WO2013055069A1 - 큐알코드 자동 인식 장치 및 방법 - Google Patents
큐알코드 자동 인식 장치 및 방법 Download PDFInfo
- Publication number
- WO2013055069A1 WO2013055069A1 PCT/KR2012/008142 KR2012008142W WO2013055069A1 WO 2013055069 A1 WO2013055069 A1 WO 2013055069A1 KR 2012008142 W KR2012008142 W KR 2012008142W WO 2013055069 A1 WO2013055069 A1 WO 2013055069A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- code
- recognition
- image
- recognized
- information
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10792—Special measures in relation to the object to be scanned
- G06K7/10801—Multidistance reading
- G06K7/10811—Focalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/211—Selection of the most significant subset of features
- G06F18/2113—Selection of the most significant subset of features by ranking or filtering the set of features, e.g. using a measure of variance or of feature cross-correlation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/1408—Methods for optical code recognition the method being specifically adapted for the type of code
- G06K7/1417—2D bar codes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/1439—Methods for optical code recognition including a method step for retrieval of the optical code
- G06K7/1443—Methods for optical code recognition including a method step for retrieval of the optical code locating of the code in an image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/146—Methods for optical code recognition the method including quality enhancement steps
- G06K7/1465—Methods for optical code recognition the method including quality enhancement steps using several successive scans of the optical code
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/146—Methods for optical code recognition the method including quality enhancement steps
- G06K7/1478—Methods for optical code recognition the method including quality enhancement steps adapting the threshold for pixels in a CMOS or CCD pixel sensor for black and white recognition
Definitions
- the present invention when the user runs a QR (Quick Response) code recognition application installed on a smart phone (Smart Phone) to carry, automatically without the need to adjust the distance for one QR code or more than one QR code recognition
- QR Quick Response
- the present invention relates to a QR code automatic recognition device and a method for recognizing a QR code by photographing.
- QR code is a two-dimensional code in a matrix format representing information in a black and white plaid pattern. QR codes are commonly used in Japan, and the name comes from DENSO WAVE's registered trademark Quick Response.
- the two-dimensional bar code that overcomes the limitations of the conventional bar code capacity and expands its format and contents, can store the data of characters besides numbers by reading the horizontal and horizontal information, and read and use them with a digital camera or a dedicated scanner.
- a general barcode can store numeric information in one direction
- a QR code can have more information by having a two-dimensional form vertically and horizontally, and can store character data such as alphabets and Chinese characters in addition to numbers. If the color tone can be determined, the color may be included.
- These QR codes can contain up to 1817 Asian characters, including up to 7089 numbers, up to 4296 characters (ASCII), up to 2953 bytes in binary 8 bits, and Chinese characters. In particular, the recognition rate is good and the processing speed is considerably fast.
- the conventional QR code is to be detected at a distance of 1 meter (m) or 2 meters (m) from the scanner, the user may bring the scanner closer to the QR code and the QR code recorded on the screen of the scanner may be displayed on the screen. There is an inconvenience in adjusting to the recognition frame.
- the present invention for solving the above problems, when the user runs a QR (Quick Response) code recognition application installed in a smart phone (Smart Phone) to carry, a distance for recognizing one QR code or more than one QR code It is an object of the present invention to provide an automatic QR code recognition device and method that can automatically capture and recognize one or more QR codes in one shot without the need for adjustment.
- QR Quick Response
- an automatic QR code recognition apparatus including: a photographing unit configured to obtain a QR code including a recognition point and a surrounding to obtain an ambient image including a QR code;
- the surrounding image including the QR code obtained through the photographing unit is converted into a gray scale image in units of pixels, and converted into a histogram representing a distribution degree according to the brightness of each pixel with respect to the gray scale image, and the brightness value concentration based on the histogram. It extracts only the pixels whose level is above the threshold and sets them as candidate pixel groups. If the recognition points are recognized by recognizing the recognition points through recognition markers, the recognition codes are recognized as QR codes.
- QR code recognition unit for reading;
- a display unit configured to display the recognized QR code image or to display information of the read QR code;
- a storage unit for matching and storing the recognized QR code image and the read QR code information.
- the QR code recognizing unit may vector the surrounding image including the QR code acquired through the photographing unit when the QR code is not recognized due to recognition of three recognition points through the recognition marker.
- the surrounding image including the enlarged and corrected QR code is converted into a gray scale image in pixel units, and converted into a histogram representing a distribution according to the brightness of each pixel with respect to the gray scale image. Based on the histogram, only those pixels whose brightness level is higher than the threshold value are extracted and set as candidate pixel groups. If recognition points are found through recognition markers for the set candidate pixel groups, the three recognition points are recognized as QR codes. can do.
- the communication unit for transmitting the recognized QR code image and the information of the read QR code to the outside;
- a controller configured to control the display of the recognized QR code image and the read QR code information to be displayed or stored, or to control transmission through the communication unit so as to be registered on an external social network service.
- the QR code recognition unit converts a peripheral image including the QR code obtained through the photographing unit into a gray scale image in pixel units, Converted into histograms representing the distribution of each pixel's brightness, extracting only those pixels whose brightness level is above the threshold based on the histogram, and setting them as candidate pixel groups, and recognizing the set candidate pixel groups through recognition markers If three recognition points are found by finding a point, it is recognized as a QR code, and the information of the recognized QR code is read.
- the acquired peripheral image including the QR code is converted into a gray scale image in pixel units, and the gray level image is converted into a histogram indicating a distribution degree according to the brightness of each pixel. Only pixels corresponding to the threshold value or more are extracted and set as a candidate pixel group, and a recognition point is found through the recognition marker for the set candidate pixel group, and when three recognition points are recognized, they are recognized as a QR code. Read,
- the peripheral image including the QR code acquired last is converted into a gray scale image in pixel units, and a histogram representing a distribution according to the brightness of each pixel for the gray scale image is converted into a brightness value based on the histogram. Extract only those pixels whose density level is above the threshold and set them as candidate pixel groups. If recognition points are found through recognition markers for the set candidate pixel groups, three recognition points are recognized as QR codes. By reading the information, the information of each read QR code can be displayed on the screen as a list.
- an illuminance sensor for detecting the ambient illuminance of the QR code; And a flash unit configured to emit a flash according to the illuminance detection of the illuminance sensor, wherein the flash unit emits the flash when the ambient brightness is dark based on the ambient illuminance detected by the illuminance sensor.
- the recognition unit may correct a backlight of the QR code image photographed by the photographing unit.
- the application providing apparatus for a user terminal for achieving the above object, by acquiring the QR code including the recognition point and the surroundings through the camera to obtain a peripheral image including the QR code,
- the ambient image including the acquired QR code is converted into a gray scale image in pixel units, and the gray level image is converted into a histogram indicating a distribution degree according to the brightness of each pixel, and the brightness concentration level is threshold based on the histogram. It extracts only the pixels corresponding to the above and sets them as candidate pixel groups, finds recognition points through the recognition markers for the set candidate pixel groups, recognizes them as QR codes when three recognition points are recognized, and reads the recognized QR codes.
- a user terminal program is provided through a communication network.
- QR code automatic recognition method for achieving the above object, (a) to obtain a surrounding image containing the QR code by recording the QR code and the surroundings containing the recognition points through the recording unit Doing; (b) converting the surrounding image including the QR code obtained through the photographing unit into a gray scale image in pixel units; (c) converting the gray scale image into a histogram representing a distribution according to brightness of each pixel; (d) extracting only pixels whose brightness concentration level is equal to or greater than a threshold value based on the histogram and setting them as candidate pixel groups; (e) finding a recognition point through the recognition marker with respect to the set candidate pixel group; (f) recognizing a QR code when three found recognition points are recognized; And (g) reading information of the recognized QR code.
- step (f) when three recognition points found through the recognition marker are not recognized for the candidate pixel group in step (f), the QR code cannot be recognized.
- the steps (b) to (g) may be performed on the surrounding image including the enlarged and corrected QR code.
- the method may further include transmitting the registered QR code image and the read QR code information to an external device and transmitting the registered QR code image to a social network service for registration.
- the steps (b) to (g) are performed on the surrounding image including the QR code obtained through the photographing unit, and the photographing is performed. Performing the steps (b) to (g) on the surrounding image including the QR code obtained through the following, and for the surrounding image including the QR code finally obtained by the same process through the photographing unit Step (b) to step (g) can be performed.
- the peripheral illuminance of the QR code is sensed, and when the ambient brightness is dark, the flash is emitted to photograph the QR code and the surroundings to obtain an ambient image including the QR code.
- the backlight of the surrounding image may be corrected.
- a program for executing the QR code automatic recognition method according to an embodiment of the present invention can be recorded on a computer-readable medium.
- the user can automatically recognize the QR code without having to adjust the size of the QR code to be adjusted to match a recognition frame on the screen, or to adjust the size of the QR code to be photographed. .
- the recording and recognition time of the QR code can be greatly shortened, and the QR code information can be confirmed within a short time.
- FIG. 1 is a configuration diagram schematically showing the overall configuration of the QR code automatic recognition device according to an embodiment of the present invention.
- FIG. 2 is a flowchart illustrating an automatic QR code recognition method of an apparatus according to an embodiment of the present invention.
- FIG. 3 is a diagram illustrating a QR code automatic recognition process performed by a QR code automatic recognition device according to an embodiment of the present invention.
- FIG. 4 is a block diagram schematically illustrating a configuration of an entire system for registering a QR code image photographed and recognized according to an embodiment of the present invention on a social network service.
- FIG. 5 is a diagram illustrating a process of recognizing two or more QR codes according to an embodiment of the present invention.
- FIG. 6 is a diagram illustrating an example of providing a list of QR code information recognized by a single shot of a plurality of QR codes according to an embodiment of the present invention.
- FIG. 7 is a diagram illustrating an example of recognizing each QR code by dividing it into two screens based on a center line with respect to a screen obtained by photographing a QR code according to an embodiment of the present invention.
- FIG. 1 is a configuration diagram schematically showing the functional configuration of the QR code automatic recognition device according to an embodiment of the present invention.
- the QR code automatic recognition device 100 includes a photographing unit 110, a QR code recognition unit 120, a control unit 130, a display unit 140, and a storage unit ( 150, a communicator 160, a selector 170, an illuminance sensor 180, a flash unit 190, and the like.
- the QR code automatic recognition device 100 can be applied as a QR code recognition application to the smart phone (Smart Phone) that the user carries, can also be applied to a computer device connected to the Internet, a separate dedicated QR code recognition device Applicable to
- the photographing unit 110 includes a camera, and photographs a QR code that is separated from the camera at an interval of, for example, 30 cm, 50 cm, 1 m, and the like, and includes a QR code as shown in FIG. The captured surrounding image.
- the QR code recognition unit 120 converts the surrounding image including the QR code obtained through the photographing unit into a gray scale image in pixel units, and converts the gray scale image into a histogram indicating a distribution degree according to the brightness of each pixel. Based on the histogram, only those pixels whose brightness level is higher than the threshold value are extracted and set as candidate pixel groups. If recognition points are found through recognition markers for the set candidate pixel groups, the three recognition points are recognized as QR codes. It reads the recognized QR code information, and processes the read QR code information as one of display, transmission, and storage.
- the QR code recognition unit 120 includes a QR code obtained through the photographing unit 110 when the QR code is not recognized because the recognition code is not recognized through the recognition markers for the candidate pixel group.
- the image is enlarged and corrected by a vector method, and then the enlarged and converted surrounding image including the corrected QR code is converted to a gray scale image in pixels, and a histogram indicating a distribution according to the brightness of each pixel with respect to the gray scale image. After converting to, based on the histogram, only those pixels whose brightness level is greater than or equal to the threshold value are extracted and set as candidate pixel groups, and when three recognition points are recognized by finding recognition points through recognition markers for the set candidate pixel groups It is recognized as a QR code.
- the display unit 140 displays the recognized QR code image or displays information of the read QR code.
- the storage unit 150 matches and stores the recognized QR code image and the read QR code information.
- the communicator 160 is used to transmit the recognized QR code image and the read QR code information to the outside, and the controller 130 transmits the captured QR code image and the read QR code information according to a user's selection. It transmits to the outside through the 160 to control the transmission to be registered on the social network service (Social Network Service).
- Social Network Service Social Network Service
- the photographing unit 110 sequentially photographs two or more QR codes according to a user's hand movement as shown in FIG. 5, and the QR code recognition unit 120 photographs.
- the neighboring image including the QR code obtained through the unit 110 is converted into a gray scale image in pixel units, and a histogram representing a distribution according to the brightness of each pixel for the gray scale image. Extract only the pixels whose brightness level is above the threshold and set them as candidate pixel groups. If recognition points are found through the recognition markers for the set candidate pixel groups, three recognition points are recognized as QR codes. Reads the QR code information, and the peripheral image including the QR code obtained through the photographing unit 110 as a gray scale image in units of pixels.
- the recognition code is recognized as a QR code
- the information of the recognized QR code is read, and the QR code finally acquired through the same process through the photographing unit 110.
- selecting unit 170 is used to select one of the QR code list displayed on the screen, QR code recognition unit 120, if one of the QR code list is selected, the information of the selected QR code on the screen in detail Can be provided to
- the illuminance sensor 180 detects the peripheral illuminance of the QR code
- the flash unit 190 emits a flash according to the illuminance detection of the illuminance sensor 180. That is, when the ambient brightness is dark based on the ambient illumination detected by the illumination sensor 180, the flash unit 190 emits a flash, and the QR code recognition unit 120 is photographed by the photographing unit 110. After the backlight of the QR code image is corrected, recognition points are recognized.
- FIG. 2 is a flowchart illustrating an automatic QR code recognition method according to an embodiment of the present invention.
- QR code automatic recognition device 100 as the user first runs the QR code recognition application, for example, 50cm or 1m away from the photographing unit 110
- the QR code and the surroundings are photographed through the photographing unit 110 with respect to the QR code to obtain a surrounding image including the QR code as shown in FIG.
- the QR code includes three recognition points.
- 3 is a diagram illustrating a QR code automatic recognition process performed by a QR code automatic recognition device according to an embodiment of the present invention.
- the automatic QR code recognition apparatus 100 captures the surrounding image including the QR code acquired by photographing the gray scale in the pixel unit as shown in (b) of FIG. 3 through the QR code recognition unit 120.
- scale is converted into an image (S204).
- the gray scale is a measure indicating the degree of brightness by dividing the white to black step by step. That is, the QR code recognition unit 120 converts the surrounding image including the QR code into a black and white image having a brightness value of gray scale 0 to 255.
- the QR code automatic recognition device 100 shows a histogram showing a distribution chart according to the brightness of each pixel as shown in FIG. 3C through the QR code recognition unit 120 for the surrounding image including the QR code. Convert to a histogram (S206).
- the histogram represents the number of pixels having the density level or the ratio of all the pixels for each density level with respect to the image, and the QR code recognition unit 120 as shown in (c) of FIG.
- the histogram that displays the brightness value at each pixel position indicates the density level according to the brightness value of each pixel.
- the concentration level according to the brightness value is white (zero)
- black is 255
- the QR code automatic recognition apparatus 100 extracts only the pixels whose brightness value concentration level is equal to or greater than the threshold value through the QR code recognition unit 120 based on the histogram as shown in FIG.
- the pixel group is set (S208). That is, since the QR code portion has the highest density level in the gray scale image of the surrounding image including the QR code, the QR code recognition unit 120 has the highest gray scale as shown in FIG.
- the threshold value is not a 204 concentration level corresponding to 80% of the concentration level 255, but may be set to a 230 concentration level corresponding to 90% by increasing the concentration level or may be set to other concentration levels.
- the QR code automatic recognition apparatus 100 finds a recognition point indicating a QR code through the recognition marker by the QR code recognition unit 120 with respect to the set candidate pixel group as shown in FIG. S210).
- the QR code recognizing unit 120 displays pixels having a high density level through a recognition marker of yellow lighting or green lighting, for example, as shown in FIG. At this point, each pixel of the candidate pixel group is touched to find and recognize recognition points representing a QR code.
- the QR code automatic recognition apparatus 100 recognizes three recognition points by finding the recognition points through the recognition markers for the candidate pixel group (S212-Yes)
- the QR code recognition apparatus recognizes the areas having the three recognition points as QR codes ( S214).
- the QR code automatic recognition device 100 reads the information of the QR code through the QR code recognition unit 120 (S216).
- the QR code automatic recognition apparatus 100 processes the information of the QR code read through the QR code recognition unit 120 as one of display, transmission, and storage (S218).
- step S212 when the QR code automatic recognition device 100 does not find three recognition points by the recognition marker during a predetermined time elapses through the QR code recognition unit 120 in step S212 (S212) -No), after enlarging the surrounding image including the QR code acquired through the photographing unit 110 in a vector manner and correcting the backlight (S220), steps S204 to S214 are performed again.
- the vector method is to implement an image composed of lines and curves defined by a mathematical object. Unlike a bitmap image, a vector image is automatically resized at any resolution so that a clear image is obtained regardless of the resolution. Can be.
- the file size is determined by the number of points and lines, so a simple image is much smaller than a bitmap file of the same size. That is, the vector method is a method of storing an image as a Bezier curve unlike the bitmap method of storing information in units of points. Bezier curve refers to the curvature (curvature) of a curve connecting points between points in a mathematical way, and because of these changeable lines, the shape of a curve remains clear even when the image is enlarged or reduced. The capacity of is also unchanged.
- the QR code automatic recognition device 100 finds three recognition points through the QR code recognition unit 120 and recognizes the QR code to read the QR code information (S216), and then reads the information of the read QR code. Displayed on the screen, and when there are a plurality of QR codes, information of the plurality of QR codes read out is displayed on the screen as a list as shown in FIG. 6, and one of the lists for the information of the QR codes is selected by the user. If selected, the read information on the QR code information corresponding to the selected list may be provided in detail on the screen.
- FIG. 3 is a schematic diagram showing the configuration of the entire system for registering the QR code image photographed and recognized according to an embodiment of the present invention on a social network service.
- the QR code automatic recognition apparatus 100 when the QR code automatic recognition apparatus 100 according to an embodiment of the present invention as shown in FIG. 5 has two or more QR codes, the QR code automatic recognition apparatus 100 according to the operation of the user of FIG. A), (B), (C) proceed sequentially as in each shoot a QR code.
- 5 is a diagram illustrating a process of recognizing two or more QR codes according to an embodiment of the present invention.
- the automatic QR code recognition apparatus 100 performs steps S204 to S216 on the QR code image of (A) taken first, and performs step S202 again to capture the next (B) QR code to acquire. Steps S204 to S216 are performed on one (B) QR code image, and in step S202, the same procedure is performed on the QR code image (C) obtained by photographing the last QR code. Steps S204 to S216 are performed.
- the QR code automatic recognition apparatus 100 performs QR code photographed while sequentially performing the two or more QR codes as shown in (a), (b) and (c) of FIG. It recognizes and reads the information of each QR code, and provides each QR code reading information as a reading information list including a QR code image on the screen as shown in FIG. 6 is a diagram illustrating an example of providing a list of QR code information recognized by a single shot of a plurality of QR codes according to an embodiment of the present invention. Therefore, the user can select and check all or one of the plurality of QR code information.
- the QR code automatic recognition apparatus 100 divides the screen obtained by photographing the QR code into two pieces based on the vertical vertical line as shown in FIG.
- a QR code image of (A) and a QR code image of (B) are obtained on the left screen based on the vertical vertical line, respectively through the above-described steps S202 to S216,
- Each read information may be provided in a list as shown in FIG. 7 is a diagram illustrating an example of recognizing each QR code by dividing it into two screens based on a center line with respect to a screen obtained by photographing a QR code according to an embodiment of the present invention.
- the QR code automatic recognition apparatus 100 detects the ambient illumination of the QR code, if the ambient brightness is dark, for example, when recognizing the QR code at night, flash unit 190 Flashes the flash through to shoot the QR code, and also correct the backlight of the captured QR code image, if the QR code is not recognized by performing the steps S204 to S212 as described above, the QR code image vector method
- the QR code is recognized by recognizing three recognition points. Therefore, even when the surrounding environment is dark enough to recognize the QR code, it is possible to recognize and read the QR code more clearly than the conventional method.
- a program for executing the QR code automatic recognition method according to an embodiment of the present invention can be recorded on a computer-readable medium such as a CD or USB media.
- QR code recognition application installed in a mobile terminal to be carried
- one shot or two or more QR codes do not need to adjust the distance for recognition in one shot
- a QR code automatic recognition device and method which can automatically recognize and read one or more QR codes can be realized.
- the present invention can be applied to a mobile terminal such as a smart phone, etc., in which an application for scanning a QR code is installed, and can also be applied to a device for scanning a QR code and providing the information.
- QR code automatic recognition device 110 Shooting unit
- illuminance detection unit 190 flash unit
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Data Mining & Analysis (AREA)
- Quality & Reliability (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Studio Devices (AREA)
- Image Analysis (AREA)
- Character Discrimination (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Telephone Function (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (13)
- 인식점들이 포함된 큐알코드와 주변을 촬영하여 큐알코드가 포함된 주변 영상을 획득하는 촬영부;상기 촬영부를 통해 획득된 큐알코드가 포함된 주변 영상을 픽셀 단위의 그레이 스케일 영상으로 변환하고, 그레이 스케일 영상에 대해 각 픽셀의 밝기에 따른 분포도를 나타내는 히스토그램으로 변환하여, 히스토그램에 근거해 밝기값 농도 레벨이 임계값 이상에 해당하는 픽셀들만 추출해 후보 픽셀군으로 설정하며, 설정된 후보 픽셀군에 대해 인식 마커를 통해 인식점을 찾아 인식점들이 인지되면 큐알코드로 인식하며, 인식된 큐알코드의 정보를 판독하는 큐알코드 인식부;상기 인식된 큐알코드 영상을 디스플레이하거나, 상기 판독된 큐알코드의 정보를 디스플레이하는 표시부; 및상기 인식된 큐알코드 영상과, 상기 판독된 큐알코드의 정보를 매칭하여 저장하는 저장부;를 포함하는 큐알코드 자동 인식 장치.
- 제 1 항에 있어서,상기 큐알코드 인식부는, 상기 후보 픽셀군에 대해 인식 마커를 통해 3 개의 인식점들을 인지하지 못해 큐알코드를 인식하지 못할 경우에, 상기 촬영부를 통해 획득된 큐알코드가 포함된 주변 영상을 벡터 방식으로 확대하고 보정한 후, 상기 확대하고 보정된 큐알코드가 포함된 주변 영상을 픽셀 단위의 그레이 스케일 영상으로 변환하고, 그레이 스케일 영상에 대해 각 픽셀의 밝기에 따른 분포도를 나타내는 히스토그램으로 변환하여, 히스토그램에 근거해 밝기값 농도 레벨이 임계값 이상에 해당하는 픽셀들만 추출해 후보 픽셀군으로 설정하며, 설정된 후보 픽셀군에 대해 인식 마커를 통해 인식점을 찾아 3 개의 인식점들이 인지되면 큐알코드로 인식하는 것을 특징으로 하는 큐알코드 자동 인식 장치.
- 제 1 항에 있어서,상기 인식된 큐알코드 영상 및 상기 판독된 큐알코드의 정보를 외부로 송출하기 위한 통신부; 및상기 인식된 큐알코드 영상 및 상기 판독된 큐알코드의 정보가 디스플레이 또는 저장되도록 제어하거나, 외부의 소셜 네트워크 서비스(Social Network Service) 상에 등록되도록 상기 통신부를 통해 전송 제어하는 제어부;를 더 포함하는 것을 특징으로 하는 큐알코드 자동 인식 장치.
- 제 1 항에 있어서,상기 촬영부를 통해 둘 이상의 큐알코드를 촬영할 경우에 상기 큐알코드 인식부는,상기 촬영부를 통해 먼저 획득된 큐알코드가 포함된 주변 영상을 픽셀 단위의 그레이 스케일 영상으로 변환하고, 그레이 스케일 영상에 대해 각 픽셀의 밝기에 따른 분포도를 나타내는 히스토그램으로 변환하여, 히스토그램에 근거해 밝기값 농도 레벨이 임계값 이상에 해당하는 픽셀들만 추출해 후보 픽셀군으로 설정하며, 설정된 후보 픽셀군에 대해 인식 마커를 통해 인식점을 찾아 3 개의 인식점들이 인지되면 큐알코드로 인식하며, 인식된 큐알코드의 정보를 판독하고,다음으로 획득된 큐알코드가 포함된 주변 영상을 픽셀 단위의 그레이 스케일 영상으로 변환하고, 그레이 스케일 영상에 대해 각 픽셀의 밝기에 따른 분포도를 나타내는 히스토그램으로 변환하여, 히스토그램에 근거해 밝기값 농도 레벨이 임계값 이상에 해당하는 픽셀들만 추출해 후보 픽셀군으로 설정하며, 설정된 후보 픽셀군에 대해 인식 마커를 통해 인식점을 찾아 3 개의 인식점들이 인지되면 큐알코드로 인식하며, 인식된 큐알코드의 정보를 판독하며,동일한 과정으로 마지막으로 획득된 큐알코드가 포함된 주변 영상을 픽셀 단위의 그레이 스케일 영상으로 변환하고, 그레이 스케일 영상에 대해 각 픽셀의 밝기에 따른 분포도를 나타내는 히스토그램으로 변환하여, 히스토그램에 근거해 밝기값 농도 레벨이 임계값 이상에 해당하는 픽셀들만 추출해 후보 픽셀군으로 설정하며, 설정된 후보 픽셀군에 대해 인식 마커를 통해 인식점을 찾아 3 개의 인식점들이 인지되면 큐알코드로 인식하며, 인식된 큐알코드의 정보를 판독하여, 각각의 판독된 큐알코드의 정보들을 리스트로 화면 상에 디스플레이하는 것을 특징으로 하는 큐알코드 자동 인식 장치.
- 제 1 항에 있어서,상기 큐알코드의 주변 조도를 감지하기 위한 조도 감지부; 및상기 조도 감지부의 조도 감지에 따라 플래시(Flash)를 발광시키는 플래시부를 더 포함하고,상기 조도 감지부를 통해 감지된 주변 조도에 근거해 주변 밝기가 어두운 경우 상기 플래시부가 플래시를 발광시키고, 상기 큐알코드 인식부는 상기 촬영부를 통해 촬영된 큐알코드 영상의 역광을 보정하는 것을 특징으로 하는 큐알코드 자동 인식 장치.
- 카메라를 통해 인식점들이 포함된 큐알코드와 주변을 촬영하여 큐알코드가 포함된 주변 영상을 획득하고, 획득된 큐알코드가 포함된 주변 영상을 픽셀 단위의 그레이 스케일 영상으로 변환하며, 그레이 스케일 영상에 대해 각 픽셀의 밝기에 따른 분포도를 나타내는 히스토그램으로 변환하여, 히스토그램에 근거해 밝기값 농도 레벨이 임계값 이상에 해당하는 픽셀들만 추출해 후보 픽셀군으로 설정하며, 설정된 후보 픽셀군에 대해 인식 마커를 통해 인식점을 찾아 3 개의 인식점들이 인지되면 큐알코드로 인식하며, 인식된 큐알코드의 정보를 판독하는 사용자 단말용 프로그램을 통신망을 통해 제공하는 사용자 단말용 어플리케이션 제공장치.
- (a) 촬영부를 통해 인식점들이 포함된 큐알코드와 주변을 촬영하여 큐알코드가 포함된 주변 영상을 획득하는 단계;(b) 상기 촬영부를 통해 획득된 큐알코드가 포함된 주변 영상을 픽셀 단위의 그레이 스케일 영상으로 변환하는 단계;(c) 상기 그레이 스케일 영상에 대해 각 픽셀의 밝기에 따른 분포도를 나타내는 히스토그램으로 변환하는 단계;(d) 상기 히스토그램에 근거해 밝기값 농도 레벨이 임계값 이상에 해당하는 픽셀들만 추출해 후보 픽셀군으로 설정하는 단계;(e) 상기 설정된 후보 픽셀군에 대해 인식 마커를 통해 인식점을 찾는 단계;(f) 상기 찾은 인식점이 3 개가 인지되면 큐알코드로 인식하는 단계; 및(g) 상기 인식된 큐알코드의 정보를 판독하는 단계;를 포함하는 큐알코드 자동 인식 방법.
- 제 7 항에 있어서,상기 (f) 단계에서 상기 후보 픽셀군에 대해 인식 마커를 통해 찾은 인식점이 3 개가 인지되지 못해 큐알코드를 인식하지 못할 경우에, 상기 촬영부를 통해 획득된 큐알코드가 포함된 주변 영상을 벡터 방식으로 확대하고 보정한 후, 상기 확대하고 보정된 큐알코드가 포함된 주변 영상에 대해 상기 (b) 단계 내지 상기 (g) 단계를 수행하는 것을 특징으로 하는 큐알코드 자동 인식 방법.
- 제 7 항에 있어서,(h) 상기 인식된 큐알코드 영상 및 상기 판독된 큐알코드의 정보를 외부로 송출하여 소셜 네트워크 서비스(Social Network Service) 상에 전송하여 등록하는 단계;를 더 포함하는 것을 특징으로 하는 큐알코드 자동 인식 방법.
- 제 7 항에 있어서,상기 (a) 단계에서 둘 이상의 큐알코드를 촬영할 경우에,상기 촬영부를 통해 먼저 획득된 큐알코드가 포함된 주변 영상에 대해 상기 (b) 단계 내지 상기 (g) 단계를 수행하고,상기 촬영부를 통해 다음으로 획득된 큐알코드가 포함된 주변 영상에 대해 상기 (b) 단계 내지 상기 (g) 단계를 수행하며,상기 촬영부를 통해 동일한 과정으로 마지막으로 획득된 큐알코드가 포함된 주변 영상에 대해 상기 (b) 단계 내지 상기 (g) 단계를 수행하는 것을 특징으로 하는 큐알코드 자동 인식 방법.
- 제 10 항에 있어서,(h) 상기 각각의 판독된 큐알코드의 정보들을 리스트로 화면 상에 디스플레이하는 단계;(i) 상기 큐알코드의 정보들에 대한 리스트 중 하나가 선택되는 단계; 및(j) 상기 선택된 리스트에 해당하는 큐알코드의 정보에 대한 판독 정보를 상세하게 제공하는 단계;를 더 포함하는 것을 특징으로 하는 큐알코드 자동 인식 방법.
- 제 7 항에 있어서,상기 (a) 단계는 상기 큐알코드의 주변 조도를 감지하여 주변 밝기가 어두운 경우 플래시를 발광시켜 상기 큐알코드와 주변을 촬영하여 큐알코드가 포함된 주변 영상을 획득하고, 획득한 큐알코드가 포함된 주변 영상의 역광을 보정하는 것을 특징으로 하는 큐알코드 자동 인식 방법.
- 제 7 항 내지 제 12 항 중 어느 한 항에 있는 큐알코드 자동 인식 방법을 실행하는 프로그램을 기록한, 컴퓨터로 읽을 수 있는 매체.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014534488A JP5738492B2 (ja) | 2011-10-10 | 2012-10-09 | Qrコード自動認識装置及び方法 |
EP12839367.5A EP2767928B1 (en) | 2011-10-10 | 2012-10-09 | Device and method for automatically identifying a qr code |
AU2012321562A AU2012321562B2 (en) | 2011-10-10 | 2012-10-09 | Device and method for automatically identifying a QR code |
ES12839367.5T ES2596378T3 (es) | 2011-10-10 | 2012-10-09 | Dispositivo y método para identificar automáticamente un código QR |
MYPI2014700862A MY184744A (en) | 2011-10-10 | 2012-10-09 | Apparatus and method for automatically recognizing a qr code |
IN2941CHN2014 IN2014CN02941A (ko) | 2011-10-10 | 2012-10-09 | |
RU2014117473/08A RU2543569C1 (ru) | 2011-10-10 | 2012-10-09 | Устройство и способ для автоматического распознавания qr-кода |
CA2851598A CA2851598C (en) | 2011-10-10 | 2012-10-09 | Apparatus and method for automatically recognizing a qr code |
BR112014010284A BR112014010284A2 (pt) | 2011-10-10 | 2012-10-09 | dispositivo e método para reconhecimento automático de um código qr |
CN201280049608.2A CN103890779B (zh) | 2011-10-10 | 2012-10-09 | Qr码自动识别装置以及方法 |
MX2014004073A MX2014004073A (es) | 2011-10-10 | 2012-10-09 | Aparato y metodo para reconocer de manera automatica un codigo de respuesta rapira (qr). |
US14/351,142 US8908975B2 (en) | 2011-07-21 | 2012-10-09 | Apparatus and method for automatically recognizing a QR code |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110102832A KR101158275B1 (ko) | 2011-07-21 | 2011-10-10 | 큐알코드 자동 인식 장치 및 방법 |
KR10-2011-0102832 | 2011-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013055069A1 true WO2013055069A1 (ko) | 2013-04-18 |
Family
ID=48087094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/008142 WO2013055069A1 (ko) | 2011-07-21 | 2012-10-09 | 큐알코드 자동 인식 장치 및 방법 |
Country Status (13)
Country | Link |
---|---|
US (1) | US8908975B2 (ko) |
EP (1) | EP2767928B1 (ko) |
JP (1) | JP5738492B2 (ko) |
CN (1) | CN103890779B (ko) |
AU (1) | AU2012321562B2 (ko) |
BR (1) | BR112014010284A2 (ko) |
CA (1) | CA2851598C (ko) |
ES (1) | ES2596378T3 (ko) |
IN (1) | IN2014CN02941A (ko) |
MX (1) | MX2014004073A (ko) |
MY (1) | MY184744A (ko) |
RU (1) | RU2543569C1 (ko) |
WO (1) | WO2013055069A1 (ko) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014139732A (ja) * | 2013-01-21 | 2014-07-31 | Sony Corp | 画像処理装置、画像処理方法、プログラムおよび表示装置 |
SG10201504283QA (en) | 2015-05-30 | 2016-12-29 | Menicon Singapore Pte Ltd | Visual Trigger in Packaging |
CN105204742B (zh) * | 2015-09-28 | 2019-07-09 | 小米科技有限责任公司 | 电子设备的控制方法、装置及终端 |
CN106251493A (zh) * | 2016-07-15 | 2016-12-21 | 华南农业大学 | 一种基于多二维码模式识别的物品入库系统及其方法 |
CN106301775A (zh) * | 2016-07-22 | 2017-01-04 | 南开大学 | 一种基于rsa算法的qr码加密方法 |
CN106874817A (zh) * | 2016-07-27 | 2017-06-20 | 阿里巴巴集团控股有限公司 | 二维码识别方法、设备和移动终端 |
CN106874818B (zh) * | 2016-08-30 | 2019-11-22 | 阿里巴巴集团控股有限公司 | 一种数字对象唯一标识符doi识别方法与装置 |
WO2018107422A1 (zh) * | 2016-12-15 | 2018-06-21 | 深圳市柔宇科技有限公司 | 电子装置及信息读取控制方法 |
ES2616146B2 (es) * | 2016-12-20 | 2018-04-27 | Universitat D'alacant / Universidad De Alicante | Método de detección y reconocimiento de marcadores visuales de largo alcance y alta densidad |
US10366265B2 (en) | 2017-08-04 | 2019-07-30 | Honeywell International Inc. | Dynamic and soft QR based monitoring of process equipment health/status in a connected plant |
JP6664589B1 (ja) * | 2018-12-28 | 2020-03-13 | ヤフー株式会社 | 表示プログラム、表示装置及び表示方法 |
RU188925U1 (ru) * | 2019-01-17 | 2019-04-29 | Сергей Александрович Чупрына | Мобильное устройство для проверки подлинности документов, упаковок, товаров по скрытому изображению на их голограммах |
CN111507116A (zh) * | 2019-01-31 | 2020-08-07 | 北京骑胜科技有限公司 | 扫码方法、装置、扫码设备及计算机可读存储介质 |
RU2740159C1 (ru) * | 2019-10-14 | 2021-01-12 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет физической культуры, спорта, молодежи и туризма (ГЦОЛИФК)" (РГУФКСМиТ) | Способ копирования или перемещения иерархически структурированных данных с устройства-носителя информации на устройство-потребитель информации |
JP7497203B2 (ja) | 2020-05-01 | 2024-06-10 | キヤノン株式会社 | 画像処理装置、画像処理装置の制御方法及びプログラム |
CN111683254B (zh) * | 2020-06-24 | 2022-03-25 | 湖南国科微电子股份有限公司 | 一种图像压缩方法、装置及电子设备和存储介质 |
PT4027010T (pt) | 2021-01-12 | 2023-11-30 | Siemens Gamesa Renewable Energy Innovation & Technology SL | Pá para uma turbina eólica e método para fabrico de uma pá |
CN112801860A (zh) * | 2021-01-14 | 2021-05-14 | 深圳市天彦通信股份有限公司 | 一种拍摄功能限制方法及终端 |
US20230360176A1 (en) * | 2022-05-04 | 2023-11-09 | Dish Network L.L.C. | Visible data enhancing |
CN115204341B (zh) * | 2022-09-15 | 2022-11-29 | 深圳永贵技术有限公司 | 智能化物料识别方法、装置、设备及存储介质 |
KR102626271B1 (ko) * | 2023-05-15 | 2024-01-16 | 홍명기 | 큐알코드를 이용하는 주차위치 및 나의 위치 알림장치 및 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010113578A (ko) * | 2001-11-03 | 2001-12-28 | 한탁돈 | 코드인식을 위한 장치 및 그 방법 |
KR100852656B1 (ko) * | 2006-02-10 | 2008-08-18 | 후지제롯쿠스 가부시끼가이샤 | 이차원 코드 검출 시스템 및 이차원 코드 검출 프로그램 |
KR100860994B1 (ko) * | 2007-07-31 | 2008-09-30 | 삼성전자주식회사 | 피사체 중심의 촬영 제어 방법 및 방법 |
KR100920663B1 (ko) * | 2009-01-22 | 2009-10-14 | (주) 이토프 | 2차원 코드의 인식 방법 |
KR20100085887A (ko) | 2010-05-12 | 2010-07-29 | (주)에코펌 | 큐알코드를 이용한 숲길안내 시스템 및 안내방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2081453C1 (ru) * | 1989-03-31 | 1997-06-10 | Юнайтед Парсел Сервис оф Америка, Инк. | Устройство сканирования для декодирования оптически считываемой этикетки и оптически считываемая этикетка для такого устройства |
JP2003196586A (ja) * | 2001-12-28 | 2003-07-11 | Oki Electric Ind Co Ltd | 光学式qrコード認識装置及び方法 |
JP4180497B2 (ja) * | 2003-12-05 | 2008-11-12 | 富士通株式会社 | コード種類判別方法、およびコード境界検出方法 |
KR100653886B1 (ko) * | 2004-11-05 | 2006-12-05 | 주식회사 칼라짚미디어 | 혼합코드 및 혼합코드 인코딩 방법과 장치 |
CN101088100B (zh) * | 2004-11-05 | 2014-03-12 | 卡勒兹普麦迪亚公司 | 对混合码进行解码的方法和装置 |
JP5111055B2 (ja) * | 2007-10-26 | 2012-12-26 | キヤノン株式会社 | 画像処理装置及び画像処理方法、コンピュータプログラム |
JP5104557B2 (ja) * | 2008-06-03 | 2012-12-19 | 株式会社デンソーウェーブ | 光学的情報読取装置 |
US20110290882A1 (en) * | 2010-05-28 | 2011-12-01 | Microsoft Corporation | Qr code detection |
-
2012
- 2012-10-09 JP JP2014534488A patent/JP5738492B2/ja active Active
- 2012-10-09 CA CA2851598A patent/CA2851598C/en active Active
- 2012-10-09 EP EP12839367.5A patent/EP2767928B1/en active Active
- 2012-10-09 MX MX2014004073A patent/MX2014004073A/es active IP Right Grant
- 2012-10-09 AU AU2012321562A patent/AU2012321562B2/en active Active
- 2012-10-09 IN IN2941CHN2014 patent/IN2014CN02941A/en unknown
- 2012-10-09 ES ES12839367.5T patent/ES2596378T3/es active Active
- 2012-10-09 CN CN201280049608.2A patent/CN103890779B/zh active Active
- 2012-10-09 MY MYPI2014700862A patent/MY184744A/en unknown
- 2012-10-09 WO PCT/KR2012/008142 patent/WO2013055069A1/ko active Application Filing
- 2012-10-09 US US14/351,142 patent/US8908975B2/en active Active
- 2012-10-09 RU RU2014117473/08A patent/RU2543569C1/ru active
- 2012-10-09 BR BR112014010284A patent/BR112014010284A2/pt unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010113578A (ko) * | 2001-11-03 | 2001-12-28 | 한탁돈 | 코드인식을 위한 장치 및 그 방법 |
KR100852656B1 (ko) * | 2006-02-10 | 2008-08-18 | 후지제롯쿠스 가부시끼가이샤 | 이차원 코드 검출 시스템 및 이차원 코드 검출 프로그램 |
KR100860994B1 (ko) * | 2007-07-31 | 2008-09-30 | 삼성전자주식회사 | 피사체 중심의 촬영 제어 방법 및 방법 |
KR100920663B1 (ko) * | 2009-01-22 | 2009-10-14 | (주) 이토프 | 2차원 코드의 인식 방법 |
KR20100085887A (ko) | 2010-05-12 | 2010-07-29 | (주)에코펌 | 큐알코드를 이용한 숲길안내 시스템 및 안내방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2767928A4 |
Also Published As
Publication number | Publication date |
---|---|
JP5738492B2 (ja) | 2015-06-24 |
JP2014535092A (ja) | 2014-12-25 |
EP2767928B1 (en) | 2016-08-17 |
ES2596378T3 (es) | 2017-01-09 |
RU2543569C1 (ru) | 2015-03-10 |
MY184744A (en) | 2021-04-20 |
US20140314320A1 (en) | 2014-10-23 |
CA2851598C (en) | 2019-05-28 |
CN103890779A (zh) | 2014-06-25 |
MX2014004073A (es) | 2014-09-11 |
AU2012321562B2 (en) | 2018-01-25 |
AU2012321562A1 (en) | 2014-04-10 |
CA2851598A1 (en) | 2013-04-18 |
US8908975B2 (en) | 2014-12-09 |
CN103890779B (zh) | 2016-04-06 |
BR112014010284A2 (pt) | 2017-06-13 |
EP2767928A1 (en) | 2014-08-20 |
IN2014CN02941A (ko) | 2015-07-03 |
EP2767928A4 (en) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013055069A1 (ko) | 큐알코드 자동 인식 장치 및 방법 | |
KR101677972B1 (ko) | 촬영영역줌카메라모듈·다차선 촬영영역 생성모듈로 이루어진 스마트 다차선 차량 번호인식 장치 및 방법 | |
KR101461233B1 (ko) | 화상 처리 장치, 화상 처리 방법 및 기록 매체 | |
CN107862663A (zh) | 图像处理方法、装置、可读存储介质和计算机设备 | |
WO2019132589A1 (ko) | 다중 객체 검출을 위한 영상 처리 장치 및 방법 | |
WO2015182904A1 (ko) | 관심객체 검출을 위한 관심영역 학습장치 및 방법 | |
KR101778605B1 (ko) | 차량 번호판 인식 방법 및 장치 | |
WO2015037957A1 (ko) | 영상 흔들림 보정을 이용한 영상 안정화 장치 및 방법 | |
US20120051633A1 (en) | Apparatus and method for generating character collage message | |
WO2013051905A2 (ko) | 위치 인식 장치 및 그 방법 | |
CN112434546A (zh) | 人脸活体检测方法及装置、设备、存储介质 | |
KR20110128574A (ko) | 이미지내 생체 얼굴 인식 방법 및 인식 장치 | |
WO2021091053A1 (ko) | 영상의 유사도 분석을 이용한 위치 측정 시스템 및 그 방법 | |
CN113642582A (zh) | 电表读数识别方法、装置、电子设备和存储介质 | |
CN111368698A (zh) | 主体识别方法、装置、电子设备及介质 | |
KR101158275B1 (ko) | 큐알코드 자동 인식 장치 및 방법 | |
CN113591548B (zh) | 靶环识别方法及系统 | |
CN108881740A (zh) | 图像方法和装置、电子设备、计算机可读存储介质 | |
KR20100011187A (ko) | 문자 인식 방법 | |
CN107092908A (zh) | 一种基于列车转向架上的平面压印字符自动识别方法 | |
WO2021071258A1 (ko) | 인공지능 기반의 휴대용 보안영상 학습장치 및 방법 | |
JP4312185B2 (ja) | ゲーム用マット、カードゲームシステム、画像解析装置、画像解析方法 | |
CN114463731A (zh) | 一种车牌定位与识别方法及装置 | |
JP2007080108A (ja) | カード | |
WO2013183886A1 (en) | Camera system with multi-spectral filter array and image processing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280049608.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12839367 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12014500664 Country of ref document: PH |
|
REEP | Request for entry into the european phase |
Ref document number: 2012839367 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012839367 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014534488 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/004073 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2851598 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2012321562 Country of ref document: AU Date of ref document: 20121009 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14351142 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014117473 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014010284 Country of ref document: BR |
|
ENPW | Started to enter national phase and was withdrawn or failed for other reasons |
Ref document number: 112014010284 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014010284 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140429 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112014010284 Country of ref document: BR Kind code of ref document: A2 Free format text: 1) APRESENTAR, EM ATE 60 (SESSENTA) DIAS, A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE KR 10-2011-0102832 OU DECLARACAO SUBSTITUTIVA CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO NO 77/2013 E ART. 16 DA LPI. CUMPRE FRISAR QUE O PRAZO PARA APRESENTACAO DE EVENTUAL CESSAO DA PRIORIDADE JA EXPIROU. 2) EXPLIQUE, COM DOCUMENTOS COMPROBATORIOS SE NECESSARIO, A DIVERGENCIA NO NOME DO INVENTOR CONSTANTE NA PUBLICACAO INTERNACIONAL COMO ?BYOUNG SUN KIM? E O CONSTANTE NO FORMULARIO DA PETICAO INICIAL COMO ?BYUNG SUN KIM?. 3) ENVIE NOVAS FOLHAS DO RELATORIO DESCRITIVO E RESUMO DE ACORDO COM AS DISPOSICOE |
|
ENPW | Started to enter national phase and was withdrawn or failed for other reasons |
Ref document number: 112014010284 Country of ref document: BR Kind code of ref document: A2 Free format text: FOI DADO PROSSEGUIMENTO AO EXAME DE ADMISSIBILIDADE DO PEDIDO EM TELA TENDO COMO BASE A DECISAO DA PRESIDENCIA DO INPI, FUNDAMENTADA EM PARECER EXARADO PELA COORDENACAO GERAL DE RECURSOS, E PUBLICADA NA RPI 2682, DE 31/05/2022 QUE REVERTEU A DECISAO EM RELACAO AO ITEM 1 DESTE PARECER. PEDIDO RETIRADO TENDO EM VISTA A NAO RESPOSTA DA EXIGENCIA PUBLICADA NA RPI 2684 DE 14/06/2022 PARA QUE ALGUMAS IRREGULARIDADES NO PEDIDO FOSSEM SANADAS. |