WO2016002979A1 - 건설기계용 유압회로 - Google Patents

건설기계용 유압회로 Download PDF

Info

Publication number
WO2016002979A1
WO2016002979A1 PCT/KR2014/005788 KR2014005788W WO2016002979A1 WO 2016002979 A1 WO2016002979 A1 WO 2016002979A1 KR 2014005788 W KR2014005788 W KR 2014005788W WO 2016002979 A1 WO2016002979 A1 WO 2016002979A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
hydraulic cylinder
pressure
control valve
pump
Prior art date
Application number
PCT/KR2014/005788
Other languages
English (en)
French (fr)
Inventor
정해균
Original Assignee
볼보 컨스트럭션 이큅먼트 에이비
정해균
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼보 컨스트럭션 이큅먼트 에이비, 정해균 filed Critical 볼보 컨스트럭션 이큅먼트 에이비
Priority to PCT/KR2014/005788 priority Critical patent/WO2016002979A1/ko
Publication of WO2016002979A1 publication Critical patent/WO2016002979A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives

Definitions

  • the present invention relates to a construction machine, and more specifically, to a hydraulic circuit for construction machinery for controlling the hydraulic oil is supplied from the hydraulic pump to the boom driving hydraulic cylinder.
  • FIG. 1 is a hydraulic circuit diagram for a construction machine according to the prior art.
  • a hydraulic cylinder 2 driven by hydraulic oil supplied therefrom is connected to a variable displacement hydraulic pump (hereinafter referred to as a hydraulic pump) 1.
  • a direction control valve (MCV) 3 for controlling the flow of hydraulic oil supplied to or discharged from the hydraulic cylinder 2 is installed in the flow path between the hydraulic pump 1 and the hydraulic cylinder 2.
  • An operation device 4 for outputting an operation signal for switching the direction control valve 3 is provided in a flow path between the pilot pump 5 and the direction control valve 3.
  • a jack up switching valve 6 which is switched on by the large chamber side pressure is hydraulically operated with the operating device 4. It is provided in the flow path between the cylinders 2.
  • the center bypass switching valve 7 to be switched is the center bypass passage 1a of the hydraulic pump 1. Is installed on the downstream side of
  • a flow rate control valve 8 switched by a pilot pressure passing therebetween is provided between a meter in port of the hydraulic pump 1 and a directional control valve 3. It is installed in the flow path.
  • the flow control valve (8) is a switching valve (8b) for communicating or blocking the poppet valve (8a), the back pressure chamber of the poppet valve (8a) and the meter-in port of the directional control valve (3) Is done.
  • the hydraulic oil of the pilot pump 2 passes through the operating device 4 to the pilot pressure to the right signal pressure port of the directional control valve 3. Is approved. Since the spool of the directional control valve 3 is switched to the left in the drawing, the hydraulic oil of the hydraulic pump 1 passes through the poppet valve 8a and the directional control valve 3 of the flow control valve 8. Is supplied to the small chamber of the hydraulic cylinder (2). At this time, the hydraulic oil discharged from the large chamber of the hydraulic cylinder (2) passes through the direction control valve (3) is returned to the hydraulic oil tank (T). Therefore, it is possible to bring down the boom due to the contraction driving of the hydraulic cylinder (2).
  • the center bypass switching valve 7 maintains the initial state in which the opening is opened by the valve spring because no pilot pressure is applied by the jack-up switching valve 6.
  • the pilot pressure passing from the pilot pump 5 through the jack-up switching valve 6 is applied to the valve spring opposite side of the switching valve 8b of the flow control valve 8 to switch the spool on. That is, the passage between the back pressure chamber of the poppet valve 8a and the supply port of the directional control valve 3 is blocked. As a result, the opening of the flow control valve 8 is kept closed.
  • the initial state of the jack-up switching valve (6) can apply the pilot pressure of the operating device (4) to the center bypass switching valve (7), the operating oil of the pilot pump switching valve of the flow control valve (8) This means that the pilot pressure cannot be applied to (8b).
  • the pilot pressure of the operating device 4 passes through the jack-up switching valve 6 to the signal pressure port of the center bypass switching valve 7 to switch the spool on. Therefore, the opening of the center bypass switching valve 7 is switched to the closed state.
  • the hydraulic oil of the pilot pump 5 is not applied to the switching valve 8b of the flow control valve 8 by the jack-up switching valve 6 at a pilot pressure. Therefore, the switching valve 8b maintains an initial state by the elastic force of the valve spring (refers to the case where the back pressure chamber of the poppet valve 8a is connected to the port which is the meter of the direction control valve 3). This switches the opening of the flow control valve 8 to the open state.
  • the opening of the flow control valve 8 is switched to the open state. Due to this, the hydraulic oil of the hydraulic pump 1 can be passed through the poppet valve 8a and the directional control valve 3 of the flow control valve 8 to extend and drive the hydraulic cylinder 2. That is, even when the hydraulic cylinder 2 is extended and driven, the hydraulic oil of the hydraulic pump 1 passes through the poppet valve 8a, and then is supplied to the port that is the meter of the direction control valve 3. That is, since the hydraulic oil of the hydraulic pump 1 passes through the flow control valve 8 and flows into the port which is the meter of the direction control valve 3, it causes unnecessary pressure loss.
  • the present invention is to solve the above-mentioned problems, and when the boom is down by its own weight, the hydraulic fluid of the hydraulic pump is not supplied to the hydraulic cylinder, it is possible to prevent the flow loss by supplying the hydraulic oil to the hydraulic cylinder only during the jack-up operation
  • An object of the present invention is to provide a hydraulic circuit for a construction machine.
  • an object of the present invention is to provide a hydraulic circuit for construction machinery that can prevent backflow when the hydraulic cylinder load pressure is higher than the hydraulic pump side pressure at the time of extension driving of the hydraulic cylinder.
  • a hydraulic pump and a pilot pump a hydraulic pump and a pilot pump
  • a direction control valve installed in a flow path between the hydraulic pump and the hydraulic cylinder and controlling a flow of hydraulic oil supplied to or discharged from the hydraulic cylinder during switching;
  • An operation device provided in a flow path between the pilot pump and the direction control valve and outputting an operation signal for switching the direction control valve;
  • a jack-up switching valve installed in the flow path between the operating device and the hydraulic cylinder and switched by the hydraulic pressure of the large chamber when the load pressure generated in the large chamber of the hydraulic cylinder exceeds a set pressure
  • the flow control valve installed in the spool of the directional control valve, the flow control valve is the hydraulic chamber of the hydraulic pump when the hydraulic pressure of the large chamber side exceeds the set pressure when the hydraulic cylinder contraction driving the small chamber of the hydraulic cylinder Block the supply to the small chamber and supply a part of the hydraulic oil of the large chamber to the small chamber, and supply the hydraulic oil of the hydraulic pump to the small chamber of the hydraulic cylinder when the hydraulic pressure of the large chamber side is less than a set pressure. It provides a hydraulic circuit for construction machinery.
  • a load check valve installed in a flow path between the hydraulic pump and the supply port of the directional control valve and preventing a back flow when the load pressure generated in the hydraulic cylinder is higher than the hydraulic oil pressure of the hydraulic pump.
  • a center bypass switching valve installed at the most downstream side of the center bypass passage of the hydraulic pump and switched when the pilot pressure by the operation of the operation device is applied through the jack up switching valve.
  • the flow control valve is
  • the direction control valve is formed on the spool thereof, characterized in that it comprises a regeneration passage for supplying a small portion of the hydraulic oil discharged from the large chamber by the shrinkage drive of the hydraulic cylinder.
  • An orifice installed in the regeneration passage, the orifice for generating a pilot pressure in the regeneration passage to switch the flow control valve by the hydraulic oil pressure discharged from the large chamber when the hydraulic cylinder is retracted and shut off its opening; It features.
  • FIG. 2 is a hydraulic circuit diagram illustrating a case in which hydraulic oil of a large chamber is supplied to a small chamber to be regenerated in a hydraulic circuit for a construction machine according to a preferred embodiment of the present invention.
  • FIG. 3 is a hydraulic circuit diagram illustrating a case in which a hydraulic circuit of a hydraulic pump is supplied to a small chamber and jacked up in a hydraulic circuit for a construction machine according to a preferred embodiment of the present invention.
  • FIG. 4 is a hydraulic circuit diagram in which a hydraulic circuit according to a preferred embodiment of the present invention is applied to an excavator hydraulic circuit.
  • FIG. 2 is a hydraulic circuit diagram illustrating a case in which hydraulic oil of a large chamber is supplied to a small chamber to be regenerated in a hydraulic circuit for a construction machine according to a preferred embodiment of the present invention
  • FIG. 3 is a preferred embodiment of the present invention.
  • a hydraulic circuit diagram showing a case in which the hydraulic oil of the hydraulic pump is supplied to the small chamber and jacked up when the hydraulic cylinder is contracted and driven
  • FIG. 4 is a hydraulic circuit according to a preferred embodiment of the present invention. Hydraulic circuit diagram applied to excavator hydraulic circuit.
  • a hydraulic cylinder 2 driven by hydraulic oil supplied therefrom is connected to a variable displacement hydraulic pump (hereinafter referred to as hydraulic pump) 1.
  • a direction control valve (MCV) 3 for controlling the flow of hydraulic oil supplied to or discharged from the hydraulic cylinder 2 is installed in the flow path between the hydraulic pump 1 and the hydraulic cylinder 2.
  • a regeneration passage 11 for replenishing and supplying a part of the hydraulic oil discharged from the large chamber 2a by the shrinkage driving of the hydraulic cylinder 2 to the small chamber 2b is formed in the spool of the directional control valve 3.
  • An orifice 12 for generating pressure is provided in the regeneration passage 11.
  • An operation device 4 for outputting an operation signal for switching the direction control valve 3 is provided in a flow path between the pilot pump 5 and the direction control valve 3.
  • the jack up The switching valve 6 has an initial state in which the opening is opened when the hydraulic pressure of the large chamber 2a side of the hydraulic cylinder 2 is lower than a set pressure, and the hydraulic pressure of the large chamber 2a side of the hydraulic cylinder 2 is increased.
  • a pilot type switching valve which is switched on to block the opening may be used.
  • a flow rate control valve 10 which is switched by the hydraulic oil pressure discharged from the large chamber 2a of the hydraulic cylinder 2 when the hydraulic cylinder 2 is contracted and driven is installed in the spool of the directional control valve 3. .
  • the flow control valve 10 is the hydraulic chamber of the hydraulic chamber 2 when the hydraulic pressure of the large chamber (2a) side of the hydraulic cylinder 2 exceeds the set pressure, the hydraulic chamber of the hydraulic cylinder (2) small chamber (2b) ) And supply a part of the hydraulic oil of the large chamber 2a to the small chamber 2b, and when the hydraulic pressure of the large chamber 2a is lower than a set pressure, the hydraulic oil of the hydraulic pump 2 is It can be supplied to the small chamber (2b) of the hydraulic cylinder (2).
  • the flow rate control valve 10 is an initial state of supplying the hydraulic oil of the hydraulic pump 1 to the small chamber 2b of the hydraulic cylinder 2 to shrink-drive the hydraulic cylinder 2, and the hydraulic cylinder.
  • a pilot control valve may be used that is switched on to shut off the supply of the hydraulic oil of the hydraulic pump 1 to the small chamber 2b of the hydraulic cylinder 2 at the time of the contraction driving of (2).
  • a load check valve 13 which prevents backflow when the load pressure generated in the hydraulic cylinder 2 is higher than the hydraulic oil pressure of the hydraulic pump 1. Is installed in a flow path between the hydraulic pump 1 and the supply side port of the directional control valve 3.
  • the center bypass switching valve 7 to be switched is the center bypass passage 1a of the hydraulic pump 1. Is installed on the downstream side of
  • the pilot pressure by the operation of the operating device 4 passes through the jack-up switching valve 6 whose opening is opened by the elastic force of the valve spring 6a, and the signal pressure of the center bypass switching valve 7 is reached. Applied to the port. For this reason, since the spool of the center bypass switching valve 7 is switched to the left in the figure, the opening of the center bypass switching valve 7 is blocked.
  • the hydraulic oil of the hydraulic pump 1 passes through the load check valve 13 and the directional control valve 3 and is supplied to the small chamber 2b of the hydraulic cylinder 2.
  • the hydraulic oil discharged from the large chamber 2a of the hydraulic cylinder 2 passes through the directional control valve 3 and is returned to the hydraulic oil tank T. Therefore, the boom can be down due to the contraction driving of the hydraulic cylinder 2.
  • the jack-up switching valve 6 is switched in the right direction in the drawing to shut off the opening by the hydraulic pressure of the large chamber 2a side.
  • the center bypass switching valve 7 is not applied to the pilot pressure by the operation of the operating device 4, and is switched in the right direction on the drawing by the elastic force of the valve spring 7a. That is, since the center bypass switching valve 7 maintains its initial state, the opening is opened.
  • the hydraulic oil of the hydraulic pump 1 passes through the directional control valve 3 and the center bypass switching valve 7 in turn and is returned to the hydraulic oil tank T, the hydraulic oil of the hydraulic pump 1 is It is not supplied to the small chamber 2b of the hydraulic cylinder 2.
  • a part of the hydraulic oil discharged from the large chamber 2a of the hydraulic cylinder 2 passes through the regeneration passage 11 of the directional control valve 3 and is replenished to the small chamber 2b, thereby being used as the regeneration flow rate.
  • a part of the hydraulic oil discharged from the large chamber 2a passes through the spool and the holding check valve 14 of the directional control valve 3 and is returned to the hydraulic oil tank T.
  • the hydraulic oil of the hydraulic pump 1 passes through the load check valve 13 and the flow control valve 10 in order and is supplied to the small chamber 2b of the hydraulic cylinder 2. That is, after the boom is down by its own weight and the bucket is in contact with the ground, the hydraulic oil supplied from the hydraulic pump 1 and a part of the hydraulic oil discharged from the large chamber 2a of the boom cylinder 2 are discharged from the hydraulic cylinder ( It supplies to the small chamber 2b of 2). This can increase jack-up power when the equipment is jacked up (driven when escaping the equipment from a bog or descending while supporting the equipment on a steep slope).
  • the hydraulic oil of the hydraulic pump 1 passes through the load check valve 13 and the direction control valve 3 and is supplied to the large chamber 2a of the hydraulic cylinder 2.
  • the hydraulic oil discharged from the small chamber 2b of the hydraulic cylinder 2 passes through the directional control valve 3 and is returned to the hydraulic oil tank T.
  • the swing motor 21, the hydraulic cylinder 23, and the driving motor 25 driven by the hydraulic oil selectively supplied from the hydraulic pump 15 at the time of switching between the 22 and the 24 are the hydraulic circuits in the art. Since the configuration is the same, detailed description of these configurations will be omitted.
  • hydraulic oil efficiency can be improved by selectively supplying hydraulic oil only during jack-up driving without supplying hydraulic oil of the hydraulic pump to the hydraulic cylinder.
  • Supplying hydraulic oil to the hydraulic cylinders for boom-up operation prevents unnecessary pressure losses.
  • the hydraulic cylinder load pressure is higher than the hydraulic pump side pressure at the time of extension driving of the hydraulic cylinder, it is possible to prevent the backflow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

유압펌프로부터 붐구동용 유압실린더에 작동유가 공급되도록 제어하기 위한 건설기계용 유압회로를 개시한다. 본 발명에 따른 건설기계용 유압회로에 있어서, 유압펌프 및 파일럿펌프; 상기 유압펌프의 작동유에 의해 구동되는 유압실린더; 상기 유압펌프와 상기 유압실린더사이의 유로에 설치되는 방향제어밸브; 상기 파일럿펌프와 상기 방향제어밸브사이의 유로에 설치되는 조작장치; 상기 조작장치와 유압실린더사이의 유로에 설치되는 잭업 절환밸브; 상기 방향제어밸브의 스풀에 설치되는 유량제어밸브;를 구비하는 것을 특징으로 하는 건설기계용 유압회로를 제공한다.

Description

건설기계용 유압회로
본 발명은 건설기계에 관한 것으로, 보다 구체적으로 설명하면, 유압펌프로부터 붐구동용 유압실린더에 작동유가 공급되도록 제어하기 위한 건설기계용 유압회로에 관한 것이다.
도 1은 종래 기술에 의한 건설기계용 유압회로도이다.
도 1에 도시한 바와 같이 가변용량형 유압펌프(이하, 유압펌프 라고 함)(1)에 이로부터 공급되는 작동유에 의해 구동되는 유압실린더(2)가 연결된다. 상기 유압실린더(2)에 공급되거나 배출되는 작동유 흐름을 제어하는 방향제어밸브(MCV)(3)가 상기 유압펌프(1)와 유압실린더(2)사이의 유로에 설치된다.
상기 방향제어밸브(3)를 절환시키기 위해 조작신호를 출력하는 조작장치(4)가 파일럿펌프(5)와 상기 방향제어밸브(3)사이의 유로에 설치된다. 상기 유압실린더(2)의 라지챔버측 압력이 설정압력을 초과할 경우, 상기 라지챔버측 압력에 의해 온 상태로 절환되는 잭업(jack up) 절환밸브(6)가 상기 조작장치(4)와 유압실린더(2)사이의 유로에 설치된다.
상기 잭업 절환밸브(6)의 온 상태는 조작장치(4)의 파일럿압력을 센터바이패스절환밸브(7)에 인가할 수 없고, 파일럿펌프(5)의 작동유를 유량제어밸브(8)의 절환밸브(8b)에 파일럿압력으로 인가할 수 있는 경우를 의미한다.
상기 조작장치(4)의 조작에 의한 파일럿압력이 상기 잭업 절환밸브(6)를 통과하여 인가될 경우 절환되는 센터바이패스절환밸브(7)가 상기 유압펌프(1)의 센터바이패스통로(1a)의 최하류측에 설치된다.
상기 잭업 절환밸브(6)의 절환시 이를 통과하는 파일럿압력에 의해 절환되는 유량제어밸브(8)가 상기 유압펌프(1)와 방향제어밸브(3)의 미터인 포트(meter in port)사이의 유로에 설치된다. 상기 유량제어밸브(8)는 포펫밸브(poppet valve)(8a)와, 상기 포펫밸브(8a)의 배압실과 상기 방향제어밸브(3)의 미터인 포트를 연통하거나 차단시키는 절환밸브(8b)로 이루어진다.
붐을 다운시키기 위해 상기 조작장치(4)를 조작하는 경우, 상기 파일럿펌프(2)의 작동유가 상기 조작장치(4)를 통과하여 상기 방향제어밸브(3)의 우측 신호압포트에 파일럿압력으로 인가된다. 상기 방향제어밸브(3)의 스풀이 도면상, 좌측방향으로 절환되므로, 상기 유압펌프(1)의 작동유는 상기 유량제어밸브(8)의 포펫밸브(8a) 및 방향제어밸브(3)를 경유하여 유압실린더(2)의 스몰챔버에 공급된다. 이때 상기 유압실린더(2)의 라지챔버로부터 배출되는 작동유는 방향제어밸브(3)를 통과하여 작동유탱크(T)로 리턴된다. 따라서 상기 유압실린더(2)의 수축구동으로 인해 붐을 다운시킬 수 있게 된다.
상기 유압실린더(2)의 수축구동으로 붐이 다운되는 경우에 상기 유압실린더(2)의 라지챔버에 발생되는 압력이 임의의 설정압력을 초과시, 상기 유압실린더(2)의 라지챔버측 압력이 상기 잭업 절환밸브(6)의 밸브스프링(6a) 대향측에 파일럿압력으로 인가된다. 따라서 상기 잭업 절환밸브(6)의 스풀을 온 상태로 절환시킨다.
이때, 상기 센터바이패스절환밸브(7)는 상기 잭업 절환밸브(6)에 의해 파일럿압력이 인가되지않아 밸브스프링에 의해 개구부가 열린 초기상태를 유지하게 된다. 상기 파일럿펌프(5)로부터 상기 잭업 절환밸브(6)를 통과하는 파일럿압력이 상기 유량제어밸브(8)의 절환밸브(8b)의 밸브스프링 대향측에 인가되어 스풀을 온 상태로 절환시킨다. 즉 상기 포펫밸브(8a)의 배압실과 방향제어밸브(3)의 공급측 포트사이의 통로를 차단시킨다. 이로 인해 상기 유량제어밸브(8)의 개구부는 닫힌상태를 유지하게 된다.
따라서 상기 유압펌프(1)의 작동유는 상기 방향제어밸브(3) 및 센터바이패스절환밸브(7)를 경유하여 작동유탱크(T)로 리턴된다.
전술한 바와 같이 상기 붐이 자중에 의해 다운될 경우, 상기 유압펌프(1)의 작동유를 상기 유압실린더(2)의 스몰챔버에 공급하지 않게 된다. 따라서 상기 유압펌프(1)를 구동시키기 위해 소요되는 마력을 줄임에 따라 유압에너지 효율을 높일 수 있다.
한편, 상기 붐의 다운으로 인해 수축구동되는 상기 유압실린더(2)의 라지챔버에 발생되는 압력이 설정압력 이하일 경우(일 예로서 붐 다운시 버킷이 지면에 접촉되는 경우를 말함), 상기 잭업 절환밸브(6)는 밸브스프링(6a)의 탄성력에 의해 초기상태를 유지하게 된다.
상기 잭업 절환밸브(6)의 초기상태는 조작장치(4)의 파일럿압력을 상기 센터바이패스절환밸브(7)에 인가할 수 있고, 파일럿펌프의 작동유를 상기 유량제어밸브(8)의 절환밸브(8b)에 파일럿압력으로 인가할 수 없는 경우를 의미한다.
이때 상기 조작장치(4)의 파일럿압력이 상기 잭업 절환밸브(6)를 통과하여 상기 센터바이패스절환밸브(7)의 신호압포트에 인가되어 스풀을 온 상태로 절환시킨다. 따라서 상기 센터바이패스절환밸브(7)의 개구부는 닫힌상태로 전환된다.
한편 상기 파일럿펌프(5)의 작동유는 상기 잭업 절환밸브(6)에 의해 상기 유량제어밸브(8)의 절환밸브(8b)에 파일럿압력으로 인가되지 못한다. 따라서 절환밸브(8b)는 밸브스프링의 탄성력에 의해 초기상태를 유지한다(포펫밸브(8a)의 배압실을 방향제어밸브(3)의 미터인 포트에 연통시키는 경우를 말함). 이로인해 상기 유량제어밸브(8)의 개구부를 열린상태로 전환시킨다.
따라서 상기 유압펌프(1)의 작동유는 상기 포펫밸브(8a) 및 방향제어밸브(3)를 통과하여 유압실린더(2)의 스몰챔버에 공급된다. 이로 인해 상기 유압실린더(2)의 수축구동으로 인해 잭업 구동이 가능하게 된다.
한편, 상기 유량제어밸브(8)의 절환밸브(8b)가 파일럿압력이 인가되지 못해 초기상태를 유지할 경우 유량제어밸브(8)의 개구부는 개방상태로 전환된다. 이로인해 상기 유압펌프(1)의 작동유를 유량제어밸브(8)의 포펫밸브(8a) 및 방향제어밸브(3)를 통과시켜 상기 유압실린더(2)를 신장구동시킬 수 있다. 즉 상기 유압실린더(2)를 신장구동시킬 경우에도 유압펌프(1)의 작동유를 상기 포펫밸브(8a)를 통과시킨 후, 방향제어밸브(3)의 미터인 포트에 공급하게 된다. 즉 상기 유압펌프(1)의 작동유가 상기 유량제어밸브(8)를 통과하여 방향제어밸브(3)의 미터인 포트에 유입되므로 불필요한 압력 손실을 초래하게 된다.
또한, 상기 붐을 업 시키기 위해 상기 유압실린더(2)를 신장구동시킬 경우 상기 유압실린더(2)에 발생되는 부하 압력이 상기 유압펌프(1)의 작동유 압력보다 높을 경우 역류가 발생될 수 있다. 상기 유량제어밸브(8)에 의해 역류를 방지하여 상기 유압실린더(2)의 수축구동되는 것을 방지하는 로드 체크기능이 떨어지는 문제점을 갖게 된다.
따라서 본 발명은 전술한 문제점을 해결하고자 하는 것으로, 붐이 자중에 의해 다운되는 경우 유압펌프의 작동유를 유압실린더에 공급하지않고, 잭업 구동시에만 작동유를 유압실린더에 공급하여 유량 손실을 방지할 수 있는 건설기계용 유압회로를 제공하는 것을 목적으로 한다.
또한, 붐 업 구동하기 위해 유압실린더에 작동유를 공급할 경우 불필요한 압력 손실을 방지할 수 있는 건설기계용 유압회로를 제공하는 것을 목적으로 한다.
또한, 유압실린더의 신장구동시 유압실린더측 부하 압력이 유압펌프측 압력보다 높을 경우 역류를 방지할 수 있는 건설기계용 유압회로를 제공하는 것을 목적으로 한다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 일 실시예에 따르면, 유압펌프 및 파일럿펌프;
상기 유압펌프의 작동유에 의해 구동되는 유압실린더;
상기 유압펌프와 상기 유압실린더사이의 유로에 설치되고, 절환시 상기 유압실린더에 공급되거나 배출되는 작동유 흐름을 제어하는 방향제어밸브;
상기 파일럿펌프와 상기 방향제어밸브사이의 유로에 설치되고, 상기 방향제어밸브를 절환시키기 위해 조작신호를 출력하는 조작장치;
상기 조작장치와 유압실린더사이의 유로에 설치되고, 상기 유압실린더의 라지챔버에 발생되는 부하 압력이 설정압력을 초과하는 경우 상기 라지챔버의 작동유압력에 의해 절환되는 잭업 절환밸브; 및
상기 방향제어밸브의 스풀에 설치되는 유량제어밸브, 상기 유량제어밸브는 상기 유압실린더의 수축구동시 상기 라지챔버측 작동유 압력이 설정압력을 초과하는 경우 상기 유압펌프의 작동유가 상기 유압실린더의 스몰챔버에 공급되는 것을 차단하고 상기 라지챔버의 작동유 일부를 상기 스몰챔버에 공급하며, 상기 라지챔버측 작동유 압력이 설정압력이하일 경우 상기 유압펌프의 작동유를 상기 유압실린더의 스몰챔버에 공급시킴;을 특징으로 하는 건설기계용 유압회로를 제공한다.
상기 유압펌프와 상기 방향제어밸브의 공급측 포트사이의 유로에 설치되고, 상기 유압실린더에 발생되는 부하 압력이 상기 유압펌프의 작동유 압력보다 높을 경우 역류를 방지하는 로드체크밸브를 구비하는 것을 특징으로 한다.
상기 유압펌프의 센터바이패스통로의 최하류측에 설치되고, 상기 조작장치의 조작에 의한 파일럿압력이 상기 잭업 절환밸브를 통과하여 인가될 경우 절환되는 센터바이패스절환밸브를 구비하는 것을 특징으로 한다.
상기 유량제어밸브는
상기 유압실린더를 수축구동시키기 위해 상기 유압펌프의 작동유를 상기 유압실린더의 스몰챔버에 공급하는 초기상태와, 상기 유압실린더의 수축구동시 상기 유압펌프의 작동유가 상기 유압실린더의 스몰챔버에 공급되는 것을 차단하기 위해 온 상태로 절환되는 파일럿형 제어밸브인 것을 특징으로 한다.
상기 잭업 절환밸브는
상기 유압실린더의 라지챔버측 작동유 압력이 설정압력이하일 경우 개구부가 개방되는 초기상태와, 상기 유압실린더의 라지챔버측 작동유 압력이 설정압력 이상일 경우 상기 개구부를 차단시키기 위해 온 상태로 절환되는 파일럿형 절환밸브인 것을 특징으로 한다.
상기 방향제어밸브는 이의 스풀에 형성되고, 상기 유압실린더의 수축구동에 의해 라지챔버에서 배출되는 작동유 일부를 스몰챔버에 보충 공급하는 재생통로를 구비하는 것을 특징으로 한다.
상기 재생통로에 설치되고, 상기 유압실린더의 수축구동시 라지챔버로부터 배출되는 작동유 압력에 의해 상기 유량제어밸브를 절환시켜 이의 개구부를 차단시키기 위해 상기 재생통로에 파일럿압력을 생성하는 오리피스를 구비하는 것을 특징으로 한다.
전술한 구성을 갖는 본 발명에 따르면, 붐이 자중에 의해 다운되는 경우에는 유압펌프의 작동유를 유압실린더에 공급하지않고 잭업 구동시에만 선택적으로 공급함에 따라 유량 손실을 방지하여 유압에너지 효율을 높일 수 있다. 붐 업 구동하기 위해 유압실린더에 작동유를 공급할 경우 불필요한 압력 손실을 방지할 수 있다. 유압실린더의 신장구동시 유압실린더측 부하 압력이 유압펌프측 압력보다 높을 경우 역류되는 것을 로드체크밸브에 의해 방지함에 따라 장비 조작의 신뢰성을 높일 수 있는 효과가 있다.
도 1은 종래 기술에 의한 건설기계용 유압회로도,
도 2는 본 발명의 바람직한 실시예에 따른 건설기계용 유압회로에서, 유압실린더의 수축구동시 라지챔버의 작동유를 스몰챔버에 공급하여 재생시킬 경우를 나타내는 유압회로도,
도 3은 본 발명의 바람직한 실시예에 따른 건설기계용 유압회로에서, 유압실린더의 수축구동시 유압펌프의 작동유를 스몰챔버에 공급하여 잭업시킬 경우를 나타내는 유압회로도,
도 4는 본 발명의 바람직한 실시예에 따른 유압회로를 굴삭기 유압회로에 적용시킨 유압회로도이다.
〈도면의 주요 부분에 대한 참조 부호의 설명〉
1; 유압펌프
2; 유압실린더
3; 방향제어밸브
4; 조작장치
5; 파일럿펌프
6; 잭업 절환밸브
7; 센터바이패스절환밸브
10; 유량제어밸브
11; 재생통로
12; 오리피스
13; 로드체크밸브
14; 홀딩체크밸브
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 따른 건설기계용 유압회로를 상세히 설명하기로 한다.
도 2는 본 발명의 바람직한 실시예에 따른 건설기계용 유압회로에서, 유압실린더의 수축구동시 라지챔버의 작동유를 스몰챔버에 공급하여 재생시킬 경우를 나타내는 유압회로도이고, 도 3은 본 발명의 바람직한 실시예에 따른 건설기계용 유압회로에서, 유압실린더의 수축구동시 유압펌프의 작동유를 스몰챔버에 공급하여 잭업시킬 경우를 나타내는 유압회로도이며, 도 4는 본 발명의 바람직한 실시예에 따른 유압회로를 굴삭기 유압회로에 적용시킨 유압회로도이다.
도 2 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 건설기계용 유압회로는,
가변용량형 유압펌프(이하 유압펌프 라고 함)(1)에 이로부터 공급되는 작동유에 의해 구동되는 유압실린더(2)가 연결된다. 상기 유압실린더(2)에 공급되거나 배출되는 작동유 흐름을 제어하는 방향제어밸브(MCV)(3)가 상기 유압펌프(1)와 상기 유압실린더(2)사이의 유로에 설치된다.
상기 유압실린더(2)의 수축구동에 의해 라지챔버(2a)에서 배출되는 작동유 일부를 스몰챔버(2b)에 보충 공급하는 재생통로(11)가 상기 방향제어밸브(3)의 스풀에 형성된다.
상기 유압실린더(2)의 수축구동시 라지챔버(2a)로부터 배출되는 작동유 압력에 의해 상기 유량제어밸브(10)를 온 상태로 절환시켜 이의 개구부를 차단시키기 위해, 상기 재생통로(11)에 파일럿압력을 생성하는 오리피스(12)가 상기 재생통로(11)에 설치된다.
상기 방향제어밸브(3)를 절환시키기 위해 조작신호를 출력하는 조작장치(4)가 파일럿펌프(5)와 상기 방향제어밸브(3)사이의 유로에 설치된다.
상기 유압실린더(2)의 라지챔버(2a)측에 발생되는 부하 압력에 의해 절환되는 잭업 절환밸브(6)가 상기 조작장치(4)와 유압실린더(2)사이의 유로에 설치된다.상기 잭업 절환밸브(6)는 상기 유압실린더(2)의 라지챔버(2a)측 작동유 압력이 설정압력이하일 경우 개구부가 개방되는 초기상태와, 상기 유압실린더(2)의 라지챔버(2a)측 작동유 압력이 설정압력 이상일 경우 상기 개구부를 차단시키기 위해 온 상태로 절환되는 파일럿형 절환밸브가 사용될 수 있다.
상기 유압실린더(2)의 수축구동시 상기 유압실린더(2)의 라지챔버(2a)로부터 배출되는 작동유 압력에 의해 절환되는 유량제어밸브(10)가 상기 방향제어밸브(3)의 스풀에 설치된다.
상기 유량제어밸브(10)는 상기 유압실린더(2)의 라지챔버(2a)측 작동유 압력이 설정압력을 초과하는 경우 상기 유압펌프(1)의 작동유가 상기 유압실린더(2)의 스몰챔버(2b)에 공급되는 것을 차단하고 상기 라지챔버(2a)의 작동유 일부를 상기 스몰챔버(2b)에 공급하며, 상기 라지챔버(2a)측 작동유 압력이 설정압력이하일 경우 상기 유압펌프(2)의 작동유를 상기 유압실린더(2)의 스몰챔버(2b)에 공급할 수 있다.
상기 유량제어밸브(10)는 상기 유압실린더(2)를 수축구동시키기 위해 상기 유압펌프(1)의 작동유를 상기 유압실린더(2)의 스몰챔버(2b)에 공급하는 초기상태와, 상기 유압실린더(2)의 수축구동시 상기 유압펌프(1)의 작동유가 상기 유압실린더(2)의 스몰챔버(2b)에 공급되는 것을 차단하기 위해 온 상태로 절환되는 파일럿형 제어밸브가 사용될 수 있다.
상기 유압실린더(2)의 신장구동시, 상기 유압실린더(2)에 발생되는 부하 압력이 상기 유압펌프(1)의 작동유 압력보다 높을 경우 역류를 방지하는 로드체크밸브(load check valve)(13)가 상기 유압펌프(1)와 상기 방향제어밸브(3)의 공급측 포트사이의 유로에 설치된다.
상기 조작장치(4)의 조작에 의한 파일럿압력이 상기 잭업 절환밸브(6)를 통과하여 인가될 경우 절환되는 센터바이패스절환밸브(7)가 상기 유압펌프(1)의 센터바이패스통로(1a)의 최하류측에 설치된다.
전술한 구성에 따르면, 굴삭기의 붐을 다운시키기 위해 상기 조작장치(4)를 조작하는 경우, 상기 파일럿펌프(5)의 작동유는 상기 조작장치(4)를 통과하여 상기 방향제어밸브(3)의 우측방향 신호압포트에 파일럿압력으로 인가된다. 이로 인해 상기 방향제어밸브(3)의 스풀을 도면상, 좌측방향으로 절환시킬 수 있다.
이와 동시에, 상기 조작장치(4)의 조작에 의한 파일럿압력이 밸브스프링(6a)의 탄성력에 의해 개구부가 열린 상기 잭업 절환밸브(6)를 통과하여 상기 센터바이패스절환밸브(7)의 신호압포트에 인가된다. 이로 인해 상기 센터바이패스절환밸브(7)의 스풀을 도면상, 좌측방향으로 절환시키므로 상기 센터바이패스절환밸브(7)의 개구부를 차단시킨다.
따라서, 상기 유압펌프(1)의 작동유는 상기 로드체크밸브(13) 및 방향제어밸브(3)를 통과하여 유압실린더(2)의 스몰챔버(2b)에 공급된다. 동시에 유압실린더(2)의 라지챔버(2a)로부터 배출되는 작동유는 상기 방향제어밸브(3)를 통과하여 작동유탱크(T)로 리턴된다. 따라서 상기 유압실린더(2)의 수축구동으로 인해 붐을 다운시킬 수 있다.
도 2 및 도 4에 도시된 바와 같이, 상기 유압실린더(2)의 수축구동시, 상기 유압실린더(2)의 라지챔버(2a)로부터 배출되는 작동유 압력이 설정압력을 초과하는 경우(일 예로서 붐이 자중에 의해 다운되는 경우를 말함), 상기 라지챔버(2a)의 작동유 압력이 상기 유량제어밸브(10)의 밸브스프링(10a) 대향측에 인가되어 스풀을 도면상, 좌측방향으로 절환시킨다. 즉 상기 유량제어밸브(10)가 온 상태로 절환되므로 개구부를 폐쇄시키게 된다.
이와 동시에, 상기 라지챔버(2a)측 작동유 압력에 의해 상기 잭업 절환밸브(6)를 도면상, 우측방향으로 절환시켜 개구부를 차단시킨다. 이로 인해 상기 센터바이패스절환밸브(7)는 상기 조작장치(4)의 조작에 의한 파일럿압력이 인가되지않아, 밸브스프링(7a)의 탄성력에 의해 도면상, 우측방향으로 절환된다. 즉 상기 센터바이패스절환밸브(7)는 초기상태를 유지하게 되므로 개구부는 개방된다.
따라서, 상기 유압펌프(1)의 작동유는 상기 방향제어밸브(3) 및 센터바이패스절환밸브(7)를 차례로 통과하여 작동유탱크(T)로 리턴되므로, 상기 유압펌프(1)의 작동유는 상기 유압실린더(2)의 스몰챔버(2b)에 공급되지않게 된다. 이때 상기 유압실린더(2)의 라지챔버(2a)로부터 배출되는 작동유 일부는 상기 방향제어밸브(3)의 재생통로(11)를 통과하여 상기 스몰챔버(2b)에 보충 공급되므로 재생유량으로 사용된다. 동시에 상기 라지챔버(2a)로부터 배출되는 작동유 일부는 상기 방향제어밸브(3)의 스풀 및 홀딩체크밸브(14)를 통과하여 작동유탱크(T)로 리턴된다.
전술한 바와 같이 상기 붐이 자중에 의해 다운되는 구동조건일 경우에, 상기 유압펌프(1)의 작동유를 상기 유압실린더(2)의 스몰챔버(2b)에 공급하지않고, 라지챔버(2a)측 작동유 일부를 스몰챔버(2b)에 공급하게 된다. 따라서 상기 유압펌프(1)의 소비마력을 줄이게 되므로 유압에너지 효율을 높일 수 있게 된다.
도 3 및 도 4에 도시된 바와 같이, 상기 유압실린더(2)의 수축구동시, 상기 유압실린더(2)의 라지챔버(2a)로부터 배출되는 작동유 압력이 설정압력이하일 경우(일 예로서 붐이 다운되어 버킷이 지면에 접촉되는 경우를 말함), 상기 유량제어밸브(10)는 이의 밸브스프링(10a)의 탄성력에 의해 초기상태를 유지하게 되므로 개구부가 개방된다.
이와 동시에, 상기 잭업 절환밸브(6)는 밸브스프링(6a)의 탄성력에 의해 초기상태를 유지하게 되므로 개구부가 개방된다. 이로 인해 상기 조작장치(4)의 조작에 의한 파일럿압력이 상기 잭업 절환밸브(6)를 통과하여 상기 센터바이패스절환밸브(7)의 신호압포트에 인가된다. 이로 인해 상기 센터바이패스절환밸브(7)는 온 상태로 절환되므로 개구부가 닫히게 된다.
따라서 상기 유압펌프(1)의 작동유는 상기 로드체크밸브(13)와 상기 유량제어밸브(10)를 차례로 통과하여 상기 유압실린더(2)의 스몰챔버(2b)에 공급된다. 즉 상기 붐이 자중에 의해 다운되어 버킷이 지면에 접촉된 후, 상기 유압펌프(1)로부터 공급되는 작동유 및 상기 붐실린더(2)의 라지챔버(2a)로부터 배출되는 작동유 일부를 상기 유압실린더(2)의 스몰챔버(2b)에 공급하게 된다. 이로 인해 장비를 잭업(늪지로부터 장비를 탈출시키거나, 급경사지에서 장비를 지지하면서 내려갈 경우에 구동됨)구동시킬 경우 잭업력을 높일 수 있게 된다.
한편, 상기 붐을 업(up) 시키기 위해 상기 조작장치(4)를 조작하는 경우, 상기 파일럿펌프(5)의 작동유는 상기 조작장치(4)를 통과하여 상기 방향제어밸브(3)의 좌측방향 신호압포트에 인가된다. 이로 인해 상기 방향제어밸브(3)의 스풀을 도면상, 우측방향으로 절환시키게 된다.
따라서, 상기 유압펌프(1)의 작동유는 상기 로드체크밸브(13) 및 방향제어밸브(3)를 통과하여 유압실린더(2)의 라지챔버(2a)에 공급된다. 동시에 유압실린더(2)의 스몰챔버(2b)로부터 배출되는 작동유는 상기 방향제어밸브(3)를 통과하여 작동유탱크(T)로 리턴된다.
따라서, 상기 유압실린더(2)의 신장구동으로 인해 붐을 업시킬 수 있다. 이때 상기 유압펌프(1)의 작동유에 의해 상기 유압실린더(2)를 신장구동시킬 경우, 상기 유압펌프(1)와 방향제어밸브(3)의 공급측 포트사이의 유로에 별도의 유량제어밸브가 설치되지않아 작동유의 불필요한 압력 손실을 방지할 수 있다.
또한, 상기 유압실린더(2)의 신장구동시, 상기 유압실린더(2)에 발생되는 부하 압력이 상기 유압펌프(1)의 작동유 압력보다 높을 경우, 상기 로드체크밸브(13)에 의해 역류를 차단하게 되므로 장비의 신뢰성을 높일 수 있다.
도 4에 도시된 바와 같이, 상기 조작장치(4)의 조작시 파일럿압력의 인가에 의해 절환되고, 상기 유압펌프(1)로부터 상기 유압실린더(2), 유압실린더(17) 및 주행모터(travel motor)(19)에 선택적으로 공급되는 작동유 흐름을 제어하는 방향제어밸브(3)(16)(18)가 상기 유압펌프(1)의 센터바이패스통로(1a)에 병렬로 설치된다.
또한, 조작장치(미도시됨)의 조작시 파일럿압력의 인가에 의해 절환되고, 유압펌프(15)로부터 스윙모터(swing motor)(21), 유압실린더(23) 및 주행모터(25)에 선택적으로 공급되는 작동유 흐름을 제어하는 방향제어밸브(20)(22)(24)가 상기 유압펌프(15)의 센터바이패스통로(15a)에 병렬로 설치된다.
이때, 상기 방향제어밸브(16,18)의 절환시 상기 유압펌프(1)로부터 선택적으로 공급되는 작동유에 의해 구동되는 상기 유압실린더(17) 및 주행모터(19)와, 상기 방향제어밸브(20,22,24)의 절환시 상기 유압펌프(15)로부터 선택적으로 공급되는 작동유에 의해 구동되는 상기 스윙모터(21), 유압실린더(23) 및 주행모터(25)는, 당해분야에서의 유압회로 구성과 동일하므로 이들의 구성에 대한 상세한 설명은 생략한다.
여기에서, 상술한 본 발명에서는 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야에서 숙력된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경할 수 있음을 이해할 수 있을 것이다.
전술한 구성을 갖는 본 발명에 따르면, 붐이 자중에 의해 다운되는 경우에는 유압펌프의 작동유를 유압실린더에 공급하지않고 잭업 구동시에만 작동유를 선택적으로 공급하여 유압에너지 효율을 높일 수 있다. 붐 업 구동하기 위해 유압실린더에 작동유를 공급할 경우 불필요한 압력 손실을 방지할 수 있다. 유압실린더의 신장구동시 유압실린더측 부하 압력이 유압펌프측 압력보다 높을 경우 역류를 방지할 수 있는 효과가 있다.

Claims (7)

  1. 유압펌프 및 파일럿펌프;
    상기 유압펌프의 작동유에 의해 구동되는 유압실린더;
    상기 유압펌프와 상기 유압실린더사이의 유로에 설치되고, 절환시 상기 유압실린더에 공급되거나 배출되는 작동유 흐름을 제어하는 방향제어밸브;
    상기 파일럿펌프와 상기 방향제어밸브사이의 유로에 설치되고, 상기 방향제어밸브를 절환시키기 위해 조작신호를 출력하는 조작장치;
    상기 조작장치와 유압실린더사이의 유로에 설치되고, 상기 유압실린더의 라지챔버에 발생되는 부하 압력이 설정압력을 초과하는 경우 상기 라지챔버의 작동유 압력에 의해 절환되는 잭업 절환밸브; 및
    상기 방향제어밸브의 스풀에 설치되는 유량제어밸브, 상기 유량제어밸브는 상기 유압실린더의 수축구동시 상기 라지챔버측 작동유 압력이 설정압력을 초과하는 경우 상기 유압펌프의 작동유가 상기 유압실린더의 스몰챔버에 공급되는 것을 차단하고 상기 라지챔버의 작동유 일부를 상기 스몰챔버에 공급하며, 상기 라지챔버측 작동유 압력이 설정압력 이하일 경우 상기 유압펌프의 작동유를 상기 유압실린더의 스몰챔버에 공급시킴;을 특징으로 하는 건설기계용 유압회로.
  2. 제1항에 있어서, 상기 유압펌프와 상기 방향제어밸브의 공급측 포트사이의 유로에 설치되고, 상기 유압실린더에 발생되는 부하 압력이 상기 유압펌프의 작동유 압력보다 높을 경우 역류를 방지하는 로드체크밸브를 구비하는 것을 특징으로 하는 건설기계용 유압회로.
  3. 제1항에 있어서, 상기 유압펌프의 센터바이패스통로의 최하류측에 설치되고, 상기 조작장치의 조작에 의한 파일럿압력이 상기 잭업 절환밸브를 통과하여 인가될경우 절환되는 센터바이패스절환밸브를 구비하는 것을 특징으로 하는 건설기계용 유압회로.
  4. 제1항에 있어서, 상기 유량제어밸브는
    상기 유압실린더를 수축구동시키기 위해 상기 유압펌프의 작동유를 상기 유압실린더의 스몰챔버에 공급하는 초기상태와, 상기 유압실린더의 수축구동시 상기 유압펌프의 작동유가 상기 유압실린더의 스몰챔버에 공급되는 것을 차단하기 위해 온 상태로 절환되는 파일럿형 제어밸브인 것을 특징으로 하는 건설기계용 유압회로.
  5. 제1항에 있어서, 상기 잭업 절환밸브는
    상기 유압실린더의 라지챔버측 작동유 압력이 설정압력이하일 경우 개구부가 개방되는 초기상태와, 상기 유압실린더의 라지챔버측 작동유 압력이 설정압력 이상일 경우 상기 개구부를 차단시키기 위해 온 상태로 절환되는 파일럿형 절환밸브인 것을 특징으로 하는 건설기계용 유압회로.
  6. 제1항에 있어서, 상기 방향제어밸브는 이의 스풀에 형성되고, 상기 유압실린더의 수축구동에 의해 라지챔버에서 배출되는 작동유 일부를 스몰챔버에 보충공급하는 재생통로를 구비하는 것을 특징으로 하는 건설기계용 유압회로.
  7. 제6항에 있어서, 상기 재생통로에 설치되고, 상기 유압실린더의 수축구동시 라지챔버로부터 배출되는 작동유 압력에 의해 상기 유량제어밸브를 절환시켜 이의 개구부를 차단시키기 위해 상기 재생통로에 파일럿압력을 생성하는 오리피스를 구비하는 것을 특징으로 하는 건설기계용 유압회로.
PCT/KR2014/005788 2014-06-30 2014-06-30 건설기계용 유압회로 WO2016002979A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/005788 WO2016002979A1 (ko) 2014-06-30 2014-06-30 건설기계용 유압회로

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/005788 WO2016002979A1 (ko) 2014-06-30 2014-06-30 건설기계용 유압회로

Publications (1)

Publication Number Publication Date
WO2016002979A1 true WO2016002979A1 (ko) 2016-01-07

Family

ID=55019499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005788 WO2016002979A1 (ko) 2014-06-30 2014-06-30 건설기계용 유압회로

Country Status (1)

Country Link
WO (1) WO2016002979A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518769B1 (ko) * 2003-06-19 2005-10-05 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 유압펌프 토출유량 제어회로
KR100674158B1 (ko) * 2003-01-14 2007-01-24 히다치 겡키 가부시키 가이샤 유압 작업기
KR20080061164A (ko) * 2006-12-28 2008-07-02 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 굴삭기의 붐 충격 완화장치 및 그 제어방법
KR101382861B1 (ko) * 2006-12-26 2014-04-08 히다찌 겐끼 가부시키가이샤 작업 차량의 스티어링 시스템
KR20140074324A (ko) * 2011-10-07 2014-06-17 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 우선 제어시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674158B1 (ko) * 2003-01-14 2007-01-24 히다치 겡키 가부시키 가이샤 유압 작업기
KR100518769B1 (ko) * 2003-06-19 2005-10-05 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 유압펌프 토출유량 제어회로
KR101382861B1 (ko) * 2006-12-26 2014-04-08 히다찌 겐끼 가부시키가이샤 작업 차량의 스티어링 시스템
KR20080061164A (ko) * 2006-12-28 2008-07-02 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 굴삭기의 붐 충격 완화장치 및 그 제어방법
KR20140074324A (ko) * 2011-10-07 2014-06-17 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 우선 제어시스템

Similar Documents

Publication Publication Date Title
WO2012121427A1 (ko) 파이프 레이어용 유압회로
WO2012091184A1 (ko) 건설기계의 에너지 재생 시스템
WO2013051740A1 (ko) 건설기계용 작업장치 구동 제어시스템
WO2014112668A1 (ko) 건설기계의 유량 제어장치 및 제어방법
WO2011078586A9 (ko) 하이브리드 굴삭기 붐 구동시스템 및 그 제어방법
WO2013062156A1 (ko) 액츄에이터 충격 감소시스템이 구비된 하이브리드 굴삭기
WO2013015467A1 (ko) 건설기계용 유압시스템
WO2014014146A1 (ko) 건설기계용 유량 컨트롤밸브
WO2014208795A1 (ko) 플로팅기능을 갖는 건설기계용 유압회로 및 플로팅기능 제어방법
WO2017094986A1 (ko) 건설기계의 유압 시스템 및 유압 제어 방법
WO2013022131A1 (ko) 건설기계의 유압 제어시스템
WO2013081220A1 (ko) 굴삭기의 선회 릴리프 에너지 회생장치
WO2013002429A1 (ko) 건설기계용 유압제어밸브
WO2013008964A1 (ko) 건설기계용 유압 액츄에이터 댐핑 제어시스템
WO2012091182A1 (ko) 건설기계의 유압시스템
WO2012087080A2 (ko) 하이브리드 굴삭기 붐 구동시스템 및 그 제어방법
WO2016111391A1 (ko) 건설기계용 유량 컨트롤밸브
WO2015099353A1 (ko) 붐 에너지 회생 제어 회로 및 제어 방법
WO2016043365A1 (ko) 건설기계용 유압회로
WO2011145759A1 (ko) 건설기계용 더블 체크밸브
WO2013176298A1 (ko) 건설기계용 유압시스템
WO2013100457A1 (ko) 굴삭기 주행 연비 절감 시스템
WO2016195374A1 (ko) 건설기계의 유압 시스템
WO2015064782A1 (ko) 플로트 기능을 구비한 건설장비용 유압장치
WO2014104603A1 (ko) 배기가스 후처리장치 강제재생의 유압회로 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896910

Country of ref document: EP

Kind code of ref document: A1