WO2013051741A1 - 건설기계용 우선 제어시스템 - Google Patents

건설기계용 우선 제어시스템 Download PDF

Info

Publication number
WO2013051741A1
WO2013051741A1 PCT/KR2011/007440 KR2011007440W WO2013051741A1 WO 2013051741 A1 WO2013051741 A1 WO 2013051741A1 KR 2011007440 W KR2011007440 W KR 2011007440W WO 2013051741 A1 WO2013051741 A1 WO 2013051741A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
control valve
arm
driving
pilot signal
Prior art date
Application number
PCT/KR2011/007440
Other languages
English (en)
French (fr)
Inventor
정해균
송영복
Original Assignee
볼보 컨스트럭션 이큅먼트 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼보 컨스트럭션 이큅먼트 에이비 filed Critical 볼보 컨스트럭션 이큅먼트 에이비
Priority to CN201180074001.5A priority Critical patent/CN103857850A/zh
Priority to PCT/KR2011/007440 priority patent/WO2013051741A1/ko
Priority to JP2014534450A priority patent/JP5927302B2/ja
Priority to EP11873615.6A priority patent/EP2765244A4/en
Priority to US14/349,452 priority patent/US9651063B2/en
Priority to KR1020147008796A priority patent/KR20140074324A/ko
Publication of WO2013051741A1 publication Critical patent/WO2013051741A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/021Valves for interconnecting the fluid chambers of an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2037Coordinating the movements of the implement and of the frame
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre

Definitions

  • the present invention relates to a priority control system for construction machinery, and more particularly, when operating a work device such as an swinging device of an excavator and an arm at the same time, first, the control valve is throttled or released according to the amount of load generated by the hydraulic actuator. It relates to a priority control system for construction machinery that can be switched to a state to prevent unnecessary pressure loss.
  • first and second hydraulic pumps 2 and 3 A variable displacement first and second hydraulic pumps (hereinafter referred to as first and second hydraulic pumps) 2 and 3 and a pilot pump 4 connected to the engine 1,
  • a boom control valve (7) installed in the first center bypass passage (5) of the first hydraulic pump (2) and connected through a parallel flow passage (5a) and controlling the driving of the boom cylinder (6), and a bucket cylinder
  • a swing control valve 14 installed in the second center bypass passage 12 of the second hydraulic pump 3 and connected through the parallel flow passage 12a to control driving of the swing motor 13, and an arm cylinder.
  • First and second pressure generators 19 and 20 for outputting a control signal corresponding to the manipulated variable
  • the control valve 21 When the pilot signal pressure is not applied to the swing control valve 14 without operating the first pressure generator 19 described above, the control valve 21 first releases the throttle release state by the elastic force of the valve spring 21a. Holding (as shown in the figure) the spool opening is switched to maximum. On the other hand, when the pilot signal pressure is first applied to the control valve 21 through the flow passage 22 due to the operation of the first pressure generating device 19, the internal spool is turned upward in the drawing to the throttle state. do.
  • the swing motor 13 When operating the above-described first and second pressure generators 19 and 20 to simultaneously operate the swing motor 13 with high load and the arm-in driving with low load, the swing motor 13 is generated.
  • the load generated on the arm cylinder 15 becomes relatively smaller than the load. Therefore, the hydraulic oil discharged from the second hydraulic pump 3 is supplied more to the arm cylinder 15 with a smaller load than the swing motor 13 with a large load.
  • the control valve 21 is switched to the throttle state as described above, so that the arm control valve 16 is released from the second hydraulic pump 3.
  • the flow rate supplied to) is reduced, and the flow rate supplied to the swing control valve 14 is increased by the reduced flow rate.
  • the control valve 21 is first applied by the pilot signal pressure applied due to the operation of the first pressure generator 19. ) Will remain throttled.
  • the flow path of the priority control valve 21 connected to the arm control valve 16 is reduced, the operating speed of the arm cylinder 15 is lowered, causing unnecessary pressure loss and causing hydraulic energy loss.
  • the control valve when simultaneously operating a swinging device having a large operating pressure and an arm cylinder having a large or small operating pressure in accordance with the driving direction, the control valve is first switched to a throttle state according to the load generation to maintain simultaneous operability. Or a throttle release state to prevent unnecessary pressure loss, and to secure the operating speed of the actuator to optimally control the flow rate distribution.
  • a boom control valve installed in the first center bypass passage of the first hydraulic pump and connected through a parallel flow path, controlling the operation of the boom cylinder, a bucket control valve controlling the driving of the bucket cylinder, and a drive of the left traveling motor.
  • a swing control valve installed in a second center bypass passage of the second hydraulic pump and connected through a parallel flow path, for controlling the driving of the swing motor, an arm control valve for controlling the driving of the arm cylinder, and a drive of the right traveling motor.
  • a traveling control valve for controlling the
  • First and second pressure generators respectively outputting a control signal corresponding to the manipulated variable
  • a shuttle valve for outputting any one pilot signal pressure selected from pilot signal pressures applied to the swing control valve so that the swing motor can swing in a left or right direction according to an operation of the first pressure generator;
  • the pilot signal pressure is changed to the throttling state by the applied pilot signal pressure, and the pilot signal pressure and the valve spring applied when the first actuator in which the high load operating pressure is generated and the second actuator in which the high load operating pressure is generated according to the driving direction are operated simultaneously. It is provided with a priority control valve which switches to an throttle release state by elastic force.
  • a boom control valve installed in the first center bypass passage of the first hydraulic pump and connected through a parallel flow path, controlling the operation of the boom cylinder, a bucket control valve controlling the driving of the bucket cylinder, and a drive of the left traveling motor.
  • a swing control valve installed in a second center bypass passage of the second hydraulic pump and connected through a parallel flow path, for controlling the driving of the swing motor, an arm control valve for controlling the driving of the arm cylinder, and a drive of the right traveling motor.
  • a traveling control valve for controlling the
  • First and second pressure generators respectively outputting a control signal corresponding to the manipulated variable
  • a shuttle valve for outputting any one pilot signal pressure selected from pilot signal pressures applied to the swing control valve so that the swing motor can swing in a left or right direction according to an operation of the first pressure generator;
  • a signal line shut-off valve for blocking the flow path only by the pilot signal pressure applied to the arm control valve to drive the arm-out in accordance with the operation of the second pressure generating device.
  • a boom control valve installed in the first center bypass passage of the first hydraulic pump and connected through a parallel flow path, controlling the operation of the boom cylinder, a bucket control valve controlling the driving of the bucket cylinder, and a drive of the left traveling motor.
  • a swing control valve installed in a second center bypass passage of the second hydraulic pump and connected through a parallel flow path, for controlling the driving of the swing motor, an arm control valve for controlling the driving of the arm cylinder, and a drive of the right traveling motor.
  • a traveling control valve for controlling the
  • First and second pressure generators respectively outputting a control signal corresponding to the manipulated variable
  • a shuttle valve for outputting any one pilot signal pressure selected from pilot signal pressures applied to the swing control valve so that the swing motor can swing in a left or right direction according to an operation of the first pressure generator;
  • a signal line shutoff valve installed in the flow path between the shuttle valve and the first control valve and switched by an electrical control signal from the outside to shut off the flow path;
  • First pressure detecting means for detecting a pilot signal pressure applied to the arm control valve so as to drive the arm-out in response to an operation of the second pressure generating device and outputting a detection signal
  • a controller for outputting an electrical control signal to switch the signal signal to the signal line shutoff valve when the pilot signal pressure for arm-out driving reaches a set value according to a detection signal input from the first pressure detecting means.
  • a boom control valve installed in the first center bypass passage of the first hydraulic pump and connected through a parallel flow path, controlling the operation of the boom cylinder, a bucket control valve controlling the driving of the bucket cylinder, and a drive of the left traveling motor.
  • a swing control valve installed in a second center bypass passage of the second hydraulic pump and connected through a parallel flow path, for controlling the driving of the swing motor, an arm control valve for controlling the driving of the arm cylinder, and a drive of the right traveling motor.
  • a traveling control valve for controlling the
  • First and second pressure generators respectively outputting a control signal corresponding to the manipulated variable
  • a shuttle valve for outputting any one pilot signal pressure selected from pilot signal pressures applied to the swing control valve so that the swing motor can swing in a left or right direction according to an operation of the first pressure generator;
  • a pressure reducing valve installed in a flow path between the pilot pump and the first control valve
  • First pressure detecting means for detecting a pilot signal pressure applied to the arm control valve so as to drive the arm-out in response to an operation of the second pressure generating device and outputting a detection signal
  • a pilot signal pressure output from a shuttle valve outputting any one selected from pilot signal pressures applied to the swing control valve to drive the swing motor in a left or right direction is detected.
  • the secondary signal pressure output from the pressure reducing valve is increased according to the increase in the turning pilot signal pressure by the detection signal input from the second pressure detecting means, and the arm-out drive is driven by the detection signal input from the first pressure detecting means.
  • a controller for outputting a control signal to the pressure reducing valve so as to reduce an output secondary signal pressure of the pressure reducing valve when the pilot signal pressure is input.
  • the above-mentioned priority control valve is switched to the throttle state by the pilot signal pressure output from the shuttle valve when the swing and arm-in drive are operated simultaneously, and the swing and arm-out drive can be operated simultaneously.
  • the throttle release state is switched by the elastic force of the valve spring of the control valve and the pilot signal pressure applied to the arm control valve to drive the arm-out.
  • the first actuator described above is a swing motor and the second actuator is an arm cylinder.
  • a solenoid valve switched by an electrical control signal input from a controller is used.
  • a pressure sensor for detecting the pilot signal pressure applied to the arm control valve and transmitting the detection signal to the controller is used.
  • a pressure switch is used that turns on and off when the pilot signal pressure applied to the arm control valve reaches the set pressure to generate a signal.
  • the above-described pressure reducing valve is an electromagnetic proportional control valve for varying the output secondary signal pressure corresponding to the input electrical control signal value.
  • a pressure sensor which detects a pilot signal pressure applied to the arm control valve and transmits the detection signal to the controller is used.
  • a pressure switch that turns on and off to generate a signal when the pilot signal pressure applied to the arm control valve reaches the set pressure is used.
  • Priority control system for a construction machine according to an embodiment of the present invention configured as described above has the following advantages.
  • the control valve When operating a swing device with a large operating pressure and an arm cylinder with a large or small operating pressure at the same time, the control valve is first switched to a throttle state or a throttle release state to maintain simultaneous operability or unnecessary pressure depending on the amount of load generated. It can prevent the loss, improve the workability by securing the operating speed of the actuator, and increase the hydraulic system efficiency by optimally controlling the flow distribution.
  • FIG. 1 is a hydraulic circuit diagram of a priority control system for a construction machine according to the prior art
  • FIG. 2 is a hydraulic circuit diagram of a priority control system for a construction machine according to a first embodiment of the present invention
  • FIG. 3 is a hydraulic circuit diagram of a priority control system for construction machinery according to a second embodiment of the present invention.
  • FIG. 4 is a hydraulic circuit diagram of a priority control system for a construction machine according to a third embodiment of the present invention.
  • FIG. 5 is a hydraulic circuit diagram of a priority control system for a construction machine according to a fourth embodiment of the present invention.
  • the engine 1 The engine 1,
  • first and second hydraulic pumps 2 and 3 A variable displacement first and second hydraulic pumps (hereinafter referred to as first and second hydraulic pumps) 2 and 3 and a pilot pump 4 connected to the engine 1,
  • a boom control valve (7) installed in the first center bypass passage (5) of the first hydraulic pump (2) and connected through a parallel flow passage (5a) and controlling the driving of the boom cylinder (6), and a bucket cylinder
  • a swing control valve 14 installed in the second center bypass passage 12 of the second hydraulic pump 3 and connected through the parallel flow passage 12a to control driving of the swing motor 13, and an arm cylinder.
  • First and second pressure generators 19 and 20 for respectively outputting control signals corresponding to the manipulated variable
  • the first actuator (for example, the swing motor) is installed in the flow path 29 between the parallel flow passage 12a on the second hydraulic pump 3 side and the inlet port of the arm control valve 16 and generates a high load operating pressure.
  • a second actuator for example, an arm cylinder
  • the first actuator which is switched to the throttled state by the applied pilot signal pressure, and simultaneously generates the first actuator in which the high load operating pressure is generated and the second actuator in which the high load operating pressure is generated according to the driving direction (for example, arm-out driving). It is provided with the priority control valve 21 which switches to an throttle release state by the pilot signal pressure applied at the time of operation, and the elastic force of the valve spring 21a.
  • the aforementioned priority control valve 21 is switched to the throttling state by the pilot signal pressure output from the shuttle valve 23 when the swing and arm-in driving are operated simultaneously, and the swing and arm-out driving are simultaneously performed. In the case of operation, it is first switched to the throttle release state by the elastic force of the valve spring 21a of the control valve 21 and the pilot signal pressure applied to the arm control valve 16 to drive the arm-out.
  • the first pressure can be driven to drive the turning motor 13 in the left or right direction.
  • the pilot signal pressure output from the shuttle valve 23 is first supplied to the pressure chamber of the control valve 21 along the flow path 22 to move the internal spool upward in the drawing.
  • the control valve 21 is switched to the throttled state.
  • the second hydraulic pump 3 is switched by switching the swing control valve 14 to rotate the swing motor 13 in the left or right direction due to the operation of the first pressure generator 19 described above.
  • the hydraulic oil discharged from the air is supplied to the swing motor 13 through the swing control valve 14 along the second center bypass passage 12 to drive the swing motor 13.
  • the discharge from the second hydraulic pump 3 is performed.
  • the operating oil to be supplied is the large of the arm cylinder 15 via the second center bypass passage 12-parallel passage 12a-the primary control valve 21 in the throttle state-the flow passage 29-the arm control valve 16. It is fed to the chamber and drives it.
  • the spool of the control valve 21 is switched to the throttled state to limit the flow rate supplied to the arm control valve 16 side, thereby maintaining simultaneous workability.
  • the control valve 21 maintains an initial state (referring to the state shown in FIG. 2) in which its throttle is released.
  • the pilot signal pressure is supplied to the pressure chamber of the arm control valve 16 due to the operation of the second pressure generator 20 to switch the inner spool in the right direction on the drawing.
  • a part of the pilot signal pressure supplied to the arm control valve 16 is first applied to the valve spring 21a side of the control valve 21 to maintain the control valve 21 in a throttle state (i.e., priority control).
  • the value obtained by adding the elastic force of the valve spring 21a of the valve 21 and the pilot signal pressure applied to the arm control valve 16 at the time of arm-out driving is, first, from the shuttle valve 23 to the pressure chamber of the control valve 21. Greater than the pilot signal pressure applied to
  • a part of the hydraulic oil discharged from the second hydraulic pump 3 is supplied to the turning motor 13 via the second center bypass passage 12-the turning control valve 14 to drive it.
  • a part of the hydraulic oil discharged from the second hydraulic pump 3 passes through the second center bypass passage 12-the parallel passage 12a-the priority control valve 21 in the throttle release state-the flow passage 29-the arm control valve. Since it is supplied to the small chamber of the arm cylinder 15 via (16) one by one, it contracts and drives it.
  • the spool of the control valve 21 is first switched to the throttle release state so that the flow path of the throttle device By converting to maximum, unnecessary pressure loss can be avoided.
  • the engine 1 The engine 1,
  • a boom control valve (7) installed in the first center bypass passage (5) of the first hydraulic pump (2) and connected through a parallel flow passage (5a) and controlling the driving of the boom cylinder (6), and a bucket cylinder
  • a swing control valve 14 installed in the second center bypass passage 12 of the second hydraulic pump 3 and connected through the parallel flow passage 12a to control driving of the swing motor 13, and an arm cylinder.
  • First and second pressure generators 19 and 20 for respectively outputting control signals corresponding to the manipulated values
  • the low pressure operating pressure is generated in accordance with the driving direction and the first actuator which is installed in the flow path between the parallel flow passage 12a of the second hydraulic pump 3 side and the inlet port of the arm control valve 16 and generates a high load operating pressure.
  • the second actuator When operating the second actuator at the same time is switched to the throttling state by the pilot signal pressure applied through the flow path 22, the second actuator to generate a high load operating pressure in accordance with the driving direction and the first actuator is generated a high load operating pressure
  • Priority control valve 21 is switched to the throttle release state by the pilot signal pressure applied when operating the actuator at the same time,
  • Pilot installed in the flow path 22 between the shuttle valve 23 and the first control valve 21, the pilot applied to the arm control valve 14 to drive the arm-out according to the operation of the second pressure generating device 20. And a signal line shutoff valve 24 for blocking the flow passage 22 only by the signal pressure.
  • the boom control valve 7 is installed in the first center bypass passage 5 of the above-described first hydraulic pump 2 and connected through the parallel flow passage 5a, and controls the driving of the boom cylinder 6.
  • the configuration of the bucket control valve 9 for controlling the drive of the bucket cylinder 8 and the travel control valve 11 for controlling the drive of the left traveling motor 10 are the same as those shown in FIG. 2. Is omitted.
  • the flow path 22 is provided in the flow path 22 between the above-mentioned shuttle valve 23 and the control valve 21 first, and only by the pilot signal pressure applied to the arm control valve 14 to drive the arm-out. Except for the signal line shut-off valve 24 which is installed to block the, the configuration is the same as the configuration of the priority control system shown in FIG. Write the same.
  • the control valve 21 maintains an initial state (referring to the state shown in FIG. 3) in which its throttle is released.
  • the pilot signal pressure is supplied to the pressure chamber of the arm control valve 16 by the operation of the above-mentioned second pressure generator 20 to switch the inner spool in the right direction on the drawing.
  • a part of the pilot signal pressure applied to the arm control valve 16 is applied to the signal line shutoff valve 24 to switch the internal spool upward in the drawing. Therefore, when operating the first pressure generator 19, the pilot signal pressure supply is first interrupted to the pressure chamber of the control valve 21, so that the control valve 21 is first released by the elastic force of the valve spring 21a. It is possible to maintain the initial state.
  • the spool of the control valve 21 is throttled by the signal line shutoff valve 24. It is switched to the released state to switch the flow path of the throttling device to the maximum to prevent unnecessary pressure loss.
  • the engine 1 The engine 1,
  • a boom control valve (7) installed in the first center bypass passage (5) of the first hydraulic pump (2) and connected through a parallel flow passage (5a) and controlling the driving of the boom cylinder (6), and a bucket cylinder
  • a swing control valve 14 installed in the second center bypass passage 12 of the second hydraulic pump 3 and connected through the parallel flow passage 12a to control driving of the swing motor 13, and an arm cylinder.
  • First and second pressure generators 19 and 20 for respectively outputting control signals corresponding to the manipulated values
  • a signal line shut-off valve 24 installed in the flow passage 22 between the shuttle valve 23 and the control valve 21 and switched by an electrical control signal from the outside to block the flow passage 22;
  • First pressure detecting means (26) for detecting the pilot signal pressure applied to the arm control valve (16) to output the detection signal so as to drive the arm-out according to the operation of the second pressure generating device (20);
  • a controller for outputting an electrical control signal to switch the signal signal to the signal line shut-off valve 24 when the pilot signal pressure for arm-out driving reaches a set value according to a detection signal input from the first pressure detecting means 26 ( 27).
  • a pressure sensor which detects the pilot signal pressure applied to the arm control valve 16 and transmits the detection signal to the controller 27 is used.
  • a pressure switch is used that turns on and off when the pilot signal pressure applied to the arm control valve 16 reaches a set pressure to generate a signal.
  • the boom control valve 7 is installed in the first center bypass passage 5 of the above-described first hydraulic pump 2 and connected through the parallel flow passage 5a, and controls the driving of the boom cylinder 6.
  • the configuration of the bucket control valve 9 for controlling the drive of the bucket cylinder 8 and the travel control valve 11 for controlling the drive of the left traveling motor 10 are the same as those shown in FIG. 2. Is omitted.
  • the signal line shut-off valve 24 and the arm- which are installed in the flow path 22 between the above-described shuttle valve 23 and the control valve 21 to block the flow path 22 at the time of switching by the electric control signal.
  • the configuration except for the controller 27 for controlling to switch) is the same as the configuration of the priority control system shown in FIG. 2, so that detailed descriptions of the configuration and operation thereof are omitted and the reference numerals for the overlapping configurations are the same. Mark it.
  • the pilot signal pressure is reduced due to the operation of the second pressure generator 20. It is supplied to the pressure chamber of the arm control valve 16, and the inner spool is switched to the right direction on the drawing. At this time, the pilot signal pressure applied to the arm control valve 16 is detected by the pressure detecting means 26 to drive the arm out, and the detection signal is transmitted to the controller 27.
  • the controller 27 determines that the pilot signal pressure for arm-out driving reaches a set value, the controller 27 applies an electrical control signal to the signal line shutoff valve 24 to switch the internal spool upward in the drawing.
  • the control valve 21 can maintain the initial state (refer to the state shown in FIG. 4) in which the throttle is released by the elastic force of the valve spring 21a.
  • the spool of the priority control valve 21 is switched by switching the signal line shutoff valve 24.
  • the flow path of the throttle device is switched to the maximum, thereby preventing unnecessary pressure loss.
  • the engine 1 The engine 1,
  • a boom control valve (7) installed in the first center bypass passage (5) of the first hydraulic pump (2) and connected through a parallel flow passage (5a) and controlling the driving of the boom cylinder (6), and a bucket cylinder
  • a swing control valve 14 installed in the second center bypass passage 12 of the second hydraulic pump 3 and connected through the parallel flow passage 12a to control driving of the swing motor 13, and an arm cylinder.
  • First and second pressure generators 19 and 20 for respectively outputting control signals corresponding to the manipulated values
  • a pressure reducing valve 25 installed in the flow path 30 between the pilot pump 4 and the control valve 21;
  • First pressure detecting means (26) for detecting the pilot signal pressure applied to the arm control valve (16) to output the detection signal so as to drive the arm-out according to the operation of the second pressure generating device (20);
  • Second pressure detecting means (28) which detects a pilot signal pressure output from the controller and outputs a detection signal
  • the secondary signal pressure output from the pressure reducing valve 25 is increased as the turning pilot signal pressure increases, and is input from the first pressure detecting means 26.
  • the controller 27 outputting a control signal to the pressure reducing valve 25 so as to reduce the output secondary signal pressure of the pressure reducing valve 25 when the pilot signal pressure for arm-out driving is input by the detected detection signal. It includes.
  • the above-described pressure reducing valve 25 is an electromagnetic proportional control valve for varying the output secondary signal pressure corresponding to the input electrical control signal value.
  • a pressure sensor for detecting the pilot signal pressure applied to the arm control valve 14 and transmitting the detection signal to the controller 17 is used.
  • a pressure switch that turns on and off when a pilot signal pressure applied to the arm control valve 14 reaches a set pressure is used to generate a signal.
  • the boom control valve 7 is installed in the first center bypass passage 5 of the above-described first hydraulic pump 2 and connected through the parallel flow passage 5a, and controls the driving of the boom cylinder 6.
  • the configuration of the bucket control valve 9 for controlling the drive of the bucket cylinder 8 and the travel control valve 11 for controlling the drive of the left traveling motor 10 are the same as those shown in FIG. 2. Is omitted.
  • the pressure reduction valve 25 provided in the flow path 30 between the above-described pilot pump 4 and the first control valve 21 and the pilot signal applied to the arm control valve 16 to drive the arm out.
  • a first pressure detecting means 26 for detecting a pressure a second pressure detecting means 28 for detecting a pilot signal pressure applied to the swing control valve 14, and a pressure reducing valve in accordance with an increase in the turning pilot signal pressure.
  • the pilot signal pressure is reduced due to the operation of the second pressure generator 20. It is supplied to the pressure chamber of the arm control valve 16, and the inner spool is switched to the right direction on the drawing. At this time, the pilot signal pressure applied to the arm control valve 16 is detected by the first pressure detecting means 26 to drive the arm-out, and the detection signal is transmitted to the controller 27.
  • the swing control valve 14 is applied to the swing control valve 14 to drive the swing motor 13 in the left or right direction according to the operation of the first pressure generator 19 to drive the swing motor 13.
  • the pilot signal pressure output from the shuttle valve 23 is detected by the second pressure detecting means 28 and the detection signal is transmitted to the controller 27.
  • the controller 27 increases the secondary signal pressure output from the pressure reducing valve 25 as the turning pilot signal pressure increases by the detection signal input from the second pressure detecting means 28. Also, when the pilot signal pressure for arm-out driving is input to the controller 27 by the detection signal input from the first pressure detecting means 26, the controller 27 reduces the secondary signal pressure output from the pressure reducing valve 25. An electrical control signal is output to the pressure reducing valve 25.
  • the controller 27 controls to increase the secondary signal pressure output of the pressure reducing valve 25, so that the control valve 21 is first switched to the throttle state. It is possible to limit the flow rate supply from the second hydraulic pump 3 to the arm control valve 16.
  • the controller 27 controls to reduce the output secondary signal pressure of the pressure reducing valve 25 first.
  • the spool of the control valve 21 is first throttled or released by the pressure reducing valve 25. Can be switched to throttled state.
  • the control valve when operating a work device such as a swinging device and an arm cylinder at the same time, the control valve is first throttled or throttled off according to the load generation To maintain simultaneous operability or avoid unnecessary pressure loss. It also ensures the operating speed of the actuator and can optimally control the flow distribution.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

선회장치와 아암 등의 작업장치를 동시에 조작할 경우, 유압 액츄에이터에 발생되는 부하량에 따라 우선 제어밸브를 교축상태, 또는 교축해제상태로 전환시켜 불필요한 압력 손실을 방지할 수 있도록 한 제어시스템을 개시한다. 본 발명에 따른 제어시스템에 있어서, 엔진에 연결되는 제1,2유압펌프와, 제1유압펌프의 제1센터바이패스통로에 설치되고 병렬유로를 통해 연결되는 붐 제어밸브, 버킷 제어밸브 및 좌측 주행 제어밸브와, 제2유압펌프의 제2센터바이패스통로에 설치되고 병렬유로를 통해 연결되는 선회 제어밸브, 아암 제어밸브 및 우측 주행 제어밸브와, 제1,2압력 발생장치와, 제1 압력 발생장치의 조작에 따라 선회 제어밸브에 인가되는 파일럿 신호압중 선택된 신호압을 출력하는 셔틀밸브와, 제2유압펌프측 병렬유로와 아암 제어밸브의 입구포트사이의 유로에 설치되고, 고부하 구동장치와 저부하 작업장치를 동시에 조작할 경우 교축 상태로 절환되며, 고부하 구동장치와 고부하 작업장치를 동시에 조작할 경우 교축 해제 상태로 절환되는 우선 제어밸브를 구비하는 것을 특징으로하는 우선 제어시스템을 제공한다.

Description

건설기계용 우선 제어시스템
본 발명은 건설기계용 우선 제어시스템에 관한 것으로, 더욱 상세하게는 굴삭기의 선회장치와 아암 등의 작업장치를 동시에 조작할 경우, 유압 액츄에이터에 발생되는 부하량에 따라 우선 제어밸브를 교축상태 또는 교축 해제상태로 전환시켜 불필요한 압력 손실을 방지할 수 있도록 한 건설기계용 우선 제어시스템에 관한 것이다.
도 1에 도시된 종래 기술에 의한 건설기계용 우선 제어시스템은,
엔진(1)에 연결되는 가변용량형 제1,2유압펌프(이하, 제1,2유압펌프 라고 함)(2,3) 및 파일럿 펌프(4)와,
제1유압펌프(2)의 제1센터바이패스통로(5)에 설치되고 병렬유로(5a)를 통해 연결되며, 붐실린더(6)의 구동을 제어하는 붐 제어밸브(7)와, 버킷실린더(8)의 구동을 제어하는 버킷 제어밸브(9)와, 좌측 주행모터(10)의 구동을 제어하는 주행 제어밸브(11)와,
제2유압펌프(3)의 제2센터바이패스통로(12)에 설치되고 병렬유로(12a)를 통해 연결되며, 선회모터(13)의 구동을 제어하는 선회 제어밸브(14)와, 아암실린더(15)의 구동을 제어하는 아암 제어밸브(16)와, 우측 주행모터(17)의 구동을 제어하는 주행 제어밸브(18)와,
조작량에 대응되는 제어신호를 출력하는 제1,2 압력 발생장치(19,20)와,
제1 압력 발생장치(선회용 조작레버를 말함)(19)의 조작에 따라 좌측 방향으로의 선회 또는 우측 방향으로의 선회될 수 있도록 선회 제어밸브(14)에 인가되는 파일럿 신호압중 큰 파일럿 신호압력을 출력하는 셔틀밸브(23)와,
제2유압펌프(3)측 병렬유로(12a)와 아암 제어밸브(16)의 입구포트사이의 유로(29)에 설치되며, 선회모터(13)와 아암실린더(15)를 동시에 조작할 경우 셔틀밸브(23)로부터 출력되는 파일럿 신호압에 의해 교축 상태와 교축 해제상태로 절환되는 우선 제어밸브(21)를 포함한다.
전술한 제1 압력 발생장치(19)를 조작하지않아 선회 제어밸브(14)에 파일럿 신호압이 인가되지않을 경우, 우선 제어밸브(21)는 밸브스프링(21a)의 탄성력에 의해 교축 해제상태를 유지하므로(도면에 도시된 상태임) 스풀(spool) 개구량이 최대로 전환된다. 반면에 제1 압력 발생장치(19)의 조작으로 인해 파일럿 신호압이 유로(22)를 통해 우선 제어밸브(21)에 인가될 경우에는 내부 스풀을 도면상, 상방향으로 전환시켜 교축 상태로 전환된다.
전술한 제1,2 압력 발생장치(19,20)를 조작하여 고부하가 발생되는 선회모터(13)와 저부하가 발생되는 아암-인 구동을 동시에 작동시킬 경우, 선회모터(13)에 발생되는 부하보다 아암실린더(15)에 발생되는 부하가 상대적으로 작게 된다. 따라서 제2유압펌프(3)로부터 토출되는 작동유는 부하가 큰 선회모터(13)측보다 상대적으로 부하가 작은 아암실린더(15)측에 더 많이 공급된다.
이를 방지하기 위해 선회모터(13)와 아암-인 구동을 동시에 조작할 경우, 전술한 우선 제어밸브(21)를 교축 상태로 전환시킴에 따라, 제2유압펌프(3)로부터 아암 제어밸브(16)에 공급되는 유량은 감소되고, 감소된 유량만큼 선회 제어밸브(14)에 공급되는 유량은 증가된다.
이로 인해, 고부하가 발생되는 선회모터(13)와 상대적으로 저부하가 발생되는 아암-인 작동시 동시 조작성을 유지할 수 있게 된다.
한편, 고부하 발생되는 선회모터(13)와 고부하가 발생되는 아암-아웃 구동을 동시에 조작할 경우에도, 제1 압력 발생장치(19)의 조작으로 인해 인가되는 파일럿 신호압에 의해 우선 제어밸브(21)가 교축 상태를 유지하게 된다. 이로 인해 아암 제어밸브(16)에 연결되는 우선 제어밸브(21)의 유로를 축소시키므로 아암실린더(15)의 작동속도가 저하되며, 불필요한 압력 손실을 발생시켜 유압에너지 손실을 초래하는 문제점을 갖는다.
본 발명의 실시예는, 작동 압력이 큰 선회장치와 구동방향에 따라 작동 압력이 크거나 작은 아암실린더 등을 동시에 조작할 경우, 부하 발생량에 따라 우선 제어밸브를 교축 상태로 전환시켜 동시 조작성을 유지하거나, 교축 해제상태로 전환시켜 불필요한 압력 손실을 방지하고, 액츄에이터의 작동속도를 확보하여 유량 분배를 최적으로 제어할 수 있도록 한 건설기계용 우선 제어시스템과 관련된다.
본 발명의 제1실시예에 의한 건설기계용 우선 제어시스템은,
엔진과,
엔진에 연결되는 가변용량형 제1,2유압펌프 및 파일럿 펌프와,
제1유압펌프의 제1센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 붐실린더의 구동을 제어하는 붐 제어밸브와, 버킷실린더의 구동을 제어하는 버킷 제어밸브와, 좌측 주행모터의 구동을 제어하는 주행 제어밸브와,
제2유압펌프의 제2센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 선회모터의 구동을 제어하는 선회 제어밸브와, 아암실린더의 구동을 제어하는 아암 제어밸브와, 우측 주행모터의 구동을 제어하는 주행 제어밸브와,
조작량에 대응되는 제어신호를 각각 출력하는 제1,2압력 발생장치와,
제1 압력 발생장치의 조작에 따라 선회모터가 좌측 또는 우측 방향으로 선회될 수 있도록 선회 제어밸브에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브와,
제2유압펌프측 병렬유로와 아암 제어밸브의 입구포트사이의 유로에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 저부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압 및 밸브스프링의 탄성력에 의해 교축 해제 상태로 절환되는 우선 제어밸브를 구비한다.
본 발명의 제2실시예에 의한 건설기계용 우선 제어시스템은,
엔진과,
엔진에 연결되는 가변용량형 제1,2유압펌프 및 파일럿 펌프와,
제1유압펌프의 제1센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 붐실린더의 구동을 제어하는 붐 제어밸브와, 버킷실린더의 구동을 제어하는 버킷 제어밸브와, 좌측 주행모터의 구동을 제어하는 주행 제어밸브와,
제2유압펌프의 제2센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 선회모터의 구동을 제어하는 선회 제어밸브와, 아암실린더의 구동을 제어하는 아암 제어밸브와, 우측 주행모터의 구동을 제어하는 주행 제어밸브와,
조작량에 대응되는 제어신호를 각각 출력하는 제1,2 압력 발생장치와,
제1 압력 발생장치의 조작에 따라 선회모터가 좌측 또는 우측 방향으로 선회될 수 있도록 선회 제어밸브에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브와,
제2유압펌프측 병렬유로와 아암 제어밸브의 입구포트사이의 유로에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 저부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 해제 상태로 절환되는 우선 제어밸브와,
셔틀밸브와 우선 제어밸브사이의 유로에 설치되며, 제2 압력 발생장치의 조작에 따라 아암-아웃 구동시키도록 아암 제어밸브에 인가되는 파일럿 신호압에 의해서만 유로를 차단시키는 신호라인 차단밸브를 포함한다.
본 발명의 제3실시예에 의한 건설기계용 우선 제어시스템은,
엔진과,
엔진에 연결되는 가변용량형 제1,2유압펌프 및 파일럿 펌프와,
제1유압펌프의 제1센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 붐실린더의 구동을 제어하는 붐 제어밸브와, 버킷실린더의 구동을 제어하는 버킷 제어밸브와, 좌측 주행모터의 구동을 제어하는 주행 제어밸브와,
제2유압펌프의 제2센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 선회모터의 구동을 제어하는 선회 제어밸브와, 아암실린더의 구동을 제어하는 아암 제어밸브와, 우측 주행모터의 구동을 제어하는 주행 제어밸브와,
조작량에 대응되는 제어신호를 각각 출력하는 제1,2 압력 발생장치와,
제1 압력 발생장치의 조작에 따라 선회모터가 좌측 또는 우측 방향으로 선회될 수 있도록 선회 제어밸브에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브와,
제2유압펌프측 병렬유로와 아암 제어밸브의 입구포트사이의 유로에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 저부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 해제 상태로 절환되는 우선 제어밸브와,
셔틀밸브와 우선 제어밸브사이의 유로에 설치되며, 외부로부터의 전기적 제어신호에 의해 절환되어 유로를 차단시키는 신호라인 차단밸브와,
제2 압력 발생장치의 조작에 따라 아암-아웃 구동시키도록 아암 제어밸브에 인가되는 파일럿 신호압을 검출하여 검출신호를 출력하는 제1 압력 검출수단과,
제1 압력 검출수단으로부터 입력되는 검출신호에 따라 아암-아웃 구동시키는 파일럿 신호압이 설정값에 도달되는 경우 신호라인 차단밸브에 이를 절환시키도록 전기적 제어신호를 출력하는 제어기를 포함한다.
본 발명의 제4실시예에 의한 건설기계용 우선 제어시스템은,
엔진과,
엔진에 연결되는 가변용량형 제1,2유압펌프 및 파일럿 펌프와,
제1유압펌프의 제1센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 붐실린더의 구동을 제어하는 붐 제어밸브와, 버킷실린더의 구동을 제어하는 버킷 제어밸브와, 좌측 주행모터의 구동을 제어하는 주행 제어밸브와,
제2유압펌프의 제2센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 선회모터의 구동을 제어하는 선회 제어밸브와, 아암실린더의 구동을 제어하는 아암 제어밸브와, 우측 주행모터의 구동을 제어하는 주행 제어밸브와,
조작량에 대응되는 제어신호를 각각 출력하는 제1,2 압력 발생장치와,
제1 압력 발생장치의 조작에 따라 선회모터가 좌측 또는 우측 방향으로 선회될 수 있도록 선회 제어밸브에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브와,
제2유압펌프측 병렬유로와 아암 제어밸브의 입구포트사이의 유로에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 저부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 해제 상태로 절환되는 우선 제어밸브와,
파일럿 펌프와 우선 제어밸브사이의 유로에 설치되는 압력 감소밸브와,
제2 압력 발생장치의 조작에 따라 아암-아웃 구동시키도록 아암 제어밸브에 인가되는 파일럿 신호압을 검출하여 검출신호를 출력하는 제1 압력 검출수단과,
제1 압력 발생장치의 조작에 따라 선회모터를 좌측 또는 우측 방향으로 구동시키도록 선회 제어밸브에 인가되는 파일럿 신호압중 선택된 어느 하나를 출력하는 셔틀밸브로부터 출력되는 파일럿 신호압을 검출하여 검출신호를 출력하는 제2 압력 검출수단과,
제2 압력 검출수단으로부터 입력되는 검출신호에 의해 선회용 파일럿 신호압 증가에 따라 압력 감소밸브의 출력되는 2차 신호압을 증대시키고, 제1 압력 검출수단으로부터 입력되는 검출신호에 의해 아암-아웃 구동시키는 파일럿 신호압이 입력되는 경우 압력 감소밸브의 출력되는 2차 신호압을 감소시키도록 제어신호를 압력 감소밸브에 출력하는 제어기를 포함한다.
바람직한 실시예에 의하면, 전술한 우선 제어밸브는, 선회와 아암-인 구동을 동시에 조작할 경우 셔틀밸브로부터 출력되는 파일럿 신호압에 의해 교축 상태로 절환되며, 선회와 아암-아웃 구동을 동시에 조작할 경우 우선 제어밸브의 밸브스프링의 탄성력 및 아암-아웃 구동시키도록 아암 제어밸브에 인가되는 파일럿 신호압에 의해 교축 해제상태로 절환된다.
전술한 제1액츄에이터는 선회모터이고 제2액츄에이터는 아암실린더이다.
전술한 신호라인 차단밸브는, 제어기로부터 입력되는 전기적 제어신호에 의해 절환되는 솔레노이드밸브가 사용된다.
전술한 제1 압력 검출수단으로, 아암 제어밸브에 인가되는 파일럿 신호압을 검출하여 검출신호를 제어기에 전송하는 압력센서가 사용된다.
전술한 제1 압력 검출수단으로, 아암 제어밸브에 인가되는 파일럿 신호압이 설정된 압력에 도달될 경우 온,오프되어 신호를 발생시키는 압력 스위치가 사용된다.
전술한 압력 감소밸브는 입력되는 전기적 제어신호값에 대응하여 출력되는 2차 신호압을 가변시키는 전자비례제어밸브가 사용된다.
전술한 제1,2 압력 검출수단으로, 아암 제어밸브에 인가되는 파일럿 신호압을 검출하여 검출신호를 제어기에 전송하는 압력센서가 사용된다.
전술한 제1,2 압력 검출수단으로, 아암 제어밸브에 인가되는 파일럿 신호압이 설정된 압력에 도달될 경우 온,오프되어 신호를 발생시키는 압력 스위치가 사용된다.
전술한 바와 같이 구성되는 본 발명의 일 실시예에 의한 건설기계용 우선 제어시스템은 아래와 같은 이점을 갖는다.
작동 압력이 큰 선회장치와 구동방향에 따라 작동 압력이 크거나 작은 아암실린더 등을 동시에 조작할 경우, 부하 발생량에 따라 우선 제어밸브를 교축 상태 또는 교축 해제상태로 전환시켜 동시 조작성을 유지하거나 불필요한 압력 손실을 방지하고, 액츄에이터의 작동속도를 확보하여 작업성을 향상시키며, 유량 분배를 최적으로 제어하여 유압시스템 효율을 증대시킬 수 있다.
도 1은 종래 기술에 의한 건설기계용 우선 제어시스템의 유압회로도,
도 2는 본 발명의 제1실시예에 의한 건설기계용 우선 제어시스템의 유압회로도,
도 3은 본 발명의 제2실시예에 의한 건설기계용 우선 제어시스템의 유압회로도,
도 4는 본 발명의 제3실시예에 의한 건설기계용 우선 제어시스템의 유압회로도,
도 5는 본 발명의 제4실시예에 의한 건설기계용 우선 제어시스템의 유압회로도이다.
〈도면의 주요 부분에 대한 참조 부호의 설명〉
1; 엔진
2; 가변용량형 제1유압펌프
3; 가변용량형 제2유압펌프
4; 파일럿 펌프
5; 제1센터바이패스통로
6; 붐실린더
7; 붐 제어밸브
8; 버킷실린더
9; 버킷 제어밸브
10,17; 주행모터
11,18; 주행 제어밸브
12; 제2센터바이패스통로
13; 선회모터
14; 선회 제어밸브
15; 아암실린더
16; 아암 제어밸브
19; 제1압력 발생장치
20; 제2압력 발생장치
21; 우선 제어밸브
22,29,30; 유로
23; 셔틀밸브
24; 신호라인 차단밸브
25; 압력 감소밸브
26; 제1압력 검출수단
27; 제어기
28; 제2압력 검출수단
이하, 본 발명의 바람직한 실시예를 첨부도면을 참조하여 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는 것이다.
도 2에 도시된 본 발명의 제1실시예에 의한 건설기계용 우선 제어시스템은,
엔진(1)과,
엔진(1)에 연결되는 가변용량형 제1,2유압펌프(이하 제1,2유압펌프 라고함)(2,3) 및 파일럿 펌프(4)와,
제1유압펌프(2)의 제1센터바이패스통로(5)에 설치되고 병렬유로(5a)를 통해 연결되며, 붐실린더(6)의 구동을 제어하는 붐 제어밸브(7)와, 버킷실린더(8)의 구동을 제어하는 버킷 제어밸브(9)와, 좌측 주행모터(10)의 구동을 제어하는 주행 제어밸브(11)와,
제2유압펌프(3)의 제2센터바이패스통로(12)에 설치되고 병렬유로(12a)를 통해 연결되며, 선회모터(13)의 구동을 제어하는 선회 제어밸브(14)와, 아암실린더(15)의 구동을 제어하는 아암 제어밸브(16)와, 우측 주행모터(17)의 구동을 제어하는 주행 제어밸브(18)와,
조작량에 대응되는 제어신호를 각각 출력하는 제1,2압력 발생장치(19,20)와,
제1 압력 발생장치(19)의 조작에 따라 선회모터(13)가 좌측 또는 우측 방향으로 선회될 수 있도록 선회 제어밸브(14)에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브(23)와,
제2유압펌프(3)측 병렬유로(12a)와 아암 제어밸브(16)의 입구포트사이의 유로(29)에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터(일 예로서, 선회모터를 말함)와 구동 방향(일 예로서, 아암-인 구동을 말함)에 따라 저부하 작동 압력이 발생되는 제2액츄에이터(일 예로서, 아암실린더를 말함)를 동시에 조작할 경우 유로(22)를 통해 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향(일 예로서, 아암-아웃 구동을 말함)에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압 및 밸브스프링(21a)의 탄성력에 의해 교축 해제 상태로 절환되는 우선 제어밸브(21)를 구비한다.
이때, 전술한 우선 제어밸브(21)는, 선회와 아암-인 구동을 동시에 조작할 경우 셔틀밸브(23)로부터 출력되는 파일럿 신호압에 의해 교축 상태로 절환되며, 선회와 아암-아웃 구동을 동시에 조작할 경우 우선 제어밸브(21)의 밸브스프링(21a)의 탄성력 및 아암-아웃 구동시키도록 아암 제어밸브(16)에 인가되는 파일럿 신호압에 의해 교축 해제상태로 절환된다.
이때, 전술한 제2유압펌프(3)측 병렬유로(12a)와 아암 제어밸브(16)의 입구포트사이의 유로(29)에 설치되고, 선회와 아암-인 구동을 동시에 조작할 경우 교축 상태로 절환되어 제2유압펌프(3)로부터 아암 제어밸브(16)에 공급되는 작동유를 제한하며, 선회와 아암-아웃 구동을 동시에 조작할 경우에는 교축 해제상태로 절환되어 제2압력 발생장치(20)의 조작량에 따라 아암 제어밸브(16)에 공급되는 작동유를 제어하는 우선 제어밸브(21)를 제외한 구성은, 도 1에 도시된 우선 제어시스템의 구성과 동일하므로 이들의 구성 및 작동의 상세한 설명은 생략하고 중복되는 구성에 대한 도면부호는 동일하게 표기한다.
이하에서, 본 발명의 제1실시예에 의한 건설기계용 우선 제어시스템의 사용예를 첨부도면을 참조하여 상세하게 설명한다.
전술한 제1,2압력 발생장치(19,20)를 동시에 조작하여 굴삭기의 선회와 아암-인 구동을 동시에 작동시킬 경우, 선회모터(13)를 좌측 또는 우측 방향으로 구동시킬 수 있도록 제1 압력 발생장치(19)를 조작함에 따라, 셔틀밸브(23)로부터 출력되는 파일럿 신호압이 유로(22)를 따라 우선 제어밸브(21)의 압력실에 공급되어 내부 스풀을 도면상, 상방향으로 이동시켜 우선 제어밸브(21)를 교축 상태로 절환시킨다.
이로 인해, 전술한 제1 압력 발생장치(19)의 조작으로 인해 선회모터(13)를 좌측 또는 우측 방향으로 회전시키도록 선회 제어밸브(14)를 절환시킴에 따라, 제2유압펌프(3)로부터 토출되는 작동유는 제2센터바이패스통로(12)를 따라 선회 제어밸브(14)를 경유하여 선회모터(13)에 공급되어 이를 구동시킨다.
이와 동시에, 전술한 제2 압력 발생장치(20)의 조작으로 인해 아암-인 구동시키도록 아암 제어밸브(16)를 도면상, 좌측 방향으로 절환시킴에 따라, 제2유압펌프(3)로부터 토출되는 작동유는 제2센터바이패스통로(12) - 병렬유로(12a) - 교축상태의 우선 제어밸브(21) - 유로(29) - 아암 제어밸브(16)를 경유하여 아암실린더(15)의 라지챔버에 공급되어 이를 신장구동시킨다.
한편, 굴삭기의 하부 주행체에 대한 상부 선회체의 선회 구동시 발생되는 부하값이 아암-인 구동시 발생되는 부하값보다 상대적으로 크게 되므로, 제2유압펌프(3)로부터 토출되는 작동유는 선회 제어밸브(14)측보다 아암 제어밸브(16)측으로 더 많이 공급된다.
이때, 우선 제어밸브(21)의 내부 스풀이 교축상태로 절환된 상태이므로, 병렬유로(12a)로부터 아암 제어밸브(16)의 입구포트에 연결되는 유로(29)의 입구를 축소시킴에 따라, 제2유압펌프(3)로부터 아암 제어밸브(16)측으로 공급되는 유량을 제한하게 된다.
따라서 선회와 아암-인 구동을 동시에 조작할 경우, 우선 제어밸브(21)의 스풀이 교축 상태로 절환되어 아암 제어밸브(16)측으로 공급되는 유량을 제한하므로 동시 작업성을 유지할 수 있게 된다.
한편, 전술한 제1,2압력 발생장치(19,20)를 동시에 조작하여 굴삭기의 선회와 아암-아웃 구동을 동시에 작동시킬 경우, 선회 구동시에 고부하가 발생되고 아암-아웃 구동시에도 고부하가 발생되므로 우선 제어밸브(21)는 이의 교축이 해제되는 초기상태(도 2에 도시된 상태를 말함)를 유지한다.
따라서, 제1 압력 발생장치(19)의 조작으로 인해 선회 제어밸브(14)를 좌측 또는 우측 방향으로 절환시킴에 따라, 제2유압펌프(3)로부터 토출되는 작동유는 제2센터바이패스통로(12) - 선회 제어밸브(14)를 경유하여 선회모터(13)에 공급되므로 이를 구동시킨다.
이와 동시에, 제2 압력 발생장치(20)의 조작으로 인해 파일럿 신호압이 아암 제어밸브(16)의 압력실에 공급되어 내부 스풀을 도면상, 우측 방향으로 절환시킨다. 또한 아암 제어밸브(16)에 공급되는 파일럿 신호압의 일부가 우선 제어밸브(21)의 밸브스프링(21a)측에 인가되어 우선 제어밸브(21)를 교축상태로 유지하게 된다(즉, 우선 제어밸브(21)의 밸브스프링(21a)의 탄성력과 아암-아웃 구동시 아암제어밸브(16)에 인가되는 파일럿 신호압을 더한 값은, 셔틀밸브(23)로부터 우선 제어밸브(21)의 압력실에 인가되는 파일럿 신호압보다 크게 됨).
따라서, 제2유압펌프(3)로부터 토출되는 작동유 일부는 제2센터바이패스통로(12) - 선회 제어밸브(14)를 경유하여 선회모터(13)에 공급되어 이를 구동시킨다. 이와 동시에 제2유압펌프(3)로부터 토출되는 작동유 일부는 제2센터바이패스통로(12) - 병렬유로(12a) - 교축 해제상태의 우선 제어밸브(21) - 유로(29) - 아암 제어밸브(16)를 차례로 경유하여 아암실린더(15)의 스몰챔버에 공급되므로 이를 수축구동시킨다.
전술한 바와 같이 본 발명의 제1실시예에 의한 우선 제어시스템에 의하면, 선회와 아암-아웃 구동을 동시에 조작할 경우, 우선 제어밸브(21)의 스풀이 교축 해제상태로 절환되어 교축장치의 유로를 최대로 전환시키므로 불필요한 압력 손실을 방지할 수 있다.
도 3에 도시된 본 발명의 제2실시예에 의한 건설기계용 우선 제어시스템은,
엔진(1)과,
엔진(1)에 연결되는 가변용량형 제1,2유압펌프(2,3) 및 파일럿 펌프(4)와,
제1유압펌프(2)의 제1센터바이패스통로(5)에 설치되고 병렬유로(5a)를 통해 연결되며, 붐실린더(6)의 구동을 제어하는 붐 제어밸브(7)와, 버킷실린더(8)의 구동을 제어하는 버킷 제어밸브(9)와, 좌측 주행모터(10)의 구동을 제어하는 주행 제어밸브(11)와,
제2유압펌프(3)의 제2센터바이패스통로(12)에 설치되고 병렬유로(12a)를 통해 연결되며, 선회모터(13)의 구동을 제어하는 선회 제어밸브(14)와, 아암실린더(15)의 구동을 제어하는 아암 제어밸브(16)와, 우측 주행모터(17)의 구동을 제어하는 주행 제어밸브(18)와,
조작량에 대응되는 제어신호를 각각 출력하는 제1,2 압력 발생장치(19,20)와,
제1 압력 발생장치(19)의 조작에 따라 선회모터(13)가 좌측 또는 우측 방향으로 선회될 수 있도록 선회 제어밸브(14)에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브(23)와,
제2유압펌프(3)측 병렬유로(12a)와 아암 제어밸브(16)의 입구포트사이의 유로에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 저부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 유로(22)를 통해 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 해제 상태로 절환되는 우선 제어밸브(21)와,
셔틀밸브(23)와 우선 제어밸브(21)사이의 유로(22)에 설치되며, 제2 압력 발생장치(20)의 조작에 따라 아암-아웃 구동시키도록 아암 제어밸브(14)에 인가되는 파일럿 신호압에 의해서만 유로(22)를 차단시키는 신호라인 차단밸브(24)를 포함한다.
이때, 전술한 제1유압펌프(2)의 제1센터바이패스통로(5)에 설치되고 병렬유로(5a)를 통해 연결되며, 붐실린더(6) 구동을 제어하는 붐 제어밸브(7)와, 버킷실린더(8)의 구동을 제어하는 버킷 제어밸브(9)와, 좌측 주행모터(10)의 구동을 제어하는 주행 제어밸브(11)의 구성은, 도 2에 도시된 이들의 구성과 동일하여 생략된 것이다.
한편, 전술한 셔틀밸브(23)와 우선 제어밸브(21)사이의 유로(22)에 설치되며, 아암-아웃 구동시키도록 아암 제어밸브(14)에 인가되는 파일럿 신호압에 의해서만 유로(22)를 차단시키도록 설치되는 신호라인 차단밸브(24)를 제외한 구성은, 도 2에 도시된 우선 제어시스템의 구성과 동일하므로 이들의 구성 및 작동의 상세한 설명은 생략하고 중복되는 구성에 대한 도면부호는 동일하게 표기한다.
따라서, 전술한 제1,2압력 발생장치(19,20)를 동시에 조작하여 굴삭기의 선회와 아암-아웃 구동을 동시에 작동시킬 경우, 선회 구동시에 고부하가 발생되고 아암-아웃 구동시에도 고부하가 발생되므로 우선 제어밸브(21)는 이의 교축이 해제되는 초기상태(도 3에 도시된 상태를 말함)를 유지한다.
전술한 제2 압력 발생장치(20)의 조작으로 인해 파일럿 신호압이 아암 제어밸브(16)의 압력실에 공급되어 내부 스풀을 도면상, 우측 방향으로 절환시킨다. 이와 동시에 아암 제어밸브(16)에 인가되는 파일럿 신호압의 일부가 신호라인 차단밸브(24)에 인가되어 내부 스풀을 도면상, 상방향으로 절환시킨다. 이로 인해 제1 압력 발생장치(19)를 조작시 우선 제어밸브(21)의 압력실에 파일럿 신호압 공급이 차단되므로, 우선 제어밸브(21)는 밸브스프링(21a)의 탄성력에 의해 교축이 해제되는 초기상태를 유지할 수 있게 된다.
따라서, 전술한 제2유압펌프(3)로부터 토출되는 작동유 일부는 제2센터바이패스통로(12) - 선회 제어밸브(14)를 경유하여 선회모터(13)에 공급되므로 이를 구동시킨다. 이와 동시에 제2유압펌프(3)로부터의 작동유 일부는 제2센터바이패스통로(12) - 병렬유로(12a) - 교축 해제상태의 우선 제어밸브(21)- 유로(29) - 아암 제어밸브(16)를 차례로 경유하여 아암실린더(15)에 공급된다.
전술한 바와 같이 본 발명의 제2실시예에 의한 우선 제어시스템에 의하면, 선회와 아암-아웃 구동을 동시에 조작할 경우, 신호라인 차단밸브(24)에 의해 우선 제어밸브(21)의 스풀이 교축 해제상태로 절환되어 교축장치의 유로를 최대로 전환시키므로 불필요한 압력 손실을 방지할 수 있다.
도 4에 도시된 본 발명의 제3실시예에 의한 건설기계용 우선 제어시스템은,
엔진(1)과,
엔진(1)에 연결되는 가변용량형 제1,2유압펌프(2,3) 및 파일럿 펌프(4)와,
제1유압펌프(2)의 제1센터바이패스통로(5)에 설치되고 병렬유로(5a)를 통해 연결되며, 붐실린더(6)의 구동을 제어하는 붐 제어밸브(7)와, 버킷실린더(8)의 구동을 제어하는 버킷 제어밸브(9)와, 좌측 주행모터(10)의 구동을 제어하는 주행 제어밸브(11)와,
제2유압펌프(3)의 제2센터바이패스통로(12)에 설치되고 병렬유로(12a)를 통해 연결되며, 선회모터(13)의 구동을 제어하는 선회 제어밸브(14)와, 아암실린더(15)의 구동을 제어하는 아암 제어밸브(16)와, 우측 주행모터(17)의 구동을 제어하는 주행 제어밸브(18)와,
조작량에 대응되는 제어신호를 각각 출력하는 제1,2 압력 발생장치(19,20)와,
제1 압력 발생장치(19)의 조작에 따라 선회모터가 좌측 또는 우측 방향으로선회될 수 있도록 선회 제어밸브(14)에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브(23)와,
제2유압펌프(3)측 병렬유로(12a)와 아암 제어밸브(14)의 입구포트사이의 유로(29)에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 저부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 해제 상태로 절환되는 우선 제어밸브(21)와,
셔틀밸브(23)와 우선 제어밸브(21)사이의 유로(22)에 설치되며, 외부로부터의 전기적 제어신호에 의해 절환되어 유로(22)를 차단시키는 신호라인 차단밸브(24)와,
제2 압력 발생장치(20)의 조작에 따라 아암-아웃 구동시키도록 아암 제어밸브(16)에 인가되는 파일럿 신호압을 검출하여 검출신호를 출력하는 제1 압력 검출수단(26)과,
제1 압력 검출수단(26)으로부터 입력되는 검출신호에 따라 아암-아웃 구동시키는 파일럿 신호압이 설정값에 도달되는 경우 신호라인 차단밸브(24)에 이를 절환시키도록 전기적 제어신호를 출력하는 제어기(27)를 포함한다.
전술한 신호라인 차단밸브(24)는, 제어기(27)로부터 입력되는 전기적 제어신호에 의해 절환되는 솔레노이드밸브가 사용된다.
전술한 제1 압력 검출수단(26)으로, 아암 제어밸브(16)에 인가되는 파일럿 신호압을 검출하여 검출신호를 제어기(27)에 전송하는 압력센서가 사용된다.
전술한 제1 압력 검출수단(26)으로, 아암 제어밸브(16)에 인가되는 파일럿 신호압이 설정된 압력에 도달될 경우 온,오프되어 신호를 발생시키는 압력 스위치가 사용된다.
이때, 전술한 제1유압펌프(2)의 제1센터바이패스통로(5)에 설치되고 병렬유로(5a)를 통해 연결되며, 붐실린더(6) 구동을 제어하는 붐 제어밸브(7)와, 버킷실린더(8)의 구동을 제어하는 버킷 제어밸브(9)와, 좌측 주행모터(10)의 구동을 제어하는 주행 제어밸브(11)의 구성은, 도 2에 도시된 이들의 구성과 동일하여 생략된 것이다.
한편, 전술한 셔틀밸브(23)와 우선 제어밸브(21)사이의 유로(22)에 설치되며 전기적 제어신호에 의해 절환시 유로(22)를 차단시키는 신호라인 차단밸브(24)와, 아암-아웃 구동시키도록 아암 제어밸브(16)에 인가되는 파일럿 신호압을 검출하는 제1 압력 검출수단(26)과, 아암-아웃 구동시키는 파일럿 신호압이 설정값에 도달될 경우 신호라인 차단밸브(24)를 절환시키도록 제어하는 제어기(27)를 제외한 구성은, 도 2에 도시된 우선 제어시스템의 구성과 동일하므로 이들의 구성 및 작동의 상세한 설명은 생략하고 중복되는 구성에 대한 도면부호는 동일하게 표기한다.
따라서, 전술한 제1,2압력 발생장치(19,20)를 동시에 조작하여 굴삭기의 선회와 아암-아웃 구동을 동시에 작동시킬 경우, 제2 압력 발생장치(20)의 조작으로 인해 파일럿 신호압이 아암 제어밸브(16)의 압력실에 공급되어 내부 스풀을 도면상, 우측 방향으로 절환시킨다. 이때 압력 검출수단(26)에 의해 아암-아웃 구동시키도록 아암 제어밸브(16)에 인가되는 파일럿 신호압을 검출하여 검출신호를 제어기(27)에 전송된다. 제어기(27)에서는 아암-아웃 구동시키는 파일럿 신호압이 설정값에 도달된 것으로 판단될 경우에 신호라인 차단밸브(24)에 전기적 제어신호를 인가시켜 내부 스풀을 도면상, 상방향으로 절환시키므로, 우선 제어밸브(21)의 압력실에 파일럿 신호압을 공급하는 유로(22)를 차단시킨다. 따라서 우선 제어밸브(21)는 밸브스프링(21a)의 탄성력에 의해 교축이 해제되는 초기상태(도 4에 도시된 상태를 말함)를 유지할 수 있게 된다.
따라서, 전술한 제2유압펌프(3)로부터 토출되는 작동유 일부는 제2센터바이패스통로(12) - 선회 제어밸브(14)를 경유하여 선회모터(13)에 공급되므로 이를 구동시킨다. 이와 동시에 제2유압펌프(3)로부터의 작동유 일부는 제2센터바이패스통로(12) - 병렬유로(12a) - 교축 해제상태의 우선 제어밸브(21)- 유로(29) - 아암 제어밸브(16)를 차례로 경유하여 아암실린더(15)에 공급된다.
전술한 바와 같이 본 발명의 제3실시예에 의한 우선 제어시스템에 의하면, 선회와 아암-아웃 구동을 동시에 조작할 경우, 신호라인 차단밸브(24)의 절환에 의해 우선 제어밸브(21)의 스풀이 교축 해제상태로 절환되어 교축장치의 유로를 최대로 전환시키므로 불필요한 압력 손실을 방지할 수 있다.
도 5에 도시된 본 발명의 제4실시예에 의한 건설기계용 우선 제어시스템은,
엔진(1)과,
엔진(1)에 연결되는 가변용량형 제1,2유압펌프(2,3) 및 파일럿 펌프(4)와,
제1유압펌프(2)의 제1센터바이패스통로(5)에 설치되고 병렬유로(5a)를 통해 연결되며, 붐실린더(6)의 구동을 제어하는 붐 제어밸브(7)와, 버킷실린더(8)의 구동을 제어하는 버킷 제어밸브(9)와, 좌측 주행모터(10)의 구동을 제어하는 주행 제어밸브(11)와,
제2유압펌프(3)의 제2센터바이패스통로(12)에 설치되고 병렬유로(12a)를 통해 연결되며, 선회모터(13)의 구동을 제어하는 선회 제어밸브(14)와, 아암실린더(15)의 구동을 제어하는 아암 제어밸브(16)와, 우측 주행모터(17)의 구동을 제어하는 주행 제어밸브(18)와,
조작량에 대응되는 제어신호를 각각 출력하는 제1,2 압력 발생장치(19,20)와,
제1 압력 발생장치(19)의 조작에 따라 선회모터(13)가 좌측 또는 우측 방향으로 선회될 수 있도록 선회 제어밸브(14)에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브(23)와,
제2유압펌프(3)측 병렬유로(12a)와 아암 제어밸브(16)의 입구포트사이의 유로(29)에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 저부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 해제 상태로 절환되는 우선 제어밸브(21)와,
파일럿 펌프(4)와 우선 제어밸브(21)사이의 유로(30)에 설치되는 압력 감소밸브(25)와,
제2 압력 발생장치(20)의 조작에 따라 아암-아웃 구동시키도록 아암 제어밸브(16)에 인가되는 파일럿 신호압을 검출하여 검출신호를 출력하는 제1 압력 검출수단(26)과,
제1 압력 발생장치(19)의 조작에 따라 선회모터(13)를 좌측 또는 우측 방향으로 구동시키도록 선회 제어밸브(14)에 인가되는 파일럿 신호압중 선택된 어느 하나를 출력하는 셔틀밸브(23)로부터 출력되는 파일럿 신호압을 검출하여 검출신호를 출력하는 제2 압력 검출수단(28)과,
제2 압력 검출수단(28)으로부터 입력되는 검출신호에 의해 선회용 파일럿 신호압 증가에 따라 압력 감소밸브(25)의 출력되는 2차 신호압을 증대시키고, 제1 압력 검출수단(26)으로부터 입력되는 검출신호에 의해 아암-아웃 구동시키는 파일럿 신호압이 입력되는 경우 압력 감소밸브(25)의 출력되는 2차 신호압을 감소시키도록 제어신호를 압력 감소밸브(25)에 출력하는 제어기(27)를 포함한다.
전술한 압력 감소밸브(25)는 입력되는 전기적 제어신호값에 대응하여 출력되는 2차 신호압을 가변시키는 전자비례제어밸브가 사용된다.
전술한 제1,2 압력 검출수단(26,28)으로, 아암 제어밸브(14)에 인가되는 파일럿 신호압을 검출하여 검출신호를 제어기(17)에 전송하는 압력센서가 사용된다.
전술한 제1,2 압력 검출수단(26,28)으로, 아암 제어밸브(14)에 인가되는 파일럿 신호압이 설정된 압력에 도달될 경우 온,오프되어 신호를 발생시키는 압력 스위치가 사용된다.
이때, 전술한 제1유압펌프(2)의 제1센터바이패스통로(5)에 설치되고 병렬유로(5a)를 통해 연결되며, 붐실린더(6) 구동을 제어하는 붐 제어밸브(7)와, 버킷실린더(8)의 구동을 제어하는 버킷 제어밸브(9)와, 좌측 주행모터(10)의 구동을 제어하는 주행 제어밸브(11)의 구성은, 도 2에 도시된 이들의 구성과 동일하여 생략된 것이다.
한편, 전술한 파일럿 펌프(4)와 우선 제어밸브(21)사이의 유로(30)에 설치되는 압력 감소밸브(25)와, 아암-아웃 구동시키도록 아암 제어밸브(16)에 인가되는 파일럿 신호압을 검출하는 제1 압력 검출수단(26)과, 선회 제어밸브(14)에 인가되는 파일럿 신호압을 검출하는 제2 압력 검출수단(28)과, 선회용 파일럿 신호압 증가에 따라 압력 감소밸브(25)의 출력되는 2차 신호압을 증대시키고, 아암-아웃 구동용 파일럿 신호압이 입력되는 경우 압력 감소밸브(25)의 출력되는 2차 신호압을 감소시키도록 제어하는 제어기(27)를 제외한 구성은, 도 2에 도시된 우선 제어시스템의 구성과 동일하므로 이들의 구성 및 작동의 상세한 설명은 생략하고 중복되는 구성에 대한 도면부호는 동일하게 표기한다.
따라서, 전술한 제1,2압력 발생장치(19,20)를 동시에 조작하여 굴삭기의 선회와 아암-아웃 구동을 동시에 작동시킬 경우, 제2 압력 발생장치(20)의 조작으로 인해 파일럿 신호압이 아암 제어밸브(16)의 압력실에 공급되어 내부 스풀을 도면상, 우측 방향으로 절환시킨다. 이때 제1압력 검출수단(26)에 의해 아암-아웃 구동시키도록 아암 제어밸브(16)에 인가되는 파일럿 신호압을 검출하여 검출신호를 제어기(27)에 전송한다.
또한, 제1 압력 발생장치(19)의 조작에 따라 선회모터(13)를 좌측 또는 우측 방향으로 구동시키도록 선회 제어밸브(14)에 인가되어 선회모터(13)를 구동시킨다. 이때 제2 압력 검출수단(28)에 의해 셔틀밸브(23)로부터 출력되는 파일럿 신호압을 검출하여 검출신호를 제어기(27)에 전송한다.
제어기(27)에서는 제2 압력 검출수단(28)으로부터 입력되는 검출신호에 의해 선회용 파일럿 신호압 증가에 따라 압력 감소밸브(25)의 출력되는 2차 신호압을 증대시킨다. 또한 제어기(27)에는 제1 압력 검출수단(26)으로부터 입력되는 검출신호에 의해 아암-아웃 구동시키는 파일럿 신호압이 입력되는 경우 압력 감소밸브(25)의 출력되는 2차 신호압을 감소시키도록 전기적 제어신호를 압력 감소밸브(25)에 출력한다.
따라서, 선회용 파일럿 신호압이 증가될 경우에 제어기(27)에 의해 압력 감소밸브(25)의 출력되는 2차 신호압을 증대시키도록 제어함에 따라, 우선 제어밸브(21)를 교축 상태로 절환시켜 제2유압펌프(3)로부터 아암 제어밸브(16)에 유량 공급을 제한할 수 있게 된다. 한편 아암-아웃 구동시키도록 아암 제어밸브(16)에 파일럿 신호압이 입력되는 경우에 제어기(27)에 의해 압력 감소밸브(25)의 출력되는 2차 신호압을 감소시키도록 제어함에 따라, 우선 제어밸브(21)를 교축 해제상태로 절환시켜 제2유압펌프(3)로부터 아암 제어밸브(16)에 작동유를 공급하는 유로(29)를 최대로 전환하게 된다.
따라서, 전술한 제2유압펌프(3)로부터 토출되는 작동유 일부는 제2센터바이패스통로(12) - 선회 제어밸브(14)를 경유하여 선회모터(13)에 공급되므로 이를 구동시킨다. 이와 동시에 제2유압펌프(3)로부터의 작동유 일부는 제2센터바이패스통로(12) - 병렬유로(12a) - 교축 해제상태의 우선 제어밸브(21)- 유로(29) - 아암 제어밸브(16)를 차례로 경유하여 아암실린더(15)에 공급된다.
따라서, 본 발명의 제4실시예에 의한 우선 제어시스템에 의하면, 선회와 아암-아웃 구동을 동시에 조작할 경우, 압력 감소밸브(25)에 의해 우선 제어밸브(21)의 스풀을 교축 해제상태 또는 교축 상태로 절환시킬 수 있다.
전술한 바와 같은 본 발명의 실시예들에 의한 건설기계용 우선 제어시스템에 의하면, 선회장치와 아암실린더 등의 작업장치를 동시에 조작할 경우, 부하 발생량에 따라 우선 제어밸브를 교축 상태 또는 교축 해제상태로 전환시켜 동시 조작성을 유지하거나 불필요한 압력 손실을 방지한다. 또한 액츄에이터의 작동속도를 확보하며 유량 분배를 최적으로 제어할 수 있다.

Claims (12)

  1. 엔진과,
    상기 엔진에 연결되는 가변용량형 제1,2유압펌프 및 파일럿 펌프와,
    상기 제1유압펌프의 제1센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 붐실린더의 구동을 제어하는 붐 제어밸브와, 버킷실린더의 구동을 제어하는 버킷 제어밸브와, 좌측 주행모터의 구동을 제어하는 주행 제어밸브와,
    상기 제2유압펌프의 제2센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 선회모터의 구동을 제어하는 선회 제어밸브와, 아암실린더의 구동을 제어하는 아암 제어밸브와, 우측 주행모터의 구동을 제어하는 주행 제어밸브와,
    조작량에 대응되는 제어신호를 각각 출력하는 제1,2압력 발생장치와,
    상기 제1 압력 발생장치의 조작에 따라 상기 선회모터가 좌측 또는 우측 방향으로 선회될 수 있도록 상기 선회 제어밸브에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브와,
    상기 제2유압펌프측 병렬유로와 상기 아암 제어밸브의 입구포트사이의 유로에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 저부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압 및 밸브스프링의 탄성력에 의해 교축 해제 상태로 절환되는 우선 제어밸브를 구비하는 것을 특징으로 하는 건설기계용 우선 제어시스템.
  2. 제1항에 있어서, 상기 우선 제어밸브는,
    선회와 아암-인 구동을 동시에 조작할 경우 상기 셔틀밸브로부터 출력되는 파일럿 신호압에 의해 교축 상태로 절환되며, 선회와 아암-아웃 구동을 동시에 조작할 경우 상기 우선 제어밸브의 밸브스프링의 탄성력 및 상기 아암-아웃 구동시키도록 아암 제어밸브에 인가되는 파일럿 신호압에 의해 교축 해제상태로 절환되는 것을 특징으로 하는 건설기계용 우선 제어시스템.
  3. 제1항에 있어서, 상기 제1액츄에이터는 선회모터이고, 제2액츄에이터는 아암실린더인 것을 특징으로 하는 건설기계용 우선 제어시스템.
  4. 엔진과,
    상기 엔진에 연결되는 가변용량형 제1,2유압펌프 및 파일럿 펌프와,
    상기 제1유압펌프의 제1센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 붐실린더의 구동을 제어하는 붐 제어밸브와, 버킷실린더의 구동을 제어하는 버킷 제어밸브와, 좌측 주행모터의 구동을 제어하는 주행 제어밸브와,
    상기 제2유압펌프의 제2센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 선회모터의 구동을 제어하는 선회 제어밸브와, 아암실린더의 구동을 제어하는 아암 제어밸브와, 우측 주행모터의 구동을 제어하는 주행 제어밸브와,
    조작량에 대응되는 제어신호를 각각 출력하는 제1,2 압력 발생장치와,
    상기 제1 압력 발생장치의 조작에 따라 상기 선회모터가 좌측 또는 우측 방향으로 선회될 수 있도록 상기 선회 제어밸브에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브와,
    상기 제2유압펌프측 병렬유로와 상기 아암 제어밸브의 입구포트사이의 유로에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 저부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 해제 상태로 절환되는 우선 제어밸브와,
    상기 셔틀밸브와 상기 우선 제어밸브사이의 유로에 설치되며, 상기 제2 압력 발생장치의 조작에 따라 아암-아웃 구동시키도록 상기 아암 제어밸브에 인가되는 파일럿 신호압에 의해서만 상기 유로를 차단시키는 신호라인 차단밸브를 구비하는 것을 특징으로 하는 건설기계용 우선 제어시스템.
  5. 엔진과,
    상기 엔진에 연결되는 가변용량형 제1,2유압펌프 및 파일럿 펌프와,
    상기 제1유압펌프의 제1센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 붐실린더의 구동을 제어하는 붐 제어밸브와, 버킷실린더의 구동을 제어하는 버킷 제어밸브와, 좌측 주행모터의 구동을 제어하는 주행 제어밸브와,
    상기 제2유압펌프의 제2센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 선회모터의 구동을 제어하는 선회 제어밸브와, 아암실린더의 구동을 제어하는 아암 제어밸브와, 우측 주행모터의 구동을 제어하는 주행 제어밸브와,
    조작량에 대응되는 제어신호를 각각 출력하는 제1,2 압력 발생장치와,
    상기 제1 압력 발생장치의 조작에 따라 상기 선회모터가 좌측 또는 우측 방향으로 선회될 수 있도록 상기 선회 제어밸브에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브와,
    상기 제2유압펌프측 병렬유로와 상기 아암 제어밸브의 입구포트사이의 유로에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 저부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 해제 상태로 절환되는 우선 제어밸브와,
    상기 셔틀밸브와 상기 우선 제어밸브사이의 유로에 설치되며, 외부로부터의 전기적 제어신호에 의해 절환되어 유로를 차단시키는 신호라인 차단밸브와,
    상기 제2 압력 발생장치의 조작에 따라 아암-아웃 구동시키도록 상기 아암 제어밸브에 인가되는 파일럿 신호압을 검출하여 검출신호를 출력하는 제1 압력 검출수단과,
    상기 제1 압력 검출수단으로부터 입력되는 검출신호에 따라 아암-아웃 구동시키는 파일럿 신호압이 설정값에 도달되는 경우 상기 신호라인 차단밸브에 이를 절환시키도록 전기적 제어신호를 출력하는 제어기를 구비하는 것을 특징으로 하는 건설기계용 우선 제어시스템.
  6. 제5항에 있어서, 상기 신호라인 차단밸브는, 상기 제어기로부터 입력되는 전기적 제어신호에 의해 절환되는 솔레노이드밸브가 사용되는 것을 특징으로 하는 건설기계용 우선 제어시스템.
  7. 제5항에 있어서, 상기 제1 압력 검출수단으로, 상기 아암 제어밸브에 인가되는 파일럿 신호압을 검출하여 검출신호를 상기 제어기에 전송하는 압력센서가 사용되는 것을 특징으로 하는 건설기계용 우선 제어시스템.
  8. 제5항에 있어서, 상기 제1 압력 검출수단으로, 상기 아암 제어밸브에 인가되는 파일럿 신호압이 설정된 압력에 도달될 경우 온,오프되어 신호를 발생시키는 압력 스위치가 사용되는 것을 특징으로 하는 건설기계용 우선 제어시스템.
  9. 엔진과,
    상기 엔진에 연결되는 가변용량형 제1,2유압펌프 및 파일럿 펌프와,
    상기 제1유압펌프의 제1센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 붐실린더의 구동을 제어하는 붐 제어밸브와, 버킷실린더의 구동을 제어하는 버킷 제어밸브와, 좌측 주행모터의 구동을 제어하는 주행 제어밸브와,
    상기 제2유압펌프의 제2센터바이패스통로에 설치되고 병렬유로를 통해 연결되며, 선회모터의 구동을 제어하는 선회 제어밸브와, 아암실린더의 구동을 제어하는 아암 제어밸브와, 우측 주행모터의 구동을 제어하는 주행 제어밸브와,
    조작량에 대응되는 제어신호를 각각 출력하는 제1,2 압력 발생장치와,
    상기 제1 압력 발생장치의 조작에 따라 상기 선회모터가 좌측 또는 우측 방향으로 선회될 수 있도록 상기 선회 제어밸브에 인가되는 파일럿 신호압중 선택된 어느 하나의 파일럿 신호압을 출력하는 셔틀밸브와,
    상기 제2유압펌프측 병렬유로와 상기 아암 제어밸브의 입구포트사이의 유로에 설치되고, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 저부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 상태로 절환되며, 고부하 작동 압력이 발생되는 제1액츄에이터와 구동 방향에 따라 고부하 작동 압력이 발생되는 제2액츄에이터를 동시에 조작할 경우 인가되는 파일럿 신호압에 의해 교축 해제 상태로 절환되는 우선 제어밸브와,
    상기 파일럿 펌프와 상기 우선 제어밸브사이의 유로에 설치되는 압력 감소밸브와,
    상기 제2 압력 발생장치의 조작에 따라 아암-아웃 구동시키도록 상기 아암 제어밸브에 인가되는 파일럿 신호압을 검출하여 검출신호를 출력하는 제1 압력 검출수단과,
    상기 제1 압력 발생장치의 조작에 따라 상기 선회모터를 좌측 또는 우측 방향으로 구동시키도록 상기 선회 제어밸브에 인가되는 파일럿 신호압중 선택된 어느 하나를 출력하는 상기 셔틀밸브로부터 출력되는 파일럿 신호압을 검출하여 검출신호를 출력하는 제2 압력 검출수단과,
    상기 제2 압력 검출수단으로부터 입력되는 검출신호에 의해 선회용 파일럿 신호압 증가에 따라 상기 압력 감소밸브의 출력되는 2차 신호압을 증대시키고, 상기 제1 압력 검출수단으로부터 입력되는 검출신호에 의해 아암-아웃 구동시키는 파일럿 신호압이 입력되는 경우 상기 압력 감소밸브의 출력되는 2차 신호압을 감소시키도록 제어신호를 상기 압력 감소밸브에 출력하는 제어기를 구비하는 것을 특징으로 하는 건설기계용 우선 제어시스템.
  10. 제9항에 있어서, 상기 압력 감소밸브는 입력되는 전기적 제어신호값에 대응하여 출력되는 2차 신호압을 가변시키는 전자비례제어밸브가 사용되는 것을 특징으로 하는 건설기계용 우선 제어시스템.
  11. 제9항에 있어서, 상기 제1,2 압력 검출수단으로, 상기 아암 제어밸브에 인가되는 파일럿 신호압을 검출하여 검출신호를 상기 제어기에 전송하는 압력센서가 사용되는 것을 특징으로 하는 건설기계용 우선 제어시스템.
  12. 제9항에 있어서, 상기 제1,2 압력 검출수단으로, 상기 아암 제어밸브에 인가되는 파일럿 신호압이 설정된 압력에 도달될 경우 온,오프되어 신호를 발생시키는 압력 스위치가 사용되는 것을 특징으로 하는 건설기계용 우선 제어시스템.
PCT/KR2011/007440 2011-10-07 2011-10-07 건설기계용 우선 제어시스템 WO2013051741A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180074001.5A CN103857850A (zh) 2011-10-07 2011-10-07 用于施工机械的优先控制系统
PCT/KR2011/007440 WO2013051741A1 (ko) 2011-10-07 2011-10-07 건설기계용 우선 제어시스템
JP2014534450A JP5927302B2 (ja) 2011-10-07 2011-10-07 建設機械用優先制御システム
EP11873615.6A EP2765244A4 (en) 2011-10-07 2011-10-07 PRIORITY CONTROL SYSTEM FOR CONSTRUCTION MACHINES
US14/349,452 US9651063B2 (en) 2011-10-07 2011-10-07 Priority control system for construction machine
KR1020147008796A KR20140074324A (ko) 2011-10-07 2011-10-07 건설기계용 우선 제어시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/007440 WO2013051741A1 (ko) 2011-10-07 2011-10-07 건설기계용 우선 제어시스템

Publications (1)

Publication Number Publication Date
WO2013051741A1 true WO2013051741A1 (ko) 2013-04-11

Family

ID=48043893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007440 WO2013051741A1 (ko) 2011-10-07 2011-10-07 건설기계용 우선 제어시스템

Country Status (6)

Country Link
US (1) US9651063B2 (ko)
EP (1) EP2765244A4 (ko)
JP (1) JP5927302B2 (ko)
KR (1) KR20140074324A (ko)
CN (1) CN103857850A (ko)
WO (1) WO2013051741A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234103A (zh) * 2014-03-07 2014-12-24 贵州詹阳动力重工有限公司 一种液压挖掘机动臂优先液压油路及系统减振液压回路

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002979A1 (ko) * 2014-06-30 2016-01-07 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 유압회로
CN104452849B (zh) * 2014-11-07 2017-04-05 中联重科股份有限公司渭南分公司 一种动臂优先控制设备、系统、方法及挖掘机
CN107002390A (zh) * 2014-11-20 2017-08-01 斗山英维高株式会社 工程机械的液压回路控制装置
WO2016114411A1 (ko) * 2015-01-12 2016-07-21 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 유압펌프 유량 제어장치 및 그 제어방법
US20180073219A1 (en) * 2015-04-13 2018-03-15 Volvo Construction Equipment Ab Hydraulic apparatus of construction equipment and control method therefor
JP6555709B2 (ja) * 2015-04-17 2019-08-07 キャタピラー エス エー アール エル 流体圧回路および作業機械
JP6423754B2 (ja) * 2015-04-24 2018-11-14 Kyb株式会社 流量制御弁
EP3290595B1 (en) * 2015-04-29 2021-02-17 Volvo Construction Equipment AB Flow rate control apparatus of construction equipment and control method therefor
KR102448755B1 (ko) * 2015-06-02 2022-09-29 현대두산인프라코어 주식회사 건설기계의 제어 시스템 및 이를 이용한 건설기계의 제어 방법
EP3434910B1 (en) * 2016-03-22 2024-02-28 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Shovel and control valve for shovel
JP6554444B2 (ja) * 2016-06-09 2019-07-31 日立建機株式会社 作業機械
KR102561435B1 (ko) 2016-08-31 2023-07-31 에이치디현대인프라코어 주식회사 건설기계의 제어 시스템 및 건설기계의 제어 방법
KR102571079B1 (ko) * 2016-09-06 2023-09-06 에이치디현대인프라코어 주식회사 굴삭기의 메인 컨트롤 밸브 제어 방법 및 이를 수행하기 위한 장치
JP6378734B2 (ja) * 2016-10-27 2018-08-22 川崎重工業株式会社 油圧ショベル駆動システム
CN106593983A (zh) * 2017-02-22 2017-04-26 常熟华威履带有限公司 一种液压挖掘机液压控制装置
CN113631776B (zh) * 2019-03-28 2023-02-17 住友建机株式会社 挖土机及施工系统
CN117450126B (zh) * 2023-12-20 2024-03-15 中联重科土方机械有限公司 一种液压系统、回油控制方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335577A (en) * 1980-06-19 1982-06-22 Deere & Company Hydraulic system having variable displacement pumps controlled by power beyond flow
KR20050066039A (ko) * 2003-12-26 2005-06-30 두산인프라코어 주식회사 휠타입 굴삭기의 유압제어장치
KR100779367B1 (ko) * 2006-08-21 2007-11-23 두산인프라코어 주식회사 유압작동유 누설을 방지하는 언로딩 밸브 블럭
WO2010146866A1 (ja) * 2009-06-18 2010-12-23 株式会社竹内製作所 建設機械の油圧制御装置
KR20110072587A (ko) * 2009-12-23 2011-06-29 볼보 컨스트럭션 이큅먼트 에이비 건설장비용 유압시스템

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630777B2 (ja) * 1987-07-10 1997-07-16 カヤバ工業株式会社 車両用制御回路
JP3097973B2 (ja) * 1992-06-26 2000-10-10 日立建機株式会社 油圧作業機の油圧回路
JP2002089513A (ja) * 2000-09-20 2002-03-27 Kayaba Ind Co Ltd 車両用油圧回路
KR101144396B1 (ko) * 2004-12-16 2012-05-11 두산인프라코어 주식회사 굴삭기의 선회복합작업용 유압제어장치
JP2006257713A (ja) * 2005-03-16 2006-09-28 Shin Caterpillar Mitsubishi Ltd 作業機械の油圧制御回路
JP5066987B2 (ja) * 2007-04-10 2012-11-07 コベルコ建機株式会社 油圧ショベルの油圧制御装置
JP2010242796A (ja) * 2009-04-01 2010-10-28 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械用油圧制御回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335577A (en) * 1980-06-19 1982-06-22 Deere & Company Hydraulic system having variable displacement pumps controlled by power beyond flow
KR20050066039A (ko) * 2003-12-26 2005-06-30 두산인프라코어 주식회사 휠타입 굴삭기의 유압제어장치
KR100779367B1 (ko) * 2006-08-21 2007-11-23 두산인프라코어 주식회사 유압작동유 누설을 방지하는 언로딩 밸브 블럭
WO2010146866A1 (ja) * 2009-06-18 2010-12-23 株式会社竹内製作所 建設機械の油圧制御装置
KR20110072587A (ko) * 2009-12-23 2011-06-29 볼보 컨스트럭션 이큅먼트 에이비 건설장비용 유압시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2765244A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234103A (zh) * 2014-03-07 2014-12-24 贵州詹阳动力重工有限公司 一种液压挖掘机动臂优先液压油路及系统减振液压回路
CN104234103B (zh) * 2014-03-07 2017-02-01 贵州詹阳动力重工有限公司 一种液压挖掘机动臂优先液压油路及系统减振液压回路

Also Published As

Publication number Publication date
EP2765244A1 (en) 2014-08-13
KR20140074324A (ko) 2014-06-17
JP2014529050A (ja) 2014-10-30
JP5927302B2 (ja) 2016-06-01
US9651063B2 (en) 2017-05-16
EP2765244A4 (en) 2015-05-27
US20140245730A1 (en) 2014-09-04
CN103857850A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2013051741A1 (ko) 건설기계용 우선 제어시스템
WO2012169676A1 (ko) 건설기계용 유압시스템
WO2012070703A1 (ko) 건설기계용 유량 제어밸브
WO2014123253A1 (en) Swing control system for construction machines
WO2014208787A1 (ko) 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법
WO2011081458A2 (ko) 차량용 액츄에이터
WO2014014146A1 (ko) 건설기계용 유량 컨트롤밸브
WO2014208828A1 (ko) 플로팅기능을 갖는 건설기계용 유압회로 및 플로팅기능 제어방법
WO2014112668A1 (ko) 건설기계의 유량 제어장치 및 제어방법
WO2016043365A1 (ko) 건설기계용 유압회로
WO2012002589A1 (ko) 건설기계의 유압펌프 제어장치
WO2012091182A1 (ko) 건설기계의 유압시스템
WO2013022131A1 (ko) 건설기계의 유압 제어시스템
WO2015111775A1 (ko) 건설기계용 재생유량 제어장치 및 그 제어방법
WO2013022132A1 (ko) 건설기계의 압력 제어시스템
WO2014098284A1 (ko) 플로팅 기능이 구비된 건설기계
WO2016104832A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2016175352A1 (ko) 건설기계의 유량 제어장치 및 제어방법
WO2021215772A1 (ko) 오일 세정 기능을 구비한 액츄에이터의 건전성 진단모듈
WO2014081053A1 (ko) 건설기계의 우선 기능 제어장치 및 그 제어방법
WO2015152434A1 (ko) 건설기계용 작업장치 합류 유량 제어장치 및 그 제어방법
WO2014115907A1 (ko) 건설기계의 유량 제어장치 및 제어방법
WO2015099437A1 (ko) 건설기계의 유압시스템 및 유압시스템의 제어방법
WO2015160003A1 (ko) 건설기계용 주행 제어장치 및 그 제어방법
WO2013094793A1 (ko) 건설기계의 주행 합류 제어시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147008796

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14349452

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014534450

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011873615

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE