WO2018235892A1 - Supplemental turning function-equipped hub unit and vehicle - Google Patents

Supplemental turning function-equipped hub unit and vehicle Download PDF

Info

Publication number
WO2018235892A1
WO2018235892A1 PCT/JP2018/023590 JP2018023590W WO2018235892A1 WO 2018235892 A1 WO2018235892 A1 WO 2018235892A1 JP 2018023590 W JP2018023590 W JP 2018023590W WO 2018235892 A1 WO2018235892 A1 WO 2018235892A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
auxiliary
hub unit
axis
auxiliary steering
Prior art date
Application number
PCT/JP2018/023590
Other languages
French (fr)
Japanese (ja)
Inventor
大場 浩量
佑介 大畑
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018235892A1 publication Critical patent/WO2018235892A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/08Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle

Definitions

  • the present invention relates to a hub unit with an auxiliary steering function and a vehicle having a function of performing auxiliary steering independently on left and right wheels in addition to steering by a steering device.
  • the steering wheel and the steering device are mechanically connected, and both ends of the steering device are connected to the left and right wheels by tie rods. Therefore, the turning angle of the left and right wheels due to the movement of the steering wheel is determined by the initial setting.
  • "Ackerman geometry" is known.
  • Patent Documents 1 and 2 have been proposed as to a mechanism in which the steering geometry is variable according to the traveling situation.
  • the steering geometry is changed by relatively changing the knuckle arm and the joint position.
  • patent document 2 it is possible to incline both a toe angle and a camber angle to arbitrary angles using two motors.
  • patent document 3 it is proposed by patent document 3.
  • Ackermann geometry is such that when turning at low speed where the centrifugal force acting on the vehicle can be ignored, the steering angles of the left and right wheels so that the wheels turn around a common point in order to turn the wheels smoothly The difference is set.
  • it is desirable for the wheel to generate a cornering force in a direction that balances the centrifugal force it is preferable to use a parallel geometry rather than an Ackerman geometry in turning in a high speed region where the centrifugal force can not be ignored.
  • Patent Document 1 the steering geometry is changed by relatively changing the position of the knuckle arm and the joint.
  • the change in tire angle due to the change at this position is small, and in order to obtain a large effect, it is necessary to make a large change, that is, a large movement.
  • Providing a motor actuator that obtains such a large force to change the vehicle geometry in such a part is very difficult due to space constraints.
  • Patent Document 2 since two motors are used, the cost increase by the increase in the number of motors will arise, and control will become complicated.
  • Patent Document 3 can be applied only to a four-wheel independent steering vehicle. Further, since the hub bearing is supported in a cantilever manner with respect to the steered shaft, the rigidity may be reduced, and the steering geometry may be changed due to the occurrence of the excessive turning G. If a reduction gear is provided on the steered shaft, a large power is required, but if the motor is enlarged, it becomes difficult to arrange the whole on the inner peripheral portion of the wheel. If a reduction gear having a large reduction ratio is provided, the response is degraded.
  • the mechanism provided with the conventional auxiliary steering function is intended to arbitrarily change the toe angle and the camber angle of the tire in the vehicle, and thus has a complicated configuration.
  • it is difficult to secure the rigidity and in order to secure the rigidity, it is necessary to increase the size and the weight becomes heavy. If the king pin axis coincides with the steered axis, the component parts are disposed at the rear (body side) of the hub module, so the overall size becomes large and heavy.
  • the object of the present invention is to perform individual supplementary steering of the wheels according to the traveling situation in addition to steering by the driver's steering wheel operation, and improve the traveling stability by improving the motion performance of the vehicle It is possible to provide a hub unit with an auxiliary steering function and a vehicle that can improve the fuel consumption and fuel consumption, and that the configuration is simple and robust, and that both the main steering and the auxiliary steering can be stably and efficiently performed. .
  • the hub unit with auxiliary steering function is a hub unit connected via a knuckle of a suspension system to a steering device that changes a steering angle of a wheel by a driver's steering wheel operation,
  • a hub unit body having a hub bearing for mounting the wheel, and a unit support member connected to the knuckle or configured as a part of the knuckle;
  • the hub unit main body is supported by the unit support member at two upper and lower positions rotatably rotatably around an auxiliary turning shaft center extending in the vertical direction, and the auxiliary steering actuator drives the auxiliary turning actuator.
  • the auxiliary steering axis is in a direction different from the kingpin axis of the suspension system, Both the intersection point position of the extension line of the kingpin axis and the road surface and the intersection point position of the extension line of the auxiliary steering axis and the road surface are located in the tire contact surface.
  • tire contact surface refers to a place where a tire is in contact with the ground when one driver (equivalent to 55 kg) gets on the driver's seat.
  • the steering device changes the direction of the hub bearing along with the hub unit body by the driver's steering wheel operation, and the main steering is performed, and in addition to the main steering, the auxiliary steering axis is turned around.
  • Auxiliary steering with a slight angle can be performed individually for each wheel.
  • the hub unit body can be freely rotated about the auxiliary turning axis by the auxiliary turning actuator.
  • the toe angle of the tire can be arbitrarily changed in accordance with the traveling condition of the vehicle.
  • the difference in steering angle between the left and right wheels can be changed according to the traveling speed.
  • the tire angle can be arbitrarily changed during traveling, the motion performance of the vehicle is improved, and stable traveling can be achieved.
  • the turning radius of the vehicle can be reduced and the small turning performance can be improved by appropriately changing the turning angles of the left and right steered wheels during turning.
  • the main steering and auxiliary Both steering can be done stably and efficiently.
  • the turning axis is in a direction different from the kingpin axis of the suspension device, and the intersection point between the extension line of the kingpin axis and the road surface, the extension line of the auxiliary turning axis and the road surface The intersection positions may coincide with each other. If the hub unit body is steered with the king pin axis as an auxiliary steering wheel, the camber angle changes significantly and the travel resistance increases. By setting the auxiliary steering axis separately from the kingpin axis, it is possible to suppress a change in the camper angle due to the auxiliary steering and to suppress an increase in traveling resistance.
  • the component parts are arranged on the vehicle body side of the hub unit body, so the overall size becomes large and heavy. If the auxiliary steering axis is in a direction different from the kingpin axis of the suspension, the size of the entire device can be reduced and the weight can be reduced.
  • the intersection point position of the extension line of the kingpin axis and the road surface and the intersection point position of the extension line of the auxiliary steering axis and the road surface be disposed in the vicinity of each other. Ideally, it is preferred that the two intersection points coincide. As a result, even if main steering and auxiliary steering are simultaneously performed, slippage does not occur and steering and auxiliary steering can be performed efficiently, and the vehicle can be stably operated.
  • the vehicle of the present invention is equipped with the hub unit with an auxiliary steering function of the present invention. Therefore, in addition to steering by the driver's steering wheel operation, it is possible to perform auxiliary steering of individual wheels according to the traveling situation. As a result, the exercise performance of the vehicle is improved, and it is possible to improve the traveling stability and the fuel consumption.
  • the configuration of the hub unit with auxiliary steering function is simple and robust.
  • the hub unit with auxiliary steering function 1 includes a hub unit main body 4 having a hub bearing 3 for supporting the wheels 2, a unit support member 5, and an auxiliary steering actuator 6.
  • the hub unit main body 4 is supported by the unit support member 5 at two upper and lower positions via the rotation allowing support parts 7 so as to be rotatable about the auxiliary turning axis A extending in the vertical direction.
  • the auxiliary steering axis A is an axis different from the rotational axis O of the wheel 2 and is also different from the kingpin axis K which performs the main steering.
  • the wheel 2 has a wheel 8 and a tire 9.
  • the hub unit 1 with an auxiliary steering function of this embodiment is installed on a knuckle 22 of a front wheel which is a steered wheel. Specifically, as shown in FIG. 15, the hub unit 1 with the auxiliary steering function is added to steering by the steering device 25 of the front wheel 2F of the vehicle 10, and steers the left and right wheels 2 individually by minute angles. It is a mechanism. The steering device 25 steers the wheels 2F, 2F in response to the operation of a steering wheel (not shown). However, the hub unit 1 with auxiliary steering function may be used as a mechanism for steering the rear wheel 2R as an aid to front wheel steering.
  • the unit support member 5 is attached to a knuckle 22 of a suspension device 21 installed on a vehicle body 10A (FIG. 15).
  • the unit support member 5 may be provided integrally with the knuckle 22, that is, as a part of the knuckle 22.
  • the suspension device 21 of this embodiment is a double wishbone type, and has an upper arm 23 and a lower arm 24 connected via a shock absorber (not shown).
  • a knuckle 22 is installed rotatably around a king pin axis K which is inclined between the upper arm 23 and the tip of the lower arm 24.
  • the suspension device 21 is not limited to this, and a known type such as an independent suspension type can be adopted.
  • the knuckle 22 has a steering device connecting portion 22 a that protrudes outward in the radial direction of the wheel 2.
  • the steering device connecting portion 22 a is rotatably connected to the tie rod 26 of the steering device 25.
  • the hub bearing 3 has an inner ring 12, an outer ring 11, and rolling elements 13 interposed between the inner and outer rings 12 and 11.
  • the rolling element 13 is, for example, a ball.
  • a member on the vehicle body side and the wheel 2 are connected by the hub bearing 3.
  • the outer ring 11 is a fixed ring and the inner ring 12 is a rotating ring, and the rolling elements 13 are double-row angular ball bearings.
  • the inner ring 12 is composed of two parts of a hub ring 12a and an inner ring 12b.
  • the hub wheel portion 12a has a hub flange 12aa and constitutes a raceway surface on the outboard side.
  • the inner ring portion 12 b constitutes an inboard side track surface.
  • the wheel 8 of the wheel 2 shown in FIG. 2 is bolted to the hub flange 12aa together with the brake rotor 14a.
  • the inner ring 12 rotates about the rotation axis O.
  • the brake rotor 14a and the brake caliper 14b constitute a brake 14.
  • the brake calipers 14b are attached to two upper and lower brake caliper attachment portions 36 which are integrally formed on the outer ring 11 (see FIG. 3) shown in FIGS.
  • the hub unit body 4 is a portion that rotates around the auxiliary steering axis A in the hub unit 1 with the auxiliary steering function, and includes the hub bearing 3 and the rotation side component 15 of the rotation allowing support component 7; And an auxiliary steering force receiver 18 (see FIGS. 2 and 4).
  • the rotation-supporting support part 7 in this embodiment is a spherical slide bearing, and has a rotary part 15 having a concave spherical seat 15 a and a stationary part 16.
  • spherical slide bearing is meant to include a spherical bush and a pivot bearing.
  • the stationary part 16 has a spherical portion 16a rotatably fitted to the concave spherical seat 15a in an arbitrary direction, and a shaft portion 16b having a spherical portion 16a at its tip.
  • the concave spherical seat 15a is covered with a bellows-like and flexible boot 17 covering the outer periphery of the shaft portion 16b.
  • a cylindrical mounting seat 19 is provided on the outer peripheral surface of the outer ring 11 of the hub bearing 3.
  • the mounting seat 19 protrudes radially outward from the outer peripheral surface of the outer ring 11.
  • the mounting seat portions 19 are provided at two upper and lower positions on the outer peripheral surface of the outer ring 11.
  • the rotating side parts 15 of the upper and lower rotation permitting support parts 7 are attached to the upper and lower mounting seats 19 in a fitted state.
  • the stationary side part 16 of the rotation allowing support part 7 is attached to the unit support member 5 so that the preload adjusting of the rotation allowing support part 7 is possible by the preload adjusting means 48.
  • the unit support member 5 has a support member main body 5a fixed to the knuckle 22, and a support member divided body 5b that can be positionally adjusted with respect to the support member main body 5a along the auxiliary turning axis A There is.
  • the support member divided body 5 b can be adjusted in position with respect to the support member main body 5 a by tightening the adjustment bolt 49.
  • the pressure adjusting means 48 is constituted by the support member main body 5 a, the support member divided body 5 b and the adjustment bolt 49.
  • the mounting seat 19 is integrally formed on the outer ring 11 of the hub bearing 3 as described above, and the rotation-side component 15 of the rotation-allowable support component 7 is directly attached to the outer ring 11.
  • a mounting part such as an axle box may be provided on the outer periphery of the rotation-side part 15 of the rotation-allowable support part 7 to the mounting part.
  • the direction of the auxiliary turning axis A of the hub unit main body 4 is different from the direction of the kingpin axis K, and is a vertical direction in this embodiment.
  • the auxiliary turning axis A is a point at which the intersection point PK of the extension line of the kingpin axis K and the road surface S and the intersection point PA of the extension line of the auxiliary turning axis A and the road surface S are tires. It is designed to be located on the ground plane 9a. Furthermore, when the intersection points PK and PA coincide, the slip of the tire is minimized. Therefore, it is preferable that the intersection positions PK and PA coincide with each other.
  • “tire contact surface” means a place where the tire 9 is in contact with the road surface S in a state where one driver (equivalent to 55 kg) gets on the driver's seat.
  • the auxiliary steering force receiving portion 18 shown in FIGS. 2 and 4 is a portion serving as an action point for applying the auxiliary steering force to the outer ring 11 of the hub bearing 3.
  • the auxiliary steering force receiving portion 18 is provided as an arm portion integrally projecting on a part of the outer periphery of the outer ring 11 of the hub bearing 3.
  • the auxiliary steering force receiving portion 18 is rotatably connected to the direct drive output portion 6 a of the auxiliary steering actuator 6 via a joint 57 as described later with reference to FIG. 13.
  • the hub unit main body 4 rotates around the auxiliary steered shaft center A by advancing and retracting the linear movement output unit 6 a of the auxiliary steering actuator 6. That is, the hub unit body 4 is steered in an auxiliary manner.
  • the auxiliary steering actuator 6 includes a motor 27 (FIG. 3), a reduction gear 28 of FIG. 2 for reducing the rotation of the motor 27, and forward and reverse rotational output of the reduction gear 28 as a reciprocation of the linear movement output portion 6a. And a linear motion mechanism 29 for converting it into a linear motion.
  • the motor 27 is, for example, a permanent magnet synchronous motor. However, the motor 27 is not limited to this, and may be a direct current motor or an induction motor.
  • the reduction gear 28 can use a winding type transmission mechanism or gear train such as a belt transmission mechanism.
  • a belt transmission mechanism is used as the reduction gear 28.
  • the linear movement mechanism 29 can use a slide screw, a feed screw mechanism such as a ball screw, or a rack and pinion mechanism.
  • a feed screw mechanism using a slide screw with a trapezoidal screw is used as the linear movement mechanism 29.
  • the auxiliary steering actuator 6 includes the reduction gear 28. However, the auxiliary steering actuator 6 does not include the reduction gear 28, and the driving force of the motor 27 is straight. It may be configured to be directly transmitted to the moving mechanism 29.
  • the auxiliary steering actuator 6 may not include the motor 27. In that case, the auxiliary steering actuator 6 may be, for example, an actuator driven by hydraulic pressure.
  • the angle ⁇ (FIGS. 6 and 7) of the auxiliary steering with respect to the knuckle 22 of the hub unit body 4 is restricted by the stopper 35.
  • FIG. 6 shows a state in which the main steering is straight and the auxiliary steering is performed inward.
  • FIG. 7 shows a state in which the main steering turns to the left and the auxiliary steering is performed inward.
  • the stopper 35 is provided, for example, on a surface of the unit support member 5 that faces the hub unit body 4 in the axial direction, for example, a surface that faces the end face of the outer ring 11 of the hub bearing 3.
  • the allowable range of the auxiliary steerable angle of the hub unit body 4 may be a slight angle.
  • the allowable range of the auxiliary steerable angle by the stopper 35 is, for example, ⁇ 5 degrees or less.
  • a mounting seat 19 (FIGS. 3 and 4) for attaching the rotation allowing support 7 to the outer ring 11 of the hub bearing 3, an auxiliary steering force receiver 18 (FIGS. 2 and 4), and a brake
  • the caliper mounting portion 36 is integrally formed.
  • the mounting seat portion 19, the auxiliary steering force receiving portion 18 and the brake caliper mounting portion 36 may be provided on the hub unit main body 4, and the outer ring 11 may be provided with mounting parts (not shown) ) May be provided on the mounting part.
  • the hub unit 1 with the auxiliary steering function has an auxiliary steering shaft with respect to the unit supporting member 5 in which the hub unit main body 4 having the hub bearing 3 and the brake caliper 14b (see FIG. 2) is provided in the knuckle 22 of FIG. It is rotatable around the heart A. That is, the hub unit body 4 can be rotated by applying a force to the arm-like auxiliary turning force receiving portion 18 (FIG. 2) which is the point of action.
  • the hub unit body 4 rotates.
  • This rotation is performed as an additional steering in addition to the steering by the driver's steering wheel operation, that is, in addition to the rotation of the knuckle 22 about the kingpin axis K (FIG. 1) by the steering device 25. Further, this auxiliary steering is performed as an independent steering of one wheel.
  • the toe angles between the left and right wheels 2 and 2 can be arbitrarily changed by making the auxiliary steering angles of the left and right wheels 2 and 2 different.
  • the tire angles of the left and right wheels can be independently and arbitrarily changed during traveling according to the traveling conditions of the vehicle 10, the exercise performance of the vehicle 10 is improved, and stable traveling is possible. . Further, by setting an appropriate tire angle, it is also possible to improve fuel consumption.
  • the hub unit 1 with the auxiliary steering function is used for the rear wheel 2R (FIG. 15) which is a non-steered wheel, it is possible to reduce the minimum turning radius at low speed traveling.
  • the hub unit 1 with the auxiliary steering function is rotatably supported around the auxiliary steering axis A at two upper and lower positions by the rotation allowing support parts 7 and 7, both ends are supported to ensure rigidity.
  • the configuration is simple.
  • auxiliary steering can be performed independently for the left and right wheels according to the traveling situation with a simple structure while securing the rigidity.
  • the toe angle of the wheel 2 can be arbitrarily changed, and the steering geometry can be changed. Therefore, the motion performance of the vehicle 10 is improved, and the stability of traveling and the improvement of fuel consumption become possible. .
  • the hub unit 1 with auxiliary steering function of this embodiment can control the left and right wheels 2 individually, it is possible to change the steering angle of the wheels 2, that is, the so-called turning angle according to the vehicle speed and the turning G.
  • Ackermann geometry set the difference in steering angle between left and right wheels so that each wheel turns around a common point
  • parallel geometry the turning angles of the left and right wheels are the same
  • the auxiliary steered shaft center A may be any shaft center extending in the vertical direction, and may be somewhat inclined, but in this embodiment is the vertical direction.
  • assistant steering can be suppressed more favorable, and the increase in traveling resistance can further be suppressed.
  • the auxiliary steering of the hub unit body 4 with the kingpin axis K largely changes the camber angle, and the traveling resistance increases.
  • the component parts are disposed on the vehicle body side of the hub unit main body 4, so that the overall size becomes large and heavy.
  • the auxiliary steering axis A is in a direction different from the kingpin axis K of the suspension device 21, the size of the entire device can be reduced, and weight reduction can be realized.
  • intersection point position PK between the extension of the kingpin axis K of the suspension device 21 and the road surface S and the intersection point PA between the extension of the auxiliary steered shaft center A and the road are both located in the tire contact surface 9a. , Both main steering and auxiliary steering can be performed stably and efficiently.
  • the intersection point position PK between the extension line of the kingpin axis K and the road surface S and the intersection point position PA between the extension line of the auxiliary steering axis A and the road surface S be disposed close to each other.
  • the two intersection points PA, PK coincide.
  • the angle of auxiliary steering a slight angle is sufficient from the viewpoint of improving the motion performance of the vehicle and improving the stability of traveling. Specifically, it is sufficient that the auxiliary steerable angle is ⁇ 5 degrees or less.
  • the angle of the auxiliary steering is adjusted by the control of the auxiliary steering actuator 6. However, since the angle of the auxiliary steering is regulated by the stopper 35, even when the hub unit 1 with the auxiliary steering function breaks down due to a failure of the power supply system, a large influence is prevented from occurring. Therefore, the vehicle can be moved to the evacuation site by steering operation.
  • the rotation-allowable support component 7 of this embodiment is a spherical plain bearing, it can rotate in any direction about its spherical center, and the central axis of the rotation-allowable support component 7 is inclined with respect to the auxiliary turning axis A. Even absorbed. Therefore, it can be fixed in a direction different from that of the auxiliary turning axis A, and the degree of freedom of the mounting position is increased, and machining becomes easy.
  • a spherical slide bearing it is possible to increase the rigidity by applying a preload between the fixed part 16 and the movable part 15 of the bearing by tightening at the time of mounting.
  • FIG. 8 to 12 show a second embodiment of the present invention.
  • a rotation allowing support component 7A consisting of a tapered roller bearing is used.
  • a trunnion shaft-like mounting shaft portion 19A is provided so as to protrude from the outer ring 11 of the hub bearing 3.
  • Two mounting shaft portions 19A are provided on the upper and lower sides of the outer ring 11, respectively.
  • the inner ring 15A of the rotation allowing support component 7A formed of a tapered roller bearing is fitted on the outer periphery of the trunnion shaft-like mounting shaft portion 19A.
  • the outer ring 16A of the rotation allowing support component 7A is fitted in a fitting hole 38 provided in the unit support member 5A.
  • a male screw is formed at the tip (upper end) of the mounting shaft 19A, and a nut 39 is screwed into the male screw.
  • the inner ring 15A is pressed in the axial direction (downward) of the mounting shaft portion 19A by the nut 39.
  • the pressing member 41 is fitted in the fitting hole 38 of the unit supporting member 5A, and the bolt 42 is screwed into the screw hole provided in the hollow portion of the mounting shaft 19A. There is.
  • the end face of the outer ring 16A is pressed by the bolt 42 through the pressing member 41.
  • the unit supporting member 5A has one main member 5Aa and divided bodies 5Ab provided for the respective rotation-allowable supporting parts 7A, 7A, and the main members 5Aa and the divided bodies 5Ab are coupled by bolts 44. There is.
  • the unit support member 5A is attached to the knuckle 22 with a bolt (not shown) at the divided body 5Ab.
  • a preloading means 48A is constituted by the main member 5Aa, the divided body 5Ab and the bolt 43.
  • the attachment structure of the upper and lower rotation supporting members 7A, 7A to the unit supporting member 5A may be the same.
  • the structure of fixing the upper rotation allowing support component 7A in FIG. 10 to the unit support member 5A and the hub bearing 3 to the outer ring 11 may be applied to the lower rotation allowing support component 7A.
  • the fixing structure of the lower rotation allowing support part 7A may be applied to the fixing of the upper rotation allowing support part 7A.
  • a preload can be applied to the rotation allowing support component 7A to enhance the rigidity.
  • the rotation allowing support component 7A may use an angular contact ball bearing or a four-point contact ball bearing instead of the tapered roller bearing.
  • preload can be applied as described above.
  • FIG. 13 shows an example of the auxiliary steering actuator 6.
  • the auxiliary steering actuator 6 may be applied to any of the first and second embodiments.
  • the driving force of the motor 27 is transmitted to the drive pulley 51 coupled to the motor shaft 27a, and is transmitted by the belt 53 to a driven pulley 52 disposed parallel to the motor shaft 27a.
  • the drive pulley 51, the driven pulley 52, and the belt 53 constitute a winding type reduction gear 28.
  • the linear movement mechanism 29 comprises a feed screw mechanism.
  • a nut 55 is provided on the inner periphery of the driven pulley 52 so as to rotate integrally.
  • the screw shaft 54 of the linear motion mechanism 29 is screwed into the nut 55.
  • the nut 55 and the screw shaft 54 have a screw groove and a screw thread which constitute a screw portion 58 of a slide screw, specifically, a trapezoidal screw having a self-locking function.
  • the rotation of the nut 55 which rotates integrally with the driven pulley 52, causes the screw shaft 54 to be rotationally locked by the detent 56, so that the screw shaft 54 linearly moves in the back and forth direction (axial direction).
  • the auxiliary steering force receiving portion 18 provided on the outer ring 11 of the hub bearing 3 is connected to the direct acting output portion 29 a at the tip of the screw shaft 54 via a joint 57.
  • the joint 57 is rotatably connected to the auxiliary steering force receiving portion 18 and the direct acting output portion 29 a by two pins 57 a.
  • the whole hub unit main body 4 including the hub bearing 3 can rotate around the auxiliary steered axis A with respect to the unit support member 5 (5A) by the back and forth movement of the screw shaft 54.
  • the driven pulley 52 and the nut 55 of the linear motion mechanism 29 are separately formed, the driven pulley 52 and the nut 55 may be integrally formed.
  • FIG. 14 shows another example of the auxiliary steering actuator 6.
  • the auxiliary steering actuator 6 of FIG. 14 may also be applied to any of the first and second embodiments.
  • the driving force of the motor 27 is transmitted to a drive gear 59 coupled to the motor shaft 27 a and is transmitted to a driven gear 60 meshing with the drive gear 59.
  • a gear train of the reduction gear 28 is configured by the drive gear 59 and the driven gear 60.
  • the linear movement mechanism 29 comprises a feed screw mechanism.
  • a nut 55A is provided at the center of the driven gear 60 so as to rotate integrally.
  • the screw shaft 54 of the linear movement mechanism 29 is screwed into the nut 55A.
  • the configuration of the linear movement mechanism 29 and the connection structure between the linear movement mechanism 29 and the hub unit main body 4 are the same as the example shown in FIG. That is, the nut 55A and the screw portion 58 of the screw shaft 54 are slide screws, and more specifically, are trapezoidal screws having a self-locking function.
  • the rotation of the nut 55 which rotates integrally with the driven pulley 52, prevents the screw shaft 54 from rotating by the detent 56, so that the screw shaft 54 linearly moves back and forth.
  • An auxiliary steering force receiving portion 18 provided on the outer ring 11 of the hub bearing 3 is connected to a direct acting output portion 29 a at the tip of the screw shaft 54 via a joint 57.
  • the joint 57 is rotatably connected to the auxiliary steering force receiving portion 18 and the direct acting output portion 29 a by two pins 57 a. For this reason, the whole hub unit main body 4 including the hub bearing 3 can be rotated around the auxiliary steered axis A with respect to the unit support member 5 by the back and forth movement of the screw shaft 54.
  • the driven gear 60 and the nut 55A of the linear movement mechanism 29 are integrally formed, the driven gear 60 and the nut 55 may be configured as separate members and connected to each other.
  • stopper 36 ... brake caliper attachment portion 48, 48A ... preloading means 51 ... drive Pulley 52 ... driven pulley 53 ... bolt 54 ... screw shaft 55 ... nut 56 ... detent portion 57 ... joint 57 Angle ... pin 58 ... Screw portion 59 ... drive gear 60 ... driven gear A ... auxiliary steering axis K ... kingpin axis O ... Rotation axis PK ... intersection PA ... intersection S ... road theta ... auxiliary steering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

This supplemental turning function-equipped hub unit (1) is a hub unit that is coupled, through a knuckle 22 of a suspension device (21), to a steering device (25) that changes a turning angle of a wheel (2) by a steering wheel operation. This supplemental turning function-equipped hub unit (1) comprises: a hub unit body (4) including a hub bearing (3); and a unit support member (5) provided to the knuckle (22). The hub unit body (4) is rotatably supported about a supplemental turning axis (A) by the unit support member (5) through rotation-permitting support components (7, 7) at two upper and lower points, and supplemental turning is performed by a supplemental turning actuator (6). The supplemental turning axis (A) is in a direction different from a kingpin axis (K), and respective intersection positions (RA, PK) between the extension line of each axis (A, K) and a road surface (S) are both located within a tire ground-contacting surface (9a).

Description

補助転舵機能付ハブユニットおよび車両Hub unit with auxiliary steering function and vehicle 関連出願Related application
 この出願は、2017年6月23日出願の特願2017-122995の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-122995 filed on June 23, 2017, which is incorporated by reference in its entirety.
 この発明は、ステアリング装置による転舵に付加して補助的な転舵を左右の車輪において独立で行える機能を備えた補助転舵機能付ハブユニットおよび車両に関する。 The present invention relates to a hub unit with an auxiliary steering function and a vehicle having a function of performing auxiliary steering independently on left and right wheels in addition to steering by a steering device.
 一般に自動車のような車両では、ハンドルとステアリング装置が機械的に接続され、ステアリング装置の両端はタイロッドによって左右の車輪につながっている。そのため、ハンドルの動きによる左右の車輪の切れ角度は初期の設定によって決まる。
 車両のジオメトリには、(1)左右の車輪の切れ角度が同じである「パラレルジオメトリ」、(2)旋回中心を1か所にするために旋回内輪タイヤ角度を旋回外輪タイヤ角度よりも大きく切る「アッカーマンジオメトリ」が知られている。
Generally, in a vehicle such as an automobile, the steering wheel and the steering device are mechanically connected, and both ends of the steering device are connected to the left and right wheels by tie rods. Therefore, the turning angle of the left and right wheels due to the movement of the steering wheel is determined by the initial setting.
In the geometry of the vehicle, (1) "parallel geometry" in which the left and right wheels have the same turning angle, (2) cut the turning inner wheel tire angle larger than the turning outer wheel tire angle in order to place the turning center in one place. "Ackerman geometry" is known.
 車両のジオメトリは、走行性の安定に影響する。
 走行状況に応じてステアリングジオメトリを可変とした機構に関しては、例えば特許文献1,2が提案されている。特許文献1では、ナックルアームとジョイント位置を相対的に変化させて、ステアリングジオメトリを変化させる。特許文献2では、2つのモータを用いて、トー角とキャンバー角の両方を任意の角度に傾けることを可能にしている。また、4輪独立転舵の機構については、特許文献3で提案されている。
The geometry of the vehicle affects the stability of the runnability.
Patent Documents 1 and 2, for example, have been proposed as to a mechanism in which the steering geometry is variable according to the traveling situation. In Patent Document 1, the steering geometry is changed by relatively changing the knuckle arm and the joint position. In patent document 2, it is possible to incline both a toe angle and a camber angle to arbitrary angles using two motors. Moreover, about the mechanism of four-wheel independent steering, it is proposed by patent document 3. FIG.
特開2009-226972号公報JP, 2009-226972, A 独国特許出願公開第102012206337号明細書German Patent Application Publication No. 102012206337 特開2014-061744号公報JP, 2014-061744, A
 アッカーマンジオメトリは、車両に作用する遠心力を無視できるような低速域での旋回において、車輪をスムースに旋回させるために、各車輪が共通の一点を中心として旋回するように左右の車輪の舵角差が設定されている。しかしながら、遠心力を無視できない高速域の旋回においては、車輪は遠心力とつり合う方向にコーナリングフォースを発生させることが望ましいので、アッカーマンジオメトリよりもパラレルジオメトリとすることが好ましい。 Ackermann geometry is such that when turning at low speed where the centrifugal force acting on the vehicle can be ignored, the steering angles of the left and right wheels so that the wheels turn around a common point in order to turn the wheels smoothly The difference is set. However, since it is desirable for the wheel to generate a cornering force in a direction that balances the centrifugal force, it is preferable to use a parallel geometry rather than an Ackerman geometry in turning in a high speed region where the centrifugal force can not be ignored.
 前述したように一般的な車両の操舵装置は機械的に車輪と接続されているので、固定された単一のステアリングジオメトリしか取ることができず、アッカーマンジオメトリとパラレルジオメトリとの中間的なジオメトリに設定されることが多い。しかしながら、この場合、低速域では左右の車輪の舵角差が不足して外輪の舵角が過大となり、高速域では内輪の舵角が過大となる。このように内外輪のタイヤ横力配分に不要な偏りがあると、走行抵抗の悪化による燃費悪化およびタイヤの早期摩耗の原因となる。また、内外輪を効率的に利用できないことによって、コーナリングのスムースさが損なわれるといった課題がある。 As described above, since the general vehicle steering system is mechanically connected to the wheels, only a single fixed steering geometry can be taken, and an intermediate geometry between the Ackerman geometry and the parallel geometry can be taken. Often set. However, in this case, the steering angle difference between the left and right wheels is insufficient in the low speed region, the steering angle of the outer ring becomes excessive, and the steering angle of the inner ring becomes excessive in the high speed region. As described above, if there is an unnecessary bias in the tire lateral force distribution of the inner and outer rings, the deterioration of the running resistance causes the deterioration of the fuel efficiency and the early wear of the tire. Moreover, there is a problem that the smoothness of cornering is impaired by the inability to use the inner and outer rings efficiently.
 特許文献1,2の提案によると、ステアリングジオメトリを変更させることができるが以下の課題がある。
 特許文献1では、前述のようにナックルアームとジョイント位置を相対的に変化させてステアリングジオメトリを変化させている。この位置での変化によるタイヤ角の変化は小さく、大きな効果を得るためには、大きく変化させる、つまり大きく動かす必要がある。このような部分で車両のジオメトリを変化させるほどの大きな力を得るモータアクチュエータを設けることは、空間の制約上、非常に困難である。
According to the proposals of Patent Documents 1 and 2, the steering geometry can be changed, but there are the following problems.
In Patent Document 1, as described above, the steering geometry is changed by relatively changing the position of the knuckle arm and the joint. The change in tire angle due to the change at this position is small, and in order to obtain a large effect, it is necessary to make a large change, that is, a large movement. Providing a motor actuator that obtains such a large force to change the vehicle geometry in such a part is very difficult due to space constraints.
 特許文献2では、2つのモータを用いているので、モータの数の増大によるコスト増が生じるうえ、制御が複雑になる。
 特許文献3は、4輪独立転舵の車両にしか適用できない。また、転舵軸に対しハブベアリングを片持ち支持しているので、剛性が低下し、過大な旋回Gの発生によってステアリングジオメトリが変化してしまう可能性がある。転舵軸上に減速機を設けると、大きな動力が必要となるが、モータを大きくすると車輪の内周部に全体を配置することが困難となる。減速比の大きい減速機を設けると、応答性が悪化する。
In patent document 2, since two motors are used, the cost increase by the increase in the number of motors will arise, and control will become complicated.
Patent Document 3 can be applied only to a four-wheel independent steering vehicle. Further, since the hub bearing is supported in a cantilever manner with respect to the steered shaft, the rigidity may be reduced, and the steering geometry may be changed due to the occurrence of the excessive turning G. If a reduction gear is provided on the steered shaft, a large power is required, but if the motor is enlarged, it becomes difficult to arrange the whole on the inner peripheral portion of the wheel. If a reduction gear having a large reduction ratio is provided, the response is degraded.
 上記のように従来の補助的な転舵機能を備えた機構は、車両においてタイヤのトー角度やキャンバー角度を任意に変更することを目的としているので、複雑な構成となっている。また、剛性を確保することが困難であり、剛性を確保するためには大形化する必要があり重くなる。キングピン軸と転舵軸が一致する場合は、構成要素部品がハブモジュールの後方(車体側)に配置されるので、全体のサイズが大きくなり重くなる。 As described above, the mechanism provided with the conventional auxiliary steering function is intended to arbitrarily change the toe angle and the camber angle of the tire in the vehicle, and thus has a complicated configuration. In addition, it is difficult to secure the rigidity, and in order to secure the rigidity, it is necessary to increase the size and the weight becomes heavy. If the king pin axis coincides with the steered axis, the component parts are disposed at the rear (body side) of the hub module, so the overall size becomes large and heavy.
 この発明の目的は、運転者のハンドル操作による転舵に付加して走行状況に応じた車輪の個別の補助的な転舵が行え、車両の運動性能を向上させることで走行の安定性の向上と燃費の改善が可能となり、また構成が簡素でかつ堅固であり、さらに主な転舵と補助転舵が共に安定して効率よく行える補助転舵機能付ハブユニットおよび車両を提供することである。 The object of the present invention is to perform individual supplementary steering of the wheels according to the traveling situation in addition to steering by the driver's steering wheel operation, and improve the traveling stability by improving the motion performance of the vehicle It is possible to provide a hub unit with an auxiliary steering function and a vehicle that can improve the fuel consumption and fuel consumption, and that the configuration is simple and robust, and that both the main steering and the auxiliary steering can be stably and efficiently performed. .
 この発明の補助転舵機能付ハブユニットは、運転者のハンドル操作によって車輪の転舵角度を変化させるステアリング装置に、懸架装置のナックルを介して接続されるハブユニットであって、
 前記車輪の取付用のハブベアリングを有するハブユニット本体と、前記ナックルと連結されまたはナックルの一部として構成されたユニット支持部材とを備え、
 前記ハブユニット本体は、上下方向に延びる補助転舵軸心回りに回転自在に上下2箇所でそれぞれ回転許容支持部品を介して前記ユニット支持部材に支持され、補助転舵用アクチュエータの駆動により前記補助転舵軸心回りに回転させられ、
 前記補助転舵軸心は前記懸架装置のキングピン軸と異なる方向であり、
 前記キングピン軸の延長線と路面との交点位置と、前記補助転舵軸心の延長線と前記路面との交点位置が、共にタイヤ接地面内に位置する。
 ここで、「タイヤ接地面」とは、運転席に1名(55kg相当)が乗車した状態において、タイヤが地面に接地している場所をいう。
The hub unit with auxiliary steering function according to the present invention is a hub unit connected via a knuckle of a suspension system to a steering device that changes a steering angle of a wheel by a driver's steering wheel operation,
A hub unit body having a hub bearing for mounting the wheel, and a unit support member connected to the knuckle or configured as a part of the knuckle;
The hub unit main body is supported by the unit support member at two upper and lower positions rotatably rotatably around an auxiliary turning shaft center extending in the vertical direction, and the auxiliary steering actuator drives the auxiliary turning actuator. It is rotated around the steering axis,
The auxiliary steering axis is in a direction different from the kingpin axis of the suspension system,
Both the intersection point position of the extension line of the kingpin axis and the road surface and the intersection point position of the extension line of the auxiliary steering axis and the road surface are located in the tire contact surface.
Here, "tire contact surface" refers to a place where a tire is in contact with the ground when one driver (equivalent to 55 kg) gets on the driver's seat.
 この構成によると、ステアリング装置により運転者のハンドル操作で、ハブベアリングの方向がハブユニット本体と共に変わり、主な転舵が行われ、この主な転舵に付加して補助転舵軸心回りの僅かな角度の補助転舵が、車輪個別に行える。 According to this configuration, the steering device changes the direction of the hub bearing along with the hub unit body by the driver's steering wheel operation, and the main steering is performed, and in addition to the main steering, the auxiliary steering axis is turned around. Auxiliary steering with a slight angle can be performed individually for each wheel.
 この場合、補助転舵用アクチュエータにより、ハブユニット本体が補助転舵軸心回りに自由に回転させることができる。これにより、車両の走行状況に応じて、例えばタイヤのトー角を任意に変更することができる。また、旋回走行時に、走行速度に応じて左右の車輪の舵角差を変えることができる。例えば、高速域の旋回においてはパラレルジオメトリとし、低速域ではアッカーマンジオメトリとするなど、走行中にステアリングジオメトリを変化させることができる。このように走行中にタイヤ角度を任意に変更することができるので、車両の運動性能が向上し、安定して走行することが可能となる。旋回走行時における左右の操舵輪の転舵角度を適切に変えることで、車両の旋回半径を小さくし、小回り性能を向上させることもできる。 In this case, the hub unit body can be freely rotated about the auxiliary turning axis by the auxiliary turning actuator. Thus, for example, the toe angle of the tire can be arbitrarily changed in accordance with the traveling condition of the vehicle. In addition, at the time of cornering, the difference in steering angle between the left and right wheels can be changed according to the traveling speed. For example, it is possible to change the steering geometry while traveling, such as parallel geometry in high speed range turning and Ackerman geometry in low speed range. As described above, since the tire angle can be arbitrarily changed during traveling, the motion performance of the vehicle is improved, and stable traveling can be achieved. The turning radius of the vehicle can be reduced and the small turning performance can be improved by appropriately changing the turning angles of the left and right steered wheels during turning.
 また、懸架装置のキングピン軸の延長線と路面との交点位置と、補助転舵軸心の延長線と路面との交点位置が、共にタイヤ接地面内に位置するので、主な転舵および補助転舵が共に安定して効率よく行える。 In addition, since the intersection point between the extension of the kingpin axis of the suspension system and the road surface and the intersection point between the extension of the auxiliary steering axis and the road are both located in the tire contact surface, the main steering and auxiliary Both steering can be done stably and efficiently.
 この発明において、前記転舵軸心が前記懸架装置のキングピン軸と異なる方向であり、前記キングピン軸の延長線と路面との交点位置と、前記補助転舵軸心の延長線と前記路面との交点位置とが互いに一致していてもよい。キングピン軸でハブユニット本体を補助転舵させるとキャンパー角が大きく変化し、走行抵抗が増す。補助転舵軸心をキングピン軸と別に設定することで、この補助転舵によるキャンパー角の変化を抑え、走行抵抗の増大を抑えることができる。 In the present invention, the turning axis is in a direction different from the kingpin axis of the suspension device, and the intersection point between the extension line of the kingpin axis and the road surface, the extension line of the auxiliary turning axis and the road surface The intersection positions may coincide with each other. If the hub unit body is steered with the king pin axis as an auxiliary steering wheel, the camber angle changes significantly and the travel resistance increases. By setting the auxiliary steering axis separately from the kingpin axis, it is possible to suppress a change in the camper angle due to the auxiliary steering and to suppress an increase in traveling resistance.
 キングピン軸と補助転舵軸が一致する場合は、構成要素部品がハブユニット本体の車体側に配置されるので、全体のサイズが大きくなり重くなる。補助転舵軸心が懸架装置のキングピン軸と異なる方向であると、装置全体のサイズを抑え、軽量化することができる。 When the king pin axis coincides with the auxiliary steering axis, the component parts are arranged on the vehicle body side of the hub unit body, so the overall size becomes large and heavy. If the auxiliary steering axis is in a direction different from the kingpin axis of the suspension, the size of the entire device can be reduced and the weight can be reduced.
 キングピン軸と補助転舵軸が異なる場合に、両方の軸の延長上とタイヤの接地位置が異なっていると、両方が同時に動く場合に滑りが生じ、非効率であるとともに、車両挙動が乱れる恐れがある。そのため、キングピン軸の延長線と路面との交点位置と、補助転舵軸心の延長線と路面との交点位置とが互いに近傍に配置されることが望ましい。理想的には2つの交点位置は一致することが好ましい。これにより、主な転舵と補助転舵とが同時に行われても、滑りが生じず効率的に転舵および補助転舵が行え、安定して車両を操作することができる。 If the kingpin axis and the auxiliary steered axis are different, if the extension of both axes and the contact position of the tire are different, slippage may occur if both move simultaneously, resulting in inefficiency and disturbance of the vehicle behavior. There is. Therefore, it is desirable that the intersection point position of the extension line of the kingpin axis and the road surface and the intersection point position of the extension line of the auxiliary steering axis and the road surface be disposed in the vicinity of each other. Ideally, it is preferred that the two intersection points coincide. As a result, even if main steering and auxiliary steering are simultaneously performed, slippage does not occur and steering and auxiliary steering can be performed efficiently, and the vehicle can be stably operated.
 この発明の車両は、この発明の補助転舵機能付ハブユニットを装備する。そのため、運転者のハンドル操作による転舵に付加して、走行状況に応じた車輪個別の補助的な転舵が行える。これにより、車両の運動性能が向上し、走行の安定性の向上と燃費の改善が可能となる。また、補助転舵機能付ハブユニットの構成が簡素でかつ堅固なものとなる。 The vehicle of the present invention is equipped with the hub unit with an auxiliary steering function of the present invention. Therefore, in addition to steering by the driver's steering wheel operation, it is possible to perform auxiliary steering of individual wheels according to the traveling situation. As a result, the exercise performance of the vehicle is improved, and it is possible to improve the traveling stability and the fuel consumption. In addition, the configuration of the hub unit with auxiliary steering function is simple and robust.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the invention. In particular, any combination of two or more of the claims is included in the invention.
 本発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、本発明の範囲を定めるために利用されるべきものではない。本発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の第1の実施形態に係る補助転舵機能付ハブユニットおよびその周辺の構成を示す縦断面図である。 同補助転舵機能付ハブユニットおよびその周辺の構成を示す水平断面図である。 同補助転舵機能付ハブユニットの縦断面図である。 同補助転舵機能付ハブユニットの外観斜視図である。 同補助転舵機能付ハブユニットの左側面図である。 同補助転舵機能付ハブユニットの主転舵中立状態を示す水平断面図である。 同補助転舵機能付ハブユニットの主転舵非中立状態を示す水平断面図である。 この発明の第2の実施形態に係る補助転舵機能付ハブユニットおよびその周辺の構成を示す縦断面図である。 同補助転舵機能付ハブユニットおよびその周辺の構成を示す水平断面図である。 同補助転舵機能付ハブユニットの縦断面図である。 同補助転舵機能付ハブユニットの外観斜視図である。 同補助転舵機能付ハブユニットの左側面図である。 第1および第2の実施形態に用いられる補助転舵用アクチュエータの具体例を示す水平断面図である。 第1および第2の実施形態に用いられる補助転舵用アクチュエータの他の具体例を示す水平断面図である。 第1および第2の実施形態の補助転舵機能付ハブユニットが適用される車両の一例の模式平面図である。
The present invention will be more clearly understood from the following description of the preferred embodiments with reference to the attached drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the present invention is defined by the appended claims. In the attached drawings, the same part numbers in multiple drawings indicate the same or corresponding parts.
It is a longitudinal cross-sectional view which shows the hub unit with an auxiliary | assistant steering function which concerns on 1st Embodiment of this invention, and the structure of the periphery of it. It is a horizontal sectional view which shows the hub unit with the auxiliary | assistant steering function, and the structure of the periphery of the same. It is a longitudinal cross-sectional view of the hub unit with the same auxiliary | assistant steering function. It is an external appearance perspective view of the hub unit with the same auxiliary | assistant steering function. It is a left view of the hub unit with the auxiliary steering function. It is a horizontal sectional view showing the main steering neutral state of the hub unit with the auxiliary steering function. It is a horizontal sectional view showing the main steering non-neutral state of the hub unit with the auxiliary steering function. It is a longitudinal cross-sectional view which shows the hub unit with an auxiliary | assistant steering function which concerns on 2nd Embodiment of this invention, and the structure of the periphery of it. It is a horizontal sectional view which shows the hub unit with the auxiliary | assistant steering function, and the structure of the periphery of the same. It is a longitudinal cross-sectional view of the hub unit with the same auxiliary | assistant steering function. It is an external appearance perspective view of the hub unit with the same auxiliary | assistant steering function. It is a left view of the hub unit with the auxiliary steering function. It is a horizontal sectional view showing the example of the actuator for auxiliary steering used in the 1st and 2nd embodiment. It is a horizontal sectional view showing other concrete examples of an actuator for auxiliary steering used in the 1st and 2nd embodiment. It is a model top view of an example of the vehicles to which the hub unit with an auxiliary steering function of the 1st and 2nd embodiment is applied.
 この発明の第1の実施形態を図面と共に説明する。図1において、この補助転舵機能付ハブユニット1は、車輪2の支持用のハブベアリング3を有するハブユニット本体4と、ユニット支持部材5と、補助転舵用アクチュエータ6とを備える。ハブユニット本体4は、上下方向に延びる補助転舵軸心A回りに回転自在に、上下2箇所で回転許容支持部品7,7を介してユニット支持部材5に支持されている。補助転舵軸心Aは、車輪2の回転軸心Oとは異なる軸心であり、主な転舵を行うキングピン軸Kとも異なっている。車輪2は、ホイール8とタイヤ9とを有している。 A first embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the hub unit with auxiliary steering function 1 includes a hub unit main body 4 having a hub bearing 3 for supporting the wheels 2, a unit support member 5, and an auxiliary steering actuator 6. The hub unit main body 4 is supported by the unit support member 5 at two upper and lower positions via the rotation allowing support parts 7 so as to be rotatable about the auxiliary turning axis A extending in the vertical direction. The auxiliary steering axis A is an axis different from the rotational axis O of the wheel 2 and is also different from the kingpin axis K which performs the main steering. The wheel 2 has a wheel 8 and a tire 9.
 この実施形態の補助転舵機能付ハブユニット1は、転舵輪である前輪のナックル22に設置されている。具体的には、補助転舵機能付ハブユニット1は、図15に示すように、車両10の前輪2Fのステアリング装置25による転舵に付加し、左右の車輪2の個別に微小角転舵させる機構である。ステアリング装置25は、ハンドル(図示せず)の操作に応じて車輪2F,2Fを転舵させる。ただし、補助転舵機能付ハブユニット1は、前輪転舵に対する補助として後輪2Rの転舵を行う機構として用いてもよい。 The hub unit 1 with an auxiliary steering function of this embodiment is installed on a knuckle 22 of a front wheel which is a steered wheel. Specifically, as shown in FIG. 15, the hub unit 1 with the auxiliary steering function is added to steering by the steering device 25 of the front wheel 2F of the vehicle 10, and steers the left and right wheels 2 individually by minute angles. It is a mechanism. The steering device 25 steers the wheels 2F, 2F in response to the operation of a steering wheel (not shown). However, the hub unit 1 with auxiliary steering function may be used as a mechanism for steering the rear wheel 2R as an aid to front wheel steering.
 図1において、ユニット支持部材5は、車体10A(図15)に設置された懸架装置21のナックル22に取付けられている。ユニット支持部材5は、ナックル22と一体に、つまりナックル22の一部として設けられてもよい。この実施形態の懸架装置21は、ダブルウイッシュボーン式であり、ショックアブソーバ(図示せず)を介して接続されたアッパーアーム23とロアアーム24とを有している。これらアッパーアーム23とロアアーム24の先端間で傾斜したキングピン軸K回りに回動自在にナックル22が設置されている。懸架装置21は、これに限定されず、独立懸架式など公知の形式を採用できる。 In FIG. 1, the unit support member 5 is attached to a knuckle 22 of a suspension device 21 installed on a vehicle body 10A (FIG. 15). The unit support member 5 may be provided integrally with the knuckle 22, that is, as a part of the knuckle 22. The suspension device 21 of this embodiment is a double wishbone type, and has an upper arm 23 and a lower arm 24 connected via a shock absorber (not shown). A knuckle 22 is installed rotatably around a king pin axis K which is inclined between the upper arm 23 and the tip of the lower arm 24. The suspension device 21 is not limited to this, and a known type such as an independent suspension type can be adopted.
 図2に示すように、ナックル22は、車輪2の径方向外側に突出したステアリング装置連結部22aを有している。このステアリング装置連結部22aが、ステアリング装置25のタイロッド26に回転可能に連結されている。 As shown in FIG. 2, the knuckle 22 has a steering device connecting portion 22 a that protrudes outward in the radial direction of the wheel 2. The steering device connecting portion 22 a is rotatably connected to the tie rod 26 of the steering device 25.
 図3に示すように、ハブベアリング3は、内輪12と外輪11とこれら内外輪12,11間に介在された転動体13とを有している。転動体13は、例えば、ボールである。ハブベアリング3により、車体側の部材と車輪2とが連結されている。この実施形態のハブベアリング3は、外輪11が固定輪で内輪12が回転輪であり、転動体13が複列のアンギュラ玉軸受である。 As shown in FIG. 3, the hub bearing 3 has an inner ring 12, an outer ring 11, and rolling elements 13 interposed between the inner and outer rings 12 and 11. The rolling element 13 is, for example, a ball. A member on the vehicle body side and the wheel 2 are connected by the hub bearing 3. In the hub bearing 3 of this embodiment, the outer ring 11 is a fixed ring and the inner ring 12 is a rotating ring, and the rolling elements 13 are double-row angular ball bearings.
 内輪12は、ハブ輪部12aと内輪部12bとの二つの部品で構成されている。ハブ輪部12aは、ハブフランジ12aaを有し、アウトボード側の軌道面を構成する。内輪部12bは、インボード側の軌道面を構成する。ハブフランジ12aaに、図2に示す車輪2のホイール8が、ブレーキロータ14aと共にボルトで固定されている。内輪12は、回転軸心O回りに回転する。 The inner ring 12 is composed of two parts of a hub ring 12a and an inner ring 12b. The hub wheel portion 12a has a hub flange 12aa and constitutes a raceway surface on the outboard side. The inner ring portion 12 b constitutes an inboard side track surface. The wheel 8 of the wheel 2 shown in FIG. 2 is bolted to the hub flange 12aa together with the brake rotor 14a. The inner ring 12 rotates about the rotation axis O.
 ブレーキロータ14aは、ブレーキキャリパ14bとでブレーキ14を構成する。ブレーキキャリパ14bは、図4,図5に示す外輪11(図3参照)に一体にアーム状に突出して形成された上下2箇所のブレーキキャリパ取付部36に取付けられる。 The brake rotor 14a and the brake caliper 14b constitute a brake 14. The brake calipers 14b are attached to two upper and lower brake caliper attachment portions 36 which are integrally formed on the outer ring 11 (see FIG. 3) shown in FIGS.
 図3において、ハブユニット本体4は、補助転舵機能付ハブユニット1における補助転舵軸心A周りに回転する部分であり、ハブベアリング3と、回転許容支持部品7の回転側部品15と、補助転舵力受け部18(図2、図4参照)とを備える。 In FIG. 3, the hub unit body 4 is a portion that rotates around the auxiliary steering axis A in the hub unit 1 with the auxiliary steering function, and includes the hub bearing 3 and the rotation side component 15 of the rotation allowing support component 7; And an auxiliary steering force receiver 18 (see FIGS. 2 and 4).
 回転許容支持部品7は、この実施形態では球面滑り軸受からなり、凹球面座15aを有する回転側部品15と、固定側部品16とを有している。この明細書において、「球面滑り軸受」とは、球面ブッシュとピボット軸受を含む意味である。固定側部品16は、凹球面座15aに任意方向に回転自在に嵌合する球面部16aと、先端に球面部16aが設けられた軸部16bとを有している。凹球面座15aは、軸部16bの外周を覆う蛇腹状で可撓性のブーツ17で覆われている。 The rotation-supporting support part 7 in this embodiment is a spherical slide bearing, and has a rotary part 15 having a concave spherical seat 15 a and a stationary part 16. In this specification, "spherical slide bearing" is meant to include a spherical bush and a pivot bearing. The stationary part 16 has a spherical portion 16a rotatably fitted to the concave spherical seat 15a in an arbitrary direction, and a shaft portion 16b having a spherical portion 16a at its tip. The concave spherical seat 15a is covered with a bellows-like and flexible boot 17 covering the outer periphery of the shaft portion 16b.
 ハブベアリング3の外輪11の外周面に、円筒状の取付座部19が設けられている。取付座部19は、外輪11の外周面から径方向外側に突出している。取付座部19は、外輪11の外周面の上下2箇所に設けられている。上下の各回転許容支持部品7の回転側部品15は、上下の取付座部19,19にそれぞれ嵌合状態で取り付けられている。 A cylindrical mounting seat 19 is provided on the outer peripheral surface of the outer ring 11 of the hub bearing 3. The mounting seat 19 protrudes radially outward from the outer peripheral surface of the outer ring 11. The mounting seat portions 19 are provided at two upper and lower positions on the outer peripheral surface of the outer ring 11. The rotating side parts 15 of the upper and lower rotation permitting support parts 7 are attached to the upper and lower mounting seats 19 in a fitted state.
 回転許容支持部品7の固定側部品16は、予圧調整手段48により回転許容支持部品7の予圧調整が可能なように、ユニット支持部材5に取り付けられている。ユニット支持部材5が、ナックル22に固定された支持部材本体5aと、この支持部材本体5aに対して補助転舵軸心Aに沿う方向に位置調整可能な支持部材分割体5bとを有している。支持部材分割体5bは、調整ボルト49の締め付けにより支持部材本体5aに対して位置調整可能である。これら支持部材本体5a、支持部材分割体5bおよび調整ボルト49により、与圧調整手段48が構成されている。 The stationary side part 16 of the rotation allowing support part 7 is attached to the unit support member 5 so that the preload adjusting of the rotation allowing support part 7 is possible by the preload adjusting means 48. The unit support member 5 has a support member main body 5a fixed to the knuckle 22, and a support member divided body 5b that can be positionally adjusted with respect to the support member main body 5a along the auxiliary turning axis A There is. The support member divided body 5 b can be adjusted in position with respect to the support member main body 5 a by tightening the adjustment bolt 49. The pressure adjusting means 48 is constituted by the support member main body 5 a, the support member divided body 5 b and the adjustment bolt 49.
 この実施形態では、上述のようにハブベアリング3の外輪11に取付座部19が一体に形成され、回転許容支持部品7の回転側部品15が外輪11に直接に取付けられているが、外輪11の外周に軸箱のような取付用部品(図示せず)を設け、この取付用部品に回転許容支持部品7の回転側部品15を取り付けてもよい。 In this embodiment, the mounting seat 19 is integrally formed on the outer ring 11 of the hub bearing 3 as described above, and the rotation-side component 15 of the rotation-allowable support component 7 is directly attached to the outer ring 11. A mounting part (not shown) such as an axle box may be provided on the outer periphery of the rotation-side part 15 of the rotation-allowable support part 7 to the mounting part.
 図1に示すように、ハブユニット本体4の補助転舵軸心Aの方向は、キングピン軸Kの方向とは異なり、この実施形態では鉛直方向である。この実施形態では、補助転舵軸心Aは、キングピン軸Kの延長線と路面Sとの交点位置PKと、補助転舵軸心Aの延長線と路面Sとの交点位置PAが、共にタイヤ接地面9aに位置するように設計されている。さらに、交点位置PK,PAが一致していると、タイヤのすべりを最小となる。このため、交点位置PK,PAが一致していることが好ましい。ここで、「タイヤ接地面」は、運転席に1名(55kg相当)が乗車した状態において、タイヤ9が路面Sに接地している場所をいう。 As shown in FIG. 1, the direction of the auxiliary turning axis A of the hub unit main body 4 is different from the direction of the kingpin axis K, and is a vertical direction in this embodiment. In this embodiment, the auxiliary turning axis A is a point at which the intersection point PK of the extension line of the kingpin axis K and the road surface S and the intersection point PA of the extension line of the auxiliary turning axis A and the road surface S are tires. It is designed to be located on the ground plane 9a. Furthermore, when the intersection points PK and PA coincide, the slip of the tire is minimized. Therefore, it is preferable that the intersection positions PK and PA coincide with each other. Here, "tire contact surface" means a place where the tire 9 is in contact with the road surface S in a state where one driver (equivalent to 55 kg) gets on the driver's seat.
 図2、図4に示す補助転舵力受け部18は、ハブベアリング3の外輪11に補助転舵力を与える作用点となる部位である。補助転舵力受け部18は、ハブベアリング3の外輪11の外周の一部に一体に突出したアーム部として設けられている。補助転舵力受け部18は、図13と共に後述するようにジョイント57を介して補助転舵用アクチュエータ6の直動出力部6aに回転自在に連結されている。これにより、補助転舵用アクチュエータ6の直動出力部6aが進退することで、ハブユニット本体4が補助転舵軸心A回りに回転する。つまり、ハブユニット本体4が補助転舵させられる。 The auxiliary steering force receiving portion 18 shown in FIGS. 2 and 4 is a portion serving as an action point for applying the auxiliary steering force to the outer ring 11 of the hub bearing 3. The auxiliary steering force receiving portion 18 is provided as an arm portion integrally projecting on a part of the outer periphery of the outer ring 11 of the hub bearing 3. The auxiliary steering force receiving portion 18 is rotatably connected to the direct drive output portion 6 a of the auxiliary steering actuator 6 via a joint 57 as described later with reference to FIG. 13. As a result, the hub unit main body 4 rotates around the auxiliary steered shaft center A by advancing and retracting the linear movement output unit 6 a of the auxiliary steering actuator 6. That is, the hub unit body 4 is steered in an auxiliary manner.
 補助転舵用アクチュエータ6は、モータ27(図3)と、このモータ27の回転を減速する図2の減速機28と、この減速機28の正逆の回転出力を直動出力部6aの往復直線動作に変換する直動機構29とを有している。モータ27は、例えば、永久磁石型同期モータである。ただし、モータ27は、これに限定されず、直流モータであっても、誘導モータであってもよい。 The auxiliary steering actuator 6 includes a motor 27 (FIG. 3), a reduction gear 28 of FIG. 2 for reducing the rotation of the motor 27, and forward and reverse rotational output of the reduction gear 28 as a reciprocation of the linear movement output portion 6a. And a linear motion mechanism 29 for converting it into a linear motion. The motor 27 is, for example, a permanent magnet synchronous motor. However, the motor 27 is not limited to this, and may be a direct current motor or an induction motor.
 減速機28は、ベルト伝達機構のような巻き掛け式伝達機構またはギヤ列を用いることができる。図2では、減速機28として、ベルト伝達機構が用いられている。直動機構29は、滑りねじ、ボールねじ等の送りねじ機構、またはラック・ピニオン機構を用いることができる。この実施形態では、直動機構29として、台形ねじの滑りねじを用いた送りねじ機構が用いられている。 The reduction gear 28 can use a winding type transmission mechanism or gear train such as a belt transmission mechanism. In FIG. 2, a belt transmission mechanism is used as the reduction gear 28. The linear movement mechanism 29 can use a slide screw, a feed screw mechanism such as a ball screw, or a rack and pinion mechanism. In this embodiment, a feed screw mechanism using a slide screw with a trapezoidal screw is used as the linear movement mechanism 29.
 本実施形態では、補助転舵用アクチュエータ6が、減速機28を備えている例を示したが、補助転舵用アクチュエータ6は、減速機28を備えておらず、モータ27の駆動力が直動機構29へ直接伝達される構成であってもよい。また、補助転舵用アクチュエータ6は、モータ27を備えていなくてもよい。その場合、補助転舵用アクチュエータ6は、例えば油圧により駆動するアクチュエータであってもよい。 In the present embodiment, the auxiliary steering actuator 6 includes the reduction gear 28. However, the auxiliary steering actuator 6 does not include the reduction gear 28, and the driving force of the motor 27 is straight. It may be configured to be directly transmitted to the moving mechanism 29. The auxiliary steering actuator 6 may not include the motor 27. In that case, the auxiliary steering actuator 6 may be, for example, an actuator driven by hydraulic pressure.
 ハブユニット本体4のナックル22に対する補助転舵の角度θ(図6、図7)は、ストッパ35により規制される。図6は、主な転舵が直進状態で、補助転舵が内側に行われた状態を示す。図7は、主な転舵が左側を向き、かつ補助転舵が内側に行われた状態を示す。ストッパ35は、例えば、ユニット支持部材5におけるハブユニット本体4と軸方向に対向する面、例えば、ハブベアリング3の外輪11の端面に対向する面に設けられている。ハブベアリング3の外輪11の端面がストッパ35に当接することで、ハブユニット本体4の補助転舵の角度θが規制される。ハブユニット本体4の補助転舵可能角度の許容範囲は、僅かな角度でよい。ストッパ35による補助転舵可能角度の許容範囲は、例えば±5度以下である。 The angle θ (FIGS. 6 and 7) of the auxiliary steering with respect to the knuckle 22 of the hub unit body 4 is restricted by the stopper 35. FIG. 6 shows a state in which the main steering is straight and the auxiliary steering is performed inward. FIG. 7 shows a state in which the main steering turns to the left and the auxiliary steering is performed inward. The stopper 35 is provided, for example, on a surface of the unit support member 5 that faces the hub unit body 4 in the axial direction, for example, a surface that faces the end face of the outer ring 11 of the hub bearing 3. When the end face of the outer ring 11 of the hub bearing 3 abuts against the stopper 35, the angle θ of auxiliary steering of the hub unit main body 4 is regulated. The allowable range of the auxiliary steerable angle of the hub unit body 4 may be a slight angle. The allowable range of the auxiliary steerable angle by the stopper 35 is, for example, ± 5 degrees or less.
 この実施形態では、ハブベアリング3の外輪11に、回転許容支持部品7を取り付ける取付座部19(図3、図4)と、補助転舵力受け部18(図2、図4)と、ブレーキキャリパ取付部36とが一体に形成されている。ただし、これら取付座部19、補助転舵力受け部18およびブレーキキャリパ取付部36は、ハブユニット本体4に設けられていればよく、外輪11に軸箱のような取付用部品(図示せず)を設け、その取付用部品に設けられていてもよい。 In this embodiment, a mounting seat 19 (FIGS. 3 and 4) for attaching the rotation allowing support 7 to the outer ring 11 of the hub bearing 3, an auxiliary steering force receiver 18 (FIGS. 2 and 4), and a brake The caliper mounting portion 36 is integrally formed. However, the mounting seat portion 19, the auxiliary steering force receiving portion 18 and the brake caliper mounting portion 36 may be provided on the hub unit main body 4, and the outer ring 11 may be provided with mounting parts (not shown) ) May be provided on the mounting part.
 上記構成の動作および作用を説明する。この補助転舵機能付ハブユニット1は、ハブベアリング3およびブレーキキャリパ14b(図2参照)を有するハブユニット本体4が、図1のナックル22に設けられたユニット支持部材5に対し補助転舵軸心Aを中心として回転自在である。つまり、作用点となるアーム状の補助転舵力受け部18(図2)に力を与えることで、ハブユニット本体4が回転可能である。ユニット支持部材5に設置された補助転舵用アクチュエータ6の直動出力部6aをモータ27の駆動により進退させることで、直動出力部6aに連結された補助転舵力受け部18を介してハブユニット本体4が回転する。 The operation and action of the above configuration will be described. The hub unit 1 with the auxiliary steering function has an auxiliary steering shaft with respect to the unit supporting member 5 in which the hub unit main body 4 having the hub bearing 3 and the brake caliper 14b (see FIG. 2) is provided in the knuckle 22 of FIG. It is rotatable around the heart A. That is, the hub unit body 4 can be rotated by applying a force to the arm-like auxiliary turning force receiving portion 18 (FIG. 2) which is the point of action. By moving the linear motion output unit 6a of the auxiliary steering actuator 6 installed on the unit support member 5 forward and backward by driving the motor 27, through the auxiliary steering force receiving unit 18 connected to the linear motion output unit 6a The hub unit body 4 rotates.
 この回転は、運転者のハンドル操作による転舵に付加して、すなわちステアリング装置25によるキングピン軸K(図1)回りのナックル22の回転に付加して、補助的な転舵として行われる。また、この補助転舵は、1輪の独立転舵として行われる。左右の車輪2,2の補助転舵の角度を異ならせることで、左右の車輪2,2間のトー角を任意に変更することができる。 This rotation is performed as an additional steering in addition to the steering by the driver's steering wheel operation, that is, in addition to the rotation of the knuckle 22 about the kingpin axis K (FIG. 1) by the steering device 25. Further, this auxiliary steering is performed as an independent steering of one wheel. The toe angles between the left and right wheels 2 and 2 can be arbitrarily changed by making the auxiliary steering angles of the left and right wheels 2 and 2 different.
 車両10の走行条件に応じて、走行中に左右の車輪のタイヤ角度を独立して任意に変更することができるので、車両10の運動性能が向上し、安定して走行することが可能となる。また、適切なタイヤ角度を設定することで、燃費を改善することも可能となる。この補助転舵機能付ハブユニット1を非転舵輪である後輪2R(図15)に用いた場合、低速走行時における最小回転半径の低減を図ることができる。 Since the tire angles of the left and right wheels can be independently and arbitrarily changed during traveling according to the traveling conditions of the vehicle 10, the exercise performance of the vehicle 10 is improved, and stable traveling is possible. . Further, by setting an appropriate tire angle, it is also possible to improve fuel consumption. When the hub unit 1 with the auxiliary steering function is used for the rear wheel 2R (FIG. 15) which is a non-steered wheel, it is possible to reduce the minimum turning radius at low speed traveling.
 この補助転舵機能付ハブユニット1は、上下2箇所で回転許容支持部品7,7により補助転舵軸心A回りの回転自在に支持されているので、両端支持となって剛性が確保され、かつ構成が簡単である。このように、剛性を確保したまま、簡単な構造で、走行状況に応じた補助的な転舵が左右の車輪で独立して行うことができる。これにより、車輪2のトー角を任意に変更することができ、ステアリングジオメトリを変更することができるので、車両10の運動性能が向上し、走行の安定性の向上と燃費の改善が可能となる。 Since the hub unit 1 with the auxiliary steering function is rotatably supported around the auxiliary steering axis A at two upper and lower positions by the rotation allowing support parts 7 and 7, both ends are supported to ensure rigidity. And the configuration is simple. As described above, auxiliary steering can be performed independently for the left and right wheels according to the traveling situation with a simple structure while securing the rigidity. Thereby, the toe angle of the wheel 2 can be arbitrarily changed, and the steering geometry can be changed. Therefore, the motion performance of the vehicle 10 is improved, and the stability of traveling and the improvement of fuel consumption become possible. .
 上記の走行速度に応じた左右の車輪の舵角差の制御の一例を説明する。一般的な車両の操舵装置は機械的に車輪と接続されているので、固定された単一のステアリングジオメトリしか取ることができず、アッカーマンジオメトリとパラレルジオメトリとの中間的なジオメトリに設定されることが多い。この場合、低速域では左右の車輪の舵角差が不足して外輪の舵角が過大となり、高速域では内輪の舵角が過大となる。このような舵角過大により内外輪のタイヤ横力配分に不要な偏りが生じると、走行抵抗の悪化による燃費悪化およびタイヤの早期摩耗の原因となる。また、内外輪を効率的に利用できないことによって、コーナリングのスムースさが損なわれる。 An example of control of the steering angle difference of the wheel on either side according to said traveling speed is demonstrated. Since a general vehicle steering system is mechanically connected to the wheels, it can take only a fixed single steering geometry, and is set to an intermediate geometry between the Ackerman geometry and the parallel geometry. There are many. In this case, the steering angle difference between the left and right wheels is insufficient in the low speed region, and the steering angle of the outer ring becomes excessive, and the steering angle of the inner wheel becomes excessive in the high speed region. If an unnecessary bias occurs in the tire lateral force distribution of the inner and outer rings due to such an excessive steering angle, the deterioration of the running resistance causes the deterioration of the fuel efficiency and the early wear of the tire. In addition, the inability to use the inner and outer rings efficiently impairs the smoothness of cornering.
 この実施形態の補助転舵機能付ハブユニット1は、左右の車輪2を個別に制御できるので、車速や旋回Gに応じて車輪2の転舵角、いわゆる切れ角を変更できる。具体的には、低速域ではアッカーマンジオメトリ(各輪が共通の一点を中心として旋回するように左右輪の舵角差を設定)を、高速域ではパラレルジオメトリ(左右輪の転舵角が同じ)を任意に選択することで、走行抵抗を増大させることがない。また、低速でのスムースな旋回性と高速でのコーナリング性能とを両立させることが可能となる。 Since the hub unit 1 with auxiliary steering function of this embodiment can control the left and right wheels 2 individually, it is possible to change the steering angle of the wheels 2, that is, the so-called turning angle according to the vehicle speed and the turning G. Specifically, Ackermann geometry (set the difference in steering angle between left and right wheels so that each wheel turns around a common point) in the low speed range, and parallel geometry (the turning angles of the left and right wheels are the same) in the high speed range By arbitrarily selecting, there is no increase in running resistance. In addition, it is possible to achieve both smooth turning at low speed and cornering performance at high speed.
 補助転舵軸心Aは、上下方向に延びた軸心であればよく、多少は傾斜していてもよいが、この実施形態では鉛直方向である。これにより、補助転舵によるキャンパー角の変化をより良好に抑え、走行抵抗の増大をさらに抑えることができる。キングピン軸Kと補助転舵軸心Aとが一致している場合、キングピン軸Kでハブユニット本体4を補助転舵させるとキャンパー角が大きく変化し、走行抵抗が増す。補助転舵軸心Aをキングピン軸Kと別に設定することで、この補助転舵によるキャンパー角の変化を抑え、走行抵抗の増大を抑えることができる。 The auxiliary steered shaft center A may be any shaft center extending in the vertical direction, and may be somewhat inclined, but in this embodiment is the vertical direction. Thereby, the change of the camper angle by auxiliary | assistant steering can be suppressed more favorable, and the increase in traveling resistance can further be suppressed. When the kingpin axis K and the auxiliary steering axis A coincide with each other, the auxiliary steering of the hub unit body 4 with the kingpin axis K largely changes the camber angle, and the traveling resistance increases. By setting the auxiliary steering axis A separately from the kingpin axis K, it is possible to suppress the change in the camber angle due to the auxiliary steering and to suppress the increase in the traveling resistance.
 また、キングピン軸Kと補助転舵軸Aが一致する場合、構成要素部品がハブユニット本体4の車体側に配置されるので、全体のサイズが大きくなり重くなる。補助転舵軸心Aが懸架装置21のキングピン軸Kと異なる方向であると、装置全体のサイズを抑え、軽量化を実現できる。 In addition, when the kingpin axis K and the auxiliary steering axis A coincide with each other, the component parts are disposed on the vehicle body side of the hub unit main body 4, so that the overall size becomes large and heavy. When the auxiliary steering axis A is in a direction different from the kingpin axis K of the suspension device 21, the size of the entire device can be reduced, and weight reduction can be realized.
 さらに、懸架装置21のキングピン軸Kの延長線と路面Sとの交点位置PKと、補助転舵軸心Aの延長線と路面との交点位置PAが、共にタイヤ接地面9a内に位置するので、主な転舵および補助転舵が共に安定して効率よく行える。 Further, the intersection point position PK between the extension of the kingpin axis K of the suspension device 21 and the road surface S and the intersection point PA between the extension of the auxiliary steered shaft center A and the road are both located in the tire contact surface 9a. , Both main steering and auxiliary steering can be performed stably and efficiently.
 キングピン軸Kと補助転舵軸Aが異なる場合、両方の軸の延長上とタイヤ9の接地位置が異なっていると、両方が同時に動く場合に滑りが生じ、非効率であるとともに、車両挙動が乱れる恐れがある。そのため、キングピン軸Kの延長線と路面Sとの交点位置PKと、補助転舵軸心Aの延長線と路面Sとの交点位置PAとが互いに近傍に配置されることが望ましい。2つの交点位置PA、PKは一致することが好ましい。これにより、主な転舵と補助転舵とが同時に行われても、滑りが生じず効率的に主な転舵および補助転舵が行われ、安定して車両を操作することができる。 When the kingpin axis K and the auxiliary steered axis A are different, if the extension of both axes and the contact position of the tire 9 are different, slippage occurs if both move simultaneously, which is inefficient and the vehicle behavior is There is a risk of being disturbed. Therefore, it is desirable that the intersection point position PK between the extension line of the kingpin axis K and the road surface S and the intersection point position PA between the extension line of the auxiliary steering axis A and the road surface S be disposed close to each other. Preferably, the two intersection points PA, PK coincide. As a result, even if the main steering and the auxiliary steering are simultaneously performed, the main steering and the auxiliary steering can be efficiently performed without slippage, and the vehicle can be stably operated.
 補助転舵の角度については、車両の運動性能の向上、走行の安定性向上を図る観点から、僅かな角度で足りる。具体的には、補助転舵可能角度が±5度以下で十分である。補助転舵の角度は補助転舵用アクチュエータ6の制御により調整される。ただし、補助転舵の角度はストッパ35により規制されているので、この補助転舵機能付ハブユニット1が電源系の失陥等で故障した場合でも、大きな影響が生じることが防止される。そのため、ハンドル操作によって避難場所まで車両を寄せることができる。 With regard to the angle of auxiliary steering, a slight angle is sufficient from the viewpoint of improving the motion performance of the vehicle and improving the stability of traveling. Specifically, it is sufficient that the auxiliary steerable angle is ± 5 degrees or less. The angle of the auxiliary steering is adjusted by the control of the auxiliary steering actuator 6. However, since the angle of the auxiliary steering is regulated by the stopper 35, even when the hub unit 1 with the auxiliary steering function breaks down due to a failure of the power supply system, a large influence is prevented from occurring. Therefore, the vehicle can be moved to the evacuation site by steering operation.
 この実施形態の回転許容支持部品7は球面滑り軸受であるので、その球面中心回りの任意方向に回転可能であり、回転許容支持部品7の中心軸が補助転舵軸心Aに対して傾いていても吸収される。そのため、補助転舵軸心Aとは異なる方向で固定することができ、取り付け位置の自由度が増えると共に、機械加工が容易になる。また、球面滑り軸受であると、取り付け時の締め付けによって軸受の固定側部品16と可動側部品15の間に予圧を付与し、剛性を高めることが可能となる。 Since the rotation-allowable support component 7 of this embodiment is a spherical plain bearing, it can rotate in any direction about its spherical center, and the central axis of the rotation-allowable support component 7 is inclined with respect to the auxiliary turning axis A. Even absorbed. Therefore, it can be fixed in a direction different from that of the auxiliary turning axis A, and the degree of freedom of the mounting position is increased, and machining becomes easy. In addition, with a spherical slide bearing, it is possible to increase the rigidity by applying a preload between the fixed part 16 and the movable part 15 of the bearing by tightening at the time of mounting.
 図8ないし図12は、この発明の第2の実施形態を示す。この実施形態では、図1の球面滑り軸受からなる回転許容支持部品7に代えて、テーパころ軸受からなる回転許容支持部品7Aが用いられている。図10に示すように、ハブベアリング3の外輪11に、トラニオン軸状の取付軸部19Aが突出して設けられている。取付軸部19Aは、外輪11の上下に2つ設けられている。このトラニオン軸状の取付軸部19Aの外周に、テーパころ軸受からなる回転許容支持部品7Aの内輪15Aが嵌合されている。回転許容支持部品7Aの外輪16Aは、ユニット支持部材5Aに設けられた嵌合孔38内に嵌合されている。 8 to 12 show a second embodiment of the present invention. In this embodiment, in place of the rotation allowing support component 7 consisting of a spherical slide bearing in FIG. 1, a rotation allowing support component 7A consisting of a tapered roller bearing is used. As shown in FIG. 10, a trunnion shaft-like mounting shaft portion 19A is provided so as to protrude from the outer ring 11 of the hub bearing 3. Two mounting shaft portions 19A are provided on the upper and lower sides of the outer ring 11, respectively. The inner ring 15A of the rotation allowing support component 7A formed of a tapered roller bearing is fitted on the outer periphery of the trunnion shaft-like mounting shaft portion 19A. The outer ring 16A of the rotation allowing support component 7A is fitted in a fitting hole 38 provided in the unit support member 5A.
 上側の回転許容支持部品7Aでは、取付軸部19Aの先端(上端)に雄ねじ部が形成され、この雄ねじ部にナット39が螺合されている。このナット39により、内輪15Aが取付軸部19Aの軸方向(下方)に押し付けられている。下側の回転許容支持部品7Aでは、ユニット支持部材5Aの嵌合孔38に押さえ部材41が嵌合され、取付軸部19Aの中空部に設けられたねじ孔に、ボルト42が螺合されている。このボルト42により、押さえ部材41を介して外輪16Aの端面が押し付けられている。ナット39およびボルト42による押し付けにより、テーパころ軸受からなる上下の回転許容支持部品7Aにそれぞれ予圧が与えられている。 In the upper rotation allowing support component 7A, a male screw is formed at the tip (upper end) of the mounting shaft 19A, and a nut 39 is screwed into the male screw. The inner ring 15A is pressed in the axial direction (downward) of the mounting shaft portion 19A by the nut 39. In the lower rotation supporting member 7A, the pressing member 41 is fitted in the fitting hole 38 of the unit supporting member 5A, and the bolt 42 is screwed into the screw hole provided in the hollow portion of the mounting shaft 19A. There is. The end face of the outer ring 16A is pressed by the bolt 42 through the pressing member 41. By pressing with the nut 39 and the bolt 42, a preload is applied to the upper and lower rotation allowing support parts 7A, which are tapered roller bearings.
 ユニット支持部材5Aは、一つの主部材5Aaと、各回転許容支持部品7A、7Aに対して設けられた分割体5Abとを有し、主部材5Aaと分割体5Abとがボルト44で結合されている。ユニット支持部材5Aは、分割体5Abの箇所で、ナックル22にボルト(図示せず)で取り付けられている。これら主部材5Aa、分割体5Abおよびボルト43により、予圧手段48Aが構成されている。 The unit supporting member 5A has one main member 5Aa and divided bodies 5Ab provided for the respective rotation- allowable supporting parts 7A, 7A, and the main members 5Aa and the divided bodies 5Ab are coupled by bolts 44. There is. The unit support member 5A is attached to the knuckle 22 with a bolt (not shown) at the divided body 5Ab. A preloading means 48A is constituted by the main member 5Aa, the divided body 5Ab and the bolt 43.
 上下の回転許容支持部品7A、7Aのユニット支持部材5Aに対する取り付け構造は同じであればよい。例えば、図10における上側の回転許容支持部品7Aのユニット支持部材5Aおよびハブベアリング3の外輪11に対する固定の構造を下側の回転許容支持部品7Aに対して適用してもよい。また、下側の回転許容支持部品7Aの固定の構造を上側の回転許容支持部品7Aの固定に適用してもよい。 The attachment structure of the upper and lower rotation supporting members 7A, 7A to the unit supporting member 5A may be the same. For example, the structure of fixing the upper rotation allowing support component 7A in FIG. 10 to the unit support member 5A and the hub bearing 3 to the outer ring 11 may be applied to the lower rotation allowing support component 7A. Also, the fixing structure of the lower rotation allowing support part 7A may be applied to the fixing of the upper rotation allowing support part 7A.
 このようにテーパころ軸受からなる回転許容支持部品7Aを設けた場合も、回転許容支持部品7Aに予圧を与え、剛性を高めることができる。回転許容支持部品7Aは、テーパころ軸受に代えてアンギュラ玉軸受または4点接触玉軸受を用いてもよい。その場合も、上記と同様に予圧を与えることができる。この実施形態におけるその他の構成、効果は、第1の実施形態と同様であり、対応部分に同一符号を付してその説明を省略する。 As described above, also in the case where the rotation allowing support component 7A formed of a tapered roller bearing is provided, a preload can be applied to the rotation allowing support component 7A to enhance the rigidity. The rotation allowing support component 7A may use an angular contact ball bearing or a four-point contact ball bearing instead of the tapered roller bearing. Also in this case, preload can be applied as described above. The other configurations and effects of this embodiment are the same as those of the first embodiment, and the corresponding parts are denoted by the same reference numerals and the description thereof will be omitted.
 図13は、補助転舵用アクチュエータ6の一例を示す。この補助転舵用アクチュエータ6は、第1および第2の実施形態のいずれに適用してもよい。モータ27の駆動力は、モータ軸27aに結合されたドライブプーリ51に伝達され、モータ軸27aと平行に配置されたドリブンプーリ52へベルト53によって伝達される。これらドライブプーリ51、ドリブンプーリ52およびベルト53により、巻き掛け式の減速機28が構成されている。 FIG. 13 shows an example of the auxiliary steering actuator 6. The auxiliary steering actuator 6 may be applied to any of the first and second embodiments. The driving force of the motor 27 is transmitted to the drive pulley 51 coupled to the motor shaft 27a, and is transmitted by the belt 53 to a driven pulley 52 disposed parallel to the motor shaft 27a. The drive pulley 51, the driven pulley 52, and the belt 53 constitute a winding type reduction gear 28.
 直動機構29は、送りねじ機構からなる。ドリブンプーリ52の内周に、ナット55が一体回転するように設けられている。このナット55に、直動機構29のねじ軸54が螺合されている。ナット55およびねじ軸54は、滑りねじ、具体的にはセルフロック機能を持つ台形ねじのねじ部58を構成するねじ溝およびねじ山を有している。ドリブンプーリ52と一体に回転するナット55が回転することで、ねじ軸54が回り止め部56で回り止めされているので、ねじ軸54が前後(軸方向)に直動運動する。 The linear movement mechanism 29 comprises a feed screw mechanism. A nut 55 is provided on the inner periphery of the driven pulley 52 so as to rotate integrally. The screw shaft 54 of the linear motion mechanism 29 is screwed into the nut 55. The nut 55 and the screw shaft 54 have a screw groove and a screw thread which constitute a screw portion 58 of a slide screw, specifically, a trapezoidal screw having a self-locking function. The rotation of the nut 55, which rotates integrally with the driven pulley 52, causes the screw shaft 54 to be rotationally locked by the detent 56, so that the screw shaft 54 linearly moves in the back and forth direction (axial direction).
 ねじ軸54の先端の直動出力部29aに、ハブベアリング3の外輪11に設けられた前記補助転舵力受け部18が、ジョイント57を介して連結されている。ジョイント57は、2本のピン57aで、補助転舵力受け部18および直動出力部29aに回転自在に連結されている。このため、ねじ軸54の前後移動によって、ユニット支持部材5(5A)に対して、ハブベアリング3を含むハブユニット本体4の全体が補助転舵軸心Aを中心に回転することができる。この実施形態では、ドリブンプーリ52と直動機構29のナット55とは、別体で形成されているが、ドリブンプーリ52とナット55とは一体に形成されてもよい。 The auxiliary steering force receiving portion 18 provided on the outer ring 11 of the hub bearing 3 is connected to the direct acting output portion 29 a at the tip of the screw shaft 54 via a joint 57. The joint 57 is rotatably connected to the auxiliary steering force receiving portion 18 and the direct acting output portion 29 a by two pins 57 a. For this reason, the whole hub unit main body 4 including the hub bearing 3 can rotate around the auxiliary steered axis A with respect to the unit support member 5 (5A) by the back and forth movement of the screw shaft 54. In this embodiment, although the driven pulley 52 and the nut 55 of the linear motion mechanism 29 are separately formed, the driven pulley 52 and the nut 55 may be integrally formed.
 このように直動機構29にセルフロック機能を備える滑りねじを使用した場合、タイヤからの逆入力が防止される。また、モータ27が失陥した場合も、セルフロック機能があることでタイヤ9がふらつくことなく、ハンドル操作によって避難場所まで車両を寄せることができる。また、直動機構29にセルフロック機能があると、補助転舵を行わない場合や高速走行時において、一定の補助転舵の角度を持ち続けることができる。これにより、一定角を維持するためのモータ27の駆動が不要で、モータ電力を削減できる。 When a slide screw having a self-locking function is used as the linear movement mechanism 29 in this manner, reverse input from the tire is prevented. Also, even if the motor 27 fails, the vehicle 9 can be moved to the evacuation site by the steering wheel operation without the tire 9 being shaken by the self-locking function. In addition, when the direct acting mechanism 29 has a self-locking function, it is possible to keep having a constant angle of auxiliary steering when the auxiliary steering is not performed or at the time of high speed traveling. As a result, it is not necessary to drive the motor 27 for maintaining a constant angle, and motor power can be reduced.
 図14は、前記補助転舵用アクチュエータ6の他の例を示す。図14の補助転舵用アクチュエータ6も、第1および第2の実施形態のいずれに適用してもよい。モータ27の駆動力は、モータ軸27aに結合されたドライブギヤ59に伝達され、ドライブギヤ59に噛み合うドリブンギヤ60へ伝達される。これらドライブギヤ59とドリブンギヤ60とで、減速機28のギヤ列が構成される。 FIG. 14 shows another example of the auxiliary steering actuator 6. The auxiliary steering actuator 6 of FIG. 14 may also be applied to any of the first and second embodiments. The driving force of the motor 27 is transmitted to a drive gear 59 coupled to the motor shaft 27 a and is transmitted to a driven gear 60 meshing with the drive gear 59. A gear train of the reduction gear 28 is configured by the drive gear 59 and the driven gear 60.
 直動機構29は、送りねじ機構からなる。ドリブンギヤ60の中心に、ナット55Aが一体回転するように設けられている。このナット55Aに、直動機構29のねじ軸54が螺合されている。直動機構29の構成、およびこの直動機構29とハブユニット本体4との連結構造は、図13に示す例と同じである。すなわち、ナット55Aおよびねじ軸54のねじ部58は滑りねじであり、具体的には、セルフロック機能を持つ台形ねじである。ドリブンプーリ52と一体に回転するナット55が回転することで、ねじ軸54が回り止め部56で回り止めされているので、ねじ軸54が前後に直動運動する。 The linear movement mechanism 29 comprises a feed screw mechanism. A nut 55A is provided at the center of the driven gear 60 so as to rotate integrally. The screw shaft 54 of the linear movement mechanism 29 is screwed into the nut 55A. The configuration of the linear movement mechanism 29 and the connection structure between the linear movement mechanism 29 and the hub unit main body 4 are the same as the example shown in FIG. That is, the nut 55A and the screw portion 58 of the screw shaft 54 are slide screws, and more specifically, are trapezoidal screws having a self-locking function. The rotation of the nut 55, which rotates integrally with the driven pulley 52, prevents the screw shaft 54 from rotating by the detent 56, so that the screw shaft 54 linearly moves back and forth.
 ねじ軸54の先端の直動出力部29aに、ハブベアリング3の外輪11に設けられた補助転舵力受け部18が、ジョイント57を介して連結されている。ジョイント57は、2本のピン57aで、補助転舵力受け部18および直動出力部29aに回転自在に連結されている。このため、ねじ軸54の前後移動によって、ユニット支持部材5に対して、ハブベアリング3を含むハブユニット本体4の全体が補助転舵軸心A回りに回転することができる。 An auxiliary steering force receiving portion 18 provided on the outer ring 11 of the hub bearing 3 is connected to a direct acting output portion 29 a at the tip of the screw shaft 54 via a joint 57. The joint 57 is rotatably connected to the auxiliary steering force receiving portion 18 and the direct acting output portion 29 a by two pins 57 a. For this reason, the whole hub unit main body 4 including the hub bearing 3 can be rotated around the auxiliary steered axis A with respect to the unit support member 5 by the back and forth movement of the screw shaft 54.
 この実施形態では、ドリブンギヤ60と直動機構29のナット55Aは、一体に形成されているが、ドリブンギヤ60とナット55が別部材で構成され、相互に結合されていてもよい。 In this embodiment, although the driven gear 60 and the nut 55A of the linear movement mechanism 29 are integrally formed, the driven gear 60 and the nut 55 may be configured as separate members and connected to each other.
 この実施形態の場合も、図13の実施形態と同様に、直動機構29にセルフロック機能を備える滑りねじが使用されているので、そのセルフロック機能による前述の効果が得られる。また、この実施形態の場合、減速機28がギヤ列からなるので、剛性が高く、応答性の高い駆動伝達が可能となる。 Also in this embodiment, as in the embodiment of FIG. 13, since the slide screw having the self-locking function is used for the linear movement mechanism 29, the above-described effect of the self-locking function can be obtained. Further, in the case of this embodiment, since the reduction gear 28 is composed of a gear train, drive transmission with high rigidity and high response becomes possible.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, although the preferred embodiments have been described with reference to the drawings, the present invention is not limited to the above embodiments, and various additions and modifications can be made without departing from the scope of the present invention. Or can be deleted. Therefore, such is also included in the scope of the present invention.
1…補助転舵機能付ハブユニット
2…車輪
3…ハブベアリング
4…ハブユニット本体
5…ユニット支持部材
5A…ユニット支持部材
6…補助転舵用アクチュエータ
6a…直動出力部
7…回転許容支持部品
7A…回転許容支持部品
9…タイヤ
9a…タイヤ接地面
10…車両
10A…車体
11…外輪
12…内輪
13…転動体
14a…ブレーキロータ
14b…ブレーキキャリパ
15…回転側部品
16…固定側部品
18…補助転舵力受け部
21…懸架装置
22…ナックル
25…ステアリング装置
26…タイロッド
27…モータ
28…減速機
29…直動機構
35…ストッパ
36…ブレーキキャリパ取付部
48,48A…予圧手段
51…ドライブプーリ
52…ドリブンプーリ
53…ボルト
54…ねじ軸
55…ナット
56…回り止め部
57…ジョイント
57a…ピン
58…ねじ部
59…ドライブギヤ
60…ドリブンギヤ
A…補助転舵軸心
K…キングピン軸
O…回転軸心
PK…交点位置
PA…交点位置
S…路面
θ…補助転舵の角度
 
DESCRIPTION OF SYMBOLS 1 ... Hub unit with auxiliary steering function 2 ... Wheel 3 ... Hub bearing 4 ... Hub unit main body 5 ... Unit supporting member 5A ... Unit supporting member 6 ... Auxiliary steering actuator 6a ... Direct-acting output part 7 ... Rotation permissible support part 7A: rotation acceptable support part 9: tire 9a: tire contact surface 10: vehicle 10A: vehicle body 11: outer ring 12: inner ring 13: rolling element 14a: brake rotor 14b: brake caliper 15: rotation side part 16: fixed side part 18: Auxiliary steering force receiving portion 21 ... suspension device 22 ... knuckle 25 ... steering device 26 ... tie rod 27 ... motor 28 ... reduction mechanism 29 ... linear motion mechanism 35 ... stopper 36 ... brake caliper attachment portion 48, 48A ... preloading means 51 ... drive Pulley 52 ... driven pulley 53 ... bolt 54 ... screw shaft 55 ... nut 56 ... detent portion 57 ... joint 57 Angle ... pin 58 ... Screw portion 59 ... drive gear 60 ... driven gear A ... auxiliary steering axis K ... kingpin axis O ... Rotation axis PK ... intersection PA ... intersection S ... road theta ... auxiliary steering

Claims (3)

  1.  運転者のハンドル操作によって車輪の転舵角度を変化させるステアリング装置に、懸架装置のナックルを介して接続されるハブユニットであって、
     前記車輪の取付用のハブベアリングを有するハブユニット本体と、前記ナックルと連結されまたはナックルの一部として構成されたユニット支持部材とを備え、
     前記ハブユニット本体は、上下方向に延びる補助転舵軸心回りに回転自在に上下2箇所でそれぞれ回転許容支持部品を介して前記ユニット支持部材に支持され、補助転舵用アクチュエータの駆動により前記補助転舵軸心回りに回転させられ、
     前記補助転舵軸心は前記懸架装置のキングピン軸と異なる方向であり、
     前記キングピン軸の延長線と路面との交点位置と、前記補助転舵軸心の延長線と前記路面との交点位置が、共にタイヤ接地面内に位置する補助転舵機能付ハブユニット。
    A hub unit connected via a knuckle of a suspension system to a steering device that changes a turning angle of a wheel by a driver's steering wheel operation,
    A hub unit body having a hub bearing for mounting the wheel, and a unit support member connected to the knuckle or configured as a part of the knuckle;
    The hub unit main body is supported by the unit support member at two upper and lower positions rotatably rotatably around an auxiliary turning shaft center extending in the vertical direction, and the auxiliary steering actuator drives the auxiliary turning actuator. It is rotated around the steering axis,
    The auxiliary steering axis is in a direction different from the kingpin axis of the suspension system,
    The hub unit with an auxiliary steering function, wherein the intersection position between the extension line of the kingpin axis and the road surface, and the intersection position between the extension line of the auxiliary steering axis and the road surface are both located in the tire contact surface.
  2.  請求項1に記載の補助転舵機能付ハブユニットにおいて、前記懸架装置のキングピン軸の延長線と路面との交点位置と、前記補助転舵軸心の延長線と前記路面との交点位置とが互いに一致する補助転舵機能付ハブユニット。 The hub unit with auxiliary steering function according to claim 1, wherein the intersection position of the extension line of the kingpin axis of the suspension device and the road surface, and the intersection position of the extension line of the auxiliary steering axis and the road surface are Hub units with auxiliary steering function that match each other.
  3.  請求項1または請求項2に記載の補助転舵機能付ハブユニットを装備した車両。
     
    A vehicle equipped with the hub unit with an auxiliary steering function according to claim 1 or 2.
PCT/JP2018/023590 2017-06-23 2018-06-21 Supplemental turning function-equipped hub unit and vehicle WO2018235892A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-122995 2017-06-23
JP2017122995A JP2019006226A (en) 2017-06-23 2017-06-23 Hub unit with auxiliary steering function and vehicle

Publications (1)

Publication Number Publication Date
WO2018235892A1 true WO2018235892A1 (en) 2018-12-27

Family

ID=64737681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023590 WO2018235892A1 (en) 2017-06-23 2018-06-21 Supplemental turning function-equipped hub unit and vehicle

Country Status (2)

Country Link
JP (1) JP2019006226A (en)
WO (1) WO2018235892A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182312A1 (en) * 2020-03-10 2021-09-16 Ntn株式会社 Hub unit having steering function, and vehicle equipped with same
WO2021193525A1 (en) * 2020-03-23 2021-09-30 Ntn株式会社 Hub unit with steering function, and vehicle equipped with same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7244994B2 (en) 2018-03-27 2023-03-23 Ntn株式会社 Hub unit with steering function, steering system, and vehicle equipped with hub unit with steering function
JP7224110B2 (en) 2018-03-27 2023-02-17 Ntn株式会社 Steering system and vehicle equipped with same
JP7320348B2 (en) * 2018-12-17 2023-08-03 Ntn株式会社 Steering system and vehicle equipped with same
JP7245077B2 (en) * 2019-03-06 2023-03-23 Ntn株式会社 HUB UNIT WITH STEERING FUNCTION AND VEHICLE INCLUDING THE SAME
JP2022114555A (en) 2021-01-27 2022-08-08 Ntn株式会社 Steering system and vehicle with the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261555A (en) * 2006-02-28 2007-10-11 Equos Research Co Ltd Toe-in angle/camber angle variable device and driving device using the same
JP2007326467A (en) * 2006-06-08 2007-12-20 Nsk Ltd Steering device
JP2012121391A (en) * 2010-12-07 2012-06-28 Ntn Corp Steering device
CN102717696A (en) * 2012-06-21 2012-10-10 上海中科深江电动车辆有限公司 Independent driving, steering and suspending system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261555A (en) * 2006-02-28 2007-10-11 Equos Research Co Ltd Toe-in angle/camber angle variable device and driving device using the same
JP2007326467A (en) * 2006-06-08 2007-12-20 Nsk Ltd Steering device
JP2012121391A (en) * 2010-12-07 2012-06-28 Ntn Corp Steering device
CN102717696A (en) * 2012-06-21 2012-10-10 上海中科深江电动车辆有限公司 Independent driving, steering and suspending system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021182312A1 (en) * 2020-03-10 2021-09-16 Ntn株式会社 Hub unit having steering function, and vehicle equipped with same
JP2021142767A (en) * 2020-03-10 2021-09-24 Ntn株式会社 Steering function-equipped hub unit and vehicle including the same
CN115243958A (en) * 2020-03-10 2022-10-25 Ntn株式会社 Hub unit with steering function and vehicle with hub unit
JP7320468B2 (en) 2020-03-10 2023-08-03 Ntn株式会社 HUB UNIT WITH STEERING FUNCTION AND VEHICLE INCLUDING THE SAME
US11851123B2 (en) 2020-03-10 2023-12-26 Ntn Corporation Hub unit having steering function, and vehicle equipped with same
WO2021193525A1 (en) * 2020-03-23 2021-09-30 Ntn株式会社 Hub unit with steering function, and vehicle equipped with same

Also Published As

Publication number Publication date
JP2019006226A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2018235894A1 (en) Supplemental turning function-equipped hub unit and vehicle
WO2018235892A1 (en) Supplemental turning function-equipped hub unit and vehicle
WO2019107371A1 (en) Hub unit having steering function, and vehicle provided with said hub unit
CN111094114B (en) Wheel hub unit with auxiliary steering function and vehicle with same
JP6899465B2 (en) Hub bearing with steering shaft and vehicle equipped with it
WO2018235891A1 (en) Hub unit with auxiliary steering function, and vehicle
US20210362770A1 (en) Hub unit having steering function, and vehicle equipped with same
WO2018235893A1 (en) Supplemental turning function-equipped hub unit and vehicle
JP6990078B2 (en) Hub unit with steering function and vehicles equipped with it
WO2021182312A1 (en) Hub unit having steering function, and vehicle equipped with same
JP2020050231A (en) Hub unit with steering function and vehicle equipped with the same
WO2019189102A1 (en) Hub unit having steering function and vehicle equipped with same
WO2019054383A1 (en) Hub unit with auxiliary steering function and vehicle comprising said hub unit
WO2019065779A1 (en) Steering function-equipped hub unit and vehicle provided therewith
JP6899464B2 (en) Hub bearing with steering shaft and vehicle equipped with it
JP6720393B2 (en) Hub bearing with steering shaft and hub unit with steering function
JP7296332B2 (en) HUB UNIT WITH STEERING FUNCTION AND VEHICLE INCLUDING THE SAME
WO2022163568A1 (en) Hub unit with steering function, steering system, and vehicle
WO2024048562A1 (en) Hub unit with steering function, steering system, and vehicle
JP7450376B2 (en) Hub unit with steering function and vehicle equipped with the same
JP2023047456A (en) Hub unit with steering function, steering system, and vehicle
JP2023178765A (en) Hub unit with steering function, steering system and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18821633

Country of ref document: EP

Kind code of ref document: A1