WO2013051766A1 - 무적성이 우수한 항균성 식품포장용 랩 - Google Patents

무적성이 우수한 항균성 식품포장용 랩 Download PDF

Info

Publication number
WO2013051766A1
WO2013051766A1 PCT/KR2012/001206 KR2012001206W WO2013051766A1 WO 2013051766 A1 WO2013051766 A1 WO 2013051766A1 KR 2012001206 W KR2012001206 W KR 2012001206W WO 2013051766 A1 WO2013051766 A1 WO 2013051766A1
Authority
WO
WIPO (PCT)
Prior art keywords
food packaging
wrap
water
silica nanotubes
resin
Prior art date
Application number
PCT/KR2012/001206
Other languages
English (en)
French (fr)
Inventor
박충권
Original Assignee
(주)더몰론코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)더몰론코리아 filed Critical (주)더몰론코리아
Publication of WO2013051766A1 publication Critical patent/WO2013051766A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to an antimicrobial food packaging wrap, and more particularly, to a food packaging wrap by adding silica nanotubes adsorbing silver nanoparticles having excellent dispersibility and silica nanotubes having excellent water repellency to synthetic resins, thereby preparing antimicrobial and invincible properties. It relates to an antimicrobial food packaging wrap, characterized in that excellent properties.
  • antimicrobial food packaging wrap When antimicrobial food packaging wrap is dispersed by adding only nano-sized silver nanoparticles to synthetic resin during molding extrusion of the wrap, fine nanoparticles occur in the synthetic resin melt and do not disperse properly. There was a problem that the antimicrobial function is reduced because the nanoparticles are not distributed.
  • Korean Patent Publication No. 1997-10467 and Korean Patent Publication No. 1999-79669 include The antimicrobial food packaging film containing a carrier coated with a porous spherical silica having a mean particle size of 0.1 to 5.0 ⁇ m in a metal ion selected from the group consisting of ions such as copper and zinc is known.
  • Republic of Korea Patent Publication No. 10-654573 is a polyester in which any one selected from the group consisting of silver, copper, titanium, zinc, titanium oxide and zinc oxide supported on porous amorphous spherical silica particles having an average particle diameter of 3.7 ⁇ m
  • a food packaging film is known in which a coating composition prepared by adding to a resin solution is coated on one surface of a polyester film, but even in the case of the above patent, spherical silica particles are not uniformly dispersed in the polyester resin solution. There is a fear that problems as described above occur.
  • the present applicant is characterized in that the silver nanoparticle-containing silica nanotubes are uniformly dispersed as described in the Republic of Korea Patent Publication No. 10-1004027 has superior antimicrobial function than the conventional antimicrobial film Has developed a food packaging film and received a patent.
  • the film used for food packaging when packaging frozen foods, vegetables, fruits, etc., water droplets are formed on the surface of the film by the moisture contained in the fruits, etc. are blurred. Due to this phenomenon, the appearance of the product is bad or poor storage properties cause problems that degrade the quality of the product.
  • the present invention provides a food packaging wrap by adding silica nanotubes having excellent dispersibility and silica nanotubes having excellent inertness to synthetic resins, thereby preparing a food packaging wrap, It is not only excellent, but also suitable for use in the packaging of food packaging by preventing the condensation of water droplets on the inner surface of the wrap due to moisture contained in fruits, etc., when packaging frozen foods, vegetables, fruits, etc.
  • An object of the present invention is to provide an antimicrobial food packaging wrap.
  • the present invention for solving the above problems in the antimicrobial food packaging wraps containing silver nanoparticles containing silica nanotubes,
  • An antimicrobial food packaging wrap comprising a 96 to 98% by weight of synthetic resin, 1 to 2% by weight of silver nanoparticle-containing silica nanotubes and 1 to 2% by weight of water-repellent silica nanotubes is a problem solving means.
  • the synthetic resin is selected from one of polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, vinyl chloride resin, polyvinylidene chloride resin, polyethylene terephthalate resin, phenol resin,
  • the nanoparticle-containing silica nanotubes contain 20000 to 100,000 ppm of silver nanoparticles, and have an average inner diameter of 30 to 60 nm and an average length of 10 to 30 ⁇ m.
  • water-repellent silica nanotubes are co-condensation by mixing a water-repellent silane monomer in a silica precursor in a molar ratio of 1: 0.1 to 0.5,
  • the silica precursor is selected from one of tetraethoxy orthosilicate (TEOS) or tetramethoxy orthosilicate (TMOS),
  • the water-repellent silane monomer is [CF 3 (CF 2 ) l (CH 2 ) m ] n Si (CH 3 CH 2 O) o , [CF 3 (CF 2 ) l (CH 2 ) m ] n Si (CH 3 CH 2 O) o, [CH 3 (C 6 H 6 ) l (CH 2 ) m ] n Si (CH 3 CH 2 O) o, [CH 3 (CH 2 ) m ] n Si (CH 3 O) o Using a single compound or a mixture of two or more selected,
  • the water-repellent silica nanotubes are characterized in that the average diameter of 50 ⁇ 100nm, the average length of 1 ⁇ 100 ⁇ m size.
  • the present invention by the above problem solving means is an antimicrobial food packaging wrap excellent in antimicrobial and invincible properties, as well as excellent antimicrobial function in packaging frozen foods, vegetables, fruits, etc. This prevents water droplets from condensing on the surface of the film, which makes it excellent in invincibility and is suitable for use as a wrap for food packaging.
  • FIG. 1 is a schematic view of silver nanoparticle-containing silica nanotubes used in the antimicrobial food packaging wrap according to the present invention
  • Example 2 is a TEM (5000 times magnified) photograph of the silver nanoparticle-silica nanotubes used in Example 1 according to the present invention
  • Figure 3 is a graph showing the XRD measurement results of the silver nanoparticles-silica nanotubes used in Example 1 according to the present invention.
  • Figure 4a is a SEM photograph showing a 1000 times magnification of the water-repellent silica nanotubes according to Example 1 of the present invention
  • Figure 4b is a SEM photograph showing a 5,000 times magnification of the water-repellent silica nanotubes according to Example 1 of the present invention
  • Example 5 is a graph showing the FT-IR measurement results of the water-repellent silica nanotubes according to Example 1 of the present invention.
  • Example 8 is a photograph showing the results of measuring invincibility after placing the rice in a 200g bowl using a wrap of Example 1 according to the present invention wrapped in a wrap and left for 24 hours,
  • FIG. 11 relates to an SME photograph taken by abusing the surface of a wrap of Comparative Example 1 at 30,000 times.
  • the present invention provides an antimicrobial food packaging wrap containing silver nanoparticle-containing silica nanotubes
  • It is characterized by consisting of 96 to 98% by weight of synthetic resin, 1 to 2% by weight of silver nanoparticle-containing silica nanotubes and 1 to 2% by weight of water-repellent silica nanotubes.
  • the synthetic resin used in the present invention selects one kind from among polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, vinyl chloride resin, polyvinylidene chloride resin, polyethylene terephthalate resin, and phenol resin which can be used for food packaging. It is preferable to use.
  • the amount of the silver nanoparticle-containing silica nanotubes is preferably 1 to 2% by weight.
  • the amount of the carrier is less than 1% by weight, the antimicrobial function may not be properly expressed, and the amount of the carrier is 2% by weight. If the percentage is exceeded, the antimicrobial function is not significantly improved in proportion to the increase of the carrier.
  • silver nanoparticle-containing silica nanotubes used in the present invention used silver nanoparticle-containing silica nanotubes, which the applicant has already patented in the Republic of Korea Patent Registration No. 10-1010677.
  • the silver nanoparticle-containing silica nanotubes have better dispersibility in the synthetic resin melt than spherical silica, the antimicrobial function is improved since the silver nanoparticle-containing silica nanotubes are uniformly dispersed in the extruded food packaging wrap.
  • the silver nanoparticle-containing silica nanotubes used in the present invention have a structure as shown in FIG. 1 in which silver nanoparticles 20 are adsorbed to fine pores formed in the body 10 of the porous silica nanotubes. It is preferable that 20000-100000 ppm of particles are contained. If the content of silver nanoparticles is less than 20000 ppm, the antimicrobial activity may not be sufficiently expressed. If the content of silver nanoparticles exceeds 100000 ppm, the production cost of silica nanotubes is not increased significantly. There is a risk of rising economic problems.
  • the silver nanoparticle-containing silica nanotubes used in the present invention preferably have an average inner diameter (d) of 30 to 60 nm and an average length (l) of 10 to 30 ⁇ m.
  • d average inner diameter
  • l average length
  • the silver nanoparticles do not entangle themselves in the synthetic resin melt due to the nanotube structure. This is an excellent feature.
  • water-repellent silica nanotubes used in the present invention as shown in the photographs of FIGS. 4A and 4B, the applicant has used water-repellent silica nanotubes already patented in Korean Patent No. 10-1057476.
  • the antimicrobial food packaging wrap according to the present invention can prevent the water droplets from condensing on the surface of the film by moisture contained in fruits, etc., when packaging frozen foods, vegetables, fruits, etc. compared to the general food packaging wraps It is characterized by excellent invincibility.
  • the water-repellent silica nanotubes used in the present invention are described in detail in Korean Patent Publication No. 10-1057476 for the method of manufacturing the same.
  • the water-repellent silica nanotubes are preferably co-condensed by mixing a water-repellent silane monomer in a silica precursor in a molar ratio of 1: 0.1 to 0.5, wherein the produced silica has a long channel length and a one-dimensional linear meso having a fluorine functional group. Pore nanosilica is formed.
  • the channel length of the pores formed at this time is 10,000 ⁇ 50,000 nm. If the molar ratio of the water-repellent silane monomer mixture is less than 0.1, the fluorine group may not be sufficiently bonded to the surface of the nanosilica, and the performance of invincibility may be degraded. If the molar ratio of the water-repellent silane monomer mixture is more than 0.5, excessive use There is a risk of waste.
  • the silica precursor is selected from tetraethoxyorthosilicate (TEOS) or tetramethoxyorthosilicate (TMOS).
  • TEOS tetraethoxyorthosilicate
  • TMOS tetramethoxyorthosilicate
  • the water-repellent silane monomer is [CF 3 (CF 2 ) l (CH 2 ) m ] n Si (CH 3 CH 2 O) o , [CF 3 (CF 2 ) l (CH 2 ) m ] n Si (CH 3 CH 2 O) o, [CH 3 (C 6 H 6 ) l (CH 2 ) m ] n Si (CH 3 CH 2 O) o, [CH 3 (CH 2 ) m ] n Si (CH 3 O) o It is preferable to use a single compound or a mixture of two or more selected from among them.
  • l is an integer of 0-21
  • m is an integer of 0-21
  • n is an integer of 1-3
  • o is an integer of 1-3.
  • the water-repellent silica nanotubes are characterized by having higher alignment, crystallinity and invincibility than general mesoporous silica structures.
  • the present invention when looking at the photograph of the electron microscope shown in Figure 10, it can be seen that the micropore is well developed, by the circulation of the air through the micropore around about 100 nm, the inner surface of the wrap Water droplets can be prevented from clouding, and the micropores are estimated to be formed by the silver nanoparticle-containing silica nanotubes.
  • the antimicrobial food packaging wrap according to the present invention is to produce a food packaging wrap by adding silica nanotubes adsorbed silver nanoparticles having excellent dispersibility to the synthetic resin and silica nanotubes having excellent water repellency, it is excellent in antimicrobial and invincible properties It is an advantage.
  • Example 1 980 g of LDPE, 10 g of silver nanoparticle-containing silica nanotubes, and 10 g of water-repellent silica nanotubes were mixed to prepare an antimicrobial food packaging wrap having a thickness of 10 ⁇ m according to a conventional method.
  • the silver nanoparticle-containing silica nanotubes used in Example 1 contained 20,000 ppm of silver nanoparticles in the silica nanotubes, and the average inner diameter of the silica nanotubes was 30 to 60 nm, and the average length was 10 to 30 ⁇ m.
  • the tube is a silica nanotube synthesized using TECF silica precursor [CF 3 (CF 2 ) 5 (CH 2 ) 5 ] 2 Si (CH 3 CH 2 O) 2 , which is a water repellent silane monomer, having an average diameter of 50 to 100 nm, An average length of 1 to 100 ⁇ m was used.
  • FIG. 2 is a TEM (5000 times magnified) photograph of silver nanoparticle-silica nanotubes used in Example 1 according to the present invention
  • FIG. 3 is silver nanoparticles used in Example 1 according to the present invention.
  • FIG. 4A is a SEM photograph showing a 1,000 times magnification of a water repellent silica nanotube according to Example 1 of the present invention
  • FIG. 4B is a SEM photograph showing a 5,000 times magnification of a water repellent silica nanotube according to Example 1 of the present invention. It is a photograph, Figure 5 relates to a graph showing the FT-IR measurement results of the water-repellent silica nanotubes according to Example 1 of the present invention.
  • Example 1 960 g of LDPE and 20 g of silver nanoparticle-containing silica nanotubes and 20 g of water-repellent silica nanotubes were mixed to prepare an antimicrobial food packaging wrap having a thickness of 10 ⁇ m according to a conventional method, but the silver nanoparticle-containing silica nanotubes and the water-repellent silica nanotubes were The same thing as Example 1 was used.
  • spherical mesoporous silica containing silver nanoparticles used in Comparative Example 1 a spherical mesoporous silica having an average particle diameter of 3.0 ⁇ m was used, containing 20000 ppm of silver nanoparticles.
  • FIG. 6 is a SEM (30,000-fold magnification) photograph of spherical mesoporous silica containing dispersion of silver nanoparticles used in Comparative Example 1
  • FIG. 7 is a spherical meso containing silver nanoparticles used in Comparative Example 1. It is a graph which shows the XRD measurement result of pore silica.
  • Test strains were Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538p, respectively.
  • the antimicrobial activity values (R) of E. coli of Example 1 were 6.2 and 6,4, with an antimicrobial effect of 99.99% or more, and Staphylococcus aureus ( S. aureus ) of the antibacterial activity (R) of 3.4 and 3.5 and more than 99.90% antimicrobial effect, whereas in Comparative Example 1 E. coli antibacterial activity (R) is 3.5, 99.90% of the antibacterial effect, staphylococcal
  • the antimicrobial activity (R) of S. aureus was 2.1, which was 90.00%.
  • Examples 1 and 2 which are antimicrobial food packaging wraps according to the present invention, using the spherical mesoporous silica of Comparative Example 1 using silver nanoparticle-containing silica nanotubes It was confirmed that the antimicrobial activity against both E. coli and S. aureus was superior to that, and that the silica nanotubes used in Examples 1 and 2 were antimicrobial compared to the spherical mesoporous silica of Comparative Example 1 It is presumed to be due to the excellent dispersibility in the food packaging wrap.
  • Example 1 it is estimated that about 100 nm of micropores formed on the surface of the wrap are formed by the silver nanoparticle-containing silica nanotubes, as shown in the photograph shown in FIG. 10. As air is circulated through the pores, the invincible property is excellent, and Comparative Example 1 shows that the invincible property is poor as micropores are not formed on the surface of the wrap as shown in the photograph shown in FIG. 11. I could confirm it.
  • Figure 8 is a photograph showing the results of measuring invincibility after leaving the rice in a 200g bowl using a wrap of Example 1 according to the present invention wrapped in a wrap and left for 24 hours
  • Figure 9 is Comparative Example 1 After using a wrap of rice in a 200g bowl wrapped in a wrap and left for 24 hours, the photograph showing the results of the measurement of invincibility
  • Figure 10 is the surface of the wrap of Example 1 according to the invention 30,000 times the abuse It is an SME photograph taken
  • FIG. 11 relates to an SME photograph taken by abusing the surface of the wrap of Comparative Example 1 at 30,000 times.
  • the present invention provides an antimicrobial food packaging wrap containing silver nanoparticle-containing silica nanotubes, comprising 96 to 98% by weight of synthetic resin, 1 to 2% by weight of silver nanoparticle-containing silica nanotubes, and 1 to 2% by weight of water-repellent silica nanotubes.
  • An antimicrobial food packaging wrap made is a form for carrying out the invention.
  • the synthetic resin is preferably used by selecting one of polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, vinyl chloride resin, polyvinylidene chloride resin, polyethylene terephthalate resin, phenol resin.
  • the nanoparticle-containing silica nanotubes contain 20000 to 100,000 ppm of silver nanoparticles.
  • the nanoparticle-containing silica nanotubes preferably have an average inner diameter of 30 to 60 nm and an average length of 10 to 30 ⁇ m.
  • water-repellent silica nanotubes are preferably co-condensed by mixing a water-repellent silane monomer in a silica precursor in a molar ratio of 1: 0.1 to 0.5.
  • the silica precursor is preferably used by selecting one type from tetraethoxyorthosilicate (TEOS) or tetramethoxyorthosilicate (TMOS).
  • TEOS tetraethoxyorthosilicate
  • TMOS tetramethoxyorthosilicate
  • the water-repellent silane monomer is [CF 3 (CF 2 ) 1 (CH 2 ) m ] n Si (CH 3 CH 2 O) o , [CF 3 (CF 2 ) 1 (CH 2 ) m ] n Si (CH 3 CH 2 O) o, [CH 3 (C 6 H 6 ) l (CH 2 ) m ] n Si (CH 3 CH 2 O) o, [CH 3 (CH 2 ) m ] n Si (CH 3 O) Preference is given to using a single compound or a mixture of two or more selected from o .
  • l is an integer of 0-21
  • m is an integer of 0-21
  • n is an integer of 1-3
  • o is an integer of 1-3.
  • water-repellent silica nanotubes are preferably an average diameter of 50 ⁇ 100nm, average length of 1 ⁇ 100 ⁇ m size.
  • the present invention is to produce a wrap for food packaging by adding silica nanotubes adsorbed silver nanoparticles having excellent dispersibility to the synthetic resin and silica nanotubes excellent in invincibility, not only excellent antibacterial function, but also frozen food, vegetables, fruits, etc.
  • silica nanotubes adsorbed silver nanoparticles having excellent dispersibility to the synthetic resin and silica nanotubes excellent in invincibility, not only excellent antibacterial function, but also frozen food, vegetables, fruits, etc.
  • it is expected to be widely used in the industry as it is suitable for use in the packaging for food packaging by preventing water droplets from condensing on the inner surface of the wrap due to moisture contained in fruits and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Wrappers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 은 나노입자 함유 실리카 나노튜브를 함유한 항균성 식품포장용 랩에 있어서, 합성수지 96~98 중량%와 은 나노입자 함유 실리카 나노튜브 1~2 중량% 및 발수성 실리카 나노튜브 1~2 중량%로 이루어지는 것을 특징으로 하는 항균성 식품포장용 랩에 관한 것으로, 항균성 기능이 우수할 뿐만 아니라 냉동식품, 채소류, 과일류 등을 포장시, 과일류 등에 함유되어 있는 수분에 의해 필름의 표면에 물방울이 맺혀 흐려지는 것을 예방함으로써 식품포장용 랩의 용도로 사용하기가 적합한 것이 장점이다.

Description

무적성이 우수한 항균성 식품포장용 랩
본 발명은 항균성 식품포장용 랩에 관한 것으로, 더욱 상세하게는 합성수지에 분산력이 우수한 은 나노입자를 흡착시킨 실리카 나노튜브와 발수성이 우수한 실리카 나노튜브를 첨가하여 식품포장용 랩을 제조함으로써, 항균성 및 무적성 특성이 우수한 것을 특징으로 하는 항균성 식품포장용 랩에 관한 것이다.
일반적으로 식품류는 생산, 가공, 유통과정 중에 유해성 세균이나 부패균 등의 접촉에 의한 유해 미생물군(microflora)의 증식으로 식품이 변질되기 쉬우므로 이를 방지하고, 신선도를 유지할 수 있도록 합성수지 랩 등으로 식품을 포장하여 유통시킨다. 따라서, 식품포장용 랩 제조업체들은 유해성 세균이나 부패균을 제거할 뿐만 아니라 세균들의 활동을 정지시키거나 또는 살균하는 기능을 갖는 우수한 항균성 식품포장용 랩을 개발하기 위해 노력하고 있다.
항균성 식품포장용 랩은 랩의 성형 압출시 합성수지에 나노 크기의 은 나노입자만을 첨가하여 분산시킬 경우 미세한 나노입자가 합성수지 용융액 내에서응집현상 등이 발생하여 제대로 분산되지 않아 항균성 식품포장용 랩 내에 균일하게 은 나노입자가 분포되지 아니하여 항균성 기능이 저하하는 문제점 등이 발생하였다.
한편, 합성수지 용액 내에서 은 나노입자의 분산력을 높이기 위한 방안으로 개발된 항균성 필름의 특허내용들을 살펴보면, 대한민국 특허공보 특1997-10467호 및 대한민국 공개특허공보 특1999-79669호에는 폴리에스테르 필름에 은, 구리, 아연 등의 이온으로 이루어진 군에서 선택한 어느 하나의 금속이온을 평균 입경이 0.1~5.0㎛인 다공질의 구형 실리카에 피복시킨 담체를 함유한 항균성 식품포장용 필름이 알려져 있으나 상기와 같은 항균성 식품포장용 랩의 경우에는 은 나노입자를 다공질의 구형 실리카에 피복시킨 담체를 사용하여 합성수지 용융액에 혼합하여 분산력을 높였다고는 하지만 구형 실리카 담체를 사용함에 따라 여전히 응집현상이 발생할 우려가 있으며, 은 나노입자가 식품포장용 필름 내에서 균일하게 분산되지 않을 경우에는 식품포장용 필름의 항균성 기능이 저하되는 부분에 접한 식품이 상하는 문제점 등이 발생할 우려가 있다.
또한 대한민국 등록특허공보 제10-654573호에는 은, 동, 티탄, 아연, 산화 티탄 및 산화아연으로 이루어진 군에서 선택된 어느 하나를 평균 입경이 3.7㎛인 다공성 무정형 구형 실리카 입자에 담지시킨 담체를 폴리에스테르 수지 용액에 투입하여 제조한 코팅 조성물을 폴리에스테르 필름의 일면에 코팅시킨 식품포장용 필름이 알려져 있지만 상기와 같은 특허의 경우에도 구형 실리카 입자를 사용함에 따라 폴리에스테르 수지 용액 내에서 균일하게 분산되지 않아 상기에서 상술한 바와 같은 문제점들이 발생할 우려가 있다.
상기와 같은 문제점을 해결하기 위한 방안으로 본 출원인은 대한민국 등록특허공보 제10-1004027호의 내용과 같이 은 나노입자 함유 실리카 나노튜브가 균일하게 분산되어 통상적인 항균성 필름에 비해 항균성 기능이 우수한 것을 특징으로 하는 식품포장용 필름을 개발하여 특허등록받은 바 있다.
하지만 식품 포장에 사용되는 필름은 냉동식품, 채소류, 과일류 등을 포장시, 과일류 등에 함유되어 있는 수분에 의해 필름의 표면에 물방울이 맺혀 흐려지게 된다. 이런 현상에 의해 제품의 외관이 나빠지거나 보관성이 좋지 않아 상품의 질을 떨어뜨리는 문제점들이 발생하게 된다.
따라서, 상기와 같은 문제점들을 해결하기 위한 방안으로 본 출원인이 이미 특허등록받은 바 있는 대한민국 등록특허공보 제10-1057476호의 발수성 나노실리카를 사용하여 본 출원인이 이미 개발한 바 있는 대한민국 등록특허공보 제10-1004027호의 항균성 식품포장용 필름에 적용함으로써, 상기와 같은 문제점을 해결함으로써 본 발명을 완성하게 되었다.
따라서, 상기와 같은 문제점을 해결하기 위한 방안으로 본 발명은 합성수지에 분산력이 우수한 은 나노입자를 흡착시킨 실리카 나노튜브와 무적성이 우수한 실리카 나노튜브를 첨가하여 식품포장용 랩을 제조함으로써, 항균성 기능이 우수할 뿐만 아니라 냉동식품, 채소류, 과일류 등을 포장시, 과일류 등에 함유되어 있는 수분에 의해 랩의 내부 표면에 물방울이 맺혀 흐려지는 것을 예방함으로써 식품포장용 랩의 용도로 사용하기가 적합한 것을 특징으로 하는 항균성 식품포장용 랩을 제공함을 과제로 한다.
상기의 과제를 해결하기 위한 본 발명은 은 나노입자 함유 실리카 나노튜브를 함유한 항균성 식품포장용 랩에 있어서,
합성수지 96~98 중량%와 은 나노입자 함유 실리카 나노튜브 1~2 중량% 및 발수성 실리카 나노튜브 1~2 중량%로 이루어지는 것을 특징으로 하는 항균성 식품포장용 랩을 과제 해결 수단으로 한다.
그리고 상기 합성수지는 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리스티렌 수지, 폴리에스테르 수지, 염화비닐수지, 폴리염화비닐리덴 수지, 폴리에틸렌테레프탈레트 수지, 페놀수지 중에서 1종을 선택하여 사용하며,
상기 나노입자 함유 실리카 나노튜브는 은 나노입자가 20000~100000 ppm 함유하고, 평균 내경이 30~60 nm, 평균 길이가 10~30 ㎛인 것이 특징이다.
또한 상기 발수성 실리카 나노튜브는 실리카 전구체에 발수성 실란 단량체를 1 : 0.1~0.5의 몰 비의 범위에서 혼합하여 공축합시키는 것이고,
상기 실리카 전구체는 테트라에톡시오르소실리케이트(tetraethoxyorthosilicate, TEOS) 또는 테트라메톡시오르소실리케이트(tetramethoxyorthosilicate, TMOS) 중에서 1종을 선택하여 사용하며,
상기 발수성 실란 단량체는 [CF3(CF2)l(CH2)m]nSi(CH3CH2O)o, [CF3(CF2)l(CH2)m]nSi(CH3CH2O)o, [CH3(C6H6)l(CH2)m]nSi(CH3CH2O)o, [CH3(CH2)m]nSi(CH3O)o 중에서 선택된 단독화합물 혹은 2종 이상의 혼합물을 사용하며,
상기 발수성 실리카 나노튜브는 평균 직경 50~100nm, 평균 길이 1~100㎛ 크기인 것이 특징이다.
상기의 과제 해결 수단에 의한 본 발명은 항균성 및 무적성 특성이 우수한 항균성 식품포장용 랩으로, 항균성 기능이 우수할 뿐만 아니라 냉동식품, 채소류, 과일류 등을 포장시, 과일류 등에 함유되어 있는 수분에 의해 필름의 표면에 물방울이 맺혀 흐려지는 것을 예방함으로써 무적성의 특성이 우수하여 식품포장용 랩의 용도로 사용하기가 적합한 것이 장점이다.
도 1은 본 발명에 따른 항균성 식품포장용 랩에 사용되는 은 나노입자 함유 실리카 나노튜브의 개략도,
도 2는 본 발명에 따른 실시예 1에 사용된 은 나노입자-실리카 나노튜브를 찍은 TEM(5000배 확대) 사진,
도 3은 본 발명에 따른 실시예 1에 사용된 은 나노입자-실리카 나노튜브의 XRD 측정결과를 나타낸 그래프,
도 4a는 본 발명의 실시 예1에 따른 발수성 실리카 나노튜브를 1,000배 확대 촬영하여 나타낸 SEM 사진,
도 4b는 본 발명의 실시 예 1에 따른 발수성 실리카 나노튜브를 5,000배 확대 촬영하여 나타낸 SEM 사진,
도 5는 본 발명의 실시 예 1에 따른 발수성 실리카 나노튜브의 FT-IR 측정결과를 나타낸 그래프,
도 6은 비교예 1에 사용된 은 나노입자가 분산 함유된 구상형 메조세공 실리카를 찍은 SEM(30,000배 확대) 사진,
도 7은 비교예 1에 사용된 은나노입자- 구상형 메조세공 실리카의 XRD 측정결과를 나타낸 그래프,
도 8은 본 발명에 따른 실시예 1의 랩을 사용하여 밥을 200g 그릇에 넣고 랩으로 감싼 다음 24시간 방치한 후 무적성을 측정한 결과를 나타낸 사진,
도 9는 비교예 1의 랩을 사용하여 밥을 200g 그릇에 넣고 랩으로 감싼 다음 24시간 방치한 후 무적성을 측정한 결과를 나타낸 사진,
도 10은 본 발명에 따른 실시예 1의 랩의 표면을 30,000배로 학대하여 찍은 SME 사진,
도 11은 비교예 1의 랩의 표면을 30,000배로 학대하여 찍은 SME 사진에 관한 것이다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면인 도 1 내지 도 11에 의거하여 상세히 설명하며, 각 도면 및 상세한 설명에서 일반적인 항균성 식품포장용 랩으로부터 이 분야의 종사자들이 용이하게 알 수 있는 구성 및 작용에 대한 도시 및 언급은 간략히 하거나 생략하였다.
본 발명은 은 나노입자 함유 실리카 나노튜브를 함유한 항균성 식품포장용 랩에 있어서,
합성수지 96~98 중량%와 은 나노입자 함유 실리카 나노튜브 1~2 중량% 및 발수성 실리카 나노튜브 1~2 중량%로 이루어지는 것을 특징으로 한다.
본 발명에서 사용하는 합성수지는 식품포장용으로 사용가능한 수지인 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리스티렌 수지, 폴리에스테르 수지, 염화비닐수지, 폴리염화비닐리덴 수지, 폴리에틸렌테레프탈레트 수지, 페놀수지 중에서 1종을 선택하여 사용하는 것이 바람직하다.
본 발명에서 은 나노입자 함유 실리카 나노튜브의 혼합량은 1~2 중량%인 것이 바람직하며, 담체의 혼합량이 1 중량% 미만인 경우에는 항균성 기능이 제대로 발현되지 않을 우려가 있고, 담체의 혼합량이 2 중량%를 초과할 경우에는 담체의 증가량에 비례하여 항균성 기능은 현저히 향상되지는 않는다.
그리고 본 발명에서 사용하는 은 나노입자 함유 실리카 나노튜브는 본 출원인이 이미 대한민국에서 특허등록 제10-1010677호로 특허등록바 있는 은 나노입자 함유 실리카 나노튜브를 사용하였다.
따라서, 은 나노입자 함유 실리카 나노튜브는 구형 실리카에 비해 합성수지 용융액 내에서의 분산력이 우수하므로 압출성형된 식품포장용 랩 내에서 균일하게 분산되므로 항균성 기능이 향상된다.
본 발명에서 사용하는 은 나노입자 함유 실리카 나노튜브는 도 1에 도시된 바와 같은 형상으로 다공성 실리카 나노튜브의 몸체(10)에 형성된 미세한 기공에 은 나노입자(20)가 흡착된 구조로서, 은 나노입자가 20000~100000 ppm 함유되는 것이 바람직하다. 은 나노입자의 함유량이 20000 ppm 미만이 될 경우에는 항균작용이 충분히 발현되지 않을 우려가 있고, 은 나노입자의 함유량이 100000 ppm을 초과할 경우 항균성능은 현저하게 증가하지 않으면서 실리카 나노튜브의 제조원가가 상승하는 비경제적인 문제점이 발생할 우려가 있다.
또한 본 발명에서 사용하는 은 나노입자 함유 실리카 나노튜브는 평균 내경(d)이 30~60 nm, 평균 길이(l)가 10~30 ㎛인 것이 바람직하다. 실리카 나노튜브의 평균 내경과 평균 길이가 상기에서 한정한 범위 내일 경우에는 구상형 메조세공 구조의 실리카와는 달리 나노튜브 구조에 의해 은 나노입자 자체가 합성수지 용융액 내에서 엉김현상 등이 발생하지 않아 분산력이 우수한 것이 특징이다.
그리고 본 발명에서 사용하는 발수성 실리카 나노튜브는 도 4a 및 도 4b의 사진에 도시된 바와 같이, 본 출원인이 이미 대한민국에서 특허등록 제10-1057476호로 특허등록바 있는 발수성 실리카 나노튜브를 사용하였다.
따라서, 본 발명에 따른 항균성 식품포장용 랩은 일반적인 식품포장용 랩에 비해 냉동식품, 채소류, 과일류 등을 포장시, 과일류 등에 함유되어 있는 수분에 의해 필름의 표면에 물방울이 맺혀 흐려지는 것을 예방할 수 있는 무적성의 특성이 우수한 것이 특징이다.
본 발명에서 사용하는 발수성 실리카 나노튜브는 그 제조방법에 대해서는 대한민국 등록특허공보 제10-1057476호에 상세히 상술되어 있지만, 여기서 다시 상세히 설명하기로 한다.
상기 발수성 실리카 나노튜브는 실리카 전구체에 발수성 실란 단량체를 1 : 0.1~0.5의 몰 비의 범위에서 혼합하여 공축합시키는 것이 바람직하며, 이때 생성되는 실리카는 채널길이가 길고 불소 관능기를 가진 1차원 선형 메조세공 나노실리카가 형성된다.
이때 형성되는 세공의 채널길이는 10,000~50,000 nm이다. 발수성 실란 단량체 혼합량의 몰 비가 0.1 미만이 될 경우에는 나노실리카의 표면에 불소기가 충분하게 결합되지 아니하여 무적성의 성능이 저하될 우려가 있고, 발수성 실란 단량체 혼합량의 몰 비가 0.5를 초과할 경우에는 과용되므로 낭비될 우려가 있다.
상기 실리카 전구체는 테트라에톡시오르소실리케이트(tetraethoxyorthosilicate, TEOS) 또는 테트라메톡시오르소실리케이트(tetramethoxyorthosilicate, TMOS) 중에서 1종을 선택하여 사용한다.
또한 상기 발수성 실란 단량체는 [CF3(CF2)l(CH2)m]nSi(CH3CH2O)o, [CF3(CF2)l(CH2)m]nSi(CH3CH2O)o, [CH3(C6H6)l(CH2)m]nSi(CH3CH2O)o, [CH3(CH2)m]nSi(CH3O)o 중에서 선택된 단독화합물 혹은 2종 이상의 혼합물을 사용하는 것이 바람직하다. 이때 상기 발수성 실란 단량체에서, l은 0-21의 정수, m은 0-21의 정수, n은 1-3의 정수 o는 1-3의 정수이다.
상기 발수성 실리카 나노튜브는 일반적인 메조세공 실리카 구조체에 비하여 높은 정렬성과 결정성과 무적성을 갖는 것이 특징이다.
즉,본 발명은 도 10에 도시된 전자현미경의 사진을 살펴보면, 미세세공이 잘 발달되어 있음을 확인할 수 있으며, 약 100 nm 내외의 미세세공을 통하여 공기의 순환이 이루어짐으로써, 랩의 내부 표면에 물방울이 맺혀 흐려지는 것을 예방할 수 있고, 상기 미세기공은 은 나노입자 함유 실리카 나노튜브에 의해 형성되는 것으로 추정된다.
따라서, 본 발명에 따른 항균성 식품포장용 랩은 합성수지에 분산력이 우수한 은 나노입자를 흡착시킨 실리카 나노튜브와 발수성이 우수한 실리카 나노튜브를 첨가하여 식품포장용 랩을 제조함으로써, 항균성 및 무적성 특성이 우수한 것이 장점이다.
이하 본 발명에 따른 항균성 식품포장용 랩을 하기의 실시예를 통해 구체적으로 설명하면 다음과 같으며, 본 발명은 하기의 실시예에 의해서만 반드시 한정되는 것이 아니다.
1. 항균성 식품포장용 랩의 제조
(실시예 1)
LDPE 980g과 은 나노입자 함유 실리카 나노튜브 10g 및 발수성 실리카 나노튜브 10g을 혼합하여 통상적인 방법에 따라 두께 10㎛의 항균성 식품포장용 랩을 제조하였다. 본 실시예 1에서 사용한 은 나노입자 함유 실리카 나노튜브는 실리카 나노튜브에 은 나노입자가 20000ppm가 함유되고, 실리카 나노튜브의 평균 내경은 30~60nm, 평균 길이는 10~30 ㎛이었고, 발수성 실리카 나노튜브는 TEOS 실리카 전구체에 발수성 실란 단량체인 [CF3(CF2)5(CH2)5]2Si(CH3CH2O)2를 사용하여 합성한 실리카 나노튜브로서, 평균 직경 50~100nm, 평균 길이 1~100㎛ 크기인 것을 사용하였다.
참고로, 도 2는 본 발명에 따른 실시예 1에 사용된 은 나노입자-실리카 나노튜브를 찍은 TEM(5000배 확대) 사진이고, 도 3은 본 발명에 따른 실시예 1에 사용된 은 나노입자-실리카 나노튜브의 XRD 측정결과를 나타낸 그래프이다.
그리고 도 4a는 본 발명의 실시 예1에 따른 발수성 실리카 나노튜브를 1,000배 확대 촬영하여 나타낸 SEM 사진이고, 도 4b는 본 발명의 실시 예 1에 따른 발수성 실리카 나노튜브를 5,000배 확대 촬영하여 나타낸 SEM 사진이며, 도 5는 본 발명의 실시 예 1에 따른 발수성 실리카 나노튜브의 FT-IR 측정결과를 나타낸 그래프에 관한 것이다.
(실시예 2)
LDPE 960g과 은 나노입자 함유 실리카 나노튜브 20g 및 발수성 실리카 나노튜브 20g을 혼합하여 통상적인 방법에 따라 두께 10㎛의 항균성 식품포장용 랩을 제조하되, 은 나노입자 함유 실리카 나노튜브 및 발수성 실리카 나노튜브는 실시예 1과 동일한 것을 사용하였다.
(비교예 1)
LDPE 990g과 은 나노입자 함유 구상형 메조세공 실리카 10g을 혼합하여 통상적인 방법에 따라 두께 10㎛의 항균성 식품포장용 랩을 제조하였다. 본 비교예 1에서 사용한 은 나노입자 함유 구상형 메조세공 실리카는 평균 입경이 3.0㎛ 크기의 구상형 메조세공 실리카에 은 나노입자가 20000ppm가 함유된 것을 사용하였다.
참고로, 도 6은 비교예 1에 사용된 은 나노입자가 분산 함유된 구상형 메조세공 실리카를 찍은 SEM(30,000배 확대) 사진이고, 도 7은 비교예 1에 사용된 은나노입자 함유 구상형 메조세공 실리카의 XRD 측정결과를 나타낸 그래프이다.
2. 항균성 식품포장용 랩의 평가
상기 1의 방법에 의해 제조한 항균성 식품포장용 랩을 대상으로 대장균(Escherichia coli) 및 포도상구균(Staphylococcus aureus)에 대한 항균력 시험을 JIS Z 2801 : 2006(항균가공제품, 항균성 시험방법, 항균효과)에 의거 실시하였으며, 그 결과는 항균활성치(R)의 값은 아래 [표 1]의 내용과 같다.
시험균주는 Escherichia coli ATCC 8739와 Staphylococcus aureus ATCC 6538p를 각각 사용하였다.
표 1
구분 실시예 비교예
1 2 1
E,coli 6.2 6.4 3.5
S.aureus 3.4 3.7 2.1
상기 [표 1]의 내용에 의하면 항균성 시험에 있어서, 실시예 1의 대장균(E. coli)의 항균활성치(R)는 6.2 및 6,4으로서 항균효과가 99.99%이상이며, 포도상구균(S. aureus)의 항균활성치(R)는 3.4 및 3.5로서 항균효과가 99.90%이상인데 반해 비교예 1의 경우에는 대장균(E. coli)의 항균활성치(R)는 3.5로서 항균효과가 99.90%이며, 포도상구균(S. aureus)의 항균활성치(R)는 2.1로서 항균효과가 90.00%이었다.
즉, 상기 [표 1]에서 나타난 바와 같이, 본 발명에 따른 항균성 식품포장용 랩인 실시예 1 및 실시예 2는 은 나노입자 함유 실리카 나노튜브를 사용함에 따라 비교예 1의 구상형 메조세공 실리카를 사용한 것에 비해 대장균(E. coli) 및 포도상구균(S. aureus)에 대한 항균력이 모두 우수한 것이 확인되었으며, 이는 실시예 1 및 2에서 사용한 실리카 나노튜브가 비교예 1의 구상형 메조세공 실리카에 비해 항균성 식품포장용 랩 내에서의 분산력이 우수한 것에 기인하는 것으로 추정된다.
그리고 상기 실시 예 1, 2 및 비교예 1의 무적성 시험은 밥을 각각 200g씩 그릇에 넣고 랩으로 감싼 다음 24시간 방치한 후 무적성을 측정한 결과 아래 [표 2]의 내용과 같다.
표 2
구분 실시예 비교예
1 2 1
무적성 ×
- ○ : 식품포장용 랩에 물방울이 전혀 보이지 않는 양호한 상태 - × : 식품포장용 랩에 물방울 또는 수증기가 맺혀 있는 불량 상태
상기 [표 2]에서 나타난 바와 같이 무적성 시험에 있어서, 실시예 1 및 실시예 2는 랩의 내부 표면에 물방울이 맺히지 않아 무적성의 특성이 우수한데 반해 비교예 1 은 랩의 내부 표면에 수증기가 맺혀 무적성의 특성이 불량상태인 것으로 확인된 바와 같이 실시예 1, 2는 비교예 1과는 달리 발수성 실리카 나노튜브를 합성수지 내에 혼합함에 따라 무적성이 우수한 것으로 나타났다.
즉, 본 발명에 따른 실시예 1은 도 10에 도시된 사진의 내용과 같이 랩의 표면에 형성된 약 100 nm 내외의 미세세공들이 은 나노입자 함유 실리카 나노튜브에 의해 형성되는 것으로 추정되며, 상기 미세세공들을 통하여 공기의 순환이 이루어짐으로써, 무적성의 특성이 우수하고, 비교예 1은 도 11에 도시된 사진의 내용과 같이 랩의 표면에 미세기공들이 형성되지 않음에 따라 무적성의 특성이 불량인 것을 확인할 수 있었다.
참고로, 도 8은 본 발명에 따른 실시예 1의 랩을 사용하여 밥을 200g 그릇에 넣고 랩으로 감싼 다음 24시간 방치한 후 무적성을 측정한 결과를 나타낸 사진이고, 도 9는 비교예 1의 랩을 사용하여 밥을 200g 그릇에 넣고 랩으로 감싼 다음 24시간 방치한 후 무적성을 측정한 결과를 나타낸 사진이며, 도 10은 본 발명에 따른 실시예 1의 랩의 표면을 30,000배로 학대하여 찍은 SME 사진이고, 도 11은 비교예 1의 랩의 표면을 30,000배로 학대하여 찍은 SME 사진에 관한 것이다.
본 실시예는 상기 [표 1] 및 [표 2]에 나타난 바와 같이 본 발명에 따른 실시예 1, 2가 비교예 1에 비해 항균성 및 무적성의 특성이 모두 우수한 것으로 확인되었다.
상술한 바와 같은, 본 발명의 바람직한 실시예에 따른 항균성 식품포장용 랩을 상기한 설명 및 도면에 따라 도시하였지만, 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.
본 발명은 은 나노입자 함유 실리카 나노튜브를 함유한 항균성 식품포장용 랩에 있어서, 합성수지 96~98 중량%와 은 나노입자 함유 실리카 나노튜브 1~2 중량% 및 발수성 실리카 나노튜브 1~2 중량%로 이루어지는 항균성 식품포장용 랩을 발명의 실시를 위한 형태로 한다.
한편, 상기 합성수지는 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리스티렌 수지, 폴리에스테르 수지, 염화비닐수지, 폴리염화비닐리덴 수지, 폴리에틸렌테레프탈레트 수지, 페놀수지 중에서 1종을 선택하여 사용하는 것이 바람직하다.
아울러, 상기 나노입자 함유 실리카 나노튜브는 은 나노입자가 20000~100000 ppm 함유되도록 하는 것이 바람직하다.
또한, 상기 나노입자 함유 실리카 나노튜브는 평균 내경이 30~60 nm, 평균 길이가 10~30 ㎛인 것이 바람직하다.
또한, 상기 발수성 실리카 나노튜브는 실리카 전구체에 발수성 실란 단량체를 1 : 0.1~0.5의 몰 비의 범위에서 혼합하여 공축합시키는 것이 바람직하다.
또한, 상기 실리카 전구체는 테트라에톡시오르소실리케이트(tetraethoxyorthosilicate, TEOS) 또는 테트라메톡시오르소실리케이트(tetramethoxyorthosilicate, TMOS) 중에서 1종을 선택하여 사용하는 것이 바람직하다.
또한, 상기 발수성 실란 단량체는 [CF3(CF2)l(CH2)m]nSi(CH3CH2O)o, [CF3(CF2)l(CH2)m]nSi(CH3CH2O)o, [CH3(C6H6)l(CH2)m]nSi(CH3CH2O)o, [CH3(CH2)m]nSi(CH3O)o 중에서 선택된 단독화합물 혹은 2종 이상의 혼합물을 사용하는 것이 바람직하다.
단, 상기 발수성 실란 단량체에서, l은 0-21의 정수, m은 0-21의 정수, n은 1-3의 정수 o는 1-3의 정수이다.
또한, 상기 발수성 실리카 나노튜브는 평균 직경 50~100nm, 평균 길이 1~100㎛ 크기인 것이 바람직하다.
본 발명은 합성수지에 분산력이 우수한 은 나노입자를 흡착시킨 실리카 나노튜브와 무적성이 우수한 실리카 나노튜브를 첨가하여 식품포장용 랩을 제조함으로써, 항균성 기능이 우수할 뿐만 아니라 냉동식품, 채소류, 과일류 등을 포장시, 과일류 등에 함유되어 있는 수분에 의해 랩의 내부 표면에 물방울이 맺혀 흐려지는 것을 예방함으로써 식품포장용 랩의 용도로 사용하기가 적합함에 따라 산업상 널리 이용될 것으로 기대된다.

Claims (8)

  1. 은 나노입자 함유 실리카 나노튜브를 함유한 항균성 식품포장용 랩에 있어서,
    합성수지 96~98 중량%와 은 나노입자 함유 실리카 나노튜브 1~2 중량% 및 발수성 실리카 나노튜브 1~2 중량%로 이루어지는 것을 특징으로 하는 항균성 식품포장용 랩.
  2. 제 1항에 있어서,
    상기 합성수지는 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리스티렌 수지, 폴리에스테르 수지, 염화비닐수지, 폴리염화비닐리덴 수지, 폴리에틸렌테레프탈레트 수지, 페놀수지 중에서 1종을 선택하여 사용하는 것을 특징으로 하는 항균성 식품포장용 랩.
  3. 제 1항에 있어서,
    상기 나노입자 함유 실리카 나노튜브는 은 나노입자가 20000~100000 ppm 함유되는 것을 특징으로 하는 항균성 식품포장용 랩.
  4. 제 2항 또는 제 3항 중 어느 한 항에 있어서,
    상기 나노입자 함유 실리카 나노튜브는 평균 내경이 30~60 nm, 평균 길이가 10~30 ㎛인 것을 특징으로 하는 항균성 식품포장용 랩.
  5. 제 1항에 있어서,
    상기 발수성 실리카 나노튜브는 실리카 전구체에 발수성 실란 단량체를 1 : 0.1~0.5의 몰 비의 범위에서 혼합하여 공축합시키는 것을 특징으로 하는 항균성 식품포장용 랩.
  6. 제 6항에 있어서,
    상기 실리카 전구체는 테트라에톡시오르소실리케이트(tetraethoxyorthosilicate, TEOS) 또는 테트라메톡시오르소실리케이트(tetramethoxyorthosilicate, TMOS) 중에서 1종을 선택하여 사용하는 것을 특징으로 하는 항균성 식품포장용 랩.
  7. 제 6항에 있어서,
    상기 발수성 실란 단량체는 [CF3(CF2)l(CH2)m]nSi(CH3CH2O)o, [CF3(CF2)l(CH2)m]nSi(CH3CH2O)o, [CH3(C6H6)l(CH2)m]nSi(CH3CH2O)o, [CH3(CH2)m]nSi(CH3O)o 중에서 선택된 단독화합물 혹은 2종 이상의 혼합물을 사용하는 것을 특징으로 하는 항균성 식품포장용 랩.
    단, 상기 발수성 실란 단량체에서, l은 0-21의 정수, m은 0-21의 정수, n은 1-3의 정수 o는 1-3의 정수이다.
  8. 제 5에 있어서,
    상기 발수성 실리카 나노튜브는 평균 직경 50~100nm, 평균 길이 1~100㎛ 크기인 것을 특징으로 하는 항균성 식품포장용 랩.
PCT/KR2012/001206 2011-10-06 2012-02-17 무적성이 우수한 항균성 식품포장용 랩 WO2013051766A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0101992 2011-10-06
KR1020110101992A KR101300645B1 (ko) 2011-10-06 2011-10-06 무적성이 우수한 항균성 식품포장용 랩

Publications (1)

Publication Number Publication Date
WO2013051766A1 true WO2013051766A1 (ko) 2013-04-11

Family

ID=48043916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001206 WO2013051766A1 (ko) 2011-10-06 2012-02-17 무적성이 우수한 항균성 식품포장용 랩

Country Status (2)

Country Link
KR (1) KR101300645B1 (ko)
WO (1) WO2013051766A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9359386B1 (en) * 2015-02-19 2016-06-07 Gelest Technologies, Inc. Silanes and silicones with distinct hydrophilic and oleophobic substitution
RO130496B1 (ro) 2015-04-08 2022-08-30 Universitatea Tehnică Din Cluj-Napoca Procedeu de obţinere a unui ambalaj alimentar din materiale nano-structurate
EP3802122B1 (en) 2018-05-25 2023-08-16 Cryovac, LLC Method of making an antimicrobial multilayer film
KR20220161024A (ko) 2021-05-28 2022-12-06 (주)한그린테크 TiO2와 탄소 양자점을 포함하여 조성된 포장재

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100054304A (ko) * 2008-11-14 2010-05-25 김상만 신선도 유지 조성물과 신선도 유지 조성물이 코팅된 골판지의 제조방법 및 그 제조방법에 의하여 제조된 신선도 유지 조성물이 코팅된 골판지
KR101004027B1 (ko) * 2010-06-23 2010-12-31 (주) 더몰론코리아 항균성 식품포장용 필름
KR101057476B1 (ko) * 2008-07-07 2011-08-17 (주) 더몰론코리아 1차원구조의 발수성 나노실리카 및 이의 합성방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090131847A (ko) * 2008-06-19 2009-12-30 대구대학교 산학협력단 항균성 고분자 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101057476B1 (ko) * 2008-07-07 2011-08-17 (주) 더몰론코리아 1차원구조의 발수성 나노실리카 및 이의 합성방법
KR20100054304A (ko) * 2008-11-14 2010-05-25 김상만 신선도 유지 조성물과 신선도 유지 조성물이 코팅된 골판지의 제조방법 및 그 제조방법에 의하여 제조된 신선도 유지 조성물이 코팅된 골판지
KR101004027B1 (ko) * 2010-06-23 2010-12-31 (주) 더몰론코리아 항균성 식품포장용 필름

Also Published As

Publication number Publication date
KR20130037537A (ko) 2013-04-16
KR101300645B1 (ko) 2013-08-27

Similar Documents

Publication Publication Date Title
WO2013051766A1 (ko) 무적성이 우수한 항균성 식품포장용 랩
CN101157770B (zh) 增强的氮化硼组合物和用其制备的组合物
KR101004027B1 (ko) 항균성 식품포장용 필름
KR102020066B1 (ko) 내부분방전성 및 부분방전 개시전압 특성이 우수한 절연 전선
US6358576B1 (en) Clay-filled polymer barrier materials for food packaging applications
KR102354462B1 (ko) 항균성 및 제습성을 갖는 이원기능성 은이온 함유 유기금속 골격 복합체, 이의 제조방법, 및 이를 포함하는 자연 분해성 고분자 필름
Sadiku et al. Nanostructured polymer blends for gas/vapor barrier and dielectric applications
WO2012111894A1 (ko) 펠릿형 항균성 마스터배치
WO2011152607A1 (ko) 수성 항균 조성물
EP3388476A1 (en) Polyolefin stretched porous film
Lin et al. PHB/PCL fibrous membranes modified with SiO 2@ TiO 2-based core@ shell composite nanoparticles for hydrophobic and antibacterial applications
CN109705454A (zh) 一种抗菌防霉3d打印聚丙烯丝材及其制备方法
KR20100036104A (ko) 폴리머 피복된 에어로겔, 그 제조방법 및 이를 이용한 단열성 수지 조성물
KR102229068B1 (ko) 포장용 다층 항균필름
CN112457657A (zh) 防尘抗菌自清洁薄膜用热塑性聚氨酯弹性体材料及其制备方法
Lv et al. Antibiotic glass slide coated with silver nanoparticles and its antimicrobial capabilities
CN112480516B (zh) 一种透明防雾树脂、塑料制品及其制备方法
CN109705424B (zh) 一种双向拉伸聚乙烯抗菌薄膜及其制备方法
WO2011152591A1 (ko) 유성 항균 조성물
EP3067445A1 (en) A method for biofunctionalization of textile materials
KR102453137B1 (ko) 교차오염 및 교차감염 방지를 위한 다층 항균필름 및 이의 제조방법
KR101398089B1 (ko) 항균 제습기
CN113372642A (zh) 抗菌增韧型聚乙烯膜及其制备方法
KR102526639B1 (ko) 종이코팅 조성물 및 이를 이용하여 항균방수 코팅된 종이
KR102497422B1 (ko) 자가 세척 복합 코팅 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838177

Country of ref document: EP

Kind code of ref document: A1