WO2020250905A1 - Steering device - Google Patents

Steering device Download PDF

Info

Publication number
WO2020250905A1
WO2020250905A1 PCT/JP2020/022751 JP2020022751W WO2020250905A1 WO 2020250905 A1 WO2020250905 A1 WO 2020250905A1 JP 2020022751 W JP2020022751 W JP 2020022751W WO 2020250905 A1 WO2020250905 A1 WO 2020250905A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
ball screw
ball
steering
steering device
Prior art date
Application number
PCT/JP2020/022751
Other languages
French (fr)
Japanese (ja)
Inventor
真史 疋田
竜峰 森田
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019108552A external-priority patent/JP7172865B2/en
Priority claimed from JP2019108551A external-priority patent/JP2020199900A/en
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Publication of WO2020250905A1 publication Critical patent/WO2020250905A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members

Definitions

  • the present invention relates to a steering device incorporated in a steer-by-wire type steering device.
  • Suspension devices for automobiles include an independent suspension system in which the left and right wheels are independently supported by separate suspensions, and a suspension device in which the left and right wheels are connected by a single axle and the axles are supported by the suspension.
  • axle suspension type rigid axle type
  • the axle suspension type suspension system is used in large vehicles such as trucks because of its simple structure and high durability.
  • a cab-over type structure is adopted in which the driver's seat (cab) is placed above the power source such as the engine.
  • a steering device mounted on such a cab-over type vehicle when the driver operates (rotates) the steering wheel, the rotation of the steering wheel is transmitted to the input shaft of the steering gear box by the steering shaft. ..
  • the rotation of the input shaft is converted into a swinging motion (swinging motion) of the pitman arm by the steering gear box.
  • the pitman arm is connected to one of a pair of steered wheels (usually the front wheels) (eg, the right front wheel) via a drag link and a knuckle arm, and one steered wheel is a tie rod and a tie rod.
  • the steering device incorporates a power steering device for reducing the force required for the driver to operate the steering wheel.
  • a power steering device for reducing the force required for the driver to operate the steering wheel.
  • power steering devices There are two types of power steering devices: an electric type that uses an electric motor as an auxiliary power source and a hydraulic type that uses hydraulic pressure. Large vehicles such as trucks employ a hydraulic power steering device that can obtain a large auxiliary torque.
  • the steer-by-wire type steering device includes a steering device having a steering rod such as a steering wheel, and a steering device for imparting a steering angle to a pair of steering wheels electrically connected to the steering device. ..
  • the steering device uses an electric motor as a power source to displace the linear motion shafts arranged in the width direction of the vehicle body in the axial direction, and is connected to both ends of the linear motion shafts in the axial direction. By pushing and pulling the tie rods to swing the knuckle arm, a steering angle is given to the pair of steering wheels.
  • Patent Document 1 describes a structure that can be used as a steering device constituting a steer-by-wire type steering device.
  • the steering device described in JP-A-2005-319988 uses a ball screw mechanism, and a rotary rack having an inner diameter side ball screw groove on the outer peripheral surface is rotationally driven by an electric motor to rotate the rotary rack and the rotary rack.
  • a steering angle is given to the steering wheel based on the linear motion of a rack (linear motion shaft) composed of non-rotating racks connected to both ends of the wheel.
  • a steering device of a steer-by-wire system in which a steering wheel is given a steering angle by using an electric motor as a drive source.
  • the steer-by-wire type steering device is formed by electrically connecting a steering device having a steering rod such as a steering wheel and a steering device that gives a steering angle to the steering wheels by using an electric motor as a power source.
  • Patent Document 1 describes a structure that can be used as a steering device constituting a steer-by-wire type steering device.
  • the steering device described in JP-A-2005-319988 uses a ball screw device, and the ball screw shaft (rack) is rotated by a direct drive type electric motor to move the ball screw shaft in a linear motion. By causing the steering wheel to have a steering angle. Since the steering device described in Japanese Patent Application Laid-Open No. 2005-319988 uses one electric motor as a drive source, the torque range that can be output by the electric motor when incorporated in a large vehicle such as a truck is compared.
  • the present invention has a structure of a steering device capable of obtaining a sufficient steering force and ensuring fail-safe while using the electric motor in an efficient region.
  • the purpose is to realize.
  • the steering device when the steering device is driven to give a steering angle to the steering wheels (steering is performed), the steering is performed depending on the size of the steering angle of the steering wheels, that is, the swing angle of the knuckle arm.
  • the accompanying reaction force may be applied in the radial direction (specifically, the front-rear direction of the vehicle body) with respect to the linear motion axis.
  • the steering reaction force in the radial direction increases as the steering angle of the steering wheel increases.
  • the steering reaction force When the steering reaction force is applied in the radial direction with respect to the linear motion shaft, the steering reaction force may be applied to the conversion mechanism that converts the rotational motion of the output shaft of the electric motor into the linear motion of the linear motion shaft. ..
  • a ball screw mechanism is used as a conversion mechanism. Therefore, when the steering reaction force is applied in the radial direction with respect to the linear motion shaft, the balls constituting the ball screw mechanism are transferred to the inner diameter side ball screw groove provided on the outer peripheral surface of the rotary rack and the inner peripheral surface of the screw nut.
  • the ball screw mechanism is strongly pressed against the outer diameter side ball screw groove provided in the above, and the life of the ball screw mechanism is shortened, or indentations are formed on the inner diameter side ball screw groove and the outer diameter side ball screw groove, resulting in abnormal noise. And vibration may occur.
  • the present invention considers that a steering reaction force in the radial direction is applied to a conversion mechanism that converts the rotational motion of the output shaft of the electric motor into the linear motion in the axial direction of the linear motion shaft.
  • the purpose is to realize a structure of a steering device that can be prevented.
  • the steering device of the present invention has a housing and a ball screw groove on the inner diameter side on the outer peripheral surface, and can be displaced in the axial direction inside the housing.
  • it has a ball screw shaft that is supported so that it cannot rotate, and a ball screw groove on the outer diameter side on the inner peripheral surface, and is arranged around the ball screw shaft so that it can rotate relative to the ball screw shaft.
  • a plurality of ball nuts, a bearing device that rotatably supports the ball nuts with respect to the housing, and a ball screw groove on the inner diameter side and a ball screw groove on the outer diameter side are rotatably arranged.
  • a plurality of balls, a plurality of electric motors, and the same number of speed reducers as the electric motor, which are applied to the ball nut after increasing the output torque of the electric motor, are provided.
  • the steering device of the present invention may include the same number of ball nuts as the electric motor.
  • the steering device of the present invention may include a pair of each of the ball nut, the bearing device, the electric motor, and the speed reducer.
  • the ball nut, the bearing device, the electric motor, and the speed reducer are arranged one by one on both side portions of the housing with the center position in the width direction, and the ball nut and the bearing are provided.
  • the electric motor, and the speed reducer it is preferable that the ball nut is arranged on the side closest to the center position in the width direction of the housing.
  • the ball nuts can be arranged adjacent to each other via the housing in a state of being separated from each other with the central position in the width direction interposed therebetween.
  • the speed reducer can be a worm speed reducer.
  • the housing can be made by combining a plurality of housing elements.
  • the steering device of the present invention has a housing, an electric motor, a linear motion shaft supported inside the housing so as to be displaced in the axial direction, and a rotary motion of the output shaft of the electric motor.
  • a conversion mechanism that converts the linear motion into the axial motion of the shaft, and an axial displacement and rotation are impossibly fitted to the ends of the linear motion shaft on both sides in the axial direction, and the housing is axially fitted. It is provided with a pair of guide sleeves, which are internally fitted so that they cannot be rotated.
  • the housing has a pair of housing-side stopper surfaces that face opposite sides with respect to the axial direction, and each of the linear motion shaft or the pair of guide sleeves has a pair of housing-side stopper surfaces. It can have shaft-side stopper surfaces facing each other.
  • the linear motion shaft is displaced to the limit toward one side in the axial direction, one of the pair of housing-side stopper surfaces and the pair of shaft-side stopper surfaces It is prevented that the linear motion shaft is further displaced toward one side in the axial direction due to the contact with the one shaft side stopper surface facing the one housing side stopper surface.
  • the pair of housing-side stopper surfaces are provided on one side portion in the axial direction and the other side portion in the axial direction of the housing so as to face outward in the axial direction, and the pair of axial-side stoppers are provided.
  • Each of the surfaces can be provided on each of the pair of guide sleeves so as to face inward in the axial direction.
  • the housing has flat surface portions on the housing side at least one of the housings in relation to the circumferential direction of the inner peripheral surface of the portion that internally fits and holds each of the guide sleeves, and the outer peripheral surface of each of the guide sleeves has the said. It is possible to have a flat surface portion on the housing side and a flat surface portion on the shaft side that are close to each other or slidable.
  • the linear motion shaft is a ball screw shaft having an inner diameter side ball screw groove on the outer peripheral surface
  • the conversion mechanism has an outer diameter side ball screw groove on the inner peripheral surface and is rotationally driven by the electric motor.
  • a ball nut may be provided with a plurality of balls rotatably arranged between the inner diameter side ball screw groove and the outer diameter side ball screw groove. That is, the conversion mechanism can be configured by a ball screw mechanism.
  • each of the guide sleeves can be made by combining a plurality of sleeve elements.
  • the shim plate can be sandwiched between the sleeve element and the linear motion shaft.
  • holding for holding grease on the outer peripheral surface of each of the guide sleeves and / or on the inner peripheral surface of the housing in which each of the guide sleeves is internally fitted and held can be provided with a recess.
  • FIG. 1 is a perspective view showing a state in which the steering device according to an example of the embodiment of the present invention is supported and fixed below the vehicle body.
  • FIG. 2 is a perspective view showing a steering device according to an example of the embodiment of the present invention.
  • FIG. 3 is a plan view showing a steering device according to an example of the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 6 is an enlarged view of part C of FIG.
  • FIG. 7 is an exploded perspective view showing a part of the constituent members of the steering device according to an example of the embodiment of the present invention.
  • FIG. 1 is a perspective view showing a state in which the steering device according to an example of the embodiment of the present invention is supported and fixed below the vehicle body.
  • FIG. 2 is a perspective view showing a steering device according to an example of the embodiment of the present invention.
  • FIG. 8 is a perspective view showing a state in which the steering device according to an example of the embodiment of the present invention is supported and fixed below the vehicle body.
  • FIG. 9 is a perspective view showing a steering device according to an example of the embodiment of the present invention.
  • FIG. 10 is a plan view showing a steering device according to an example of the embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 12 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 13 is an enlarged view of part C of FIG.
  • FIG. 14 is an exploded perspective view showing a part of the constituent members of the steering device according to an example of the embodiment of the present invention.
  • the steering device 1 of this example includes a housing 2, a ball screw shaft 3, a pair of ball nuts 4a and 4b, a pair of bearing devices 5a and 5b, a plurality of balls 6, and a pair of electric motors. It includes motors 7a and 7b and a pair of speed reducers 8a and 8b.
  • Housing 2 is made of an iron-based alloy such as carbon steel.
  • the housing 2 may be made of a light alloy such as an aluminum alloy or a synthetic resin.
  • the housing 2 is located on a pair of small-diameter tubular portions 9a and 9b arranged on both sides in the width direction and portions adjacent to the inside (center side in the width direction) of the small-diameter tubular portions 9a and 9b, respectively. It includes a pair of actuator housing portions 10a and 10b arranged, and a connecting cylinder portion 11 for connecting the inner ends of the pair of actuator housing portions 10a and 10b in the width direction.
  • the width direction refers to the width direction (horizontal direction in FIGS. 3, 4 and 6 and front and back directions in FIG. 5) when the steering device 1 is attached to the vehicle body.
  • the vertical direction and the front-rear direction are the vertical direction (front and back directions in FIG. 3, the vertical direction in FIGS. 4 to 6) and the front-rear direction (in the state where the steering device 1 is attached to the vehicle body). Refers to the vertical direction of FIG. 3, the front and back directions of FIGS. 4 and 6, and the horizontal direction of FIG.
  • each of the small-diameter tubular portions 9a and 9b supports the axially (widthwise) side portions of the ball screw shaft 3 so that they can be displaced in the axial direction and cannot rotate.
  • each of the small diameter tubular portions 9a and 9b of this example has an inner peripheral surface having a non-circular cross section.
  • the inner peripheral surfaces of the small-diameter tubular portions 9a and 9b are partial cylinders that connect the pair of flat surface portions 12 arranged on both sides in the front-rear direction and the vertical side edges of the flat surface portions 12, respectively. It is provided with a pair of concave curved surface portions 13 having a shape.
  • Each of the small-diameter tubular portions 9a and 9b has a stopper convex portion 14 protruding inward in the radial direction at an end portion on the inner side in the width direction of the concave curved surface portion 13.
  • the stopper convex portion 14 has a housing-side stopper surface 15 facing outward in the width direction on an end surface on the outer side in the width direction.
  • Each of the actuator accommodating portions 10a and 10b includes a large-diameter tubular portion 16, a nut accommodating portion 17, and a worm accommodating portion 18.
  • the large diameter cylinder portion 16 is arranged adjacent to the inside of the small diameter cylinder portions 9a and 9b in the width direction, and the inner diameter dimension and the outer diameter dimension are larger than the inner diameter dimension and the outer diameter dimension of the small diameter cylinder portions 9a and 9b. It has become.
  • the nut accommodating portion 17 is arranged adjacent to the inside of the large diameter tubular portion 16 in the width direction.
  • the nut accommodating portion 17 has a conical trapezoidal outer peripheral surface whose outer diameter dimension becomes smaller toward the inside in the width direction, and the inner diameter dimension is smaller than the inner diameter dimension of the large diameter tubular portion 16. ing.
  • the worm accommodating portion 18 has a central axis that exists at a twisted position with respect to the central axis of the large-diameter tubular portion 16, and an axial intermediate portion is open in the large-diameter tubular portion 16.
  • the worm accommodating portion 18 is arranged above the large diameter tubular portion 16. That is, the lower portion of the axially intermediate portion of the worm accommodating portion 18 is open to the upper portion of the large diameter tubular portion 16.
  • the connecting tubular portion 11 has an outer diameter dimension that increases from the central position in the width direction toward both sides in the width direction, and has an outer peripheral surface having an arc-shaped bus and an inner peripheral surface having a cylindrical surface shape.
  • the housing 2 is formed by connecting and fixing a pair of housing elements 19a and 19b divided in the vertical direction by a plurality of bolts 20.
  • the ball screw shaft 3 has an inner diameter side ball screw groove 21 having an arc-shaped cross section on the outer peripheral surface of the intermediate portion in the axial direction.
  • the inner diameter side ball screw groove 21, the outer diameter side ball screw groove 35 and the ball 6 of the ball nuts 4a and 4b described later are omitted.
  • the ball screw shaft 3 is supported inside the housing 2 so that its central axis is oriented in the width direction, can be displaced (sliding) in the axial direction (width direction), and cannot rotate. There is. That is, in this example, the width direction of the vehicle body and the axial direction of the ball screw shaft 3 coincide with each other.
  • the ball screw shaft 3 of this example includes a large-diameter portion 22 and a pair of small-diameter portions 23a and 23b arranged on both sides of the large-diameter portion 22 in the width direction.
  • the inner diameter side ball screw groove 21 is spirally formed in the axially intermediate portion of the large diameter portion 22.
  • Each of the pair of small diameter portions 23a and 23b has an outer peripheral surface having a non-circular cross section.
  • the outer peripheral surfaces of the small diameter portions 23a and 23b are a pair of flat surface portions arranged on both sides in the front-rear direction and a pair of partial cylinders connecting both vertical and vertical edges of the flat surface portions. It is provided with a convex curved surface portion of.
  • Each of the pair of small diameter portions 23a and 23b has a screw hole 24 that opens on the outer end face in the width direction.
  • the ball screw shaft 3 is supported inside the housing 2 via a pair of guide sleeves 25a and 25b so that the ball screw shaft 3 can be displaced in the axial direction and cannot rotate.
  • Each of the guide sleeves 25a and 25b is made of a material having a small coefficient of friction with respect to the housing 2, such as a synthetic resin or a non-ferrous metal or an oil-impregnated metal having self-lubricating properties such as a copper alloy.
  • Each of the guide sleeves 25a and 25b has an inner peripheral surface that can be fitted onto the small diameter portions 23a and 23b of the ball screw shaft 3 without rattling and non-rotatably.
  • the inner peripheral surfaces of the guide sleeves 25a and 25b of this example are partial cylinders that connect a pair of flat surface portions arranged on both sides in the front-rear direction and both vertical edges of the flat surface portions. It is provided with a pair of concave curved surfaces.
  • each of the guide sleeves 25a and 25b has an outer circumference that can be arranged (internally fitted) inside the small-diameter tubular portions 9a and 9b of the housing 2 without rattling and can be displaced (sliding) in the axial direction.
  • the outer peripheral surfaces of the guide sleeves 25a and 25b of this example are portions that connect a pair of flat surface portions 26 arranged on both sides in the front-rear direction and both vertical edges of the flat surface portions 26, respectively. It includes a pair of cylindrical convex curved surface portions 27.
  • each of the guide sleeves 25a and 25b has a stopper recess 28 that is open at the inner end in the width direction and is recessed inward in the radial direction at the inner portion in the width direction of the convex curved surface portion 27.
  • the stopper recess 28 has an axial stopper surface 29 facing inward in the width direction on an end surface on the outer side in the width direction.
  • Each of the guide sleeves 25a and 25b has an inner peripheral surface that is non-circularly engaged (fitted) with the outer peripheral surfaces of the small diameter portions 23a and 23b of the ball screw shaft 3 so as to be loose around the small diameter portions 23a and 23b. It is not attached and is externally fitted so that it cannot rotate relative to the small diameter portions 23a and 23b. Further, in each of the guide sleeves 25a and 25b, the flat surface portion 26 is slidably or close to the flat surface portion 12 of the small diameter tubular portions 9a and 9b, and the convex curved surface portion 27 is recessed in the small diameter tubular portions 9a and 9b.
  • the inside of the small diameter tubular portions 9a and 9b of the housing 2 is arranged (internally fitted) without rattling and can be displaced (sliding) in the axial direction. ing.
  • the ball screw shaft 3 is supported inside the housing 2 so as to be displaced (sliding) in the axial direction (width direction) and unable to rotate.
  • the guide sleeves 25a and 25b have a rotation stop function for preventing the ball screw shaft 3 from rotating relative to the housing 2.
  • each of the guide sleeves 25a and 25b is a combination of a pair of sleeve elements 46 divided in the front-rear direction.
  • the pair of sleeve elements 46 constituting the guide sleeves 25a and 25b are separated from each other. It is preventing.
  • the width direction of the guide sleeves 25a and 25b is due to the inner side surface in the width direction of the spherical joint 30. The outer end face is pressed down.
  • the guide sleeves 25a and 25b are axially (widthwise) between the stepped portion connecting the outer peripheral surface of the large diameter portion 22 of the ball screw shaft 3 and the outer peripheral surfaces of the small diameter portions 23a and 23b and the spherical joint 30. ), The guide sleeves 25a and 25b are prevented from being displaced in the axial direction (falling off from the small diameter portions 23a and 23b).
  • one or a plurality of shim plates can be sandwiched between the pair of sleeve elements 46 constituting each of the guide sleeves 25a and 25b and the small diameter portions 23a and 23b of the ball screw shaft 3.
  • the shaft-side stopper surfaces 29 of the guide sleeves 25a and 25b and the small-diameter tubular portions 9a and 9b face each other in the width direction (axial direction). Regardless of the width direction (axial direction) position of the ball screw shaft 3 with respect to the housing 2, the shaft side stopper surface 29 of the guide sleeve 25a on one side in the width direction (left side in FIGS. 3 and 4) and the small diameter on one side in the width direction.
  • a pair of tie rods 31 are connected to both ends of the ball screw shaft 3 in the width direction via a spherical joint 30. That is, the male screw portions provided on the outer peripheral surfaces of the respective support shaft portions 32 of the spherical joint 30 are screwed into the screw holes 24 of the ball screw shaft 3, and are provided on the inner peripheral surfaces of the spherical joint 30.
  • a partially convex spherical spherical engaging portion 34 provided at the base end portion (inner end portion in the width direction) of the tie rod 31 is spherically engaged with the partially concave spherical engaging recess 33.
  • each of the pair of ball nuts 4a and 4b has an outer diameter side ball screw groove 35 having an arcuate cross-sectional shape and a spiral shape on the inner peripheral surface, and each of them has an outer diameter side ball screw groove 35.
  • the outer diameter side ball screw grooves 35 of the pair of ball nuts 4a and 4b have the same specifications (lead and lead angle).
  • each of the ball nuts 4a and 4b is rotatably supported inside the nut accommodating portion 17 of the housing 2 by using the sleeve 36 and the bearing devices 5a and 5b, respectively.
  • bearing devices 5a and 5b are arranged between the outer peripheral surface of the intermediate portion and the inner peripheral surface of the inner peripheral surface of the large-diameter tubular portion 19 of the housing 2 in the width direction.
  • Each of the bearing devices 5a and 5b has a structure capable of bearing a radial load and a thrust load.
  • each of the bearing devices 5a and 5b is composed of a double-row angular contact ball bearing or a double-row tapered roller bearing having a contact angle of a back combination type (DB type) fitted on the sleeve 36. can do.
  • the sleeve 36 can also be integrally formed with the ball nuts 4a and 4b.
  • Each of the pair of ball nuts 4a and 4b further has a circulation mechanism (not shown) for circulating the ball 6, which will be described later.
  • the circulation mechanism may adopt any structure of tube type, deflector type, end cap type or top type, but in order to displace the ball screw shaft 3 in the width direction with a sufficiently large force, the ball 6 From the viewpoint of ensuring a sufficient ball diameter, it is preferable to use a tube type.
  • each of the pair of electric motors 7a and 7b rotationally drives the ball nuts 4a and 4b via the speed reducers 8a and 8b, respectively.
  • the pair of electric motors 7a and 7b have the same rated output
  • the speed reducers 8a and 8b have the same reduction ratio.
  • each of the speed reducers 8a and 8b is a worm speed reducer. That is, each of the speed reducers 8a and 8b meshes with the worm wheel 37 outerly fitted to the outer end of the sleeve 36 in the width direction so as to transmit torque, and the worm of the housing 2. It is composed of a worm 38 rotatably supported inside the housing portion 18.
  • Each of the electric motors 7a and 7b has an output shaft connected to a base end portion of the worm 38.
  • the speed reducers 8a and 8b which are worm speed reducers, do not have a self-locking function and have high reverse efficiency.
  • the speed reducers 8a and 8b are not limited to worm speed reducers as long as the output torque of the electric motors 7a and 7b can be increased and applied to the ball nuts 4a and 4b.
  • speed reducers 8a and 8b speed reducers such as a parallel shaft gear type, a friction roller type, and a belt type can also be used.
  • the pair of electric motors 7a and 7b those having different rated outputs may be used, and as the speed reducers 8a and 8b, those having different types (structures) and different reduction ratios may be used. You can also do it.
  • a pair of electric motors 7a and 7b having the same rated output are used, and the speed reducers 8a and 8b are of the same type. It is preferable to use one having the same reduction ratio.
  • the steering device 1 of this example is supported below the vehicle body of a large vehicle such as a truck provided with an axle suspension type suspension device, for example. Specifically, as shown in FIG. 1, the steering device 1 inserts bolts 40 through which through holes provided in the mounting plate portion 39 of the housing 2 are inserted into the vehicle body frame 41 via a pair of leaf springs 42. By screwing into a screw hole formed in the axle 43 supported by the vehicle and further tightening the screw hole, the axle 43 is supported and fixed to the vehicle body frame 41. Each tip of the pair of tie rods 31 is swingably connected to the tip of the arm 45 of the knuckle 44. Further, each of the knuckles 44 is rotatably supported by steering wheels via hub unit bearings (not shown).
  • the steering device 1 is electrically combined with a steering device having a control stick such as a steering wheel via a controller (ECU) to form a steer-by-wire type steering device.
  • the controller calculates the steering angle given to the steering wheels based on the amount of operation of the steering wheel acquired by the sensor and, if necessary, the traveling speed of the vehicle. ..
  • the controller determines the steering angle given to the steering wheels based on the surrounding conditions, the moving distance, the moving direction, etc. of the vehicle acquired by various sensors. calculate.
  • the controller simultaneously energizes the electric motors 7a and 7b of the steering device 1 according to the calculated steering angle to generate the worm 38. It is driven to rotate.
  • the worm 38 By rotating the worm 38, the worm wheel 37 that meshes with the worm 38 is rotated, and the ball nuts 4a and 4b coupled to the worm wheel 37 via the sleeve 36 are rotated in the same direction and at the same speed.
  • the ball nuts 4a and 4b rotate, the ball 6 moves between the inner diameter side ball screw groove 21 and the outer diameter side ball screw groove 35, and the ball screw shaft 3 is displaced in the width direction (axial direction). To do.
  • the tie rod 31 is pushed and pulled with the displacement of the ball screw shaft 3 in the width direction, the knuckle 44 is oscillated and displaced to give the steering wheel a desired steering angle.
  • the ball screw shaft 3 when the ball screw shaft 3 is displaced to one side in the width direction to steer the steering wheel in a predetermined direction to the steering limit (so-called end contact), the ball screw shaft 3 is formed.
  • the shaft-side stopper surface 29 of the guide sleeve 25b externally fitted to the small-diameter portion 23b on the other side in the width direction abuts on the housing-side stopper surface 15 of the small-diameter tubular portion 9b on the other side in the width direction in the housing 2. It is prevented that the ball screw shaft 3 is further displaced to one side in the width direction.
  • the steering limit in the predetermined direction is set. It stipulates.
  • the small diameter portion of the ball screw shaft 3 on one side in the width direction is used.
  • the shaft-side stopper surface 29 of the guide sleeve 25a externally fitted to the 23a abuts on the housing-side stopper surface 15 of the small-diameter tubular portion 9a on one side in the width direction of the housing 2, and the ball screw shaft 3 is further in the width direction. It is prevented from being displaced to the other side.
  • the guide sleeves 25a and 25b have a stopper function to prevent the ball screw shaft 3 from being excessively displaced in the width direction.
  • a stopper function the ball 6 is prevented from being pressed against the end of the ball screw groove 21 on the inner diameter side of the ball screw shaft 3 or riding on the end of the ball screw groove 21 on the inner diameter side.
  • the widthwise inner ends of the guide sleeves 25a and 25b are prevented from colliding with the widthwise outer ends of the ball nuts 4a and 4b.
  • the steering device further has a reaction force applying motor that applies a reaction force corresponding to the steering amount of the control stick to the control stick. Therefore, when the driver operates the control stick while the vehicle is traveling in the normal operation mode, an operation reaction force corresponding to the amount of operation of the control stick is applied to the control stick. On the other hand, when the vehicle is traveling in the automatic driving mode, the control stick does not rotate even when the steering wheel is provided with a steering angle by the steering device 1.
  • the ball screw shaft 3 is driven by a pair of electric motors 7a and 7b to simultaneously rotate and drive the ball nuts 4a and 4b via the speed reducers 8a and 8b.
  • the steering device 1 of this example includes a pair of electric motors 7a and 7b, it is impossible to energize the electric motor 7a (or 7b) of any one of the pair of electric motors 7a and 7b.
  • the ball screw shaft 3 can be displaced in the width direction and the steering wheel can be provided with a steering angle by driving only the other electric motor 7b (or 7a).
  • the outer diameter side ball screw groove of the one ball nut 4a (or 4b) is used.
  • the ball 6 moves between the 35 and the ball screw groove 21 on the inner diameter side of the ball screw shaft 3.
  • the range in which the electric motor 7b (or 7a) can be output is larger than that when steering is performed by a pair of electric motors 7a and 7b. Of these, it is necessary to use it in a region where the output torque is relatively high and the efficiency is low. Further, when steering is performed with only one electric motor 7b (or 7a), the obtained steering force is also small, and for example, it may be difficult to give (stationary) the steering angle while the vehicle is stopped. There is sex. However, even in this case, if the vehicle is moved even slightly to rotate the steering wheels, the load applied to the electric motor 7b (or 7a) can be reduced, and the steering wheels can be provided with a steering angle.
  • the pair of electric motors 7a and 7b are configured to displace the ball screw shaft 3 in the width direction by rotationally driving separate ball nuts 4a and 4b. There is. Therefore, in addition to being able to use small electric motors 7a and 7b having relatively small outputs, the ball screw shaft is driven by rotating one ball nut to rotate the radial dimensions of the ball nuts 4a and 4b. It can be kept small as compared with the structure in which 3 is displaced in the width direction.
  • the electric actuators 47a and 47b which are formed by combining the ball nuts 4a and 4b, the bearing devices 5a and 5b, the speed reducers 8a and 8b, and the electric motors 7a and 7b, respectively.
  • the degree of freedom of the installation position with respect to the width direction of the electric actuators 47a and 47b can be increased.
  • the pair of electric actuators 47a and 47b are arranged near the center in the width direction, specifically, on both side portions of the housing 2 with the center position in the width direction in between.
  • the ball nuts 4a and 4b are arranged on the most central side in the width direction.
  • the ball nuts 4a and 4b are arranged close to each other near the center in the width direction. Therefore, when the ball screw shafts 3 screwed into the ball nuts 4a and 4b via the ball 6 are displaced in the width direction by rotationally driving the ball nuts 4a and 4b, the ball screw shaft is displaced.
  • a structure in which a pair of ball nuts 4a and 4b are arranged so as to be largely separated from each other in the width direction (for example, in a double pinion type power steering device), a steering wheel is applied so that an unreasonable force (force in the twisting direction) is applied to 3.
  • an unreasonable force force in the twisting direction
  • the force is applied near the ends on both sides of the rack shaft in the width direction). Can be done.
  • the length in the width direction of the inner diameter side ball screw groove 21 provided on the outer peripheral surface of the large diameter portion 22 of the ball screw shaft 3 The ball size (formation range in the width direction) can also be shortened. Therefore, the processing cost of the ball screw groove 21 on the inner diameter side can be suppressed low, and the small diameter portions 23a and 23b can be provided on both side portions of the ball screw shaft 3 in the width direction, and the small diameter portions 23a and 23b can be provided.
  • Guide sleeves 25a and 25b can be arranged around each of the two.
  • each of the guide sleeves 25a and 25b transmits the steering reaction force applied in the radial direction of the ball screw shaft 3 to the housing 2, and the vehicle body via the housing 2. It has a function to be supported by.
  • the ball nuts 4a and 4b are arranged adjacent to each other via the housing 2 in a state of being separated from each other near the center in the width direction (with the center position in the width direction in between).
  • the actuator accommodating portions 10a and 10b accommodating the electric actuators 47a and 47b including the ball nuts 4a and 4b are present in the lower part of the vehicle body and around the axle 43 (for example, the oil pan 48 and the like).
  • the pair of ball nuts 4a and 4b are arranged as close as possible, most preferably adjacent to each other without the housing 2. Is preferable.
  • the pair of ball nuts 4a and 4b are arranged as close as possible to each other as long as they do not interfere with the members existing around the axle 43.
  • the members constituting the electric actuators 47a and 47b are directed from the center side in the width direction to the outside, and the ball nuts 4a and 4b, the bearing devices 5a and 5b, the reduction gears 8a and 8b, and the electric motor 7a. They are arranged in the order of 7b.
  • the ball nuts 4a and 4b are arranged on the most central side in the width direction, the arrangement of other members is not particularly limited.
  • the bearing devices 5a and 5b may be arranged outside the worm wheel 37 of the speed reducers 8a and 8b in the width direction.
  • the worm wheels 37 of the speed reducers 8a and 8b can be arranged around the ball nuts 4a and 4b so as to rotate integrally with the ball nuts 4a and 4b.
  • the tie rod 31 is connected to both ends of the ball screw shaft 3 in the width direction via the spherical joint 30, and the tip of the arm 45 of the knuckle 44 is attached to the tip of the tie rod 31. It is connected so that it can swing. Therefore, when the steering device 1 of this example is driven to give a steering angle to the steering wheels (steering is performed), a reaction force due to steering is applied to the ball screw shaft 3 depending on the angle of the arm 45. On the other hand, it may be added in the radial direction (front-back direction).
  • the ball screw shaft 3 is supported inside the housing 2 via a pair of guide sleeves 25a and 25b so that the ball screw shaft 3 can be displaced in the width direction and cannot rotate.
  • the guide sleeves 25a and 25b are fitted around the small diameter portions 23a and 23b without rattling, and the relative rotation with respect to the small diameter portions 23a and 23b is impossible, and the housing 2 is fitted.
  • the displacement (sliding) in the axial direction is arranged (internally fitted) without rattling.
  • each of the pair of guide sleeves 25a and 25b is configured by combining a pair of sleeve elements 46. Therefore, by sandwiching one or a plurality of shim plates between the sleeve element 46 and the small diameter portions 23a and 23b of the ball screw shaft 3, the outer peripheral surfaces of the guide sleeves 25a and 25b and the small diameter of the housing 2 are held. The gap between the inner peripheral surfaces of the tubular portions 9a and 9b can be adjusted. That is, the inner peripheral surfaces of the small diameter tubular portions 9a and 9b without excessively increasing the shape accuracy of the small diameter tubular portions 9a and 9b of the housing 2, the small diameter portions 23a and 23b of the ball screw shaft 3, and the guide sleeves 25a and 25b. Since the rattling of the outer peripheral surfaces of the guide sleeves 25a and 25b can be sufficiently suppressed, the cost can be reduced.
  • each of the guide sleeves 25a and 25b may be integrally formed as a whole, that is, in a tubular shape.
  • each of the guide sleeves 25a and 25b can be configured by combining three or more sleeve elements.
  • the steering device 1 is applied to a steer-by-wire type steering device of a vehicle equipped with a leaf spring type suspension device among the axle suspension types.
  • the steering device of the present invention is not limited to the leaf spring type, and can be applied to a steer-by-wire type steering device of a vehicle provided with a coil spring type suspension device.
  • the steering device of the present invention can also be applied to a steer-by-wire type steering device of a vehicle provided with an independent suspension type suspension device.
  • the steering device of the present invention is not limited to the steering device of a large vehicle such as a truck, and can be incorporated into a steering device for a passenger car.
  • the steering device 1 of this example includes a pair of ball nuts 4a and 4b, bearing devices 5a and 5b, electric motors 7a and 7b, and speed reducers 8a and 8b, respectively.
  • the steering device of the present invention may also include three or more ball nuts and bearing devices, and three or more electric motors and speed reducers.
  • a ball screw shaft having an inner diameter side ball screw groove on the outer peripheral surface and supported inside the housing so as to be displaced in the axial direction and unable to rotate.
  • a plurality of ball nuts having an outer diameter side ball screw groove on the inner peripheral surface and arranged around the ball screw shaft so as to be relatively rotatable with respect to the ball screw shaft.
  • a bearing device that rotatably supports the ball nut with respect to the housing, A plurality of balls rotatably arranged between the inner diameter side ball screw groove and the outer diameter side ball screw groove, and With multiple electric motors The same number of speed reducers as the electric motor, which are applied to the ball nut after increasing the output torque of the electric motor, A steering device.
  • the ball nut, the bearing device, the electric motor, and the speed reducer are arranged one by one on both side portions of the housing at the center position in the width direction.
  • the steering device 1 of this example includes a housing 2, a ball screw shaft 3 which is a linear motion shaft, a pair of ball nuts 4a and 4b, a pair of bearing devices 5a and 5b, and a plurality of balls 6. It includes a pair of electric motors 7a and 7b and a pair of speed reducers 8a and 8b.
  • Housing 2 is made of an iron-based alloy such as carbon steel.
  • the housing 2 may be made of a light alloy such as an aluminum alloy or a synthetic resin.
  • the housing 2 is located on a pair of small-diameter tubular portions 9a and 9b arranged on both sides in the width direction and portions adjacent to the inside (center side in the width direction) of the small-diameter tubular portions 9a and 9b, respectively. It includes a pair of actuator housing portions 10a and 10b arranged, and a connecting cylinder portion 11 for connecting the inner ends of the pair of actuator housing portions 10a and 10b in the width direction.
  • the width direction refers to the width direction (horizontal direction in FIGS. 10, 11 and 13 and front and back directions in FIG. 12) when the steering device 1 is attached to the vehicle body.
  • the vertical direction and the front-rear direction are the vertical direction (front and back directions in FIG. 10, the vertical direction in FIGS. 11 to 13) and the front-rear direction (in the state where the steering device 1 is attached to the vehicle body). Refers to the vertical direction of FIG. 10, the front and back directions of FIGS. 11 and 13, and the horizontal direction of FIG.
  • each of the small-diameter tubular portions 9a and 9b supports the axially (widthwise) side portions of the ball screw shaft 3 so that they can be displaced in the axial direction and cannot rotate.
  • each of the small diameter tubular portions 9a and 9b of this example has an inner peripheral surface having a non-circular cross section.
  • the inner peripheral surfaces of the small-diameter cylindrical portions 9a and 9b are a pair of housing-side flat surface portions 12 arranged on both sides in the front-rear direction and both vertical edges of the housing-side flat surface portions 12, respectively. It is provided with a pair of concave curved surface portions 13 having a partial cylindrical shape to be connected.
  • each of the housing-side flat surface portions 12 is composed of flat surfaces facing in the front-rear direction.
  • Each of the small-diameter tubular portions 9a and 9b has a stopper convex portion 14 projecting inward in the radial direction at an end portion on the inner side in the width direction (axial direction) of the concave curved surface portion 13.
  • the stopper convex portion 14 has a housing-side stopper surface 15 facing outward in the width direction (axial direction) on an end surface on the outer side in the width direction (axial direction).
  • the ball screw shaft 3 enables displacement (sliding) in the axial direction (width direction) inside the housing 2 with its central axis oriented in the width direction of the vehicle body. And, the rotation is impossiblely supported. Therefore, in this example, the width direction of the vehicle body and the axial direction of the ball screw shaft 3 coincide with each other.
  • the axial inner side means the width direction center side (inside) of the ball screw shaft 3
  • the axial outer side means the width direction outer side (both sides) of the ball screw shaft 3.
  • Each of the actuator accommodating portions 10a and 10b includes a large-diameter tubular portion 16, a nut accommodating portion 17, and a worm accommodating portion 18.
  • the large diameter cylinder portion 16 is arranged adjacent to the inside of the small diameter cylinder portions 9a and 9b in the width direction, and the inner diameter dimension and the outer diameter dimension are larger than the inner diameter dimension and the outer diameter dimension of the small diameter cylinder portions 9a and 9b. It has become.
  • the nut accommodating portion 17 is arranged adjacent to the inside of the large diameter tubular portion 16 in the width direction.
  • the nut accommodating portion 17 has a cone-shaped outer peripheral surface whose outer diameter dimension becomes smaller toward the inside in the width direction, and the inner diameter dimension is smaller than the inner diameter dimension of the large diameter tubular portion 16. ing.
  • the worm accommodating portion 18 has a central axis that exists at a twisted position with respect to the central axis of the large-diameter tubular portion 16, and an axial intermediate portion is open in the large-diameter tubular portion 16.
  • the worm accommodating portion 18 is arranged above the large diameter tubular portion 16. That is, the lower portion of the axially intermediate portion of the worm accommodating portion 18 is open to the upper portion of the large diameter tubular portion 16.
  • the connecting tubular portion 11 has an outer diameter dimension that increases from the central position in the width direction toward both sides in the width direction, and has an outer peripheral surface having an arc-shaped bus and an inner peripheral surface having a cylindrical surface shape.
  • the housing 2 is formed by connecting and fixing a pair of housing elements 19a and 19b divided in the vertical direction by a plurality of bolts 20.
  • the ball screw shaft 3 is a linear motion shaft, and enables displacement (sliding) in the axial direction (width direction) inside the housing 2 with its central axis oriented in the width direction of the vehicle body. And, the rotation is impossiblely supported.
  • the ball screw shaft 3 of this example includes a large-diameter portion 22 and a pair of small-diameter portions 23a and 23b arranged on both sides of the large-diameter portion 22 in the axial direction.
  • the ball screw shaft 3 includes an inner diameter side ball screw groove 21 formed in a spiral shape with an arc shape in an axially intermediate portion of the large diameter portion 22.
  • the inner diameter side ball screw groove 21, the outer diameter side ball screw groove 35 and the ball 6 of the ball nuts 4a and 4b described later are omitted.
  • Each of the pair of small diameter portions 23a and 23b has an outer peripheral surface having a non-circular cross section.
  • the outer peripheral surfaces of the small diameter portions 23a and 23b are a pair of flat surface portions arranged on both sides in the front-rear direction and a pair of partial cylinders connecting both vertical and vertical edges of the flat surface portions. It is provided with a convex curved surface portion of.
  • Each of the pair of small diameter portions 23a and 23b has a screw hole 24 that opens on the end face on the outer side in the axial direction.
  • the ball screw shaft 3 is outside the end of the ball screw shaft 3 on one axial side (left side in FIGS. 10 and 11) and the other end in the axial direction (right side in FIGS. 10 and 11).
  • An axially displaceable and non-rotatable support is provided inside the housing 2 via a pair of fitted guide sleeves 25a, 25b.
  • Each of the guide sleeves 25a and 25b is made of a material having a small coefficient of friction with respect to the housing 2, such as a synthetic resin or a non-ferrous metal or an oil-impregnated metal having self-lubricating properties such as a copper alloy.
  • Each of the guide sleeves 25a and 25b has an inner peripheral surface that can be fitted onto the small diameter portions 23a and 23b of the ball screw shaft 3 without rattling and non-rotatably.
  • the inner peripheral surfaces of the guide sleeves 25a and 25b of this example are partial cylinders that connect a pair of flat surface portions arranged on both sides in the front-rear direction and both vertical edges of the flat surface portions. It is provided with a pair of concave curved surfaces.
  • each of the guide sleeves 25a and 25b is arranged (internally fitted) inside the small diameter tubular portions 9a and 9b of the housing 2 so that the relative rotation with respect to the housing 2 is impossible and the displacement (sliding) in the axial direction is possible.
  • the outer peripheral surfaces of the guide sleeves 25a and 25b of this example have a pair of axial flat surface portions 26 arranged on both sides in the front-rear direction and both vertical edges of the axial flat surface portions 26. It is provided with a pair of convex curved surface portions 27 having a partial cylindrical shape to be connected to each other.
  • each of the guide sleeves 25a and 25b has a stopper recess 28 which is open at the axially inner end and is recessed inward in the radial direction in the axially inner portion of the convex curved surface portion 27.
  • the stopper recess 28 has an axial stopper surface 29 facing inward in the axial direction on an end surface on the outer side in the axial direction.
  • Each of the guide sleeves 25a and 25b has an inner peripheral surface that is non-circularly engaged (fitted) with the outer peripheral surfaces of the small diameter portions 23a and 23b of the ball screw shaft 3 so as to be loose around the small diameter portions 23a and 23b. It is not attached and is externally fitted so that it cannot rotate relative to the small diameter portions 23a and 23b. Further, in each of the guide sleeves 25a and 25b, the shaft-side flat surface portion 26 is slidably or close to the housing-side flat surface portion 12 of the small-diameter tubular portions 9a and 9b, and the convex curved surface portion 27 is brought into contact with the small-diameter tubular portion 9a.
  • the outer peripheral surfaces of the guide sleeves 25a and 25b and / or the inner peripheral surfaces of the small-diameter tubular portions 9a and 9b of the housing 2 may be provided with holding recesses for holding grease.
  • the holding recess can be formed, for example, by a recess extending in the axial direction or the circumferential direction.
  • each of the guide sleeves 25a and 25b is a combination of a pair of sleeve elements 46 divided in the front-rear direction.
  • the pair of sleeve elements 46 constituting the guide sleeves 25a and 25b are separated from each other. It is preventing.
  • the axial inner surface of the spherical joint 30 allows the guide sleeves 25a and 25b to be axially oriented. The outer end face is pressed down.
  • the guide sleeves 25a and 25b are axially (widthwise) between the stepped portion connecting the outer peripheral surface of the large diameter portion 22 of the ball screw shaft 3 and the outer peripheral surfaces of the small diameter portions 23a and 23b and the spherical joint 30. ), The guide sleeves 25a and 25b are prevented from being displaced in the axial direction (falling off from the small diameter portions 23a and 23b).
  • one or a plurality of shim plates can be sandwiched between the pair of sleeve elements 46 constituting each of the guide sleeves 25a and 25b and the small diameter portions 23a and 23b of the ball screw shaft 3.
  • the shaft-side stopper surfaces 29 of the guide sleeves 25a and 25b and the small-diameter tubular portions 9a and 9b face each other in the axial direction (width direction). Regardless of the axial position of the ball screw shaft 3 with respect to the housing 2, the axial stopper surface 29 of the guide sleeve 25a on one side in the axial direction (left side in FIGS. 10 and 11) and the small diameter tubular portion 9a on one side in the axial direction.
  • a pair of tie rods 31 are connected to the ends of the ball screw shaft 3 on both sides in the axial direction via spherical joints 30, respectively. That is, the male screw portions provided on the outer peripheral surfaces of the support shaft portions 32 of the spherical joint 30 are screwed into the screw holes 24 of the ball screw shaft 3 and provided on the inner peripheral surfaces of the spherical joint 30.
  • a partially convex spherical spherical engaging portion 34 provided at the base end portion (inner end in the axial direction) of the tie rod 31 is spherically engaged with the partially concave spherical engaging recess 33.
  • Each of the pair of ball nuts 4a and 4b has an outer diameter side ball screw groove 35 formed in a spiral shape with an arc shape on the inner peripheral surface, and around the ball screw shaft 3. It is arranged so that it can rotate relative to the ball screw shaft 3.
  • the outer diameter side ball screw grooves 35 of the pair of ball nuts 4a and 4b have the same specifications (lead and lead angle).
  • each of the ball nuts 4a and 4b is rotatably supported inside the nut accommodating portion 17 of the housing 2 by using the sleeve 36 and the bearing devices 5a and 5b, respectively.
  • the axially inner end of the sleeve 36 is coupled and fixed to the axially outer ends of the ball nuts 4a and 4b so that torque can be transmitted, and the sleeve 36 is axially connected and fixed.
  • Bearing devices 5a and 5b are arranged between the outer peripheral surface of the intermediate portion and the inner peripheral surface of the inner peripheral surface of the large-diameter tubular portion 19 of the housing 2 in the width direction.
  • Each of the bearing devices 5a and 5b has a structure capable of bearing a radial load and a thrust load.
  • each of the bearing devices 5a and 5b can be configured by a double-row angular contact ball bearing or a double-row tapered roller bearing having a back surface combination type (DB type) contact angle.
  • the sleeve 36 can also be integrally formed with the ball nuts 4a and 4b.
  • Each of the pair of ball nuts 4a and 4b further has a circulation mechanism (not shown) for circulating the ball 6, which will be described later.
  • the circulation mechanism may have any structure of tube type, deflector type, end cap type or top type, but in order to displace the ball screw shaft 3 in the axial direction with a sufficiently large force, the ball 6 From the viewpoint of ensuring a sufficient ball diameter, it is preferable to use a tube type.
  • each of the pair of electric motors 7a and 7b rotationally drives the ball nuts 4a and 4b via the speed reducers 8a and 8b, respectively.
  • the pair of electric motors 7a and 7b have the same rated output, and the speed reducers 8a and 8b have the same reduction ratio.
  • each of the speed reducers 8a and 8b is a worm speed reducer. That is, each of the speed reducers 8a and 8b meshes with the worm wheel 37 which is outerly fitted to the axially outer end of the sleeve 36 so as to be able to transmit torque, and the worm of the housing 2. It is composed of a worm 38 rotatably supported inside the housing portion 18.
  • Each of the electric motors 7a and 7b has an output shaft connected to a base end portion of the worm 38.
  • the speed reducers 8a and 8b which are worm speed reducers, do not have a self-locking function and have high reverse efficiency.
  • the speed reducers 8a and 8b are not limited to worm speed reducers as long as the output torque of the electric motors 7a and 7b can be increased and applied to the ball nuts 4a and 4b.
  • speed reducers 8a and 8b speed reducers such as a parallel shaft gear type, a friction roller type, and a belt type can also be used.
  • the pair of electric motors 7a and 7b those having different rated outputs may be used, and as the speed reducers 8a and 8b, those having different types (structures) and different reduction ratios may be used. You can also do it.
  • a pair of electric motors 7a and 7b having the same rated output are used, and the speed reducers 8a and 8b are of the same type. It is preferable to use one having the same reduction ratio.
  • the steering device 1 of this example is supported below the vehicle body of a large vehicle such as a truck provided with an axle suspension type suspension device, for example. Specifically, as shown in FIG. 8, the steering device 1 inserts bolts 40 through which through holes provided in the mounting plate portion 39 of the housing 2 are inserted into the vehicle body frame 41 via a pair of leaf springs 42. By screwing into a screw hole formed in the axle 43 supported by the vehicle and further tightening the screw hole, the axle 43 is supported and fixed to the vehicle body frame 41. Each tip of the pair of tie rods 31 is swingably connected to the tip of the arm 45 of the knuckle 44. Further, each of the knuckles 44 is rotatably supported by steering wheels via hub unit bearings (not shown).
  • the steering device 1 is electrically combined with a steering device having a control stick such as a steering wheel via a controller (ECU) to form a steer-by-wire type steering device.
  • the controller calculates the steering angle given to the steering wheels based on the amount of operation of the steering wheel acquired by the sensor and, if necessary, the traveling speed of the vehicle. ..
  • the controller determines the steering angle given to the steering wheels based on the surrounding conditions, the moving distance, the moving direction, etc. of the vehicle acquired by various sensors. calculate.
  • the controller simultaneously energizes the electric motors 7a and 7b of the steering device 1 according to the calculated steering angle to generate the worm 38. It is driven to rotate.
  • the worm 38 By rotating the worm 38, the worm wheel 37 that meshes with the worm 38 is rotated, and the ball nuts 4a and 4b coupled to the worm wheel 37 via the sleeve 36 are rotated in the same direction and at the same speed.
  • the ball nuts 4a and 4b rotate, the ball 6 moves between the inner diameter side ball screw groove 21 and the outer diameter side ball screw groove 35, and the ball screw shaft 3 is displaced in the axial direction (width direction). To do.
  • the speed reducers 8a and 8b, the ball nuts 4a and 4b, and the ball 6 convert the rotational movement of the output shafts of the electric motors 7a and 7b into the linear movement of the ball screw shaft 3 which is the linear movement shaft.
  • a conversion mechanism is configured.
  • the ball screw shaft 3 when the ball screw shaft 3 is displaced to one side in the axial direction to steer the steering wheel in a predetermined direction to the steering limit (so-called end contact), the ball screw shaft 3 is formed.
  • the shaft-side stopper surface 29 of the guide sleeve 25b externally fitted to the small-diameter portion 23b on the other side in the axial direction abuts on the housing-side stopper surface 15 of the small-diameter tubular portion 9b on the other side in the axial direction in the housing 2. It is prevented that the ball screw shaft 3 is further displaced to one side in the axial direction.
  • the steering limit in the predetermined direction is set by bringing the shaft-side stopper surface 29 of the guide sleeve 25b on the other side in the axial direction into contact with the housing-side stopper surface 15 of the small-diameter tubular portion 9b on the other side in the axial direction. It stipulates.
  • the guide sleeves 25a and 25b have a stopper function to prevent the ball screw shaft 3 from being excessively displaced in the axial direction.
  • a stopper function the ball 6 is prevented from being pressed against the end of the ball screw groove 21 on the inner diameter side of the ball screw shaft 3 or riding on the end of the ball screw groove 21 on the inner diameter side.
  • the axially inner ends of the guide sleeves 25a and 25b are prevented from colliding with the axially outer ends of the ball nuts 4a and 4b.
  • the steering device further has a reaction force applying motor that applies a reaction force corresponding to the steering amount of the control stick to the control stick. Therefore, when the driver operates the control stick while the vehicle is traveling in the normal operation mode, an operation reaction force corresponding to the amount of operation of the control stick is applied to the control stick. On the other hand, when the vehicle is traveling in the automatic driving mode, the control stick does not rotate even when the steering wheel is provided with a steering angle by the steering device 1.
  • the ball screw shaft 3 is driven by a pair of electric motors 7a and 7b to simultaneously rotate and drive the ball nuts 4a and 4b via the speed reducers 8a and 8b.
  • the steering device 1 of this example includes a pair of electric motors 7a and 7b, it is impossible to energize the electric motor 7a (or 7b) of any one of the pair of electric motors 7a and 7b.
  • the ball screw shaft 3 can be displaced in the axial direction and the steering wheel can be provided with a steering angle by driving only the other electric motor 7b (or 7a).
  • the outer diameter side ball screw groove of the one ball nut 4a (or 4b) is used.
  • the ball 6 moves between the 35 and the ball screw groove 21 on the inner diameter side of the ball screw shaft 3.
  • the range in which the electric motor 7b (or 7a) can be output is larger than that when steering is performed by a pair of electric motors 7a and 7b. Of these, it is necessary to use it in a region where the output torque is relatively high and the efficiency is low. Further, when steering is performed with only one electric motor 7b (or 7a), the obtained steering force is also small, and for example, it may be difficult to give (stationary) the steering angle while the vehicle is stopped. There is sex. However, even in this case, if the vehicle is moved even slightly to rotate the steering wheels, the load applied to the electric motor 7b (or 7a) can be reduced, and the steering wheels can be provided with a steering angle.
  • each of the pair of electric motors 7a and 7b is configured to rotationally drive separate ball nuts 4a and 4b to displace the ball screw shaft 3 in the axial direction.
  • the ball screw shaft is driven by rotating one ball nut to rotate the radial dimensions of the ball nuts 4a and 4b. It can be kept small as compared with the structure in which 3 is displaced in the axial direction.
  • the electric actuators 47a and 47b which are formed by combining the ball nuts 4a and 4b, the bearing devices 5a and 5b, the speed reducers 8a and 8b, and the electric motors 7a and 7b, respectively.
  • the degree of freedom in the installation position of the electric actuators 47a and 47b in the axial direction (width direction) can be increased.
  • the pair of electric actuators 47a and 47b are arranged near the center in the width direction, specifically, on both side portions of the housing 2 with the center position in the width direction in between.
  • the ball nuts 4a and 4b are arranged on the most central side in the width direction.
  • the ball nuts 4a and 4b are arranged close to each other near the center in the width direction. Therefore, by rotationally driving the ball nuts 4a and 4b, the ball screw shaft 3 screwed into each of the ball nuts 4a and 4b via the ball 6 is displaced in the axial direction.
  • a structure in which a pair of ball nuts 4a and 4b are arranged so as to be largely separated from each other in the width direction (for example, in a double pinion type power steering device), a steering wheel is applied so that an unreasonable force (force in the twisting direction) is applied to 3.
  • an unreasonable force force in the twisting direction
  • the force is applied near the ends on both sides of the rack shaft in the width direction). Can be done.
  • the length in the axial direction of the inner diameter side ball screw groove 21 provided on the outer peripheral surface of the large diameter portion 22 of the ball screw shaft 3 The ball size (formation range in the axial direction) can also be shortened. Therefore, the processing cost of the ball screw groove 21 on the inner diameter side can be suppressed low, and the small diameter portions 23a and 23b can be provided on both side portions of the ball screw shaft 3 in the axial direction, and the small diameter portions 23a and 23b can be provided.
  • Guide sleeves 25a and 25b can be arranged around the respective guide sleeves 25a and 25b.
  • each of the guide sleeves 25a and 25b transmits the steering reaction force applied in the radial direction of the ball screw shaft 3 to the housing 2, and the vehicle body via the housing 2. It has a function to be supported by.
  • the ball nuts 4a and 4b are arranged close to each other near the center in the width direction, but separated from each other.
  • the actuator accommodating portions 10a and 10b accommodating the electric actuators 47a and 47b including the ball nuts 4a and 4b are present in the lower part of the vehicle body and around the axle 43 (for example, the oil pan 48 and the like). ) Is prevented from interfering with.
  • the pair of ball nuts 4a and 4b it is preferable to arrange the pair of ball nuts 4a and 4b as close to each other as possible, most preferably adjacent to each other.
  • the pair of ball nuts 4a and 4b are arranged as close as possible to each other as long as they do not interfere with the members existing around the axle 43.
  • the members constituting the electric actuators 47a and 47b are directed from the center side in the width direction to the outside, and the ball nuts 4a and 4b, the bearing devices 5a and 5b, the reduction gears 8a and 8b, and the electric motor 7a. They are arranged in the order of 7b.
  • the ball nuts 4a and 4b are arranged on the most central side in the width direction, the arrangement of other members is not particularly limited.
  • the bearing devices 5a and 5b may be arranged outside the worm wheel 37 of the speed reducers 8a and 8b in the width direction.
  • the worm wheels 37 of the speed reducers 8a and 8b can be arranged around the ball nuts 4a and 4b so as to rotate integrally with the ball nuts 4a and 4b.
  • the tie rod 31 is connected to both ends of the ball screw shaft 3 in the axial direction via the spherical joint 30, and the tip of the arm 45 of the knuckle 44 is connected to the tip of the tie rod 31. It is connected so that it can swing. Therefore, when the steering device 1 of this example is driven to give a steering angle to the steering wheels (steering is performed), a reaction force due to steering is applied to the ball screw shaft 3 depending on the angle of the arm 45. On the other hand, it may be added in the radial direction (front-back direction).
  • the pair of shaft-side flat surface portions 26 arranged on the front and rear side portions of the outer peripheral surfaces of the pair of guide sleeves 25a and 25b are provided on the small-diameter tubular portions 9a and 9b of the housing 2, respectively. It is in sliding contact with or close to the flat surface portion 12 on the housing side arranged on both front and rear portions of the inner peripheral surface. Therefore, when the reaction force due to the steering is applied to the ball screw shaft 3 in the radial direction, the shaft-side flat surface portions 26 of the guide sleeves 25a and 25b are pressed against the housing-side flat surface portions 12 of the small-diameter tubular portions 9a and 9b.
  • the reaction force applied to the ball screw shaft 3 in the radial direction due to steering is transmitted to the vehicle body via the guide sleeves 25a and 25b and the housing 2, and is supported by the vehicle body. Therefore, according to the steering device 1 of this example, it is possible to prevent the steering reaction force in the radial direction from being applied to the conversion mechanism including the reduction gears 8a and 8b, the ball nuts 4a and 4b, and the ball 6. it can. Specifically, even when a reaction force due to steering is applied in the radial direction with respect to the ball screw shaft 3, the rolling surface of the ball 6 is the ball screw groove 21 on the inner diameter side of the ball screw shaft 3 and the ball nut.
  • a pair of shaft-side flat surface portions 26 arranged on both front and rear portions of the outer peripheral surface are in sliding contact with each other or are in close contact with each other.
  • the inner peripheral surfaces of the small diameter tubular portions 9a and 9b of the housing 2 and the outer peripheral surfaces of the pair of guide sleeves 25a and 25b are non-circularly fitted. It's enough. Further, when a steering reaction force in the radial direction is applied to the ball screw shaft 3, a pair of guide sleeves and front and rear side portions of the inner peripheral surfaces of the small diameter tubular portions 9a and 9b of the housing 2 come into contact with each other.
  • the front and rear side portions of the outer peripheral surfaces of 25a and 25b do not necessarily have to be flat surfaces as long as they are in sliding contact with each other or are in close contact with each other.
  • the steering device of the present invention has a flat surface portion on the housing side at at least one position with respect to the circumferential direction of the inner peripheral surface of the portion of the housing that internally fits and holds each of the pair of guide sleeves.
  • each outer peripheral surface of the pair of guide sleeves can be configured to have a shaft-side flat surface portion that is close to the housing-side flat surface portion or that can be slidably opposed to the housing-side flat surface portion.
  • the front and rear side portions of the outer peripheral surfaces of the pair of guide sleeves are slidably contacted or close to the front and rear side portions of the inner peripheral surface of the portion of the housing that internally fits and holds each of the pair of guide sleeves. Make them face each other.
  • the outer circumferences of the pair of guide sleeves are formed on concave curved surfaces provided on both front and rear portions of the inner peripheral surface of the portion of the housing that internally fits and holds each of the pair of guide sleeves.
  • Convex curved surfaces provided on both front and rear portions of the surface can be slidably contacted or close to each other.
  • each of the pair of guide sleeves 25a and 25b is configured by combining a pair of sleeve elements 46. Therefore, by sandwiching one or a plurality of shim plates between the sleeve element 46 and the small diameter portions 23a and 23b of the ball screw shaft 3, the outer peripheral surfaces of the guide sleeves 25a and 25b and the small diameter of the housing 2 are held. The gap between the inner peripheral surfaces of the tubular portions 9a and 9b can be adjusted. That is, the inner peripheral surfaces of the small diameter tubular portions 9a and 9b without excessively increasing the shape accuracy of the small diameter tubular portions 9a and 9b of the housing 2, the small diameter portions 23a and 23b of the ball screw shaft 3, and the guide sleeves 25a and 25b. Since the rattling of the outer peripheral surfaces of the guide sleeves 25a and 25b can be sufficiently suppressed, the cost can be reduced.
  • each of the guide sleeves 25a and 25b may be integrally formed as a whole, that is, in a tubular shape.
  • each of the guide sleeves 25a and 25b can be configured by combining three or more sleeve elements.
  • the steering device 1 is applied to a steer-by-wire type steering device of a vehicle equipped with a leaf spring type suspension device among the axle suspension types.
  • the steering device of the present invention is not limited to the leaf spring type, and can be applied to a steer-by-wire type steering device of a vehicle provided with a coil spring type suspension device.
  • the steering device of the present invention can also be applied to a steer-by-wire type steering device of a vehicle provided with an independent suspension type suspension device.
  • the steering device of the present invention is not limited to the steering device of a large vehicle such as a truck, and can be incorporated into a steering device for a passenger car.
  • the steering device 1 of this example includes a pair of ball nuts 4a and 4b, bearing devices 5a and 5b, electric motors 7a and 7b, and speed reducers 8a and 8b, respectively.
  • the steering device of the present invention may also include three or more ball nuts and bearing devices, and three or more electric motors and speed reducers.
  • the steering device of the present invention may be configured such that one ball nut is rotationally driven by a plurality of electric motors. That is, the output torque of the plurality of electric motors can be increased by the speed reducer provided for each electric motor, and then applied to one ball nut.
  • a rack and pinion mechanism or a sliding screw is used instead of the ball screw mechanism.
  • a mechanism, a planetary roller screw mechanism, or the like can also be adopted.
  • the housing has a pair of housing-side stopper surfaces that face opposite to each other in the axial direction, and each of the linear motion shaft or the pair of guide sleeves has a pair of housing-side stopper surfaces. It has a pair of shaft-side stopper surfaces facing each other.
  • the pair of housing-side stopper surfaces are provided on one side portion in the axial direction and the other side portion in the axial direction of the housing so as to face outward in the axial direction.
  • Each of the pair of shaft-side stopper surfaces is provided on each of the pair of guide sleeves so as to face inward in the axial direction.
  • the housing side stopper surface provided on one side portion in the axial direction of the pair of housing side stopper surfaces and the axial one side of the pair of guide sleeves are provided on one side portion in the axial direction of the pair of housing side stopper surfaces and the axial one side of the pair of guide sleeves.
  • each outer peripheral surface of the guide sleeve has a flat surface portion on the housing side and a flat surface portion on the shaft side that is close to each other or can be slidably contacted.
  • the linear motion shaft is a ball screw shaft having an inner diameter side ball screw groove on the outer peripheral surface.
  • the conversion mechanism has an outer diameter side ball screw groove on the inner peripheral surface and is rotationally driven by the electric motor, and between the inner diameter side ball screw groove and the outer diameter side ball screw groove.
  • the steering device according to any one of (1) to (4), comprising a plurality of balls rotatably arranged on the ball.
  • each of the guide sleeves is a combination of a plurality of sleeve elements.
  • a holding recess for holding grease is provided on the outer peripheral surface of each of the guide sleeves and / or the inner peripheral surface of the portion of the housing that internally fits and holds each of the guide sleeves.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Steering Mechanism (AREA)

Abstract

[Problem] To achieve a structure that can obtain sufficient steering force and ensure a failsafe operastion while using an electric motor in a region with excellent efficiency. [Solution] This steering device 1 rotationally drives ball nuts 4a, 4b with a pair of electric motors 7a, 7b via reducers 8a, 8b, and applies a steering angle to a steering wheel by pushing and pulling a tie rod 31 by displacing a ball screw shaft 3 through rotary motion of the electric motors 7a, 7b.

Description

転舵装置Steering device
 本発明は、ステアバイワイヤ方式のステアリング装置に組み込まれる、転舵装置に関する。 The present invention relates to a steering device incorporated in a steer-by-wire type steering device.
<第一の背景技術>
 自動車用の懸架装置(サスペンション装置)には、左右の車輪を別々のサスペンションにより独立して支持する独立懸架式のものと、左右の車輪を1本の車軸で連結し、この車軸をサスペンションで支持する車軸懸架式(リジットアクスル式)のものとがある。このうち、車軸懸架式の懸架装置は、構造が単純で、かつ、耐久性が高いため、トラックなどの大型車両で採用されている。
<First background technology>
Suspension devices for automobiles include an independent suspension system in which the left and right wheels are independently supported by separate suspensions, and a suspension device in which the left and right wheels are connected by a single axle and the axles are supported by the suspension. There is an axle suspension type (rigid axle type). Of these, the axle suspension type suspension system is used in large vehicles such as trucks because of its simple structure and high durability.
 トラックなどの大型車両では、エンジンなどの動力源の上に運転席(キャブ)が配置されたキャブオーバ型の構造が採用される。このようなキャブオーバ型の車両に搭載されるステアリング装置では、運転者がステアリングホイールを操作する(回転させる)と、このステアリングホイールの回転は、ステアリングシャフトにより、ステアリングギヤボックスの入力軸に伝達される。この入力軸の回転は、ステアリングギヤボックスによりピットマンアームの揺動運動(首振り運動)に変換される。ピットマンアームは、ドラッグリンクおよびナックルアームを介して、1対の操舵輪(通常は前輪)のうちの一方の操舵輪(たとえば右前輪)に接続され、かつ、一方の操舵輪は、タイロッドおよびタイロッドアームを介して他方の操舵輪(たとえば左前輪)に接続されている。したがって、ステアリングホイールの回転に伴ってピットマンアームが揺動すると、ドラッグリンクが前後方向に押し引きされて、ナックルアームが揺動し、一方の操舵輪に舵角が付与されると同時に、タイロッドが幅方向に押し引きされ、タイロッドアームが揺動し、他方の操舵輪に舵角が付与される。 For large vehicles such as trucks, a cab-over type structure is adopted in which the driver's seat (cab) is placed above the power source such as the engine. In a steering device mounted on such a cab-over type vehicle, when the driver operates (rotates) the steering wheel, the rotation of the steering wheel is transmitted to the input shaft of the steering gear box by the steering shaft. .. The rotation of the input shaft is converted into a swinging motion (swinging motion) of the pitman arm by the steering gear box. The pitman arm is connected to one of a pair of steered wheels (usually the front wheels) (eg, the right front wheel) via a drag link and a knuckle arm, and one steered wheel is a tie rod and a tie rod. It is connected to the other steering wheel (for example, the left front wheel) via an arm. Therefore, when the pitman arm swings with the rotation of the steering wheel, the drag link is pushed and pulled in the front-rear direction, the knuckle arm swings, the steering angle is given to one steering wheel, and at the same time, the tie rod is released. Pushed and pulled in the width direction, the tie rod arm swings, and a steering angle is given to the other steering wheel.
 また、ステアリング装置には、運転者がステアリングホイールを操作するのに要する力を軽減するためのパワーステアリング装置が組み込まれる。パワーステアリング装置には、補助動力源として電動モータを利用する電動式のものと、油圧を利用する油圧式のものとがある。トラックなどの大型車両では、大きな補助トルクを得られる油圧式のパワーステアリング装置が採用されている。 In addition, the steering device incorporates a power steering device for reducing the force required for the driver to operate the steering wheel. There are two types of power steering devices: an electric type that uses an electric motor as an auxiliary power source and a hydraulic type that uses hydraulic pressure. Large vehicles such as trucks employ a hydraulic power steering device that can obtain a large auxiliary torque.
<第二の背景技術> <Second background technology>
 ステアバイワイヤ方式のステアリング装置は、ステアリングホイールなどの操縦桿を有する操舵装置と、該操舵装置に電気的に接続された、1対の操舵輪に舵角を付与するための転舵装置とを備える。このうちの転舵装置は、電動モータを動力源として、車体の幅方向に配置された直動軸を軸方向に変位させ、該直動軸の軸方向両側の端部に接続された1対のタイロッドを押し引きしてナックルアームを揺動させることにより、1対の操舵輪に舵角を付与する。 The steer-by-wire type steering device includes a steering device having a steering rod such as a steering wheel, and a steering device for imparting a steering angle to a pair of steering wheels electrically connected to the steering device. .. Of these, the steering device uses an electric motor as a power source to displace the linear motion shafts arranged in the width direction of the vehicle body in the axial direction, and is connected to both ends of the linear motion shafts in the axial direction. By pushing and pulling the tie rods to swing the knuckle arm, a steering angle is given to the pair of steering wheels.
 特開2005-319898号公報(特許文献1)には、ステアバイワイヤ方式のステアリング装置を構成する転舵装置として使用可能な構造が記載されている。特開2005-319898号公報に記載の転舵装置は、ボールねじ機構を利用したもので、外周面に内径側ボールねじ溝を有する回転ラックを電動モータにより回転駆動し、回転ラックと該回転ラックの両端に接続された非回転ラックとからなるラック(直動軸)を直動運動させることに基づいて、操舵輪に舵角を付与する。 Japanese Unexamined Patent Publication No. 2005-31998 (Patent Document 1) describes a structure that can be used as a steering device constituting a steer-by-wire type steering device. The steering device described in JP-A-2005-319988 uses a ball screw mechanism, and a rotary rack having an inner diameter side ball screw groove on the outer peripheral surface is rotationally driven by an electric motor to rotate the rotary rack and the rotary rack. A steering angle is given to the steering wheel based on the linear motion of a rack (linear motion shaft) composed of non-rotating racks connected to both ends of the wheel.
特開2005-319898号公報Japanese Unexamined Patent Publication No. 2005-31998
<第一の背景技術に関する課題>
 ところで、近年、運転者の負担を軽減するため、追従走行や隊列走行を含む自動運転技術の研究が進められている。車両が自動運転モードで走行しているときは、車両の周囲の状況や移動距離、移動方向などを各種センサにより取得し、これらのセンサからの情報に基づいて適切な舵角を求め、アクチュエータにより操舵輪に舵角を付与する。
<Issues related to the first background technology>
By the way, in recent years, in order to reduce the burden on the driver, research on automatic driving technology including follow-up driving and platooning has been promoted. When the vehicle is traveling in the automatic driving mode, various sensors acquire the surrounding conditions, moving distance, moving direction, etc. of the vehicle, obtain an appropriate steering angle based on the information from these sensors, and use an actuator. Gives the steering wheel a steering angle.
 トラックなどの大型車両において、自動運転を実現するために、パワーステアリング装置の補助動力源である油圧アクチュエータを、操舵輪に舵角を付与するアクチュエータとして使用することが考えられる。しかしながら、実際には、ステアリング装置を構成する各部材同士の接続部に存在するガタや遊び(不感帯)、油圧アクチュエータの不感帯などの影響により、舵角の細やかな調節が難しいといった問題が生じる。また、パワーステアリング装置の補助動力源を使用して、自動運転を実現すると、車両が自動運転モードで走行中に、舵角の調節に伴いステアリングホイールが回転し、車両の搭乗者に違和感を与える可能性がある。 In a large vehicle such as a truck, in order to realize automatic driving, it is conceivable to use a hydraulic actuator, which is an auxiliary power source of the power steering device, as an actuator for imparting a steering angle to the steering wheels. However, in reality, there arises a problem that it is difficult to finely adjust the steering angle due to the influence of play and play (dead zone) existing at the connection portion between the members constituting the steering device, and the dead zone of the hydraulic actuator. In addition, if automatic driving is realized by using the auxiliary power source of the power steering device, the steering wheel will rotate as the steering angle is adjusted while the vehicle is running in the automatic driving mode, giving the occupants of the vehicle a sense of discomfort. there is a possibility.
 そこで、自動運転モードを備える車両では、ステアリング装置として、電動モータを駆動源として操舵輪に舵角を付与する、ステアバイワイヤ方式のものを使用することが好ましい。ステアバイワイヤ方式のステアリング装置は、ステアリングホイールなどの操縦桿を有する操舵装置と、電動モータを動力源として操舵輪に舵角を付与する転舵装置とを電気的に接続してなる。 Therefore, in a vehicle equipped with an automatic driving mode, it is preferable to use a steering device of a steer-by-wire system in which a steering wheel is given a steering angle by using an electric motor as a drive source. The steer-by-wire type steering device is formed by electrically connecting a steering device having a steering rod such as a steering wheel and a steering device that gives a steering angle to the steering wheels by using an electric motor as a power source.
 特開2005-319898号公報(特許文献1)には、ステアバイワイヤ方式のステアリング装置を構成する転舵装置として使用可能な構造が記載されている。特開2005-319898号公報に記載の転舵装置は、ボールねじ装置を利用したもので、ボールねじ軸(ラック)を、ダイレクトドライブ方式の電動モータにより回転させ、該ボールねじ軸を直動運動させることにより、操舵輪に舵角を付与する。特開2005-319898号公報に記載の転舵装置は、1個の電動モータを駆動源としているため、トラックなどの大型車両に組み込んだ場合に、電動モータが出力可能なトルク範囲のうち、比較的出力トルクが低く、かつ、効率の良い領域を使用できなかったり、転舵力が不足して、たとえば、車両の停止中に舵角を付与(据え切り)することが難しくなったりする可能性がある。大型車両に適用した場合であっても、効率の良い領域で使用しつつ、十分な転舵力を得るためには、電動モータとして出力(定格トルク)が大きく、かつ、大型なものを使用する必要がある。しかしながら、定格トルクが大きくかつ大型の電動モータを使用すると、該電動モータの設置位置が限定されて、設計の自由度が低下したり、コストを低減しにくくなったりする可能性がある。また、特開2005-319898号公報に記載の転舵装置は、電動モータを1個しか備えていないため、該電動モータへの電力供給が不能になった場合、車両の操舵が行えなくなる。 Japanese Unexamined Patent Publication No. 2005-31998 (Patent Document 1) describes a structure that can be used as a steering device constituting a steer-by-wire type steering device. The steering device described in JP-A-2005-319988 uses a ball screw device, and the ball screw shaft (rack) is rotated by a direct drive type electric motor to move the ball screw shaft in a linear motion. By causing the steering wheel to have a steering angle. Since the steering device described in Japanese Patent Application Laid-Open No. 2005-319988 uses one electric motor as a drive source, the torque range that can be output by the electric motor when incorporated in a large vehicle such as a truck is compared. There is a possibility that the target output torque is low and an efficient area cannot be used, or the steering force is insufficient, for example, it becomes difficult to give (stationary) the steering angle while the vehicle is stopped. There is. Even when applied to a large vehicle, in order to obtain sufficient steering force while using it in an efficient area, use a large electric motor with a large output (rated torque). There is a need. However, when a large electric motor having a large rated torque is used, the installation position of the electric motor is limited, which may reduce the degree of freedom in design or make it difficult to reduce the cost. Further, since the steering device described in Japanese Patent Application Laid-Open No. 2005-319988 includes only one electric motor, if the power supply to the electric motor becomes impossible, the vehicle cannot be steered.
 本発明は、上述のような事情に鑑みて、電動モータを効率の良い領域で使用しつつ、十分な転舵力を得られ、かつ、フェールセーフを確保することができる、転舵装置の構造を実現することを目的としている。 In view of the above circumstances, the present invention has a structure of a steering device capable of obtaining a sufficient steering force and ensuring fail-safe while using the electric motor in an efficient region. The purpose is to realize.
<第二の背景技術に関する課題> <Issues related to the second background technology>
 ところで、転舵装置を駆動して、操舵輪に舵角を付与する(転舵を行う)と、該操舵輪の舵角の大きさ、すなわち、ナックルアームの揺動角度によっては、転舵に伴う反力が、直動軸に対してラジアル方向(具体的には車体の前後方向)に加わることがある。このようなラジアル方向の転舵反力は、操舵輪の舵角が大きくなるほど大きくなる。転舵反力が直動軸に対しラジアル方向に加わると、該転舵反力が、電動モータの出力軸の回転運動を直動軸の直動運動に変換する変換機構に加わる可能性がある。特に、特開2005-319898号公報に記載の転舵装置では、変換機構としてボールねじ機構を利用している。このため、転舵反力が直動軸に対しラジアル方向に加わると、ボールねじ機構を構成するボールが、回転ラックの外周面に備えられた内径側ボールねじ溝や、ねじナットの内周面に備えられた外径側ボールねじ溝に強く押し付けられて、ボールねじ機構の寿命が低下したり、内径側ボールねじ溝や外径側ボールねじ溝に圧痕が形成されるなどして、異音や振動が発生したりする可能性がある。  By the way, when the steering device is driven to give a steering angle to the steering wheels (steering is performed), the steering is performed depending on the size of the steering angle of the steering wheels, that is, the swing angle of the knuckle arm. The accompanying reaction force may be applied in the radial direction (specifically, the front-rear direction of the vehicle body) with respect to the linear motion axis. The steering reaction force in the radial direction increases as the steering angle of the steering wheel increases. When the steering reaction force is applied in the radial direction with respect to the linear motion shaft, the steering reaction force may be applied to the conversion mechanism that converts the rotational motion of the output shaft of the electric motor into the linear motion of the linear motion shaft. .. In particular, in the steering device described in Japanese Patent Application Laid-Open No. 2005-3199898, a ball screw mechanism is used as a conversion mechanism. Therefore, when the steering reaction force is applied in the radial direction with respect to the linear motion shaft, the balls constituting the ball screw mechanism are transferred to the inner diameter side ball screw groove provided on the outer peripheral surface of the rotary rack and the inner peripheral surface of the screw nut. The ball screw mechanism is strongly pressed against the outer diameter side ball screw groove provided in the above, and the life of the ball screw mechanism is shortened, or indentations are formed on the inner diameter side ball screw groove and the outer diameter side ball screw groove, resulting in abnormal noise. And vibration may occur.
本発明は、上述のような事情に鑑みて、電動モータの出力軸の回転運動を直動軸の軸方向の直動運動に変換する変換機構に、ラジアル方向の転舵反力が加わるのを防止することができる、転舵装置の構造を実現することを目的としている。  In view of the above circumstances, the present invention considers that a steering reaction force in the radial direction is applied to a conversion mechanism that converts the rotational motion of the output shaft of the electric motor into the linear motion in the axial direction of the linear motion shaft. The purpose is to realize a structure of a steering device that can be prevented.
<第一の背景技術に関する課題を解決するための手段> 本発明の転舵装置は、 ハウジングと、 外周面に内径側ボールねじ溝を有し、前記ハウジングの内側に、軸方向に関する変位を可能に、かつ、回転を不能に支持されたボールねじ軸と、 内周面に外径側ボールねじ溝を有し、かつ、前記ボールねじ軸の周囲に該ボールねじ軸に対する相対回転を可能に配置された、複数個のボールナットと、 前記ボールナットを前記ハウジングに対し回転自在に支持する軸受装置と、 前記内径側ボールねじ溝と前記外径側ボールねじ溝との間に転動自在に配置された複数個のボールと、 複数個の電動モータと、 前記電動モータの出力トルクを増大させてから前記ボールナットに付与する、前記電動モータと同数の減速機と、を備える。  <Means for Solving the Problem Related to the First Background Technology> The steering device of the present invention has a housing and a ball screw groove on the inner diameter side on the outer peripheral surface, and can be displaced in the axial direction inside the housing. In addition, it has a ball screw shaft that is supported so that it cannot rotate, and a ball screw groove on the outer diameter side on the inner peripheral surface, and is arranged around the ball screw shaft so that it can rotate relative to the ball screw shaft. A plurality of ball nuts, a bearing device that rotatably supports the ball nuts with respect to the housing, and a ball screw groove on the inner diameter side and a ball screw groove on the outer diameter side are rotatably arranged. A plurality of balls, a plurality of electric motors, and the same number of speed reducers as the electric motor, which are applied to the ball nut after increasing the output torque of the electric motor, are provided.
本発明の転舵装置は、前記ボールナットを、前記電動モータと同数備えることができる。  The steering device of the present invention may include the same number of ball nuts as the electric motor.
本発明の転舵装置は、前記ボールナットと前記軸受装置と前記電動モータと前記減速機とを、それぞれ1対ずつ備えることができる。この場合、前記ボールナットと前記軸受装置と前記電動モータと前記減速機とを、前記ハウジングの幅方向中央位置を挟んだ両側部分に、それぞれ1個ずつ配置し、かつ、前記ボールナットと前記軸受装置と前記電動モータと前記減速機とのうち、前記ボールナットを、前記ハウジングの幅方向中央位置に最も近い側に配置することが好ましい。さらに、前記ボールナットを、幅方向中央位置を挟んで離隔した状態で、前記ハウジングを介して隣接して配置することができる。  The steering device of the present invention may include a pair of each of the ball nut, the bearing device, the electric motor, and the speed reducer. In this case, the ball nut, the bearing device, the electric motor, and the speed reducer are arranged one by one on both side portions of the housing with the center position in the width direction, and the ball nut and the bearing are provided. Of the device, the electric motor, and the speed reducer, it is preferable that the ball nut is arranged on the side closest to the center position in the width direction of the housing. Further, the ball nuts can be arranged adjacent to each other via the housing in a state of being separated from each other with the central position in the width direction interposed therebetween.
本発明の転舵装置では、前記減速機をウォーム減速機とすることができる。  In the steering device of the present invention, the speed reducer can be a worm speed reducer.
本発明の転舵装置では、前記ハウジングを、複数のハウジング素子を組み合わせてなるものとすることができる。  In the steering device of the present invention, the housing can be made by combining a plurality of housing elements.
<第二の背景技術に関する課題を解決するための手段>  <Means for solving problems related to the second background technology>
本発明の転舵装置は、 ハウジングと、 電動モータと、 前記ハウジングの内側に、軸方向の変位を可能に支持された直動軸と、 前記電動モータの出力軸の回転運動を前記直動軸の軸方向の直動運動に変換する変換機構と、 前記直動軸のうち、軸方向両側の端部に、軸方向の変位および回転を不能に外嵌され、かつ、前記ハウジングに、軸方向の変位を可能に、回転を不能に内嵌された1対のガイドスリーブと、を備える。  The steering device of the present invention has a housing, an electric motor, a linear motion shaft supported inside the housing so as to be displaced in the axial direction, and a rotary motion of the output shaft of the electric motor. A conversion mechanism that converts the linear motion into the axial motion of the shaft, and an axial displacement and rotation are impossibly fitted to the ends of the linear motion shaft on both sides in the axial direction, and the housing is axially fitted. It is provided with a pair of guide sleeves, which are internally fitted so that they cannot be rotated.
前記ハウジングは、軸方に関して互いに反対側を向いた1対のハウジング側ストッパ面を有し、かつ、前記直動軸または前記1対のガイドスリーブのそれぞれは、前記1対のハウジング側ストッパ面のそれぞれに対向する軸側ストッパ面を有することができる。この場合、前記直動軸を軸方向片側に向けて限界まで変位させると、前記1対のハウジング側ストッパ面のうちの一方のハウジング側ストッパ面と、前記1対の軸側ストッパ面のうちで前記一方のハウジング側ストッパ面に対向する一方の軸側ストッパ面とが当接して、前記直動軸がそれ以上軸方向片側に向けて変位することが阻止される。一方、前記直動軸を軸方向他側に向けて限界まで変位させると、前記1対のハウジング側ストッパ面のうちの他方のハウジング側ストッパ面と、前記1対の軸側ストッパ面のうちで前記他方のハウジング側ストッパ面に対向する他方の軸側ストッパ面とが当接して、前記直動軸がそれ以上軸方向他側に向けて変位することが阻止される。  The housing has a pair of housing-side stopper surfaces that face opposite sides with respect to the axial direction, and each of the linear motion shaft or the pair of guide sleeves has a pair of housing-side stopper surfaces. It can have shaft-side stopper surfaces facing each other. In this case, when the linear motion shaft is displaced to the limit toward one side in the axial direction, one of the pair of housing-side stopper surfaces and the pair of shaft-side stopper surfaces It is prevented that the linear motion shaft is further displaced toward one side in the axial direction due to the contact with the one shaft side stopper surface facing the one housing side stopper surface. On the other hand, when the linear motion shaft is displaced to the limit toward the other side in the axial direction, the other housing-side stopper surface of the pair of housing-side stopper surfaces and the pair of shaft-side stopper surfaces It is prevented that the linear motion shaft is further displaced toward the other side in the axial direction due to the contact with the other shaft side stopper surface facing the other housing side stopper surface.
具体的には、前記1対のハウジング側ストッパ面を、前記ハウジングの軸方向片側部分と軸方向他側部分とに、軸方向外側を向くようにして備え、かつ、前記1対の軸側ストッパ面のそれぞれを、前記1対のガイドスリーブのそれぞれに軸方向内側を向くようにして備えることができる。この場合、前記直動軸を軸方向片側に向けて限界まで変位させると、前記1対のハウジング側ストッパ面のうち、軸方向他側部分に備えられたハウジング側ストッパ面と、前記1対のガイドスリーブのうち、軸方向他側のガイドスリーブに備えられた軸側ストッパ面とが当接して、前記直動軸がそれ以上軸方向片側に向けて変位することが阻止される。一方、前記直動軸を軸方向他側に向けて限界まで変位させると、前記1対のハウジング側ストッパ面のうち、軸方向片側部分に備えられたハウジング側ストッパ面と、前記1対のガイドスリーブのうち、軸方向片側のガイドスリーブに備えられた軸側ストッパ面とが当接して、前記直動軸がそれ以上軸方向他側に向けて変位することが阻止される。  Specifically, the pair of housing-side stopper surfaces are provided on one side portion in the axial direction and the other side portion in the axial direction of the housing so as to face outward in the axial direction, and the pair of axial-side stoppers are provided. Each of the surfaces can be provided on each of the pair of guide sleeves so as to face inward in the axial direction. In this case, when the linear motion shaft is displaced to the limit toward one side in the axial direction, the housing-side stopper surface provided on the other side portion in the axial direction of the pair of housing-side stopper surfaces and the pair Of the guide sleeves, the shaft-side stopper surface provided on the guide sleeve on the other side in the axial direction comes into contact with the guide sleeve, and the linear motion shaft is prevented from being further displaced toward one side in the axial direction. On the other hand, when the linear motion shaft is displaced to the limit toward the other side in the axial direction, the housing-side stopper surface provided on one side portion in the axial direction of the pair of housing-side stopper surfaces and the pair of guides Of the sleeves, the shaft-side stopper surface provided on the guide sleeve on one side in the axial direction comes into contact with the sleeve, and the linear motion shaft is prevented from being further displaced toward the other side in the axial direction.
前記ハウジングのうち、前記ガイドスリーブのそれぞれを内嵌保持する部分の内周面の円周方向に関する少なくとも1箇所に、ハウジング側平坦面部をそれぞれ有し、前記ガイドスリーブのそれぞれの外周面に、前記ハウジング側平坦面部と近接対向ないし摺接可能な軸側平坦面部をそれぞれ有することができる。  The housing has flat surface portions on the housing side at least one of the housings in relation to the circumferential direction of the inner peripheral surface of the portion that internally fits and holds each of the guide sleeves, and the outer peripheral surface of each of the guide sleeves has the said. It is possible to have a flat surface portion on the housing side and a flat surface portion on the shaft side that are close to each other or slidable.
前記直動軸を、外周面に内径側ボールねじ溝を有するボールねじ軸とし、前記変換機構を、内周面に外径側ボールねじ溝を有し、かつ、前記電動モータにより回転駆動されるボールナットと、前記内径側ボールねじ溝と前記外径側ボールねじ溝との間に転動自在に配置された複数個のボールとを備えるものとすることができる。すなわち、前記変換機構を、ボールねじ機構により構成することができる。  The linear motion shaft is a ball screw shaft having an inner diameter side ball screw groove on the outer peripheral surface, and the conversion mechanism has an outer diameter side ball screw groove on the inner peripheral surface and is rotationally driven by the electric motor. A ball nut may be provided with a plurality of balls rotatably arranged between the inner diameter side ball screw groove and the outer diameter side ball screw groove. That is, the conversion mechanism can be configured by a ball screw mechanism.
本発明の転舵装置では、前記ガイドスリーブのそれぞれを、複数のスリーブ素子を組み合わせてなるものとすることができる。この場合、前記スリーブ素子と前記直動軸との間にシム板を挟持することができる。  In the steering device of the present invention, each of the guide sleeves can be made by combining a plurality of sleeve elements. In this case, the shim plate can be sandwiched between the sleeve element and the linear motion shaft.
本発明の転舵装置では、前記ガイドスリーブのそれぞれの外周面、および/または、前記ハウジングのうち、前記ガイドスリーブのそれぞれを内嵌保持する部分の内周面に、グリースを保持するための保持凹部を備えることができる。 In the steering device of the present invention, holding for holding grease on the outer peripheral surface of each of the guide sleeves and / or on the inner peripheral surface of the housing in which each of the guide sleeves is internally fitted and held. It can be provided with a recess.
<第一の背景技術に関する課題を解決する手段の効果>
 本発明の転舵装置によれば、電動モータを効率の良い領域で使用しつつ、十分な転舵力を得られ、かつ、フェールセーフを確保することができる。
<Effect of means to solve the problems related to the first background technology>
According to the steering device of the present invention, it is possible to obtain a sufficient steering force and ensure fail-safe while using the electric motor in an efficient region.
<第二の背景技術に関する課題を解決する手段の効果>
 本発明の転舵装置によれば、電動モータの出力軸の回転運動を直動軸の軸方向の直動運動に変換する変換機構に、ラジアル方向の転舵反力が加わるのを防止することができる。
<Effect of means to solve problems related to the second background technology>
According to the steering device of the present invention, it is possible to prevent a steering reaction force in the radial direction from being applied to a conversion mechanism that converts the rotational motion of the output shaft of the electric motor into the axial linear motion of the linear motion shaft. Can be done.
図1は、本発明の実施の形態の1例にかかる転舵装置を、車体の下方に支持固定した様子を示す斜視図である。FIG. 1 is a perspective view showing a state in which the steering device according to an example of the embodiment of the present invention is supported and fixed below the vehicle body. 図2は、本発明の実施の形態の1例にかかる転舵装置を示す斜視図である。FIG. 2 is a perspective view showing a steering device according to an example of the embodiment of the present invention. 図3は、本発明の実施の形態の1例にかかる転舵装置を示す平面図である。FIG. 3 is a plan view showing a steering device according to an example of the embodiment of the present invention. 図4は、図3のA-A断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 図5は、図3のB-B断面図である。FIG. 5 is a cross-sectional view taken along the line BB of FIG. 図6は、図4のC部拡大図である。FIG. 6 is an enlarged view of part C of FIG. 図7は、本発明の実施の形態の1例にかかる転舵装置の構成部材の一部を取り出して示す分解斜視図である。FIG. 7 is an exploded perspective view showing a part of the constituent members of the steering device according to an example of the embodiment of the present invention. 図8は、本発明の実施の形態の1例にかかる転舵装置を、車体の下方に支持固定した様子を示す斜視図である。FIG. 8 is a perspective view showing a state in which the steering device according to an example of the embodiment of the present invention is supported and fixed below the vehicle body. 図9は、本発明の実施の形態の1例にかかる転舵装置を示す斜視図である。FIG. 9 is a perspective view showing a steering device according to an example of the embodiment of the present invention. 図10は、本発明の実施の形態の1例にかかる転舵装置を示す平面図である。FIG. 10 is a plan view showing a steering device according to an example of the embodiment of the present invention. 図11は、図3のA-A断面図である。FIG. 11 is a cross-sectional view taken along the line AA of FIG. 図12は、図3のB-B断面図である。FIG. 12 is a cross-sectional view taken along the line BB of FIG. 図13は、図4のC部拡大図である。FIG. 13 is an enlarged view of part C of FIG. 図14は、本発明の実施の形態の1例にかかる転舵装置の構成部材の一部を取り出して示す分解斜視図である。FIG. 14 is an exploded perspective view showing a part of the constituent members of the steering device according to an example of the embodiment of the present invention.
<第一の背景技術に関する課題を解決する手段を実施するための形態>
 本発明の実施の形態の1例について、図1~図7を用いて説明する。本例の転舵装置1は、ハウジング2と、ボールねじ軸3と、1対のボールナット4a、4bと、1対の軸受装置5a、5bと、複数個のボール6と、1対の電動モータ7a、7bと、1対の減速機8a、8bとを備える。
<Form for implementing means to solve the problems related to the first background technology>
An example of the embodiment of the present invention will be described with reference to FIGS. 1 to 7. The steering device 1 of this example includes a housing 2, a ball screw shaft 3, a pair of ball nuts 4a and 4b, a pair of bearing devices 5a and 5b, a plurality of balls 6, and a pair of electric motors. It includes motors 7a and 7b and a pair of speed reducers 8a and 8b.
 ハウジング2は、炭素鋼などの鉄系合金により構成される。ただし、ハウジング2を、アルミニウム合金などの軽合金または合成樹脂などにより構成することもできる。本例では、ハウジング2は、幅方向両側に配置された1対の小径筒部9a、9bと、該小径筒部9a、9bのそれぞれの幅方向内側(幅方向中央側)に隣接する部分に配置された1対のアクチュエータ収容部10a、10bと、該1対のアクチュエータ収容部10a、10bの幅方向内側の端部同士を接続する連結筒部11とを備える。 Housing 2 is made of an iron-based alloy such as carbon steel. However, the housing 2 may be made of a light alloy such as an aluminum alloy or a synthetic resin. In this example, the housing 2 is located on a pair of small- diameter tubular portions 9a and 9b arranged on both sides in the width direction and portions adjacent to the inside (center side in the width direction) of the small- diameter tubular portions 9a and 9b, respectively. It includes a pair of actuator housing portions 10a and 10b arranged, and a connecting cylinder portion 11 for connecting the inner ends of the pair of actuator housing portions 10a and 10b in the width direction.
 なお、幅方向とは、特に断らない限り、転舵装置1を車体に取り付けた状態での、幅方向(図3、図4および図6の左右方向、図5の表裏方向)をいう。また、上下方向および前後方向とは、特に断らない限り、転舵装置1を車体に取り付けた状態での、上下方向(図3の表裏方向、図4~図6の上下方向)および前後方向(図3の上下方向、図4および図6の表裏方向、図5の左右方向)をいう。 Unless otherwise specified, the width direction refers to the width direction (horizontal direction in FIGS. 3, 4 and 6 and front and back directions in FIG. 5) when the steering device 1 is attached to the vehicle body. Further, unless otherwise specified, the vertical direction and the front-rear direction are the vertical direction (front and back directions in FIG. 3, the vertical direction in FIGS. 4 to 6) and the front-rear direction (in the state where the steering device 1 is attached to the vehicle body). Refers to the vertical direction of FIG. 3, the front and back directions of FIGS. 4 and 6, and the horizontal direction of FIG.
 小径筒部9a、9bのそれぞれは、ボールねじ軸3の軸方向(幅方向)両側部分を、軸方向変位を可能に、かつ、回転を不能に支持する。このために、本例の小径筒部9a、9bのそれぞれは、断面非円形の内周面を有する。具体的には、小径筒部9a、9bのそれぞれの内周面は、前後方向両側に配置された1対の平坦面部12と、該平坦面部12の上下方向両側縁同士をそれぞれ接続する部分円筒状の1対の凹曲面部13とを備える。小径筒部9a、9bのそれぞれは、凹曲面部13の幅方向内側の端部に径方向内方に突出したストッパ凸部14を有する。ストッパ凸部14は、幅方向外側の端面に、幅方向外側を向いた、ハウジング側ストッパ面15を有する。 Each of the small- diameter tubular portions 9a and 9b supports the axially (widthwise) side portions of the ball screw shaft 3 so that they can be displaced in the axial direction and cannot rotate. For this reason, each of the small diameter tubular portions 9a and 9b of this example has an inner peripheral surface having a non-circular cross section. Specifically, the inner peripheral surfaces of the small- diameter tubular portions 9a and 9b are partial cylinders that connect the pair of flat surface portions 12 arranged on both sides in the front-rear direction and the vertical side edges of the flat surface portions 12, respectively. It is provided with a pair of concave curved surface portions 13 having a shape. Each of the small- diameter tubular portions 9a and 9b has a stopper convex portion 14 protruding inward in the radial direction at an end portion on the inner side in the width direction of the concave curved surface portion 13. The stopper convex portion 14 has a housing-side stopper surface 15 facing outward in the width direction on an end surface on the outer side in the width direction.
 アクチュエータ収容部10a、10bのそれぞれは、大径筒部16と、ナット収容部17と、ウォーム収容部18とを備える。 Each of the actuator accommodating portions 10a and 10b includes a large-diameter tubular portion 16, a nut accommodating portion 17, and a worm accommodating portion 18.
 大径筒部16は、小径筒部9a、9bの幅方向内側に隣接して配置され、かつ、内径寸法および外径寸法が、小径筒部9a、9bの内径寸法および外径寸法よりも大きくなっている。 The large diameter cylinder portion 16 is arranged adjacent to the inside of the small diameter cylinder portions 9a and 9b in the width direction, and the inner diameter dimension and the outer diameter dimension are larger than the inner diameter dimension and the outer diameter dimension of the small diameter cylinder portions 9a and 9b. It has become.
 ナット収容部17は、大径筒部16の幅方向内側に隣接して配置されている。本例では、ナット収容部17は、幅方向内側に向かうほど外径寸法が小さくなる円すい台状の外周面を有し、かつ、内径寸法が、大径筒部16の内径寸法よりも小さくなっている。 The nut accommodating portion 17 is arranged adjacent to the inside of the large diameter tubular portion 16 in the width direction. In this example, the nut accommodating portion 17 has a conical trapezoidal outer peripheral surface whose outer diameter dimension becomes smaller toward the inside in the width direction, and the inner diameter dimension is smaller than the inner diameter dimension of the large diameter tubular portion 16. ing.
 ウォーム収容部18は、大径筒部16の中心軸に対しねじれの位置に存在する中心軸を有し、かつ、軸方向中間部が大径筒部16内に開口している。本例では、ウォーム収容部18は、大径筒部16の上側に配置されている。すなわち、ウォーム収容部18の軸方向中間部の下側部分が、大径筒部16の上側部分に開口している。 The worm accommodating portion 18 has a central axis that exists at a twisted position with respect to the central axis of the large-diameter tubular portion 16, and an axial intermediate portion is open in the large-diameter tubular portion 16. In this example, the worm accommodating portion 18 is arranged above the large diameter tubular portion 16. That is, the lower portion of the axially intermediate portion of the worm accommodating portion 18 is open to the upper portion of the large diameter tubular portion 16.
 連結筒部11は、幅方向中央位置から幅方向両側に向かうほど外径寸法が大きくなり、かつ、母線形状が円弧形の外周面と、円筒面状の内周面とを有する。 The connecting tubular portion 11 has an outer diameter dimension that increases from the central position in the width direction toward both sides in the width direction, and has an outer peripheral surface having an arc-shaped bus and an inner peripheral surface having a cylindrical surface shape.
 本例では、ハウジング2は、上下方向に分割された1対のハウジング素子19a、19bを、複数本のボルト20により結合固定してなる。 In this example, the housing 2 is formed by connecting and fixing a pair of housing elements 19a and 19b divided in the vertical direction by a plurality of bolts 20.
 ボールねじ軸3は、軸方向中間部外周面に、断面形状が円弧形の内径側ボールねじ溝21を有する。なお、図4および図7では、内径側ボールねじ溝21、後述するボールナット4a、4bの外径側ボールねじ溝35およびボール6を省略している。ボールねじ軸3は、ハウジング2の内側に、自身の中心軸を幅方向に向けた状態で、軸方向(幅方向)に関する変位(摺動)を可能に、かつ、回転を不能に支持されている。すなわち、本例では、車体の幅方向とボールねじ軸3の軸方向とが一致する。本例のボールねじ軸3は、大径部22と、該大径部22の幅方向両側に配置された1対の小径部23a、23bとを備える。内径側ボールねじ溝21は、大径部22の軸方向中間部にらせん状に形成されている。 The ball screw shaft 3 has an inner diameter side ball screw groove 21 having an arc-shaped cross section on the outer peripheral surface of the intermediate portion in the axial direction. In addition, in FIGS. 4 and 7, the inner diameter side ball screw groove 21, the outer diameter side ball screw groove 35 and the ball 6 of the ball nuts 4a and 4b described later are omitted. The ball screw shaft 3 is supported inside the housing 2 so that its central axis is oriented in the width direction, can be displaced (sliding) in the axial direction (width direction), and cannot rotate. There is. That is, in this example, the width direction of the vehicle body and the axial direction of the ball screw shaft 3 coincide with each other. The ball screw shaft 3 of this example includes a large-diameter portion 22 and a pair of small- diameter portions 23a and 23b arranged on both sides of the large-diameter portion 22 in the width direction. The inner diameter side ball screw groove 21 is spirally formed in the axially intermediate portion of the large diameter portion 22.
 1対の小径部23a、23bのそれぞれは、断面非円形の外周面を有する。具体的には、小径部23a、23bのそれぞれの外周面は、前後方向両側に配置された1対の平坦面部と、該平坦面部の上下方向両側縁同士をそれぞれ接続する部分円筒状の1対の凸曲面部とを備える。1対の小径部23a、23bのそれぞれは、幅方向外側の端面に開口するねじ孔24を有する。 Each of the pair of small diameter portions 23a and 23b has an outer peripheral surface having a non-circular cross section. Specifically, the outer peripheral surfaces of the small diameter portions 23a and 23b are a pair of flat surface portions arranged on both sides in the front-rear direction and a pair of partial cylinders connecting both vertical and vertical edges of the flat surface portions. It is provided with a convex curved surface portion of. Each of the pair of small diameter portions 23a and 23b has a screw hole 24 that opens on the outer end face in the width direction.
 本例では、ボールねじ軸3は、1対のガイドスリーブ25a、25bを介して、ハウジング2の内側に、軸方向に関する変位を可能に、かつ、回転を不能に支持されている。 In this example, the ball screw shaft 3 is supported inside the housing 2 via a pair of guide sleeves 25a and 25b so that the ball screw shaft 3 can be displaced in the axial direction and cannot rotate.
 ガイドスリーブ25a、25bのそれぞれは、合成樹脂、または、銅系合金などの自己潤滑性を有する非鉄系金属もしくは含油メタルなど、ハウジング2に対する摩擦係数が小さな材料製である。 Each of the guide sleeves 25a and 25b is made of a material having a small coefficient of friction with respect to the housing 2, such as a synthetic resin or a non-ferrous metal or an oil-impregnated metal having self-lubricating properties such as a copper alloy.
 ガイドスリーブ25a、25bのそれぞれは、ボールねじ軸3の小径部23a、23bに、がたつきなく、かつ、回転不能に外嵌可能な内周面を有する。具体的には、本例のガイドスリーブ25a、25bのそれぞれの内周面は、前後方向両側に配置された1対の平坦面部と、該平坦面部の上下方向両側縁同士をそれぞれ接続する部分円筒状の1対の凹曲面部とを備える。 Each of the guide sleeves 25a and 25b has an inner peripheral surface that can be fitted onto the small diameter portions 23a and 23b of the ball screw shaft 3 without rattling and non-rotatably. Specifically, the inner peripheral surfaces of the guide sleeves 25a and 25b of this example are partial cylinders that connect a pair of flat surface portions arranged on both sides in the front-rear direction and both vertical edges of the flat surface portions. It is provided with a pair of concave curved surfaces.
 また、ガイドスリーブ25a、25bのそれぞれは、ハウジング2の小径筒部9a、9bの内側に、がたつきなく、かつ、軸方向に関する変位(摺動)を可能に配置(内嵌)可能な外周面を有する。具体的には、本例のガイドスリーブ25a、25bのそれぞれの外周面は、前後方向両側に配置された1対の平坦面部26と、該平坦面部26の上下方向両側縁同士をそれぞれ接続する部分円筒状の1対の凸曲面部27とを備える。さらに、ガイドスリーブ25a、25bのそれぞれは、凸曲面部27の幅方向内側部分に、幅方向内側の端部に開口し、かつ、径方向内方に凹んだストッパ凹部28を有する。ストッパ凹部28は、幅方向外側の端面に、幅方向内側を向いた軸側ストッパ面29を有する。 Further, each of the guide sleeves 25a and 25b has an outer circumference that can be arranged (internally fitted) inside the small- diameter tubular portions 9a and 9b of the housing 2 without rattling and can be displaced (sliding) in the axial direction. Has a face. Specifically, the outer peripheral surfaces of the guide sleeves 25a and 25b of this example are portions that connect a pair of flat surface portions 26 arranged on both sides in the front-rear direction and both vertical edges of the flat surface portions 26, respectively. It includes a pair of cylindrical convex curved surface portions 27. Further, each of the guide sleeves 25a and 25b has a stopper recess 28 that is open at the inner end in the width direction and is recessed inward in the radial direction at the inner portion in the width direction of the convex curved surface portion 27. The stopper recess 28 has an axial stopper surface 29 facing inward in the width direction on an end surface on the outer side in the width direction.
 ガイドスリーブ25a、25bのそれぞれは、内周面を、ボールねじ軸3の小径部23a、23bの外周面に非円形係合(嵌合)させることにより、小径部23a、23bの周囲にがたつきなく、かつ、該小径部23a、23bに対する相対回転を不能に外嵌されている。また、ガイドスリーブ25a、25bのそれぞれは、平坦面部26を、小径筒部9a、9bの平坦面部12に摺接ないし近接対向させ、かつ、凸曲面部27を、小径筒部9a、9bの凹曲面部13に摺接ないし近接対向させることにより、ハウジング2の小径筒部9a、9bの内側に、がたつきなく、かつ、軸方向に関する変位(摺動)を可能に配置(内嵌)されている。これにより、ボールねじ軸3は、ハウジング2の内側に、軸方向(幅方向)に関する変位(摺動)を可能に、かつ、回転を不能に支持されている。要するに、ガイドスリーブ25a、25bは、ボールねじ軸3がハウジング2に対して相対回転するのを防止する回転止め機能を有する。 Each of the guide sleeves 25a and 25b has an inner peripheral surface that is non-circularly engaged (fitted) with the outer peripheral surfaces of the small diameter portions 23a and 23b of the ball screw shaft 3 so as to be loose around the small diameter portions 23a and 23b. It is not attached and is externally fitted so that it cannot rotate relative to the small diameter portions 23a and 23b. Further, in each of the guide sleeves 25a and 25b, the flat surface portion 26 is slidably or close to the flat surface portion 12 of the small diameter tubular portions 9a and 9b, and the convex curved surface portion 27 is recessed in the small diameter tubular portions 9a and 9b. By sliding contact with or facing the curved surface portion 13, the inside of the small diameter tubular portions 9a and 9b of the housing 2 is arranged (internally fitted) without rattling and can be displaced (sliding) in the axial direction. ing. As a result, the ball screw shaft 3 is supported inside the housing 2 so as to be displaced (sliding) in the axial direction (width direction) and unable to rotate. In short, the guide sleeves 25a and 25b have a rotation stop function for preventing the ball screw shaft 3 from rotating relative to the housing 2.
 本例では、ガイドスリーブ25a、25bのそれぞれは、前後方向に分割された1対のスリーブ素子46を組み合わせてなる。本例では、ガイドスリーブ25a、25bを、ハウジング2の小径筒部9a、9bの内側に配置することで、ガイドスリーブ25a、25bのそれぞれを構成する1対のスリーブ素子46が互いに分離することを防止している。また、後述するように、ボールねじ軸3のねじ孔24に球面継手30の支持軸部32を螺合した状態で、該球面継手30の幅方向内側面により、ガイドスリーブ25a、25bの幅方向外側の端面を押え付けている。すなわち、ボールねじ軸3の大径部22の外周面と小径部23a、23bの外周面とを接続する段差部と、球面継手30との間で、ガイドスリーブ25a、25bを軸方向(幅方向)に挟持して、該ガイドスリーブ25a、25bが軸方向に変位する(小径部23a、23bから脱落する)のを防止している。 In this example, each of the guide sleeves 25a and 25b is a combination of a pair of sleeve elements 46 divided in the front-rear direction. In this example, by arranging the guide sleeves 25a and 25b inside the small diameter tubular portions 9a and 9b of the housing 2, the pair of sleeve elements 46 constituting the guide sleeves 25a and 25b are separated from each other. It is preventing. Further, as will be described later, in a state where the support shaft portion 32 of the spherical joint 30 is screwed into the screw hole 24 of the ball screw shaft 3, the width direction of the guide sleeves 25a and 25b is due to the inner side surface in the width direction of the spherical joint 30. The outer end face is pressed down. That is, the guide sleeves 25a and 25b are axially (widthwise) between the stepped portion connecting the outer peripheral surface of the large diameter portion 22 of the ball screw shaft 3 and the outer peripheral surfaces of the small diameter portions 23a and 23b and the spherical joint 30. ), The guide sleeves 25a and 25b are prevented from being displaced in the axial direction (falling off from the small diameter portions 23a and 23b).
 なお、ガイドスリーブ25a、25bのそれぞれを構成する1対のスリーブ素子46と、ボールねじ軸3の小径部23a、23bとの間には、1乃至複数枚のシム板を挟持することもできる。 It should be noted that one or a plurality of shim plates can be sandwiched between the pair of sleeve elements 46 constituting each of the guide sleeves 25a and 25b and the small diameter portions 23a and 23b of the ball screw shaft 3.
 ボールねじ軸3を、1対のガイドスリーブ25a、25bを介して、ハウジング2の内側に支持した状態では、ガイドスリーブ25a、25bのそれぞれの軸側ストッパ面29と、小径筒部9a、9bのそれぞれのハウジング側ストッパ面15とが幅方向(軸方向)に対向している。なお、ハウジング2に対するボールねじ軸3の幅方向(軸方向)位置にかかわらず、幅方向片側(図3および図4の左側)のガイドスリーブ25aの軸側ストッパ面29と、幅方向片側の小径筒部9aのハウジング側ストッパ面15との間部分、および、幅方向他側(図3および図4の右側)のガイドスリーブ25bの軸側ストッパ面29と、幅方向他側の小径筒部9bのハウジング側ストッパ面15との間部分のうち、少なくとも一方の間部分には、幅方向隙間が存在する。 When the ball screw shaft 3 is supported inside the housing 2 via a pair of guide sleeves 25a and 25b, the shaft-side stopper surfaces 29 of the guide sleeves 25a and 25b and the small- diameter tubular portions 9a and 9b The respective housing-side stopper surfaces 15 face each other in the width direction (axial direction). Regardless of the width direction (axial direction) position of the ball screw shaft 3 with respect to the housing 2, the shaft side stopper surface 29 of the guide sleeve 25a on one side in the width direction (left side in FIGS. 3 and 4) and the small diameter on one side in the width direction. The portion between the housing side stopper surface 15 of the tubular portion 9a, the shaft side stopper surface 29 of the guide sleeve 25b on the other side in the width direction (right side in FIGS. 3 and 4), and the small diameter tubular portion 9b on the other side in the width direction. There is a gap in the width direction at least one of the parts between the housing side stopper surface 15 and the housing side.
 ボールねじ軸3の幅方向両側の端部には、それぞれ球面継手30を介して、1対のタイロッド31が接続されている。すなわち、球面継手30のそれぞれの支持軸部32の外周面に備えられた雄ねじ部を、ボールねじ軸3のねじ孔24に螺合し、かつ、球面継手30のそれぞれの内周面に備えられた部分凹球面状の係合凹部33に、タイロッド31の基端部(幅方向内側の端部)に備えられた部分凸球面状の球面係合部34を球面係合させている。 A pair of tie rods 31 are connected to both ends of the ball screw shaft 3 in the width direction via a spherical joint 30. That is, the male screw portions provided on the outer peripheral surfaces of the respective support shaft portions 32 of the spherical joint 30 are screwed into the screw holes 24 of the ball screw shaft 3, and are provided on the inner peripheral surfaces of the spherical joint 30. A partially convex spherical spherical engaging portion 34 provided at the base end portion (inner end portion in the width direction) of the tie rod 31 is spherically engaged with the partially concave spherical engaging recess 33.
 1対のボールナット4a、4bのそれぞれは、図6に示すように、内周面に、断面形状が円弧形でらせん状に形成された外径側ボールねじ溝35を有し、かつ、ボールねじ軸3の周囲に該ボールねじ軸3に対する相対回転を可能に、軸方向に関する変位を不能に支持されている。本例では、1対のボールナット4a、4bのそれぞれの外径側ボールねじ溝35は、互いに同じ仕様(リードおよびリード角)を有する。また、本例では、ボールナット4a、4bのそれぞれは、スリーブ36および軸受装置5a、5bを用いて、ハウジング2のナット収容部17の内側に回転自在に支持されている。具体的には、ボールナット4a、4bのそれぞれの幅方向外側の端部に、スリーブ36の幅方向内側の端部が、トルクの伝達を可能に結合固定され、かつ、該スリーブ36の幅方向中間部外周面と、ハウジング2の大径筒部19の幅方向内側部分の内周面との間に軸受装置5a、5bが配置されている。軸受装置5a、5bのそれぞれは、ラジアル荷重およびスラスト荷重を支承可能な構造を有する。具体的には、たとえば、軸受装置5a、5bのそれぞれは、スリーブ36に外嵌された、背面組み合わせ型(DB型)の接触角を有する複列アンギュラ玉軸受や複列円すいころ軸受などにより構成することができる。また、スリーブ36は、ボールナット4a、4bと一体に構成することもできる。 As shown in FIG. 6, each of the pair of ball nuts 4a and 4b has an outer diameter side ball screw groove 35 having an arcuate cross-sectional shape and a spiral shape on the inner peripheral surface, and each of them has an outer diameter side ball screw groove 35. Around the ball screw shaft 3, relative rotation with respect to the ball screw shaft 3 is possible, and axial displacement is impossibly supported. In this example, the outer diameter side ball screw grooves 35 of the pair of ball nuts 4a and 4b have the same specifications (lead and lead angle). Further, in this example, each of the ball nuts 4a and 4b is rotatably supported inside the nut accommodating portion 17 of the housing 2 by using the sleeve 36 and the bearing devices 5a and 5b, respectively. Specifically, the inner ends of the sleeve 36 in the width direction are coupled and fixed to the outer ends of the ball nuts 4a and 4b in the width direction so that torque can be transmitted, and the sleeve 36 is connected and fixed in the width direction. Bearing devices 5a and 5b are arranged between the outer peripheral surface of the intermediate portion and the inner peripheral surface of the inner peripheral surface of the large-diameter tubular portion 19 of the housing 2 in the width direction. Each of the bearing devices 5a and 5b has a structure capable of bearing a radial load and a thrust load. Specifically, for example, each of the bearing devices 5a and 5b is composed of a double-row angular contact ball bearing or a double-row tapered roller bearing having a contact angle of a back combination type (DB type) fitted on the sleeve 36. can do. The sleeve 36 can also be integrally formed with the ball nuts 4a and 4b.
 1対のボールナット4a、4bのそれぞれは、後述するボール6を循環させるための図示しない循環機構をさらに有する。循環機構は、チューブ式、デフレクタ式、エンドキャップ式またはこま式の何れの構造のものを採用しても良いが、ボールねじ軸3を十分に大きな力で幅方向に変位させるべく、ボール6の玉径を十分に確保する面からは、チューブ式のものを採用することが好ましい。 Each of the pair of ball nuts 4a and 4b further has a circulation mechanism (not shown) for circulating the ball 6, which will be described later. The circulation mechanism may adopt any structure of tube type, deflector type, end cap type or top type, but in order to displace the ball screw shaft 3 in the width direction with a sufficiently large force, the ball 6 From the viewpoint of ensuring a sufficient ball diameter, it is preferable to use a tube type.
 1対の電動モータ7a、7bのそれぞれは、減速機8a、8bを介して、ボールナット4a、4bを回転駆動する。本例では、1対の電動モータ7a、7bは、互いに同じ定格出力を有し、かつ、減速機8a、8bは、互いに同じ減速比を有する。特に本例では、減速機8a、8bのそれぞれを、ウォーム減速機としている。すなわち、減速機8a、8bのそれぞれは、スリーブ36の幅方向外側の端部にトルクの伝達を可能に外嵌されたウォームホイール37と、該ウォームホイール37と噛合し、かつ、ハウジング2のウォーム収容部18の内側に回転自在に支持されたウォーム38とからなる。電動モータ7a、7bのそれぞれは、出力軸を、ウォーム38の基端部に接続している。なお、本例では、ウォーム減速機である減速機8a、8bとして、セルフロック機能を有さず、逆効率の高いものを使用している。 Each of the pair of electric motors 7a and 7b rotationally drives the ball nuts 4a and 4b via the speed reducers 8a and 8b, respectively. In this example, the pair of electric motors 7a and 7b have the same rated output, and the speed reducers 8a and 8b have the same reduction ratio. In particular, in this example, each of the speed reducers 8a and 8b is a worm speed reducer. That is, each of the speed reducers 8a and 8b meshes with the worm wheel 37 outerly fitted to the outer end of the sleeve 36 in the width direction so as to transmit torque, and the worm of the housing 2. It is composed of a worm 38 rotatably supported inside the housing portion 18. Each of the electric motors 7a and 7b has an output shaft connected to a base end portion of the worm 38. In this example, the speed reducers 8a and 8b, which are worm speed reducers, do not have a self-locking function and have high reverse efficiency.
 なお、減速機8a、8bは、電動モータ7a、7bの出力トルクを増大させてボールナット4a、4bに付与することができれば、ウォーム減速機に限らない。具体的には、たとえば、減速機8a、8bとして、平行軸歯車式や摩擦ローラ式、ベルト式などの減速機を使用することもできる。なお、1対の電動モータ7a、7bとして、互いに異なる定格出力を有するものを使用したり、減速機8a、8bとして、互いに異なる種類(構造)のものや異なる減速比を有するものを使用したりすることもできる。ただし、電動モータ7a、7bの制御を容易にする面からは、1対の電動モータ7a、7bとして、互いに同じ定格出力を有するものを使用し、かつ、減速機8a、8bとして、互いに同じ種類であって、同じ減速比を有するものを使用することが好ましい。 The speed reducers 8a and 8b are not limited to worm speed reducers as long as the output torque of the electric motors 7a and 7b can be increased and applied to the ball nuts 4a and 4b. Specifically, for example, as the speed reducers 8a and 8b, speed reducers such as a parallel shaft gear type, a friction roller type, and a belt type can also be used. As the pair of electric motors 7a and 7b, those having different rated outputs may be used, and as the speed reducers 8a and 8b, those having different types (structures) and different reduction ratios may be used. You can also do it. However, from the viewpoint of facilitating control of the electric motors 7a and 7b, a pair of electric motors 7a and 7b having the same rated output are used, and the speed reducers 8a and 8b are of the same type. It is preferable to use one having the same reduction ratio.
 本例の転舵装置1は、たとえば、車軸懸架式の懸架装置を備えるトラックなどの大型車両の車体の下方に支持される。具体的には、転舵装置1は、図1に示すように、ハウジング2の取付板部39に備えられた通孔を挿通したボルト40を、車体フレーム41に1対のリーフスプリング42を介して支持された車軸43に形成されたねじ孔に螺合し、さらに締め付けることで、車体フレーム41に対し支持固定されている。1対のタイロッド31のそれぞれの先端部は、ナックル44のアーム45の先端部に揺動可能に接続されている。さらに、ナックル44のそれぞれには、図示しないハブユニット軸受を介して操舵輪が回転自在に支持されている。 The steering device 1 of this example is supported below the vehicle body of a large vehicle such as a truck provided with an axle suspension type suspension device, for example. Specifically, as shown in FIG. 1, the steering device 1 inserts bolts 40 through which through holes provided in the mounting plate portion 39 of the housing 2 are inserted into the vehicle body frame 41 via a pair of leaf springs 42. By screwing into a screw hole formed in the axle 43 supported by the vehicle and further tightening the screw hole, the axle 43 is supported and fixed to the vehicle body frame 41. Each tip of the pair of tie rods 31 is swingably connected to the tip of the arm 45 of the knuckle 44. Further, each of the knuckles 44 is rotatably supported by steering wheels via hub unit bearings (not shown).
 転舵装置1は、ステアリングホイールなどの操縦桿を有する操舵装置と、制御器(ECU)を介して電気的に組み合わされて、ステアバイワイヤ方式のステアリング装置を構成する。制御器は、車両が通常運転モードで走行しているときには、センサにより取得したステアリングホイールの操作量、さらに必要に応じて車両の走行速度などに基づいて、操舵輪に付与する舵角を算出する。これに対し、車両が自動運転モードで走行しているときには、制御器は、各種センサにより取得した、車両の周囲の状況や移動距離、移動方向などに基づいて、操舵輪に付与する舵角を算出する。 The steering device 1 is electrically combined with a steering device having a control stick such as a steering wheel via a controller (ECU) to form a steer-by-wire type steering device. When the vehicle is traveling in the normal driving mode, the controller calculates the steering angle given to the steering wheels based on the amount of operation of the steering wheel acquired by the sensor and, if necessary, the traveling speed of the vehicle. .. On the other hand, when the vehicle is traveling in the automatic driving mode, the controller determines the steering angle given to the steering wheels based on the surrounding conditions, the moving distance, the moving direction, etc. of the vehicle acquired by various sensors. calculate.
 通常運転モードと自動運転モードとのいずれのモードで走行している場合でも、制御器は、算出した舵角に応じて、転舵装置1の電動モータ7a、7bに同時に通電し、ウォーム38を回転駆動させる。ウォーム38を回転させることで、該ウォーム38と噛合するウォームホイール37を回転させ、スリーブ36を介してウォームホイール37に結合されたボールナット4a、4bを、同じ方向に同じ速度で回転させる。ボールナット4a、4bの回転に伴い、ボール6が、内径側ボールねじ溝21と外径側ボールねじ溝35との間を移動し、かつ、ボールねじ軸3が幅方向(軸方向)に変位する。ボールねじ軸3の幅方向の変位に伴い、タイロッド31が押し引きされると、ナックル44が揺動変位されて、操舵輪に所望の舵角が付与される。 Regardless of whether the vehicle is traveling in either the normal operation mode or the automatic operation mode, the controller simultaneously energizes the electric motors 7a and 7b of the steering device 1 according to the calculated steering angle to generate the worm 38. It is driven to rotate. By rotating the worm 38, the worm wheel 37 that meshes with the worm 38 is rotated, and the ball nuts 4a and 4b coupled to the worm wheel 37 via the sleeve 36 are rotated in the same direction and at the same speed. As the ball nuts 4a and 4b rotate, the ball 6 moves between the inner diameter side ball screw groove 21 and the outer diameter side ball screw groove 35, and the ball screw shaft 3 is displaced in the width direction (axial direction). To do. When the tie rod 31 is pushed and pulled with the displacement of the ball screw shaft 3 in the width direction, the knuckle 44 is oscillated and displaced to give the steering wheel a desired steering angle.
 本例の転舵装置1では、ボールねじ軸3を幅方向片側に変位させることで、操舵輪を、所定方向に転舵限界まで転舵(いわゆる端当て)させると、ボールねじ軸3のうち、幅方向他側の小径部23bに外嵌されたガイドスリーブ25bの軸側ストッパ面29が、ハウジング2のうち、幅方向他側の小径筒部9bのハウジング側ストッパ面15に当接して、ボールねじ軸3がそれ以上幅方向片側に変位することが阻止される。換言すれば、幅方向他側のガイドスリーブ25bの軸側ストッパ面29と、幅方向他側の小径筒部9bのハウジング側ストッパ面15とを当接させることにより、所定方向の転舵限界を規定している。 In the steering device 1 of this example, when the ball screw shaft 3 is displaced to one side in the width direction to steer the steering wheel in a predetermined direction to the steering limit (so-called end contact), the ball screw shaft 3 is formed. The shaft-side stopper surface 29 of the guide sleeve 25b externally fitted to the small-diameter portion 23b on the other side in the width direction abuts on the housing-side stopper surface 15 of the small-diameter tubular portion 9b on the other side in the width direction in the housing 2. It is prevented that the ball screw shaft 3 is further displaced to one side in the width direction. In other words, by bringing the shaft-side stopper surface 29 of the guide sleeve 25b on the other side in the width direction into contact with the housing-side stopper surface 15 of the small-diameter tubular portion 9b on the other side in the width direction, the steering limit in the predetermined direction is set. It stipulates.
 一方、ボールねじ軸3を幅方向他側に変位させることで、操舵輪を、前記所定方向と逆方向に転舵限界まで転舵させると、ボールねじ軸3のうち、幅方向片側の小径部23aに外嵌されたガイドスリーブ25aの軸側ストッパ面29が、ハウジング2のうち、幅方向片側の小径筒部9aのハウジング側ストッパ面15に当接して、ボールねじ軸3がそれ以上幅方向他側に変位することが阻止される。換言すれば、幅方向片側のガイドスリーブ25aの軸側ストッパ面29と、幅方向片側の小径筒部9aのハウジング側ストッパ面15とを当接させることにより、所定方向と逆方向の転舵限界を規定している。 On the other hand, when the ball screw shaft 3 is displaced to the other side in the width direction to steer the steering wheel in the direction opposite to the predetermined direction to the steering limit, the small diameter portion of the ball screw shaft 3 on one side in the width direction is used. The shaft-side stopper surface 29 of the guide sleeve 25a externally fitted to the 23a abuts on the housing-side stopper surface 15 of the small-diameter tubular portion 9a on one side in the width direction of the housing 2, and the ball screw shaft 3 is further in the width direction. It is prevented from being displaced to the other side. In other words, by bringing the shaft side stopper surface 29 of the guide sleeve 25a on one side in the width direction into contact with the housing side stopper surface 15 of the small diameter tubular portion 9a on one side in the width direction, the steering limit in the direction opposite to the predetermined direction is reached. Is stipulated.
 要するに、ガイドスリーブ25a、25bは、ボールねじ軸3が幅方向に過度に変位するのを防止するストッパ機能を有する。このようなストッパ機能により、ボール6が、ボールねじ軸3の内径側ボールねじ溝21の端部に押し付けられたり、該内径側ボールねじ溝21の端部から乗り上げたりするのを防止し、かつ、ガイドスリーブ25a、25bの幅方向内側の端部が、ボールナット4a、4bの幅方向外側の端部に衝突するのを防止している。 In short, the guide sleeves 25a and 25b have a stopper function to prevent the ball screw shaft 3 from being excessively displaced in the width direction. With such a stopper function, the ball 6 is prevented from being pressed against the end of the ball screw groove 21 on the inner diameter side of the ball screw shaft 3 or riding on the end of the ball screw groove 21 on the inner diameter side. , The widthwise inner ends of the guide sleeves 25a and 25b are prevented from colliding with the widthwise outer ends of the ball nuts 4a and 4b.
 なお、操舵装置は、操縦桿の操舵量に応じた反力を該操縦桿に付与する反力付与モータをさらに有する。したがって、車両が通常運転モードで走行しているときに、運転者が操縦桿を操作すると、操縦桿の操作量などに応じた操作反力が該操縦桿に付与される。一方、車両が自動運転モードで走行しているときは、転舵装置1により、操舵輪に舵角を付与している状態でも、操縦桿は回転しない。 The steering device further has a reaction force applying motor that applies a reaction force corresponding to the steering amount of the control stick to the control stick. Therefore, when the driver operates the control stick while the vehicle is traveling in the normal operation mode, an operation reaction force corresponding to the amount of operation of the control stick is applied to the control stick. On the other hand, when the vehicle is traveling in the automatic driving mode, the control stick does not rotate even when the steering wheel is provided with a steering angle by the steering device 1.
 上述のように、本例の転舵装置1は、1対の電動モータ7a、7bにより、減速機8a、8bを介して、ボールナット4a、4bを同時に回転駆動することで、ボールねじ軸3を幅方向に変位させることにより、操舵輪に舵角を付与するように構成されている。したがって、本例の転舵装置1によれば、電動モータ7a、7bとして、徒に出力(定格トルク)が大きなものを使用する必要がなく、該電動モータ7a、7bのそれぞれを、出力可能なトルク範囲のうち比較的出力トルクが低く、かつ、効率の良い領域で使用しても、十分な転舵力を得ることができる。 As described above, in the steering device 1 of this example, the ball screw shaft 3 is driven by a pair of electric motors 7a and 7b to simultaneously rotate and drive the ball nuts 4a and 4b via the speed reducers 8a and 8b. Is configured to give a steering angle to the steering wheel by shifting the steering wheel in the width direction. Therefore, according to the steering device 1 of this example, it is not necessary to use electric motors 7a and 7b having a large output (rated torque), and each of the electric motors 7a and 7b can be output. Sufficient steering force can be obtained even when used in an efficient region where the output torque is relatively low in the torque range.
 また、本例の転舵装置1では、電動モータ7a、7bを1対備えるため、該1対の電動モータ7a、7bのうちのいずれか一方の電動モータ7a(または7b)への通電が不能になった場合でも、他方の電動モータ7b(または7a)のみを駆動することで、ボールねじ軸3を幅方向に変位させ、操舵輪に舵角を付与することができる。なお、この場合には、他方の電動モータ7b(または7a)のみを駆動することで、ボールねじ軸3を幅方向に変位すると、一方のボールナット4a(または4b)の外径側ボールねじ溝35とボールねじ軸3の内径側ボールねじ溝21との間でボール6が移動する。これにより、一方のボールナット4a(または4b)が回転すると、ウォームホイール37が回転し、さらに該ウォームホイール37と噛合するウォーム38が回転し、一方の電動モータ7a(または7b)の出力軸が回転する。このようにして、ボールねじ軸3の幅方向変位が許容される。すなわち、本例の転舵装置1によれば、フェールセーフを確保することができる。 Further, since the steering device 1 of this example includes a pair of electric motors 7a and 7b, it is impossible to energize the electric motor 7a (or 7b) of any one of the pair of electric motors 7a and 7b. Even in the case of, the ball screw shaft 3 can be displaced in the width direction and the steering wheel can be provided with a steering angle by driving only the other electric motor 7b (or 7a). In this case, when the ball screw shaft 3 is displaced in the width direction by driving only the other electric motor 7b (or 7a), the outer diameter side ball screw groove of the one ball nut 4a (or 4b) is used. The ball 6 moves between the 35 and the ball screw groove 21 on the inner diameter side of the ball screw shaft 3. As a result, when one of the ball nuts 4a (or 4b) rotates, the worm wheel 37 rotates, the worm 38 that meshes with the worm wheel 37 rotates, and the output shaft of the one electric motor 7a (or 7b) rotates. Rotate. In this way, the displacement of the ball screw shaft 3 in the width direction is allowed. That is, according to the steering device 1 of this example, fail-safe can be ensured.
 なお、1個の電動モータ7b(または7a)のみで転舵を行う場合、1対の電動モータ7a、7bにより転舵を行う場合よりも、電動モータ7b(または7a)を、出力可能な範囲のうち、比較的出力トルクが高い領域であって、効率が低い領域で使用する必要がある。また、1個の電動モータ7b(または7a)のみで転舵を行う場合、得られる転舵力も小さく、たとえば、車両の停止中に舵角を付与(据え切り)するような動作は難しくなる可能性がある。ただし、この場合でも、車両をわずかでも動かして、操舵輪を回転させれば、電動モータ7b(または7a)にかかる負荷を小さくすることができ、操舵輪に舵角を付与することができる。 When steering is performed by only one electric motor 7b (or 7a), the range in which the electric motor 7b (or 7a) can be output is larger than that when steering is performed by a pair of electric motors 7a and 7b. Of these, it is necessary to use it in a region where the output torque is relatively high and the efficiency is low. Further, when steering is performed with only one electric motor 7b (or 7a), the obtained steering force is also small, and for example, it may be difficult to give (stationary) the steering angle while the vehicle is stopped. There is sex. However, even in this case, if the vehicle is moved even slightly to rotate the steering wheels, the load applied to the electric motor 7b (or 7a) can be reduced, and the steering wheels can be provided with a steering angle.
 本例の転舵装置1では、1対の電動モータ7a、7bのそれぞれが、別々のボールナット4a、4bを回転駆動することで、ボールねじ軸3を幅方向に変位させるように構成されている。したがって、電動モータ7a、7bとして、出力が比較的小さい小型のものを使用できることに加え、ボールナット4a、4bのそれぞれの径方向寸法を、1個のボールナットを回転駆動することでボールねじ軸3を幅方向に変位させる構造と比較して小さく抑えることができる。要するに、ボールナット4a、4bと、軸受装置5a、5bと、減速機8a、8bと、電動モータ7a、7bとをそれぞれ1個ずつ組み合わせてなる電動アクチュエータ47a、47bの小型化を図ることができ、該電動アクチュエータ47a、47bの幅方向に関する設置位置の自由度を高くすることができる。 In the steering device 1 of this example, the pair of electric motors 7a and 7b are configured to displace the ball screw shaft 3 in the width direction by rotationally driving separate ball nuts 4a and 4b. There is. Therefore, in addition to being able to use small electric motors 7a and 7b having relatively small outputs, the ball screw shaft is driven by rotating one ball nut to rotate the radial dimensions of the ball nuts 4a and 4b. It can be kept small as compared with the structure in which 3 is displaced in the width direction. In short, it is possible to reduce the size of the electric actuators 47a and 47b, which are formed by combining the ball nuts 4a and 4b, the bearing devices 5a and 5b, the speed reducers 8a and 8b, and the electric motors 7a and 7b, respectively. , The degree of freedom of the installation position with respect to the width direction of the electric actuators 47a and 47b can be increased.
 本例の転舵装置1では、1対の電動アクチュエータ47a、47bは、幅方向中央付近、具体的には、ハウジング2の幅方向中央位置を挟んだ両側部分に配置されている。特に本例では、電動アクチュエータ47a、47bのそれぞれを構成する各部材のうち、ボールナット4a、4bが、幅方向に関して最も中央側に配置されている。換言すれば、ボールナット4a、4bが、幅方向中央付近で互いに近接して配置されている。このため、ボールナット4a、4bを回転駆動することにより、該ボールナット4a、4bのそれぞれにボール6を介して螺合されたボールねじ軸3を幅方向に変位させる際に、該ボールねじ軸3に無理な力(ねじれ方向の力)が加わるのを、1対のボールナット4a、4bが幅方向に関して互いに大きく離隔して配置された構造(たとえば、ダブルピニオン式パワーステアリング装置において、ステアリングホイールからの操舵力が入力される部分と、電動モータによるアシスト力が付与される部分とのように、ラック軸の幅方向両側の端部付近に力が付与される構造)と比較して抑えることができる。 In the steering device 1 of this example, the pair of electric actuators 47a and 47b are arranged near the center in the width direction, specifically, on both side portions of the housing 2 with the center position in the width direction in between. In particular, in this example, among the members constituting each of the electric actuators 47a and 47b, the ball nuts 4a and 4b are arranged on the most central side in the width direction. In other words, the ball nuts 4a and 4b are arranged close to each other near the center in the width direction. Therefore, when the ball screw shafts 3 screwed into the ball nuts 4a and 4b via the ball 6 are displaced in the width direction by rotationally driving the ball nuts 4a and 4b, the ball screw shaft is displaced. A structure in which a pair of ball nuts 4a and 4b are arranged so as to be largely separated from each other in the width direction (for example, in a double pinion type power steering device), a steering wheel is applied so that an unreasonable force (force in the twisting direction) is applied to 3. Compared to the part where the steering force is input from the ball and the part where the assist force is applied by the electric motor, the force is applied near the ends on both sides of the rack shaft in the width direction). Can be done.
 また、ボールナット4a、4bを、幅方向中央付近で互いに近接して配置することで、ボールねじ軸3の大径部22の外周面に備えられた内径側ボールねじ溝21の幅方向に関する長さ寸法(幅方向に関する形成範囲)を短くすることもできる。このため、内径側ボールねじ溝21の加工コストを低く抑えることができ、かつ、ボールねじ軸3の幅方向両側部分に、小径部23a、23bを備えさせることができ、該小径部23a、23bのそれぞれの周囲に、ガイドスリーブ25a、25bを配置することができる。ガイドスリーブ25a、25bのそれぞれは、回転止め機能およびストッパ機能に加え、後述するように、ボールねじ軸3のラジアル方向に加わる転舵反力をハウジング2に伝達し、該ハウジング2を介して車体により支承させる機能を有する。 Further, by arranging the ball nuts 4a and 4b close to each other near the center in the width direction, the length in the width direction of the inner diameter side ball screw groove 21 provided on the outer peripheral surface of the large diameter portion 22 of the ball screw shaft 3 The ball size (formation range in the width direction) can also be shortened. Therefore, the processing cost of the ball screw groove 21 on the inner diameter side can be suppressed low, and the small diameter portions 23a and 23b can be provided on both side portions of the ball screw shaft 3 in the width direction, and the small diameter portions 23a and 23b can be provided. Guide sleeves 25a and 25b can be arranged around each of the two. In addition to the rotation stop function and the stopper function, each of the guide sleeves 25a and 25b transmits the steering reaction force applied in the radial direction of the ball screw shaft 3 to the housing 2, and the vehicle body via the housing 2. It has a function to be supported by.
 なお、本例では、ボールナット4a、4bを、幅方向中央付近で(幅方向中央位置を挟んで)離隔した状態で、ハウジング2を介して隣接して配置されている。これにより、ハウジング2のうち、ボールナット4a、4bを含む電動アクチュエータ47a、47bを収容するアクチュエータ収容部10a、10bが、車体の下方で、車軸43の周辺に存在する部材(たとえばオイルパン48など)と干渉するのを防止している。ただし、ボールねじ軸3に無理な力が加わるのを防止する面からは、1対のボールナット4a、4bをできる限り近くに、最も好ましくは、ハウジング2を介することなく、隣接して配置することが好ましい。要するに、1対のボールナット4a、4bは、車軸43の周辺に存在する部材に干渉しない範囲において、できる限り近接して配置される。 In this example, the ball nuts 4a and 4b are arranged adjacent to each other via the housing 2 in a state of being separated from each other near the center in the width direction (with the center position in the width direction in between). As a result, in the housing 2, the actuator accommodating portions 10a and 10b accommodating the electric actuators 47a and 47b including the ball nuts 4a and 4b are present in the lower part of the vehicle body and around the axle 43 (for example, the oil pan 48 and the like). ) Is prevented from interfering with. However, from the viewpoint of preventing an excessive force from being applied to the ball screw shaft 3, the pair of ball nuts 4a and 4b are arranged as close as possible, most preferably adjacent to each other without the housing 2. Is preferable. In short, the pair of ball nuts 4a and 4b are arranged as close as possible to each other as long as they do not interfere with the members existing around the axle 43.
 本例では、電動アクチュエータ47a、47bのそれぞれを構成する各部材を、幅方向中央側から外側に向けて、ボールナット4a、4b、軸受装置5a、5b、減速機8a、8bおよび電動モータ7a、7bの順で配置している。ただし、ボールナット4a、4bを、幅方向に関して最も中央側に配置すれば、他の部材の配置については特に限定されない。たとえば、軸受装置5a、5bを、減速機8a、8bのウォームホイール37よりも幅方向外側に配置することもできる。また、減速機8a、8bのウォームホイール37を、ボールナット4a、4bの周囲に該ボールナット4a、4bと一体的に回転するように配置することもできる。 In this example, the members constituting the electric actuators 47a and 47b are directed from the center side in the width direction to the outside, and the ball nuts 4a and 4b, the bearing devices 5a and 5b, the reduction gears 8a and 8b, and the electric motor 7a. They are arranged in the order of 7b. However, if the ball nuts 4a and 4b are arranged on the most central side in the width direction, the arrangement of other members is not particularly limited. For example, the bearing devices 5a and 5b may be arranged outside the worm wheel 37 of the speed reducers 8a and 8b in the width direction. Further, the worm wheels 37 of the speed reducers 8a and 8b can be arranged around the ball nuts 4a and 4b so as to rotate integrally with the ball nuts 4a and 4b.
 また、本例では、ボールねじ軸3の幅方向両側の端部に、球面継手30を介して、タイロッド31が接続され、かつ、タイロッド31の先端部に、ナックル44のアーム45の先端部が揺動可能に接続されている。したがって、本例の転舵装置1を駆動して、操舵輪に舵角を付与する(転舵を行う)と、アーム45の角度によっては、転舵に伴う反力が、ボールねじ軸3に対してラジアル方向(前後方向)に加わることがある。 Further, in this example, the tie rod 31 is connected to both ends of the ball screw shaft 3 in the width direction via the spherical joint 30, and the tip of the arm 45 of the knuckle 44 is attached to the tip of the tie rod 31. It is connected so that it can swing. Therefore, when the steering device 1 of this example is driven to give a steering angle to the steering wheels (steering is performed), a reaction force due to steering is applied to the ball screw shaft 3 depending on the angle of the arm 45. On the other hand, it may be added in the radial direction (front-back direction).
 ここで、本例では、ボールねじ軸3を、1対のガイドスリーブ25a、25bを介して、ハウジング2の内側に、幅方向に関する変位を可能に、かつ、回転を不能に支持している。具体的には、ガイドスリーブ25a、25bのそれぞれを、小径部23a、23bの周囲にがたつきなく、かつ、該小径部23a、23bに対する相対回転を不能に外嵌し、かつ、ハウジング2の小径筒部9a、9bの内側に、がたつきなく、かつ、軸方向に関する変位(摺動)を可能に配置(内嵌)している。したがって、転舵に伴う反力が、ボールねじ軸3にラジアル方向に加わると、ガイドスリーブ25a、25bの平坦面部26が小径筒部9a、9bの平坦面部12に押し付けられる。要するに、転舵に伴いボールねじ軸3にラジアル方向に加わる反力は、ガイドスリーブ25a、25bおよびハウジング2を介して、車体に伝達され、該車体により支承される。このため、本例の転舵装置1によれば、転舵に伴う反力が、ボールねじ軸3に対してラジアル方向に加わった場合でも、ボール6の転動面が、ボールねじ軸3の内径側ボールねじ溝21およびボールナット4a、4bの外径側ボールねじ溝35に強く押し付けられるのを防止することができる。この結果、ボールねじ軸3とボールナット4a、4bとボール6とからなるボールねじ機構の寿命が低下したり、異音や振動が発生したりするのを防止することができる。 Here, in this example, the ball screw shaft 3 is supported inside the housing 2 via a pair of guide sleeves 25a and 25b so that the ball screw shaft 3 can be displaced in the width direction and cannot rotate. Specifically, the guide sleeves 25a and 25b are fitted around the small diameter portions 23a and 23b without rattling, and the relative rotation with respect to the small diameter portions 23a and 23b is impossible, and the housing 2 is fitted. Inside the small- diameter tubular portions 9a and 9b, the displacement (sliding) in the axial direction is arranged (internally fitted) without rattling. Therefore, when the reaction force accompanying the steering is applied to the ball screw shaft 3 in the radial direction, the flat surface portions 26 of the guide sleeves 25a and 25b are pressed against the flat surface portions 12 of the small diameter tubular portions 9a and 9b. In short, the reaction force applied to the ball screw shaft 3 in the radial direction due to steering is transmitted to the vehicle body via the guide sleeves 25a and 25b and the housing 2, and is supported by the vehicle body. Therefore, according to the steering device 1 of this example, even when the reaction force accompanying the steering is applied in the radial direction with respect to the ball screw shaft 3, the rolling surface of the ball 6 is the ball screw shaft 3. It is possible to prevent the ball screw groove 21 on the inner diameter side and the ball screw grooves 4a and 4b on the inner diameter side from being strongly pressed against the ball screw groove 35 on the outer diameter side. As a result, it is possible to prevent the life of the ball screw mechanism including the ball screw shaft 3, the ball nuts 4a and 4b, and the ball 6 from being shortened, and the occurrence of abnormal noise and vibration.
 本例では、1対のガイドスリーブ25a、25bのそれぞれは、1対のスリーブ素子46を組み合わせることにより構成されている。このため、スリーブ素子46と、ボールねじ軸3の小径部23a、23bとの間に、1乃至複数枚のシム板を挟持することで、ガイドスリーブ25a、25bの外周面と、ハウジング2の小径筒部9a、9bの内周面との間の隙間を調整することができる。すなわち、ハウジング2の小径筒部9a、9bや、ボールねじ軸3の小径部23a、23b、ガイドスリーブ25a、25bの形状精度を過度に高くすることなく、小径筒部9a、9bの内周面に対するガイドスリーブ25a、25bの外周面のがたつきを十分に抑えることができるため、コストの低減を図れる。 In this example, each of the pair of guide sleeves 25a and 25b is configured by combining a pair of sleeve elements 46. Therefore, by sandwiching one or a plurality of shim plates between the sleeve element 46 and the small diameter portions 23a and 23b of the ball screw shaft 3, the outer peripheral surfaces of the guide sleeves 25a and 25b and the small diameter of the housing 2 are held. The gap between the inner peripheral surfaces of the tubular portions 9a and 9b can be adjusted. That is, the inner peripheral surfaces of the small diameter tubular portions 9a and 9b without excessively increasing the shape accuracy of the small diameter tubular portions 9a and 9b of the housing 2, the small diameter portions 23a and 23b of the ball screw shaft 3, and the guide sleeves 25a and 25b. Since the rattling of the outer peripheral surfaces of the guide sleeves 25a and 25b can be sufficiently suppressed, the cost can be reduced.
 ただし、ガイドスリーブ25a、25bのそれぞれを、全体を一体に、すなわち筒状に構成しても良い。あるいは、ガイドスリーブ25a、25bのそれぞれを、3個以上のスリーブ素子を組み合わせることにより構成することもできる。 However, each of the guide sleeves 25a and 25b may be integrally formed as a whole, that is, in a tubular shape. Alternatively, each of the guide sleeves 25a and 25b can be configured by combining three or more sleeve elements.
 本例では、転舵装置1を、車軸懸架式のうち、リーフスプリング式の懸架装置を備える車両のステアバイワイヤ式ステアリング装置に適用した例について説明した。ただし、本発明の転舵装置は、リーフスプリング式に限らず、コイルスプリング式の懸架装置を備える車両のステアバイワイヤ式ステアリング装置に適用することもできる。あるいは、本発明の転舵装置は、独立懸架式の懸架装置を備える車両のステアバイワイヤ式ステアリング装置に適用することもできる。また、本発明の転舵装置は、トラックなどの大型車両のステアリング装置に限らず、乗用車用のステアリング装置に組み込むこともできる。 In this example, an example in which the steering device 1 is applied to a steer-by-wire type steering device of a vehicle equipped with a leaf spring type suspension device among the axle suspension types has been described. However, the steering device of the present invention is not limited to the leaf spring type, and can be applied to a steer-by-wire type steering device of a vehicle provided with a coil spring type suspension device. Alternatively, the steering device of the present invention can also be applied to a steer-by-wire type steering device of a vehicle provided with an independent suspension type suspension device. Further, the steering device of the present invention is not limited to the steering device of a large vehicle such as a truck, and can be incorporated into a steering device for a passenger car.
 本例の転舵装置1は、ボールナット4a、4bおよび軸受装置5a、5bと、電動モータ7a、7bおよび減速機8a、8bとをそれぞれ1対ずつ備える。ただし、本発明の転舵装置は、ボールナットおよび軸受装置と、電動モータおよび減速機とをそれぞれ3個以上ずつ備えることもできる。 The steering device 1 of this example includes a pair of ball nuts 4a and 4b, bearing devices 5a and 5b, electric motors 7a and 7b, and speed reducers 8a and 8b, respectively. However, the steering device of the present invention may also include three or more ball nuts and bearing devices, and three or more electric motors and speed reducers.
第一の背景技術に関する課題を解決する手段に関する技術思想を以下に記す。
(1)
 ハウジングと、
 外周面に内径側ボールねじ溝を有し、前記ハウジングの内側に、軸方向に関する変位を可能に、かつ、回転を不能に支持されたボールねじ軸と、
 内周面に外径側ボールねじ溝を有し、かつ、前記ボールねじ軸の周囲に該ボールねじ軸に対する相対回転を可能に配置された、複数個のボールナットと、
 前記ボールナットを前記ハウジングに対し回転自在に支持する軸受装置と、
 前記内径側ボールねじ溝と前記外径側ボールねじ溝との間に転動自在に配置された複数個のボールと、
 複数個の電動モータと、
 前記電動モータの出力トルクを増大させてから前記ボールナットに付与する、前記電動モータと同数の減速機と、
を備える、転舵装置。
The technical concept regarding the means for solving the problems related to the first background technology is described below.
(1)
With the housing
A ball screw shaft having an inner diameter side ball screw groove on the outer peripheral surface and supported inside the housing so as to be displaced in the axial direction and unable to rotate.
A plurality of ball nuts having an outer diameter side ball screw groove on the inner peripheral surface and arranged around the ball screw shaft so as to be relatively rotatable with respect to the ball screw shaft.
A bearing device that rotatably supports the ball nut with respect to the housing,
A plurality of balls rotatably arranged between the inner diameter side ball screw groove and the outer diameter side ball screw groove, and
With multiple electric motors
The same number of speed reducers as the electric motor, which are applied to the ball nut after increasing the output torque of the electric motor,
A steering device.
(2)
 前記ボールナットを、前記電動モータと同数備える、(2)に記載の転舵装置。
(2)
The steering device according to (2), comprising the same number of ball nuts as the electric motor.
(3)
 前記ボールナットと前記軸受装置と前記電動モータと前記減速機とを、それぞれ1対ずつ備える、(2)に記載の転舵装置。
(3)
The steering device according to (2), further comprising a pair of each of the ball nut, the bearing device, the electric motor, and the speed reducer.
(4)
 前記ボールナットと前記軸受装置と前記電動モータと前記減速機とが、前記ハウジングの幅方向中央位置を挟んだ両側部分に、それぞれ1個ずつ配置されており、
 前記ボールナットと前記軸受装置と前記電動モータと前記減速機とのうち、前記ボールナットが、前記ハウジングの幅方向中央位置に最も近い側に配置されている、(3)に
記載の転舵装置。
(4)
The ball nut, the bearing device, the electric motor, and the speed reducer are arranged one by one on both side portions of the housing at the center position in the width direction.
The steering device according to (3), wherein the ball nut is arranged on the side of the ball nut, the bearing device, the electric motor, and the speed reducer closest to the center position in the width direction of the housing. ..
(5)
 前記ボールナットが、幅方向中央位置を挟んで離隔した状態で、前記ハウジングを介して隣接して配置されている、(4)に記載の転舵装置。
(5)
The steering device according to (4), wherein the ball nuts are arranged adjacent to each other via the housing in a state of being separated from each other with a central position in the width direction interposed therebetween.
(6)
 前記減速機がウォーム減速機である、(1)~(5)のうちの何れかに記載の転舵装置。
(6)
The steering device according to any one of (1) to (5), wherein the speed reducer is a worm speed reducer.
(7)
 前記ハウジングが、複数のハウジング素子を組み合わせてなる、(1)~(6)のうちの何れかに記載の転舵装置。
(7)
The steering device according to any one of (1) to (6), wherein the housing is a combination of a plurality of housing elements.
<第二の背景技術に関する課題を解決する手段を実施するための形態>
 本発明の実施の形態の1例について、図8~図14を用いて説明する。本例の転舵装置1は、ハウジング2と、直動軸であるボールねじ軸3と、1対のボールナット4a、4bと
、1対の軸受装置5a、5bと、複数個のボール6と、1対の電動モータ7a、7bと、1対の減速機8a、8bとを備える。
<Form for implementing means for solving problems related to the second background technology>
An example of the embodiment of the present invention will be described with reference to FIGS. 8 to 14. The steering device 1 of this example includes a housing 2, a ball screw shaft 3 which is a linear motion shaft, a pair of ball nuts 4a and 4b, a pair of bearing devices 5a and 5b, and a plurality of balls 6. It includes a pair of electric motors 7a and 7b and a pair of speed reducers 8a and 8b.
 ハウジング2は、炭素鋼などの鉄系合金により構成される。ただし、ハウジング2を、アルミニウム合金などの軽合金または合成樹脂などにより構成することもできる。本例では、ハウジング2は、幅方向両側に配置された1対の小径筒部9a、9bと、該小径筒部9a、9bのそれぞれの幅方向内側(幅方向中央側)に隣接する部分に配置された1対のアクチュエータ収容部10a、10bと、該1対のアクチュエータ収容部10a、10bの幅方向内側の端部同士を接続する連結筒部11とを備える。 Housing 2 is made of an iron-based alloy such as carbon steel. However, the housing 2 may be made of a light alloy such as an aluminum alloy or a synthetic resin. In this example, the housing 2 is located on a pair of small- diameter tubular portions 9a and 9b arranged on both sides in the width direction and portions adjacent to the inside (center side in the width direction) of the small- diameter tubular portions 9a and 9b, respectively. It includes a pair of actuator housing portions 10a and 10b arranged, and a connecting cylinder portion 11 for connecting the inner ends of the pair of actuator housing portions 10a and 10b in the width direction.
 なお、幅方向とは、特に断らない限り、転舵装置1を車体に取り付けた状態での、幅方向(図10、図11および図13の左右方向、図12の表裏方向)をいう。また、上下方向および前後方向とは、特に断らない限り、転舵装置1を車体に取り付けた状態での、上下方向(図10の表裏方向、図11~図13の上下方向)および前後方向(図10の上下方向、図11および図13の表裏方向、図12の左右方向)をいう。 Unless otherwise specified, the width direction refers to the width direction (horizontal direction in FIGS. 10, 11 and 13 and front and back directions in FIG. 12) when the steering device 1 is attached to the vehicle body. Further, unless otherwise specified, the vertical direction and the front-rear direction are the vertical direction (front and back directions in FIG. 10, the vertical direction in FIGS. 11 to 13) and the front-rear direction (in the state where the steering device 1 is attached to the vehicle body). Refers to the vertical direction of FIG. 10, the front and back directions of FIGS. 11 and 13, and the horizontal direction of FIG.
 小径筒部9a、9bのそれぞれは、ボールねじ軸3の軸方向(幅方向)両側部分を、軸方向変位を可能に、かつ、回転を不能に支持する。このために、本例の小径筒部9a、9bのそれぞれは、断面非円形の内周面を有する。具体的には、小径筒部9a、9bのそれぞれの内周面は、前後方向両側に配置された1対のハウジング側平坦面部12と、該ハウジング側平坦面部12の上下方向両側縁同士をそれぞれ接続する部分円筒状の1対の凹曲面部13とを備える。なお、本例では、ハウジング側平坦面部12のそれぞれは、前後方向を向いた平坦面により構成される。小径筒部9a、9bのそれぞれは、凹曲面部13の幅方向(軸方向)内側の端部に径方向内方に突出したストッパ凸部14を有する。ストッパ凸部14は、幅方向(軸方向)外側の端面に、幅方向(軸方向)外側を向いた、ハウジング側ストッパ面15を有する。 Each of the small- diameter tubular portions 9a and 9b supports the axially (widthwise) side portions of the ball screw shaft 3 so that they can be displaced in the axial direction and cannot rotate. For this reason, each of the small diameter tubular portions 9a and 9b of this example has an inner peripheral surface having a non-circular cross section. Specifically, the inner peripheral surfaces of the small-diameter cylindrical portions 9a and 9b are a pair of housing-side flat surface portions 12 arranged on both sides in the front-rear direction and both vertical edges of the housing-side flat surface portions 12, respectively. It is provided with a pair of concave curved surface portions 13 having a partial cylindrical shape to be connected. In this example, each of the housing-side flat surface portions 12 is composed of flat surfaces facing in the front-rear direction. Each of the small- diameter tubular portions 9a and 9b has a stopper convex portion 14 projecting inward in the radial direction at an end portion on the inner side in the width direction (axial direction) of the concave curved surface portion 13. The stopper convex portion 14 has a housing-side stopper surface 15 facing outward in the width direction (axial direction) on an end surface on the outer side in the width direction (axial direction).
 なお、ボールねじ軸3は、後述するように、自身の中心軸を、車体の幅方向に向けた状態で、ハウジング2の内側に、軸方向(幅方向)に関する変位(摺動)を可能に、かつ、回転を不能に支持される。したがって、本例では、車体の幅方向と、ボールねじ軸3の軸方向とが互いに一致する。そして、ボールねじ軸3に関して、軸方向内側とは、ボールねじ軸3の幅方向中央側(内側)をいい、軸方向外側とは、ボールねじ軸3の幅方向外側(両側)をいう。 As will be described later, the ball screw shaft 3 enables displacement (sliding) in the axial direction (width direction) inside the housing 2 with its central axis oriented in the width direction of the vehicle body. And, the rotation is impossiblely supported. Therefore, in this example, the width direction of the vehicle body and the axial direction of the ball screw shaft 3 coincide with each other. With respect to the ball screw shaft 3, the axial inner side means the width direction center side (inside) of the ball screw shaft 3, and the axial outer side means the width direction outer side (both sides) of the ball screw shaft 3.
 アクチュエータ収容部10a、10bのそれぞれは、大径筒部16と、ナット収容部17と、ウォーム収容部18とを備える。 Each of the actuator accommodating portions 10a and 10b includes a large-diameter tubular portion 16, a nut accommodating portion 17, and a worm accommodating portion 18.
 大径筒部16は、小径筒部9a、9bの幅方向内側に隣接して配置され、かつ、内径寸法および外径寸法が、小径筒部9a、9bの内径寸法および外径寸法よりも大きくなっている。 The large diameter cylinder portion 16 is arranged adjacent to the inside of the small diameter cylinder portions 9a and 9b in the width direction, and the inner diameter dimension and the outer diameter dimension are larger than the inner diameter dimension and the outer diameter dimension of the small diameter cylinder portions 9a and 9b. It has become.
 ナット収容部17は、大径筒部16の幅方向内側に隣接して配置されている。本例では、ナット収容部17は、幅方向内側に向かうほど外径寸法が小さくなる円すい台状の外周面を有し、かつ、内径寸法が、大径筒部16の内径寸法よりも小さくなっている。 The nut accommodating portion 17 is arranged adjacent to the inside of the large diameter tubular portion 16 in the width direction. In this example, the nut accommodating portion 17 has a cone-shaped outer peripheral surface whose outer diameter dimension becomes smaller toward the inside in the width direction, and the inner diameter dimension is smaller than the inner diameter dimension of the large diameter tubular portion 16. ing.
 ウォーム収容部18は、大径筒部16の中心軸に対しねじれの位置に存在する中心軸を有し、かつ、軸方向中間部が大径筒部16内に開口している。本例では、ウォーム収容部18は、大径筒部16の上側に配置されている。すなわち、ウォーム収容部18の軸方向中間部の下側部分が、大径筒部16の上側部分に開口している。 The worm accommodating portion 18 has a central axis that exists at a twisted position with respect to the central axis of the large-diameter tubular portion 16, and an axial intermediate portion is open in the large-diameter tubular portion 16. In this example, the worm accommodating portion 18 is arranged above the large diameter tubular portion 16. That is, the lower portion of the axially intermediate portion of the worm accommodating portion 18 is open to the upper portion of the large diameter tubular portion 16.
 連結筒部11は、幅方向中央位置から幅方向両側に向かうほど外径寸法が大きくなり、かつ、母線形状が円弧形の外周面と、円筒面状の内周面とを有する。 The connecting tubular portion 11 has an outer diameter dimension that increases from the central position in the width direction toward both sides in the width direction, and has an outer peripheral surface having an arc-shaped bus and an inner peripheral surface having a cylindrical surface shape.
 本例では、ハウジング2は、上下方向に分割された1対のハウジング素子19a、19bを、複数本のボルト20により結合固定してなる。 In this example, the housing 2 is formed by connecting and fixing a pair of housing elements 19a and 19b divided in the vertical direction by a plurality of bolts 20.
 ボールねじ軸3は、直動軸であって、自身の中心軸を、車体の幅方向に向けた状態で、ハウジング2の内側に、軸方向(幅方向)に関する変位(摺動)を可能に、かつ、回転を不能に支持される。本例のボールねじ軸3は、大径部22と、該大径部22の軸方向両側に配置された1対の小径部23a、23bとを備える。さらに、ボールねじ軸3は、大径部22の軸方向中間部に、断面形状が円弧形でらせん状に形成された内径側ボールねじ溝21を備える。なお、図11および図14では、内径側ボールねじ溝21、後述するボールナット4a、4bの外径側ボールねじ溝35およびボール6を省略している。 The ball screw shaft 3 is a linear motion shaft, and enables displacement (sliding) in the axial direction (width direction) inside the housing 2 with its central axis oriented in the width direction of the vehicle body. And, the rotation is impossiblely supported. The ball screw shaft 3 of this example includes a large-diameter portion 22 and a pair of small- diameter portions 23a and 23b arranged on both sides of the large-diameter portion 22 in the axial direction. Further, the ball screw shaft 3 includes an inner diameter side ball screw groove 21 formed in a spiral shape with an arc shape in an axially intermediate portion of the large diameter portion 22. In addition, in FIGS. 11 and 14, the inner diameter side ball screw groove 21, the outer diameter side ball screw groove 35 and the ball 6 of the ball nuts 4a and 4b described later are omitted.
 1対の小径部23a、23bのそれぞれは、断面非円形の外周面を有する。具体的には、小径部23a、23bのそれぞれの外周面は、前後方向両側に配置された1対の平坦面部と、該平坦面部の上下方向両側縁同士をそれぞれ接続する部分円筒状の1対の凸曲面部とを備える。1対の小径部23a、23bのそれぞれは、軸方向外側の端面に開口するねじ孔24を有する。 Each of the pair of small diameter portions 23a and 23b has an outer peripheral surface having a non-circular cross section. Specifically, the outer peripheral surfaces of the small diameter portions 23a and 23b are a pair of flat surface portions arranged on both sides in the front-rear direction and a pair of partial cylinders connecting both vertical and vertical edges of the flat surface portions. It is provided with a convex curved surface portion of. Each of the pair of small diameter portions 23a and 23b has a screw hole 24 that opens on the end face on the outer side in the axial direction.
 本例では、ボールねじ軸3は、該ボールねじ軸3の軸方向片側(図10および図11の左側)の端部と軸方向他側(図10および図11の右側)の端部に外嵌された1対のガイドスリーブ25a、25bを介して、ハウジング2の内側に、軸方向に関する変位を可能に、かつ、回転を不能に支持されている。 In this example, the ball screw shaft 3 is outside the end of the ball screw shaft 3 on one axial side (left side in FIGS. 10 and 11) and the other end in the axial direction (right side in FIGS. 10 and 11). An axially displaceable and non-rotatable support is provided inside the housing 2 via a pair of fitted guide sleeves 25a, 25b.
 ガイドスリーブ25a、25bのそれぞれは、合成樹脂、または、銅系合金などの自己潤滑性を有する非鉄系金属もしくは含油メタルなど、ハウジング2に対する摩擦係数が小さな材料製である。ガイドスリーブ25a、25bのそれぞれは、ボールねじ軸3の小径部23a、23bに、がたつきなく、かつ、回転不能に外嵌可能な内周面を有する。具体的には、本例のガイドスリーブ25a、25bのそれぞれの内周面は、前後方向両側に配置された1対の平坦面部と、該平坦面部の上下方向両側縁同士をそれぞれ接続する部分円筒状の1対の凹曲面部とを備える。 Each of the guide sleeves 25a and 25b is made of a material having a small coefficient of friction with respect to the housing 2, such as a synthetic resin or a non-ferrous metal or an oil-impregnated metal having self-lubricating properties such as a copper alloy. Each of the guide sleeves 25a and 25b has an inner peripheral surface that can be fitted onto the small diameter portions 23a and 23b of the ball screw shaft 3 without rattling and non-rotatably. Specifically, the inner peripheral surfaces of the guide sleeves 25a and 25b of this example are partial cylinders that connect a pair of flat surface portions arranged on both sides in the front-rear direction and both vertical edges of the flat surface portions. It is provided with a pair of concave curved surfaces.
 また、ガイドスリーブ25a、25bのそれぞれは、ハウジング2の小径筒部9a、9bの内側に、ハウジング2に対する相対回転を不能に、かつ、軸方向に関する変位(摺動)を可能に配置(内嵌)可能な外周面を有する。具体的には、本例のガイドスリーブ25a、25bのそれぞれの外周面は、前後方向両側に配置された1対の軸側平坦面部26と、該軸側平坦面部26の上下方向両側縁同士をそれぞれ接続する部分円筒状の1対の凸曲面部27とを備える。さらに、ガイドスリーブ25a、25bのそれぞれは、凸曲面部27の軸方向内側部分に、軸方向内側の端部に開口し、かつ、径方向内方に凹んだストッパ凹部28を有する。ストッパ凹部28は、軸方向外側の端面に、軸方向内側を向いた軸側ストッパ面29を有する。 Further, each of the guide sleeves 25a and 25b is arranged (internally fitted) inside the small diameter tubular portions 9a and 9b of the housing 2 so that the relative rotation with respect to the housing 2 is impossible and the displacement (sliding) in the axial direction is possible. ) Has a possible outer surface. Specifically, the outer peripheral surfaces of the guide sleeves 25a and 25b of this example have a pair of axial flat surface portions 26 arranged on both sides in the front-rear direction and both vertical edges of the axial flat surface portions 26. It is provided with a pair of convex curved surface portions 27 having a partial cylindrical shape to be connected to each other. Further, each of the guide sleeves 25a and 25b has a stopper recess 28 which is open at the axially inner end and is recessed inward in the radial direction in the axially inner portion of the convex curved surface portion 27. The stopper recess 28 has an axial stopper surface 29 facing inward in the axial direction on an end surface on the outer side in the axial direction.
 ガイドスリーブ25a、25bのそれぞれは、内周面を、ボールねじ軸3の小径部23a、23bの外周面に非円形係合(嵌合)させることにより、小径部23a、23bの周囲にがたつきなく、かつ、該小径部23a、23bに対する相対回転を不能に外嵌されている。また、ガイドスリーブ25a、25bのそれぞれは、軸側平坦面部26を、小径筒部9a、9bのハウジング側平坦面部12に摺接ないし近接対向させ、かつ、凸曲面部27を、小径筒部9a、9bの凹曲面部13に摺接ないし近接対向させることにより、ハウジング2の小径筒部9a、9bの内側に、ハウジング2に対する相対回転を不能に、かつ、軸方向に関する変位(摺動)を可能に配置(内嵌)されている。これにより、ボールねじ軸3は、ハウジング2の内側に、軸方向(幅方向)に関する変位(摺動)を可能に、かつ、回転を不能に支持されている。要するに、ガイドスリーブ25a、25bは、ボールねじ軸3がハウジング2に対して相対回転するのを防止する回転止め機能を有する。 Each of the guide sleeves 25a and 25b has an inner peripheral surface that is non-circularly engaged (fitted) with the outer peripheral surfaces of the small diameter portions 23a and 23b of the ball screw shaft 3 so as to be loose around the small diameter portions 23a and 23b. It is not attached and is externally fitted so that it cannot rotate relative to the small diameter portions 23a and 23b. Further, in each of the guide sleeves 25a and 25b, the shaft-side flat surface portion 26 is slidably or close to the housing-side flat surface portion 12 of the small- diameter tubular portions 9a and 9b, and the convex curved surface portion 27 is brought into contact with the small-diameter tubular portion 9a. By sliding contact or close contact with the concave curved surface portion 13 of 9b, relative rotation with respect to the housing 2 is made impossible and displacement (sliding) in the axial direction is caused inside the small diameter tubular portions 9a and 9b of the housing 2. It is arranged (internally fitted) so that it can be placed. As a result, the ball screw shaft 3 is supported inside the housing 2 so as to be displaced (sliding) in the axial direction (width direction) and unable to rotate. In short, the guide sleeves 25a and 25b have a rotation stop function for preventing the ball screw shaft 3 from rotating relative to the housing 2.
 なお、ガイドスリーブ25a、25bと、ハウジング2の小径筒部9a、9bとの間には、グリースが充填され、ガイドスリーブ25a、25bの外周面と小径筒部9a、9bの内周面との摺接部の潤滑が図られている。そこで、ガイドスリーブ25a、25bのそれぞれの外周面、および/または、ハウジング2の小径筒部9a、9bの内周面に、グリースを保持するための保持凹部を備えることもできる。保持凹部は、たとえば、軸方向または周方向に伸長する凹溝などにより構成することができる。 Grease is filled between the guide sleeves 25a and 25b and the small- diameter tubular portions 9a and 9b of the housing 2, so that the outer peripheral surfaces of the guide sleeves 25a and 25b and the inner peripheral surfaces of the small- diameter tubular portions 9a and 9b Lubrication of the sliding contact part is planned. Therefore, the outer peripheral surfaces of the guide sleeves 25a and 25b and / or the inner peripheral surfaces of the small- diameter tubular portions 9a and 9b of the housing 2 may be provided with holding recesses for holding grease. The holding recess can be formed, for example, by a recess extending in the axial direction or the circumferential direction.
 本例では、ガイドスリーブ25a、25bのそれぞれは、前後方向に分割された1対のスリーブ素子46を組み合わせてなる。本例では、ガイドスリーブ25a、25bを、ハウジング2の小径筒部9a、9bの内側に配置することで、ガイドスリーブ25a、25bのそれぞれを構成する1対のスリーブ素子46が互いに分離することを防止している。また、後述するように、ボールねじ軸3のねじ孔24に球面継手30の支持軸部32を螺合した状態で、該球面継手30の軸方向内側面により、ガイドスリーブ25a、25bの軸方向外側の端面を押え付けている。すなわち、ボールねじ軸3の大径部22の外周面と小径部23a、23bの外周面とを接続する段差部と、球面継手30との間で、ガイドスリーブ25a、25bを軸方向(幅方向)に挟持して、該ガイドスリーブ25a、25bが軸方向に変位する(小径部23a、23bから脱落する)のを防止している。 In this example, each of the guide sleeves 25a and 25b is a combination of a pair of sleeve elements 46 divided in the front-rear direction. In this example, by arranging the guide sleeves 25a and 25b inside the small diameter tubular portions 9a and 9b of the housing 2, the pair of sleeve elements 46 constituting the guide sleeves 25a and 25b are separated from each other. It is preventing. Further, as will be described later, in a state where the support shaft portion 32 of the spherical joint 30 is screwed into the screw hole 24 of the ball screw shaft 3, the axial inner surface of the spherical joint 30 allows the guide sleeves 25a and 25b to be axially oriented. The outer end face is pressed down. That is, the guide sleeves 25a and 25b are axially (widthwise) between the stepped portion connecting the outer peripheral surface of the large diameter portion 22 of the ball screw shaft 3 and the outer peripheral surfaces of the small diameter portions 23a and 23b and the spherical joint 30. ), The guide sleeves 25a and 25b are prevented from being displaced in the axial direction (falling off from the small diameter portions 23a and 23b).
 なお、ガイドスリーブ25a、25bのそれぞれを構成する1対のスリーブ素子46と、ボールねじ軸3の小径部23a、23bとの間には、1乃至複数枚のシム板を挟持することもできる。 It should be noted that one or a plurality of shim plates can be sandwiched between the pair of sleeve elements 46 constituting each of the guide sleeves 25a and 25b and the small diameter portions 23a and 23b of the ball screw shaft 3.
 ボールねじ軸3を、1対のガイドスリーブ25a、25bを介して、ハウジング2の内側に支持した状態では、ガイドスリーブ25a、25bのそれぞれの軸側ストッパ面29と、小径筒部9a、9bのそれぞれのハウジング側ストッパ面15とが軸方向(幅方向)に対向している。なお、ハウジング2に対するボールねじ軸3の軸方向位置にかかわらず、軸方向片側(図10および図11の左側)のガイドスリーブ25aの軸側ストッパ面29と、軸方向片側の小径筒部9aのハウジング側ストッパ面15との間部分、および、軸方向他側(図10および図11の右側)のガイドスリーブ25bの軸側ストッパ面29と、軸方向他側の小径筒部9bのハウジング側ストッパ面15との間部分のうち、少なくとも一方の間部分には、軸方向隙間が存在する。 When the ball screw shaft 3 is supported inside the housing 2 via a pair of guide sleeves 25a and 25b, the shaft-side stopper surfaces 29 of the guide sleeves 25a and 25b and the small- diameter tubular portions 9a and 9b The respective housing-side stopper surfaces 15 face each other in the axial direction (width direction). Regardless of the axial position of the ball screw shaft 3 with respect to the housing 2, the axial stopper surface 29 of the guide sleeve 25a on one side in the axial direction (left side in FIGS. 10 and 11) and the small diameter tubular portion 9a on one side in the axial direction. The housing-side stopper between the housing-side stopper surface 15 and the axial-side stopper surface 29 of the guide sleeve 25b on the other side in the axial direction (right side of FIGS. 10 and 11) and the small-diameter tubular portion 9b on the other side in the axial direction. There is an axial gap in at least one of the intermediate portions with the surface 15.
 ボールねじ軸3の軸方向両側の端部には、それぞれ球面継手30を介して、1対のタイロッド31が接続されている。すなわち、球面継手30のそれぞれの支持軸部32の外周面に備えられた雄ねじ部を、ボールねじ軸3のねじ孔24に螺合し、かつ、球面継手30のそれぞれの内周面に備えられた部分凹球面状の係合凹部33に、タイロッド31の基端部(軸方向内側の端部)に備えられた部分凸球面状の球面係合部34を球面係合させている。 A pair of tie rods 31 are connected to the ends of the ball screw shaft 3 on both sides in the axial direction via spherical joints 30, respectively. That is, the male screw portions provided on the outer peripheral surfaces of the support shaft portions 32 of the spherical joint 30 are screwed into the screw holes 24 of the ball screw shaft 3 and provided on the inner peripheral surfaces of the spherical joint 30. A partially convex spherical spherical engaging portion 34 provided at the base end portion (inner end in the axial direction) of the tie rod 31 is spherically engaged with the partially concave spherical engaging recess 33.
 1対のボールナット4a、4bのそれぞれは、内周面に、断面形状が円弧形でらせん状に形成された外径側ボールねじ溝35を有し、かつ、ボールねじ軸3の周囲に該ボールねじ軸3に対する相対回転を可能に配置されている。本例では、1対のボールナット4a、4bのそれぞれの外径側ボールねじ溝35は、互いに同じ仕様(リードおよびリード角)を有する。また、本例では、ボールナット4a、4bのそれぞれは、スリーブ36および軸受装置5a、5bを用いて、ハウジング2のナット収容部17の内側に回転自在に支持されている。具体的には、ボールナット4a、4bのそれぞれの軸方向外側の端部に、スリーブ36の軸方向内側の端部が、トルクの伝達を可能に結合固定され、かつ、該スリーブ36の軸方向中間部外周面と、ハウジング2の大径筒部19の幅方向内側部分の内周面との間に軸受装置5a、5bが配置されている。軸受装置5a、5bのそれぞれは、ラジアル荷重およびスラスト荷重を支承可能な構造を有する。具体的には、たとえば、軸受装置5a、5bのそれぞれは、背面組み合わせ型(DB型)の接触角を有する複列アンギュラ玉軸受や複列円すいころ軸受などにより構成することができる。また、スリーブ36は、ボールナット4a、4bと一体に構成することもできる。 Each of the pair of ball nuts 4a and 4b has an outer diameter side ball screw groove 35 formed in a spiral shape with an arc shape on the inner peripheral surface, and around the ball screw shaft 3. It is arranged so that it can rotate relative to the ball screw shaft 3. In this example, the outer diameter side ball screw grooves 35 of the pair of ball nuts 4a and 4b have the same specifications (lead and lead angle). Further, in this example, each of the ball nuts 4a and 4b is rotatably supported inside the nut accommodating portion 17 of the housing 2 by using the sleeve 36 and the bearing devices 5a and 5b, respectively. Specifically, the axially inner end of the sleeve 36 is coupled and fixed to the axially outer ends of the ball nuts 4a and 4b so that torque can be transmitted, and the sleeve 36 is axially connected and fixed. Bearing devices 5a and 5b are arranged between the outer peripheral surface of the intermediate portion and the inner peripheral surface of the inner peripheral surface of the large-diameter tubular portion 19 of the housing 2 in the width direction. Each of the bearing devices 5a and 5b has a structure capable of bearing a radial load and a thrust load. Specifically, for example, each of the bearing devices 5a and 5b can be configured by a double-row angular contact ball bearing or a double-row tapered roller bearing having a back surface combination type (DB type) contact angle. The sleeve 36 can also be integrally formed with the ball nuts 4a and 4b.
 1対のボールナット4a、4bのそれぞれは、後述するボール6を循環させるための図示しない循環機構をさらに有する。循環機構は、チューブ式、デフレクタ式、エンドキャップ式またはこま式の何れの構造のものを採用しても良いが、ボールねじ軸3を十分に大きな力で軸方向に変位させるべく、ボール6の玉径を十分に確保する面からは、チューブ式のものを採用することが好ましい。 Each of the pair of ball nuts 4a and 4b further has a circulation mechanism (not shown) for circulating the ball 6, which will be described later. The circulation mechanism may have any structure of tube type, deflector type, end cap type or top type, but in order to displace the ball screw shaft 3 in the axial direction with a sufficiently large force, the ball 6 From the viewpoint of ensuring a sufficient ball diameter, it is preferable to use a tube type.
 1対の電動モータ7a、7bのそれぞれは、減速機8a、8bを介して、ボールナット4a、4bを回転駆動する。本例では、1対の電動モータ7a、7bは、互いに同じ定格出力を有し、かつ、減速機8a、8bは、互いに同じ減速比を有する。特に本例では、減速機8a、8bのそれぞれを、ウォーム減速機としている。すなわち、減速機8a、8bのそれぞれは、スリーブ36の軸方向外側の端部にトルクの伝達を可能に外嵌されたウォームホイール37と、該ウォームホイール37と噛合し、かつ、ハウジング2のウォーム収容部18の内側に回転自在に支持されたウォーム38とからなる。電動モータ7a、7bのそれぞれは、出力軸を、ウォーム38の基端部に接続している。なお、本例では、ウォーム減速機である減速機8a、8bとして、セルフロック機能を有さず、逆効率の高いものを使用している。 Each of the pair of electric motors 7a and 7b rotationally drives the ball nuts 4a and 4b via the speed reducers 8a and 8b, respectively. In this example, the pair of electric motors 7a and 7b have the same rated output, and the speed reducers 8a and 8b have the same reduction ratio. In particular, in this example, each of the speed reducers 8a and 8b is a worm speed reducer. That is, each of the speed reducers 8a and 8b meshes with the worm wheel 37 which is outerly fitted to the axially outer end of the sleeve 36 so as to be able to transmit torque, and the worm of the housing 2. It is composed of a worm 38 rotatably supported inside the housing portion 18. Each of the electric motors 7a and 7b has an output shaft connected to a base end portion of the worm 38. In this example, the speed reducers 8a and 8b, which are worm speed reducers, do not have a self-locking function and have high reverse efficiency.
 なお、減速機8a、8bは、電動モータ7a、7bの出力トルクを増大させてボールナット4a、4bに付与することができれば、ウォーム減速機に限らない。具体的には、たとえば、減速機8a、8bとして、平行軸歯車式や摩擦ローラ式、ベルト式などの減速機を使用することもできる。なお、1対の電動モータ7a、7bとして、互いに異なる定格出力を有するものを使用したり、減速機8a、8bとして、互いに異なる種類(構造)のものや異なる減速比を有するものを使用したりすることもできる。ただし、電動モータ7a、7bの制御を容易にする面からは、1対の電動モータ7a、7bとして、互いに同じ定格出力を有するものを使用し、かつ、減速機8a、8bとして、互いに同じ種類であって、同じ減速比を有するものを使用することが好ましい。 The speed reducers 8a and 8b are not limited to worm speed reducers as long as the output torque of the electric motors 7a and 7b can be increased and applied to the ball nuts 4a and 4b. Specifically, for example, as the speed reducers 8a and 8b, speed reducers such as a parallel shaft gear type, a friction roller type, and a belt type can also be used. As the pair of electric motors 7a and 7b, those having different rated outputs may be used, and as the speed reducers 8a and 8b, those having different types (structures) and different reduction ratios may be used. You can also do it. However, from the viewpoint of facilitating control of the electric motors 7a and 7b, a pair of electric motors 7a and 7b having the same rated output are used, and the speed reducers 8a and 8b are of the same type. It is preferable to use one having the same reduction ratio.
 本例の転舵装置1は、たとえば、車軸懸架式の懸架装置を備えるトラックなどの大型車両の車体の下方に支持される。具体的には、転舵装置1は、図8に示すように、ハウジング2の取付板部39に備えられた通孔を挿通したボルト40を、車体フレーム41に1対のリーフスプリング42を介して支持された車軸43に形成されたねじ孔に螺合し、さらに締め付けることで、車体フレーム41に対し支持固定されている。1対のタイロッド31のそれぞれの先端部は、ナックル44のアーム45の先端部に揺動可能に接続されている。さらに、ナックル44のそれぞれには、図示しないハブユニット軸受を介して操舵輪が回転自在に支持されている。 The steering device 1 of this example is supported below the vehicle body of a large vehicle such as a truck provided with an axle suspension type suspension device, for example. Specifically, as shown in FIG. 8, the steering device 1 inserts bolts 40 through which through holes provided in the mounting plate portion 39 of the housing 2 are inserted into the vehicle body frame 41 via a pair of leaf springs 42. By screwing into a screw hole formed in the axle 43 supported by the vehicle and further tightening the screw hole, the axle 43 is supported and fixed to the vehicle body frame 41. Each tip of the pair of tie rods 31 is swingably connected to the tip of the arm 45 of the knuckle 44. Further, each of the knuckles 44 is rotatably supported by steering wheels via hub unit bearings (not shown).
 転舵装置1は、ステアリングホイールなどの操縦桿を有する操舵装置と、制御器(ECU)を介して電気的に組み合わされて、ステアバイワイヤ方式のステアリング装置を構成する。制御器は、車両が通常運転モードで走行しているときには、センサにより取得したステアリングホイールの操作量、さらに必要に応じて車両の走行速度などに基づいて、操舵輪に付与する舵角を算出する。これに対し、車両が自動運転モードで走行しているときには、制御器は、各種センサにより取得した、車両の周囲の状況や移動距離、移動方向などに基づいて、操舵輪に付与する舵角を算出する。 The steering device 1 is electrically combined with a steering device having a control stick such as a steering wheel via a controller (ECU) to form a steer-by-wire type steering device. When the vehicle is traveling in the normal driving mode, the controller calculates the steering angle given to the steering wheels based on the amount of operation of the steering wheel acquired by the sensor and, if necessary, the traveling speed of the vehicle. .. On the other hand, when the vehicle is traveling in the automatic driving mode, the controller determines the steering angle given to the steering wheels based on the surrounding conditions, the moving distance, the moving direction, etc. of the vehicle acquired by various sensors. calculate.
 通常運転モードと自動運転モードとのいずれのモードで走行している場合でも、制御器は、算出した舵角に応じて、転舵装置1の電動モータ7a、7bに同時に通電し、ウォーム38を回転駆動させる。ウォーム38を回転させることで、該ウォーム38と噛合するウォームホイール37を回転させ、スリーブ36を介してウォームホイール37に結合されたボールナット4a、4bを、同じ方向に同じ速度で回転させる。ボールナット4a、4bの回転に伴い、ボール6が、内径側ボールねじ溝21と外径側ボールねじ溝35との間を移動し、かつ、ボールねじ軸3が軸方向(幅方向)に変位する。要するに、本例では、減速機8a、8bとボールナット4a、4bとボール6とにより、電動モータ7a、7bの出力軸の回転運動を直動軸であるボールねじ軸3の直動運動に変換する変換機構が構成されている。ボールねじ軸3の軸方向の変位に伴い、タイロッド31が押し引きされると、ナックル44が揺動変位されて、操舵輪に所望の舵角が付与される。 Regardless of whether the vehicle is traveling in either the normal operation mode or the automatic operation mode, the controller simultaneously energizes the electric motors 7a and 7b of the steering device 1 according to the calculated steering angle to generate the worm 38. It is driven to rotate. By rotating the worm 38, the worm wheel 37 that meshes with the worm 38 is rotated, and the ball nuts 4a and 4b coupled to the worm wheel 37 via the sleeve 36 are rotated in the same direction and at the same speed. As the ball nuts 4a and 4b rotate, the ball 6 moves between the inner diameter side ball screw groove 21 and the outer diameter side ball screw groove 35, and the ball screw shaft 3 is displaced in the axial direction (width direction). To do. In short, in this example, the speed reducers 8a and 8b, the ball nuts 4a and 4b, and the ball 6 convert the rotational movement of the output shafts of the electric motors 7a and 7b into the linear movement of the ball screw shaft 3 which is the linear movement shaft. A conversion mechanism is configured. When the tie rod 31 is pushed and pulled along with the axial displacement of the ball screw shaft 3, the knuckle 44 is oscillated and displaced to give the steering wheel a desired steering angle.
 本例の転舵装置1では、ボールねじ軸3を軸方向片側に変位させることで、操舵輪を、所定方向に転舵限界まで転舵(いわゆる端当て)させると、ボールねじ軸3のうち、軸方向他側の小径部23bに外嵌されたガイドスリーブ25bの軸側ストッパ面29が、ハウジング2のうち、軸方向他側の小径筒部9bのハウジング側ストッパ面15に当接して、ボールねじ軸3がそれ以上軸方向片側に変位することが阻止される。換言すれば、軸方向他側のガイドスリーブ25bの軸側ストッパ面29と、軸方向他側の小径筒部9bのハウジング側ストッパ面15とを当接させることにより、所定方向の転舵限界を規定している。 In the steering device 1 of this example, when the ball screw shaft 3 is displaced to one side in the axial direction to steer the steering wheel in a predetermined direction to the steering limit (so-called end contact), the ball screw shaft 3 is formed. The shaft-side stopper surface 29 of the guide sleeve 25b externally fitted to the small-diameter portion 23b on the other side in the axial direction abuts on the housing-side stopper surface 15 of the small-diameter tubular portion 9b on the other side in the axial direction in the housing 2. It is prevented that the ball screw shaft 3 is further displaced to one side in the axial direction. In other words, the steering limit in the predetermined direction is set by bringing the shaft-side stopper surface 29 of the guide sleeve 25b on the other side in the axial direction into contact with the housing-side stopper surface 15 of the small-diameter tubular portion 9b on the other side in the axial direction. It stipulates.
 一方、ボールねじ軸3を軸方向他側に変位させることで、操舵輪を、前記所定方向と逆方向に転舵限界まで転舵させると、ボールねじ軸3のうち、軸方向片側の小径部23aに外嵌されたガイドスリーブ25aの軸側ストッパ面29が、ハウジング2のうち、軸方向片側の小径筒部9aのハウジング側ストッパ面15に当接して、ボールねじ軸3がそれ以上軸方向他側に変位することが阻止される。換言すれば、軸方向片側のガイドスリーブ25aの軸側ストッパ面29と、軸方向片側の小径筒部9aのハウジング側ストッパ面15とを当接させることにより、所定方向と逆方向の転舵限界を規定している。 On the other hand, when the steering wheel is steered to the steering limit in the direction opposite to the predetermined direction by shifting the ball screw shaft 3 to the other side in the axial direction, the small diameter portion of the ball screw shaft 3 on one side in the axial direction The shaft-side stopper surface 29 of the guide sleeve 25a externally fitted to the 23a abuts on the housing-side stopper surface 15 of the small-diameter tubular portion 9a on one side in the axial direction of the housing 2, and the ball screw shaft 3 is further axially oriented. It is prevented from being displaced to the other side. In other words, by bringing the shaft side stopper surface 29 of the guide sleeve 25a on one side in the axial direction into contact with the housing side stopper surface 15 of the small diameter tubular portion 9a on one side in the axial direction, the steering limit in the direction opposite to the predetermined direction is reached. Is stipulated.
 要するに、ガイドスリーブ25a、25bは、ボールねじ軸3が軸方向に過度に変位するのを防止するストッパ機能を有する。このようなストッパ機能により、ボール6が、ボールねじ軸3の内径側ボールねじ溝21の端部に押し付けられたり、該内径側ボールねじ溝21の端部から乗り上げたりするのを防止し、かつ、ガイドスリーブ25a、25bの軸方向内側の端部が、ボールナット4a、4bの軸方向外側の端部に衝突するのを防止している。 In short, the guide sleeves 25a and 25b have a stopper function to prevent the ball screw shaft 3 from being excessively displaced in the axial direction. With such a stopper function, the ball 6 is prevented from being pressed against the end of the ball screw groove 21 on the inner diameter side of the ball screw shaft 3 or riding on the end of the ball screw groove 21 on the inner diameter side. , The axially inner ends of the guide sleeves 25a and 25b are prevented from colliding with the axially outer ends of the ball nuts 4a and 4b.
 なお、操舵装置は、操縦桿の操舵量に応じた反力を該操縦桿に付与する反力付与モータをさらに有する。したがって、車両が通常運転モードで走行しているときに、運転者が操縦桿を操作すると、操縦桿の操作量などに応じた操作反力が該操縦桿に付与される。一方、車両が自動運転モードで走行しているときは、転舵装置1により、操舵輪に舵角を付与している状態でも、操縦桿は回転しない。 The steering device further has a reaction force applying motor that applies a reaction force corresponding to the steering amount of the control stick to the control stick. Therefore, when the driver operates the control stick while the vehicle is traveling in the normal operation mode, an operation reaction force corresponding to the amount of operation of the control stick is applied to the control stick. On the other hand, when the vehicle is traveling in the automatic driving mode, the control stick does not rotate even when the steering wheel is provided with a steering angle by the steering device 1.
 上述のように、本例の転舵装置1は、1対の電動モータ7a、7bにより、減速機8a、8bを介して、ボールナット4a、4bを同時に回転駆動することで、ボールねじ軸3を軸方向に変位させることにより、操舵輪に舵角を付与するように構成されている。したがって、本例の転舵装置1によれば、電動モータ7a、7bとして、徒に出力(定格トルク)が大きなものを使用する必要がなく、該電動モータ7a、7bのそれぞれを、出力可能なトルク範囲のうち比較的出力トルクが低く、かつ、効率の良い領域で使用しても、十分な転舵力を得ることができる。 As described above, in the steering device 1 of this example, the ball screw shaft 3 is driven by a pair of electric motors 7a and 7b to simultaneously rotate and drive the ball nuts 4a and 4b via the speed reducers 8a and 8b. Is configured to give a steering angle to the steering wheel by shifting the steering wheel in the axial direction. Therefore, according to the steering device 1 of this example, it is not necessary to use electric motors 7a and 7b having a large output (rated torque), and each of the electric motors 7a and 7b can be output. Sufficient steering force can be obtained even when used in an efficient region where the output torque is relatively low in the torque range.
 また、本例の転舵装置1では、電動モータ7a、7bを1対備えるため、該1対の電動モータ7a、7bのうちのいずれか一方の電動モータ7a(または7b)への通電が不能になった場合でも、他方の電動モータ7b(または7a)のみを駆動することで、ボールねじ軸3を軸方向に変位させ、操舵輪に舵角を付与することができる。なお、この場合には、他方の電動モータ7b(または7a)のみを駆動することで、ボールねじ軸3を軸方向に変位すると、一方のボールナット4a(または4b)の外径側ボールねじ溝35とボールねじ軸3の内径側ボールねじ溝21との間でボール6が移動する。これにより、一方のボールナット4a(または4b)が回転すると、ウォームホイール37が回転し、さらに該ウォームホイール37と噛合するウォーム38が回転し、一方の電動モータ7a(または7b)の出力軸が回転する。このようにして、ボールねじ軸3の軸方向変位が許容される。すなわち、本例の転舵装置1によれば、フェールセーフを確保することができる。 Further, since the steering device 1 of this example includes a pair of electric motors 7a and 7b, it is impossible to energize the electric motor 7a (or 7b) of any one of the pair of electric motors 7a and 7b. Even in the case of, the ball screw shaft 3 can be displaced in the axial direction and the steering wheel can be provided with a steering angle by driving only the other electric motor 7b (or 7a). In this case, when the ball screw shaft 3 is displaced in the axial direction by driving only the other electric motor 7b (or 7a), the outer diameter side ball screw groove of the one ball nut 4a (or 4b) is used. The ball 6 moves between the 35 and the ball screw groove 21 on the inner diameter side of the ball screw shaft 3. As a result, when one of the ball nuts 4a (or 4b) rotates, the worm wheel 37 rotates, the worm 38 that meshes with the worm wheel 37 rotates, and the output shaft of the one electric motor 7a (or 7b) rotates. Rotate. In this way, the axial displacement of the ball screw shaft 3 is allowed. That is, according to the steering device 1 of this example, fail-safe can be ensured.
 なお、1個の電動モータ7b(または7a)のみで転舵を行う場合、1対の電動モータ7a、7bにより転舵を行う場合よりも、電動モータ7b(または7a)を、出力可能な範囲のうち、比較的出力トルクが高い領域であって、効率が低い領域で使用する必要がある。また、1個の電動モータ7b(または7a)のみで転舵を行う場合、得られる転舵力も小さく、たとえば、車両の停止中に舵角を付与(据え切り)するような動作は難しくなる可能性がある。ただし、この場合でも、車両をわずかでも動かして、操舵輪を回転させれば、電動モータ7b(または7a)にかかる負荷を小さくすることができ、操舵輪に舵角を付与することができる。 When steering is performed by only one electric motor 7b (or 7a), the range in which the electric motor 7b (or 7a) can be output is larger than that when steering is performed by a pair of electric motors 7a and 7b. Of these, it is necessary to use it in a region where the output torque is relatively high and the efficiency is low. Further, when steering is performed with only one electric motor 7b (or 7a), the obtained steering force is also small, and for example, it may be difficult to give (stationary) the steering angle while the vehicle is stopped. There is sex. However, even in this case, if the vehicle is moved even slightly to rotate the steering wheels, the load applied to the electric motor 7b (or 7a) can be reduced, and the steering wheels can be provided with a steering angle.
 本例の転舵装置1では、1対の電動モータ7a、7bのそれぞれが、別々のボールナット4a、4bを回転駆動することで、ボールねじ軸3を軸方向に変位させるように構成されている。したがって、電動モータ7a、7bとして、出力が比較的小さい小型のものを使用できることに加え、ボールナット4a、4bのそれぞれの径方向寸法を、1個のボールナットを回転駆動することでボールねじ軸3を軸方向に変位させる構造と比較して小さく抑えることができる。要するに、ボールナット4a、4bと、軸受装置5a、5bと、減速機8a、8bと、電動モータ7a、7bとをそれぞれ1個ずつ組み合わせてなる電動アクチュエータ47a、47bの小型化を図ることができ、該電動アクチュエータ47a、47bの軸方向(幅方向)に関する設置位置の自由度を高くすることができる。 In the steering device 1 of this example, each of the pair of electric motors 7a and 7b is configured to rotationally drive separate ball nuts 4a and 4b to displace the ball screw shaft 3 in the axial direction. There is. Therefore, in addition to being able to use small electric motors 7a and 7b having relatively small outputs, the ball screw shaft is driven by rotating one ball nut to rotate the radial dimensions of the ball nuts 4a and 4b. It can be kept small as compared with the structure in which 3 is displaced in the axial direction. In short, it is possible to reduce the size of the electric actuators 47a and 47b, which are formed by combining the ball nuts 4a and 4b, the bearing devices 5a and 5b, the speed reducers 8a and 8b, and the electric motors 7a and 7b, respectively. , The degree of freedom in the installation position of the electric actuators 47a and 47b in the axial direction (width direction) can be increased.
 本例の転舵装置1では、1対の電動アクチュエータ47a、47bは、幅方向中央付近、具体的には、ハウジング2の幅方向中央位置を挟んだ両側部分に配置されている。特に本例では、電動アクチュエータ47a、47bのそれぞれを構成する各部材のうち、ボールナット4a、4bが、幅方向に関して最も中央側に配置されている。換言すれば、ボールナット4a、4bが、幅方向中央付近で互いに近接して配置されている。このため、ボールナット4a、4bを回転駆動することにより、該ボールナット4a、4bのそれぞれにボール6を介して螺合されたボールねじ軸3を軸方向に変位させる際に、該ボールねじ軸3に無理な力(ねじれ方向の力)が加わるのを、1対のボールナット4a、4bが幅方向に関して互いに大きく離隔して配置された構造(たとえば、ダブルピニオン式パワーステアリング装置において、ステアリングホイールからの操舵力が入力される部分と、電動モータによるアシスト力が付与される部分とのように、ラック軸の幅方向両側の端部付近に力が付与される構造)と比較して抑えることができる。 In the steering device 1 of this example, the pair of electric actuators 47a and 47b are arranged near the center in the width direction, specifically, on both side portions of the housing 2 with the center position in the width direction in between. In particular, in this example, among the members constituting each of the electric actuators 47a and 47b, the ball nuts 4a and 4b are arranged on the most central side in the width direction. In other words, the ball nuts 4a and 4b are arranged close to each other near the center in the width direction. Therefore, by rotationally driving the ball nuts 4a and 4b, the ball screw shaft 3 screwed into each of the ball nuts 4a and 4b via the ball 6 is displaced in the axial direction. A structure in which a pair of ball nuts 4a and 4b are arranged so as to be largely separated from each other in the width direction (for example, in a double pinion type power steering device), a steering wheel is applied so that an unreasonable force (force in the twisting direction) is applied to 3. Compared to the part where the steering force is input from the ball and the part where the assist force is applied by the electric motor, the force is applied near the ends on both sides of the rack shaft in the width direction). Can be done.
 また、ボールナット4a、4bを、幅方向中央付近で互いに近接して配置することで、ボールねじ軸3の大径部22の外周面に備えられた内径側ボールねじ溝21の軸方向に関する長さ寸法(軸方向に関する形成範囲)を短くすることもできる。このため、内径側ボールねじ溝21の加工コストを低く抑えることができ、かつ、ボールねじ軸3の軸方向両側部分に、小径部23a、23bを備えさせることができ、該小径部23a、23bのそれぞれの周囲に、ガイドスリーブ25a、25bを配置することができる。ガイドスリーブ25a、25bのそれぞれは、回転止め機能およびストッパ機能に加え、後述するように、ボールねじ軸3のラジアル方向に加わる転舵反力をハウジング2に伝達し、該ハウジング2を介して車体により支承させる機能を有する。 Further, by arranging the ball nuts 4a and 4b close to each other near the center in the width direction, the length in the axial direction of the inner diameter side ball screw groove 21 provided on the outer peripheral surface of the large diameter portion 22 of the ball screw shaft 3 The ball size (formation range in the axial direction) can also be shortened. Therefore, the processing cost of the ball screw groove 21 on the inner diameter side can be suppressed low, and the small diameter portions 23a and 23b can be provided on both side portions of the ball screw shaft 3 in the axial direction, and the small diameter portions 23a and 23b can be provided. Guide sleeves 25a and 25b can be arranged around the respective guide sleeves 25a and 25b. In addition to the rotation stop function and the stopper function, each of the guide sleeves 25a and 25b transmits the steering reaction force applied in the radial direction of the ball screw shaft 3 to the housing 2, and the vehicle body via the housing 2. It has a function to be supported by.
 なお、本例では、ボールナット4a、4bを、幅方向中央付近に互いに近接して、ただし、離隔して配置している。これにより、ハウジング2のうち、ボールナット4a、4bを含む電動アクチュエータ47a、47bを収容するアクチュエータ収容部10a、10bが、車体の下方で、車軸43の周辺に存在する部材(たとえばオイルパン48など)と干渉するのを防止している。ただし、ボールねじ軸3に無理な力が加わるのを防止する面からは、1対のボールナット4a、4bをできる限り近くに、最も好ましくは隣接して配置することが好ましい。要するに、1対のボールナット4a、4bは、車軸43の周辺に存在する部材に干渉しない範囲において、できる限り近接して配置される。 In this example, the ball nuts 4a and 4b are arranged close to each other near the center in the width direction, but separated from each other. As a result, in the housing 2, the actuator accommodating portions 10a and 10b accommodating the electric actuators 47a and 47b including the ball nuts 4a and 4b are present in the lower part of the vehicle body and around the axle 43 (for example, the oil pan 48 and the like). ) Is prevented from interfering with. However, from the viewpoint of preventing an excessive force from being applied to the ball screw shaft 3, it is preferable to arrange the pair of ball nuts 4a and 4b as close to each other as possible, most preferably adjacent to each other. In short, the pair of ball nuts 4a and 4b are arranged as close as possible to each other as long as they do not interfere with the members existing around the axle 43.
 本例では、電動アクチュエータ47a、47bのそれぞれを構成する各部材を、幅方向中央側から外側に向けて、ボールナット4a、4b、軸受装置5a、5b、減速機8a、8bおよび電動モータ7a、7bの順で配置している。ただし、ボールナット4a、4bを、幅方向に関して最も中央側に配置すれば、他の部材の配置については特に限定されない。たとえば、軸受装置5a、5bを、減速機8a、8bのウォームホイール37よりも幅方向外側に配置することもできる。また、減速機8a、8bのウォームホイール37を、ボールナット4a、4bの周囲に該ボールナット4a、4bと一体的に回転するように配置することもできる。 In this example, the members constituting the electric actuators 47a and 47b are directed from the center side in the width direction to the outside, and the ball nuts 4a and 4b, the bearing devices 5a and 5b, the reduction gears 8a and 8b, and the electric motor 7a. They are arranged in the order of 7b. However, if the ball nuts 4a and 4b are arranged on the most central side in the width direction, the arrangement of other members is not particularly limited. For example, the bearing devices 5a and 5b may be arranged outside the worm wheel 37 of the speed reducers 8a and 8b in the width direction. Further, the worm wheels 37 of the speed reducers 8a and 8b can be arranged around the ball nuts 4a and 4b so as to rotate integrally with the ball nuts 4a and 4b.
 また、本例では、ボールねじ軸3の軸方向両側の端部に、球面継手30を介して、タイロッド31が接続され、かつ、タイロッド31の先端部に、ナックル44のアーム45の先端部が揺動可能に接続されている。したがって、本例の転舵装置1を駆動して、操舵輪に舵角を付与する(転舵を行う)と、アーム45の角度によっては、転舵に伴う反力が、ボールねじ軸3に対してラジアル方向(前後方向)に加わることがある。 Further, in this example, the tie rod 31 is connected to both ends of the ball screw shaft 3 in the axial direction via the spherical joint 30, and the tip of the arm 45 of the knuckle 44 is connected to the tip of the tie rod 31. It is connected so that it can swing. Therefore, when the steering device 1 of this example is driven to give a steering angle to the steering wheels (steering is performed), a reaction force due to steering is applied to the ball screw shaft 3 depending on the angle of the arm 45. On the other hand, it may be added in the radial direction (front-back direction).
 ここで、本例では、1対のガイドスリーブ25a、25bのそれぞれの外周面の前後両側部分に配置された1対の軸側平坦面部26を、ハウジング2の小径筒部9a、9bのそれぞれの内周面の前後両側部分に配置されたハウジング側平坦面部12に摺接ないし近接対向させている。したがって、転舵に伴う反力が、ボールねじ軸3にラジアル方向に加わると、ガイドスリーブ25a、25bの軸側平坦面部26が小径筒部9a、9bのハウジング側平坦面部12に押し付けられる。要するに、転舵に伴いボールねじ軸3にラジアル方向に加わる反力は、ガイドスリーブ25a、25bおよびハウジング2を介して、車体に伝達され、該車体により支承される。このため、本例の転舵装置1によれば、ラジアル方向の転舵反力が、減速機8a、8bとボールナット4a、4bとボール6とからなる変換機構に加わるのを防止することができる。具体的には、転舵に伴う反力が、ボールねじ軸3に対してラジアル方向に加わった場合でも、ボール6の転動面が、ボールねじ軸3の内径側ボールねじ溝21およびボールナット4a、4bの外径側ボールねじ溝35に強く押し付けられるのを防止することができる。この結果、ボールねじ軸3とボールナット4a、4bとボール6とからなるボールねじ機構の寿命が低下したり、異音や振動が発生したりするのを防止することができる。 Here, in this example, the pair of shaft-side flat surface portions 26 arranged on the front and rear side portions of the outer peripheral surfaces of the pair of guide sleeves 25a and 25b are provided on the small- diameter tubular portions 9a and 9b of the housing 2, respectively. It is in sliding contact with or close to the flat surface portion 12 on the housing side arranged on both front and rear portions of the inner peripheral surface. Therefore, when the reaction force due to the steering is applied to the ball screw shaft 3 in the radial direction, the shaft-side flat surface portions 26 of the guide sleeves 25a and 25b are pressed against the housing-side flat surface portions 12 of the small- diameter tubular portions 9a and 9b. In short, the reaction force applied to the ball screw shaft 3 in the radial direction due to steering is transmitted to the vehicle body via the guide sleeves 25a and 25b and the housing 2, and is supported by the vehicle body. Therefore, according to the steering device 1 of this example, it is possible to prevent the steering reaction force in the radial direction from being applied to the conversion mechanism including the reduction gears 8a and 8b, the ball nuts 4a and 4b, and the ball 6. it can. Specifically, even when a reaction force due to steering is applied in the radial direction with respect to the ball screw shaft 3, the rolling surface of the ball 6 is the ball screw groove 21 on the inner diameter side of the ball screw shaft 3 and the ball nut. It is possible to prevent the ball screw groove 35 on the outer diameter side of 4a and 4b from being strongly pressed. As a result, it is possible to prevent the life of the ball screw mechanism including the ball screw shaft 3, the ball nuts 4a and 4b, and the ball 6 from being shortened, and the occurrence of abnormal noise and vibration.
 上述のように、本例では、ハウジング2の小径筒部9a、9bのそれぞれの内周面の前後両側部分に配置されたハウジング側平坦面部12と、1対のガイドスリーブ25a、25bのそれぞれの外周面の前後両側部分に配置された1対の軸側平坦面部26とを、互いに摺接ないし近接対向させている。これにより、ボールねじ軸3がハウジング2に対して相対回転するのを防止する回転止め機能を実現し、かつ、転舵に伴いボールねじ軸3にラジアル方向に加わる反力が変換機構に加わるのを防止している。 As described above, in this example, the housing-side flat surface portions 12 arranged on the front and rear side portions of the inner peripheral surfaces of the small- diameter tubular portions 9a and 9b of the housing 2 and the pair of guide sleeves 25a and 25b, respectively. A pair of shaft-side flat surface portions 26 arranged on both front and rear portions of the outer peripheral surface are in sliding contact with each other or are in close contact with each other. As a result, a rotation stop function for preventing the ball screw shaft 3 from rotating relative to the housing 2 is realized, and a reaction force applied to the ball screw shaft 3 in the radial direction due to steering is applied to the conversion mechanism. Is being prevented.
 ただし、回転止め機能を実現する面からは、ハウジング2の小径筒部9a、9bのそれぞれの内周面と、1対のガイドスリーブ25a、25bのそれぞれの外周面とが非円形嵌合していれば足りる。また、ボールねじ軸3にラジアル方向の転舵反力が加わった場合に、互いに当接する、ハウジング2の小径筒部9a、9bのそれぞれの内周面の前後両側部分と、1対のガイドスリーブ25a、25bのそれぞれの外周面の前後両側部分とは、互いに摺接ないし近接対向していれば、必ずしも平坦面である必要はない。すなわち、本発明の転舵装置は、ハウジングのうち、1対のガイドスリーブのそれぞれを内嵌保持する部分の内周面の円周方向に関する少なくとも1箇所位置に、ハウジング側平坦面部をそれぞれ有し、かつ、前記1対のガイドスリーブのそれぞれの外周面に、前記ハウジング側平坦面部と近接対向ないし摺接可能な軸側平坦面部をそれぞれ有するように構成することができる。この場合、ハウジングのうち、1対のガイドスリーブのそれぞれを内嵌保持する部分の内周面の前後両側部分に、前記1対のガイドスリーブのそれぞれの外周面の前後両側部分を摺接ないし近接対向させる。具体的には、例えば、ハウジングのうち、1対のガイドスリーブのそれぞれを内嵌保持する部分の内周面の前後両側部分に備えられた凹曲面に、前記1対のガイドスリーブのそれぞれの外周面の前後両側部分に備えられた凸曲面を摺接ないし近接対向させることができる。 However, from the surface that realizes the rotation stop function, the inner peripheral surfaces of the small diameter tubular portions 9a and 9b of the housing 2 and the outer peripheral surfaces of the pair of guide sleeves 25a and 25b are non-circularly fitted. It's enough. Further, when a steering reaction force in the radial direction is applied to the ball screw shaft 3, a pair of guide sleeves and front and rear side portions of the inner peripheral surfaces of the small diameter tubular portions 9a and 9b of the housing 2 come into contact with each other. The front and rear side portions of the outer peripheral surfaces of 25a and 25b do not necessarily have to be flat surfaces as long as they are in sliding contact with each other or are in close contact with each other. That is, the steering device of the present invention has a flat surface portion on the housing side at at least one position with respect to the circumferential direction of the inner peripheral surface of the portion of the housing that internally fits and holds each of the pair of guide sleeves. In addition, each outer peripheral surface of the pair of guide sleeves can be configured to have a shaft-side flat surface portion that is close to the housing-side flat surface portion or that can be slidably opposed to the housing-side flat surface portion. In this case, the front and rear side portions of the outer peripheral surfaces of the pair of guide sleeves are slidably contacted or close to the front and rear side portions of the inner peripheral surface of the portion of the housing that internally fits and holds each of the pair of guide sleeves. Make them face each other. Specifically, for example, the outer circumferences of the pair of guide sleeves are formed on concave curved surfaces provided on both front and rear portions of the inner peripheral surface of the portion of the housing that internally fits and holds each of the pair of guide sleeves. Convex curved surfaces provided on both front and rear portions of the surface can be slidably contacted or close to each other.
 本例では、1対のガイドスリーブ25a、25bのそれぞれは、1対のスリーブ素子46を組み合わせることにより構成されている。このため、スリーブ素子46と、ボールねじ軸3の小径部23a、23bとの間に、1乃至複数枚のシム板を挟持することで、ガイドスリーブ25a、25bの外周面と、ハウジング2の小径筒部9a、9bの内周面との間の隙間を調整することができる。すなわち、ハウジング2の小径筒部9a、9bや、ボールねじ軸3の小径部23a、23b、ガイドスリーブ25a、25bの形状精度を過度に高くすることなく、小径筒部9a、9bの内周面に対するガイドスリーブ25a、25bの外周面のがたつきを十分に抑えることができるため、コストの低減を図れる。 In this example, each of the pair of guide sleeves 25a and 25b is configured by combining a pair of sleeve elements 46. Therefore, by sandwiching one or a plurality of shim plates between the sleeve element 46 and the small diameter portions 23a and 23b of the ball screw shaft 3, the outer peripheral surfaces of the guide sleeves 25a and 25b and the small diameter of the housing 2 are held. The gap between the inner peripheral surfaces of the tubular portions 9a and 9b can be adjusted. That is, the inner peripheral surfaces of the small diameter tubular portions 9a and 9b without excessively increasing the shape accuracy of the small diameter tubular portions 9a and 9b of the housing 2, the small diameter portions 23a and 23b of the ball screw shaft 3, and the guide sleeves 25a and 25b. Since the rattling of the outer peripheral surfaces of the guide sleeves 25a and 25b can be sufficiently suppressed, the cost can be reduced.
 ただし、ガイドスリーブ25a、25bのそれぞれを、全体を一体に、すなわち筒状に構成しても良い。あるいは、ガイドスリーブ25a、25bのそれぞれを、3個以上のスリーブ素子を組み合わせることにより構成することもできる。 However, each of the guide sleeves 25a and 25b may be integrally formed as a whole, that is, in a tubular shape. Alternatively, each of the guide sleeves 25a and 25b can be configured by combining three or more sleeve elements.
 本例では、転舵装置1を、車軸懸架式のうち、リーフスプリング式の懸架装置を備える車両のステアバイワイヤ式ステアリング装置に適用した例について説明した。ただし、本発明の転舵装置は、リーフスプリング式に限らず、コイルスプリング式の懸架装置を備える車両のステアバイワイヤ式ステアリング装置に適用することもできる。あるいは、本発明の転舵装置は、独立懸架式の懸架装置を備える車両のステアバイワイヤ式ステアリング装置に適用することもできる。また、本発明の転舵装置は、トラックなどの大型車両のステアリング装置に限らず、乗用車用のステアリング装置に組み込むこともできる。 In this example, an example in which the steering device 1 is applied to a steer-by-wire type steering device of a vehicle equipped with a leaf spring type suspension device among the axle suspension types has been described. However, the steering device of the present invention is not limited to the leaf spring type, and can be applied to a steer-by-wire type steering device of a vehicle provided with a coil spring type suspension device. Alternatively, the steering device of the present invention can also be applied to a steer-by-wire type steering device of a vehicle provided with an independent suspension type suspension device. Further, the steering device of the present invention is not limited to the steering device of a large vehicle such as a truck, and can be incorporated into a steering device for a passenger car.
 本例の転舵装置1は、ボールナット4a、4bおよび軸受装置5a、5bと、電動モータ7a、7bおよび減速機8a、8bとをそれぞれ1対ずつ備える。ただし、本発明の転舵装置は、ボールナットおよび軸受装置と、電動モータおよび減速機とをそれぞれ3個以上ずつ備えることもできる。若しくは、本発明の転舵装置は、1個のボールナットを、複数個の電動モータにより回転駆動するように構成することもできる。すなわち、複数個の電動モータの出力トルクを、該電動モータごとに備えられた減速機により増大させてから、1個のボールナットに付与するように構成することができる。あるいは、本発明の転舵装置を実施する場合、電動モータの出力軸の回転運動を直動軸の直動運動に変換する変換機構として、ボールねじ機構に代えて、ラックピニオン機構や、滑りねじ機構、遊星ローラねじ機構などを採用することもできる。 The steering device 1 of this example includes a pair of ball nuts 4a and 4b, bearing devices 5a and 5b, electric motors 7a and 7b, and speed reducers 8a and 8b, respectively. However, the steering device of the present invention may also include three or more ball nuts and bearing devices, and three or more electric motors and speed reducers. Alternatively, the steering device of the present invention may be configured such that one ball nut is rotationally driven by a plurality of electric motors. That is, the output torque of the plurality of electric motors can be increased by the speed reducer provided for each electric motor, and then applied to one ball nut. Alternatively, when the steering device of the present invention is implemented, as a conversion mechanism for converting the rotational motion of the output shaft of the electric motor into the linear motion of the linear motion shaft, a rack and pinion mechanism or a sliding screw is used instead of the ball screw mechanism. A mechanism, a planetary roller screw mechanism, or the like can also be adopted.
第二の背景技術に関する課題を解決する手段に係る技術思想を以下に記す。
(1)
 ハウジングと、
 電動モータと、
 前記ハウジングの内側に、軸方向の変位を可能に支持された直動軸と、
 前記電動モータの出力軸の回転運動を前記直動軸の軸方向の直動運動に変換する変換機構と、
 前記直動軸のうち、軸方向両側の端部に、該直動軸に対する軸方向の変位および回転を不能に外嵌され、かつ、前記ハウジングに対し、軸方向の変位を可能に、回転を不能に内嵌された1対のガイドスリーブと、
を備える、転舵装置。
The technical concept relating to the means for solving the problem related to the second background technology is described below.
(1)
With the housing
With an electric motor
Inside the housing, a linear motion shaft supported for axial displacement,
A conversion mechanism that converts the rotary motion of the output shaft of the electric motor into a linear motion in the axial direction of the linear motion shaft, and
Of the linear motion shafts, the ends on both sides in the axial direction are externally fitted so as not to be displaced and rotated in the axial direction with respect to the linear motion shaft, and the housing can be rotated in the axial direction. A pair of guide sleeves that are impossible to fit inside,
A steering device.
(2)
 前記ハウジングは、軸方向に関して互いに反対側を向いた1対のハウジング側ストッパ面を有し、かつ、前記直動軸または前記1対のガイドスリーブのそれぞれは、前記1対のハウジング側ストッパ面のそれぞれに対向する1対の軸側ストッパ面を有しており、
 前記直動軸を軸方向片側に向けて限界まで変位させると、前記1対のハウジング側ストッパ面のうちの一方のハウジング側ストッパ面と、前記1対の軸側ストッパ面のうちで前記一方のハウジング側ストッパ面に対向する一方の軸側ストッパ面とが当接して、前記直動軸がそれ以上軸方向片側に向けて変位することが阻止され、かつ、前記直動軸を軸方向他側に向けて限界まで変位させると、前記1対のハウジング側ストッパ面のうちの他方のハウジング側ストッパ面と、前記1対の軸側ストッパ面のうちで前記他方のハウジング側ストッパ面に対向する他方の軸側ストッパ面とが当接して、前記直動軸がそれ以上軸方向他側に向けて変位することが阻止される、(1)に記載の転舵装置。
(2)
The housing has a pair of housing-side stopper surfaces that face opposite to each other in the axial direction, and each of the linear motion shaft or the pair of guide sleeves has a pair of housing-side stopper surfaces. It has a pair of shaft-side stopper surfaces facing each other.
When the linear motion shaft is displaced to the limit toward one side in the axial direction, one of the pair of housing-side stopper surfaces and the one of the pair of shaft-side stopper surfaces One of the shaft-side stopper surfaces facing the housing-side stopper surface comes into contact with each other to prevent the linear motion shaft from being further displaced toward one side in the axial direction, and the linear motion shaft is displaced to the other side in the axial direction. When displaced to the limit toward, the other housing-side stopper surface of the pair of housing-side stopper surfaces and the other of the pair of shaft-side stopper surfaces facing the other housing-side stopper surface. The steering device according to (1), wherein the linear motion shaft is prevented from being further displaced toward the other side in the axial direction due to contact with the shaft side stopper surface of the above.
(3)
 前記1対のハウジング側ストッパ面は、前記ハウジングの軸方向片側部分と軸方向他側部分とに、軸方向外側を向くようにして備えられており、
 前記1対の軸側ストッパ面のそれぞれは、前記1対のガイドスリーブのそれぞれに軸方向内側を向くようにして備えられており、
 前記直動軸を軸方向片側に向けて限界まで変位させると、前記1対のハウジング側ストッパ面のうち、軸方向他側部分に備えられたハウジング側ストッパ面と、前記1対のガイドスリーブのうち、軸方向他側のガイドスリーブに備えられた軸側ストッパ面とが当接して、前記直動軸がそれ以上軸方向片側に向けて変位することが阻止され、かつ、前記直動軸を軸方向他側に向けて限界まで変位させると、前記1対のハウジング側ストッパ面のうち、軸方向片側部分に備えられたハウジング側ストッパ面と、前記1対のガイドスリーブのうち、軸方向片側のガイドスリーブに備えられた軸側ストッパ面とが当接して、前記直動軸がそれ以上軸方向他側に向けて変位することが阻止される、(2)に記載の転舵装置。
(3)
The pair of housing-side stopper surfaces are provided on one side portion in the axial direction and the other side portion in the axial direction of the housing so as to face outward in the axial direction.
Each of the pair of shaft-side stopper surfaces is provided on each of the pair of guide sleeves so as to face inward in the axial direction.
When the linear motion shaft is displaced to the limit toward one side in the axial direction, the housing-side stopper surface provided on the other side portion in the axial direction and the pair of guide sleeves of the pair of housing-side stopper surfaces Of these, the shaft-side stopper surface provided on the guide sleeve on the other side in the axial direction is in contact with the shaft-side stopper surface to prevent the linear motion shaft from being further displaced toward one side in the axial direction, and the linear motion shaft is displaced. When displaced to the limit toward the other side in the axial direction, the housing side stopper surface provided on one side portion in the axial direction of the pair of housing side stopper surfaces and the axial one side of the pair of guide sleeves. The steering device according to (2), wherein the linear motion shaft is prevented from being further displaced toward the other side in the axial direction due to contact with the shaft side stopper surface provided on the guide sleeve.
(4)
 前記ハウジングのうち、前記ガイドスリーブのそれぞれを内嵌保持する部分の内周面の円周方向に関する少なくとも1箇所位置に、ハウジング側平坦面部をそれぞれ有し、
 前記ガイドスリーブのそれぞれの外周面に、前記ハウジング側平坦面部と近接対向ないし摺接可能な軸側平坦面部をそれぞれ有する、(1)~(3)のうちの何れかに記載の転舵装置。
(4)
The housing side flat surface portion is provided at least at one position in the circumferential direction of the inner peripheral surface of the portion of the housing that internally fits and holds each of the guide sleeves.
The steering device according to any one of (1) to (3), wherein each outer peripheral surface of the guide sleeve has a flat surface portion on the housing side and a flat surface portion on the shaft side that is close to each other or can be slidably contacted.
(5)
 前記直動軸が、外周面に内径側ボールねじ溝を有するボールねじ軸であり、
 前記変換機構が、内周面に外径側ボールねじ溝を有し、かつ、前記電動モータにより回転駆動されるボールナットと、前記内径側ボールねじ溝と前記外径側ボールねじ溝との間に転動自在に配置された複数個のボールとを備える、(1)~(4)のうちの何れかに記載の転舵装置。
(5)
The linear motion shaft is a ball screw shaft having an inner diameter side ball screw groove on the outer peripheral surface.
The conversion mechanism has an outer diameter side ball screw groove on the inner peripheral surface and is rotationally driven by the electric motor, and between the inner diameter side ball screw groove and the outer diameter side ball screw groove. The steering device according to any one of (1) to (4), comprising a plurality of balls rotatably arranged on the ball.
(6)
 前記ガイドスリーブのそれぞれが、複数のスリーブ素子を組み合わせてなる、(1)~(5)のうちの何れかに記載の転舵装置。
(6)
The steering device according to any one of (1) to (5), wherein each of the guide sleeves is a combination of a plurality of sleeve elements.
(7)
 前記ガイドスリーブのそれぞれの外周面、および/または、前記ハウジングのうち、前記ガイドスリーブのそれぞれを内嵌保持する部分の内周面に、グリースを保持するための保持凹部が備えられている、(1)~(6)のうちの何れかに記載の転舵装置。
(7)
A holding recess for holding grease is provided on the outer peripheral surface of each of the guide sleeves and / or the inner peripheral surface of the portion of the housing that internally fits and holds each of the guide sleeves. The steering device according to any one of 1) to (6).
<図1~図7に関する符号の説明>
  1 転舵装置
  2 ハウジング
  3 ボールねじ軸
  4a、4b ボールナット
  5a、5b 軸受装置
  6 ボール
  7a、7b 電動モータ
  8a、8b 減速機
  9a、9b 小径筒部
 10a、10b アクチュエータ収容部
 11 連結筒部
 12 平坦面部
 13 凹曲面部
 14 ストッパ凸部
 15 ハウジング側ストッパ面
 16 大径筒部
 17 ナット収容部
 18 ウォーム収容部
 19a、19b ハウジング素子
 20 ボルト
 21 内径側ボールねじ溝
 22 大径部
 23a、23b 小径部
 24 ねじ孔
 25a、25b ガイドスリーブ
 26 平坦面部
 27 凸曲面部
 28 ストッパ凹部
 29 軸側ストッパ面
 30 球面継手
 31 タイロッド
 32 支持軸部
 33 係合凹部
 34 球面係合部
 35 外径側ボールねじ溝
 36 スリーブ
 37 ウォームホイール
 38 ウォーム
 39 取付板部
 40 ボルト
 41 車体フレーム
 42 リーフスプリング
 43 車軸
 44 ナックル
 45 アーム
 46 スリーブ素子
 47a、47b 電動アクチュエータ
 48 オイルパン
<Explanation of Codes Related to FIGS. 1 to 7>
1 Steering device 2 Housing 3 Ball screw shaft 4a, 4b Ball nut 5a, 5b Bearing device 6 Ball 7a, 7b Electric motor 8a, 8b Reducer 9a, 9b Small diameter cylinder 10a, 10b Actuator housing 11 Connecting cylinder 12 Flat Surface part 13 Concave curved surface part 14 Stopper convex part 15 Housing side stopper surface 16 Large diameter cylinder part 17 Nut accommodating part 18 Warm accommodating part 19a, 19b Housing element 20 Bolt 21 Inner diameter side ball screw groove 22 Large diameter part 23a, 23b Small diameter part 24 Screw hole 25a, 25b Guide sleeve 26 Flat surface 27 Convex curved surface 28 Stopper recess 29 Shaft side stopper surface 30 Spherical joint 31 Tie rod 32 Support shaft 33 Engagement recess 34 Spherical engagement 35 Outer diameter side ball screw groove 36 Sleeve 37 Worm wheel 38 Warm 39 Mounting plate 40 Bolt 41 Body frame 42 Leaf spring 43 Axle 44 Knuckle 45 Arm 46 Sleeve element 47a, 47b Electric actuator 48 Oil pan
<図8~図14に関する符号の説明>  1 転舵装置  2 ハウジング  3 ボールねじ軸  4a、4b ボールナット  5a、5b 軸受装置  6 ボール  7a、7b 電動モータ  8a、8b 減速機  9a、9b 小径筒部 10a、10b アクチュエータ収容部 11 連結筒部 12 ハウジング側平坦面部 13 凹曲面部 14 ストッパ凸部 15 ハウジング側ストッパ面 16 大径筒部 17 ナット収容部 18 ウォーム収容部 19a、19b ハウジング素子 20 ボルト 21 内径側ボールねじ溝 22 大径部 23a、23b 小径部 24 ねじ孔 25a、25b ガイドスリーブ 26 軸側平坦面部 27 凸曲面部 28 ストッパ凹部 29 軸側ストッパ面 30 球面継手 31 タイロッド 32 支持軸部 33 係合凹部 34 球面係合部 35 外径側ボールねじ溝 36 スリーブ 37 ウォームホイール 38 ウォーム 39 取付板部 40 ボルト 41 車体フレーム 42 リーフスプリング 43 車軸 44 ナックル 45 アーム 46 スリーブ素子 47a、47b 電動アクチュエータ 48 オイルパン <Explanation of symbols relating to FIGS. 8 to 14> 1 Steering device 2 Housing 3 Ball screw shaft 4a, 4b Ball nut 5a, 5b Bearing device 6 Ball 7a, 7b Electric motor 8a, 8b Reducer 9a, 9b Small diameter cylinder 10a 10b Actuator accommodating part 11 Connecting cylinder part 12 Housing side flat surface part 13 Concave curved surface part 14 Stopper convex part 15 Housing side stopper surface 16 Large diameter cylinder part 17 Nut accommodating part 18 Worm accommodating part 19a, 19b Housing element 20 Bolt 21 Inner diameter side Ball screw groove 22 Large diameter part 23a, 23b Small diameter part 24 Screw hole 25a, 25b Guide sleeve 26 Shaft side flat surface part 27 Convex curved surface part 28 Stopper recess 29 Shaft side stopper surface 30 Spherical joint 31 Tie rod 32 Support shaft part 33 Engagement recess 34 Spherical engagement part 35 Outer diameter side ball screw groove 36 Sleeve 37 Worm wheel 38 Warm 39 Mounting plate part 40 Bolt 41 Body frame 42 Leaf spring 43 Axle 44 Knuckle 45 Arm 46 Sleeve element 47a, 47b Electric actuator 48 Oil pan

Claims (7)

  1.  ハウジングと、
     外周面に内径側ボールねじ溝を有し、前記ハウジングの内側に、軸方向に関する変位を可能に、かつ、回転を不能に支持されたボールねじ軸と、
     内周面に外径側ボールねじ溝を有し、かつ、前記ボールねじ軸の周囲に該ボールねじ軸に対する相対回転を可能に配置された、複数個のボールナットと、
     前記ボールナットを前記ハウジングに対し回転自在に支持する軸受装置と、
     前記内径側ボールねじ溝と前記外径側ボールねじ溝との間に転動自在に配置された複数個のボールと、
     複数個の電動モータと、
     前記電動モータの出力トルクを増大させてから前記ボールナットに付与する、前記電動モータと同数の減速機と、
    を備える、転舵装置。
    With the housing
    A ball screw shaft having an inner diameter side ball screw groove on the outer peripheral surface and supported inside the housing so as to be displaced in the axial direction and unable to rotate.
    A plurality of ball nuts having an outer diameter side ball screw groove on the inner peripheral surface and arranged around the ball screw shaft so as to be relatively rotatable with respect to the ball screw shaft.
    A bearing device that rotatably supports the ball nut with respect to the housing,
    A plurality of balls rotatably arranged between the inner diameter side ball screw groove and the outer diameter side ball screw groove, and
    With multiple electric motors
    The same number of speed reducers as the electric motor, which are applied to the ball nut after increasing the output torque of the electric motor,
    A steering device.
  2.  前記ボールナットを、前記電動モータと同数備える、請求項1に記載の転舵装置。 The steering device according to claim 1, further comprising the same number of ball nuts as the electric motor.
  3.  前記ボールナットと前記軸受装置と前記電動モータと前記減速機とを、それぞれ1対ずつ備える、請求項2に記載の転舵装置。 The steering device according to claim 2, further comprising a pair of each of the ball nut, the bearing device, the electric motor, and the speed reducer.
  4.  前記ボールナットと前記軸受装置と前記電動モータと前記減速機とが、前記ハウジングの幅方向中央位置を挟んだ両側部分に、それぞれ1個ずつ配置されており、
     前記ボールナットと前記軸受装置と前記電動モータと前記減速機とのうち、前記ボールナットが、前記ハウジングの幅方向中央位置に最も近い側に配置されている、請求項3に記載の転舵装置。
    The ball nut, the bearing device, the electric motor, and the speed reducer are arranged one by one on both side portions of the housing at the center position in the width direction.
    The steering device according to claim 3, wherein the ball nut is arranged on the side of the ball nut, the bearing device, the electric motor, and the speed reducer closest to the center position in the width direction of the housing. ..
  5.  前記ボールナットが、幅方向中央位置を挟んで離隔した状態で、前記ハウジングを介して隣接して配置されている、請求項4に記載の転舵装置。 The steering device according to claim 4, wherein the ball nuts are arranged adjacent to each other via the housing in a state where the ball nuts are separated from each other with a central position in the width direction interposed therebetween.
  6.  前記減速機がウォーム減速機である、請求項1~5のうちの何れかに記載の転舵装置。 The steering device according to any one of claims 1 to 5, wherein the speed reducer is a worm speed reducer.
  7.  前記ハウジングが、複数のハウジング素子を組み合わせてなる、請求項1~6のうちの何れかに記載の転舵装置。 The steering device according to any one of claims 1 to 6, wherein the housing is a combination of a plurality of housing elements.
PCT/JP2020/022751 2019-06-11 2020-06-09 Steering device WO2020250905A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-108552 2019-06-11
JP2019108552A JP7172865B2 (en) 2019-06-11 2019-06-11 steering device
JP2019108551A JP2020199900A (en) 2019-06-11 2019-06-11 Steering device
JP2019-108551 2019-06-11

Publications (1)

Publication Number Publication Date
WO2020250905A1 true WO2020250905A1 (en) 2020-12-17

Family

ID=73781217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022751 WO2020250905A1 (en) 2019-06-11 2020-06-09 Steering device

Country Status (1)

Country Link
WO (1) WO2020250905A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347208A (en) * 2005-06-13 2006-12-28 Jtekt Corp Steering device for vehicle
JP2009243621A (en) * 2008-03-31 2009-10-22 Honda Motor Co Ltd Expansion and contraction actuator
JP2010030368A (en) * 2008-07-25 2010-02-12 Nsk Ltd Steering device for vehicle
JP2010214978A (en) * 2009-03-13 2010-09-30 Ntn Corp Steer-by-wire steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347208A (en) * 2005-06-13 2006-12-28 Jtekt Corp Steering device for vehicle
JP2009243621A (en) * 2008-03-31 2009-10-22 Honda Motor Co Ltd Expansion and contraction actuator
JP2010030368A (en) * 2008-07-25 2010-02-12 Nsk Ltd Steering device for vehicle
JP2010214978A (en) * 2009-03-13 2010-09-30 Ntn Corp Steer-by-wire steering device

Similar Documents

Publication Publication Date Title
US8327971B2 (en) Reducer of electric power steering apparatus
JP5483729B2 (en) Steer-by-wire steering device and vehicle equipped with the same
JP6035852B2 (en) Vehicle suspension system
US10760666B2 (en) Reducer of electric power steering device
JP6909071B2 (en) Hub unit with auxiliary steering function and vehicle
US11511793B2 (en) Steering axle for an industrial truck, and industrial truck having the steering axle
US20220119034A1 (en) Steering System
WO2018235892A1 (en) Supplemental turning function-equipped hub unit and vehicle
CN111094114B (en) Wheel hub unit with auxiliary steering function and vehicle with same
JP2019536686A (en) Steering transmission and steering system
US20210362770A1 (en) Hub unit having steering function, and vehicle equipped with same
JP2005289288A (en) Motor driving system of automobile
JP6982416B2 (en) Hub unit with auxiliary steering function and vehicle
WO2020250905A1 (en) Steering device
JP7172865B2 (en) steering device
JP2020199900A (en) Steering device
JP6982417B2 (en) Hub unit with auxiliary steering function and vehicle
JP2020097280A (en) Hub unit with steering function and steering system
JP2020050231A (en) Hub unit with steering function and vehicle equipped with the same
EP2639136A1 (en) Steering actuator mechanism for wheels of an automotive vehicle
JP2019051846A (en) Hub unit with auxiliary steering function and vehicle comprising the same
KR20070075110A (en) Active front wheel steering apparatus equipped with clearance compensator
US20240116562A1 (en) Electric Power Steering System with a Ball-Screw Assembly
US20240116561A1 (en) Electric Power Steering System with a Ball-Screw Assembly
US20240116563A1 (en) Electric Power Steering System with a Ball-Screw Assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823386

Country of ref document: EP

Kind code of ref document: A1