WO2013051379A1 - ブレード制御システム、建設機械及びブレード制御方法 - Google Patents

ブレード制御システム、建設機械及びブレード制御方法 Download PDF

Info

Publication number
WO2013051379A1
WO2013051379A1 PCT/JP2012/073151 JP2012073151W WO2013051379A1 WO 2013051379 A1 WO2013051379 A1 WO 2013051379A1 JP 2012073151 W JP2012073151 W JP 2012073151W WO 2013051379 A1 WO2013051379 A1 WO 2013051379A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
angle
lift
excavation
load
Prior art date
Application number
PCT/JP2012/073151
Other languages
English (en)
French (fr)
Inventor
林 和彦
岡本 研二
健二郎 嶋田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to JP2012542272A priority Critical patent/JP5247941B1/ja
Priority to CN201280001591.3A priority patent/CN103154385B/zh
Publication of WO2013051379A1 publication Critical patent/WO2013051379A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2029Controlling the position of implements in function of its load, e.g. modifying the attitude of implements in accordance to vehicle speed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • E02F3/847Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically using electromagnetic, optical or acoustic beams to determine the blade position, e.g. laser beams
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • the present invention relates to a blade control system, a construction machine, and a blade control method.
  • the target value is the load applied to the blade (hereinafter referred to as “blade load”) by automatically adjusting the vertical position of the blade for the purpose of efficient excavation work.
  • blade load the load applied to the blade
  • a blade control system includes a lift frame attached to a vehicle body so as to be vertically swingable, a blade attached to a tip of the lift frame, a lift cylinder for vertically swinging the lift frame, and a lift cylinder.
  • a control valve that supplies hydraulic oil, a blade angle calculation unit that calculates the sum of the forward tilt angle of the vehicle body relative to the reference plane and the lift angle of the lift frame relative to the reference position, and a predetermined value based on the sum of the forward tilt angle and the lift angle
  • a difference angle calculation unit that calculates a difference angle that is a value obtained by subtracting an angle
  • an opening degree setting unit that sets an opening degree of a control valve based on the difference angle
  • a lift control unit that controls the control valve according to the opening degree set by the opening degree setting unit.
  • the blade control system since the blade control in consideration of the forward tilt angle is executed, when the bulldozer entering the excavation slope tilts forward, the blade can be quickly and appropriately raised. Can do. For this reason, since a rapid increase in the blade load due to the blade penetrating deep into the ground can be suppressed, the rapid driving of the blade is reduced as compared with the case where the blade control corresponding to the blade load is executed. As a result, the earth and sand are prevented from being scattered around, so that efficient excavation can be realized.
  • a blade control system relates to the first aspect, and includes a determination unit that determines whether the lift frame is positioned above the reference position and the load applied to the blade is smaller than a predetermined value.
  • the opening degree setting unit when excavation by the blade is started, when the determination unit determines that the lift frame is positioned above the reference position and the load applied to the blade is smaller than a predetermined value. Is set higher than when the determination unit determines that the load is not higher than the reference position or the load applied to the blade is not smaller than the predetermined value.
  • the blade control system relates to the first aspect, and includes a blade load acquisition unit that acquires a blade load applied to the blade.
  • the lift control unit controls the degree of opening of the control valve according to the difference between the blade load and the target load after a predetermined time has elapsed since the start of excavation by the blade.
  • the blade control system it is possible to suppress scattering of earth and sand immediately after the start of excavation, and thereafter, it is possible to execute efficient excavation based on the difference between the blade load and the target load.
  • a blade control system relates to the first aspect, and includes a blade load acquisition unit that acquires a blade load applied to the blade.
  • the lift control unit has a predetermined blade load after the start of excavation by the blade.
  • the opening degree of the control valve is controlled according to the difference between the blade load and the target load.
  • the blade control system it is possible to suppress scattering of earth and sand immediately after the start of excavation, and thereafter to perform efficient excavation based on the difference between the blade load and the target load.
  • a construction machine includes a vehicle body and a blade control system according to any one of the first to fourth aspects.
  • a construction machine relates to the fifth aspect, and includes a traveling device including a pair of crawler belts attached to the vehicle body.
  • the blade control method includes a vehicle body tilting forward with respect to a reference plane from the start of excavation by a blade attached to the tip of a lift frame attached to the vehicle body so as to be swingable up and down.
  • the lift angle is adjusted so that the sum of the angle and the lift angle of the lift frame with respect to the reference position is within a predetermined angle range.
  • the blade control method according to the eighth aspect relates to the seventh aspect, wherein the lift is performed so that the sum of the forward tilt angle and the base lift angle becomes a predetermined angle until a predetermined time elapses after the start of excavation by the blade. Lower the frame. (The invention's effect) According to the present invention, it is possible to provide a blade control system, a construction machine, and a blade control method that enable efficient excavation.
  • FIG. 1 is a side view showing an overall configuration of a bulldozer 100 according to an embodiment.
  • the bulldozer 100 includes a vehicle body 10, a traveling device 20, a lift frame 30, a blade 40, a lift cylinder 50, an IMU (Inertial Measurement Unit) 60, a pair of sprockets 70, and a drive torque sensor 80. .
  • the bulldozer 100 is equipped with a blade control system 200. The configuration and operation of the blade control system 200 will be described later.
  • the vehicle body 10 has a cab 11 and an engine compartment 12.
  • the cab 11 is equipped with seats and various operation devices (not shown).
  • the engine compartment 12 is disposed in front of the cab 11 and houses an engine (not shown).
  • the traveling device 20 is composed of a pair of crawler belts (only the left crawler belt is shown in FIG. 1), and is attached to the lower portion of the vehicle body 10.
  • the traveling device 20 is rotated by a pair of sprockets 70.
  • the lift frame 30 is disposed inside the traveling device 20 in the vehicle width direction.
  • the lift frame 30 is attached to the vehicle body 10 so as to be swingable up and down around an axis X parallel to the vehicle width direction.
  • the lift frame 30 supports the blade 40 via the ball joint portion 31.
  • the blade 40 is disposed in front of the vehicle body 10.
  • the blade 40 is supported by the lift frame 30 via a universal joint 41 connected to the ball joint 31.
  • the blade 40 moves up and down as the lift frame 30 swings up and down.
  • a blade edge 40P that is inserted into the ground during excavation or leveling is formed at the lower end of the blade 40.
  • the lift cylinder 50 is connected to the vehicle body 10 and the lift frame 30. As the lift cylinder 50 expands and contracts, the lift frame 30 swings up and down about the axis X.
  • the lift cylinder 50 includes a lift cylinder sensor 51 that detects the stroke length of the lift cylinder 50 (hereinafter referred to as “lift cylinder length L”).
  • lift cylinder length L the lift cylinder sensor 51 includes a rotating roller for detecting the position of the cylinder rod and a magnetic sensor for returning the position of the cylinder rod to the origin.
  • the lift cylinder sensor 51 notifies the later-described blade controller 210 (see FIG. 2) of the lift cylinder length L.
  • the IMU 60 acquires vehicle body inclination angle data indicating vehicle body inclination angles in the front, rear, left and right directions.
  • the IMU 60 transmits vehicle body tilt angle data to a blade controller 210 described later.
  • the pair of sprockets 70 are driven by the engine in the engine room 12.
  • the traveling device 20 rotates according to the driving of the pair of sprockets 70.
  • the drive torque sensor 80 acquires drive torque data indicating the drive torque of the pair of sprockets 70.
  • the drive torque sensor 80 transmits drive torque data to the blade controller 210.
  • FIG. 2 is a block diagram illustrating a configuration of the blade control system 200 according to the embodiment.
  • the blade control system 200 includes a blade controller 210, a rotation speed sensor 220, a blade control execution button 230, a proportional control valve 240, and a hydraulic pump 250.
  • the rotation speed sensor 220 detects the rotation speed indicating the rotation speed of the pair of sprockets 70.
  • the rotation speed sensor 220 transmits rotation speed data indicating the rotation speed of the pair of sprockets 70 to the blade controller 210.
  • the blade control execution button 230 is disposed in the cab 11 and receives an instruction to start execution of blade control from the operator. When receiving an execution start instruction, the blade control execution button 230 transmits a blade control execution instruction to the blade controller 210.
  • the blade controller 210 receives the lift cylinder length L received from the lift cylinder sensor 51, the vehicle body tilt angle data received from the IMU 60, the drive torque data received from the drive torque sensor 80, and the rotation speed data received from the rotation speed sensor 220. And a command value is output to the proportional control valve 240 based on the blade control execution instruction received from the blade control execution button 230. The function and operation of the blade controller 210 will be described later.
  • the proportional control valve 240 is disposed between the lift cylinder 50 and the hydraulic pump 250.
  • the degree of opening of the proportional control valve 240 is controlled by a command value output from the blade controller 210.
  • the hydraulic pump 250 is interlocked with the engine and supplies hydraulic oil to the lift cylinder 50 via the proportional control valve 240.
  • the amount of hydraulic oil supplied from the hydraulic pump 250 to the lift cylinder 50 is determined according to the opening degree of the proportional control valve 240.
  • FIG. 3 is a block diagram illustrating functions of the blade controller 210.
  • FIG. 4 is a schematic diagram showing the state of the bulldozer 100 immediately after the start of excavation.
  • the blade controller 210 includes a forward tilt angle acquisition unit 300, a lift angle acquisition unit 301, a blade angle calculation unit 302, a vehicle speed acquisition unit 303, a first determination unit 304, and a storage unit 305.
  • the forward tilt angle acquisition unit 300 calculates the forward tilt angle ⁇ a of the vehicle body 10 with respect to the reference plane S shown in FIG. 4 based on the vehicle body tilt angle data received from the IMU 60.
  • the reference plane S may be the ground on which the bulldozer 100 is placed at the start of excavation, but may be the ground on which the bulldozer 100 is located at the start of excavation.
  • an excavation slope K starting from an excavation start point J where the cutting edge 40 ⁇ / b> P is first inserted is formed in front of the bulldozer 100.
  • the bulldozer 100 tilts forward when the center of gravity of the bulldozer 100 passes over the excavation start point J.
  • the forward tilt angle acquisition unit 300 acquires the forward tilt angle ⁇ a of the vehicle body 10 at this time.
  • the lift angle acquisition unit 301 calculates the lift angle ⁇ b of the blade 40 shown in FIG. 4 based on the lift cylinder length L received from the lift cylinder sensor 51. As shown in FIG. 4, the lift angle ⁇ b corresponds to the descending angle of the lift frame 30 from the reference position, that is, the penetration depth of the cutting edge 40P into the ground.
  • the “reference position” of the lift frame 30 is indicated by a one-dot chain line, and the “current position” of the lift frame 30 is indicated by a solid line.
  • the reference position of the lift frame 30 is the position of the lift frame 30 in a state where the cutting edge 40P is in contact with the reference surface S.
  • FIG. 5 is a partially enlarged view of FIG. 1 and is a schematic diagram for explaining a method of calculating the lift angle ⁇ b.
  • the lift cylinder 50 is rotatably attached to the lift frame 30 on the front rotation shaft 101 and is rotatably attached to the vehicle body 10 on the rear rotation shaft 102.
  • the vertical line 103 is a straight line along the vertical direction
  • the origin indication line 104 is a straight line indicating the origin position of the blade 40.
  • the first length La is the length of a straight line connecting the front rotation shaft 101 and the axis X of the lift frame 30, and the second length Lb is the axis of the rear rotation shaft 102 and the lift frame 30.
  • the first angle ⁇ 1 is an angle formed by the front rotation shaft 101 and the rear rotation shaft 102 with the axis X as a vertex
  • the second angle ⁇ 2 is the front rotation shaft 101 with the axis X as a vertex
  • the upper side of the lift frame 30, and the third angle ⁇ 3 is an angle formed by the rear rotation shaft 102 and the vertical line 103 with the axis X as an apex.
  • the first length La, the second length Lb, the second angle ⁇ 2 and the third angle ⁇ 3 are fixed values
  • the lift angle acquisition unit 301 stores these fixed values.
  • the unit of the second angle ⁇ 2 and the third angle ⁇ 3 is radians.
  • the lift angle acquisition unit 301 calculates the first angle ⁇ 1 using Expressions (1) and (2) based on the cosine theorem.
  • the vehicle speed acquisition unit 303 calculates the vehicle speed of the bulldozer 100 based on the rotation speed data received from the rotation speed sensor 220.
  • the first determination unit 304 determines whether the vehicle speed calculated by the vehicle speed acquisition unit 303 is greater than “0” and whether a blade control execution instruction has been received from the blade control execution button 230.
  • the storage unit 305 stores various information used for control of the blade controller 210. Specifically, the storage unit 305 stores a target blade angle ⁇ d.
  • the target blade angle ⁇ d is an angle suitable for allowing the blade 40 to penetrate the ground at the start of excavation.
  • the target blade angle ⁇ d can be set to several degrees (for example, about ⁇ 3 °) downward from the reference position of the lift frame 30, but is not limited to this, and is set to the reference position of the lift frame 30. May be.
  • the storage unit 305 stores a map shown in FIG.
  • the gain curve Y defines a relationship between a difference angle ⁇ described later and a command value to the proportional control valve 240.
  • the blade load acquisition unit 307 calculates a load applied to the blade 40 (hereinafter referred to as “blade load M”) based on the drive torque data received from the drive torque sensor 80.
  • the blade load M can be rephrased as excavation resistance or traction force.
  • the second determination unit 308 determines whether or not the lift angle ⁇ b is larger than “0 °” and the blade load M is smaller than 0.2 W (W is the vehicle weight of the bulldozer 100).
  • the command value setting unit 309 (an example of the opening degree setting unit) sets an increase command value or a decrease command value based on the difference angle ⁇ with reference to the map shown in FIG.
  • the increase command value and the decrease command value correspond to the opening degree of the proportional control valve 240.
  • the command value setting unit 309 sets the increase command value when the difference angle ⁇ is 2 ° or more, and the decrease command when the difference angle ⁇ is ⁇ 2 ° or less. Set the value. This means that the lift control is executed so that the blade angle ⁇ c falls within the range of ⁇ d ⁇ 2 °.
  • the range in which the command value is set to “0” is not limited to ⁇ 2 °, and can be set as appropriate.
  • the command value setting unit 309 displays the once set lowering command value. Increase.
  • the command value setting unit 309 may increase the lowering command value to such a value that the proportional control valve 240 is fully opened.
  • the timer 310 measures the elapsed time from the start of excavation and the duration of the state in which the blade load M is greater than a predetermined threshold (for example, 0.35 W). The timer 310 can use the timing at which the blade control execution button 230 receives the blade control execution start instruction as the excavation start timing.
  • a predetermined threshold for example 0.35 W
  • 3rd determination part 311 determines whether the measurement time by the timer 310 exceeded predetermined time (for example, 0.5 second).
  • the lift control unit 312 When the third determination unit 311 does not determine that the time measured by the timer 310 exceeds the predetermined time, the lift control unit 312 outputs the increase command value or the decrease command value set by the command value setting unit 309 to the proportional control valve 240. To do. Accordingly, the lift angle ⁇ b is set so that the sum of the forward tilt angle ⁇ a of the vehicle body 10 and the lift angle ⁇ b of the lift frame 30 (blade angle ⁇ c) falls within a predetermined angle range ( ⁇ 5 ° ⁇ ⁇ c ⁇ ⁇ 1 °). Is adjusted.
  • the lift control unit 312 determines the difference between the blade load M acquired by the blade load acquisition unit 307 and the target load.
  • the opening degree of the proportional control valve 240 is controlled. That is, when the measurement time exceeds the predetermined time, the lift control unit 312 adjusts the lift angle ⁇ b according to the blade load M regardless of the size of the blade angle ⁇ c.
  • the target load may be set in the range of 0.4 W to 0.7 W, for example.
  • FIG. 7 is a flowchart for explaining the operation of the blade controller 210.
  • step S1 the blade controller 210 calculates the forward tilt angle ⁇ a of the vehicle body 10 with respect to the reference plane S based on the vehicle body tilt angle data acquired from the IMU 60.
  • step S ⁇ b> 2 the blade controller 210 calculates the lift angle ⁇ b of the blade 40 based on the lift cylinder length L acquired from the lift cylinder sensor 51.
  • step S3 the blade controller 210 calculates the sum of the forward tilt angle ⁇ a and the lift angle ⁇ b (that is, the blade angle ⁇ c).
  • step S4 the blade controller 210 determines whether or not the vehicle speed is greater than “0” and a blade control execution instruction has been received. If both conditions are satisfied, the process proceeds to step S5. If any condition is not satisfied, the process returns to step S1.
  • step S5 the blade controller 210 calculates a difference angle ⁇ between the blade angle ⁇ c and the target blade angle ⁇ d.
  • step S6 the blade controller 210 refers to the gain curve Y shown in the map of FIG. 6 and sets an increase command value or a decrease command value based on the difference angle ⁇ .
  • step S7 the blade controller 210 determines whether the lift angle ⁇ b is larger than 0 ° and the blade load M is smaller than 0.2 W, that is, whether the blade is not grounded and is hollow. Determine if the blade load is small. If both conditions are satisfied, the process proceeds to step S8. If any condition is not satisfied, the process proceeds to step S9.
  • step S8 the blade controller 210 increases the descending command value acquired in step S6.
  • step S9 the blade controller 210 outputs an ascending command value or a descending command value to the proportional control valve 240.
  • hydraulic oil is supplied from the proportional control valve 240 to the lift cylinder 50, and the sum of the forward tilt angle ⁇ a of the vehicle body 10 and the lift angle ⁇ b of the lift frame 30 (blade angle ⁇ c) is within a predetermined angular range ( ⁇ The lift angle ⁇ b is adjusted so as to be within 5 ° ⁇ ⁇ c ⁇ ⁇ 1 °.
  • step S10 the blade controller 210 determines whether the time measured by the timer 310 has exceeded a predetermined time. If the measurement time by the timer 310 exceeds the predetermined time, the process proceeds to step S10. If the measurement time by the timer 310 does not exceed the predetermined time, the process returns to step S1.
  • the time measured by the timer 310 is either an elapsed time from the start of excavation or a continuation time in which the blade load M is greater than a predetermined threshold.
  • step S11 the blade controller 210 controls the opening degree of the proportional control valve 240 so that the blade load M approaches the target load regardless of the size of the blade angle ⁇ c.
  • Blade controller 210 When the blade controller 210 according to the present embodiment starts excavation, the sum of the forward tilt angle ⁇ a of the vehicle body 10 and the lift angle ⁇ b of the lift frame 30 (blade angle ⁇ c) is within a predetermined angle range ( ⁇ 5 ° ⁇ The lift angle ⁇ b is adjusted so as to be within ⁇ c ⁇ ⁇ 1 °.
  • the blade control is performed in consideration of the forward tilt angle ⁇ a, when the bulldozer 100 enters the excavation slope K and tilts forward, the blade 40 can be raised quickly and appropriately. As a result, the blade 40 can be prevented from penetrating deeply into the ground and the blade load M can be prevented from rising rapidly, so that the rapid drive of the blade 40 is mitigated as compared with the case where blade control is executed only according to the blade load M. The As a result, the earth and sand are prevented from being scattered around, so that efficient excavation can be realized.
  • the blade controller 210 lowers the lift frame 30 so that the blade angle ⁇ c becomes the target blade angle ⁇ d (an example of a predetermined angle).
  • the blade controller 210 increases the lowering command value when the condition that the lift angle ⁇ b is larger than 0 ° and the blade load M is smaller than 0.2 W (an example of a predetermined value) is satisfied.
  • the opening degree of the proportional control valve 240 is increased.
  • the blade controller 210 When either the elapsed time from the start of excavation or the duration of the state in which the blade load M is greater than a predetermined threshold continues for at least a predetermined time (for example, 0.5 seconds), the blade controller 210 The degree of opening of the proportional control valve 240 is controlled so that the load M approaches the target load.
  • the blade load is calculated based on the drive torque data, but is not limited to this.
  • the blade load can also be obtained, for example, by multiplying the engine torque by the reduction ratio to the transmission, steering mechanism, and final reduction mechanism and the diameter of the sprocket.
  • the bulldozer has been described as an example of the “construction machine”, but is not limited thereto, and may be a motor grader or the like.
  • the blade control system of the present invention enables efficient excavation, it can be widely applied to the construction machinery field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 ブレード制御システムは、基準面に対する前記車体の前傾角度と、基準位置に対する前記リフトフレームのリフト角度との和を算出するブレード角度算出部と、前記前傾角度と前記リフト角度との和から所定角度を引いた値である差分角を算出する差分角算出部と、前記差分角に基づいて前記比例制御弁の開口度を設定する開口度設定部と、前記ブレードによる掘削の開始から所定時間経過するまでの間、前記開口度設定部によって設定された前記開口度に応じて前記比例制御弁を制御するリフト制御部と、を備える。

Description

ブレード制御システム、建設機械及びブレード制御方法
 本発明は、ブレード制御システム、建設機械、およびブレード制御方法に関する。
 従来、ブルドーザやモータグレーダなどの建設機械において、効率の良い掘削作業を行うことを目的として、ブレードの上下位置を自動調整することによってブレードに掛かる負荷(以下、「ブレード負荷」という)を目標値に保持させる掘削制御が提案されている(特許文献1参照)。
特開平5-106239号公報
(発明が解決しようとする課題)
 しかしながら、特許文献1の手法では、掘削開始時に急な傾きが建設機械に生じると効率的に掘削できない場合がある。具体的には、掘削開始地点(すなわち、ブレードの刃先が挿入された位置)を起点に形成される掘削斜面に建設機械が乗り入れると、建設機械自体の急な前傾に伴ってブレードが地面深くに差し込まれ、ブレード負荷が急激に上昇する。そのため、上述の掘削制御に従ってブレードが上方に急駆動されることによって、ブレードに抱えられている土砂が周辺にまき散らされてしまう場合がある。
 本発明は、上述の問題に鑑みてなされたものであり、効率的な掘削を可能とするブレード制御システム、建設機械、およびブレード制御方法を提供することを目的とする。
(課題を解決するための手段)
 第1の態様に係るブレード制御システムは、車体に対して上下揺動可能に取り付けられるリフトフレームと、リフトフレームの先端に取り付けられるブレードと、リフトフレームを上下揺動させるリフトシリンダと、リフトシリンダに作動油を供給する制御弁と、基準面に対する車体の前傾角度と、基準位置に対するリフトフレームのリフト角度との和を算出するブレード角度算出部と、前傾角度とリフト角度との和から所定角度を引いた値である差分角を算出する差分角算出部と、差分角に基づいて制御弁の開口度を設定する開口度設定部と、ブレードによる掘削の開始から所定時間経過するまでの間、開口度設定部によって設定された開口度に応じて制御弁を制御するリフト制御部と、を備える。
 第1の態様に係るブレード制御システムによれば、前傾角度を考慮したブレード制御が実行されるので、掘削斜面に乗り入れたブルドーザが前傾した場合には、ブレードを迅速かつ適切に上昇させることができる。そのため、ブレードが地面深くに貫入されることによるブレード負荷の急激な上昇を抑制できるので、ブレード負荷に応じたブレード制御が実行される場合に比べて、ブレードの急駆動が緩和される。この結果、土砂が周辺にまき散らされることが抑制されるので、効率的な掘削を実現することができる。
 第2の態様に係るブレード制御システムは、第1の態様に係り、リフトフレームが基準位置より上方に位置し、かつ、ブレードに掛かる負荷が所定値より小さいか否かを判定する判定部を備え、開口度設定部は、ブレードによる掘削が開始された場合において、リフトフレームが基準位置より上方に位置し、かつ、ブレードに掛かる負荷が所定値より小さいと判定部によって判定されたときには、リフトフレームが基準位置より上方に位置しない、或いは、ブレードに掛かる負荷が所定値より小さくないと判定部によって判定されたときよりも、制御弁の開口度を大きく設定する。
 第2の態様に係るブレード制御システムによれば、迅速にブレードを下降させることができるので、より効率的な掘削を実現することができる。
 第3の態様に係るブレード制御システムは、第1の態様に係り、ブレードに掛かるブレード負荷を取得するブレード負荷取得部を備える。リフト制御部は、ブレードによる掘削の開始から所定時間経過後は、ブレード負荷と目標負荷との差分に応じて制御弁の開口度を制御する。
 第3の態様に係るブレード制御システムによれば、掘削開始直後における土砂のまき散らしを抑制するとともに、その後はブレード負荷と目標負荷との差分を基準とした効率的な掘削を実行することができる。
 第4の態様に係るブレード制御システムは、第1の態様に係り、ブレードに掛かるブレード負荷を取得するブレード負荷取得部を備え、リフト制御部は、ブレードによる掘削の開始後において、ブレード負荷が所定閾値より大きい状態が所定時間継続した場合、ブレード負荷と目標負荷との差分に応じて制御弁の開口度を制御する。
 第4の態様に係るブレード制御システムによれば、掘削開始直後における土砂のまき散らしを抑制するとともに、その後はブレード負荷と目標負荷との差分を基準とした効率的な掘削を実行することができる。
 第5の態様に係る建設機械は、車体と、第1乃至第4いずれかの態様に係るブレード制御システムと、を備える。
 第6の態様に係る建設機械は、第5の態様に係り、車体に取り付けられる一対の履帯を含む走行装置を備える。
 第7の態様に係るブレード制御方法は、車体に対して上下揺動可能に取り付けられるリフトフレームの先端に取り付けられるブレードによる掘削の開始から所定時間経過するまでの間、基準面に対する車体の前傾角度と基準位置に対するリフトフレームのリフト角度との和が所定の角度範囲に収まるようにリフト角度を調整する。
 第8の態様に係るブレード制御方法は、第7の態様に係り、ブレードによる掘削の開始から所定時間経過するまでの間、前傾角度と基リフト角度との和が所定角度になるようにリフトフレームを下降させる。
(発明の効果)
 本発明によれば、効率的な掘削を可能とするブレード制御システム、建設機械、およびブレード制御方法を提供することができる。
ブルドーザの全体構成を示す側面図 ブレード制御システムの構成を示すブロック図 ブレードコントローラの機能を示すブロック図 掘削開始直後におけるブルドーザの状態を示す模式図 図1の部分拡大図 差分角と比例制御弁への指令値との関係を示すマップ ブレードコントローラの動作を説明するためのフロー図
 次に、図面を用いて、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なっている場合がある。従って、具体的な寸法等は以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 以下、「建設機械」の一例であるブルドーザについて、図面を参照しながら説明する。以下の説明において、「上」「下」「前」「後」「左」「右」とは、運転席に着座したオペレータを基準とする用語である。
 《ブルドーザ100の全体構成》
 図1は、実施形態に係るブルドーザ100の全体構成を示す側面図である。
 ブルドーザ100は、車体10と、走行装置20と、リフトフレーム30と、ブレード40と、リフトシリンダ50と、IMU(Inertial Measurement Unit)60と、一対のスプロケット70と、駆動トルクセンサ80と、を備える。また、ブルドーザ100は、ブレード制御システム200を搭載している。ブレード制御システム200の構成および動作については後述する。
 車体10は、運転室11とエンジン室12とを有する。運転室11には、図示しないシートや各種操作装置が内装されている。エンジン室12は、運転室11の前方に配置され、図示しないエンジンを収容する。
 走行装置20は、一対の履帯(図1において、左側の履帯のみ図示)によって構成され、車体10の下部に取り付けられている。走行装置20は、一対のスプロケット70によって回転される。
 リフトフレーム30は、車幅方向において走行装置20の内側に配置される。リフトフレーム30は、車幅方向に平行な軸心Xを中心として、車体10に対して上下揺動可能に取り付けられている。リフトフレーム30は、球関節部31を介してブレード40を支持している。
 ブレード40は、車体10の前方に配置される。ブレード40は、球関節部31に連結される自在継手41を介してリフトフレーム30に支持されている。ブレード40は、リフトフレーム30の上下揺動に伴って上下に移動する。ブレード40の下端部には、掘削時や整地時に地面に挿入される刃先40Pが形成されている。
 リフトシリンダ50は、車体10とリフトフレーム30とに連結される。リフトシリンダ50の伸縮に応じて、リフトフレーム30が軸心Xを中心として上下揺動する。リフトシリンダ50は、リフトシリンダ50のストローク長さ(以下、「リフトシリンダ長L」という。)を検出するリフトシリンダセンサ51を有する。リフトシリンダセンサ51は、図示しないが、シリンダロッドの位置を検出するための回転ローラと、シリンダロッドの位置を原点復帰するための磁力センサと、によって構成されている。リフトシリンダセンサ51は、後述するブレードコントローラ210(図2参照)にリフトシリンダ長Lを通知する。
 IMU60は、前後左右における車体傾斜角を示す車体傾斜角データを取得する。IMU60は、車体傾斜角データを後述するブレードコントローラ210に送信する。
 一対のスプロケット70は、エンジン室12内のエンジンによって駆動される。一対のスプロケット70の駆動に応じて走行装置20が回転する。
 駆動トルクセンサ80は、一対のスプロケット70の駆動トルクを示す駆動トルクデータを取得する。駆動トルクセンサ80は、駆動トルクデータをブレードコントローラ210に送信する。
 《ブレード制御システム200の構成》
 図2は、実施形態に係るブレード制御システム200の構成を示すブロック図である。
 ブレード制御システム200は、ブレードコントローラ210、回転数センサ220、ブレード制御実行ボタン230、比例制御弁240および油圧ポンプ250を備える。
 回転数センサ220は、一対のスプロケット70の回転数を示す回転数を検出する。回転数センサ220は、一対のスプロケット70の回転数を示す回転数データをブレードコントローラ210に送信する。
 ブレード制御実行ボタン230は、運転室11に配置されており、ブレード制御の実行開始指示をオペレータから受けつける。ブレード制御実行ボタン230は、実行開始指示を受けつけた場合、ブレード制御実行指示をブレードコントローラ210に送信する。
 ブレードコントローラ210は、リフトシリンダセンサ51から受信するリフトシリンダ長Lと、IMU60から受信する車体傾斜角データと、駆動トルクセンサ80から受信する駆動トルクデータと、回転数センサ220から受信する回転数データと、ブレード制御実行ボタン230から受信するブレード制御実行指示とに基づいて、比例制御弁240に指令値を出力する。ブレードコントローラ210の機能及び動作については後述する。
 比例制御弁240は、リフトシリンダ50と油圧ポンプ250との間に配置される。比例制御弁240の開口度は、ブレードコントローラ210から出力される指令値によって制御される。
 油圧ポンプ250は、エンジンと連動しており、比例制御弁240を介してリフトシリンダ50に作動油を供給する。油圧ポンプ250からリフトシリンダ50への作動油の供給量は、比例制御弁240の開口度に応じて決められる。
 《ブレードコントローラ210の機能》
 図3は、ブレードコントローラ210の機能を示すブロック図である。図4は、掘削開始直後におけるブルドーザ100の状態を示す模式図である。
 図3に示すように、ブレードコントローラ210は、前傾角度取得部300と、リフト角度取得部301と、ブレード角度算出部302と、車速取得部303と、第1判定部304と、記憶部305と、差分角算出部306と、ブレード負荷取得部307と、第2判定部308と、指令値設定部309と、タイマ310と、第3判定部311と、リフト制御部312とを備える。
 前傾角度取得部300は、IMU60から受信する車体傾斜角データに基づいて、図4に示す基準面Sに対する車体10の前傾角度θaを算出する。基準面Sは、掘削開始時にブルドーザ100が載置されている地面であればよいが、掘削開始時にブルドーザ100が位置する地面であってもよい。図4に示すように、掘削が開始されると、刃先40Pが最初に挿入された掘削開始地点Jを起点とする掘削斜面Kがブルドーザ100の前方に形成される。ブルドーザ100は、基準面Sから掘削斜面Kに乗り入れる際、ブルドーザ100の重心が掘削開始地点Jを乗り越えた時点で前傾する。前傾角度取得部300は、このときの車体10の前傾角度θaを取得する。
 リフト角度取得部301は、リフトシリンダセンサ51から受信するリフトシリンダ長Lに基づいて、図4に示すブレード40のリフト角度θbを算出する。図4に示すように、リフト角度θbは、リフトフレーム30の基準位置からの下降角度、すなわち、刃先40Pの地中への貫入深さに対応する。なお、図4では、リフトフレーム30の“基準位置”が一点鎖線で示され、リフトフレーム30の“現在位置”が実線で示されている。リフトフレーム30の基準位置とは、刃先40Pが基準面Sに接地する状態でのリフトフレーム30の位置である。
 ここで、図5は、図1の部分拡大図であり、リフト角度θbの算出方法を説明するための模式図である。図5に示すように、リフトシリンダ50は、前側回動軸101においてリフトフレーム30に回動可能に取り付けられており、後側回動軸102において車体10に回動可能に取り付けられている。図5において、鉛直線103は、上下方向に沿った直線であり、原点指示線104は、ブレード40の原点位置を示す直線である。また、第1長さLaは、前側回動軸101とリフトフレーム30の軸Xとを結ぶ直線の長さであり、第2長さLbは、後側回動軸102とリフトフレーム30の軸Xとを結ぶ直線の長さである。さらに、第1角度θは、軸Xを頂点として前側回動軸101と後側回動軸102とが成す角度であり、第2角度θは、軸Xを頂点として前側回動軸101とリフトフレーム30の上辺とが成す角度であり、第3角度θは、軸Xを頂点として後側回動軸102と鉛直線103が成す角度である。第1長さLa、第2長さLb、第2角度θおよび第3角度θは固定値であり、リフト角度取得部301はこれらの固定値を記憶している。なお、第2角度θおよび第3角度θの単位はラジアンである。
  まず、リフト角度取得部301は、余弦定理に基づく式(1)及び式(2)を用いて第1角度θを算出する。
   L=La+Lb-2LaLb×cos(θ1) ・・・(1)
   θ=cos-1((La+Lb-L)/2LaLb) ・・・(2)
  次に、リフト角度取得部301は、式(3)を用いてリフト角度θbを算出する。
   θb=θ-θ-π/2 ・・・(3)
 ブレード角度算出部302は、車体10の前傾角度θaとリフトフレーム30のリフト角度θbとの和(以下、「ブレード角度θc」という。)を算出する。すなわち、θc=θa+θbが成立しており、ブレード角度θcは、基準面Sに対するブレード40のリフト角度である。
 車速取得部303は、回転数センサ220から受信する回転数データに基づいて、ブルドーザ100の車速を算出する。
 第1判定部304は、車速取得部303によって算出された車速が“0”より大きく、かつ、ブレード制御実行指示をブレード制御実行ボタン230から受信したか否かを判定する。
 記憶部305は、ブレードコントローラ210の制御に用いられる各種情報を記憶している。具体的に、記憶部305は、目標ブレード角度θdを記憶している。目標ブレード角度θdとは、ブレード40を掘削開始時に地面に貫入させるのに適した角度である。本実施形態において目標ブレード角度θdは、リフトフレーム30の基準位置から下に数度(例えば、-3°程度)に設定できるが、これに限られるものではなく、リフトフレーム30の基準位置に設定されていてもよい。
 また、記憶部305は、図6に示すマップを記憶している。ゲイン曲線Yは、後述する差分角Δθと比例制御弁240への指令値との関係を規定している。
 差分角算出部306は、ブレード角度θcから目標ブレード角度θdを引いた値である差分角Δθを算出する。すなわち、Δθ=θc-θdが成立している。
 ブレード負荷取得部307は、駆動トルクセンサ80から受信する駆動トルクデータに基づいて、ブレード40に掛かる負荷(以下、「ブレード負荷M」という。)を算出する。ブレード負荷Mは、掘削抵抗、或いは、牽引力と言い換えることができる。
 第2判定部308は、リフト角度θbが“0°”より大きく、かつ、ブレード負荷Mが0.2W(Wは、ブルドーザ100の車重)より小さいか否かを判定する。
 指令値設定部309(開口度設定部の一例)は、図6に示すマップを参照して、差分角Δθに基づいて上昇指令値又は下降指令値を設定する。上昇指令値および下降指令値は、比例制御弁240の開口度に対応している。ここで、図6のゲイン曲線Yから分かる通り、指令値設定部309は、差分角Δθが2°以上の場合に上昇指令値を設定し、差分角Δθが-2°以下の場合に下降指令値を設定する。これは、ブレード角度θcがθd±2°の範囲内に収まるようにリフト制御が実行されることを意味している。なお、指令値が“0”に設定される範囲は±2°に限らず、適宜設定することができる。
 また、指令値設定部309は、リフト角度θbが“0°”より大きく、かつ、ブレード負荷Mが0.2Wより小さいと第2判定部308によって判定された場合、一旦設定した下降指令値を増大させる。指令値設定部309は、比例制御弁240が全開されるような値まで下降指令値を増大してもよい。
 タイマ310は、掘削開始からの経過時間と、ブレード負荷Mが所定の閾値(例えば、0.35W)より大きい状態の継続時間とを計測する。タイマ310は、ブレード制御実行ボタン230がブレード制御の実行開始指示を受けつけたタイミングを、掘削開始のタイミングとして用いることができる。
 第3判定部311は、タイマ310による計測時間が所定時間(例えば、0.5秒)を超えたか否かを判定する。
 リフト制御部312は、タイマ310による計測時間が所定時間を超えたと第3判定部311によって判定されない場合、指令値設定部309によって設定された上昇指令値又は下降指令値を比例制御弁240に出力する。これによって、車体10の前傾角度θaとリフトフレーム30のリフト角度θbとの和(ブレード角度θc)が所定の角度範囲(-5°≦θc≦-1°)に収まるように、リフト角度θbが調整される。
 リフト制御部312は、タイマ310による計測時間が所定時間を超えたと第3判定部311によって判定された場合、ブレード負荷取得部307によって取得されるブレード負荷Mと目標負荷との差分に応じて、比例制御弁240の開口度を制御する。すなわち、リフト制御部312は、計測時間が所定時間を超えた場合には、ブレード角度θcの大小に関わらず、ブレード負荷Mに応じてリフト角度θbを調整する。なお、目標負荷は、例えば0.4W~0.7Wの範囲で設定されていればよい。
 《ブレードコントローラ210の動作》
 図7は、ブレードコントローラ210の動作を説明するためのフロー図である。
 まず、ステップS1において、ブレードコントローラ210は、IMU60から取得する車体傾斜角データに基づいて、基準面Sに対する車体10の前傾角度θaを算出する。
 次に、ステップS2において、ブレードコントローラ210は、リフトシリンダセンサ51から取得するリフトシリンダ長Lに基づいて、ブレード40のリフト角度θbを算出する。
 次に、ステップS3において、ブレードコントローラ210は、前傾角度θaとリフト角度θbとの和(すなわち、ブレード角度θc)を算出する。
 次に、ステップS4において、ブレードコントローラ210は、車速が“0”より大きく、かつ、ブレード制御実行指示を受信したか否かを判定する。いずれの条件も満たされている場合、処理はステップS5に進む。いずれかの条件が満たされていない場合、処理はステップS1に戻る。
 次に、ステップS5において、ブレードコントローラ210は、ブレード角度θcと目標ブレード角度θdとの差分角Δθを算出する。 次に、ステップS6において、ブレードコントローラ210は、図6のマップに示されるゲイン曲線Yを参照して、差分角Δθに基づいて上昇指令値又は下降指令値を設定する。
 次に、ステップS7において、ブレードコントローラ210は、リフト角度θbが0°より大きく、かつ、ブレード負荷Mが0.2Wより小さいか否か、即ちブレードが接地しておらず中空にあるか、かつブレード負荷が小さいかを判定する。いずれの条件も満たされる場合、処理はステップS8に進む。いずれかの条件が満たされない場合、処理はステップS9に進む。
 次に、ステップS8において、ブレードコントローラ210は、ステップS6において取得した下降指令値を増大させる。
 次に、ステップS9において、ブレードコントローラ210は、上昇指令値又は下降指令値を比例制御弁240に出力する。これにより、比例制御弁240からリフトシリンダ50への作動油が供給されて、車体10の前傾角度θaとリフトフレーム30のリフト角度θbとの和(ブレード角度θc)が所定の角度範囲(-5°≦θc≦-1°)に収まるようにリフト角度θbが調整される。
 次に、ステップS10において、ブレードコントローラ210は、タイマ310による計測時間が所定時間を超えたか否かを判定する。タイマ310による計測時間が所定時間を超えた場合、処理はステップS10に進む。タイマ310による計測時間が所定時間を超えていない場合、処理はステップS1に戻る。なお、タイマ310による計測時間とは、掘削開始からの経過時間、もしくは、ブレード負荷Mが所定の閾値より大きい状態の継続時間のいずれかである。
 次に、ステップS11において、ブレードコントローラ210は、ブレード角度θcの大小に関わらず、ブレード負荷Mが目標負荷に近づくように、比例制御弁240の開口度を制御する。
 《作用および効果》
 (1)本実施形態に係るブレードコントローラ210は、掘削開始時に、車体10の前傾角度θaとリフトフレーム30のリフト角度θbとの和(ブレード角度θc)が所定の角度範囲(-5°≦θc≦-1°)に収まるようにリフト角度θbを調整する。
 このように、前傾角度θaを考慮したブレード制御が実行されるので、掘削斜面Kにブルドーザ100が乗り入れて前傾した場合には、ブレード40を迅速かつ適切に上昇させることができる。そのため、ブレード40が地面深くに貫入されブレード負荷Mが急激に上昇することを抑制できるので、ブレード負荷Mのみに応じてブレード制御が実行される場合に比べて、ブレード40の急駆動が緩和される。この結果、土砂が周辺にまき散らされることが抑制されるので、効率的な掘削を実現することができる。
 (2)ブレードコントローラ210は、掘削開始時に、ブレード角度θcが目標ブレード角度θd(所定角度の一例)になるようにリフトフレーム30を下降させる。
 そのため、目標ブレード角度θdを適切に設定することによって、掘削開始直後における効率的な掘削を実現することができる。
 (3)ブレードコントローラ210は、リフト角度θbが0°より大きく、かつ、ブレード負荷Mが0.2W(所定値の一例)より小さいという条件が満たされる場合、下降指令値を増大させることによって、比例制御弁240の開口度を大きくする。
 従って、迅速にブレード40を下降させることができるので、より効率的な掘削を実現することができる。
 (4)ブレードコントローラ210は、掘削開始からの経過時間、もしくは、ブレード負荷Mが所定の閾値より大きい状態の継続時間のいずれかが所定時間(例えば、0.5秒)以上継続した場合、ブレード負荷Mが目標負荷に近づくように、比例制御弁240の開口度を制御する。
 従って、掘削開始直後には土砂のまき散らしを抑制するとともに、その後には効率的な掘削を実行することができる。
 《その他の実施形態》
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)上記実施形態において明示した各数値は、上述した値に限られるものではなく、適宜設定することができる。
 (B)上記実施形態では、図6においてゲイン曲線Yの一例を挙げて説明したが、これに限られるものではない。ゲイン曲線Yの形状は適宜設定することができる。
 (C)上記実施形態において、ブレード負荷は、駆動トルクデータに基づいて算出されることとしたが、これに限られるものではない。ブレード負荷は、例えば、トランスミッション、ステアリング機構及び終減速機構までの減速比とスプロケットの径とを、エンジントルクに乗算することによっても得ることができる。
 (D)上記実施形態では、「建設機械」としてブルドーザを例に挙げて説明したが、これに限られるものではなく、モータグレーダなどであってもよい。
 (E)上記実施形態では、図4に示すように、ブルドーザ100が坂を下りながら掘削する場合について説明したが、このような場合に限られるものではない。本発明は、ブルドーザ100が坂を上りながら掘削する場合にも適用することができる。
 本発明のブレード制御システムは、効率的な掘削を可能なため、建設機械分野に広く適用可能である。
30…リフトフレーム
40…ブレード
60…リフトシリンダ
240…制御弁
302…ブレード角度算出部
306…差分角算出部
309…指令値設定部
312…リフト制御部

Claims (8)

  1.  車体に対して上下揺動可能に取り付けられるリフトフレームと、
     前記リフトフレームの先端に取り付けられるブレードと、
     前記リフトフレームを上下揺動させるリフトシリンダと、
     前記リフトシリンダに作動油を供給する制御弁と、
     基準面に対する前記車体の前傾角度と、基準位置に対する前記リフトフレームのリフト角度との和を算出するブレード角度算出部と、
     前記前傾角度と前記リフト角度との和から所定角度を引いた値である差分角を算出する差分角算出部と、
     前記差分角に基づいて前記制御弁の開口度を設定する開口度設定部と、
     前記ブレードによる掘削の開始から所定時間経過するまでの間、前記開口度設定部によって設定された前記開口度に応じて前記制御弁を制御するリフト制御部と、
    を備えるブレード制御システム。
  2.  前記リフトフレームが前記基準位置より上方に位置し、かつ、前記ブレードに掛かる負荷が所定値より小さいか否かを判定する判定部を備え、
     前記開口度設定部は、前記ブレードによる掘削が開始された場合において、前記リフトフレームが前記基準位置より上方に位置し、かつ、前記ブレードに掛かる負荷が所定値より小さいと前記判定部によって判定されたときには、前記リフトフレームが前記基準位置より上方に位置しない、或いは、前記ブレードに掛かる負荷が前記所定値より小さくないと前記判定部によって判定されたときよりも、前記制御弁の前記開口度を大きく設定する、
    請求項1に記載のブレード制御システム。
  3.  前記ブレードに掛かるブレード負荷を取得するブレード負荷取得部を備え、
     前記リフト制御部は、前記ブレードによる掘削の開始から前記所定時間経過後は、前記ブレード負荷と目標負荷との差分に応じて前記制御弁の開口度を制御する、
    請求項1に記載のブレード制御システム。
  4.  前記ブレードに掛かるブレード負荷を取得するブレード負荷取得部を備え、
     前記リフト制御部は、前記ブレードによる掘削の開始後において、前記ブレード負荷が所定閾値より大きい状態が所定時間継続した場合、前記ブレード負荷と目標負荷との差分に応じて前記制御弁の開口度を制御する、
    請求項1に記載のブレード制御システム。
  5.  車体と、
     請求項1乃至請求項4のいずれかに記載のブレード制御システムと、
    を備える建設機械。
  6.  前記車体に取り付けられる一対の履帯を含む走行装置
    を備える請求項5に記載の建設機械。
  7.  車体に対して上下揺動可能に取り付けられるリフトフレームの先端に取り付けられるブレードによる掘削の開始から所定時間経過するまでの間、基準面に対する前記車体の前傾角度と基準位置に対する前記リフトフレームのリフト角度との和が所定の角度範囲に収まるように前記リフト角度を調整するブレード制御方法。
  8.  前記ブレードによる掘削の開始から所定時間経過するまでの間、前記前傾角度と基前記リフト角度との和が所定角度になるように前記リフトフレームを下降させる請求項7に記載のブレード制御方法。
PCT/JP2012/073151 2011-10-06 2012-09-11 ブレード制御システム、建設機械及びブレード制御方法 WO2013051379A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012542272A JP5247941B1 (ja) 2011-10-06 2012-09-11 ブレード制御システム、建設機械及びブレード制御方法
CN201280001591.3A CN103154385B (zh) 2011-10-06 2012-09-11 推土铲控制系统、建筑机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/267,041 US8649944B2 (en) 2011-10-06 2011-10-06 Blade control system, construction machine and blade control method
US13/267,041 2011-10-06

Publications (1)

Publication Number Publication Date
WO2013051379A1 true WO2013051379A1 (ja) 2013-04-11

Family

ID=48042603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073151 WO2013051379A1 (ja) 2011-10-06 2012-09-11 ブレード制御システム、建設機械及びブレード制御方法

Country Status (4)

Country Link
US (1) US8649944B2 (ja)
JP (1) JP5247941B1 (ja)
CN (1) CN103154385B (ja)
WO (1) WO2013051379A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179963A1 (ja) * 2017-03-30 2018-10-04 株式会社小松製作所 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
WO2018179962A1 (ja) * 2017-03-30 2018-10-04 株式会社小松製作所 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
WO2020045020A1 (ja) * 2018-08-31 2020-03-05 株式会社神戸製鋼所 作業機械のブレード制御装置
WO2020045018A1 (ja) * 2018-08-31 2020-03-05 株式会社神戸製鋼所 作業機械のブレード制御装置
WO2020045017A1 (ja) * 2018-08-31 2020-03-05 株式会社神戸製鋼所 作業機械のブレード制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655556B2 (en) * 2011-09-30 2014-02-18 Komatsu Ltd. Blade control system and construction machine
US9227478B2 (en) * 2013-12-18 2016-01-05 Deere & Company Vehicle with automatically leanable wheels
JP6845614B2 (ja) 2016-03-23 2021-03-17 株式会社小松製作所 制御方法およびモータグレーダ
JP2018021345A (ja) * 2016-08-02 2018-02-08 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
KR102597793B1 (ko) * 2016-11-02 2023-11-03 에이치디현대인프라코어 주식회사 굴삭기
US10280590B2 (en) 2017-01-27 2019-05-07 Deere & Company Work vehicle anti-bridging system and method
US10267018B2 (en) 2017-01-27 2019-04-23 Deere & Company Work vehicle load control system and method
US10392774B2 (en) 2017-10-30 2019-08-27 Deere & Company Position control system and method for an implement of a work vehicle
US10697151B2 (en) 2018-05-01 2020-06-30 Deere & Company Method of controlling a work machine according to a drivetrain load-adjusted economy mode and control system thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615775B2 (ja) * 1986-10-20 1994-03-02 株式会社トキメック 掘削機の掘削制御装置
JPH10147952A (ja) * 1996-11-18 1998-06-02 Komatsu Ltd ブルドーザのドージング装置
JP3305497B2 (ja) * 1993-06-16 2002-07-22 株式会社小松製作所 ブルドーザのブレード制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621643A (en) 1991-04-12 1997-04-15 Komatsu Ltd. Dozing system for bulldozers
US5555942A (en) * 1993-06-16 1996-09-17 Kabushiki Kaisha Komatsu Seisakusho Blade control system for use in a bulldozer
ZA948824B (en) * 1993-12-08 1995-07-11 Caterpillar Inc Method and apparatus for operating geography altering machinery relative to a work site
US5951613A (en) 1996-10-23 1999-09-14 Caterpillar Inc. Apparatus and method for determining the position of a work implement
JP3731961B2 (ja) * 1996-12-27 2006-01-05 株式会社小松製作所 ブルドーザの油圧装置
JP4033966B2 (ja) 1998-03-06 2008-01-16 株式会社トプコン 建設機械制御システム
CN100464036C (zh) * 2005-03-28 2009-02-25 广西柳工机械股份有限公司 用于液压挖掘机工作装置的轨迹控制系统及方法
CN101481918A (zh) * 2009-01-08 2009-07-15 三一重机有限公司 一种液压挖掘机铲斗运动的控制方法及控制装置
US8655556B2 (en) * 2011-09-30 2014-02-18 Komatsu Ltd. Blade control system and construction machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615775B2 (ja) * 1986-10-20 1994-03-02 株式会社トキメック 掘削機の掘削制御装置
JP3305497B2 (ja) * 1993-06-16 2002-07-22 株式会社小松製作所 ブルドーザのブレード制御装置
JPH10147952A (ja) * 1996-11-18 1998-06-02 Komatsu Ltd ブルドーザのドージング装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179963A1 (ja) * 2017-03-30 2018-10-04 株式会社小松製作所 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
WO2018179962A1 (ja) * 2017-03-30 2018-10-04 株式会社小松製作所 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
JPWO2018179963A1 (ja) * 2017-03-30 2020-02-06 株式会社小松製作所 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
JPWO2018179962A1 (ja) * 2017-03-30 2020-02-06 株式会社小松製作所 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
AU2018245330B2 (en) * 2017-03-30 2020-04-02 Komatsu Ltd. Control system for work vehicle, method for setting trajectory of work implement, and work vehicle
AU2018245331B2 (en) * 2017-03-30 2020-07-23 Komatsu Ltd. Control system for a work vehicle, method for setting trajectory of work implement, and work vehicle
US11268259B2 (en) 2017-03-30 2022-03-08 Komatsu Ltd. Control system for work vehicle, method for setting trajectory of work implement, and work vehicle
JP7050051B2 (ja) 2017-03-30 2022-04-07 株式会社小松製作所 作業車両の制御システム、作業機の軌跡設定方法、及び作業車両
US11578470B2 (en) 2017-03-30 2023-02-14 Komatsu Ltd. Control system for work vehicle, method for setting trajectory of work implement, and work vehicle
WO2020045020A1 (ja) * 2018-08-31 2020-03-05 株式会社神戸製鋼所 作業機械のブレード制御装置
WO2020045018A1 (ja) * 2018-08-31 2020-03-05 株式会社神戸製鋼所 作業機械のブレード制御装置
WO2020045017A1 (ja) * 2018-08-31 2020-03-05 株式会社神戸製鋼所 作業機械のブレード制御装置

Also Published As

Publication number Publication date
JP5247941B1 (ja) 2013-07-24
JPWO2013051379A1 (ja) 2015-03-30
CN103154385B (zh) 2014-05-28
CN103154385A (zh) 2013-06-12
US20130090817A1 (en) 2013-04-11
US8649944B2 (en) 2014-02-11

Similar Documents

Publication Publication Date Title
JP5247941B1 (ja) ブレード制御システム、建設機械及びブレード制御方法
JP5247940B1 (ja) ブレード制御システム、建設機械及びブレード制御方法
JP5247939B1 (ja) ブレード制御システムおよび建設機械
JP5161403B1 (ja) ブレード制御システムおよび建設機械
JP5174996B1 (ja) ブレード制御システムおよび建設機械
JP5285815B1 (ja) ブレード制御システム、建設機械及びブレード制御方法
JP5285805B1 (ja) ブレード制御装置、作業機械及びブレード制御方法
JP5391345B1 (ja) ブルドーザ及びブレード制御方法
US9002593B2 (en) System and method for re-directing a ripping path
JP2019112783A (ja) ショベル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001591.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012542272

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838236

Country of ref document: EP

Kind code of ref document: A1