WO2013051298A1 - Suspension device for vehicle - Google Patents

Suspension device for vehicle Download PDF

Info

Publication number
WO2013051298A1
WO2013051298A1 PCT/JP2012/054976 JP2012054976W WO2013051298A1 WO 2013051298 A1 WO2013051298 A1 WO 2013051298A1 JP 2012054976 W JP2012054976 W JP 2012054976W WO 2013051298 A1 WO2013051298 A1 WO 2013051298A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
pair
vehicle
worm
vehicle body
Prior art date
Application number
PCT/JP2012/054976
Other languages
French (fr)
Japanese (ja)
Inventor
松田 靖之
大輔 郡司
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP12838999.6A priority Critical patent/EP2711212B1/en
Priority to US14/117,703 priority patent/US8944439B2/en
Priority to CN201280023448.4A priority patent/CN103534109B/en
Publication of WO2013051298A1 publication Critical patent/WO2013051298A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/006Attaching arms to sprung or unsprung part of vehicle, characterised by comprising attachment means controlled by an external actuator, e.g. a fluid or electrical motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/46Indexing codes relating to the wheels in the suspensions camber angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/442Rotary actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/14Mounting of suspension arms
    • B60G2204/143Mounting of suspension arms on the vehicle body or chassis

Definitions

  • the present invention relates to a double wishbone type vehicle suspension system in which the camber angle can be appropriately changed according to the traveling state of the vehicle.
  • Fig. 4 shows the conventional structure of a double wishbone suspension system, described in Takeshi Hosokawa's "Mechanical and Mechanism Guide for Cars” (Grand Prix Publishing Co., Ltd., issued on January 10, 2003, page 207). A first example is shown.
  • the knuckle 3 that rotatably supports the wheel 1 via the bearing unit 2 is supported by an upper arm 4 and a lower arm 5 that constitute a double wishbone suspension so as to be swingable with respect to a vehicle body (not shown).
  • the upper arm 4 is formed of a so-called A-shaped frame having a substantially A-shape, and has a tip portion (an end on the outside in the width direction of the vehicle body and an end on the right side in FIG. 4 when attached to the vehicle body).
  • the upper knuckle 3 is connected to the upper end via an upper ball joint 6.
  • the base end portion of the upper arm 4 (the end portion on the center side in the width direction of the vehicle body and the left end portion in FIG. 4 when attached to the vehicle body) is supported to be swingable by a pivot with respect to the vehicle body (not shown). Has been.
  • the lower arm 5 is also made of a so-called A-shaped frame having a substantially A shape, and its tip is connected to the lower end of the knuckle 3 via the lower ball joint 7. Further, the base end portion of the lower arm 5 is supported by a pivot so as to be swingable with respect to a vehicle body (not shown).
  • the lower arm 5 supports a lower end portion of a shock absorber 8 whose upper end portion is fixed to the vehicle body so as to be swingable by a pivot.
  • the upper arm 4 and the lower arm 5 having different lengths are used (generally, the lower arm is made longer than the upper arm) so that the camber angle is predetermined. Setting the angle is done.
  • the camber angle set in advance in this way cannot be changed according to the traveling state of the vehicle.
  • the turning motion of the vehicle is mainly caused by the lateral force of the tire, although it is also caused by the difference in driving force between the left and right wheels.
  • This tire lateral force is generally determined by the driver operating the steering wheel and changing the toe angle (steering angle) of the front wheels via the steering gear, so that the vehicle travels between the direction of travel and the direction of the tire. This is caused by causing a shift (slip angle).
  • the tire lateral force is affected by a change in camber angle in addition to the toe angle.
  • FIG. 5 shows the relationship between the tire lateral force and the slip angle when the camber angle is used as a parameter, obtained by simulation by the present inventors. As apparent from FIG.
  • the tire lateral force can be changed by changing the camber angle. Therefore, if the magnitude of the tire lateral force can be adjusted by changing the camber angle, it is possible to further improve the turning performance of the vehicle, and hence the straight running performance.
  • FIG. 6 shows a second example of the conventional structure described in this document.
  • extendable hydraulic cylinders 9 and 10 are provided in the middle between the upper arm 4a and the lower arm 5a, respectively, so that the total length of each of the upper arm 4a and the lower arm 5a can be changed. If it is recognized that it is necessary to change the camber angle by detecting the side slip angle of the wheel 1 by a sensor (not shown), each hydraulic cylinder is passed through a hydraulic pipe or various valves from a hydraulic pump installed in the engine room.
  • a predetermined amount of pressure oil is supplied to 9 and 10. Thereby, the camber angle of the wheel 1 is changed by changing the total length of each of the upper arm 4a and the lower arm 5a.
  • the magnitude of the tire lateral force can be adjusted, and the turning performance of the vehicle and consequently the straight running performance can be improved.
  • Japanese Patent Laid-Open No. 2009-107533 and Japanese Patent Laid-Open No. 2010-83212 also disclose a camber angle adjusting device for changing the magnitude of the camber angle in accordance with the traveling state of the vehicle.
  • the structure for making the camber angle variable is complex, as in the device disclosed in Japanese Patent Laid-Open No. 10-264636, and the suspension device is increased in size. This causes a problem of increasing the weight.
  • a load measuring device for measuring a load applied to a bearing unit which is disclosed in Japanese Patent Application Laid-Open No. 2005-98771.
  • the present invention provides a suspension for a vehicle in which the camber angle can be changed as appropriate in accordance with the traveling state of the vehicle without causing complication of the device and accompanying increase in size and weight of the device.
  • the object is to realize the device with a simple structure.
  • the vehicle suspension system of the present invention is basically connected to the upper part of a knuckle on which wheels are rotatably supported via an upper joint, similarly to the conventional double wishbone type vehicle suspension system.
  • An upper arm having a base end portion supported so as to be swingable in the vertical direction with respect to the vehicle body, a tip portion connected to the lower portion of the knuckle via a lower joint, and the vehicle body
  • a lower arm having a base end portion supported so as to be swingable in the vertical direction.
  • the vehicle suspension device of the present invention is characterized by the structure of the upper arm among them. That is, the upper arm of the vehicle suspension device of the present invention is A casing supported to be swingable in the vertical direction with respect to the vehicle body; A pair of screw shafts supported so as to be movable only in the axial direction with respect to the casing in a state of being coaxially arranged in the longitudinal direction of the vehicle body; A pair of screw nuts respectively engaged around the pair of screw shafts and supported to be rotatable only with respect to the casing; A worm wheel that is freely combined with the pair of screw nuts to rotate in synchronization with these screw nuts; A worm having worm teeth meshing with the worm wheel; An electric motor supported by the casing and capable of rotationally driving the worm in both directions; The front end portion and the base end portion are respectively connected, and the base end portions are connected to the respective front end portions of the pair of screw shafts so as to be rotatable around the vertical axis of the vehicle body. , And a pair of link arms
  • the worm is rotationally driven by the electric motor to advance and retract the pair of screw shafts in directions opposite to each other with respect to the axial direction so that the opening angle of the pair of link arms is increased.
  • a feed screw mechanism is configured by a combination of the pair of screw shafts and the pair of screw nuts.
  • As the feed screw mechanism in each combination of the pair of screw shafts and the pair of screw nuts, female threads formed on the inner peripheral surfaces of the respective screw nuts are formed on the outer peripheral surfaces of the respective screw shafts.
  • a sliding screw type feed screw mechanism slidably engaged with the formed male screw can be employed.
  • an outer diameter side ball screw groove formed on an inner peripheral surface of each screw nut in each combination of the pair of screw shafts and the pair of screw nuts, an outer diameter side ball screw groove formed on an inner peripheral surface of each screw nut; It is also possible to adopt a ball screw type feed screw mechanism in which an inner diameter side ball screw groove formed on the outer peripheral surface of each screw shaft is engaged through a plurality of balls arranged therebetween. it can.
  • a rotation prevention mechanism is provided between the pair of screw shafts and the casing to prevent relative rotation of the screw shafts with respect to the casing while allowing axial displacement of the screw shafts. Is preferred.
  • the worm wheel is preferably made of synthetic resin. Further, it is preferable that a reduction mechanism that increases the power of the electric motor and transmits it to the worm is provided between the worm and the electric motor.
  • the present invention configured as described above, it is possible to realize a vehicle suspension device capable of appropriately changing the camber angle in accordance with the traveling state of the vehicle with a simple structure, and to reduce the size and weight of the entire device. it can. That is, in the case of the vehicle suspension system of the present invention, a structure for making the entire length of the upper arm (the length of the link arm in the width direction of the vehicle body) variable is integrated in the upper arm itself. For this reason, about the other members, such as a lower arm, the thing similar to the case of a conventional structure can be used. Further, it is not necessary to install a member such as a hydraulic pump required in the second example of the conventional structure on the vehicle body side (for example, the engine room). Furthermore, the total length of the upper arm can be changed by a simple configuration combining a feed screw mechanism, a worm speed reducer, and a link mechanism.
  • the vehicle suspension device of the present invention it is possible not only to further improve the turning performance and straight running performance of the vehicle, but also to sufficiently suppress an increase in unsprung load, and to improve riding comfort and travel performance. It is also possible to improve the running performance of the vehicle, focusing on stability. Furthermore, since camber angle control (upper arm full length control) is performed by energization control of the electric motor, controllability and responsiveness are superior to those of the hydraulic type, and no engine power loss occurs. In addition, since power (energy) is consumed only during driving, energy saving can be achieved. Also, the camber angles of the left and right wheels can be controlled independently.
  • FIG. 1 is a front view schematically showing a vehicle suspension apparatus according to an embodiment of the present invention in a state where wheels are suspended from a vehicle body.
  • 2 is a plan view of the upper arm taken out from the vehicle suspension shown in FIG. 1 as viewed from above the vehicle.
  • FIG. 2 (A) shows a state where the overall length is maximized, and FIG. The state where the total length is minimized is shown respectively.
  • FIG. 3 is a schematic view showing the worm speed reducer taken out from the vehicle suspension shown in FIG.
  • FIG. 4 is a perspective view schematically showing a vehicle suspension device of a first example having a conventional structure.
  • FIG. 5 is a graph showing the relationship between the tire lateral force and the slip angle when the camber angle is used as a parameter, obtained by simulation.
  • FIG. 6 is a front view schematically showing a vehicle suspension device of a second example having a conventional structure.
  • Example of Embodiment] 1 to 3 show an example of an embodiment of the present invention.
  • the feature of this example is that, with regard to a double wishbone type vehicle suspension system, a structure for making the entire length of the upper arm 4b variable is integrated in the upper arm 4b itself, so that the camber angle ⁇ is set according to the traveling state of the vehicle. The point is that it can be appropriately changed.
  • the lower arm 5 and other members are the same as in the first example of the conventional structure shown in FIG. Therefore, hereinafter, the description will focus on the structure of the upper arm 4b, which is a characteristic part of this example.
  • a knuckle 3 in which a wheel 1 is rotatably supported via a bearing unit 2 is connected to a vehicle body 11 (see FIG. 1) by an upper arm 4b and a lower arm 5. 2).
  • a vehicle body 11 see FIG. 1
  • the base end part ( 1 and 2 is supported so as to be swingable with respect to the vehicle body 11.
  • the lower arm 5 is connected to the lower end of the knuckle 3 via a lower ball joint 7 which is a lower joint, and the base end of the lower arm 5 is supported to be swingable with respect to the vehicle body 11.
  • a lower ball joint 7 which is a lower joint
  • the base end of the lower arm 5 is supported to be swingable with respect to the vehicle body 11.
  • ball joints are used as these joints, but other joints including cardan joints are acceptable as long as the joints allow swinging displacement in the respective directions of the respective tip portions of the upper arm 4b and the lower arm 5.
  • a structure can also be adopted.
  • the upper arm 4b is composed of a casing 12, a pair of feed screw mechanisms 13a and 13b, a worm speed reducer 14, and a link mechanism 15. Consists of.
  • the casing 12 has its base half (the inner half in the width direction, the left half in FIG. 2) disposed in a portion between a pair of mounting portions 16 provided on the vehicle body 11 so as to be separated in the front-rear direction. In this state, these mounting portions 16 are supported by bolts 17 and nuts 18 so as to be swingable in the vertical direction of the vehicle body 11 via rubber bushes 19 and the like.
  • feed screw mechanisms 13a and 13b are arranged in the front-rear direction of the vehicle body 11 inside the front half of the casing 12 (the outer half in the width direction, the right half in FIG. 2).
  • a worm speed reducer 14 is provided at the center of the half in the front-rear direction.
  • Each feed screw mechanism 13a (13b) comprises a slide screw type feed screw mechanism, and is constituted by a combination of a screw shaft 20a (20b) and a screw nut 21a (21b).
  • the screw shafts 20 a and 20 b are made of, for example, stainless steel, and are coaxially arranged in the front-rear direction of the vehicle body 11.
  • a spiral male screw is formed on the outer peripheral surface of each screw shaft 20a, 20b, and the pitch thereof is the same between these screw shafts 20a, 20b.
  • a non-illustrated non-rotating convex portion is formed on at least a part of the outer peripheral surface of each of the screw shafts 20a and 20b. Engaged.
  • the rotation prevention mechanism allows axial displacement of the casing 12 but prevents the relative rotation, and the screw shafts 20a and 20b are supported by the casing 12.
  • a sliding screw type feed screw mechanism is employed to reduce the number of parts and reduce the weight of the suspension device.
  • a ball screw type feed screw mechanism is adopted to reduce the torque for rotationally driving the screw shafts 20a, 20b, thereby reducing the size of the suspension device through the miniaturization of the electric motor. You may make it aim at weight reduction. Further, in this case, it is possible to improve the positioning accuracy of the screw shafts 20a and 20b and to accurately control the camber angle.
  • Each of the screw nuts 21a and 21b is made of a synthetic resin such as polyphenylene sulfide, polyamide 66, polyether ether ketone (PEEK), polyacetal, and the like, and a spiral female screw is formed on each inner peripheral surface.
  • these screw nuts 21a and 21b are integrally formed in a shape in which their base ends are connected by simultaneous processing by injection molding.
  • Female threads in opposite directions are formed on the inner peripheral surfaces of these screw nuts 21a and 21b.
  • the screw nuts 21a and 21b having such a structure are supported on the inside of the casing 12 so as to be rotatable only, and the internal threads formed on the inner peripheral surfaces thereof are opposite to the outer peripheral surfaces of the respective screw shafts 20a and 20b. Each is slidably engaged with a male screw formed in a direction.
  • the worm speed reducer 14 includes a worm wheel 22, a worm 23, an electric motor 24, and a speed reduction mechanism 25.
  • the worm wheel 22 is made of polyphenylene sulfide, polyamide 66, a synthetic resin such as MC nylon (registered trademark), polyether ether ketone (PEEK), polyacetal, which is a kind of polyamide resin, and screw nuts 21a and 21b. They are arranged concentrically.
  • the synthetic resin can be filled with glass fiber or carbon fiber to improve the strength and rigidity of the worm wheel 22.
  • the worm wheel 22 is simultaneously processed by injection molding together with the screw nuts 21a and 21b, so that the worm wheel 22 is axially central (the screw nuts 21a and 21b). It is directly formed on the outer peripheral surface of a portion corresponding to the connecting portion connecting the base end portions. Therefore, the worm wheel 22 rotates together with the screw nuts 21a and 21b.
  • the weight of the suspension device can be reduced by making the worm wheel 22 made of synthetic resin.
  • the worm wheel 22 is configured as a separate body and directly connected to the screw nuts 21a and 21b. Alternatively, it can also be coupled and fixed indirectly through other members. In this case, the degree of freedom in selecting the material of the worm wheel 22 is improved.
  • the worm 23 is made of metal or synthetic resin, and includes a worm shaft 26 disposed at a position twisted with respect to the screw shafts 20a and 20b, and worm teeth 27 formed on an outer peripheral surface of an intermediate portion of the worm shaft 26. Composed.
  • the worm teeth 27 of the worm 23 are meshed with the worm wheel 22.
  • the rotation of the worm hole 22 is prevented from being transmitted to the worm 23 by restricting the twist angle of the worm teeth 27 (setting the twist angle large).
  • the total length of the upper arm 4b is not changed by the force applied to the pair of link arms 29a and 29b constituting the link mechanism 15 from the wheels.
  • the same effect can be obtained by providing the electric motor itself with a braking action.
  • the electric motor 24 is supported and fixed to the casing 12 by a plurality of (three in the illustrated example) screws 28. Then, the drive shaft (not shown) is rotated in either the forward direction or the reverse direction by switching the energized state.
  • the speed reduction mechanism 25 is composed of a plurality of gears (not shown), and increases the power (torque) of the electric motor 24 and transmits it to the worm shaft 26 of the worm 23.
  • the reduction mechanism 2 is provided, whereby the electric motor 24 can be reduced in size, so that the vehicle suspension apparatus as a whole can be reduced in size and weight.
  • the link mechanism 15 includes a pair of link arms 29 a and 29 b and a connecting member 30.
  • the pair of link arms 29a and 29b is made of a forged product such as an iron-based alloy, an aluminum-based alloy, or a magnesium-based alloy, and is formed in a round bar shape that is slightly curved in an arc shape.
  • the connecting member 30 constitutes a socket of the upper ball joint 6, and a lid body 31 that closes the upper portion of the ball housing portion is provided at a substantially central portion thereof.
  • the base ends of the link arms 29a and 29b are connected to the tip ends of the screw shafts 20a and 20b using the joint member 32a in the vertical direction (see FIG. 2).
  • the front and rear ends of the link arms 29a and 29b are connected to the corners of the connecting member 30 by using joint members 32b. It is connected so as to be rotatable about an axis directed in the direction.
  • the wheel 1 is utilized by using an encoder and a load sensor (not shown) arranged in the bearing unit 2 as described in Japanese Patent Laid-Open No. 2005-98771 and conventionally known.
  • the tire lateral force (axial load) applied to the tire is measured.
  • the measured tire lateral force data is sent to a controller (not shown), and the comparison / determination means in the controller determines whether the tire lateral force is excessive or insufficient under the current running condition of the vehicle. Based on this result, energization (energization direction, energization amount) to the electric motor 24 is controlled.
  • the electric motor 24 rotates the worm 23 in a forward direction or a reverse direction by a predetermined number of rotations (rotation angle).
  • the screw nuts 21a and 21b are rotated via the worm wheel 22, and the respective screw shafts 20a and 20b are opposite to each other with respect to the axial direction (the longitudinal direction of the vehicle body, the front and back direction in FIG. 1, the vertical direction in FIG. 2). ) Is advanced or retracted by a predetermined amount.
  • the opening angle of the link arms 29a and 29b the length L of the link arms 29a and 29b in the width direction of the vehicle body 11 (left and right direction in FIGS. 1 and 2) is changed by a predetermined amount (upper arm).
  • the vehicle suspension device of this example can operate as described above, so that the camber angle ⁇ can be appropriately changed according to the traveling state of the vehicle, and the generated tire lateral force can be adjusted.
  • FIG. 2B the protruding amounts of the screw shafts 20a and 20b are drawn exaggerated from the actual case for clarity of explanation. In actual cases, it is not necessary to increase the protrusion amount to the extent shown in FIG. Moreover, each movable part is covered with a cover or bellows (not shown) to prevent foreign matters such as muddy water from adhering to these parts.
  • the structure for making the entire length of the upper arm 4b variable is integrated in the upper arm 4b itself, and components such as a hydraulic pump on the vehicle body 11 side are integrated. Installation is unnecessary. Furthermore, the upper arm 4b can be changed in its overall length by a simple configuration in which a pair of feed screw mechanisms 13a and 13b, a worm speed reducer 14, and a link mechanism 15 are combined.
  • a vehicle suspension device capable of appropriately changing the camber angle ⁇ according to the traveling state of the vehicle is realized with a simple structure, and the size and weight are reduced.
  • Such a structure not only can further improve the turning performance and straight-ahead performance of the vehicle, but also sufficiently suppress the increase in unsprung load and drive the vehicle with a focus on ride comfort and running stability. The performance can be improved.
  • camber angle ⁇ is controlled by the electric type (control of the entire length of the upper arm 4b), controllability and responsiveness are superior to those of the hydraulic type, and engine power loss also occurs. No need. Furthermore, since power (energy) is consumed only during driving, energy saving can be achieved.
  • the camber angle ⁇ can be changed without difficulty even when the vehicle is stopped.
  • the camber angles of the left and right wheels can be independently controlled by applying the vehicle suspension system of the present invention to the left and right wheels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

 An upper arm (4b), which constitutes a suspension device for a vehicle, is configured from: a casing (12) which is supported in a manner so as to be able to oscillate relative to a vehicle body; a pair of screw shafts (20) which are supported by the casing (12) in a manner so as to be able to move only in the axial direction; a pair of screw nuts (21) which engage with the perimeters of the screw shafts (20), and which are supported by the casing (12) in a manner so as to be only able to rotate; a worm reduction gear (14) which rotates the screw nuts (21); and a pair of link arms (29a), the base-end sections of which are connected to the tip sections of the screw shafts (20), the tip end sections of which are connected to a knuckle (3), in a manner so as to be able to rotate around the vertical axis of the vehicle. The screw shafts (20) are moved in opposite directions from one another in the axial direction, the angle by which the pair of link arms (29a) are open is altered, and the entire length of the upper arm (4b) relative to the width-wise direction of the vehicle body is altered.

Description

車両用懸架装置Vehicle suspension system
 本発明は、車両の走行状況に応じてキャンバ角を適宜変更できる、ダブルウィシュボーン式の車両用懸架装置に関する。 The present invention relates to a double wishbone type vehicle suspension system in which the camber angle can be appropriately changed according to the traveling state of the vehicle.
 乗用車などの車両用の懸架装置として、従来から各種の構造が知られている。その中でも、近年では、設計の自由度が高く、路面追従性に優れたダブルウィシュボーン式の懸架装置が、高級車やスポーツカーを始めとして多くの車種で採用されている。図4は、細川武志著「クルマのメカ&仕組み図鑑」(株式会社グランプリ出版、2003年1月10日発行、第207頁)に記載されている、ダブルウィシュボーン式の懸架装置の従来構造の第1例を示している。 Conventionally, various structures are known as suspension devices for vehicles such as passenger cars. Among them, in recent years, a double wishbone type suspension device having a high degree of design freedom and excellent road surface followability has been adopted in many types of vehicles such as luxury cars and sports cars. Fig. 4 shows the conventional structure of a double wishbone suspension system, described in Takeshi Hosokawa's "Mechanical and Mechanism Guide for Cars" (Grand Prix Publishing Co., Ltd., issued on January 10, 2003, page 207). A first example is shown.
 車輪1を軸受ユニット2を介して回転自在に支持するナックル3は、ダブルウィシュボーン式の懸架装置を構成するアッパアーム4とロアアーム5とにより、図示しない車体に対し揺動可能に支持されている。このうちのアッパアーム4は、略A字形をした、いわゆるA型フレームからなり、その先端部(車体への取付状態で、車体の幅方向に関して外側の端部、図4の右側の端部)を、アッパボールジョイント6を介して、ナックル3の上端部に連結している。また、アッパアーム4の基端部(車体への取付状態で、車体の幅方向に関して中央側の端部、図4の左側の端部)は、図示しない車体に対し、枢軸により揺動可能に支持されている。 The knuckle 3 that rotatably supports the wheel 1 via the bearing unit 2 is supported by an upper arm 4 and a lower arm 5 that constitute a double wishbone suspension so as to be swingable with respect to a vehicle body (not shown). Of these, the upper arm 4 is formed of a so-called A-shaped frame having a substantially A-shape, and has a tip portion (an end on the outside in the width direction of the vehicle body and an end on the right side in FIG. 4 when attached to the vehicle body). The upper knuckle 3 is connected to the upper end via an upper ball joint 6. Further, the base end portion of the upper arm 4 (the end portion on the center side in the width direction of the vehicle body and the left end portion in FIG. 4 when attached to the vehicle body) is supported to be swingable by a pivot with respect to the vehicle body (not shown). Has been.
 一方、ロアアーム5も、略A字形をした、いわゆるA型フレームからなり、その先端部を、ロアボールジョイント7を介して、ナックル3の下端部に連結している。また、ロアアーム5の基端部は、図示しない車体に対し、枢軸により揺動可能に支持されている。また、ロアアーム5は、その上端部を車体に対し固定したショックアブソーバ8の下端部を枢軸により揺動可能に支持している。 On the other hand, the lower arm 5 is also made of a so-called A-shaped frame having a substantially A shape, and its tip is connected to the lower end of the knuckle 3 via the lower ball joint 7. Further, the base end portion of the lower arm 5 is supported by a pivot so as to be swingable with respect to a vehicle body (not shown). The lower arm 5 supports a lower end portion of a shock absorber 8 whose upper end portion is fixed to the vehicle body so as to be swingable by a pivot.
 このような従来構造のダブルウィシュボーン式の懸架装置の場合、全長が異なるアッパアーム4とロアアーム5とを使用する(一般的には、ロアアームをアッパアームよりも長くする)ことで、キャンバ角を予め所定の角度に設定することが行われている。しかしながら、従来構造の懸架装置の場合には、このように予め設定されたキャンバ角を、車両の走行状況に応じて変更することはできない。 In the case of such a conventional double wishbone suspension, the upper arm 4 and the lower arm 5 having different lengths are used (generally, the lower arm is made longer than the upper arm) so that the camber angle is predetermined. Setting the angle is done. However, in the case of a suspension device having a conventional structure, the camber angle set in advance in this way cannot be changed according to the traveling state of the vehicle.
 ところで、車両の旋回運動は、左右輪の駆動力差などによっても生じるが、主としてタイヤ横力によって生じる。このタイヤ横力は、一般的には、運転者がステアリングホイールを操作し、ステアリングギヤを介して前輪のトウ角(転舵角)を変化させ、車体の進行方向とタイヤの向きとの間にずれ(スリップ角)を生じさせることで発生する。このタイヤ横力は、トウ角のほかに、キャンバ角の変化による影響を受けることが知られている。図5は、本発明者らがシミュレーションにより求めた、キャンバ角をパラメータとした場合の、タイヤ横力とスリップ角との関係を示している。図5から明らかな通り、スリップ角を一定とした場合にも、キャンバ角を変化させることによって、タイヤ横力を変化させることができる。したがって、キャンバ角を変化させることにより、タイヤ横力の大きさを調整することができれば、車両の旋回性能、ひいては直進性能のさらなる向上を図ることが可能となる。 Incidentally, the turning motion of the vehicle is mainly caused by the lateral force of the tire, although it is also caused by the difference in driving force between the left and right wheels. This tire lateral force is generally determined by the driver operating the steering wheel and changing the toe angle (steering angle) of the front wheels via the steering gear, so that the vehicle travels between the direction of travel and the direction of the tire. This is caused by causing a shift (slip angle). It is known that the tire lateral force is affected by a change in camber angle in addition to the toe angle. FIG. 5 shows the relationship between the tire lateral force and the slip angle when the camber angle is used as a parameter, obtained by simulation by the present inventors. As apparent from FIG. 5, even when the slip angle is constant, the tire lateral force can be changed by changing the camber angle. Therefore, if the magnitude of the tire lateral force can be adjusted by changing the camber angle, it is possible to further improve the turning performance of the vehicle, and hence the straight running performance.
 特開平10-264636号公報には、車両の走行状況に応じてキャンバ角を変更できるダブルウィシュボーン式の車両用懸架装置が開示されている。図6は、この文献に記載された従来構造の第2例を示している。この従来構造の第2例の場合、アッパアーム4aとロアアーム5aとの中間部に、伸縮可能な油圧シリンダ9、10をそれぞれ設けて、アッパアーム4aとロアアーム5aのそれぞれの全長を変更可能にしている。そして、図示しないセンサにより車輪1の横滑り角を検出し、キャンバ角を変更する必要があると認められれば、エンジンルーム内に設置した油圧ポンプから油圧配管や各種の弁などを通じて、それぞれの油圧シリンダ9、10に所定量の圧油を給排する。これにより、アッパアーム4aとロアアーム5aのそれぞれの全長を変化させて、車輪1のキャンバ角を変更する。このような従来構造の第2例の懸架装置によれば、タイヤ横力の大きさを調整できて、車両の旋回性能、ひいては直進性能の向上を図ることができる。 Japanese Patent Application Laid-Open No. 10-264636 discloses a double wishbone type vehicle suspension device that can change the camber angle according to the traveling state of the vehicle. FIG. 6 shows a second example of the conventional structure described in this document. In the case of the second example of this conventional structure, extendable hydraulic cylinders 9 and 10 are provided in the middle between the upper arm 4a and the lower arm 5a, respectively, so that the total length of each of the upper arm 4a and the lower arm 5a can be changed. If it is recognized that it is necessary to change the camber angle by detecting the side slip angle of the wheel 1 by a sensor (not shown), each hydraulic cylinder is passed through a hydraulic pipe or various valves from a hydraulic pump installed in the engine room. A predetermined amount of pressure oil is supplied to 9 and 10. Thereby, the camber angle of the wheel 1 is changed by changing the total length of each of the upper arm 4a and the lower arm 5a. According to the suspension device of the second example having such a conventional structure, the magnitude of the tire lateral force can be adjusted, and the turning performance of the vehicle and consequently the straight running performance can be improved.
 ただし、従来構造の第2例の場合には、キャンバ角の変更を可能にするために、油圧ポンプ、油圧配管、各種の弁などを設ける必要があるとともに、アッパアーム4aとロアアーム5aとにそれぞれ油圧シリンダ9、10を設ける必要がある。このため、キャンバ角を可変にするための構造が複雑になるだけでなく、懸架装置の大型化や重量増大を招くという問題がある。特に、アッパアーム4aおよびロアアーム5aの重量増大は、バネ下荷重の増大につながり、乗り心地性や走行安定性を中心とする、車両の走行性能の向上を図る面から望ましいものではない。また、キャンバ角の制御を油圧式で行うため、制御性や応答性が悪く、さらにはエンジンの動力損失も大きくなるといった問題も生じる。 However, in the case of the second example of the conventional structure, it is necessary to provide a hydraulic pump, hydraulic piping, various valves and the like in order to enable the camber angle to be changed, and the upper arm 4a and the lower arm 5a have hydraulic pressures respectively. Cylinders 9 and 10 need to be provided. For this reason, there is a problem that not only the structure for making the camber angle variable is complicated, but also the suspension device is increased in size and weight. In particular, an increase in the weight of the upper arm 4a and the lower arm 5a leads to an increase in unsprung load, which is not desirable from the viewpoint of improving the running performance of the vehicle, centering on ride comfort and running stability. In addition, since the camber angle is controlled hydraulically, there is a problem that controllability and responsiveness are poor, and further, power loss of the engine increases.
 なお、特開2009-107533号公報および特開2010-83212号公報にも、車両の走行状況に応じてキャンバ角の大きさを変更するためのキャンバ角調整装置が開示されている。しかしながら、これらの文献に記載された装置の場合にも、特開平10-264636号公報に開示された装置と同様に、キャンバ角を可変にするための構造が複雑で、懸架装置の大型化や重量増大を招くといった問題を生じる。なお、本発明に関連する技術として、特開2005-98771号公報に開示された、軸受ユニットに負荷される荷重を測定するための荷重測定装置がある。 Note that Japanese Patent Laid-Open No. 2009-107533 and Japanese Patent Laid-Open No. 2010-83212 also disclose a camber angle adjusting device for changing the magnitude of the camber angle in accordance with the traveling state of the vehicle. However, in the case of the devices described in these documents as well, the structure for making the camber angle variable is complex, as in the device disclosed in Japanese Patent Laid-Open No. 10-264636, and the suspension device is increased in size. This causes a problem of increasing the weight. As a technique related to the present invention, there is a load measuring device for measuring a load applied to a bearing unit, which is disclosed in Japanese Patent Application Laid-Open No. 2005-98771.
特開平10-264636号公報Japanese Patent Laid-Open No. 10-264636 特開2009-107533号公報JP 2009-107533 A 特開2010―83212号公報JP 2010-83212 A 特開2005-98771号公報Japanese Patent Laid-Open No. 2005-98771
 本発明は、上述のような事情に鑑みて、装置の複雑化、およびこれに伴う装置の大型化および重量増大を招くことなく、車両の走行状況に応じてキャンバ角を適宜変更できる車両用懸架装置を簡易な構造で実現することを目的としている。 In view of the circumstances as described above, the present invention provides a suspension for a vehicle in which the camber angle can be changed as appropriate in accordance with the traveling state of the vehicle without causing complication of the device and accompanying increase in size and weight of the device. The object is to realize the device with a simple structure.
 本発明の車両用懸架装置は、基本的には、従来構造のダブルウィシュボーン式の車両用懸架装置と同様に、車輪が回転自在に支持されたナックルの上部に、上部継手を介して連結された先端部と、車体に対して上下方向に揺動可能に支持された基端部とを有するアッパアームと、前記ナックルの下部に、下部継手を介して連結された先端部と、車体に対して上下方向に揺動可能に支持された基端部とを有するロアアームとを備える。 The vehicle suspension system of the present invention is basically connected to the upper part of a knuckle on which wheels are rotatably supported via an upper joint, similarly to the conventional double wishbone type vehicle suspension system. An upper arm having a base end portion supported so as to be swingable in the vertical direction with respect to the vehicle body, a tip portion connected to the lower portion of the knuckle via a lower joint, and the vehicle body And a lower arm having a base end portion supported so as to be swingable in the vertical direction.
 
 本発明の車両用懸架装置は、このうちのアッパアームの構造に特徴を有する。すなわち、本発明の車両用懸架装置のアッパアームは、
 前記車体に対し上下方向に揺動可能に支持されたケーシングと、
 前記車体の前後方向に同軸上に配置された状態で、前記ケーシングに対して、軸方向への移動のみ可能に支持された1対のねじ軸と、
 前記1対のねじ軸の周囲にそれぞれ係合し、前記ケーシングに対して、回転のみ可能に支持された1対のねじナットと、
 前記1対のねじナットに対して、これらのねじナットと同期した回転を自在に組み合わされたウォームホイールと、
 前記ウォームホイールに噛み合うウォーム歯を備えたウォームと、
 前記ケーシングに支持され、前記ウォームを両方向に回転駆動することが可能な電動モータと、
 前記先端部と前記基端部をそれぞれ有し、それぞれの基端部を前記1対のねじ軸のそれぞれの先端部に対して、前記車体の上下方向の軸回りに回動可能に連結するとともに、それぞれの先端部を前記上部継手に対して、前記車体の上下方向の軸回りに回動可能に連結した、1対のリンク腕とを備える。

The vehicle suspension device of the present invention is characterized by the structure of the upper arm among them. That is, the upper arm of the vehicle suspension device of the present invention is
A casing supported to be swingable in the vertical direction with respect to the vehicle body;
A pair of screw shafts supported so as to be movable only in the axial direction with respect to the casing in a state of being coaxially arranged in the longitudinal direction of the vehicle body;
A pair of screw nuts respectively engaged around the pair of screw shafts and supported to be rotatable only with respect to the casing;
A worm wheel that is freely combined with the pair of screw nuts to rotate in synchronization with these screw nuts;
A worm having worm teeth meshing with the worm wheel;
An electric motor supported by the casing and capable of rotationally driving the worm in both directions;
The front end portion and the base end portion are respectively connected, and the base end portions are connected to the respective front end portions of the pair of screw shafts so as to be rotatable around the vertical axis of the vehicle body. , And a pair of link arms, each of which is connected to the upper joint so as to be rotatable about a vertical axis of the vehicle body.
 そして、本発明の車両用懸架装置は、前記電動モータにより前記ウォームを回転駆動して、前記1対のねじ軸を軸方向に関して互いに反対方向に進退させ、前記1対のリンク腕の開き角度を変化させることにより、前記車体の幅方向に関する前記1対のリンク腕の長さ、すなわち、前記車体の幅方向に関する前記アッパアームの全長を変化させることを特徴としている。 In the vehicle suspension device of the present invention, the worm is rotationally driven by the electric motor to advance and retract the pair of screw shafts in directions opposite to each other with respect to the axial direction so that the opening angle of the pair of link arms is increased. By changing the length, the length of the pair of link arms in the width direction of the vehicle body, that is, the total length of the upper arms in the width direction of the vehicle body is changed.
 前記1対のねじ軸と前記1対のねじナットの組み合わせにより、送りねじ機構が構成される。この送りねじ機構として、前記1対のねじ軸と前記1対のねじナットとのそれぞれの組み合わせにおいて、それぞれのねじナットの内周面に形成された雌ねじを、それぞれのねじ軸の外周面に形成された雄ねじに摺動可能に係合させた、滑りねじ式の送りねじ機構を採用することができる。 A feed screw mechanism is configured by a combination of the pair of screw shafts and the pair of screw nuts. As the feed screw mechanism, in each combination of the pair of screw shafts and the pair of screw nuts, female threads formed on the inner peripheral surfaces of the respective screw nuts are formed on the outer peripheral surfaces of the respective screw shafts. A sliding screw type feed screw mechanism slidably engaged with the formed male screw can be employed.
 代替的に、前記送りねじ機構として、前記1対のねじ軸と前記1対のねじナットとのそれぞれの組み合わせにおいて、それぞれのねじナットの内周面に形成された外径側ボールねじ溝と、それぞれのねじ軸の外周面に形成された内径側ボールねじ溝とを、これらの間に配置された複数個のボールを介して係合させた、ボールねじ式の送りねじ機構を採用することもできる。 Alternatively, as the feed screw mechanism, in each combination of the pair of screw shafts and the pair of screw nuts, an outer diameter side ball screw groove formed on an inner peripheral surface of each screw nut; It is also possible to adopt a ball screw type feed screw mechanism in which an inner diameter side ball screw groove formed on the outer peripheral surface of each screw shaft is engaged through a plurality of balls arranged therebetween. it can.
 また、前記1対のねじ軸と前記ケーシングとの間に、これらのねじ軸の軸方向変位を許容しつつ、これらのねじ軸の前記ケーシングに対する相対回転を阻止するための回り止め機構を設けることが好ましい。 Further, a rotation prevention mechanism is provided between the pair of screw shafts and the casing to prevent relative rotation of the screw shafts with respect to the casing while allowing axial displacement of the screw shafts. Is preferred.
 前記ウォームホイールを合成樹脂製とすることが好ましい。また、前記ウォームと前記電動モータとの間に、この電動モータの動力を増大して前記ウォームに伝達する減速機構を備えることが好ましい。 The worm wheel is preferably made of synthetic resin. Further, it is preferable that a reduction mechanism that increases the power of the electric motor and transmits it to the worm is provided between the worm and the electric motor.
 上述の様に構成する本発明によれば、車両の走行状況に応じてキャンバ角を適宜変更できる車両用懸架装置を簡易な構造で実現でき、装置全体としての小型化および軽量化を図ることができる。すなわち、本発明の車両用懸架装置の場合には、アッパアーム自体に、このアッパアームの全長(車体の幅方向に関するリンク腕の長さ)を可変にするための構造を集約している。このため、ロアアームなどの他の部材に関しては、従来構造の場合と同様のものを使用することができる。また、車体側(たとえばエンジンルーム)にも、従来構造の第2例で必要とされた油圧ポンプなどの部材を設置する必要がない。さらに、前記アッパアームは、送りねじ機構と、ウォーム減速機と、リンク機構とを組み合わせた簡易な構成により、その全長を変更可能である。 According to the present invention configured as described above, it is possible to realize a vehicle suspension device capable of appropriately changing the camber angle in accordance with the traveling state of the vehicle with a simple structure, and to reduce the size and weight of the entire device. it can. That is, in the case of the vehicle suspension system of the present invention, a structure for making the entire length of the upper arm (the length of the link arm in the width direction of the vehicle body) variable is integrated in the upper arm itself. For this reason, about the other members, such as a lower arm, the thing similar to the case of a conventional structure can be used. Further, it is not necessary to install a member such as a hydraulic pump required in the second example of the conventional structure on the vehicle body side (for example, the engine room). Furthermore, the total length of the upper arm can be changed by a simple configuration combining a feed screw mechanism, a worm speed reducer, and a link mechanism.
 したがって、本発明の車両用懸架装置によれば、車両の旋回性能、直進性能のさらなる向上を図ることができるだけでなく、バネ下荷重の増大を十分に抑えることができて、乗り心地性や走行安定性を中心とする、車両の走行性能の向上も図ることが可能である。さらに、キャンバ角の制御(アッパアームの全長制御)を電動モータの通電制御により行うため、油圧式の場合に比べて制御性や応答性に優れるとともに、エンジンの動力損失も生じなくて済む。加えて、駆動時にのみ電力(エネルギ)を消費するため、エネルギの省力化も図ることができる。また、左右の車輪のキャンバ角を、それぞれ独立して制御することも可能となる。 Therefore, according to the vehicle suspension device of the present invention, it is possible not only to further improve the turning performance and straight running performance of the vehicle, but also to sufficiently suppress an increase in unsprung load, and to improve riding comfort and travel performance. It is also possible to improve the running performance of the vehicle, focusing on stability. Furthermore, since camber angle control (upper arm full length control) is performed by energization control of the electric motor, controllability and responsiveness are superior to those of the hydraulic type, and no engine power loss occurs. In addition, since power (energy) is consumed only during driving, energy saving can be achieved. Also, the camber angles of the left and right wheels can be controlled independently.
図1は、本発明の実施の形態の1例の車両用懸架装置について、車輪を車体に対して懸架した状態で、模式的に示す正面図である。FIG. 1 is a front view schematically showing a vehicle suspension apparatus according to an embodiment of the present invention in a state where wheels are suspended from a vehicle body. 図2は、図1に示した車両用懸架装置から取り出したアッパアームについて、車両の上方から見た平面図であり、図2(A)は全長を最大とした状態を、図2(B)は全長を最小とした状態を、それぞれ示す。2 is a plan view of the upper arm taken out from the vehicle suspension shown in FIG. 1 as viewed from above the vehicle. FIG. 2 (A) shows a state where the overall length is maximized, and FIG. The state where the total length is minimized is shown respectively. 図3は、図1に示した車両用懸架装置から取り出したウォーム減速機を示す概略図である。FIG. 3 is a schematic view showing the worm speed reducer taken out from the vehicle suspension shown in FIG. 図4は、従来構造の第1例の車両用懸架装置を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a vehicle suspension device of a first example having a conventional structure. 図5は、シミュレーションにより求めた、キャンバ角をパラメータとした場合のタイヤ横力とスリップ角との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the tire lateral force and the slip angle when the camber angle is used as a parameter, obtained by simulation. 図6は、従来構造の第2例の車両用懸架装置を模式的に示す正面図である。FIG. 6 is a front view schematically showing a vehicle suspension device of a second example having a conventional structure.
 [実施の形態の1例]
 図1~図3は、本発明の実施の形態の1例を示している。本例の特徴は、ダブルウィシュボーン式の車両用懸架装置に関して、アッパアーム4b自体に、このアッパアーム4bの全長を可変にするための構造を集約することで、車両の走行状況に応じてキャンバ角γを適宜変更可能とした点にある。ロアアーム5およびその他の部材に関しては、図4に示した従来構造の第1例と同様である。したがって、以下、本例の特徴部分であるアッパアーム4bの構造を中心に説明する。
[Example of Embodiment]
1 to 3 show an example of an embodiment of the present invention. The feature of this example is that, with regard to a double wishbone type vehicle suspension system, a structure for making the entire length of the upper arm 4b variable is integrated in the upper arm 4b itself, so that the camber angle γ is set according to the traveling state of the vehicle. The point is that it can be appropriately changed. The lower arm 5 and other members are the same as in the first example of the conventional structure shown in FIG. Therefore, hereinafter, the description will focus on the structure of the upper arm 4b, which is a characteristic part of this example.
 図1に示すように、本例の車両用懸架装置の場合にも、車輪1が軸受ユニット2を介して回転自在に支持されたナックル3を、アッパアーム4bとロアアーム5とにより、車体11(図2参照)に対し揺動可能に支持している。このため、アッパアーム4bの先端部(図1および図2の右端部)を、上部継手である、アッパボールジョイント6を介して、ナックル3の上端部に連結するとともに、アッパアーム4bの基端部(図1および図2の左端部)を、車体11に対して揺動可能に支持している。また、ロアアーム5の先端部を、下部継手であるロアボールジョイント7を介して、ナックル3の下端部に連結するとともに、ロアアーム5の基端部を、車体11に対し揺動可能に支持している。なお、これらの継手として、通常は、ボールジョイントが使用されるが、アッパアーム4bとロアアーム5のそれぞれの先端部の各方向への揺動変位を許容する継手である限り、カルダン継手を含むその他の構造も採用できる。 As shown in FIG. 1, also in the case of the vehicle suspension system of this example, a knuckle 3 in which a wheel 1 is rotatably supported via a bearing unit 2 is connected to a vehicle body 11 (see FIG. 1) by an upper arm 4b and a lower arm 5. 2). For this reason, while connecting the front-end | tip part (right end part of FIG. 1 and FIG. 2) of the upper arm 4b to the upper end part of the knuckle 3 via the upper ball joint 6 which is an upper joint, the base end part ( 1 and 2 is supported so as to be swingable with respect to the vehicle body 11. Further, the lower arm 5 is connected to the lower end of the knuckle 3 via a lower ball joint 7 which is a lower joint, and the base end of the lower arm 5 is supported to be swingable with respect to the vehicle body 11. Yes. Normally, ball joints are used as these joints, but other joints including cardan joints are acceptable as long as the joints allow swinging displacement in the respective directions of the respective tip portions of the upper arm 4b and the lower arm 5. A structure can also be adopted.
 特に本例の場合には、アッパアーム4bの全長を可変に構成するために、このアッパアーム4bを、ケーシング12と、1対の送りねじ機構13a、13bと、ウォーム減速機14と、リンク機構15とから構成している。このうちのケーシング12は、その基半部(幅方向内半部、図2の左半部)を車体11に前後方向に離隔して設けられた1対の取付部16の間部分に配置した状態で、これらの取付部16に対して、ボルト17とナット18とにより、ゴム製のブッシュ19などを介して、車体11の上下方向に揺動可能に支持されている。本例の場合には、両方のボルト17の中心軸が、アッパアーム4bの揺動中心Oと一致する。また、ケーシング12の先半部(幅方向外半部、図2の右半部)の内側には、送りねじ機構13a、13bが車体11の前後方向に配設されており、ケーシング12の基半部の前後方向中央部には、ウォーム減速機14が設けられている。 Particularly in the case of this example, in order to make the entire length of the upper arm 4b variable, the upper arm 4b is composed of a casing 12, a pair of feed screw mechanisms 13a and 13b, a worm speed reducer 14, and a link mechanism 15. Consists of. Of these, the casing 12 has its base half (the inner half in the width direction, the left half in FIG. 2) disposed in a portion between a pair of mounting portions 16 provided on the vehicle body 11 so as to be separated in the front-rear direction. In this state, these mounting portions 16 are supported by bolts 17 and nuts 18 so as to be swingable in the vertical direction of the vehicle body 11 via rubber bushes 19 and the like. In the case of this example, the center axes of both bolts 17 coincide with the swing center O of the upper arm 4b. Further, feed screw mechanisms 13a and 13b are arranged in the front-rear direction of the vehicle body 11 inside the front half of the casing 12 (the outer half in the width direction, the right half in FIG. 2). A worm speed reducer 14 is provided at the center of the half in the front-rear direction.
 それぞれの送りねじ機構13a(13b)は、滑りねじ式の送りねじ機構からなり、ねじ軸20a(20b)とねじナット21a(21b)との組み合わせにより構成される。ねじ軸20a、20bは、たとえばステンレス鋼製であり、車体11の前後方向に、同軸上に配置される。また、それぞれのねじ軸20a、20bの外周面には、螺旋状の雄ねじが形成されており、そのピッチはこれらのねじ軸20a、20bの間で同じである。さらに、それぞれのねじ軸20a、20bの外周面の少なくとも一部には、図示しない回り止め凸部が形成されており、この回り止め凸部をケーシング12に形成した、図示しない回り止め凹溝に係合させている。この回り止め機構により、ケーシング12に対して、軸方向変位は許容されるが、相対回転は阻止された状態で、これらのねじ軸20a、20bは、ケーシング12に支持される。なお、本例では、滑りねじ式の送りねじ機構を採用して、部品点数の低減化と懸架装置の軽量化を図っている。ただし、代替的に、ボールねじ式の送りねじ機構を採用して、ねじ軸20a、20bを回転駆動するためのトルクの低減を図り、もって、電動モータの小型化を通じた懸架装置の小型化および軽量化を図るようにしてもよい。さらに、この場合には、ねじ軸20a、20bの位置決め精度を向上させて、キャンバ角の制御を精度よく行うことも可能となる。 Each feed screw mechanism 13a (13b) comprises a slide screw type feed screw mechanism, and is constituted by a combination of a screw shaft 20a (20b) and a screw nut 21a (21b). The screw shafts 20 a and 20 b are made of, for example, stainless steel, and are coaxially arranged in the front-rear direction of the vehicle body 11. A spiral male screw is formed on the outer peripheral surface of each screw shaft 20a, 20b, and the pitch thereof is the same between these screw shafts 20a, 20b. Further, a non-illustrated non-rotating convex portion is formed on at least a part of the outer peripheral surface of each of the screw shafts 20a and 20b. Engaged. The rotation prevention mechanism allows axial displacement of the casing 12 but prevents the relative rotation, and the screw shafts 20a and 20b are supported by the casing 12. In this example, a sliding screw type feed screw mechanism is employed to reduce the number of parts and reduce the weight of the suspension device. However, alternatively, a ball screw type feed screw mechanism is adopted to reduce the torque for rotationally driving the screw shafts 20a, 20b, thereby reducing the size of the suspension device through the miniaturization of the electric motor. You may make it aim at weight reduction. Further, in this case, it is possible to improve the positioning accuracy of the screw shafts 20a and 20b and to accurately control the camber angle.
 ねじナット21a、21bはいずれも、ポリフェニレンサルファイド、ポリアミド66、ポリエーテルエーテルケトン(PEEK)、ポリアセタールなどの合成樹脂製であり、それぞれの内周面に螺旋状の雌ねじが形成されている。本例の場合には、これらのねじナット21a、21bを、射出成形による同時加工により、その基端部同士を連結した形状に一体に形成している。これらのねじナット21a、21bの内周面には、互いに逆方向の雌ねじが形成されている。このような構造のねじナット21a、21bを、ケーシング12の内側に回転のみ可能に支持するとともに、これらの内周面に形成された雌ねじを、それぞれのねじ軸20a、20bの外周面に互いに逆方向に形成された雄ねじに、それぞれ摺動可能に係合させている。 Each of the screw nuts 21a and 21b is made of a synthetic resin such as polyphenylene sulfide, polyamide 66, polyether ether ketone (PEEK), polyacetal, and the like, and a spiral female screw is formed on each inner peripheral surface. In the case of this example, these screw nuts 21a and 21b are integrally formed in a shape in which their base ends are connected by simultaneous processing by injection molding. Female threads in opposite directions are formed on the inner peripheral surfaces of these screw nuts 21a and 21b. The screw nuts 21a and 21b having such a structure are supported on the inside of the casing 12 so as to be rotatable only, and the internal threads formed on the inner peripheral surfaces thereof are opposite to the outer peripheral surfaces of the respective screw shafts 20a and 20b. Each is slidably engaged with a male screw formed in a direction.
 ウォーム減速機14は、図3に示すように、ウォームホイール22と、ウォーム23と、電動モータ24と、減速機構25とにより構成される。このうちのウォームホイール22は、ポリフェニレンサルファイド、ポリアミド66、ポリアミド樹脂の一種であるMCナイロン(登録商標)、ポリエーテルエーテルケトン(PEEK)、ポリアセタールなどの合成樹脂製であり、ねじナット21a、21bと同心に配置されている。なお、これらの合成樹脂中に、ガラス繊維や炭素繊維などを充填して、ウォームホイール22の強度や剛性を向上させることもできる。本例の場合には、ウォームホイール22を、ねじナット21a、21bとともに、射出成形により同時に加工することで、ウォームホイール22を、ねじナット21a、21bの軸方向中央部(ねじナット21a、21bの基端部を連結する連結部に相当する部分)の外周面に直接形成している。したがって、ウォームホイール22は、ねじナット21a、21bとともに回転する。このように、ウォームホイール22を合成樹脂製とすることで、懸架装置の軽量化を図ることができるが、代替的に、ウォームホイール22を別体で構成し、ねじナット21a、21bに直接的にもしくは他の部材を介して間接的に結合固定することもできる。この場合には、ウォームホイール22の材料選択の自由度が向上する。 As shown in FIG. 3, the worm speed reducer 14 includes a worm wheel 22, a worm 23, an electric motor 24, and a speed reduction mechanism 25. Of these, the worm wheel 22 is made of polyphenylene sulfide, polyamide 66, a synthetic resin such as MC nylon (registered trademark), polyether ether ketone (PEEK), polyacetal, which is a kind of polyamide resin, and screw nuts 21a and 21b. They are arranged concentrically. The synthetic resin can be filled with glass fiber or carbon fiber to improve the strength and rigidity of the worm wheel 22. In the case of this example, the worm wheel 22 is simultaneously processed by injection molding together with the screw nuts 21a and 21b, so that the worm wheel 22 is axially central (the screw nuts 21a and 21b). It is directly formed on the outer peripheral surface of a portion corresponding to the connecting portion connecting the base end portions. Therefore, the worm wheel 22 rotates together with the screw nuts 21a and 21b. As described above, the weight of the suspension device can be reduced by making the worm wheel 22 made of synthetic resin. Alternatively, the worm wheel 22 is configured as a separate body and directly connected to the screw nuts 21a and 21b. Alternatively, it can also be coupled and fixed indirectly through other members. In this case, the degree of freedom in selecting the material of the worm wheel 22 is improved.
 ウォーム23は、金属製あるいは合成樹脂製で、ねじ軸20a、20bに対して捩れの位置に配置されたウォーム軸26と、ウォーム軸26の中間部の外周面に形成されたウォーム歯27とにより構成される。そして、ウォーム23のウォーム歯27を、ウォームホイール22に噛合させている。本例の場合には、ウォーム歯27の捩れ角を規制する(捩れ角を大きく設定する)ことで、ウォームホール22の回転がウォーム23に伝達されないようにしている。これにより、車輪からリンク機構15を構成する1対のリンク腕29a、29bに加わる力により、アッパアーム4bの全長が変化しないようにしている。なお、代替的に、電動モータ自体にブレーキ作用を持たせることでも、同様の効果を得ることが可能である。 The worm 23 is made of metal or synthetic resin, and includes a worm shaft 26 disposed at a position twisted with respect to the screw shafts 20a and 20b, and worm teeth 27 formed on an outer peripheral surface of an intermediate portion of the worm shaft 26. Composed. The worm teeth 27 of the worm 23 are meshed with the worm wheel 22. In the case of this example, the rotation of the worm hole 22 is prevented from being transmitted to the worm 23 by restricting the twist angle of the worm teeth 27 (setting the twist angle large). Thereby, the total length of the upper arm 4b is not changed by the force applied to the pair of link arms 29a and 29b constituting the link mechanism 15 from the wheels. Alternatively, the same effect can be obtained by providing the electric motor itself with a braking action.
 電動モータ24は、ケーシング12に対し複数(図示の例では3本)のねじ28により支持固定されている。そして、通電状態の切り換えにより、図示しない駆動軸を正転、逆転のいずれかの方向に回転させる。また、減速機構25は、図示しない複数の歯車から構成されており、電動モータ24の動力(トルク)を増大して、ウォーム23のウォーム軸26に伝達する。本例では、減速機構2を設けることにより、電動モータ24の小型化を可能とし、もって車両懸架装置全体としての小型化および軽量化を図っている。 The electric motor 24 is supported and fixed to the casing 12 by a plurality of (three in the illustrated example) screws 28. Then, the drive shaft (not shown) is rotated in either the forward direction or the reverse direction by switching the energized state. The speed reduction mechanism 25 is composed of a plurality of gears (not shown), and increases the power (torque) of the electric motor 24 and transmits it to the worm shaft 26 of the worm 23. In this example, the reduction mechanism 2 is provided, whereby the electric motor 24 can be reduced in size, so that the vehicle suspension apparatus as a whole can be reduced in size and weight.
 リンク機構15は、1対のリンク腕29a、29bと、連結部材30とにより構成される。このうちの1対のリンク腕29a、29bは、鉄系合金、アルミニウム系合金、マグネシウム系合金などの鍛造品などからなり、円弧状にわずかに湾曲した丸棒状に形成されている。また、連結部材30は、アッパボールジョイント6のソケットを構成するもので、その略中央部にはボール収容部の上部を塞ぐ蓋体31が設けられている。そして、本例の場合には、それぞれのリンク腕29a、29bの基端部を、それぞれのねじ軸20a、20bの先端部に対し、ジョイント部材32aを用いて車体11の上下方向(図2の表裏方向)に向いた軸回りに回動可能に連結するとともに、それぞれのリンク腕29a、29bの先端部を、連結部材30の角隅部に対し、ジョイント部材32bを用いて、車体11の上下方向に向いた軸回りに回動可能に連結している。 The link mechanism 15 includes a pair of link arms 29 a and 29 b and a connecting member 30. Of these, the pair of link arms 29a and 29b is made of a forged product such as an iron-based alloy, an aluminum-based alloy, or a magnesium-based alloy, and is formed in a round bar shape that is slightly curved in an arc shape. Further, the connecting member 30 constitutes a socket of the upper ball joint 6, and a lid body 31 that closes the upper portion of the ball housing portion is provided at a substantially central portion thereof. In the case of this example, the base ends of the link arms 29a and 29b are connected to the tip ends of the screw shafts 20a and 20b using the joint member 32a in the vertical direction (see FIG. 2). The front and rear ends of the link arms 29a and 29b are connected to the corners of the connecting member 30 by using joint members 32b. It is connected so as to be rotatable about an axis directed in the direction.
 本例の場合には、特開2005-98771号公報に記載され、従来から知られているような、軸受ユニット2内に配置された、図示しないエンコーダと荷重センサとを利用して、車輪1に加わるタイヤ横力(アキシアル荷重)を測定する。そして、測定されたタイヤ横力のデータを、図示しない制御器に送り、この制御器中の比較判定手段により、現在の車両の走行状況下でのタイヤ横力の過不足を判定する。そして、この結果に基づいて、電動モータ24への通電(通電方向、通電量)を制御する。 In the case of this example, the wheel 1 is utilized by using an encoder and a load sensor (not shown) arranged in the bearing unit 2 as described in Japanese Patent Laid-Open No. 2005-98771 and conventionally known. The tire lateral force (axial load) applied to the tire is measured. Then, the measured tire lateral force data is sent to a controller (not shown), and the comparison / determination means in the controller determines whether the tire lateral force is excessive or insufficient under the current running condition of the vehicle. Based on this result, energization (energization direction, energization amount) to the electric motor 24 is controlled.
 具体的には、電動モータ24によりウォーム23を、正方向あるいは逆方向に所定の回転数(回転角度)だけ回転駆動する。これにより、ウォームホイール22を介して、ねじナット21a、21bを回転させ、それぞれのねじ軸20a、20bを軸方向に関して互いに反対方向(車体の前後方向、図1の表裏方向、図2の上下方向)に所定量だけ進退させる。そして、リンク腕29a、29bの開き角度を変化させて、車体11の幅方向(図1および図2の左右方向)に関するこれらのリンク腕29a、29bの長さLを所定量だけ変化させる(アッパアーム4bの全長を変化させる)。より具体的には、図2(A)に示すように、ねじ軸20a、20bのケーシング12からの突出量が小さくなるように、電動モータ24を駆動した場合には、リンク腕29a、29bの開き角度が小さくなる。これにより、車体11の幅方向に関するこれらのリンク腕29a、29bの長さが大きくなり(L=Lmax)、アッパアーム4bの全長が長くなる。この結果、このアッパアーム4bの揺動中心Oからアッパボールジョイント6の中心Pまでの距離が大きくなり、キャンバ角γが変化する。すなわち、ポジティブキャンバの場合には、キャンバ角はさらに大きくなり、ネガティブキャンバの場合には、キャンバ角は小さくなる。これに対して、図2(B)に示すように、ケーシング12からのねじ軸20a、20bの突出量が大きくなるように、電動モータ24を駆動した場合には、リンク腕28a、28bの開き角度が大きくなる。これにより、車体11の幅方向に関するこれらのリンク腕29a、29bの長さが小さくなり(L=Lmin)、アッパアーム4bの全長が短くなる。この結果、アッパアーム4bの揺動中心Oからアッパボールジョイント6の中心Pまでの距離が小さくなり、キャンバ角γが変化する。すなわち、ポジティブキャンバの場合には、キャンバ角は小さくなり、ネガティブキャンバの場合には、キャンバ角はさらに大きくなる。 Specifically, the electric motor 24 rotates the worm 23 in a forward direction or a reverse direction by a predetermined number of rotations (rotation angle). Thereby, the screw nuts 21a and 21b are rotated via the worm wheel 22, and the respective screw shafts 20a and 20b are opposite to each other with respect to the axial direction (the longitudinal direction of the vehicle body, the front and back direction in FIG. 1, the vertical direction in FIG. 2). ) Is advanced or retracted by a predetermined amount. Then, by changing the opening angle of the link arms 29a and 29b, the length L of the link arms 29a and 29b in the width direction of the vehicle body 11 (left and right direction in FIGS. 1 and 2) is changed by a predetermined amount (upper arm). Change the total length of 4b). More specifically, as shown in FIG. 2A, when the electric motor 24 is driven so that the projecting amount of the screw shafts 20a, 20b from the casing 12 becomes small, the link arms 29a, 29b The opening angle becomes smaller. Thereby, the lengths of these link arms 29a and 29b in the width direction of the vehicle body 11 are increased (L = L max ), and the entire length of the upper arm 4b is increased. As a result, the distance from the swing center O of the upper arm 4b to the center P of the upper ball joint 6 increases, and the camber angle γ changes. That is, in the case of positive camber, the camber angle is further increased, and in the case of negative camber, the camber angle is decreased. In contrast, as shown in FIG. 2B, when the electric motor 24 is driven so that the protruding amount of the screw shafts 20a, 20b from the casing 12 is increased, the link arms 28a, 28b are opened. The angle increases. As a result, the lengths of the link arms 29a and 29b in the width direction of the vehicle body 11 are reduced (L = L min ), and the overall length of the upper arm 4b is shortened. As a result, the distance from the swing center O of the upper arm 4b to the center P of the upper ball joint 6 is reduced, and the camber angle γ is changed. That is, in the case of positive camber, the camber angle is reduced, and in the case of negative camber, the camber angle is further increased.
 本例の車両用懸架装置は、このように動作することで、車両の走行状況に応じてキャンバ角γを適宜変更することが可能となり、発生するタイヤ横力の大きさを調整できる。なお、図2(B)には、説明の明りょう化のために、ねじ軸20a、20bの突出量を、実際の場合よりも誇張して描いている。実際の場合に、図2(B)に示す程度まで突出量を大きくする必要はない。また、それぞれの可動部分を、図示しないカバーやベローズなどにより覆うようにして、これらの部分に泥水などの異物が付着することを防止している。 The vehicle suspension device of this example can operate as described above, so that the camber angle γ can be appropriately changed according to the traveling state of the vehicle, and the generated tire lateral force can be adjusted. In FIG. 2B, the protruding amounts of the screw shafts 20a and 20b are drawn exaggerated from the actual case for clarity of explanation. In actual cases, it is not necessary to increase the protrusion amount to the extent shown in FIG. Moreover, each movable part is covered with a cover or bellows (not shown) to prevent foreign matters such as muddy water from adhering to these parts.
 以上のように、本例の車両用懸架装置の場合には、アッパアーム4b自体に、このアッパアーム4bの全長を可変にするための構造を集約し、かつ、車体11側における油圧ポンプなどの部材の設置を不要としている。さらに、アッパアーム4bは、1対の送りねじ機構13a、13bと、ウォーム減速機14と、リンク機構15とを組み合わせただけの簡易な構成により、その全長を変更することが可能となっている。本発明では、このような構造により、車両の走行状況に応じて、キャンバ角γを適宜変更できる車両用懸架装置を、簡易な構造で実現して、その小型化および軽量化を図っている。このような構造により、車両の旋回性能、直進性能のさらなる向上を図ることができるだけでなく、バネ下荷重の増大を十分に抑えて、乗り心地性や走行安定性を中心とする、車両の走行性能の向上も図ることが可能となる。 As described above, in the case of the vehicle suspension system of this example, the structure for making the entire length of the upper arm 4b variable is integrated in the upper arm 4b itself, and components such as a hydraulic pump on the vehicle body 11 side are integrated. Installation is unnecessary. Furthermore, the upper arm 4b can be changed in its overall length by a simple configuration in which a pair of feed screw mechanisms 13a and 13b, a worm speed reducer 14, and a link mechanism 15 are combined. In the present invention, with such a structure, a vehicle suspension device capable of appropriately changing the camber angle γ according to the traveling state of the vehicle is realized with a simple structure, and the size and weight are reduced. Such a structure not only can further improve the turning performance and straight-ahead performance of the vehicle, but also sufficiently suppress the increase in unsprung load and drive the vehicle with a focus on ride comfort and running stability. The performance can be improved.
 また、本例の場合には、キャンバ角γの制御(アッパアーム4bの全長制御)を、電動式により行うため、油圧式と比べて、制御性や応答性に優れるとともに、エンジンの動力損失も生じなくて済む。さらに、駆動時にのみ電力(エネルギ)を消費するため、エネルギの省力化も図ることができる。 In the case of this example, since the camber angle γ is controlled by the electric type (control of the entire length of the upper arm 4b), controllability and responsiveness are superior to those of the hydraulic type, and engine power loss also occurs. No need. Furthermore, since power (energy) is consumed only during driving, energy saving can be achieved.
 その他にも、ロアアーム5ではなく、アッパアーム4bの全長を可変としているため、車両が停止している状態でも、無理なくキャンバ角γを変化させることを可能としている。さらには、本発明の車両用懸架装置を左右の車輪に適用することで、左右の車輪のキャンバ角をそれぞれ独立して制御することもできる。 In addition, since the entire length of the upper arm 4b, not the lower arm 5, is variable, the camber angle γ can be changed without difficulty even when the vehicle is stopped. Furthermore, the camber angles of the left and right wheels can be independently controlled by applying the vehicle suspension system of the present invention to the left and right wheels.
  1  車輪
  2  軸受ユニット
  3  ナックル
  4、4a、4b アッパアーム
  5、5a ロアアーム
  6  アッパボールジョイント
  7  ロアボールジョイント
  8  ショックアブソーバ
  9  油圧シリンダ
 10  油圧シリンダ
 11  車体
 12  ケーシング
 13a、13b 送りねじ機構
 14  ウォーム減速機
 15  リンク機構
 16  取付部
 17  ボルト
 18  ナット
 19  ブッシュ
 20a、20b ねじ軸
 21a、21b ねじナット
 22  ウォームホイール
 23  ウォーム
 24  電動モータ
 25  減速機構
 26  ウォーム軸
 27  ウォーム歯
 28  ねじ
 29a、29b リンク腕
 30  連結部材
 31  収容部
 32a、32b ジョイント部材
DESCRIPTION OF SYMBOLS 1 Wheel 2 Bearing unit 3 Knuckle 4, 4a, 4b Upper arm 5, 5a Lower arm 6 Upper ball joint 7 Lower ball joint 8 Shock absorber 9 Hydraulic cylinder 10 Hydraulic cylinder 11 Car body 12 Casing 13a, 13b Feed screw mechanism 14 Worm speed reducer 15 Link Mechanism 16 Mounting portion 17 Bolt 18 Nut 19 Bush 20a, 20b Screw shaft 21a, 21b Screw nut 22 Worm wheel 23 Worm 24 Electric motor 25 Deceleration mechanism 26 Worm shaft 27 Worm tooth 28 Screw 29a, 29b Link arm 30 Connecting member 31 Housing portion 32a, 32b Joint member

Claims (6)

  1.  車輪が回転自在に支持されたナックルの上部に、上部継手を介して連結された先端部と、車体に対して上下方向に揺動可能に支持された基端部とを有するアッパアームと、前記ナックルの下部に、下部継手を介して連結された先端部と、車体に対して上下方向に揺動可能に支持された基端部とを有するロアアームとを備え、
     前記アッパアームは、
     前記車体に対し上下方向に揺動可能に支持されたケーシングと、
     前記車体の前後方向に同軸上に配置された状態で、前記ケーシングに対して、軸方向への移動のみ可能に支持された1対のねじ軸と、
     前記1対のねじ軸の周囲にそれぞれ係合し、前記ケーシングに対して、回転のみ可能に支持された1対のねじナットと、
     前記1対のねじナットに対して、これらのねじナットと同期した回転を自在に組み合わされたウォームホイールと、
     前記ウォームホイールに噛み合うウォーム歯を備えたウォームと、
     前記ケーシングに支持され、前記ウォームを両方向に回転駆動することが可能な電動モータと、
     前記先端部と前記基端部をそれぞれ有し、それぞれの基端部を前記1対のねじ軸のそれぞれの先端部に対して、前記車体の上下方向の軸回りに回動可能に連結するとともに、それぞれの先端部を前記上部継手に対して、前記車体の上下方向の軸回りに回動可能に連結した、1対のリンク腕とを備え、
     前記電動モータにより前記ウォームを回転駆動して、前記1対のねじ軸を軸方向に関して互いに反対方向に進退させ、前記1対のリンク腕の開き角度を変化させることにより、前記車体の幅方向に関する前記1対のリンク腕の長さを変化させることを特徴とする、車両用懸架装置。
    An upper arm having a distal end portion connected to an upper portion of a knuckle on which wheels are rotatably supported via an upper joint, and a base end portion supported so as to be swingable in a vertical direction with respect to a vehicle body, and the knuckle A lower arm having a distal end portion connected through a lower joint and a base end portion supported so as to be swingable in the vertical direction with respect to the vehicle body,
    The upper arm is
    A casing supported to be swingable in the vertical direction with respect to the vehicle body;
    A pair of screw shafts supported so as to be movable only in the axial direction with respect to the casing in a state of being coaxially arranged in the longitudinal direction of the vehicle body;
    A pair of screw nuts respectively engaged around the pair of screw shafts and supported to be rotatable only with respect to the casing;
    A worm wheel that is freely combined with the pair of screw nuts to rotate in synchronization with these screw nuts;
    A worm having worm teeth meshing with the worm wheel;
    An electric motor supported by the casing and capable of rotationally driving the worm in both directions;
    The front end portion and the base end portion are respectively connected, and the base end portions are connected to the respective front end portions of the pair of screw shafts so as to be rotatable around the vertical axis of the vehicle body. A pair of link arms each of which is connected to the upper joint so as to be rotatable around an axis in the vertical direction of the vehicle body,
    The worm is rotationally driven by the electric motor, the pair of screw shafts are advanced and retracted in directions opposite to each other with respect to the axial direction, and the opening angle of the pair of link arms is changed. A suspension system for a vehicle, wherein a length of the pair of link arms is changed.
  2.  前記1対のねじ軸と前記1対のねじナットとのそれぞれの組み合わせにおいて、それぞれのねじナットの内周面に形成された雌ねじが、それぞれのねじ軸の外周面に形成された雄ねじに摺動可能に係合することにより、滑りねじ式の送りねじ機構が構成されている、請求項1に記載した車両用懸架装置。 In each combination of the pair of screw shafts and the pair of screw nuts, a female screw formed on the inner peripheral surface of each screw nut slides on a male screw formed on the outer peripheral surface of each screw shaft. The suspension device for a vehicle according to claim 1, wherein a sliding screw type feed screw mechanism is configured by being engaged with each other.
  3.  前記1対のねじ軸と前記1対のねじナットとのそれぞれの組み合わせにおいて、それぞれのねじナットの内周面に形成された外径側ボールねじ溝と、それぞれのねじ軸の外周面に形成された内径側ボールねじ溝とが、これらの間に配置された複数個のボールを介して係合することにより、ボールねじ式の送りねじ機構が構成されている、請求項1に記載した車両用懸架装置。 In each combination of the pair of screw shafts and the pair of screw nuts, outer diameter side ball screw grooves formed on the inner peripheral surfaces of the respective screw nuts and outer peripheral surfaces of the respective screw shafts. The ball screw type feed screw mechanism is configured by engaging the inner diameter side ball screw groove with a plurality of balls disposed between them. Suspension device.
  4.  前記1対のねじ軸と前記ケーシングとの間に、これらのねじ軸の軸方向変位を許容しつつ、これらのねじ軸の前記ケーシングに対する相対回転を阻止するための回り止め機構が設けられている、請求項1~3のうちのいずれか1項に記載した車両用懸架装置。 A detent mechanism is provided between the pair of screw shafts and the casing to prevent relative rotation of the screw shafts with respect to the casing while allowing axial displacement of the screw shafts. The vehicle suspension device according to any one of claims 1 to 3.
  5.  前記ウォームホイールが合成樹脂製である、請求項1~4のうちのいずれか1項に記載した車両用懸架装置。 The vehicle suspension device according to any one of claims 1 to 4, wherein the worm wheel is made of a synthetic resin.
  6.  前記ウォームと前記電動モータとの間に、この電動モータの動力を増大して前記ウォームに伝達する減速機構が備えられた、請求項1~5のうちのいずれか1項に記載した車両用懸架装置。 The suspension for a vehicle according to any one of claims 1 to 5, further comprising a reduction mechanism that increases power of the electric motor and transmits the power to the worm between the worm and the electric motor. apparatus.
PCT/JP2012/054976 2011-05-16 2012-02-28 Suspension device for vehicle WO2013051298A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12838999.6A EP2711212B1 (en) 2011-05-16 2012-02-28 Suspension device for vehicle
US14/117,703 US8944439B2 (en) 2011-05-16 2012-02-28 Suspension for vehicle
CN201280023448.4A CN103534109B (en) 2011-05-16 2012-02-28 Suspension device for rolling stock

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-109757 2011-05-16
JP2011109757 2011-05-16

Publications (1)

Publication Number Publication Date
WO2013051298A1 true WO2013051298A1 (en) 2013-04-11

Family

ID=47526771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054976 WO2013051298A1 (en) 2011-05-16 2012-02-28 Suspension device for vehicle

Country Status (5)

Country Link
US (1) US8944439B2 (en)
EP (1) EP2711212B1 (en)
JP (1) JP6035852B2 (en)
CN (1) CN103534109B (en)
WO (1) WO2013051298A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20130969A1 (en) * 2013-11-28 2015-05-29 Zona Engineering & Design Sas Di Zo Na Mauro & C SELF-MULTI-SUSPENSION SUSPENSION WITH VARIATION OF THE WINDING ANGLE
ITUB20153223A1 (en) * 2015-08-25 2017-02-25 Zona Eng & Design S A S Di Zona Mauro & C Motor vehicle suspension with camber angle variation device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910344B2 (en) * 2012-06-20 2016-04-27 日本精工株式会社 Vehicle suspension system
FR3013668B1 (en) * 2013-11-22 2015-12-18 Michel Raes AUTOMATIC BODY ANGLE ADJUSTMENT DEVICE FOR A GROUND BONDING SYSTEM
WO2017098814A1 (en) * 2015-12-10 2017-06-15 日本精工株式会社 Device for measuring weight of vehicle
US10442263B2 (en) 2017-04-03 2019-10-15 Robby Gordon Low suspension arm strut coupling
CN108674109B (en) * 2018-06-07 2020-02-18 东风(武汉)实业有限公司 High-strength multifunctional triangular arm assembly
US11400978B2 (en) * 2018-06-08 2022-08-02 Mando Corporation Vehicle control apparatus and vehicle control method
JP7182455B2 (en) * 2018-12-20 2022-12-02 Ntn株式会社 HUB UNIT WITH STEERING FUNCTION AND VEHICLE INCLUDING THE SAME
GB201904585D0 (en) * 2019-04-02 2019-05-15 R53 Engineering Ltd Length adjustment device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264636A (en) * 1997-03-26 1998-10-06 Denso Corp Camber angle control device for vehicle
JP2006043229A (en) * 2004-08-06 2006-02-16 Osamu Miyake Handicap adjusting system
JP2007203934A (en) * 2006-02-03 2007-08-16 Carrosser Co Ltd Vehicle height adjustment control device of vehicle height adjusting type suspension
JP2007253863A (en) * 2006-03-24 2007-10-04 Honda Motor Co Ltd Vehicle height adjusting system
JP2008067555A (en) * 2006-09-08 2008-03-21 Minebea Co Ltd Rotor assembly and manufacturing method therefor
JP2008105599A (en) * 2006-10-26 2008-05-08 Nissan Motor Co Ltd Suspension device, automobile and vehicle motion control method
JP2008184147A (en) * 2007-01-31 2008-08-14 Aisin Seiki Co Ltd Alignment control device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288920A (en) * 1976-01-17 1977-07-26 Kubota Ltd Apparatus for tread adjustment for tractor or the like
JPS61124766A (en) * 1984-11-20 1986-06-12 Copal Denshi Kk Straight feeding mechanism for linear step actuator
JPH0450010A (en) * 1990-06-18 1992-02-19 Mitsubishi Motors Corp Variable-length arm suspension device
JP2848191B2 (en) * 1993-06-16 1999-01-20 三菱自動車エンジニアリング株式会社 Actuator structure of vehicle suspension device
JP2898899B2 (en) * 1995-02-14 1999-06-02 株式会社ナブコ Motor-driven hydraulic actuator
EP0783414B1 (en) * 1995-05-22 2001-04-11 Hyundai Motor Company A vehicle suspension system for a steerable wheel
AU738852C (en) * 1997-12-12 2003-04-10 Holland Neway International, Inc. Independent front suspension
FR2844245B1 (en) * 2002-09-10 2005-04-29 Jean Marie Obry UNIVERSAL VEHICLE FOR ROAD TRANSPORT, WANDAGE AND GROUND GUARD VARIABLES
JP2004108455A (en) * 2002-09-17 2004-04-08 Nsk Ltd Ball screw device
US20050017471A1 (en) * 2003-06-09 2005-01-27 Matthew Kim Steering with triple linkage suspension having steering adjusted camber
JP2005098771A (en) 2003-09-24 2005-04-14 Nsk Ltd Load-measuring device of rolling bearing unit
DE102005039318A1 (en) * 2005-08-19 2007-02-22 Audi Ag Arrangement for adjusting length of suspension link at vehicle, comprises Watt linkage coupled with link divided into two parts
US7922181B2 (en) 2006-03-09 2011-04-12 Honda Motor Co., Ltd. Vehicle height adjusting system
JP4848994B2 (en) * 2006-12-22 2011-12-28 株式会社エクォス・リサーチ Vehicle control device
JP4993110B2 (en) 2007-10-31 2012-08-08 株式会社エクォス・リサーチ Camber angle adjustment mechanism
JP2009236281A (en) * 2008-03-28 2009-10-15 Honda Motor Co Ltd Feed screw mechanism and rear wheel toe angle variable control device for vehicle using the same
JP5439784B2 (en) 2008-09-29 2014-03-12 株式会社エクォス・リサーチ Vehicle control device
KR101263674B1 (en) * 2011-08-25 2013-05-22 대동공업주식회사 Suspension constructure of Utility vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264636A (en) * 1997-03-26 1998-10-06 Denso Corp Camber angle control device for vehicle
JP2006043229A (en) * 2004-08-06 2006-02-16 Osamu Miyake Handicap adjusting system
JP2007203934A (en) * 2006-02-03 2007-08-16 Carrosser Co Ltd Vehicle height adjustment control device of vehicle height adjusting type suspension
JP2007253863A (en) * 2006-03-24 2007-10-04 Honda Motor Co Ltd Vehicle height adjusting system
JP2008067555A (en) * 2006-09-08 2008-03-21 Minebea Co Ltd Rotor assembly and manufacturing method therefor
JP2008105599A (en) * 2006-10-26 2008-05-08 Nissan Motor Co Ltd Suspension device, automobile and vehicle motion control method
JP2008184147A (en) * 2007-01-31 2008-08-14 Aisin Seiki Co Ltd Alignment control device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2711212A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20130969A1 (en) * 2013-11-28 2015-05-29 Zona Engineering & Design Sas Di Zo Na Mauro & C SELF-MULTI-SUSPENSION SUSPENSION WITH VARIATION OF THE WINDING ANGLE
ITUB20153223A1 (en) * 2015-08-25 2017-02-25 Zona Eng & Design S A S Di Zona Mauro & C Motor vehicle suspension with camber angle variation device

Also Published As

Publication number Publication date
JP2012254784A (en) 2012-12-27
CN103534109A (en) 2014-01-22
US8944439B2 (en) 2015-02-03
EP2711212A4 (en) 2014-10-29
US20140091538A1 (en) 2014-04-03
CN103534109B (en) 2016-04-13
EP2711212B1 (en) 2015-11-25
EP2711212A1 (en) 2014-03-26
JP6035852B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
WO2013051298A1 (en) Suspension device for vehicle
JP4966273B2 (en) Rear suspension device
JP6909071B2 (en) Hub unit with auxiliary steering function and vehicle
JP2013248896A (en) Rear wheel toe angle variable vehicle
CN111094114B (en) Wheel hub unit with auxiliary steering function and vehicle with same
CN108349523A (en) For the steering transmission linkage of vehicle, vehicle, the method for manipulating steering transmission linkage and the method for making Vehicular turn
JP2019006226A (en) Hub unit with auxiliary steering function and vehicle
EP1859970B1 (en) Rear wheel toe angle control system of vehicle
JP6982416B2 (en) Hub unit with auxiliary steering function and vehicle
WO2020166537A1 (en) Hub unit having steering function, and vehicle equipped with same
JP2020097280A (en) Hub unit with steering function and steering system
JP4708237B2 (en) Vehicle height adjustment device
EP3828057A1 (en) Steering function-equipped hub unit
JP2019006227A (en) Hub unit with auxiliary steering function and vehicle
WO2020250905A1 (en) Steering device
JP5724808B2 (en) Camber angle adjustment device
JP5910344B2 (en) Vehicle suspension system
JP2020097964A (en) Linear motion mechanism, hub unit with steering mechanism and vehicle having the same
JP2020199900A (en) Steering device
JPS6124609A (en) Oil pressure type stabilizer device
JP7172865B2 (en) steering device
WO2024048562A1 (en) Hub unit with steering function, steering system, and vehicle
KR101219564B1 (en) Suspension knuckle with variable wheel alignment
CN115157948B (en) Modular integrated suspension system
CN106976477A (en) A kind of automobile steering system of achievable preferable Ackermann angle relation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012838999

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14117703

Country of ref document: US