等离子体可以充满在套筒 9内。
实施例 3
如图 5所示, 本实施例与实施例 1的区别在于, 氧气导管 3、 4、 8的截 面形状为三角形形状, 其迎着煤粉气流方向的壁面为弧形面。 其背离煤粉气 流方向的壁面上布置环形槽 101, 氧气通过环形槽 101进入燃烧器同煤粉掺 混。
实施例 4
如图 6所示, 本实施例与实施例 1的区别在于, 在氧气导管 3、 4、 8的 截面形状为梯形形状, 背离煤粉气流方向的壁面上布置环形槽 101, 氧气通 过环形槽 101进入燃烧器同煤粉掺混。 实施例 5
如图 7所示, 本实施例与实施例 1的区别在于, 在氧气导管 3、 4、 8背 离煤粉气流方向的壁面上布置 8个氧气开孔 102, 氧气通过氧气开孔 102进 入燃烧器同煤粉掺混。
实施例 6
如图 8所示, 本实施例与实施例 1的区别在于, 氧气导管 3、 4、 8的截 面形状为三角形形状, 其迎着煤粉气流方向的壁面为弧形面。 在氧气导管背 离煤粉气流方向的壁面上布置 8个氧气开孔 102, 氧气通过氧气开孔 102进 入燃烧器同煤粉掺混。
实施例 7
如图 9所示, 本实施例与实施例 1的区别在于, 氧气导管 3、 4、 8的截 面形状为梯形形状, 在氧气导管背离煤粉气流方向的壁面上布置 8个氧气开 孔 102, 氧气通过氧气开孔 102进入燃烧器同煤粉掺混。
实施例 8
如图 10所示, 本实施例与实施例 1 的区别在于, 在氧气导管 3、 4、 8 背离煤粉气流方向的壁面上布置 8个氧气喷嘴 103, 氧气通过氧气喷嘴 103 进入燃烧器同煤粉掺混。
实施例 9
如图 11所示, 本实施例与实施例 1的区别在于, 氧气导管 3、 4、 8的截 面形状为三角形形形状, 其迎着煤粉气流方向的壁面为弧形面。 在氧气导管 背离煤粉气流方向的壁面上布置 8个氧气喷嘴 103, 氧气通过氧气喷嘴 103 进入燃烧器同煤粉掺混。
实施例 10
如图 12所示, 本实施例与实施例 1的区别在于, 氧气导管 3、 4、 8的截 面形状为梯形形状, 在氧气导管背离煤粉气流方向的壁面上布置 8个氧气喷 嘴 103, 氧气通过氧气喷嘴 103进入燃烧器同煤粉掺混。
尽管本发明的内容已经通过上述优选实施例作了详细介绍, 但应当认识 到上述的描述不应被认为是对本发明的限制。 在本领域技术人员阅读了上述 内容后, 对于本发明的多种修改和替代都将是显而易见的。 因此, 本发明的 保护范围应由所附的权利要求来限定。

Claims

权利要求:
1. 一种富氧环境下的等离子无油点火系统, 包含等离子发生器 (1 ) 和燃烧 器(2), 其特征在于, 该等离子无油点火系统包含一组设置在燃烧器(2) 内的套筒组, 该套筒组与燃烧器 (2) 同轴设置;
所述的套筒组包含若干同轴套设的套筒(9、 10), 该套筒组中至少包 含一个套筒;
相邻套筒之间以及套筒和燃烧器(2)之间形成环形空间(A、 B、 C); 所述的套筒上安装有氧气导管 (3、 4), 所述的燃烧器(2)上安装有 氧气导管 (8)。
2. 如权利要求 1所述的富氧环境下的等离子无油点火系统,其特征在于,所 述的等离子发生器 (1 ) 以同轴或者径向方式插入套筒组。
3. 如权利要求 2所述的富氧环境下的等离子无油点火系统,其特征在于,所 述的套筒 (9、 10) 的横截面形状为圆形或者矩形。
4. 如权利要求 2所述的富氧环境下的等离子无油点火系统,其特征在于,所 述的氧气导管 (3、 4、 8) 设置在迎着煤粉气流方向的一恻。
5. 如权利要求 4所述的富氧环境下的等离子无油点火系统,其特征在于,所 述的氧气导管 (3、 4、 8) 的截面形状为圆形、 椭圆形、 菱形、 三角形、 楔形或者梯形。
6. 如权利要求 4所述的富氧环境下的等离子无油点火系统,其特征在于,所 述的氧气导管 (3、 4、 8) 内迎着煤粉气流方向的壁面是平面或者是弧形 壁面。
7. 如权利要求 4所述的富氧环境下的等离子无油点火系统,其特征在于,所 述的氧气导管 (3、 4、 8) 在迎着煤粉气流方向的管壁上堆焊耐磨金属, 或者铺设耐磨陶瓷, 或者采用耐磨铸钢材料。
8. 如权利要求 4所述的富氧环境下的等离子无油点火系统,其特征在于,所 述的氧气导管 (3、 4、 8) 在背离煤粉气流方向的管壁上设置有若干环形 槽 (101 ), 或者设置若干开孔 (102), 或者设置若干氧气喷嘴 (103)。
9. 如权利要求 8所述的富氧环境下的等离子无油点火系统,其特征在于,所 述的氧气喷嘴的喷射方向与煤粉气流的流动方向呈 0°〜80°的角度。
10.如权利要求 2所述的富氧环境下的等离子无油点火系统,其特征在于,所 述的燃烧器 (2) 的喷口处安装有背气流氧气导管 (11)。
如权利要求 10所述的富氧环境下的等离子无油点火系统, 其特征在于, 所述的背气流氧气导管(11)在面向炉膛方向的管壁上设置有若干环形槽
(101), 或者设置若干开孔 (102), 或者设置若干氧气喷嘴 (103)。 如上述任意权利要求所述的富氧环境下的等离子无油点火系统,其特征在 于, 所述的氧气导管 (3、 4、 8、 11) 中的氧气流量是可以调节的。
PCT/CN2012/071195 2011-10-18 2012-02-16 一种富氧环境下的等离子无油点火系统 WO2013056524A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12824756.6A EP2770257A4 (en) 2011-10-18 2012-02-16 PLASMA OIL LIGHT IGNITION SYSTEM IN AN OXYGEN-ENRICHED ENVIRONMENT
US13/808,108 US9181919B2 (en) 2011-10-18 2012-02-16 Plasma oil-free ignition system in oxygen enriched environment
AU2012244364A AU2012244364B2 (en) 2011-10-18 2012-02-16 Plasma oil-free ignition system in oxygen enriched environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110315667.7 2011-10-18
CN2011103156677A CN102305415B (zh) 2011-10-18 2011-10-18 一种富氧环境下的等离子无油点火系统

Publications (1)

Publication Number Publication Date
WO2013056524A1 true WO2013056524A1 (zh) 2013-04-25

Family

ID=45379303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071195 WO2013056524A1 (zh) 2011-10-18 2012-02-16 一种富氧环境下的等离子无油点火系统

Country Status (6)

Country Link
US (1) US9181919B2 (zh)
EP (1) EP2770257A4 (zh)
CN (1) CN102305415B (zh)
AU (1) AU2012244364B2 (zh)
PL (1) PL224481B1 (zh)
WO (1) WO2013056524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116182192B (zh) * 2023-03-09 2024-04-19 中国空气动力研究与发展中心空天技术研究所 一种用于燃烧加热设备的气膜冷却点火环

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305415B (zh) * 2011-10-18 2013-10-09 上海锅炉厂有限公司 一种富氧环境下的等离子无油点火系统
CN102588997B (zh) * 2012-03-07 2014-07-09 上海锅炉厂有限公司 富氧燃烧系统
CN103017190B (zh) * 2013-01-15 2014-12-31 烟台龙源电力技术股份有限公司 一种少油或无油点火的加氧装置
CN103017160B (zh) * 2013-01-15 2016-05-04 烟台龙源电力技术股份有限公司 一种纯氧助燃的点火燃烧器
CN103075733B (zh) * 2013-01-23 2015-07-15 四川明日得投资管理咨询有限责任公司 农村垃圾无害化处理装置以及方法
EP3130851B1 (en) 2015-08-13 2021-03-24 General Electric Technology GmbH System and method for providing combustion in a boiler
US10473327B2 (en) 2016-06-09 2019-11-12 General Electric Technology Gmbh System and method for increasing the concentration of pulverized fuel in a power plant
CN107448934A (zh) * 2017-07-05 2017-12-08 李奎范 一种等离子燃料燃烧装置及燃料燃烧供热的方法
CN108194943B (zh) * 2017-12-29 2020-03-03 西安航天动力研究所 一种高压强、大流量液氧煤油发动机等离子体点火装置
CN109827173A (zh) * 2019-01-30 2019-05-31 曲大伟 一种内置伸缩式等离子热裂化点火与射流煤粉燃烧装置
CN110346409A (zh) * 2019-08-01 2019-10-18 太原市海通自动化技术有限公司 一种利用高温等离子体进行煤发热量分析的方法及装置
CN111256108A (zh) * 2020-03-17 2020-06-09 山东钧辰清洁能源科技有限公司 一种新型燃气锅炉用富氧燃烧装置及其加装方法和工艺
CN112178633A (zh) * 2020-09-29 2021-01-05 湖北赤焰热能工程有限公司 一种浓缩型双调风旋流燃烧器及方法
CN112503570B (zh) * 2020-11-23 2022-08-05 西安航天动力试验技术研究所 燃烧型空气加热器用高温压缩空气点火装置及点火方法
CN113048473B (zh) * 2021-04-13 2022-05-17 山西文龙中美环能科技股份有限公司 一种燃煤锅炉调峰的等离子体自动点火煤粉稳燃器和稳燃方法
CN116293786B (zh) * 2023-04-17 2024-03-08 鑫泓淼机械科技(山东)有限公司 一种接触式高效电能转换器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108923A1 (de) * 1982-10-15 1984-05-23 Bergwerksverband GmbH Zündeinrichtung für Kohlenstaubfeuerungen
CN2752615Y (zh) * 2004-11-25 2006-01-18 韩剑锋 内风膜周界风式煤粉燃烧器
CN101532662A (zh) * 2008-03-14 2009-09-16 烟台龙源电力技术股份有限公司 一种采用内燃式燃烧器的煤粉锅炉降低氮氧化物的方法
CN201582810U (zh) * 2009-12-15 2010-09-15 中国航天空气动力技术研究院 带氧气助燃的双强化微油点火与稳燃装置
CN101886816A (zh) * 2010-04-14 2010-11-17 中国电力工程顾问集团华北电力设计院工程有限公司 一种改进的粉煤气化炉等离子点火喷嘴及方式
CN101427072B (zh) * 2006-05-17 2011-06-01 杭州意能节能技术有限公司 一种带隔板的煤粉燃烧器
CN102305415A (zh) * 2011-10-18 2012-01-04 上海锅炉厂有限公司 一种富氧环境下的等离子无油点火系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194211A (ja) * 1984-03-14 1985-10-02 Hitachi Ltd ア−ク式点火ト−チを備えた微粉炭バ−ナ
AU598147B2 (en) * 1987-08-13 1990-06-14 Connell Wagner Pty Ltd Pulverised fuel burner
JPH1155105A (ja) * 1997-07-31 1999-02-26 Nippon Telegr & Teleph Corp <Ntt> リタイミング回路
CN2326843Y (zh) * 1998-03-31 1999-06-30 烟台开发区龙源电力燃烧控制工程有限公司 用于等离子点火装置上的燃烧器
CN2605476Y (zh) * 2003-03-11 2004-03-03 陈昌俊 三旋流式马弗炉燃烧器
CN2665548Y (zh) * 2003-10-20 2004-12-22 黄继祥 一种用等离子体点燃锅炉煤粉的无油点火装置
US8696348B2 (en) * 2006-04-26 2014-04-15 Air Products And Chemicals, Inc. Ultra-low NOx burner assembly
AU2008278159B2 (en) * 2007-07-19 2011-10-27 Yantai Longyuan Power Technology Co., Ltd. A burner ignited by plasma
WO2009092234A1 (zh) * 2007-12-27 2009-07-30 Beijing Guangyao Electricity Equipment Co., Ltd 交流等离子发射枪及其供电方法和煤粉燃烧器
CN100582581C (zh) * 2008-08-22 2010-01-20 西安交通大学 一种用于低挥发分煤的等离子无油点火系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108923A1 (de) * 1982-10-15 1984-05-23 Bergwerksverband GmbH Zündeinrichtung für Kohlenstaubfeuerungen
CN2752615Y (zh) * 2004-11-25 2006-01-18 韩剑锋 内风膜周界风式煤粉燃烧器
CN101427072B (zh) * 2006-05-17 2011-06-01 杭州意能节能技术有限公司 一种带隔板的煤粉燃烧器
CN101532662A (zh) * 2008-03-14 2009-09-16 烟台龙源电力技术股份有限公司 一种采用内燃式燃烧器的煤粉锅炉降低氮氧化物的方法
CN201582810U (zh) * 2009-12-15 2010-09-15 中国航天空气动力技术研究院 带氧气助燃的双强化微油点火与稳燃装置
CN101886816A (zh) * 2010-04-14 2010-11-17 中国电力工程顾问集团华北电力设计院工程有限公司 一种改进的粉煤气化炉等离子点火喷嘴及方式
CN102305415A (zh) * 2011-10-18 2012-01-04 上海锅炉厂有限公司 一种富氧环境下的等离子无油点火系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770257A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116182192B (zh) * 2023-03-09 2024-04-19 中国空气动力研究与发展中心空天技术研究所 一种用于燃烧加热设备的气膜冷却点火环

Also Published As

Publication number Publication date
AU2012244364B2 (en) 2014-06-26
US20130333676A1 (en) 2013-12-19
AU2012244364A1 (en) 2013-05-02
CN102305415A (zh) 2012-01-04
EP2770257A4 (en) 2015-07-08
PL403825A1 (pl) 2014-02-17
EP2770257A1 (en) 2014-08-27
CN102305415B (zh) 2013-10-09
PL224481B1 (pl) 2016-12-30
US9181919B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
WO2013056524A1 (zh) 一种富氧环境下的等离子无油点火系统
TW200401871A (en) NOx-reduced combustion of concentrated coal streams
ZA200709079B (en) Pulverized solid fuel burner
RU2460941C1 (ru) Способ сжигания угля микропомола и угля обычного помола в пылеугольной горелке и устройство для его реализации
CN103791493B (zh) 煤粉火焰预热再燃系统
CN109373316A (zh) 一种供暖天然气热水锅炉用低氮燃烧器
CN105927969A (zh) 一种降低前后墙对冲燃烧锅炉氮氧化物的燃烧系统
TW201527696A (zh) 固體燃料燃燒器
CN102444890A (zh) 一种微油量点火燃烧器
WO2020108223A1 (zh) 炭黑尾气低氮稳燃工艺及炭黑尾气低氮稳燃系统
CN108413382B (zh) 一种用于生物质和天然气单独燃烧或混合燃烧的燃烧器
RU136131U1 (ru) Схема растопки пылеугольного котла посредством водоугольного топлива
CN110360544B (zh) 一种煤粉气化与分级预混燃烧的低氮燃烧装置
WO2021043241A1 (zh) 燃烧器底置煤粉锅炉及其控制方法
CN110319437B (zh) 一种富氧多重火焰旋流煤粉燃烧器
JP3680659B2 (ja) 燃焼装置および燃焼方法
CN107575869B (zh) 一种适用于生物质沼气的节能型低NOx燃烧器
CN203642171U (zh) 一种二段式煤粉燃烧器
CN203116019U (zh) 燃气短火焰高温工业燃烧器
CN212298990U (zh) 一种中心分级燃气低氮燃烧器
CN214664368U (zh) 一种掺烧化工干气或火炬气的煤粉锅炉结构
CN214275703U (zh) 燃用高温荒煤气的直流燃烧器
RU2287110C2 (ru) Способ интенсификации процесса сжигания газа и горелочное устройство для его реализации
CN212456842U (zh) 带蓄热稳焰锥的低热值燃气燃烧器
CN211424389U (zh) 一种煤气燃烧器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10896/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13808108

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012824756

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: P.403825

Country of ref document: PL

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE