WO2013051197A1 - Resin coating device and resin coating method - Google Patents

Resin coating device and resin coating method Download PDF

Info

Publication number
WO2013051197A1
WO2013051197A1 PCT/JP2012/005759 JP2012005759W WO2013051197A1 WO 2013051197 A1 WO2013051197 A1 WO 2013051197A1 JP 2012005759 W JP2012005759 W JP 2012005759W WO 2013051197 A1 WO2013051197 A1 WO 2013051197A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
application
coating
light emission
light
Prior art date
Application number
PCT/JP2012/005759
Other languages
French (fr)
Japanese (ja)
Inventor
野々村 勝
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013051197A1 publication Critical patent/WO2013051197A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the present invention relates to a resin coating apparatus and a resin coating method used in an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor.
  • LEDs light emitting diodes having excellent characteristics of low power consumption and long life have been widely used as light sources for various lighting devices. Since the basic light emitted from the LED element is currently limited to three colors of red, green, and blue, in order to obtain white light suitable for general lighting applications, the above three basic lights are added.
  • a method of obtaining white light by color mixing, a method of obtaining pseudo white light by combining a blue LED and a phosphor emitting yellow fluorescence having a complementary color relationship with blue are used.
  • the latter method has been widely used, and an illumination device using an LED package in which a blue LED and a YAG phosphor are combined has been used for a backlight of a liquid crystal panel (for example, a patent). Reference 1).
  • YAG phosphor particles are placed in a mounting portion in which YAG phosphor particles are dispersed in the mounting portion.
  • An LED package is configured by injecting dispersed silicone resin, epoxy resin, or the like to form a resin packaging portion. And, for the purpose of uniforming the height of the resin packaging part in the mounting part after the resin injection, a residual resin storage part for discharging and storing the surplus resin injected more than a specified amount from the mounting part is formed.
  • An example is given. As a result, even when the discharge amount from the dispenser varies at the time of resin injection, a resin packaging portion having a certain resin amount and a specified height is formed on the LED element.
  • the LED element has undergone a manufacturing process in which a plurality of elements are formed on the wafer at the same time, and due to various error factors in this manufacturing process, such as non-uniform composition during film formation on the wafer, the wafer state Inevitably, variations in emission wavelength occur in the LED elements divided into individual pieces. And in the above-mentioned example, since the height of the resin wrapping part covering the LED element is set uniformly, the variation in the emission wavelength in the individual LED element is directly reflected in the variation in the emission characteristic of the LED package as a product. As a result, the number of defective products deviating from the acceptable quality range has been inevitably increased.
  • the present invention provides an LED package manufacturing system that makes the light emission characteristics of the LED package uniform even when the light emission wavelengths of the individual LED elements vary, thereby improving the production yield and various color tone adjustments of the light emission colors. It is an object of the present invention to provide a resin coating apparatus and a resin coating method that can perform the above-described process.
  • the resin coating apparatus of the present invention is used in an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor, and covers the LED element mounted on the substrate.
  • a resin coating apparatus that coats the resin, wherein the resin coating unit has a plurality of coating nozzles that discharge the resin in a variable amount to apply the resin to any position to be coated, and controls the resin coating unit
  • the application control unit for executing the measurement application process for applying the resin to the translucent member for light emission characteristic measurement and the production application process for applying to the LED element for actual production, and the phosphor is excited.
  • a production execution processing unit for executing a production coating process for coating the LED element with a resin having an appropriate resin coating amount, and the coating control unit has different types of fluorescence depending on the plurality of coating nozzles.
  • the plurality of resins including the body are sequentially trial-applied to the same translucent member for light emission characteristic measurement, and the light emission characteristic measurement unit targets the plurality of resins that have been trial-applied.
  • the application amount derivation processing unit derives the appropriate resin application amount for each of the plurality of resins, and the production execution processing unit determines the appropriate resin for the plurality of derived resins.
  • the plurality of resins are sequentially applied to the same LED element by the plurality of application nozzles.
  • the resin coating method of the present invention is used in an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor, and covers the LED element mounted on the substrate.
  • a resin application method for applying the resin wherein the resin is applied to a translucent member as a light emission characteristic test by a resin application part having a plurality of application nozzles that discharge the resin in a variable amount.
  • Light is emitted from an application step, a translucent member placement step of placing the translucent member on which the resin has been trial-applied on the translucent member placement portion, and a light source portion that emits excitation light that excites the phosphor.
  • the excitation light is applied to the resin coated on the translucent member to measure the emission characteristics of the light emitted by the resin, and to the emission characteristic measurement process.
  • An application amount derivation process for deriving an appropriate resin application amount of the resin to be applied to the LED element for actual production based on a measurement result and a predetermined light emission characteristic; and the derived appropriate resin application A production execution step of executing a production coating process for coating the LED element with a resin having an appropriate resin coating amount by commanding an amount to a coating control unit that controls the resin coating unit, and applying the measurement
  • a plurality of the resins containing different kinds of phosphors are sequentially trial-applied to the same light-transmitting member by the plurality of application nozzles, and the plurality of the test-applied resins in the light emission characteristic measurement step
  • the emission characteristics are measured for the application amount, and the appropriate resin application amount is derived for each of the plurality of resins in the application amount derivation processing step.
  • step by commanding the appropriate resin coating
  • a plurality of resins containing different types of phosphors are sequentially trial-coated on the same light-transmitting member.
  • the appropriate resin application amount is derived for each of the plurality of resins on the basis of the measurement results obtained by measuring the light emission characteristics of the plurality of trial-applied resins, and the application control is performed on the appropriate resin application amount for the plurality of derived resins.
  • Explanatory drawing of chromaticity adjustment of the LED package manufactured by the LED package manufacturing system of one embodiment of this invention (A)-(c) is explanatory drawing of a structure and function of the component mounting apparatus in the LED package manufacturing system of one embodiment of this invention
  • (A), (b) is explanatory drawing of a structure and function of the resin coating apparatus in the LED package manufacturing system of one embodiment of this invention
  • (A), (b) is explanatory drawing of the light emission characteristic test
  • the block diagram which shows the structure of the control system of the LED package manufacturing system of one embodiment of this invention Flowchart of LED package manufacturing by LED package manufacturing system of one embodiment of the present invention Flow chart of threshold data creation processing for non-defective product determination in LED package manufacturing system of one embodiment of the present invention (A)-(c) is explanatory drawing of the threshold value data for the quality determination in the LED package manufacturing system of one embodiment of this invention Chromaticity diagram for explaining threshold data for non-defective product determination in the LED package manufacturing system of one embodiment of the present invention
  • coating operation process in the LED package manufacturing process by the LED package manufacturing system of one embodiment of this invention (A)-(d) is explanatory drawing of the resin application
  • the LED package manufacturing system 1 has a function of manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor.
  • the component mounting apparatus M1, the curing apparatus M2, the wire bonding apparatus M3, the resin coating apparatus M4, the curing apparatus M5, and the piece cutting apparatus M6 are connected by the LAN system 2. These devices are connected and controlled by the management computer 3 in an integrated manner.
  • the component mounting apparatus M1 is mounted by bonding the LED element 5 to the substrate 4 (see FIGS. 2A and 2B) serving as the base of the LED package with a resin adhesive.
  • the curing device M2 cures the resin adhesive used for bonding at the time of mounting by heating the substrate 4 after the LED element 5 is mounted.
  • the wire bonding apparatus M3 connects the electrode of the substrate 4 and the electrode of the LED element 5 with a bonding wire.
  • the resin coating device M4 applies a resin containing a phosphor to each LED element 5 on the substrate 4 after wire bonding.
  • the curing device M5 cures the resin applied so as to cover the LED elements 5 by heating the substrate 4 after the resin application.
  • the piece cutting device M6 cuts the substrate 4 after the resin is cured into each individual LED element 5 and divides it into individual LED packages. Thereby, the LED package divided
  • FIG. 1 shows an example in which a production line is configured by arranging each of the component mounting device M1 to the piece cutting device M6 in series.
  • the LED package manufacturing system 1 does not necessarily have such a line configuration.
  • each process work may be sequentially executed by each of the distributed devices.
  • a plasma processing apparatus that performs plasma treatment for electrode cleaning prior to wire bonding before and after the wire bonding apparatus M3, and a surface modification for improving resin adhesion before resin application after wire bonding. You may make it interpose the plasma processing apparatus which performs the plasma processing for the purpose of quality.
  • the substrate 4 is a multiple-type substrate in which a plurality of individual substrates 4a serving as a base of one LED package 50 in a finished product are formed.
  • Each individual substrate 4a includes Each LED mounting portion 4b on which the LED element 5 is mounted is formed.
  • the LED element 5 is mounted in the LED mounting portion 4b for each individual substrate 4a, and then the resin 8 is applied to cover the LED element 5 in the LED mounting portion 4b. Is cut for each individual substrate 4a to complete the LED package 50 shown in FIG.
  • the LED package 50 has a function of irradiating white light used as a light source of various illumination devices, and includes a first phosphor that emits yellow fluorescence that is complementary to the blue LED element 5 and blue.
  • a first phosphor that emits yellow fluorescence that is complementary to the blue LED element 5 and blue.
  • pseudo white light is obtained.
  • a predetermined amount of the second resin 8B including a second phosphor that emits red or green fluorescence is added. Try to mix.
  • warm-colored or cold-colored white light can be generated according to the application and preference of illumination.
  • the individual substrate 4a is provided with a cavity-shaped reflecting portion 4c having, for example, a circular or elliptical annular bank that forms the LED mounting portion 4b.
  • the N-type part electrode 6a and the P-type part electrode 6b of the LED element 5 mounted inside the reflection part 4c are connected to the wiring layers 4e and 4d formed on the upper surface of the individual substrate 4a by bonding wires 7, respectively.
  • the first resin 8A and the second resin 8B cover the LED element 5 in this state and are sequentially applied to the inner side of the reflecting portion 4c with a predetermined thickness.
  • the first phosphor included in the first resin 8A emits light. Red or green and blue light emitted from yellow and the second phosphor contained in the second resin 8B are mixed and irradiated as white light.
  • resin 8 when “resin 8” is simply described, it means the generic name of the first resin 8A and the second resin 8B or a mixture thereof.
  • the LED element 5 is configured by stacking an N-type semiconductor 5b and a P-type semiconductor 5c on a sapphire substrate 5a, and further covering the surface of the P-type semiconductor 5c with a transparent electrode 5d.
  • An N-type part electrode 6a and a P-type part electrode 6b for external connection are formed on the N-type semiconductor 5b and the P-type semiconductor 5c, respectively.
  • the LED elements 5 are taken out from the LED wafer 10 that is stuck and held on the holding sheet 10a in a state where a plurality of LED elements 5 are formed in a lump and then divided into pieces.
  • the LED element 5 is divided into individual pieces from the wafer state due to various error factors in the manufacturing process, for example, non-uniform composition during film formation on the wafer. It is inevitable that variations occur in the case. If such an LED element 5 is mounted on the substrate 4 as it is, the emission characteristics of the LED package 50 as a product will vary.
  • the light emission characteristics of a plurality of LED elements 5 manufactured in the same manufacturing process are measured in advance, Element characteristic information corresponding to data indicating the light emission characteristics of the LED elements 5 is created, and an appropriate amount of the resin 8 corresponding to the light emission characteristics of each LED element 5 is applied in the application of the resin 8. .
  • resin application information to be described later is prepared in advance.
  • the LED elements 5 taken out from the LED wafer 10 are individually identified by element IDs (in this case, the individual LED elements 5 with the serial number (i) in the LED wafer 10). Are given sequentially to the light emission characteristic measuring device 11.
  • element ID if it is the information which can specify the LED element 5 separately, you may make it use the matrix coordinate which shows the arrangement
  • the LED element 5 can be supplied in the state of the LED wafer 10 in the component mounting apparatus M1 described later.
  • the light emission characteristic measuring device 11 power is actually supplied to each LED element 5 through a probe to actually emit light, and the light is spectrally analyzed to measure predetermined items such as a light emission wavelength and light emission intensity.
  • a standard distribution of emission wavelengths is prepared as reference data in advance, and the wavelength range corresponding to the standard range in the distribution is further divided into a plurality of wavelength ranges.
  • the plurality of target LED elements 5 are ranked according to the emission wavelength.
  • Bin codes [1], [2], [3], [4], [5] are assigned in order from the low wavelength side corresponding to each of the ranks set by dividing the wavelength range into five. ] Is given.
  • element characteristic information 12 having a data structure in which the Bin code 12b is associated with the element ID 12a is created.
  • the element characteristic information 12 is information obtained by individually measuring the light emission characteristics including the light emission wavelengths of the plurality of LED elements 5 in advance.
  • the element characteristic information 12 is prepared in advance by an LED element manufacturer or the like and is used for the LED package manufacturing system 1. Is transmitted.
  • the element characteristic information 12 may be transmitted in a form recorded on a single storage medium, or may be transmitted to the management computer 3 via the LAN system 2. In any case, the transmitted element characteristic information 12 is stored in the management computer 3 and provided to the component mounting apparatus M1 as necessary.
  • the plurality of LED elements 5 for which the light emission characteristic measurement is completed in this way are sorted for each characteristic rank as shown in FIG. 3D, and are distributed into five types according to each characteristic rank. Attached individually to 13a. Thereby, the three types of LED sheets 13A, 13B in which the LED elements 5 corresponding to the Bin codes [1], [2], [3], [4], and [5] are adhered and held on the adhesive sheet 13a, respectively. 13C, 13D, and 13E are created, and when these LED elements 5 are mounted on the individual substrate 4a of the substrate 4, the LED elements 5 are already classified into LED sheets 13A, 13B, 13C, and 13D. , 13E in the form of the component mounting apparatus M1.
  • the LED elements 5 corresponding to any of the Bin codes [1], [2], [3], [4], and [5] are held in the LED sheets 13A, 13B, 13C, 13D, and 13E, respectively.
  • the element characteristic information 12 is provided from the management computer 3 in a form indicating whether or not it has been.
  • the LED element 5 emits light.
  • Additive mixing of blue light with yellow light that is emitted when the first phosphor is excited by the blue light and red light or green light that is emitted when the second phosphor is excited is performed.
  • the amount of the particles of the first phosphor and the second phosphor in the concave LED mounting portion 4b on which the LED element 5 is mounted is important for ensuring the normal light emission characteristics of the LED package 50 of the product. Become an element.
  • the appropriate amount of the phosphor particles in the resin 8 applied to cover the LED element 5 differs depending on the Bin codes [1], [2], [3], [4], and [5]. It will be a thing.
  • the resin application information 14 prepared in the present embodiment as shown in FIG. 4, the first resin 8A and the first resin in which the particles of the first phosphor and the second phosphor are contained in the silicone resin and the epoxy resin, respectively.
  • the appropriate resin application amount for each Bin classification of the two resins 8B is defined in advance in units of nl (nanoliter) according to the Bin code classification 17. That is, when the LED resin 5 is covered and the first resin 8A and the second resin 8B are accurately applied by the appropriate resin application amount indicated by the resin application information 14, the amount of phosphor particles in the resin covering the LED element 5 Becomes an appropriate supply amount of the phosphor particles, thereby ensuring a regular emission wavelength required for the finished product after the resin 8 is thermally cured.
  • the resin application information 14 is configured in the form of a plurality of data tables corresponding to different appropriate resin application amounts.
  • the ratio of the first phosphor that is the main component that emits white light in the component ratio of the phosphor in the resin 8 is larger than the ratio of the second phosphor, the second fluorescence as a minor component.
  • a data table in which the amount of body particles is fixed to a specific value is created for each of a plurality of specific values.
  • the particle amount of the second phosphor is defined by the concentration (%) of the second phosphor and the resin application amount of the second resin 8B containing the second phosphor.
  • the specific value of the second phosphor particle amount is fixed in a plurality of ways of Q1, Q2, and Q3, and the appropriate resin application when the second phosphor particle amount is Q1, Q2, and Q3, respectively.
  • the quantities 15 (1), 15 (2) and 15 (3) are defined.
  • the appropriate resin application amount 15 (1) corresponds to the phosphor concentration column 16 (1).
  • the phosphor in the first resin 8A corresponds to one specific value Q1 of the particle amount of the second phosphor.
  • the first phosphor concentration indicating the concentration of particles is set to a plurality of levels (here, D11 (5%), D12 (10%), D13 (15%)), and the appropriate resin coating amount of the first resin 8A Also, different numerical values are used according to the respective first phosphor concentrations.
  • the appropriate resin application amounts VA0, VB0, Bin codes [1], [2], [3], [4], and [5], respectively.
  • the first resin 8A of VC0, VD0, VE0 (appropriate resin application amount 15 (11)) is applied.
  • the appropriate resin application amounts VF0, VG0, VH0 for the Bin codes [1], [2], [3], [4], and [5], respectively.
  • VJ0, VK0 appropriate resin application amount 15 (12) of the first resin 8A is applied.
  • the first resin 8A of VN0, VP0, VR0 (appropriate resin application amount 15 (13)) is applied.
  • the appropriate resin application amount is set for each of the plurality of different first phosphor concentrations as described above in order to ensure quality by applying a resin having an optimum phosphor concentration according to the degree of variation in the emission wavelength. It is because it is more preferable.
  • the color tone of the illumination light emitted from the LED package 50 can be adjusted by changing the particle amount of the second phosphor in the resin 8. That is, in the chromaticity diagram of FIG. 5, the broken line L1 indicates the color tone when only the phosphor that emits yellow excitation light is used, and the corresponding chromaticity range of the white portion at the center is the standard white light range. Used as
  • the amount of the second phosphor particles corresponding to the desired color tone is estimated. Then, the second phosphor particle amounts Q1, Q2, and Q3 that are closest to the estimated value are selected, and a data table corresponding to the selected second phosphor particle amount is used. For example, if the second phosphor particle amount Q1 is selected, the first phosphor concentration column 16 (1) and the appropriate resin coating amount 15 (1) are used.
  • the component mounting apparatus M1 includes a board transfer mechanism 21 that transfers the work target board 4 supplied from the upstream side in the board transfer direction (arrow a).
  • the substrate transport mechanism 21 is provided with an adhesive application part A shown in section AA in FIG. 6B and a component mounting part B shown in section BB in FIG. 6C. It is installed.
  • the adhesive application unit A is disposed on the side of the substrate transport mechanism 21 and supplies the resin adhesive 23 in the form of a coating film having a predetermined film thickness, and the substrate transport mechanism 21 and the adhesive supply unit 22.
  • the component mounting part B is disposed on the side of the board transport mechanism 21 and has the parts supply mechanism 25 and the board transport mechanism 21 that hold the LED sheets 13A, 13B, 13C, 13D, and 13E shown in FIG.
  • a component mounting mechanism 26 that is movable in the horizontal direction (arrow c) above the supply mechanism 25 is provided.
  • the substrate 4 carried into the substrate transport mechanism 21 is positioned by the adhesive application portion A, and is bonded to the LED mounting portion 4b formed on each individual substrate 4a.
  • the agent 23 is applied. That is, first, the adhesive transfer mechanism 24 is moved above the adhesive supply unit 22 so that the transfer pin 24a is brought into contact with the coating film of the resin adhesive 23 formed on the transfer surface 22a, and the resin adhesive 23 is adhered. Next, the adhesive transfer mechanism 24 is moved above the substrate 4 and the transfer pin 24a is lowered to the LED mounting portion 4b (arrow d), whereby the resin adhesive 23 attached to the transfer pin 24a is moved into the LED mounting portion 4b. It is supplied by transfer to the element mounting position.
  • the substrate 4 after application of the adhesive is conveyed to the downstream side, positioned at the component mounting part B as shown in FIG. 6 (c), and the LED elements are targeted for each LED mounting part 4b after the adhesive is supplied.
  • 5 is implemented. That is, first, the component mounting mechanism 26 is moved above the component supply mechanism 25, and the mounting nozzle 26a is lowered with respect to any of the LED sheets 13A, 13B, 13C, 13D, and 13E held by the component supply mechanism 25, and mounted. The LED element 5 is held and taken out by the nozzle 26a.
  • the component mounting mechanism 26 is moved above the LED mounting portion 4b of the substrate 4 to lower the mounting nozzle 26a (arrow e), whereby the LED element 5 held by the mounting nozzle 26a is bonded to the adhesive in the LED mounting portion 4b. It is mounted at the element mounting position where is applied.
  • any one of the LED sheets 13A, 13B, 13C, 13D, and 13E can be used in an individual mounting operation by the component mounting program 26, that is, the component mounting mechanism 26.
  • the order in which the LED elements 5 are taken out and mounted on the plurality of individual boards 4a of the board 4 is set in advance, and the component mounting work is executed according to this element mounting program.
  • mounting position information 71a (see FIG. 12) indicating which of the plurality of individual boards 4a of the board 4 is mounted from the work execution history is extracted. Record.
  • the mounting position information 71a and the LED element 5 mounted on each individual substrate 4a correspond to any characteristic rank (Bin code [1], [2], [3], [4], [5]).
  • Data associated with the element characteristic information 12 indicating whether or not to be created is created as map data 18 shown in FIG. 7 by the map creation processing unit 74 (see FIG. 12).
  • the individual positions of the plurality of individual substrates 4a of the substrate 4 are specified by combinations of matrix coordinates 19X and 19Y indicating the positions in the X direction and the Y direction, respectively. Then, by making the Bin code to which the LED element 5 mounted at the position belongs correspond to the individual cell of the matrix constituted by the matrix coordinates 19X and 19Y, the LED element 5 mounted by the component mounting apparatus M1 on the substrate 4 Map data 18 in which the mounting position information 71a indicating the position and the element characteristic information 12 about the LED element 5 are associated is created.
  • the component mounting apparatus M1 displays the map data 18 in which the mounting position information indicating the position of the LED element 5 mounted by the apparatus on the board 4 and the element characteristic information 12 on the LED element 5 are associated with the board 4
  • a map creation processing unit 74 is provided as map data creation means to be created every time.
  • the created map data 18 is transmitted as feedforward data to the resin coating apparatus M4 described below via the LAN system 2.
  • the resin coating device M4 has a function of coating the resin 8 so as to cover the plurality of LED elements 5 mounted on the substrate 4 by the component mounting device M1.
  • the resin coating apparatus M4 transfers the work target substrate 4 supplied from the upstream side to the substrate transport mechanism 31 that transports the substrate 4 in the substrate transport direction (arrow f). ) Is provided with a resin coating portion C shown in the CC cross section.
  • the resin application part C is provided with a resin discharge head 32 having a configuration including a plurality (two in this case) of dispensers 33A and 33B for discharging the resin 8 from the application nozzle 33a mounted at the lower end.
  • the dispensers 33A and 33B can be raised and lowered individually.
  • the resin discharge head 32 is driven by the nozzle moving mechanism 34, and the nozzle moving mechanism 34 is controlled by the application control unit 36, whereby the horizontal direction (arrow g shown in FIG. 8A). ) Move and lift operations.
  • the syringes attached to the dispensers 33A and 33B of the resin discharge head 32 contain the first resin 8A and the second resin 8B, respectively, and by applying air pressure into the dispensers 33A and 33B by the resin discharge mechanism 35.
  • the first resin 8A and the second resin 8B in the dispensers 33A and 33B are discharged through the application nozzle 33a and applied to the LED mounting portion 4b formed on the substrate 4.
  • the resin application part C is configured to include a plurality of application nozzles 33a that apply the first resin 8A and the second resin 8B in variable application amounts and apply them to any application target position.
  • various liquid discharge methods such as a plunger method using a mechanical cylinder and a screw pump method can be adopted for the resin discharge mechanism 35.
  • a test hitting / measurement unit 40 is disposed on the side of the substrate transport mechanism 31 so as to be located within the movement range of the resin discharge head 32.
  • the trial placement / measurement unit 40 Prior to the actual production application operation in which the first resin 8A and the second resin 8B are applied to the LED mounting portion 4b of the substrate 4, the trial placement / measurement unit 40 has the application amounts of the first resin 8A and the second resin 8B. It has a function of determining whether or not it is appropriate by measuring the light emission characteristics of the test-applied resin 8.
  • the light emission characteristics when the light emitted from the measurement light source section 45 is applied to the light transmitting member 43 on which the first resin 8A and the second resin 8B have been trial-applied by the resin application section C are measured using the spectroscope 42 and the light emission characteristics measurement. Measurement is performed by a light emission characteristic measuring unit provided with the processing unit 39, and the measurement result is compared with a preset threshold value, so that the preset resin application amount defined by the resin application information 14 shown in FIG. Judge the suitability.
  • the light emission characteristics are measured after the trial application of the first resin 8A and the second resin 8B of different fluorescent colors, but the first resin 8A and the second resin 8B are You may make it determine the suitability of the resin application quantity by measuring the light emission characteristic individually as each object.
  • the composition and properties of the first resin 8A and the second resin 8B containing the phosphor particles are not necessarily stable, and even if the appropriate resin application amount is set in advance in the resin application information 14, It is inevitable that the concentration of the phosphor and the resin viscosity fluctuate. For this reason, even if the first resin 8A and the second resin 8B are discharged with the discharge parameters corresponding to the preset appropriate resin application amount, the resin application amount itself may vary from the preset appropriate value, or even the resin application Even if the amount is appropriate, the supply amount of the phosphor particles to be originally supplied varies depending on the concentration change.
  • a test coating for inspecting whether or not an appropriate supply amount of phosphor particles is supplied at a predetermined interval is executed by the resin coating apparatus M4.
  • the resin coating unit C provided in the resin coating apparatus M4 shown in the present embodiment includes a measurement coating process for applying the resin 8 to the light-transmitting member 43 for the above-described light emission characteristic measurement, and a substrate for actual production. 4 has a function of executing a production coating process to be applied to the LED element 5 mounted in the state 4. Both the coating process for measurement and the coating process for production are executed when the coating control unit 36 controls the resin coating unit C.
  • the translucent member 43 is wound and supplied on the supply reel 47 and fed along the upper surface of the trial hitting stage 40a, and then irradiated with the translucent member mounting portion 41. It is wound around a collection reel 48 driven by a take-up motor 49 via a portion 46.
  • a mechanism for rotating the translucent member 43 various methods such as a method of feeding the translucent member 43 into the collection box by a feeding mechanism are adopted in addition to a method of winding the translucent member 43 to collect it. be able to.
  • the irradiation unit 46 has a function of irradiating the translucent member 43 with measurement light emitted from the light source unit 45, and the measurement light emitted from the light source unit 45 is contained in a light shielding box 46a having a simple dark box function.
  • a light focusing tool 46b guided by a fiber cable is provided.
  • the light source unit 45 has a function of emitting excitation light that excites the phosphor contained in the resin 8.
  • the light source unit 45 is disposed above the translucent member mounting unit 41 and transmits measurement light.
  • the light member 43 is irradiated from above via the light focusing tool 46b.
  • the translucent member 43 a flat sheet-like member made of transparent resin is used as a tape material having a predetermined width, or an embossed portion corresponding to the concave shape of the LED package 50 is provided on the lower surface of the same tape material. Embossed type is used.
  • the resin 8 is trial-applied to the translucent member 43 by the resin ejection head 32. This trial application is performed by discharging a predetermined amount of resin 8 to the translucent member 43 by the application nozzle 33a with respect to the translucent member 43 whose lower surface is supported by the trial hitting stage 40a.
  • the resin 8 applied in the test hitting stage 40a is a test application for empirically determining whether or not the phosphor supply amount is appropriate for the target LED element 5.
  • the resin 8 is continuously applied to the plurality of points on the translucent member 43 by the same trial application operation by the resin discharge head 32. Therefore, when the resin 8 is continuously applied to the plurality of points on the translucent member 43 by the same trial application operation by the resin discharge head 32, the correlation between the measured light emission characteristic value and the application amount is known. Based on the data, the application amount is varied in stages and applied.
  • FIG. 9C shows the structure of the translucent member mounting portion 41 and the integrating sphere 44.
  • the translucent member mounting portion 41 has a structure in which an upper guide member 41 c having a function of guiding both end surfaces of the translucent member 43 is mounted on the upper surface of the lower support member 41 b that supports the lower surface of the translucent member 43. Yes.
  • the translucent member placement section 41 guides the translucent member 43 during conveyance in the test hitting / measurement unit 40, and places the translucent member 43 on which the resin 8 has been trial-applied in the measurement coating process to hold the position. It has a function to do.
  • the integrating sphere 44 has a function of collecting the transmitted light that has been irradiated from the light focusing tool 46 b (arrow h) and transmitted through the resin 8 and led to the spectroscope 42. That is, the integrating sphere 44 has a spherical spherical reflecting surface 44 c inside, and transmitted light (arrow i) incident from the opening 44 a located immediately below the light transmitting opening 41 a is the top of the integrating sphere 44.
  • the white light emitted by the LED package used for the light source unit 45 is applied to the resin 8 that has been trial-applied to the translucent member 43.
  • the blue light component contained in the white light excites the phosphor in the resin 8 to emit yellow light, red light or green light.
  • White light obtained by adding and mixing yellow light and blue light is irradiated upward from the resin 8 and is received by the spectroscope 42 via the integrating sphere 44 described above.
  • the received white light is analyzed by the light emission characteristic measurement processing unit 39 to measure the light emission characteristic, as shown in FIG. 8B.
  • the light emission characteristics such as the color tone rank of white light and the luminous flux are inspected, and a deviation from the prescribed light emission characteristics is detected as the inspection result.
  • the integrating sphere 44, the spectroscope 42, and the light emission characteristic measurement processing unit 39 emit excitation light emitted from the light source unit 45 to the resin 8 applied to the light transmitting member 43 (here, blue light extracted by the white LED). Is emitted from above, the light emitted from the resin 8 is received from below the translucent member 43, and a light emission characteristic measuring unit for measuring the light emission characteristic of the light emitted from the resin 8 is configured.
  • the light emission characteristic measuring unit is configured by disposing the integrating sphere 44 below the translucent member 43, and configured to receive light emitted from the resin 8 through the opening 44a of the integrating sphere 44. Has been.
  • the following effects can be obtained by configuring the light emission characteristic measuring unit as described above. That is, in the application shape of the resin 8 that is trial-applied to the light transmissive member 43 shown in FIG. 9B, the lower surface side is always in contact with the upper surface of the light transmissive member 43 or the bottom surface of the embossed portion 43a.
  • the lower surface of 8 is always at a reference height defined by the translucent member 43. Therefore, the height difference between the lower surface of the resin 8 and the opening 44a of the integrating sphere 44 is always kept constant.
  • the upper surface of the resin 8 does not necessarily realize the same liquid surface shape and height due to disturbances such as application conditions by the application nozzle 33a, and the gap between the upper surface of the resin 8 and the light focusing tool 46b. The interval of will vary.
  • the irradiation light irradiated on the resin 8 is the light focusing tool 46b. Therefore, the degree of focusing is high, and the influence of the variation in the distance between the upper surface of the resin 8 and the light focusing tool 46b on the light transmission can be ignored.
  • the transmitted light that has passed through the resin 8 is excitation light in which the phosphor is excited inside the resin 8, so that the degree of scattering is high, and the distance between the lower surface of the resin 8 and the opening 44 a varies. Has an influence on the degree of light being taken in by the integrating sphere 44.
  • the light emitted from the resin 8 is transmitted by irradiating the resin 8 with the excitation light emitted from the light source unit 45 as described above. Since the configuration in which light is received by the integrating sphere 44 from below the optical member 43 is employed, it is possible to determine stable light emission characteristics. Further, by using the integrating sphere 44, it is not necessary to separately provide a dark room structure in the light receiving portion, so that the apparatus can be made compact and the equipment cost can be reduced.
  • the measurement result of the light emission characteristic measurement processing unit 39 is sent to the application amount derivation processing unit 38, and the application amount derivation processing unit 38 defines in advance the measurement result of the light emission characteristic measurement processing unit 39.
  • a deviation from the emitted light emission characteristic is obtained, and a process for deriving an appropriate resin application amount of the resin 8 to be applied to the LED element 5 for actual production is performed based on the deviation.
  • the new appropriate discharge amount derived by the application amount derivation processing unit 38 is sent to the production execution processing unit 37, and the production execution processing unit 37 commands the newly derived appropriate resin application amount to the application control unit 36.
  • the application control unit 36 controls the nozzle moving mechanism 34 and the resin discharge mechanism 35 to perform a production application process for applying an appropriate resin application amount of the resin 8 to the LED elements 5 mounted on the substrate 4. 32.
  • a resin 8 having an appropriate resin coating amount specified in the resin coating information 14 is actually applied, and light emission characteristics are measured while the resin 8 is uncured. Then, based on the obtained measurement results, a non-defective range of emission characteristic measurement values when the emission characteristics are measured for the resin 8 applied in the production coating is set, and the non-defective range is determined for the quality determination in the production coating. It is used as a threshold value (see threshold value data 81a shown in FIG. 12).
  • a white LED is used as the light source unit 45 for measuring the light emission characteristics, and is prescribed in advance as a basis for setting a threshold value for quality determination in production coating.
  • the regular emission characteristics required for the finished product in which the resin 8 applied to the LED element 5 is cured are biased by the difference in emission characteristics due to the resin 8 being in an uncured state. Emission characteristics are used. Thereby, control of the resin application amount in the resin application process to the LED element 5 can be performed based on the normal light emission characteristics of the finished product.
  • the LED package 50 that emits white light is used as the light source unit 45.
  • the light emission characteristic measurement of the resin 8 applied by trial can be performed by the light having the same characteristic as the excitation light emitted in the finished LED package 50, and a more reliable test result can be obtained.
  • a light source device that can stably emit blue light having a constant wavelength for example, a blue LED that emits blue light or a blue laser light source
  • a light source unit for inspection for example, a blue LED that emits blue light or a blue laser light source
  • blue light having a predetermined wavelength may be extracted using a band-pass filter.
  • a test hit / measure unit 140 having the configuration shown in FIGS. 10A, 10B, 11A, and 11B may be used. . That is, as shown in FIGS. 10 (a), 10 (b), 11 (a), and 11 (b), the test hitting / measuring unit 140 has a cover portion 140b disposed above an elongated horizontal base portion 140a. It has an external structure. The cover part 140b is provided with an opening part 140c, and the opening part 140c can be freely opened and closed by a sliding slide window 140d for application (arrow l).
  • a trial hitting stage 145a for supporting the translucent member 43 from the lower surface side, a translucent member mounting portion 141 on which the translucent member 43 is placed, and a translucent member mounting portion 141.
  • a spectroscope 42 is provided above.
  • the translucent member mounting unit 141 includes a light source device that emits excitation light that excites the phosphor. Exciting light is irradiated from the lower surface side of the light source device to the translucent member 43 on which is applied by trial.
  • the translucent member 43 is wound and supplied on the supply reel 47 in the same manner as in the example shown in FIGS. 9A to 9C, and is sent along the upper surface of the test strike stage 145a (arrow m). Then, the light is wound around a collection reel 48 driven by a winding motor 49 via a space between the translucent member mounting portion 141 and the spectroscope 42.
  • FIG. 11B the translucent member 43 on which the resin 8 has been trial-applied is moved by the trial hitting stage 145a so that the resin 8 is positioned above the translucent member mounting portion 141, and the cover portion 140b is further moved.
  • a state in which a darkroom for measuring light emission characteristics is formed between the base 140a and the base 140a is shown.
  • An LED package 50 that emits white light is used as the light source device for the translucent member mounting portion 141.
  • the wiring layers 4e and 4d connected to the LED element 5 are connected to the power supply device 142.
  • the power supply device 142 When the power supply device 142 is turned on, the LED element 5 is supplied with power for light emission.
  • the LED package 50 emits white light.
  • the yellow light emitted from the phosphor in the resin 8 is excited by the blue light contained in the white light.
  • White light in which light and blue light are added and mixed is irradiated upward from the resin 8.
  • a spectroscope 42 is disposed above the trial hitting / measurement unit 140, and the white light emitted from the resin 8 is received by the spectroscope 42, and the received white light is analyzed by the light emission characteristic measurement processing unit 39. The emission characteristics are measured.
  • the light emission characteristic measurement processing unit 39 measures the light emission characteristic of the light emitted by the resin 8 by irradiating the resin 8 applied to the light transmitting member 43 with the excitation light emitted from the LED element 5 as the light source part. . Then, the measurement result of the light emission characteristic measurement processing unit 39 is sent to the coating amount derivation processing unit 38, and the same processing as the example shown in FIGS. 8A and 8B is executed.
  • the configuration of the control system of the LED package manufacturing system 1 will be described with reference to FIG.
  • the component mounting device M1 and the resin coating device M4 the element characteristic information 12, the resin coating information 14, the map data 18, and the above-mentioned
  • the components related to the transmission / reception and update processing of the threshold data 81a are shown.
  • the management computer 3 includes a system control unit 60, a storage unit 61, and a communication unit 62.
  • the system control unit 60 controls the LED package manufacturing work by the LED package manufacturing system 1 in an integrated manner.
  • the storage unit 61 stores element characteristic information 12, resin application information 14, and map data 18 and threshold data 81a as necessary. ing.
  • the communication unit 62 is connected to other devices via the LAN system 2 and exchanges control signals and data.
  • the element characteristic information 12 and the resin application information 14 are transmitted from the outside via the LAN system 2 and the communication unit 62 or via a single storage medium such as a CD ROM, USB memory storage, SD card, and stored in the storage unit 61. Is done.
  • the component mounting apparatus M1 includes a mounting control unit 70, a storage unit 71, a communication unit 72, a mechanism driving unit 73, and a map creation processing unit 74.
  • the mounting control unit 70 controls each unit described below based on various programs and data stored in the storage unit 71 in order to execute a component mounting operation by the component mounting apparatus M1.
  • the storage unit 71 stores mounting position information 71 a and element characteristic information 12 in addition to programs and data necessary for control processing by the mounting control unit 70.
  • the mounting position information 71 a is created from execution history data of mounting operation control by the mounting control unit 70.
  • the element characteristic information 12 is transmitted from the management computer 3 via the LAN system 2.
  • the communication unit 72 is connected to other devices via the LAN system 2 and exchanges control signals and data.
  • the mechanism driving unit 73 is controlled by the mounting control unit 70 to drive the component supply mechanism 25 and the component mounting mechanism 26.
  • the map creation processing unit 74 includes mounting position information 71a indicating the position of the LED element 5 on the substrate 4 stored in the storage unit 71 and mounted by the component mounting apparatus M1, and an element for the LED element 5 A process of creating the map data 18 associated with the characteristic information 12 for each substrate 4 is performed. That is, the map data creating means is provided in the component mounting apparatus M1, and the map data 18 is transmitted from the component mounting apparatus M1 to the resin coating apparatus M4. The map data 18 may be transmitted from the component mounting apparatus M1 to the resin coating apparatus M4 via the management computer 3. In this case, the map data 18 is also stored in the storage unit 61 of the management computer 3 as shown in FIG.
  • the resin coating apparatus M4 includes a coating control unit 36, a storage unit 81, a communication unit 82, a production execution processing unit 37, a coating amount derivation processing unit 38, and a light emission characteristic measurement processing unit 39.
  • the application control unit 36 controls the nozzle moving mechanism 34, the resin discharge mechanism 35, and the test hitting / measurement unit 40 constituting the resin application unit C, so that the resin 8 is applied to the translucent member 43 for light emission characteristic measurement.
  • the measurement coating process to be performed and the production coating process to be applied to the LED element 5 for actual production are performed.
  • the application control unit 36 uses the application nozzles 33a of the dispensers 33A and 33B in the measurement application process, and the first and second resins 8A and 8B including the first and second phosphors of different types. Are sequentially applied to the same translucent member 43 for light emission characteristic measurement.
  • the storage unit 81 stores programs and data necessary for control processing by the application control unit 36, as well as resin application information 14, map data 18, threshold data 81a, and actual production application amount 81b.
  • the resin application information 14 is transmitted from the management computer 3 via the LAN system 2, and the map data 18 is similarly transmitted from the component mounting apparatus M1 via the LAN system 2.
  • the communication unit 82 is connected to other devices via the LAN system 2 and exchanges control signals and data.
  • the light emission characteristic measurement processing unit 39 irradiates the excitation light emitted from the light source unit 45 to the plurality of resins 8 (first resin 8A and second resin 8B) applied on the translucent member 43 by trial.
  • a process for measuring light emission characteristics of a resin is performed.
  • the application amount derivation processing unit 38 obtains a deviation between the measurement result of the light emission characteristic measurement processing unit 39 and a predetermined light emission characteristic, and based on this deviation, the first resin to be applied to the LED element 5 for actual production.
  • a calculation process for deriving the appropriate resin application amount of 8A and the second resin 8B is performed.
  • the production execution processing unit 37 instructs the application control unit 36 to specify the appropriate resin application amounts for the first resin 8A and the second resin 8B derived by the application amount derivation processing unit 38, whereby each of the dispensers 33A and 33B.
  • the application nozzle 33a With the application nozzle 33a, a production application process for applying the first resin 8A and the second resin 8B in appropriate amounts to the same LED element 5 in sequence is executed.
  • a processing function other than the function for executing the work operation unique to each apparatus for example, the function of the map creation processing unit 74 provided in the component mounting apparatus M1, and the resin coating apparatus M4 are provided.
  • the function of the applied amount derivation processing unit 38 is not necessarily attached to the apparatus.
  • the functions of the map creation processing unit 74 and the coating amount derivation processing unit 38 are covered by the arithmetic processing function of the system control unit 60 of the management computer 3 and necessary signal exchange is performed via the LAN system 2. It may be configured.
  • both the component mounting apparatus M1 and the resin coating apparatus M4 are connected to the LAN system 2. Then, the management computer 3 and the LAN system 2 in which the element characteristic information 12 is stored in the storage unit 61 uses the information obtained by separately measuring the emission characteristics including the emission wavelengths of the plurality of LED elements 5 in advance as the element characteristic information. 12 is element characteristic information providing means provided to the component mounting apparatus M1.
  • the element characteristic information providing means for providing the element characteristic information 12 to the component mounting apparatus M1 and the resin information providing means for providing the resin coating information 14 to the resin coating apparatus M4 are the storage unit 61 of the management computer 3 which is an external storage means.
  • the element characteristic information and the resin application information read out are transmitted to the component mounting apparatus M1 and the resin application apparatus M4 via the LAN system 2, respectively.
  • element characteristic information 12 and resin application information 14 are acquired (ST1). That is, the first resin 8A and the second resin 8A for obtaining the LED package 50 having the element characteristic information 12 obtained by individually measuring the emission characteristics including the emission wavelengths of the plurality of LED elements 5 in advance and the prescribed emission characteristics.
  • the resin application information 14 that associates the appropriate resin application amount of the resin 8B with the element characteristic information 12 is acquired from the external device via the LAN system 2 or via a storage medium.
  • the second phosphor particle amount corresponding to the color tone required for the LED package 50 to be manufactured is first selected, and a data table corresponding to the selected second phosphor particle amount is acquired.
  • the board 4 to be mounted is carried into the component mounting apparatus M1 (ST2).
  • the resin adhesive 23 is supplied to the element mounting position in the LED mounting portion 4b by raising and lowering the transfer pin 24a of the adhesive transfer mechanism 24 (arrow n).
  • the LED element 5 held by the mounting nozzle 26a of the component mounting mechanism 26 is lowered (arrow o) and mounted in the LED mounting portion 4b of the substrate 4 via the resin adhesive 23 ( ST3).
  • the map creation processing unit 74 creates map data 18 that associates the mounting position information 71a with the element characteristic information 12 of each LED element 5 for the board 4 from the execution data of the component mounting work (ST4). ).
  • the map data 18 is transmitted from the component mounting apparatus M1 to the resin coating apparatus M4, and the resin coating information 14 is transmitted from the management computer 3 to the resin coating apparatus M4 (ST5). Thereby, it will be in the state which can perform the resin coating operation
  • the substrate 4 after component mounting is sent to the curing device M2, where it is heated, whereby as shown in FIG. 19 (c), the resin adhesive 23 is thermoset to become a resin adhesive 23 *.
  • the LED element 5 is fixed to the individual substrate 4a.
  • the substrate 4 after resin curing is sent to the wire bonding apparatus M3, and as shown in FIG. 19D, the wiring layers 4e and 4d of the individual substrate 4a are respectively connected to the N-type portion electrodes 6a and P of the LED element 5.
  • the mold part electrode 6 b is connected to the bonding wire 7.
  • threshold data creation processing for non-defective product determination is executed (ST6). This process is executed in order to set a pass / fail judgment threshold value in production coating (see threshold value data 81a shown in FIG. 12). Bin codes [1], [2], [3 ], [4], and [5] are repeatedly executed for each of the production coatings. Details of the threshold data creation processing will be described with reference to FIGS. 14, 15A to 15C, and FIG. In FIG. 14, first, the first resin 8A containing the first phosphor at a genuine concentration specified in the data table corresponding to the second phosphor particle amount selected in the resin application information 14, the selected second phosphor particle amount. A second resin 8B containing a concentration capable of supplying is prepared (ST11).
  • the resin discharge head 32 is moved to the test hitting stage 40a of the test hitting / measurement unit 40, and the first resin 8A
  • the second resin 8B is sequentially applied to the translucent member 43 at the specified application amount (appropriate resin application amount) shown in the resin application information 14 (ST12).
  • the prescribed coating amount of the second resin 8B is calculated from the selected second phosphor particle amount and the phosphor concentration of the prepared second resin 8B.
  • the resin 8 applied to the translucent member 43 is moved onto the translucent member mounting portion 41, the LED element 5 is caused to emit light, and the light emission characteristics in an uncured state of the resin 8 are measured by the light emission characteristic measuring section having the above-described configuration. Measure (ST13). Then, based on the light emission characteristic measurement value 39a which is the measurement result of the light emission characteristic measured by the light emission characteristic measurement unit, a non-defective product determination range of the measurement value for determining the light emission characteristic to be non-defective is set (ST14). The non-defective product determination range is stored as threshold data 81a in the storage unit 81, transferred to the management computer 3, and stored in the storage unit 61 (ST15).
  • FIG. 14 shows threshold data created in this way, that is, measured light emission characteristic values obtained in the uncured state of the resin after applying the first resin 8A and the second resin 8B containing a genuine amount of phosphor.
  • the non-defective product determination range (threshold value) of the measured value for determining that the light emission characteristic is non-defective is shown.
  • 15A, 15B, and 15C, the phosphor concentration in the first resin 8A is 5%, respectively.
  • the threshold values corresponding to the Bin codes [1], [2], [3], [4], and [5] in the case of 10% and 15% are shown.
  • the Bin code 12b corresponds to the application amount indicated by the appropriate resin application amount 15 (11).
  • threshold data 81a (1) is set based on the respective emission characteristic measurement values 39a (1).
  • the measurement result of measuring the light emission characteristics of the resin 8 coated with the first resin 8A with the appropriate resin coating amount VA0 corresponding to the Bin code [1] is the chromaticity coordinate ZA0 on the chromaticity table shown in FIG. It is represented by (X A0 , Y A0 ). With this chromaticity coordinate ZA0 as the center, a predetermined range (for example, ⁇ 10%) for the X coordinate and Y coordinate on the chromaticity table is set as a non-defective product determination range (threshold value).
  • a non-defective product determination range (threshold value) is set based on the light emission characteristic measurement results (chromaticity table shown in FIG. 16). (See chromaticity coordinates ZB0 to ZE0 above).
  • the predetermined range set as the threshold is appropriately set according to the accuracy level of the light emission characteristics required for the LED package 50 as a product.
  • FIGS. 15B and 15C show the measured emission characteristics and the non-defective product determination range (threshold value) when the phosphor concentration of the first resin 8A is 10% and 15%, respectively.
  • the appropriate resin application amount 15 (2) and the appropriate resin application amount 15 (3) indicate the appropriate resin application amounts when the phosphor concentrations are 10% and 15%, respectively.
  • the emission characteristic measurement value 39a (2) and the emission characteristic measurement value 39a (3) are emission specific measurement values when the phosphor concentrations are 10% and 15%, respectively, and threshold data 81a ( 2)
  • the threshold value data 81a (3) indicates a non-defective product determination range (threshold value) in each case.
  • the threshold data created in this way is selectively used according to the Bin code 12b to which the target LED element 5 belongs in the production coating operation.
  • the threshold value data creation process shown in (ST6) is executed as an off-line operation by a single inspection device provided separately from the LED package manufacturing system 1, and is previously stored in the management computer 3 as threshold value data 81a. It is also possible to transmit the received data to the resin coating apparatus M4 via the LAN system 2.
  • the substrate 4 after wire bonding is conveyed to the resin coating device M4 (ST7), and as shown in FIG. 20A, the coating nozzle of the dispenser 33A is placed inside the LED mounting portion 4b surrounded by the reflecting portion 4c.
  • First resin 8A is discharged from 33a, and then, as shown in FIG. 20B, second resin 8B is discharged from application nozzle 33a of dispenser 33B to LED mounting portion 4b to which first resin 8A has been applied.
  • the threshold data 81a, and the resin application information 14 a work of applying a prescribed amount of the first resin 8A and the second resin 8B over the LED element 5 is performed (ST8). Details of this resin coating operation processing will be described with reference to FIGS.
  • the resin container is exchanged as necessary (ST21). That is, the syringe attached to the dispensers 33A and 33B of the resin discharge head 32 is replaced with one containing the first resin 8A and the second resin 8B having a phosphor concentration selected according to the characteristics of the LED element 5.
  • the first resin 8A and the second resin 8B are trial-applied to the translucent member 43 for measurement of light emission characteristics by the resin application part C (measurement application process) (ST22). That is, in the measurement application step, the test hitting / measurement unit 40 applies a plurality of resins containing different types of phosphors to the same translucent member 43 drawn to the test hitting stage 40a by the plurality of application nozzles 33a. Test-apply sequentially.
  • the first resin 8A with the appropriate resin application amount (VA0 to VE0) for each Bin code 12b specified in FIG. 4 and the second resin 8B with the above-mentioned specified amount are applied.
  • the resin is discharged from the application nozzles 33a of the dispensers 33A and 33B to the translucent member 43.
  • the actual resin application amount to be applied is not necessarily the above-mentioned appropriate resin application amount and the above-mentioned prescribed amount due to changes in the properties of the first resin 8A and the second resin 8B over time, and is shown in FIG. As described above, the actual resin application amount of the first resin 8A is VA1 to VE1, which is somewhat different from VA0 to VE0.
  • the translucent member 43 on which the first resin 8A and the second resin 8B are applied by trial is sent and placed on the translucent member mounting portion 41 ( Translucent member placement step).
  • the excitation light which excites a fluorescent substance is light-emitted from the light source part 45 arrange
  • the excitation light is irradiated from above on the resin 8 made of the first resin 8A and the second resin 8B that have been trial-applied to the translucent member 43, whereby the light emitted from the resin 8 is integrated from below the translucent member 43.
  • Light is received by the spectroscope 42 via the sphere 44, and the light emission characteristic measurement processing unit 39 measures the light emission characteristic (light emission characteristic measurement step) (ST23).
  • a light emission characteristic measurement value represented by the chromaticity coordinate Z (see FIG. 16) is obtained.
  • This measurement result is not necessarily based on the above-described error in the coating amount and the change in the concentration of the phosphor particles in the resin 8, and so on, and the standard color at the time of proper resin coating shown in FIG.
  • the degree coordinates ZA0 to ZE0 do not match.
  • the deviation ( ⁇ X A) indicating the difference in the X and Y coordinates between the obtained chromaticity coordinates ZA1 to ZE1 and the standard chromaticity coordinates ZA0 to ZE0 at the time of proper resin application shown in FIG. , ⁇ Y A ) to ( ⁇ X E , ⁇ Y E ) are determined to determine whether correction is necessary to obtain desired light emission characteristics.
  • the measurement result is within the threshold value (ST24), and as shown in FIG. 18C, the deviation obtained in (ST23) is compared with the threshold value.
  • the deviations ( ⁇ X A , ⁇ Y A ) to ( ⁇ X E , ⁇ Y E ) are within ⁇ 10% of ZA0 to ZE0.
  • the application amount is corrected (ST25). That is, the deviation between the measurement result in the light emission characteristic measurement step and the predetermined light emission characteristic is obtained, and as shown in FIG. 18 (d), the actual production to be applied to the LED element 5 based on the obtained deviation.
  • the process of deriving the new appropriate resin application amount (VA2 to VE2) is executed by the application amount deriving processing unit 38 (application amount deriving process step).
  • the corrected appropriate resin coating amount (VA2 to VE2) is an updated value obtained by adding a correction amount corresponding to each deviation to the preset appropriate resin coating amount VA0 to VE0.
  • the relationship between the deviation and the correction amount is recorded in the resin application information 14 as known accompanying data in advance.
  • the processes of (ST22), (ST23), (ST24), and (ST25) are repeatedly executed, and the measurement result is defined in advance in (ST24).
  • the proper resin coating amount for actual production is determined.
  • the appropriate resin coating amount is determined by repeatedly executing the measurement coating step, the translucent member placement step, the excitation light emission step, the light emission characteristic measurement step, and the coating amount derivation step. I try to derive.
  • the determined proper resin application amount is stored in the storage unit 81 as the actual production application amount 81b.
  • the second resin 8B is fixed to a specified value defined by the resin application information 14 in the application amount derivation, and an updated value obtained by adding a correction amount for only the first resin 8A is shown. .
  • the application similar to the application amount derivation process performed for the first resin 8A is also applied to the second resin 8B. Execute quantity derivation process. That is, in the coating amount derivation processing step, processing for deriving the appropriate resin coating amount is performed for each of the plurality of resins 8 (first resin 8A and second resin 8B).
  • the production coating is executed (ST31). That is, the appropriate resin application amount for the plurality of resins 8 (the first resin 8A and the second resin 8B) derived by the application amount derivation processing unit 38 and stored as the actual production application amount 81b is stored in the resin discharge mechanism 35.
  • the production execution processing unit 37 commands the application control unit 36 to control, so that the appropriate resin application amount of the first resin 8A and the second resin 8B are sequentially applied to the same LED element 5 mounted on the substrate 4.
  • the coating process is executed (production execution process).
  • the number of coatings by the dispensers 33A and 33B is counted, and it is monitored whether the number of coatings has passed a predetermined number of times (ST32). That is, until the predetermined number of times is reached, it is determined that there is little change in the properties of the first resin 8A and the second resin 8B and the phosphor concentration, and the production coating is executed while maintaining the same actual production coating amount 81b. Repeat (ST31). If the predetermined number of times has been confirmed in (ST32), it is determined that the properties of the first resin 8A and the second resin 8B and the phosphor concentration may have changed, and the process returns to (ST22). Thereafter, the measurement of the same light emission characteristic and the coating amount correction process based on the measurement result are repeatedly executed.
  • the substrate 4 is sent to the curing device M5, and the resin 8 is cured by heating by the curing device M5 (ST9).
  • the resin 8 applied so as to cover the LED element 5 is thermally cured to become a resin 8 *, which is fixed in the LED mounting portion 4b.
  • the substrate 4 after the resin curing is sent to the individual piece cutting device M6, where the substrate 4 is cut into individual piece substrates 4a, and as shown in FIG. (ST10). Thereby, the LED package 50 is completed.
  • the resin coating apparatus M4 shown in the above embodiment ejects the first resin 8A and the second resin 8B each including different types of the first phosphor and the second phosphor in variable amounts.
  • the resin application part C having a plurality of application nozzles 33a to be applied to arbitrary application target positions and the resin application part C the first resin 8A and the second resin 8B are used for measuring the light emission characteristics.
  • An application control unit 36 for executing a measurement application process for trial application to the member 43 and a production application process for application to the LED element 5 for actual production, a light source unit 45 for emitting excitation light for exciting the phosphor, and measurement
  • the translucent member mounting portion 41 on which the translucent member 43 on which the first resin 8A and the second resin 8B are trial-coated is placed, and the excitation light emitted from the light source unit 45 is transmitted through the translucent member 43.
  • the application amount deriving processing unit 38 for deriving the appropriate resin application amount for actual production to be applied to the LED element 5 and the derived appropriate resin application amount are instructed to the application control unit 36.
  • the production execution processing unit 37 is configured to execute a production application process for applying the appropriate resin application amount of resin to the LED element 5.
  • the first resin 8A and the second resin 8B each containing different types of phosphors are made the same transparent.
  • Test application is sequentially performed on the optical member 43, the light emission characteristics are measured for the first resin 8 ⁇ / b> A and the second resin 8 ⁇ / b> B that have been test applied, and the light emission characteristics are measured and applied to the LED element 5 for actual production.
  • the first resin 8A is provided by the plurality of application nozzles 33a.
  • the second resin 8B can be sequentially applied to the same LED element 5.
  • first resin 8A and second resin 8B containing different types of phosphors are sequentially applied by two dispensers 33A and 33B.
  • the resin coating apparatus and the resin coating method of the present invention make the light emission characteristics of the LED package uniform and improve the production yield even when the light emission wavelength of the individual LED elements varies. It has the effect that various color tones of emitted colors can be adjusted, and can be used in the field of manufacturing an LED package in which an LED element is covered with a resin containing a phosphor.

Abstract

Two types of resin (8) including different types of phosphors are sequentially test coated, a suitable resin coating amount for each of the two types of resin (8) is derived on the basis of measurement results from measurement of light-emission characteristics of the test-coated resin (8), the derived suitable resin coating amount is instructed to a coating control unit (36), and the two types of resin (8) are sequentially coated by a plurality of dispensers (33A, 33B) on to the same LED element for an LED mounting section (4b).

Description

樹脂塗布装置および樹脂塗布方法Resin coating apparatus and resin coating method
 本発明は、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムに用いられる樹脂塗布装置および樹脂塗布方法に関するものである。 The present invention relates to a resin coating apparatus and a resin coating method used in an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor.
 近年、各種の照明装置の光源として、消費電力が少なく長寿命であるという優れた特性を有するLED(発光ダイオード)が、広範囲で用いられるようになっている。LED素子が発する基本光は、現在のところ赤、緑、青の3つに限られているため、一般的な照明用途として好適な白色光を得るためには、上述の3つの基本光を加色混合することによって白色光を得る方法や、青色LEDと青色と補色関係にある黄色の蛍光を発する蛍光体とを組み合わせることにより疑似白色光を得る方法などが用いられる。近年は後者の方法が広く用いられるようになっており、青色LEDとYAG蛍光体を組み合わせたLEDパッケージを用いた照明装置が、液晶パネルのバックライトなどに用いられるようになっている(例えば特許文献1参照)。 In recent years, LEDs (light emitting diodes) having excellent characteristics of low power consumption and long life have been widely used as light sources for various lighting devices. Since the basic light emitted from the LED element is currently limited to three colors of red, green, and blue, in order to obtain white light suitable for general lighting applications, the above three basic lights are added. A method of obtaining white light by color mixing, a method of obtaining pseudo white light by combining a blue LED and a phosphor emitting yellow fluorescence having a complementary color relationship with blue are used. In recent years, the latter method has been widely used, and an illumination device using an LED package in which a blue LED and a YAG phosphor are combined has been used for a backlight of a liquid crystal panel (for example, a patent). Reference 1).
 この特許文献例においては、側壁に反射面が形成された凹状の実装部の底面にLED素子を実装した後、実装部内にYAG系蛍光体粒子が分散された実装部内にYAG系蛍光体粒子が分散されたシリコーン樹脂やエポキシ樹脂などを注入して樹脂包装部を形成することにより、LEDパッケージを構成するようにしている。そして、樹脂注入後の実装部内における樹脂包装部の高さを均一にすることを目的として、規定量以上に注入された剰余樹脂を実装部から排出して貯留するための剰余樹脂貯蔵部を形成する例が記載されている。これにより、樹脂注入時にディスペンサからの吐出量がばらついている場合にあっても、LED素子上には一定の樹脂量を有し規定高さの樹脂包装部が形成される。 In this patent document example, after mounting an LED element on the bottom surface of a concave mounting portion having a reflective surface formed on a side wall, YAG phosphor particles are placed in a mounting portion in which YAG phosphor particles are dispersed in the mounting portion. An LED package is configured by injecting dispersed silicone resin, epoxy resin, or the like to form a resin packaging portion. And, for the purpose of uniforming the height of the resin packaging part in the mounting part after the resin injection, a residual resin storage part for discharging and storing the surplus resin injected more than a specified amount from the mounting part is formed. An example is given. As a result, even when the discharge amount from the dispenser varies at the time of resin injection, a resin packaging portion having a certain resin amount and a specified height is formed on the LED element.
日本国特開2007-66969号公報Japanese Unexamined Patent Publication No. 2007-66969
 しかしながら上述の先行技術例においては、個々のLED素子における発光波長のばらつきに起因して、製品となるLEDパッケージの発光特性がばらつくという問題があった。すなわちLED素子は複数の素子をウェハ上に一括して作り込む製造過程を経ており、この製造過程における種々の誤差要因、例えばウェハにおける膜形成時の組成の不均一などに起因して、ウェハ状態から個片に分割されたLED素子には、発光波長のばらつきが生じることが避けられない。そして上述例では、LED素子を覆う樹脂包装部の高さは均一に設定されていることから、個片のLED素子における発光波長のばらつきは、そのまま製品としてのLEDパッケージの発光特性のばらつきに反映され、結果として品質許容範囲から逸脱する不良品の増加を余儀なくされていた。 However, in the above-described prior art examples, there is a problem in that the light emission characteristics of the LED package as a product vary due to variations in light emission wavelengths of individual LED elements. In other words, the LED element has undergone a manufacturing process in which a plurality of elements are formed on the wafer at the same time, and due to various error factors in this manufacturing process, such as non-uniform composition during film formation on the wafer, the wafer state Inevitably, variations in emission wavelength occur in the LED elements divided into individual pieces. And in the above-mentioned example, since the height of the resin wrapping part covering the LED element is set uniformly, the variation in the emission wavelength in the individual LED element is directly reflected in the variation in the emission characteristic of the LED package as a product. As a result, the number of defective products deviating from the acceptable quality range has been inevitably increased.
 また先行技術においては、青色LED上に塗布される樹脂は1種類に限定されていたため、発光色の調整可能な範囲が限定されており、種々の照明に求められる多様な照明光を実現することが困難であった。このように、従来のLEDパッケージ製造技術には、個片のLED素子における発光波長のばらつきに起因して、製品としてのLEDパッケージの発光特性がばらつき、生産歩留まりの低下を招くとともに、発光色の多様な色調調整が困難であるという問題があった。 In the prior art, since the resin applied on the blue LED is limited to one type, the range in which the emission color can be adjusted is limited, and various illumination lights required for various illuminations can be realized. It was difficult. As described above, in the conventional LED package manufacturing technology, the emission characteristics of the LED package as a product vary due to variations in the emission wavelength of the individual LED elements, leading to a decrease in production yield and the emission color. There was a problem that various color tone adjustments were difficult.
 そこで本発明は、LEDパッケージ製造システムにおいて、個片のLED素子の発光波長がばらつく場合にあってもLEDパッケージの発光特性を均一にして、生産歩留まりを向上させるとともに、発光色の多様な色調調整が可能な樹脂塗布装置および樹脂塗布方法を提供することを目的とする。 Therefore, the present invention provides an LED package manufacturing system that makes the light emission characteristics of the LED package uniform even when the light emission wavelengths of the individual LED elements vary, thereby improving the production yield and various color tone adjustments of the light emission colors. It is an object of the present invention to provide a resin coating apparatus and a resin coating method that can perform the above-described process.
 本発明の樹脂塗布装置は、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムに用いられ、前記基板に実装された前記LED素子を覆って前記樹脂を塗布する樹脂塗布装置であって、前記樹脂を塗布量を可変に吐出して任意の塗布対象位置に塗布する複数の塗布ノズルを有する樹脂塗布部と、前記樹脂塗布部を制御することにより、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布処理および実生産用として前記LED素子に塗布する生産用塗布処理を実行させる塗布制御部と、前記蛍光体を励起する励起光を発光する光源部と、前記測定用塗布処理において前記樹脂が試し塗布された前記透光部材が載置される透光部材載置部と、前記光源部から発光された前記励起光を前記透光部材に塗布された前記樹脂に照射することによりこの樹脂が発する光の発光特性を測定する発光特性測定部と、前記発光特性測定部の測定結果と予め規定された発光特性とに基づいて実生産用として前記LED素子に塗布されるべき前記樹脂の適正樹脂塗布量を導出する塗布量導出処理部と、前記適正樹脂塗布量を前記塗布制御部に指令することにより、この適正樹脂塗布量の樹脂を前記LED素子に塗布する生産用塗布処理を実行させる生産実行処理部とを備え、前記塗布制御部は、前記複数の塗布ノズルによってそれぞれ種類の異なる蛍光体を含む複数の前記樹脂を発光特性測定用として同一の前記透光部材に順次試し塗布させ、前記発光特性測定部は、前記試し塗布された複数の前記樹脂を対象として発光特性を測定し、前記塗布量導出処理部は、前記複数の樹脂についてそれぞれ前記適正樹脂塗布量を導出し、前記生産実行処理部は、導出された前記複数の樹脂についての前記適正樹脂塗布量を前記塗布制御部に指令することにより、前記複数の塗布ノズルによって前記複数の樹脂を同一の前記LED素子に順次塗布させる。 The resin coating apparatus of the present invention is used in an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor, and covers the LED element mounted on the substrate. A resin coating apparatus that coats the resin, wherein the resin coating unit has a plurality of coating nozzles that discharge the resin in a variable amount to apply the resin to any position to be coated, and controls the resin coating unit The application control unit for executing the measurement application process for applying the resin to the translucent member for light emission characteristic measurement and the production application process for applying to the LED element for actual production, and the phosphor is excited. A light source unit that emits excitation light, a translucent member mounting unit on which the translucent member on which the resin is trial-coated in the measurement coating process, and the light source Irradiating the resin applied to the translucent member with the excitation light emitted from the light-emitting member to measure the light emission characteristic of the light emitted from the resin, and the measurement result of the light emission characteristic measurement unit An application amount derivation processing unit for deriving an appropriate resin application amount of the resin to be applied to the LED element for actual production based on the prescribed light emission characteristics, and an instruction for the appropriate resin application amount to the application control unit A production execution processing unit for executing a production coating process for coating the LED element with a resin having an appropriate resin coating amount, and the coating control unit has different types of fluorescence depending on the plurality of coating nozzles. The plurality of resins including the body are sequentially trial-applied to the same translucent member for light emission characteristic measurement, and the light emission characteristic measurement unit targets the plurality of resins that have been trial-applied. And the application amount derivation processing unit derives the appropriate resin application amount for each of the plurality of resins, and the production execution processing unit determines the appropriate resin for the plurality of derived resins. By instructing the application amount to the application control unit, the plurality of resins are sequentially applied to the same LED element by the plurality of application nozzles.
 本発明の樹脂塗布方法は、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムに用いられ、前記基板に実装された前記LED素子を覆って前記樹脂を塗布する樹脂塗布方法であって、前記樹脂を塗布量を可変に吐出する複数の塗布ノズルを有する樹脂塗布部によって、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布工程と、前記樹脂が試し塗布された前記透光部材を透光部材載置部に載置する透光部材載置工程と、前記蛍光体を励起する励起光を発光する光源部から発光された前記励起光を前記透光部材に塗布された前記樹脂に照射することによりこの樹脂が発する光の発光特性を測定する発光特性測定工程と、前記発光特性測定工程における測定結果と予め規定された発光特性に基づいて実生産用として前記LED素子に塗布されるべき前記樹脂の適正樹脂塗布量を導出する塗布量導出処理工程と、前記導出された前記適正樹脂塗布量を前記樹脂塗布部を制御する塗布制御部に指令することにより、この適正樹脂塗布量の樹脂を前記LED素子に塗布する生産用塗布処理を実行させる生産実行工程とを含み、前記測定用塗布工程において、前記複数の塗布ノズルによってそれぞれ種類の異なる蛍光体を含む複数の前記樹脂を同一の前記透光部材に順次試し塗布し、前記発光特性測定工程において、前記試し塗布された複数の前記樹脂を対象として発光特性を測定し、前記塗布量導出処理工程において、前記複数の樹脂についてそれぞれ前記適正樹脂塗布量を導出し、前記生産実行工程において、導出された前記複数の樹脂についての前記適正樹脂塗布量を前記塗布制御部に指令することにより、前記複数の塗布ノズルによって前記複数の樹脂を同一の前記LED素子に順次塗布する。 The resin coating method of the present invention is used in an LED package manufacturing system for manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor, and covers the LED element mounted on the substrate. A resin application method for applying the resin, wherein the resin is applied to a translucent member as a light emission characteristic test by a resin application part having a plurality of application nozzles that discharge the resin in a variable amount. Light is emitted from an application step, a translucent member placement step of placing the translucent member on which the resin has been trial-applied on the translucent member placement portion, and a light source portion that emits excitation light that excites the phosphor. The excitation light is applied to the resin coated on the translucent member to measure the emission characteristics of the light emitted by the resin, and to the emission characteristic measurement process. An application amount derivation process for deriving an appropriate resin application amount of the resin to be applied to the LED element for actual production based on a measurement result and a predetermined light emission characteristic; and the derived appropriate resin application A production execution step of executing a production coating process for coating the LED element with a resin having an appropriate resin coating amount by commanding an amount to a coating control unit that controls the resin coating unit, and applying the measurement In the process, a plurality of the resins containing different kinds of phosphors are sequentially trial-applied to the same light-transmitting member by the plurality of application nozzles, and the plurality of the test-applied resins in the light emission characteristic measurement step The emission characteristics are measured for the application amount, and the appropriate resin application amount is derived for each of the plurality of resins in the application amount derivation processing step. In step, by commanding the appropriate resin coating amount for the derived plurality of resin to the application control unit, sequentially applied to the same of the LED elements of the plurality of resin by the plurality of coating nozzles.
 本発明によれば、LED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージの製造に用いられる樹脂塗布において、種類の異なる蛍光体を含む複数の樹脂を同一の透光部材に順次試し塗布し、試し塗布された複数の前記樹脂を対象として発光特性を測定した測定結果に基づいて複数の樹脂についてそれぞれ適正樹脂塗布量を導出し、導出された複数の樹脂についての適正樹脂塗布量を塗布制御部に指令して複数の塗布ノズルによって複数の樹脂を同一のLED素子に順次塗布することにより、個片のLED素子の発光波長がばらつく場合にあってもLEDパッケージの発光特性を均一にして、生産歩留まりを向上させるとともに、発光色の多様な色調調整が可能となる。 According to the present invention, in resin coating used for manufacturing an LED package in which an LED element is covered with a resin containing a phosphor, a plurality of resins containing different types of phosphors are sequentially trial-coated on the same light-transmitting member. The appropriate resin application amount is derived for each of the plurality of resins on the basis of the measurement results obtained by measuring the light emission characteristics of the plurality of trial-applied resins, and the application control is performed on the appropriate resin application amount for the plurality of derived resins. By directing a plurality of resins to the same LED element sequentially with a plurality of application nozzles, even if the emission wavelength of individual LED elements varies, the light emission characteristics of the LED package are made uniform, In addition to improving the production yield, various color tone adjustments of the emission color are possible.
本発明の一実施の形態のLEDパッケージ製造システムの構成を示すブロック図The block diagram which shows the structure of the LED package manufacturing system of one embodiment of this invention (a)、(b)は本発明の一実施の形態のLEDパッケージ製造システムによって製造されるLEDパッケージの構成説明図(A), (b) is structure explanatory drawing of the LED package manufactured by the LED package manufacturing system of one embodiment of this invention (a)~(d)は本発明の一実施の形態のLEDパッケージ製造システムにおいて用いられるLED素子の供給形態および素子特性情報の説明図(A)-(d) is explanatory drawing of the supply form of LED element used in the LED package manufacturing system of one embodiment of this invention, and element characteristic information 本発明の一実施の形態のLEDパッケージ製造システムにおいて用いられる樹脂塗布情報の説明図Explanatory drawing of the resin application | coating information used in the LED package manufacturing system of one embodiment of this invention 本発明の一実施の形態のLEDパッケージ製造システムによって製造されるLEDパッケージの色度調整の説明図Explanatory drawing of chromaticity adjustment of the LED package manufactured by the LED package manufacturing system of one embodiment of this invention (a)~(c)は本発明の一実施の形態のLEDパッケージ製造システムにおける部品実装装置の構成および機能の説明図(A)-(c) is explanatory drawing of a structure and function of the component mounting apparatus in the LED package manufacturing system of one embodiment of this invention 本発明の一実施の形態のLEDパッケージ製造システムにおいて用いられるマップデータの説明図Explanatory drawing of the map data used in the LED package manufacturing system of one embodiment of this invention (a)、(b)は本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置の構成および機能の説明図(A), (b) is explanatory drawing of a structure and function of the resin coating apparatus in the LED package manufacturing system of one embodiment of this invention (a)~(c)は本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置に備えられた発光特性検査機能の説明図(A)-(c) is explanatory drawing of the light emission characteristic test | inspection function with which the resin coating apparatus was equipped in the LED package manufacturing system of one embodiment of this invention. (a)、(b)は本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置の構成および機能の説明図(A), (b) is explanatory drawing of a structure and function of the resin coating apparatus in the LED package manufacturing system of one embodiment of this invention (a)、(b)は本発明の一実施の形態のLEDパッケージ製造システムにおける樹脂塗布装置に備えられた発光特性検査機能の説明図(A), (b) is explanatory drawing of the light emission characteristic test | inspection function with which the resin coating apparatus was equipped in the LED package manufacturing system of one embodiment of this invention. 本発明の一実施の形態のLEDパッケージ製造システムの制御系の構成を示すブロック図The block diagram which shows the structure of the control system of the LED package manufacturing system of one embodiment of this invention 本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造のフロー図Flowchart of LED package manufacturing by LED package manufacturing system of one embodiment of the present invention 本発明の一実施の形態のLEDパッケージ製造システムにおける良品判定用のしきい値データ作成処理のフロー図Flow chart of threshold data creation processing for non-defective product determination in LED package manufacturing system of one embodiment of the present invention (a)~(c)は本発明の一実施の形態のLEDパッケージ製造システムにおける良品判定用のしきい値データの説明図(A)-(c) is explanatory drawing of the threshold value data for the quality determination in the LED package manufacturing system of one embodiment of this invention 本発明の一実施の形態のLEDパッケージ製造システムにおける良品判定用のしきい値データを説明する色度図Chromaticity diagram for explaining threshold data for non-defective product determination in the LED package manufacturing system of one embodiment of the present invention 本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程における樹脂塗布作業処理のフロー図The flowchart of the resin application | coating operation process in the LED package manufacturing process by the LED package manufacturing system of one embodiment of this invention (a)~(d)は本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程における樹脂塗布作業処理の説明図(A)-(d) is explanatory drawing of the resin application | coating operation process in the LED package manufacturing process by the LED package manufacturing system of one embodiment of this invention (a)~(d)は本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程を示す工程説明図(A)-(d) is process explanatory drawing which shows the LED package manufacturing process by the LED package manufacturing system of one embodiment of this invention (a)~(e)は本発明の一実施の形態のLEDパッケージ製造システムによるLEDパッケージ製造過程を示す工程説明図(A)-(e) is process explanatory drawing which shows the LED package manufacturing process by the LED package manufacturing system of one embodiment of this invention
 次に本発明の実施の形態を図面を参照して説明する。まず図1を参照して、LEDパッケージ製造システム1の構成を説明する。LEDパッケージ製造システム1は、基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造する機能を有するものである。本実施の形態においては、図1に示すように、部品実装装置M1、キュア装置M2、ワイヤボンディング装置M3、樹脂塗布装置M4、キュア装置M5、個片切断装置M6の各装置をLANシステム2によって接続し、管理コンピュータ3によってこれらの各装置を統括して制御する構成となっている。 Next, embodiments of the present invention will be described with reference to the drawings. First, the configuration of the LED package manufacturing system 1 will be described with reference to FIG. The LED package manufacturing system 1 has a function of manufacturing an LED package in which an LED element mounted on a substrate is covered with a resin containing a phosphor. In the present embodiment, as shown in FIG. 1, the component mounting apparatus M1, the curing apparatus M2, the wire bonding apparatus M3, the resin coating apparatus M4, the curing apparatus M5, and the piece cutting apparatus M6 are connected by the LAN system 2. These devices are connected and controlled by the management computer 3 in an integrated manner.
 部品実装装置M1はLEDパッケージのベースとなる基板4(図2(a)、(b)参照)にLED素子5を樹脂接着剤によって接合して実装する。キュア装置M2はLED素子5が実装された後の基板4を加熱することにより、実装時の接合に用いられた樹脂接着剤を硬化させる。ワイヤボンディング装置M3は基板4の電極とLED素子5の電極とをボンディングワイヤによって接続する。樹脂塗布装置M4はワイヤボンディング後の基板4において、各LED素子5毎に蛍光体を含む樹脂を塗布する。キュア装置M5は樹脂塗布後の基板4を加熱することにより、LED素子5を覆って塗布された樹脂を硬化させる。個片切断装置M6は、樹脂が硬化した後の基板4を各個別のLED素子5毎に切断して、個片のLEDパッケージに分割する。これにより、個片に分割されたLEDパッケージが完成する。 The component mounting apparatus M1 is mounted by bonding the LED element 5 to the substrate 4 (see FIGS. 2A and 2B) serving as the base of the LED package with a resin adhesive. The curing device M2 cures the resin adhesive used for bonding at the time of mounting by heating the substrate 4 after the LED element 5 is mounted. The wire bonding apparatus M3 connects the electrode of the substrate 4 and the electrode of the LED element 5 with a bonding wire. The resin coating device M4 applies a resin containing a phosphor to each LED element 5 on the substrate 4 after wire bonding. The curing device M5 cures the resin applied so as to cover the LED elements 5 by heating the substrate 4 after the resin application. The piece cutting device M6 cuts the substrate 4 after the resin is cured into each individual LED element 5 and divides it into individual LED packages. Thereby, the LED package divided | segmented into the piece is completed.
 なお図1においては、部品実装装置M1~個片切断装置M6の各装置を直列に配置して製造ラインを構成した例を示しているが、LEDパッケージ製造システム1としては必ずしもこのようなライン構成を採用する必要はなく、以下の説明において述べる情報伝達が適切になされる限りにおいては、分散配置された各装置によってそれぞれの工程作業を順次実行する構成であってもよい。また、ワイヤボンディング装置M3の前後に、ワイヤボンディングに先立って電極のクリーニングを目的としたプラズマ処理を行うプラズマ処理装置、ワイヤボンディング後に、樹脂塗布に先立って樹脂の密着性を向上させるための表面改質を目的としたプラズマ処理を行うプラズマ処理装置を介在させるようにしてもよい。 FIG. 1 shows an example in which a production line is configured by arranging each of the component mounting device M1 to the piece cutting device M6 in series. However, the LED package manufacturing system 1 does not necessarily have such a line configuration. However, as long as the information transmission described in the following description is appropriately performed, each process work may be sequentially executed by each of the distributed devices. Also, a plasma processing apparatus that performs plasma treatment for electrode cleaning prior to wire bonding before and after the wire bonding apparatus M3, and a surface modification for improving resin adhesion before resin application after wire bonding. You may make it interpose the plasma processing apparatus which performs the plasma processing for the purpose of quality.
 ここで図2(a)、(b)、図3(a)~(d)を参照して、LEDパッケージ製造システム1における作業対象となる基板4、LED素子5および完成品としてのLEDパッケージ50について説明する。図2(a)に示すように、基板4は、完成品において1つのLEDパッケージ50のベースとなる個片基板4aが複数個作り込まれた多連型基板であり、各個片基板4aには、それぞれLED素子5が実装される1つのLED実装部4bが形成されている。各個片基板4a毎においてLED実装部4b内にLED素子5を実装し、その後LED実装部4b内にLED素子5を覆って樹脂8を塗布し、さらに樹脂8の硬化後に工程完了済みの基板4を個片基板4a毎に切断することにより、図2(b)に示すLEDパッケージ50が完成する。 Here, with reference to FIGS. 2A, 2B, and 3A to 3D, the substrate 4, the LED element 5, and the LED package 50 as a finished product to be worked in the LED package manufacturing system 1. Will be described. As shown in FIG. 2A, the substrate 4 is a multiple-type substrate in which a plurality of individual substrates 4a serving as a base of one LED package 50 in a finished product are formed. Each individual substrate 4a includes Each LED mounting portion 4b on which the LED element 5 is mounted is formed. The LED element 5 is mounted in the LED mounting portion 4b for each individual substrate 4a, and then the resin 8 is applied to cover the LED element 5 in the LED mounting portion 4b. Is cut for each individual substrate 4a to complete the LED package 50 shown in FIG.
 LEDパッケージ50は、各種の照明装置の光源として用いられる白色光を照射する機能を有しており、青色LEDであるLED素子5と青色と補色関係にある黄色の蛍光を発する第1蛍光体を含んだ第1樹脂8Aとを組み合わせることにより、擬似白色光を得るようになっている。さらに本実施の形態においては、第1樹脂8Aに加えて、白色光を所望の色調に調整するために、赤色もしくは緑色の蛍光を発する第2蛍光体を含んだ第2樹脂8Bを所定量だけ混合するようにしている。これにより、単純な白色光以外にも照明の用途・嗜好に応じて、暖色系もしくは寒色系の白色光を発生させることができる。 The LED package 50 has a function of irradiating white light used as a light source of various illumination devices, and includes a first phosphor that emits yellow fluorescence that is complementary to the blue LED element 5 and blue. By combining with the first resin 8A included, pseudo white light is obtained. Further, in the present embodiment, in addition to the first resin 8A, in order to adjust white light to a desired color tone, a predetermined amount of the second resin 8B including a second phosphor that emits red or green fluorescence is added. Try to mix. As a result, in addition to simple white light, warm-colored or cold-colored white light can be generated according to the application and preference of illumination.
 図2(b)に示すように、個片基板4aにはLED実装部4bを形成する例えば円形や楕円形の環状堤を有するキャビティ形状の反射部4cが設けられている。反射部4cの内側に搭載されたLED素子5のN型部電極6a、P型部電極6bは、個片基板4aの上面に形成された配線層4e、4dと、それぞれボンディングワイヤ7によって接続される。第1樹脂8A、第2樹脂8Bはこの状態のLED素子5を覆って反射部4cの内側に所定厚みで順次塗布される。そしてLED素子5から発光された青色光が第1樹脂8Aと第2樹脂8Bが混合された樹脂8を透過して照射される過程において、第1樹脂8Aに含まれる第1蛍光体が発光する黄色と第2樹脂8Bに含まれる第2蛍光体が発光する赤色もしくは緑色と青色光とが混色され、白色光となって照射される。なお以下の記述において、単に「樹脂8」と記載するときは、第1樹脂8Aと第2樹脂8Bの総称またはこれらの混合体を意味するものとする。 As shown in FIG. 2 (b), the individual substrate 4a is provided with a cavity-shaped reflecting portion 4c having, for example, a circular or elliptical annular bank that forms the LED mounting portion 4b. The N-type part electrode 6a and the P-type part electrode 6b of the LED element 5 mounted inside the reflection part 4c are connected to the wiring layers 4e and 4d formed on the upper surface of the individual substrate 4a by bonding wires 7, respectively. The The first resin 8A and the second resin 8B cover the LED element 5 in this state and are sequentially applied to the inner side of the reflecting portion 4c with a predetermined thickness. In the process in which the blue light emitted from the LED element 5 is irradiated through the resin 8 in which the first resin 8A and the second resin 8B are mixed, the first phosphor included in the first resin 8A emits light. Red or green and blue light emitted from yellow and the second phosphor contained in the second resin 8B are mixed and irradiated as white light. In the following description, when “resin 8” is simply described, it means the generic name of the first resin 8A and the second resin 8B or a mixture thereof.
 図3(a)に示すように、LED素子5は、サファイア基板5a上にN型半導体5b、P型半導体5cを積層し、さらにP型半導体5cの表面を透明電極5dで覆って構成され、N型半導体5b、P型半導体5cにはそれぞれ外部接続用のN型部電極6a、P型部電極6bが形成されている。LED素子5は、図3(b)に示すように、複数が一括して形成された後に個片に分割された状態で保持シート10aに貼着保持されたLEDウェハ10から取り出される。LED素子5は、製造過程における種々の誤差要因、例えばウェハにおける膜形成時の組成の不均一などに起因して、ウェハ状態から個片に分割されたLED素子5には、発光波長など発光特性にばらつきが生じることが避けられない。そしてこのようなLED素子5をそのまま基板4に実装すると、製品としてのLEDパッケージ50の発光特性のばらつきとなる。 As shown in FIG. 3A, the LED element 5 is configured by stacking an N-type semiconductor 5b and a P-type semiconductor 5c on a sapphire substrate 5a, and further covering the surface of the P-type semiconductor 5c with a transparent electrode 5d. An N-type part electrode 6a and a P-type part electrode 6b for external connection are formed on the N-type semiconductor 5b and the P-type semiconductor 5c, respectively. As shown in FIG. 3B, the LED elements 5 are taken out from the LED wafer 10 that is stuck and held on the holding sheet 10a in a state where a plurality of LED elements 5 are formed in a lump and then divided into pieces. The LED element 5 is divided into individual pieces from the wafer state due to various error factors in the manufacturing process, for example, non-uniform composition during film formation on the wafer. It is inevitable that variations occur in the case. If such an LED element 5 is mounted on the substrate 4 as it is, the emission characteristics of the LED package 50 as a product will vary.
 このような発光特性のばらつきに起因する品質不良を防止するため、本実施の形態においては、同一製造過程で製造される複数のLED素子5の発光特性を予め計測し、各LED素子5と当該LED素子5の発光特性を示すデータとを対応させた素子特性情報を作成しておき、樹脂8の塗布において各LED素子5の発光特性に応じた適正量の樹脂8を塗布するようにしている。そして適正量の樹脂8を塗布するために、後述する樹脂塗布情報が予め準備される。 In the present embodiment, in order to prevent such quality defects due to variations in light emission characteristics, the light emission characteristics of a plurality of LED elements 5 manufactured in the same manufacturing process are measured in advance, Element characteristic information corresponding to data indicating the light emission characteristics of the LED elements 5 is created, and an appropriate amount of the resin 8 corresponding to the light emission characteristics of each LED element 5 is applied in the application of the resin 8. . In order to apply an appropriate amount of the resin 8, resin application information to be described later is prepared in advance.
 まず素子特性情報について説明する。図3(c)に示すように、LEDウェハ10から取り出されたLED素子5は、個々を識別する素子ID(ここでは、当該LEDウェハ10における連番(i)にて個別のLED素子5を識別)が付与された上で、発光特性計測装置11に順次投入される。なお、素子IDとしては、LED素子5を個別に特定できる情報であれば、他のデータ形式のもの、例えばLEDウェハ10におけるLED素子5の配列を示すマトリクス座標をそのまま用いるようにしてもよい。このような形式の素子IDを用いることにより、後述する部品実装装置M1において、LED素子5をLEDウェハ10の状態のまま供給することが可能となる。 First, element characteristic information will be described. As shown in FIG. 3C, the LED elements 5 taken out from the LED wafer 10 are individually identified by element IDs (in this case, the individual LED elements 5 with the serial number (i) in the LED wafer 10). Are given sequentially to the light emission characteristic measuring device 11. In addition, as element ID, if it is the information which can specify the LED element 5 separately, you may make it use the matrix coordinate which shows the arrangement | sequence of the LED element 5 in the other data format, for example, the LED wafer 10, as it is. By using the element ID of such a format, the LED element 5 can be supplied in the state of the LED wafer 10 in the component mounting apparatus M1 described later.
 発光特性計測装置11においては、各LED素子5にプローブを介して電力を供給して実際に発光させ、その光を分光分析して発光波長や発光強度などの所定項目について計測を行う。計測対象となるLED素子5については、予め発光波長の標準的な分布が参照データとして準備されており、さらにその分布における標準範囲に該当する波長範囲を複数の波長域に区分することにより、計測対象となった複数のLED素子5を、発光波長によってランク分けする。ここでは、波長範囲を5つに区分することにより設定されたランクのそれぞれに対応して、低波長側から順に、Binコード[1]、[2]、[3]、[4]、[5]が付与されている。そして素子ID12aにBinコード12bを対応させたデータ構成の素子特性情報12が作成される。 In the light emission characteristic measuring device 11, power is actually supplied to each LED element 5 through a probe to actually emit light, and the light is spectrally analyzed to measure predetermined items such as a light emission wavelength and light emission intensity. For the LED element 5 to be measured, a standard distribution of emission wavelengths is prepared as reference data in advance, and the wavelength range corresponding to the standard range in the distribution is further divided into a plurality of wavelength ranges. The plurality of target LED elements 5 are ranked according to the emission wavelength. Here, Bin codes [1], [2], [3], [4], [5] are assigned in order from the low wavelength side corresponding to each of the ranks set by dividing the wavelength range into five. ] Is given. Then, element characteristic information 12 having a data structure in which the Bin code 12b is associated with the element ID 12a is created.
 すなわち素子特性情報12は、複数のLED素子5の発光波長を含む発光特性を予め個別に測定して得られた情報であり、予めLED素子製造メーカなどによって準備されてLEDパッケージ製造システム1に対して伝達される。この素子特性情報12の伝達形態としては、単独の記憶媒体に記録された形で伝達されてもよく、またLANシステム2を介して管理コンピュータ3に伝達するようにしてもよい。いずれにおいても、伝達された素子特性情報12は管理コンピュータ3において記憶され、必要に応じて部品実装装置M1に提供される。 That is, the element characteristic information 12 is information obtained by individually measuring the light emission characteristics including the light emission wavelengths of the plurality of LED elements 5 in advance. The element characteristic information 12 is prepared in advance by an LED element manufacturer or the like and is used for the LED package manufacturing system 1. Is transmitted. The element characteristic information 12 may be transmitted in a form recorded on a single storage medium, or may be transmitted to the management computer 3 via the LAN system 2. In any case, the transmitted element characteristic information 12 is stored in the management computer 3 and provided to the component mounting apparatus M1 as necessary.
 このようにして発光特性計測が終了した複数のLED素子5は、図3(d)に示すように特性ランク毎にソートされ、それぞれの特性ランクに応じて5種類に振り分けられ、5つの粘着シート13aに個別に貼着される。これにより、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれに対応するLED素子5を粘着シート13aに貼着保持した3種類のLEDシート13A、13B、13C、13D、13Eが作成され、これらLED素子5を基板4の個片基板4aに実装する際には、LED素子5はこのようなランク分けが既になされたLEDシート13A、13B、13C、13D、13Eの形態で部品実装装置M1に供給される。このとき、LEDシート13A、13B、13C、13D、13Eのそれぞれには、Binコード[1]、[2]、[3]、[4]、[5]のいずれに対応したLED素子5が保持されているかを示す形で素子特性情報12が管理コンピュータ3から提供される。 The plurality of LED elements 5 for which the light emission characteristic measurement is completed in this way are sorted for each characteristic rank as shown in FIG. 3D, and are distributed into five types according to each characteristic rank. Attached individually to 13a. Thereby, the three types of LED sheets 13A, 13B in which the LED elements 5 corresponding to the Bin codes [1], [2], [3], [4], and [5] are adhered and held on the adhesive sheet 13a, respectively. 13C, 13D, and 13E are created, and when these LED elements 5 are mounted on the individual substrate 4a of the substrate 4, the LED elements 5 are already classified into LED sheets 13A, 13B, 13C, and 13D. , 13E in the form of the component mounting apparatus M1. At this time, the LED elements 5 corresponding to any of the Bin codes [1], [2], [3], [4], and [5] are held in the LED sheets 13A, 13B, 13C, 13D, and 13E, respectively. The element characteristic information 12 is provided from the management computer 3 in a form indicating whether or not it has been.
 次に、上述の素子特性情報12に対応して予め準備される樹脂塗布情報について、図4、図5を参照して説明する。青色LEDと黄色光を発光する第1蛍光体、赤色光または緑色光を発光する第2蛍光体を組み合わせることにより所望の色調の白色光を得る構成のLEDパッケージ50では、LED素子5が発光する青色光と、この青色光によって第1蛍光体が励起されて発光する黄色光、第2蛍光体が励起されて発光する赤色光または緑色光との加色混合が行われる。このため、LED素子5が実装される凹状のLED実装部4b内における第1蛍光体、第2蛍光体の粒子の量が、製品のLEDパッケージ50の正規の発光特性を確保する上で重要な要素となる。 Next, resin application information prepared in advance corresponding to the above-described element characteristic information 12 will be described with reference to FIGS. In the LED package 50 configured to obtain white light of a desired color tone by combining a blue LED and a first phosphor that emits yellow light and a second phosphor that emits red light or green light, the LED element 5 emits light. Additive mixing of blue light with yellow light that is emitted when the first phosphor is excited by the blue light and red light or green light that is emitted when the second phosphor is excited is performed. For this reason, the amount of the particles of the first phosphor and the second phosphor in the concave LED mounting portion 4b on which the LED element 5 is mounted is important for ensuring the normal light emission characteristics of the LED package 50 of the product. Become an element.
 上述のように、同時に作業対象となる複数のLED素子5の発光波長には、Binコード[1]、[2]、[3]、[4]、[5]によって分類されるばらつきが存在することから、LED素子5を覆って塗布される樹脂8中の蛍光体粒子の適正量は、Binコード[1]、[2]、[3]、[4]、[5]に応じて異なったものとなる。本実施の形態において準備される樹脂塗布情報14では、図4に示すように、シリコーン樹脂やエポキシ樹脂などにそれぞれ第1蛍光体、第2蛍光体の粒子を含有させた第1樹脂8Aと第2樹脂8BのBin分類別適正樹脂塗布量を、nl(ナノリットル)単位で、Binコード区分17に応じて予め規定している。すなわち、LED素子5を覆って第1樹脂8Aと第2樹脂8Bとをそれぞれ樹脂塗布情報14に示される適正樹脂塗布量だけ正確に塗布すると、LED素子5を覆う樹脂中の蛍光体粒子の量は適正な蛍光体粒子供給量となり、これにより樹脂8が熱硬化した後に完成品に求められる正規の発光波長が確保される。 As described above, there are variations classified by the Bin codes [1], [2], [3], [4], and [5] in the emission wavelengths of the plurality of LED elements 5 that are simultaneously operated. Therefore, the appropriate amount of the phosphor particles in the resin 8 applied to cover the LED element 5 differs depending on the Bin codes [1], [2], [3], [4], and [5]. It will be a thing. In the resin application information 14 prepared in the present embodiment, as shown in FIG. 4, the first resin 8A and the first resin in which the particles of the first phosphor and the second phosphor are contained in the silicone resin and the epoxy resin, respectively. The appropriate resin application amount for each Bin classification of the two resins 8B is defined in advance in units of nl (nanoliter) according to the Bin code classification 17. That is, when the LED resin 5 is covered and the first resin 8A and the second resin 8B are accurately applied by the appropriate resin application amount indicated by the resin application information 14, the amount of phosphor particles in the resin covering the LED element 5 Becomes an appropriate supply amount of the phosphor particles, thereby ensuring a regular emission wavelength required for the finished product after the resin 8 is thermally cured.
 ここでは第1蛍光体の濃度と第2蛍光体粒子量をそれぞれ複数通りに変化させた各組み合わせについて、Binコード[1]、[2]、[3]、[4]、[5]に応じてそれぞれ異なる適正樹脂塗布量を対応させた複数のデータテーブルの形態で樹脂塗布情報14が構成されている。これらのデータテーブルでは、樹脂8中の蛍光体の成分比率において白色光を発光させる主体となる第1蛍光体の比率が第2蛍光体の比率よりも大きいことから、微量成分としての第2蛍光体の粒子量を特定値に固定した形態のデータテーブルを、複数の特定値についてそれぞれ作成するようにしている。ここで第2蛍光体の粒子量は、第2蛍光体の濃度(%)と第2蛍光体を含む第2樹脂8Bの樹脂塗布量とによって規定されるものである。 Here, according to the Bin codes [1], [2], [3], [4], and [5] for each combination in which the concentration of the first phosphor and the amount of the second phosphor particles are changed in plural ways, respectively. The resin application information 14 is configured in the form of a plurality of data tables corresponding to different appropriate resin application amounts. In these data tables, since the ratio of the first phosphor that is the main component that emits white light in the component ratio of the phosphor in the resin 8 is larger than the ratio of the second phosphor, the second fluorescence as a minor component. A data table in which the amount of body particles is fixed to a specific value is created for each of a plurality of specific values. Here, the particle amount of the second phosphor is defined by the concentration (%) of the second phosphor and the resin application amount of the second resin 8B containing the second phosphor.
 すなわち図4に示すように、第2蛍光体粒子量の特定値をQ1、Q2、Q3の複数通りに固定し、第2蛍光体粒子量がそれぞれQ1、Q2、Q3である場合の適正樹脂塗布量15(1)、15(2)、15(3)を規定している。適正樹脂塗布量15(1)には、蛍光体濃度欄16(1)が対応しており、第2蛍光体の粒子量の1つの特定値Q1に対して、第1樹脂8A中の蛍光体粒子の濃度を示す第1蛍光体濃度を複数通り(ここではD11(5%)、D12(10%)、D13(15%)の3通り)に設定し、第1樹脂8Aの適正樹脂塗布量もそれぞれの第1蛍光体濃度に応じて異なる数値を用いるようにしている。 That is, as shown in FIG. 4, the specific value of the second phosphor particle amount is fixed in a plurality of ways of Q1, Q2, and Q3, and the appropriate resin application when the second phosphor particle amount is Q1, Q2, and Q3, respectively. The quantities 15 (1), 15 (2) and 15 (3) are defined. The appropriate resin application amount 15 (1) corresponds to the phosphor concentration column 16 (1). The phosphor in the first resin 8A corresponds to one specific value Q1 of the particle amount of the second phosphor. The first phosphor concentration indicating the concentration of particles is set to a plurality of levels (here, D11 (5%), D12 (10%), D13 (15%)), and the appropriate resin coating amount of the first resin 8A Also, different numerical values are used according to the respective first phosphor concentrations.
 例えば蛍光体濃度D11の第1樹脂8Aを塗布する場合には、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれについて、適正樹脂塗布量VA0、VB0、VC0、VD0、VE0(適正樹脂塗布量15(11))の第1樹脂8Aを塗布する。同様に、蛍光体濃度D12の樹脂を塗布する場合には、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれについて、適正樹脂塗布量VF0、VG0、VH0、VJ0、VK0(適正樹脂塗布量15(12))の第1樹脂8Aを塗布する。また蛍光体濃度D13の第1樹脂8Aを塗布する場合には、Binコード[1]、[2]、[3]、[4]、[5]のそれぞれについて、適正樹脂塗布量VL0、VM0、VN0、VP0、VR0(適正樹脂塗布量15(13))の第1樹脂8Aを塗布する。このように異なった複数の第1蛍光体濃度毎にそれぞれ適正樹脂塗布量を設定するのは、発光波長のばらつきの程度に応じて最適の蛍光体濃度の樹脂を塗布することが品質確保の上でより好ましいからである。 For example, when the first resin 8A having the phosphor concentration D11 is applied, the appropriate resin application amounts VA0, VB0, Bin codes [1], [2], [3], [4], and [5], respectively. The first resin 8A of VC0, VD0, VE0 (appropriate resin application amount 15 (11)) is applied. Similarly, when a resin having a phosphor concentration D12 is applied, the appropriate resin application amounts VF0, VG0, VH0 for the Bin codes [1], [2], [3], [4], and [5], respectively. , VJ0, VK0 (appropriate resin application amount 15 (12)) of the first resin 8A is applied. Further, when the first resin 8A having the phosphor concentration D13 is applied, the appropriate resin application amounts VL0, VM0, and Bin codes [1], [2], [3], [4], and [5], respectively. The first resin 8A of VN0, VP0, VR0 (appropriate resin application amount 15 (13)) is applied. The appropriate resin application amount is set for each of the plurality of different first phosphor concentrations as described above in order to ensure quality by applying a resin having an optimum phosphor concentration according to the degree of variation in the emission wavelength. It is because it is more preferable.
 そして第2蛍光体粒子量の特定値がQ2、Q3である場合にも同様に、適正樹脂塗布量15(2)、15(3)に対して、蛍光体濃度欄16(2)、16(3)を対応させている。このように樹脂8中における第2蛍光体の粒子量を変化させることにより、LEDパッケージ50が発光する照明光の色調を調整することができる。すなわち、図5の色度図において、破線L1は黄色の励起光を発光する蛍光体のみを用いた場合の色調を示しており、中央部の白色部分の対応する色度範囲が標準白色光範囲として用いられる。 Similarly, when the specific values of the second phosphor particle amounts are Q2 and Q3, the phosphor concentration columns 16 (2) and 16 ( 3). Thus, the color tone of the illumination light emitted from the LED package 50 can be adjusted by changing the particle amount of the second phosphor in the resin 8. That is, in the chromaticity diagram of FIG. 5, the broken line L1 indicates the color tone when only the phosphor that emits yellow excitation light is used, and the corresponding chromaticity range of the white portion at the center is the standard white light range. Used as
 これに対し、赤色の励起光を発光する蛍光体を第2蛍光体として添加すると、色調は破線L2に沿って暖色系の白色に変化し、添加比率の増大につれてより赤色に近い照明光が得られる。また緑色の励起光を発光する蛍光体を第2蛍光体として添加すると、色調は破線L3に沿って寒色系の白色に変化する。このように、LED素子5を覆う樹脂8として複数種類の蛍光体を含有するものを用いることにより、LEDパッケージ50の発光色の色調調整を多様に行うことができる。 In contrast, when a phosphor that emits red excitation light is added as the second phosphor, the color tone changes to warm white along the broken line L2, and illumination light closer to red is obtained as the addition ratio increases. It is done. When a phosphor that emits green excitation light is added as the second phosphor, the color tone changes to a cold white along the broken line L3. Thus, by using a resin 8 containing a plurality of types of phosphors as the resin 8 that covers the LED element 5, it is possible to variously adjust the color tone of the emission color of the LED package 50.
 図4に示す樹脂塗布情報14を適用する際には、まず所望の色調に対応した第2蛍光体粒子量を推定する。そしてこの推定値に最も近似する第2蛍光体粒子量Q1、Q2、Q3を選択して、選択された第2蛍光体粒子量に対応するデータテーブルを用いる。例えば第2蛍光体粒子量Q1が選択されたならば、第1蛍光体濃度欄16(1)、適正樹脂塗布量15(1)を用いる。 When applying the resin application information 14 shown in FIG. 4, first, the amount of the second phosphor particles corresponding to the desired color tone is estimated. Then, the second phosphor particle amounts Q1, Q2, and Q3 that are closest to the estimated value are selected, and a data table corresponding to the selected second phosphor particle amount is used. For example, if the second phosphor particle amount Q1 is selected, the first phosphor concentration column 16 (1) and the appropriate resin coating amount 15 (1) are used.
 次に図6(a)~(c)を参照して、部品実装装置M1の構成および機能を説明する。図6(a)の平面図に示すように、部品実装装置M1は、上流側から供給された作業対象の基板4を基板搬送方向(矢印a)に搬送する基板搬送機構21を備えている。基板搬送機構21には、上流側から順に、図6(b)にA-A断面にて示す接着剤塗布部A、図6(c)にB-B断面にて示す部品実装部Bが配設されている。接着剤塗布部Aは、基板搬送機構21の側方に配置され樹脂接着剤23を所定の膜厚の塗膜の形で供給する接着剤供給部22および基板搬送機構21と接着剤供給部22の上方で水平方向(矢印b)に移動自在な接着剤転写機構24を備えている。また部品実装部Bは、基板搬送機構21の側方に配置され、図3(d)に示すLEDシート13A、13B、13C、13D、13Eを保持する部品供給機構25および基板搬送機構21と部品供給機構25の上方で水平方向(矢印c)に移動自在な部品実装機構26を備えている。 Next, the configuration and function of the component mounting apparatus M1 will be described with reference to FIGS. 6 (a) to (c). As shown in the plan view of FIG. 6A, the component mounting apparatus M1 includes a board transfer mechanism 21 that transfers the work target board 4 supplied from the upstream side in the board transfer direction (arrow a). In order from the upstream side, the substrate transport mechanism 21 is provided with an adhesive application part A shown in section AA in FIG. 6B and a component mounting part B shown in section BB in FIG. 6C. It is installed. The adhesive application unit A is disposed on the side of the substrate transport mechanism 21 and supplies the resin adhesive 23 in the form of a coating film having a predetermined film thickness, and the substrate transport mechanism 21 and the adhesive supply unit 22. Is provided with an adhesive transfer mechanism 24 that is movable in the horizontal direction (arrow b). The component mounting part B is disposed on the side of the board transport mechanism 21 and has the parts supply mechanism 25 and the board transport mechanism 21 that hold the LED sheets 13A, 13B, 13C, 13D, and 13E shown in FIG. A component mounting mechanism 26 that is movable in the horizontal direction (arrow c) above the supply mechanism 25 is provided.
 基板搬送機構21に搬入された基板4は、図6(b)に示すように、接着剤塗布部Aにて位置決めされ、各個片基板4aに形成されたLED実装部4bを対象として、樹脂接着剤23の塗布が行われる。すなわちまず接着剤転写機構24を接着剤供給部22の上方に移動させて転写ピン24aを転写面22aに形成された樹脂接着剤23の塗膜に接触させ、樹脂接着剤23を付着させる。次いで接着剤転写機構24を基板4の上方に移動させて、転写ピン24aをLED実装部4bに下降させることにより(矢印d)、転写ピン24aに付着した樹脂接着剤23をLED実装部4b内の素子実装位置に転写により供給する。 As shown in FIG. 6B, the substrate 4 carried into the substrate transport mechanism 21 is positioned by the adhesive application portion A, and is bonded to the LED mounting portion 4b formed on each individual substrate 4a. The agent 23 is applied. That is, first, the adhesive transfer mechanism 24 is moved above the adhesive supply unit 22 so that the transfer pin 24a is brought into contact with the coating film of the resin adhesive 23 formed on the transfer surface 22a, and the resin adhesive 23 is adhered. Next, the adhesive transfer mechanism 24 is moved above the substrate 4 and the transfer pin 24a is lowered to the LED mounting portion 4b (arrow d), whereby the resin adhesive 23 attached to the transfer pin 24a is moved into the LED mounting portion 4b. It is supplied by transfer to the element mounting position.
 次いで接着剤塗布後の基板4は下流側へ搬送されて、図6(c)に示すように部品実装部Bにて位置決めされ、接着剤供給後の各LED実装部4bを対象として、LED素子5の実装が行われる。すなわちまず部品実装機構26を部品供給機構25の上方に移動させて実装ノズル26aを部品供給機構25に保持されたLEDシート13A、13B、13C、13D、13Eのいずれかに対して下降させ、実装ノズル26aによってLED素子5を保持して取り出す。次いで部品実装機構26を基板4のLED実装部4bの上方に移動させて実装ノズル26aを下降させることにより(矢印e)、実装ノズル26aに保持したLED素子5をLED実装部4b内において接着剤が塗布された素子実装位置に実装する。 Next, the substrate 4 after application of the adhesive is conveyed to the downstream side, positioned at the component mounting part B as shown in FIG. 6 (c), and the LED elements are targeted for each LED mounting part 4b after the adhesive is supplied. 5 is implemented. That is, first, the component mounting mechanism 26 is moved above the component supply mechanism 25, and the mounting nozzle 26a is lowered with respect to any of the LED sheets 13A, 13B, 13C, 13D, and 13E held by the component supply mechanism 25, and mounted. The LED element 5 is held and taken out by the nozzle 26a. Next, the component mounting mechanism 26 is moved above the LED mounting portion 4b of the substrate 4 to lower the mounting nozzle 26a (arrow e), whereby the LED element 5 held by the mounting nozzle 26a is bonded to the adhesive in the LED mounting portion 4b. It is mounted at the element mounting position where is applied.
 この部品実装装置M1による基板4へのLED素子5の実装においては、予め作成された素子実装プログラム、すなわち部品実装機構26による個別実装動作においてLEDシート13A、13B、13C、13D、13EのいずれからLED素子5を取り出して基板4の複数の個片基板4aに実装するかの順序が予め設定されており、部品実装作業はこの素子実装プログラムにしたがって実行される。 In mounting the LED elements 5 on the board 4 by the component mounting apparatus M1, any one of the LED sheets 13A, 13B, 13C, 13D, and 13E can be used in an individual mounting operation by the component mounting program 26, that is, the component mounting mechanism 26. The order in which the LED elements 5 are taken out and mounted on the plurality of individual boards 4a of the board 4 is set in advance, and the component mounting work is executed according to this element mounting program.
 そして部品実装作業の実行に際しては、作業実行履歴から個別のLED素子5が基板4の複数の個片基板4aのうちのいずれに実装されたかを示す実装位置情報71a(図12参照)を抽出し記録する。そしてこの実装位置情報71aと個々の個片基板4aに実装されたLED素子5がいずれの特性ランク(Binコード[1]、[2]、[3]、[4]、[5])に対応するものであるかを示す素子特性情報12とを関連づけたデータが、マップ作成処理部74(図12参照)によって、図7に示すマップデータ18として作成されるようになっている。 When the component mounting work is executed, mounting position information 71a (see FIG. 12) indicating which of the plurality of individual boards 4a of the board 4 is mounted from the work execution history is extracted. Record. The mounting position information 71a and the LED element 5 mounted on each individual substrate 4a correspond to any characteristic rank (Bin code [1], [2], [3], [4], [5]). Data associated with the element characteristic information 12 indicating whether or not to be created is created as map data 18 shown in FIG. 7 by the map creation processing unit 74 (see FIG. 12).
 図7において、基板4の複数の個片基板4aの個別の位置は、X方向、Y方向の位置をそれぞれ示すマトリクス座標19X、19Yの組み合わせによって特定される。そしてマトリクス座標19X、19Yによって構成されるマトリックスの個別セルに、当該位置に実装されたLED素子5が属するBinコードを対応させることにより、部品実装装置M1によって実装されたLED素子5の基板4における位置を示す実装位置情報71aと、当該LED素子5についての素子特性情報12とを関連付けたマップデータ18が作成される。 In FIG. 7, the individual positions of the plurality of individual substrates 4a of the substrate 4 are specified by combinations of matrix coordinates 19X and 19Y indicating the positions in the X direction and the Y direction, respectively. Then, by making the Bin code to which the LED element 5 mounted at the position belongs correspond to the individual cell of the matrix constituted by the matrix coordinates 19X and 19Y, the LED element 5 mounted by the component mounting apparatus M1 on the substrate 4 Map data 18 in which the mounting position information 71a indicating the position and the element characteristic information 12 about the LED element 5 are associated is created.
 すなわち、部品実装装置M1は、当該装置によって実装されたLED素子5の基板4における位置を示す実装位置情報と、当該LED素子5についての素子特性情報12とを関連付けたマップデータ18を、基板4毎に作成するマップデータ作成手段としてのマップ作成処理部74を備えた構成となっている。そして作成されたマップデータ18は、LANシステム2を介して以下に説明する樹脂塗布装置M4に対してフィードフォワードデータとして送信される。 That is, the component mounting apparatus M1 displays the map data 18 in which the mounting position information indicating the position of the LED element 5 mounted by the apparatus on the board 4 and the element characteristic information 12 on the LED element 5 are associated with the board 4 A map creation processing unit 74 is provided as map data creation means to be created every time. The created map data 18 is transmitted as feedforward data to the resin coating apparatus M4 described below via the LAN system 2.
 次に図8(a)、(b)、図9(a)~(c)を参照して、樹脂塗布装置M4の構成および機能について説明する。樹脂塗布装置M4は、部品実装装置M1によって基板4に実装された複数のLED素子5を覆って樹脂8を塗布する機能を有するものである。図8(a)の平面図に示すように、樹脂塗布装置M4は上流側から供給された作業対象の基板4を基板搬送方向(矢印f)に搬送する基板搬送機構31に、図8(b)にC-C断面にて示す樹脂塗布部Cを配設した構成となっている。樹脂塗布部Cには、下端部に装着された塗布ノズル33aから樹脂8を吐出する複数(ここでは2つ)のディスペンサ33A、33Bを備えた構成の樹脂吐出ヘッド32が設けられており、樹脂吐出ヘッド32においてディスペンサ33A、33Bは個別に昇降自在となっている。 Next, the configuration and function of the resin coating apparatus M4 will be described with reference to FIGS. 8 (a), 8 (b), and 9 (a) to 9 (c). The resin coating device M4 has a function of coating the resin 8 so as to cover the plurality of LED elements 5 mounted on the substrate 4 by the component mounting device M1. As shown in the plan view of FIG. 8A, the resin coating apparatus M4 transfers the work target substrate 4 supplied from the upstream side to the substrate transport mechanism 31 that transports the substrate 4 in the substrate transport direction (arrow f). ) Is provided with a resin coating portion C shown in the CC cross section. The resin application part C is provided with a resin discharge head 32 having a configuration including a plurality (two in this case) of dispensers 33A and 33B for discharging the resin 8 from the application nozzle 33a mounted at the lower end. In the discharge head 32, the dispensers 33A and 33B can be raised and lowered individually.
 図8(b)に示すように、樹脂吐出ヘッド32はノズル移動機構34によって駆動され、ノズル移動機構34を塗布制御部36によって制御することにより、水平方向(図8(a)に示す矢印g)の移動動作および昇降動作を行う。樹脂吐出ヘッド32のディスペンサ33A、33Bに装着されるシリンジにはそれぞれ第1樹脂8A、第2樹脂8Bが収納されており、樹脂吐出機構35によって空圧をディスペンサ33A、33B内に印加することにより、ディスペンサ33A、33B内の第1樹脂8A、第2樹脂8Bは塗布ノズル33aを介して吐出されて、基板4に形成されたLED実装部4bに塗布される。このとき、樹脂吐出機構35を塗布制御部36によって制御することにより、第1樹脂8A、第2樹脂8Bの吐出量を任意に制御することができる。すなわち樹脂塗布部Cは、第1樹脂8A、第2樹脂8Bを塗布量を可変に吐出して、任意の塗布対象位置に塗布する複数の塗布ノズル33aを備えた構成となっている。なお、樹脂吐出機構35には、空圧のディスペンサ33A、33B以外にもメカシリンダを用いたプランジャ方式、スクリューポンプ方式など、各種の液吐出方式を採用することができる。 As shown in FIG. 8B, the resin discharge head 32 is driven by the nozzle moving mechanism 34, and the nozzle moving mechanism 34 is controlled by the application control unit 36, whereby the horizontal direction (arrow g shown in FIG. 8A). ) Move and lift operations. The syringes attached to the dispensers 33A and 33B of the resin discharge head 32 contain the first resin 8A and the second resin 8B, respectively, and by applying air pressure into the dispensers 33A and 33B by the resin discharge mechanism 35. The first resin 8A and the second resin 8B in the dispensers 33A and 33B are discharged through the application nozzle 33a and applied to the LED mounting portion 4b formed on the substrate 4. At this time, by controlling the resin discharge mechanism 35 by the application control unit 36, the discharge amounts of the first resin 8A and the second resin 8B can be arbitrarily controlled. That is, the resin application part C is configured to include a plurality of application nozzles 33a that apply the first resin 8A and the second resin 8B in variable application amounts and apply them to any application target position. In addition to the pneumatic dispensers 33A and 33B, various liquid discharge methods such as a plunger method using a mechanical cylinder and a screw pump method can be adopted for the resin discharge mechanism 35.
 基板搬送機構31の側方には、樹脂吐出ヘッド32の移動範囲内に位置して、試し打ち・測定ユニット40が配置されている。試し打ち・測定ユニット40は、第1樹脂8A、第2樹脂8Bを基板4のLED実装部4bに塗布する実生産用塗布作業に先立って、第1樹脂8A、第2樹脂8Bの塗布量が適正であるか否かを、試し塗布した樹脂8の発光特性を測定することにより判定する機能を有するものである。すなわち、樹脂塗布部Cによって第1樹脂8A、第2樹脂8Bを試し塗布した透光部材43に測定用の光源部45が発する光を照射したときの発光特性を、分光器42および発光特性測定処理部39を備えた発光特性測定部によって測定し、測定結果を予め設定されたしきい値と比較することにより、図4に示す樹脂塗布情報14にて規定される既設定の樹脂塗布量の適否を判定する。なお、本実施の形態では、異なる蛍光色の第1樹脂8A、第2樹脂8Bの2種類を試し塗布した後に発光特性を測定するようにしているが、第1樹脂8A、第2樹脂8Bをそれぞれ対象として個別に発光特性を測定して、樹脂塗布量の適否を判定するようにしてもよい。 A test hitting / measurement unit 40 is disposed on the side of the substrate transport mechanism 31 so as to be located within the movement range of the resin discharge head 32. Prior to the actual production application operation in which the first resin 8A and the second resin 8B are applied to the LED mounting portion 4b of the substrate 4, the trial placement / measurement unit 40 has the application amounts of the first resin 8A and the second resin 8B. It has a function of determining whether or not it is appropriate by measuring the light emission characteristics of the test-applied resin 8. That is, the light emission characteristics when the light emitted from the measurement light source section 45 is applied to the light transmitting member 43 on which the first resin 8A and the second resin 8B have been trial-applied by the resin application section C are measured using the spectroscope 42 and the light emission characteristics measurement. Measurement is performed by a light emission characteristic measuring unit provided with the processing unit 39, and the measurement result is compared with a preset threshold value, so that the preset resin application amount defined by the resin application information 14 shown in FIG. Judge the suitability. In the present embodiment, the light emission characteristics are measured after the trial application of the first resin 8A and the second resin 8B of different fluorescent colors, but the first resin 8A and the second resin 8B are You may make it determine the suitability of the resin application quantity by measuring the light emission characteristic individually as each object.
 蛍光体粒子を含有する第1樹脂8A、第2樹脂8Bは、その組成・性状は必ずしも安定的ではなく、予め樹脂塗布情報14にて適正樹脂塗布量を設定していても、時間の経過によって蛍光体の濃度や樹脂粘度が変動することが避けられない。このため予め設定された適正樹脂塗布量に対応する吐出パラメータで第1樹脂8A、第2樹脂8Bを吐出しても、樹脂塗布量そのものが既設定の適正値からばらつく場合や、さらには樹脂塗布量自体は適正であっても濃度変化によって本来供給されるべき蛍光体粒子の供給量がばらつく結果となる。 The composition and properties of the first resin 8A and the second resin 8B containing the phosphor particles are not necessarily stable, and even if the appropriate resin application amount is set in advance in the resin application information 14, It is inevitable that the concentration of the phosphor and the resin viscosity fluctuate. For this reason, even if the first resin 8A and the second resin 8B are discharged with the discharge parameters corresponding to the preset appropriate resin application amount, the resin application amount itself may vary from the preset appropriate value, or even the resin application Even if the amount is appropriate, the supply amount of the phosphor particles to be originally supplied varies depending on the concentration change.
 このような不都合を排除するため、本実施の形態では、所定のインターバルにて適正供給量の蛍光体粒子が供給されているか否かを検査するための試し塗布を樹脂塗布装置M4にて実行し、さらに試し塗布された樹脂を対象として発光特性の測定を実行することにより、本来あるべき発光特性に則して蛍光体粒子の供給量を安定させるようにしている。そして本実施の形態に示す樹脂塗布装置M4に備えられた樹脂塗布部Cは、樹脂8を上述の発光特性測定用として透光部材43に試し塗布する測定用塗布処理と、実生産用として基板4に実装された状態のLED素子5に塗布する生産用塗布処理とを併せて実行する機能を有している。これらの測定用塗布処理および生産用塗布処理は、いずれも塗布制御部36が樹脂塗布部Cを制御することにより実行される。 In order to eliminate such inconvenience, in the present embodiment, a test coating for inspecting whether or not an appropriate supply amount of phosphor particles is supplied at a predetermined interval is executed by the resin coating apparatus M4. In addition, by measuring the light emission characteristics of the test-applied resin, the supply amount of the phosphor particles is stabilized in accordance with the light emission characteristics that should originally exist. The resin coating unit C provided in the resin coating apparatus M4 shown in the present embodiment includes a measurement coating process for applying the resin 8 to the light-transmitting member 43 for the above-described light emission characteristic measurement, and a substrate for actual production. 4 has a function of executing a production coating process to be applied to the LED element 5 mounted in the state 4. Both the coating process for measurement and the coating process for production are executed when the coating control unit 36 controls the resin coating unit C.
 図9(a)~(c)を参照して試し打ち・測定ユニット40の詳細構成を説明する。図9(a)に示すように、透光部材43は供給リール47に卷回収納されて供給され、試し打ちステージ40aの上面に沿って送られた後、透光部材載置部41と照射部46との間を経由して、巻き取りモータ49によって駆動される回収リール48に巻き取られる。なお、透光部材43を回主する機構としては、回収リール48に卷回して回収する方式以外にも、回収ボックス内に透光部材43を送り機構によって送り込む方式など、各種の方式を採用することができる。 The detailed configuration of the test hitting / measurement unit 40 will be described with reference to FIGS. 9 (a) to (c). As shown in FIG. 9A, the translucent member 43 is wound and supplied on the supply reel 47 and fed along the upper surface of the trial hitting stage 40a, and then irradiated with the translucent member mounting portion 41. It is wound around a collection reel 48 driven by a take-up motor 49 via a portion 46. As a mechanism for rotating the translucent member 43, various methods such as a method of feeding the translucent member 43 into the collection box by a feeding mechanism are adopted in addition to a method of winding the translucent member 43 to collect it. be able to.
 照射部46は光源部45によって発光された測定光を透光部材43に対して照射する機能を有しており、簡易暗箱機能を有する遮光ボックス46a内に、光源部45が発光する測定光がファイバケーブルによって導光される光集束ツール46bを配設した構成となっている。光源部45は樹脂8に含まれる蛍光体を励起する励起光を発光する機能を有しており、本実施の形態においては透光部材載置部41の上方に配置されて、測定光を透光部材43に対して光集束ツール46bを介して上方から照射する形態となっている。 The irradiation unit 46 has a function of irradiating the translucent member 43 with measurement light emitted from the light source unit 45, and the measurement light emitted from the light source unit 45 is contained in a light shielding box 46a having a simple dark box function. A light focusing tool 46b guided by a fiber cable is provided. The light source unit 45 has a function of emitting excitation light that excites the phosphor contained in the resin 8. In the present embodiment, the light source unit 45 is disposed above the translucent member mounting unit 41 and transmits measurement light. The light member 43 is irradiated from above via the light focusing tool 46b.
 ここで透光部材43としては、透明樹脂製の平面シート状部材を所定幅のテープ材としたものや、同様のテープ材にLEDパッケージ50の凹部形状に対応したエンボス部が下面に凸設されたエンボスタイプのものなどが用いられる。透光部材43が試し打ち・測定ユニット40上を送られる過程において、透光部材43に対して樹脂吐出ヘッド32によって樹脂8が試し塗布される。この試し塗布は、下面側を試し打ちステージ40aによって支持された透光部材43に対して、塗布ノズル33aによって規定塗布量の樹脂8を透光部材43に吐出することによって行われる。 Here, as the translucent member 43, a flat sheet-like member made of transparent resin is used as a tape material having a predetermined width, or an embossed portion corresponding to the concave shape of the LED package 50 is provided on the lower surface of the same tape material. Embossed type is used. In the process in which the translucent member 43 is sent over the test hitting / measurement unit 40, the resin 8 is trial-applied to the translucent member 43 by the resin ejection head 32. This trial application is performed by discharging a predetermined amount of resin 8 to the translucent member 43 by the application nozzle 33a with respect to the translucent member 43 whose lower surface is supported by the trial hitting stage 40a.
 すなわち、図9(b)に示すように、テープ材よりなる透光部材43にディスペンサ33Aによって、樹脂塗布情報14にて規定される既設定の適正吐出量の第1樹脂8Aを試し塗布する。次いで第1樹脂8Aが塗布された透光部材43において、第1樹脂8Aに重ねてディスペンサ33Bによって、樹脂塗布情報14にて規定される既設定の適正塗布量の第2樹脂8Bを試し塗布する。なお、後述するように、試し打ちステージ40aにて塗布された樹脂8は、対象となるLED素子5に対して蛍光体供給量が適正であるか否かを実証的に判定するための試し塗布であることから、樹脂吐出ヘッド32による同一試し塗布動作で複数点に樹脂8を連続的に透光部材43上に塗布する場合には、発光特性測定値と塗布量との相関関係を示す既知のデータに基づいて塗布量を段階的に異ならせて塗布しておく。 That is, as shown in FIG. 9B, a preset appropriate discharge amount of the first resin 8A prescribed by the resin application information 14 is trial-applied to the translucent member 43 made of a tape material by the dispenser 33A. Next, in the translucent member 43 to which the first resin 8A is applied, the second resin 8B having a preset appropriate application amount specified by the resin application information 14 is trial-applied by the dispenser 33B over the first resin 8A. . In addition, as will be described later, the resin 8 applied in the test hitting stage 40a is a test application for empirically determining whether or not the phosphor supply amount is appropriate for the target LED element 5. Therefore, when the resin 8 is continuously applied to the plurality of points on the translucent member 43 by the same trial application operation by the resin discharge head 32, the correlation between the measured light emission characteristic value and the application amount is known. Based on the data, the application amount is varied in stages and applied.
 このようにして樹脂8が試し塗布された後に遮光ボックス46a内に導かれた透光部材43に対して、光源部45によって発光された白色光を光集束ツール46bを介して上方から照射する。そして透光部材43に塗布された樹脂8を透過した光は、透光部材載置部41に設けられた光透過開口部41aを介して、透光部材載置部41の下方に配設された積分球44によって受光される。図9(c)は、透光部材載置部41、積分球44の構造を示している。透光部材載置部41は、透光部材43の下面を支持する下部支持部材41bの上面に、透光部材43の両端面をガイドする機能を有する上部ガイド部材41cを装着した構造となっている。 In this way, the white light emitted from the light source unit 45 is irradiated from above through the light focusing tool 46b onto the light transmitting member 43 guided into the light shielding box 46a after the resin 8 is trial-applied. The light transmitted through the resin 8 applied to the translucent member 43 is disposed below the translucent member mounting portion 41 via a light transmitting opening 41 a provided in the translucent member mounting portion 41. The light is received by the integrating sphere 44. FIG. 9C shows the structure of the translucent member mounting portion 41 and the integrating sphere 44. The translucent member mounting portion 41 has a structure in which an upper guide member 41 c having a function of guiding both end surfaces of the translucent member 43 is mounted on the upper surface of the lower support member 41 b that supports the lower surface of the translucent member 43. Yes.
 透光部材載置部41は試し打ち・測定ユニット40における搬送時に透光部材43をガイドするとともに、測定用塗布処理において樹脂8が試し塗布された透光部材43を載置して位置を保持する機能を有している。積分球44は光集束ツール46bから照射されて(矢印h)樹脂8を透過した透過光を集光し、分光器42に導く機能を有している。すなわち積分球44は内部に球面状の球状反射面44cを有しており、光透過開口部41aの直下に位置する開口部44aから入光した透過光(矢印i)は、積分球44の頂部に設けられた開口部44aから反射空間44b内に入射し、球状反射面44cによる全反射(矢印j)を反復する過程で出力部44dから測定光(矢印k)として取り出され、分光器42によって受光される。 The translucent member placement section 41 guides the translucent member 43 during conveyance in the test hitting / measurement unit 40, and places the translucent member 43 on which the resin 8 has been trial-applied in the measurement coating process to hold the position. It has a function to do. The integrating sphere 44 has a function of collecting the transmitted light that has been irradiated from the light focusing tool 46 b (arrow h) and transmitted through the resin 8 and led to the spectroscope 42. That is, the integrating sphere 44 has a spherical spherical reflecting surface 44 c inside, and transmitted light (arrow i) incident from the opening 44 a located immediately below the light transmitting opening 41 a is the top of the integrating sphere 44. In the process of entering into the reflection space 44b from the opening 44a provided in the light source and repeating total reflection (arrow j) by the spherical reflecting surface 44c, it is taken out as measurement light (arrow k) from the output part 44d, Received light.
 上述構成では、光源部45に用いられるLEDパッケージによって発光された白色光が透光部材43に試し塗布された樹脂8に照射される。この過程において、白色光中に含まれる青色光成分が樹脂8中の蛍光体を励起させて黄色光、赤色光または緑色光を発光させる。そしてこの黄色光と青色光が加色混合した白色光が樹脂8から上方に照射され、上述の積分球44を介して分光器42によって受光される。 In the above-described configuration, the white light emitted by the LED package used for the light source unit 45 is applied to the resin 8 that has been trial-applied to the translucent member 43. In this process, the blue light component contained in the white light excites the phosphor in the resin 8 to emit yellow light, red light or green light. White light obtained by adding and mixing yellow light and blue light is irradiated upward from the resin 8 and is received by the spectroscope 42 via the integrating sphere 44 described above.
 そして受光された白色光は、図8(b)に示すように、発光特性測定処理部39によって分析されて発光特性が測定される。ここでは、白色光の色調ランクや光束などの発光特性が検査され、検査結果として、規定の発光特性との偏差が検出される。積分球44、分光器42および発光特性測定処理部39は、励起光を透光部材43に塗布された樹脂8に光源部45によって発光された励起光(ここでは白色LEDにより取出した青色光)を上方から照射することによりこの樹脂8が発する光を透光部材43の下方から受光して、樹脂8が発する光の発光特性を測定する発光特性測定部を構成する。そして本実施の形態においては、発光特性測定部は積分球44を透光部材43の下方に配置して成り、樹脂8が発する光を積分球44の開口部44aを介して受光するように構成されている。 Then, the received white light is analyzed by the light emission characteristic measurement processing unit 39 to measure the light emission characteristic, as shown in FIG. 8B. Here, the light emission characteristics such as the color tone rank of white light and the luminous flux are inspected, and a deviation from the prescribed light emission characteristics is detected as the inspection result. The integrating sphere 44, the spectroscope 42, and the light emission characteristic measurement processing unit 39 emit excitation light emitted from the light source unit 45 to the resin 8 applied to the light transmitting member 43 (here, blue light extracted by the white LED). Is emitted from above, the light emitted from the resin 8 is received from below the translucent member 43, and a light emission characteristic measuring unit for measuring the light emission characteristic of the light emitted from the resin 8 is configured. In the present embodiment, the light emission characteristic measuring unit is configured by disposing the integrating sphere 44 below the translucent member 43, and configured to receive light emitted from the resin 8 through the opening 44a of the integrating sphere 44. Has been.
 発光特性測定部を上述のような構成とすることにより、以下に述べるような効果を得る。すなわち、図9(b)に示す透光部材43に試し塗布される樹脂8の塗布形状において、下面側は常に透光部材43の上面またはエンボス部43aの底面に接触していることから、樹脂8の下面は常に透光部材43によって規定される基準高さにある。したがって、樹脂8の下面と積分球44の開口部44aとの高さ差は常に一定に保たれる。これに対し、樹脂8の上面は塗布ノズル33aによる塗布条件などの外乱によって、必ずしも同一の液面形状・高さが実現されるとは限らず、樹脂8の上面と光集束ツール46bとの間の間隔はばらつくこととなる。 The following effects can be obtained by configuring the light emission characteristic measuring unit as described above. That is, in the application shape of the resin 8 that is trial-applied to the light transmissive member 43 shown in FIG. 9B, the lower surface side is always in contact with the upper surface of the light transmissive member 43 or the bottom surface of the embossed portion 43a. The lower surface of 8 is always at a reference height defined by the translucent member 43. Therefore, the height difference between the lower surface of the resin 8 and the opening 44a of the integrating sphere 44 is always kept constant. On the other hand, the upper surface of the resin 8 does not necessarily realize the same liquid surface shape and height due to disturbances such as application conditions by the application nozzle 33a, and the gap between the upper surface of the resin 8 and the light focusing tool 46b. The interval of will vary.
 ここで樹脂8の上面に対して照射される照射光と樹脂8の下面からの透過光とを比較した場合の安定度合いを考えると、樹脂8に対して照射される照射光は光集束ツール46bを介して照射されることから集束度が高く、樹脂8の上面と光集束ツール46bとの間の間隔のばらつきが光伝達に対して与える影響は無視できる。これに対し、樹脂8を透過した透過光は樹脂8の内部で蛍光体が励起された励起光であることから散乱の度合いが高く、樹脂8の下面と開口部44aとの間の距離のばらつきが積分球44によって光が取り込まれる度合いに与える影響は無視できない。 Here, considering the degree of stability when the irradiation light irradiated on the upper surface of the resin 8 is compared with the transmitted light from the lower surface of the resin 8, the irradiation light irradiated on the resin 8 is the light focusing tool 46b. Therefore, the degree of focusing is high, and the influence of the variation in the distance between the upper surface of the resin 8 and the light focusing tool 46b on the light transmission can be ignored. On the other hand, the transmitted light that has passed through the resin 8 is excitation light in which the phosphor is excited inside the resin 8, so that the degree of scattering is high, and the distance between the lower surface of the resin 8 and the opening 44 a varies. Has an influence on the degree of light being taken in by the integrating sphere 44.
 本実施の形態に示す試し打ち・測定ユニット40においては、前述構成のように光源部45によって発光された励起光を、樹脂8に対して上方から照射することによりこの樹脂8が発する光を透光部材43の下方から積分球44によって受光する構成を採用していることから、安定した発光特性の判定を行うことが可能となっている。さらに、積分球44を用いることにより受光部分に暗室構造を別途設ける必要がなく、装置のコンパクト化と設備費用の削減が可能となっている。 In the test hitting / measuring unit 40 shown in the present embodiment, the light emitted from the resin 8 is transmitted by irradiating the resin 8 with the excitation light emitted from the light source unit 45 as described above. Since the configuration in which light is received by the integrating sphere 44 from below the optical member 43 is employed, it is possible to determine stable light emission characteristics. Further, by using the integrating sphere 44, it is not necessary to separately provide a dark room structure in the light receiving portion, so that the apparatus can be made compact and the equipment cost can be reduced.
 図8(b)に示すように、発光特性測定処理部39の測定結果は塗布量導出処理部38に送られ、塗布量導出処理部38は、発光特性測定処理部39の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子5に塗布されるべき樹脂8の適正樹脂塗布量を導出する処理を行う。塗布量導出処理部38によって導出された新たな適正吐出量は生産実行処理部37に送られ、生産実行処理部37は新たに導出された適正樹脂塗布量を塗布制御部36に指令する。これにより塗布制御部36は、ノズル移動機構34、樹脂吐出機構35を制御して、適正樹脂塗布量の樹脂8を基板4に実装されたLED素子5に塗布する生産用塗布処理を樹脂吐出ヘッド32に実行させる。 As shown in FIG. 8B, the measurement result of the light emission characteristic measurement processing unit 39 is sent to the application amount derivation processing unit 38, and the application amount derivation processing unit 38 defines in advance the measurement result of the light emission characteristic measurement processing unit 39. A deviation from the emitted light emission characteristic is obtained, and a process for deriving an appropriate resin application amount of the resin 8 to be applied to the LED element 5 for actual production is performed based on the deviation. The new appropriate discharge amount derived by the application amount derivation processing unit 38 is sent to the production execution processing unit 37, and the production execution processing unit 37 commands the newly derived appropriate resin application amount to the application control unit 36. Accordingly, the application control unit 36 controls the nozzle moving mechanism 34 and the resin discharge mechanism 35 to perform a production application process for applying an appropriate resin application amount of the resin 8 to the LED elements 5 mounted on the substrate 4. 32.
 この生産用塗布処理においては、まず樹脂塗布情報14に規定される適正樹脂塗布量の樹脂8を実際に塗布し、樹脂8が未硬化の状態で発光特性の測定を行う。そして得られた測定結果に基づき、生産用塗布において塗布された樹脂8を対象として発光特性を測定した場合における発光特性測定値の良品範囲を設定し、この良品範囲を生産用塗布における良否判定のしきい値(図12に示すしきい値データ81a参照)として用いるようにしている。 In this production coating process, first, a resin 8 having an appropriate resin coating amount specified in the resin coating information 14 is actually applied, and light emission characteristics are measured while the resin 8 is uncured. Then, based on the obtained measurement results, a non-defective range of emission characteristic measurement values when the emission characteristics are measured for the resin 8 applied in the production coating is set, and the non-defective range is determined for the quality determination in the production coating. It is used as a threshold value (see threshold value data 81a shown in FIG. 12).
 すなわち本実施の形態に示すLEDパッケージ製造システムにおける樹脂塗布方法では、発光特性測定用の光源部45として白色LEDを用いるとともに、生産用塗布における良否判定のしきい値設定の基となる予め規定された発光特性として、LED素子5に塗布された樹脂8が硬化した状態の完成製品について求められる正規の発光特性を、樹脂8が未硬化の状態であることによる発光特性の相違分だけ偏らせた発光特性を用いるようにしている。これにより、LED素子5への樹脂塗布過程における樹脂塗布量の制御を完成製品についての正規の発光特性に基づいて行うことが可能となっている。 That is, in the resin coating method in the LED package manufacturing system shown in the present embodiment, a white LED is used as the light source unit 45 for measuring the light emission characteristics, and is prescribed in advance as a basis for setting a threshold value for quality determination in production coating. As the emission characteristics, the regular emission characteristics required for the finished product in which the resin 8 applied to the LED element 5 is cured are biased by the difference in emission characteristics due to the resin 8 being in an uncured state. Emission characteristics are used. Thereby, control of the resin application amount in the resin application process to the LED element 5 can be performed based on the normal light emission characteristics of the finished product.
 なお本実施の形態においては、光源部45として白色光を発するLEDパッケージ50を用いている。これにより、試し塗布された樹脂8の発光特性測定を、完成品のLEDパッケージ50において発光される励起光と同一特性の光によって行うことができ、より信頼性の高い検査結果を得ることができる。なお完成品に用いられるものと同一のLEDパッケージ50を用いることは必ずしも必須要件ではない。発光特性測定には、一定波長の青色光を安定的に発光することが可能な光源装置(例えば青色光を発光する青色LEDや、青色レーザ光源など)であれば、検査用の光源部として用いることができる。但し、青色LEDを用いた白色光を発するLEDパッケージ50を用いることにより、安定的な品質の光源装置を低コストで選定することができるという利点を有する。ここでバンドパスフィルタを用いて、所定の波長の青色光を取り出すようにしてもよい。 In the present embodiment, the LED package 50 that emits white light is used as the light source unit 45. Thereby, the light emission characteristic measurement of the resin 8 applied by trial can be performed by the light having the same characteristic as the excitation light emitted in the finished LED package 50, and a more reliable test result can be obtained. . It is not always necessary to use the same LED package 50 as that used for the finished product. For light emission characteristics measurement, a light source device that can stably emit blue light having a constant wavelength (for example, a blue LED that emits blue light or a blue laser light source) is used as a light source unit for inspection. be able to. However, by using the LED package 50 that emits white light using a blue LED, there is an advantage that a light source device with stable quality can be selected at low cost. Here, blue light having a predetermined wavelength may be extracted using a band-pass filter.
 なお上述構成の試し打ち・測定ユニット40の替わりに、図10(a)、(b)、図11(a)、(b)に示す構成の試し打ち・測定ユニット140を用いるようにしてもよい。すなわち、図10(a)、(b)、図11(a)、(b)に示すように、試し打ち・測定ユニット140は細長形状の水平な基部140aの上方に、カバー部140bを配設した外部構造となっている。カバー部140bには開口部140cが設けられており、開口部140cはスライド自在(矢印l)な塗布用スライド窓140dによって開閉自在となっている。試し打ち・測定ユニット140の内部には、透光部材43を下面側から支持する試し打ちステージ145a、透光部材43が載置される透光部材載置部141および透光部材載置部141の上方に配設された分光器42が設けられている。 Instead of the test hit / measure unit 40 having the above-described configuration, a test hit / measure unit 140 having the configuration shown in FIGS. 10A, 10B, 11A, and 11B may be used. . That is, as shown in FIGS. 10 (a), 10 (b), 11 (a), and 11 (b), the test hitting / measuring unit 140 has a cover portion 140b disposed above an elongated horizontal base portion 140a. It has an external structure. The cover part 140b is provided with an opening part 140c, and the opening part 140c can be freely opened and closed by a sliding slide window 140d for application (arrow l). Inside the trial hitting / measurement unit 140, a trial hitting stage 145a for supporting the translucent member 43 from the lower surface side, a translucent member mounting portion 141 on which the translucent member 43 is placed, and a translucent member mounting portion 141. A spectroscope 42 is provided above.
 透光部材載置部141は、図9(a)~(c)に示す光源部45と同様に蛍光体を励起する励起光を発光する光源装置を備えており、測定用塗布処理において樹脂8が試し塗布された透光部材43に対して、この光源装置より下面側から励起光が照射される。透光部材43は、図9(a)~(c)に示す例と同様に供給リール47に卷回収納されて供給され、試し打ちステージ145aの上面に沿って送られた後(矢印m)、透光部材載置部141と分光器42との間を経由して巻き取りモータ49によって駆動される回収リール48に巻き取られる。 Similar to the light source unit 45 shown in FIGS. 9A to 9C, the translucent member mounting unit 141 includes a light source device that emits excitation light that excites the phosphor. Exciting light is irradiated from the lower surface side of the light source device to the translucent member 43 on which is applied by trial. The translucent member 43 is wound and supplied on the supply reel 47 in the same manner as in the example shown in FIGS. 9A to 9C, and is sent along the upper surface of the test strike stage 145a (arrow m). Then, the light is wound around a collection reel 48 driven by a winding motor 49 via a space between the translucent member mounting portion 141 and the spectroscope 42.
 塗布用スライド窓140dをスライドさせて開放した状態では、試し打ちステージ145a上面は上方に露呈され、上面に載置された透光部材43に対して樹脂吐出ヘッド32によって樹脂8を試し塗布することが可能となる。この試し塗布は、下面側を試し打ちステージ145aによって支持された透光部材43に対して、図9(b)に示すように、塗布ノズル33aによって規定塗布量の樹脂8を透光部材43に吐出することによって行われる。 In a state in which the application sliding window 140d is slid and opened, the upper surface of the test strike stage 145a is exposed upward, and the resin discharge head 32 applies the resin 8 to the light transmitting member 43 placed on the upper surface. Is possible. In this trial application, the light-transmitting member 43 whose lower surface is supported by the test hitting stage 145a, as shown in FIG. This is done by discharging.
 図11(b)は、試し打ちステージ145aにて樹脂8が試し塗布された透光部材43を移動させて、樹脂8を透光部材載置部141の上方に位置させ、さらにカバー部140bを下降させて基部140aとの間に発光特性測定用の暗室を形成した状態を示している。透光部材載置部141には、光源装置として白色光を発するLEDパッケージ50が用いられている。LEDパッケージ50においてLED素子5と接続された配線層4e、4dは電源装置142と接続されており、電源装置142をONすることにより、LED素子5には発光用の電力が供給され、これによりLEDパッケージ50は白色光を発光する。 In FIG. 11B, the translucent member 43 on which the resin 8 has been trial-applied is moved by the trial hitting stage 145a so that the resin 8 is positioned above the translucent member mounting portion 141, and the cover portion 140b is further moved. A state in which a darkroom for measuring light emission characteristics is formed between the base 140a and the base 140a is shown. An LED package 50 that emits white light is used as the light source device for the translucent member mounting portion 141. In the LED package 50, the wiring layers 4e and 4d connected to the LED element 5 are connected to the power supply device 142. When the power supply device 142 is turned on, the LED element 5 is supplied with power for light emission. The LED package 50 emits white light.
 そしてこの白色光が樹脂8を透過した後に透光部材43に試し塗布された樹脂8に照射される過程において、白色光に含まれる青色光によって樹脂8中の蛍光体が励起して発光した黄色光と青色光が加色混合した白色光が、樹脂8から上方に照射される。試し打ち・測定ユニット140の上方には分光器42が配置されており、樹脂8から照射された白色光は分光器42によって受光され、受光された白色光は発光特性測定処理部39によって分析されて発光特性が測定される。ここでは、白色光の色調ランクや光束などの発光特性が検査され、検査結果として、規定の発光特性との偏差が検出される。すなわち発光特性測定処理部39は、光源部であるLED素子5から発光された励起光を透光部材43に塗布された樹脂8に照射することによりこの樹脂8が発する光の発光特性を測定する。そして発光特性測定処理部39の測定結果は塗布量導出処理部38に送られ、図8(a)、(b)に示す例と同様の処理が実行される。 Then, in the process in which the white light passes through the resin 8 and is irradiated to the resin 8 that has been trial-applied to the translucent member 43, the yellow light emitted from the phosphor in the resin 8 is excited by the blue light contained in the white light. White light in which light and blue light are added and mixed is irradiated upward from the resin 8. A spectroscope 42 is disposed above the trial hitting / measurement unit 140, and the white light emitted from the resin 8 is received by the spectroscope 42, and the received white light is analyzed by the light emission characteristic measurement processing unit 39. The emission characteristics are measured. Here, the light emission characteristics such as the color tone rank of white light and the luminous flux are inspected, and a deviation from the prescribed light emission characteristics is detected as the inspection result. That is, the light emission characteristic measurement processing unit 39 measures the light emission characteristic of the light emitted by the resin 8 by irradiating the resin 8 applied to the light transmitting member 43 with the excitation light emitted from the LED element 5 as the light source part. . Then, the measurement result of the light emission characteristic measurement processing unit 39 is sent to the coating amount derivation processing unit 38, and the same processing as the example shown in FIGS. 8A and 8B is executed.
 次に図12を参照して、LEDパッケージ製造システム1の制御系の構成について説明する。なお、ここではLEDパッケージ製造システム1を構成する各装置の構成要素のうち、管理コンピュータ3、部品実装装置M1、樹脂塗布装置M4において、素子特性情報12、樹脂塗布情報14およびマップデータ18、上述のしきい値データ81aの送受信および更新処理に関連する構成要素を示すものである。 Next, the configuration of the control system of the LED package manufacturing system 1 will be described with reference to FIG. Here, among the components of each device constituting the LED package manufacturing system 1, in the management computer 3, the component mounting device M1, and the resin coating device M4, the element characteristic information 12, the resin coating information 14, the map data 18, and the above-mentioned The components related to the transmission / reception and update processing of the threshold data 81a are shown.
 図12において、管理コンピュータ3は、システム制御部60、記憶部61、通信部62を備えている。システム制御部60は、LEDパッケージ製造システム1によるLEDパッケージ製造作業を統括して制御する。記憶部61には、システム制御部60による制御処理に必要なプログラムやデータのほか、素子特性情報12、樹脂塗布情報14、さらには必要に応じてマップデータ18、しきい値データ81aが記憶されている。通信部62はLANシステム2を介して他装置と接続されており、制御信号やデータの授受を行う。素子特性情報12、樹脂塗布情報14は、LANシステム2および通信部62を介して、またはCDロム、USBメモリストレージ、SDカードなど単独の記憶媒体を介して、外部から伝達され記憶部61に記憶される。 12, the management computer 3 includes a system control unit 60, a storage unit 61, and a communication unit 62. The system control unit 60 controls the LED package manufacturing work by the LED package manufacturing system 1 in an integrated manner. In addition to programs and data necessary for control processing by the system control unit 60, the storage unit 61 stores element characteristic information 12, resin application information 14, and map data 18 and threshold data 81a as necessary. ing. The communication unit 62 is connected to other devices via the LAN system 2 and exchanges control signals and data. The element characteristic information 12 and the resin application information 14 are transmitted from the outside via the LAN system 2 and the communication unit 62 or via a single storage medium such as a CD ROM, USB memory storage, SD card, and stored in the storage unit 61. Is done.
 部品実装装置M1は、実装制御部70、記憶部71、通信部72、機構駆動部73およびマップ作成処理部74を備えている。実装制御部70は、部品実装装置M1による部品実装作業を実行するために、記憶部71に記憶された各種のプログラムやデータに基づいて、以下に説明する各部を制御する。記憶部71には、実装制御部70による制御処理に必要なプログラムやデータのほか、実装位置情報71aや素子特性情報12を記憶する。実装位置情報71aは、実装制御部70による実装動作制御の実行履歴データより作成される。素子特性情報12は、LANシステム2を介して管理コンピュータ3から送信される。通信部72は、LANシステム2を介して他装置と接続されており、制御信号やデータの授受を行う。 The component mounting apparatus M1 includes a mounting control unit 70, a storage unit 71, a communication unit 72, a mechanism driving unit 73, and a map creation processing unit 74. The mounting control unit 70 controls each unit described below based on various programs and data stored in the storage unit 71 in order to execute a component mounting operation by the component mounting apparatus M1. The storage unit 71 stores mounting position information 71 a and element characteristic information 12 in addition to programs and data necessary for control processing by the mounting control unit 70. The mounting position information 71 a is created from execution history data of mounting operation control by the mounting control unit 70. The element characteristic information 12 is transmitted from the management computer 3 via the LAN system 2. The communication unit 72 is connected to other devices via the LAN system 2 and exchanges control signals and data.
 機構駆動部73は、実装制御部70に制御されて、部品供給機構25や部品実装機構26を駆動する。これにより、基板4の各個片基板4aにLED素子5が実装される。マップ作成処理部74(マップデータ作成手段)は、記憶部71に記憶され部品実装装置M1によって実装されたLED素子5の基板4における位置を示す実装位置情報71aと、当該LED素子5についての素子特性情報12とを関連付けたマップデータ18を、基板4毎に作成する処理を行う。すなわち、マップデータ作成手段は部品実装装置M1に設けられており、マップデータ18は部品実装装置M1から樹脂塗布装置M4に送信される。なお、マップデータ18を管理コンピュータ3経由で部品実装装置M1から樹脂塗布装置M4に送信するようにしてもよい。この場合には、マップデータ18は、図12に示すように、管理コンピュータ3の記憶部61にも記憶される。 The mechanism driving unit 73 is controlled by the mounting control unit 70 to drive the component supply mechanism 25 and the component mounting mechanism 26. As a result, the LED elements 5 are mounted on the individual substrates 4 a of the substrate 4. The map creation processing unit 74 (map data creation means) includes mounting position information 71a indicating the position of the LED element 5 on the substrate 4 stored in the storage unit 71 and mounted by the component mounting apparatus M1, and an element for the LED element 5 A process of creating the map data 18 associated with the characteristic information 12 for each substrate 4 is performed. That is, the map data creating means is provided in the component mounting apparatus M1, and the map data 18 is transmitted from the component mounting apparatus M1 to the resin coating apparatus M4. The map data 18 may be transmitted from the component mounting apparatus M1 to the resin coating apparatus M4 via the management computer 3. In this case, the map data 18 is also stored in the storage unit 61 of the management computer 3 as shown in FIG.
 樹脂塗布装置M4は、塗布制御部36、記憶部81、通信部82、生産実行処理部37、塗布量導出処理部38、発光特性測定処理部39を備えている。塗布制御部36は、樹脂塗布部Cを構成するノズル移動機構34、樹脂吐出機構35および試し打ち・測定ユニット40を制御することにより、樹脂8を発光特性測定用として透光部材43に試し塗布する測定用塗布処理および実生産用としてLED素子5に塗布する生産用塗布処理を実行させる処理を行う。ここで塗布制御部36は、測定用塗布処理において、ディスペンサ33A、33Bのそれぞれの塗布ノズル33aによって、それぞれ種類の異なる第1蛍光体、第2蛍光体を含む第1樹脂8A、第2樹脂8Bを、発光特性測定用として同一の透光部材43に順次試し塗布させるようになっている。 The resin coating apparatus M4 includes a coating control unit 36, a storage unit 81, a communication unit 82, a production execution processing unit 37, a coating amount derivation processing unit 38, and a light emission characteristic measurement processing unit 39. The application control unit 36 controls the nozzle moving mechanism 34, the resin discharge mechanism 35, and the test hitting / measurement unit 40 constituting the resin application unit C, so that the resin 8 is applied to the translucent member 43 for light emission characteristic measurement. The measurement coating process to be performed and the production coating process to be applied to the LED element 5 for actual production are performed. Here, the application control unit 36 uses the application nozzles 33a of the dispensers 33A and 33B in the measurement application process, and the first and second resins 8A and 8B including the first and second phosphors of different types. Are sequentially applied to the same translucent member 43 for light emission characteristic measurement.
 記憶部81には、塗布制御部36による制御処理に必要なプログラムやデータのほか、樹脂塗布情報14やマップデータ18、しきい値データ81a、実生産用塗布量81bを記憶する。樹脂塗布情報14はLANシステム2を介して管理コンピュータ3から送信され、マップデータ18は同様にLANシステム2を介して部品実装装置M1から送信される。通信部82はLANシステム2を介して他装置と接続されており、制御信号やデータの授受を行う。 The storage unit 81 stores programs and data necessary for control processing by the application control unit 36, as well as resin application information 14, map data 18, threshold data 81a, and actual production application amount 81b. The resin application information 14 is transmitted from the management computer 3 via the LAN system 2, and the map data 18 is similarly transmitted from the component mounting apparatus M1 via the LAN system 2. The communication unit 82 is connected to other devices via the LAN system 2 and exchanges control signals and data.
 発光特性測定処理部39は、光源部45から発光された励起光を透光部材43に試し塗布された複数の樹脂8(第1樹脂8A、第2樹脂8B)に照射することにより、これらの樹脂を対象として発光特性を測定する処理を行う。塗布量導出処理部38は、発光特性測定処理部39の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて実生産用としてLED素子5に塗布されるべき第1樹脂8A、第2樹脂8Bの適正樹脂塗布量を導出する演算処理を行う。そして生産実行処理部37は、塗布量導出処理部38により導出された第1樹脂8A、第2樹脂8Bについての適正樹脂塗布量を塗布制御部36に指令することにより、ディスペンサ33A、33Bのそれぞれの塗布ノズル33aによって、適正樹脂塗布量の第1樹脂8A、第2樹脂8Bを、同一のLED素子5に順次塗布する塗布する生産用塗布処理を実行させる。 The light emission characteristic measurement processing unit 39 irradiates the excitation light emitted from the light source unit 45 to the plurality of resins 8 (first resin 8A and second resin 8B) applied on the translucent member 43 by trial. A process for measuring light emission characteristics of a resin is performed. The application amount derivation processing unit 38 obtains a deviation between the measurement result of the light emission characteristic measurement processing unit 39 and a predetermined light emission characteristic, and based on this deviation, the first resin to be applied to the LED element 5 for actual production. A calculation process for deriving the appropriate resin application amount of 8A and the second resin 8B is performed. Then, the production execution processing unit 37 instructs the application control unit 36 to specify the appropriate resin application amounts for the first resin 8A and the second resin 8B derived by the application amount derivation processing unit 38, whereby each of the dispensers 33A and 33B. With the application nozzle 33a, a production application process for applying the first resin 8A and the second resin 8B in appropriate amounts to the same LED element 5 in sequence is executed.
 なお、図12に示す構成において、各装置固有の作業動作を実行するための機能以外の処理機能、例えば部品実装装置M1に設けられているマップ作成処理部74の機能、樹脂塗布装置M4に設けられている塗布量導出処理部38の機能は、必ずしも当該装置に付属させる必要はない。例えば、マップ作成処理部74、塗布量導出処理部38の機能を管理コンピュータ3のシステム制御部60が有する演算処理機能によってカバーするようにし、必要な信号授受をLANシステム2を介して行うように構成してもよい。 In the configuration shown in FIG. 12, a processing function other than the function for executing the work operation unique to each apparatus, for example, the function of the map creation processing unit 74 provided in the component mounting apparatus M1, and the resin coating apparatus M4 are provided. The function of the applied amount derivation processing unit 38 is not necessarily attached to the apparatus. For example, the functions of the map creation processing unit 74 and the coating amount derivation processing unit 38 are covered by the arithmetic processing function of the system control unit 60 of the management computer 3 and necessary signal exchange is performed via the LAN system 2. It may be configured.
 上述のLEDパッケージ製造システム1の構成において、部品実装装置M1、樹脂塗布装置M4はいずれもLANシステム2に接続されている。そして記憶部61に素子特性情報12が記憶された管理コンピュータ3およびLANシステム2は、複数のLED素子5の発光波長を含む発光特性を予め個別に測定して得られた情報を、素子特性情報12として部品実装装置M1に提供する素子特性情報提供手段となっている。同様に、記憶部61に樹脂塗布情報14が記憶された管理コンピュータ3およびLANシステム2は、規定の発光特性を具備したLEDパッケージ50を得るための樹脂8の適正樹脂塗布量と素子特性情報とを対応させた情報を、樹脂塗布情報として樹脂塗布装置M4に提供する樹脂情報提供手段となっている。 In the configuration of the LED package manufacturing system 1 described above, both the component mounting apparatus M1 and the resin coating apparatus M4 are connected to the LAN system 2. Then, the management computer 3 and the LAN system 2 in which the element characteristic information 12 is stored in the storage unit 61 uses the information obtained by separately measuring the emission characteristics including the emission wavelengths of the plurality of LED elements 5 in advance as the element characteristic information. 12 is element characteristic information providing means provided to the component mounting apparatus M1. Similarly, the management computer 3 and the LAN system 2 in which the resin application information 14 is stored in the storage unit 61, the appropriate resin application amount of the resin 8 and the element characteristic information for obtaining the LED package 50 having the prescribed light emission characteristics, Is a resin information providing means for providing information corresponding to the information to the resin coating apparatus M4 as resin coating information.
 すなわち、素子特性情報12を部品実装装置M1に提供する素子特性情報提供手段および樹脂塗布情報14を樹脂塗布装置M4に提供する樹脂情報提供手段は、外部記憶手段である管理コンピュータ3の記憶部61より読み出された素子特性情報および樹脂塗布情報を、LANシステム2を介して部品実装装置M1および樹脂塗布装置M4にそれぞれ送信する構成となっている。 That is, the element characteristic information providing means for providing the element characteristic information 12 to the component mounting apparatus M1 and the resin information providing means for providing the resin coating information 14 to the resin coating apparatus M4 are the storage unit 61 of the management computer 3 which is an external storage means. The element characteristic information and the resin application information read out are transmitted to the component mounting apparatus M1 and the resin application apparatus M4 via the LAN system 2, respectively.
 次にLEDパッケージ製造システム1によって実行されるLEDパッケージ製造過程について、図13のフローに沿って、各図を参照しながら説明する。まず、素子特性情報12および樹脂塗布情報14を取得する(ST1)。すなわち、複数のLED素子5の発光波長を含む発光特性を予め個別に測定して得られた素子特性情報12および規定の発光特性を具備したLEDパッケージ50を得るための第1樹脂8A、第2樹脂8Bの適正樹脂塗布量と素子特性情報12とを対応させた樹脂塗布情報14を、外部装置からLANシステム2を介して、または記憶媒体を介して取得する。このとき、製造対象のLEDパッケージ50に求められる色調に対応した第2蛍光体粒子量をまず選択し、選択された第2蛍光体粒子量に対応したデータテーブルを取得する。 Next, the LED package manufacturing process executed by the LED package manufacturing system 1 will be described along the flow of FIG. 13 with reference to each drawing. First, element characteristic information 12 and resin application information 14 are acquired (ST1). That is, the first resin 8A and the second resin 8A for obtaining the LED package 50 having the element characteristic information 12 obtained by individually measuring the emission characteristics including the emission wavelengths of the plurality of LED elements 5 in advance and the prescribed emission characteristics. The resin application information 14 that associates the appropriate resin application amount of the resin 8B with the element characteristic information 12 is acquired from the external device via the LAN system 2 or via a storage medium. At this time, the second phosphor particle amount corresponding to the color tone required for the LED package 50 to be manufactured is first selected, and a data table corresponding to the selected second phosphor particle amount is acquired.
 この後、部品実装装置M1に実装対象となる基板4を搬入する(ST2)。そして図19(a)に示すように、接着剤転写機構24の転写ピン24aを昇降させることにより(矢印n)、LED実装部4b内の素子実装位置に樹脂接着剤23を供給した後、図19(b)に示すように、部品実装機構26の実装ノズル26aに保持したLED素子5を下降させ(矢印o)、樹脂接着剤23を介して基板4のLED実装部4b内に実装する(ST3)。そしてこの部品実装作業の実行データから、当該基板4について、実装位置情報71aと、それぞれのLED素子5の素子特性情報12とを関連付けたマップデータ18を、マップ作成処理部74によって作成する(ST4)。次いでこのマップデータ18を部品実装装置M1から樹脂塗布装置M4に送信するとともに、管理コンピュータ3から樹脂塗布情報14を樹脂塗布装置M4に送信する(ST5)。これにより、樹脂塗布装置M4による樹脂塗布作業が実行可能な状態となる。 Thereafter, the board 4 to be mounted is carried into the component mounting apparatus M1 (ST2). Then, as shown in FIG. 19A, the resin adhesive 23 is supplied to the element mounting position in the LED mounting portion 4b by raising and lowering the transfer pin 24a of the adhesive transfer mechanism 24 (arrow n). As shown in FIG. 19B, the LED element 5 held by the mounting nozzle 26a of the component mounting mechanism 26 is lowered (arrow o) and mounted in the LED mounting portion 4b of the substrate 4 via the resin adhesive 23 ( ST3). Then, the map creation processing unit 74 creates map data 18 that associates the mounting position information 71a with the element characteristic information 12 of each LED element 5 for the board 4 from the execution data of the component mounting work (ST4). ). Next, the map data 18 is transmitted from the component mounting apparatus M1 to the resin coating apparatus M4, and the resin coating information 14 is transmitted from the management computer 3 to the resin coating apparatus M4 (ST5). Thereby, it will be in the state which can perform the resin coating operation | work by the resin coating apparatus M4.
 次いで、部品実装後の基板4はキュア装置M2に送られ、ここで加熱されることにより、図19(c)に示すように、樹脂接着剤23が熱硬化して樹脂接着剤23*となり、LED素子5は個片基板4aに固着される。次いで樹脂キュア後の基板4はワイヤボンディング装置M3に送られ、図19(d)に示すように、個片基板4aの配線層4e、4dを、それぞれLED素子5のN型部電極6a、P型部電極6bとボンディングワイヤ7によって接続する。 Next, the substrate 4 after component mounting is sent to the curing device M2, where it is heated, whereby as shown in FIG. 19 (c), the resin adhesive 23 is thermoset to become a resin adhesive 23 *. The LED element 5 is fixed to the individual substrate 4a. Next, the substrate 4 after resin curing is sent to the wire bonding apparatus M3, and as shown in FIG. 19D, the wiring layers 4e and 4d of the individual substrate 4a are respectively connected to the N-type portion electrodes 6a and P of the LED element 5. The mold part electrode 6 b is connected to the bonding wire 7.
 次いで、良品判定用のしきい値データ作成処理が実行される(ST6)。この処理は、生産用塗布における良否判定のしきい値(図12に示すしきい値データ81a参照)を設定するために実行されるものであり、Binコード[1]、[2]、[3]、[4]、[5]に対応する生産用塗布のそれぞれについて反復して実行される。このしきい値データ作成処理の詳細について、図14、図15(a)~(c)、図16を参照して説明する。図14において、まず樹脂塗布情報14において選択された第2蛍光体粒子量に対応したデータテーブルに規定する純正濃度で第1蛍光体を含む第1樹脂8A、選択された第2蛍光体粒子量を供給可能な濃度で含む第2樹脂8Bを準備する(ST11)。 Next, threshold data creation processing for non-defective product determination is executed (ST6). This process is executed in order to set a pass / fail judgment threshold value in production coating (see threshold value data 81a shown in FIG. 12). Bin codes [1], [2], [3 ], [4], and [5] are repeatedly executed for each of the production coatings. Details of the threshold data creation processing will be described with reference to FIGS. 14, 15A to 15C, and FIG. In FIG. 14, first, the first resin 8A containing the first phosphor at a genuine concentration specified in the data table corresponding to the second phosphor particle amount selected in the resin application information 14, the selected second phosphor particle amount. A second resin 8B containing a concentration capable of supplying is prepared (ST11).
 そして第1樹脂8A、第2樹脂8Bを収納したシリンジを樹脂吐出ヘッド32にセットした後、樹脂吐出ヘッド32を試し打ち・測定ユニット40の試し打ちステージ40aに移動させて、第1樹脂8A、第2樹脂8Bを樹脂塗布情報14に示す規定塗布量(適正樹脂塗布量)で透光部材43に順次塗布する(ST12)。ここで、第2樹脂8Bの規定塗布量は、選択された第2蛍光体粒子量と準備された第2樹脂8Bの蛍光体濃度より算定されるものである。 Then, after setting the syringe containing the first resin 8A and the second resin 8B on the resin discharge head 32, the resin discharge head 32 is moved to the test hitting stage 40a of the test hitting / measurement unit 40, and the first resin 8A, The second resin 8B is sequentially applied to the translucent member 43 at the specified application amount (appropriate resin application amount) shown in the resin application information 14 (ST12). Here, the prescribed coating amount of the second resin 8B is calculated from the selected second phosphor particle amount and the phosphor concentration of the prepared second resin 8B.
 次いで透光部材43に塗布された樹脂8を透光部材載置部41上に移動させ、LED素子5を発光させて樹脂8が未硬化の状態における発光特性を前述構成の発光特性測定部によって測定する(ST13)。そして発光特性測定部によって測定された発光特性の測定結果である発光特性測定値39aに基づき、発光特性が良品と判定されるための測定値の良品判定範囲を設定し(ST14)、設定された良品判定範囲をしきい値データ81aとして、記憶部81に記憶させるとともに管理コンピュータ3に転送して記憶部61に記憶させる(ST15)。 Next, the resin 8 applied to the translucent member 43 is moved onto the translucent member mounting portion 41, the LED element 5 is caused to emit light, and the light emission characteristics in an uncured state of the resin 8 are measured by the light emission characteristic measuring section having the above-described configuration. Measure (ST13). Then, based on the light emission characteristic measurement value 39a which is the measurement result of the light emission characteristic measured by the light emission characteristic measurement unit, a non-defective product determination range of the measurement value for determining the light emission characteristic to be non-defective is set (ST14). The non-defective product determination range is stored as threshold data 81a in the storage unit 81, transferred to the management computer 3, and stored in the storage unit 61 (ST15).
 図14はこのようにして作成されたしきい値データ、すなわち純正量の蛍光体を含有する第1樹脂8A、第2樹脂8Bを塗布した後、樹脂未硬化状態において求められた発光特性測定値および発光特性が良品と判定されるための測定値の良品判定範囲(しきい値)を示している。図15(a)、(b)、(c)は、第1樹脂8Aにおける蛍光体濃度がそれぞれ5%。10%、15%である場合の、Binコード[1]、[2]、[3]、[4]、[5]に対応したしきい値を示すものである。 FIG. 14 shows threshold data created in this way, that is, measured light emission characteristic values obtained in the uncured state of the resin after applying the first resin 8A and the second resin 8B containing a genuine amount of phosphor. In addition, the non-defective product determination range (threshold value) of the measured value for determining that the light emission characteristic is non-defective is shown. 15A, 15B, and 15C, the phosphor concentration in the first resin 8A is 5%, respectively. The threshold values corresponding to the Bin codes [1], [2], [3], [4], and [5] in the case of 10% and 15% are shown.
 例えば図15(a)に示すように、樹脂8の蛍光体濃度が5%である場合において、Binコード12bのそれぞれには適正樹脂塗布量15(11)に示す塗布量が対応しており、それぞれの塗布量で第1樹脂8A、第2樹脂8Bを塗布した後の樹脂8にLED素子5の青色光を照射することにより樹脂8が発する光の発光特性を発光特性測定部によって測定した測定結果が、発光特性測定値39a(1)に示されている。そしてそれぞれの発光特性測定値39a(1)に基づいて、しきい値データ81a(1)が設定される。例えばBinコード[1]に対応して第1樹脂8Aを適正樹脂塗布量VA0で塗布した樹脂8を対象として発光特性を測定した測定結果は、図16に示す色度表上の色度座標ZA0(XA0、YA0)によって表される。そしてこの色度座標ZA0を中心として、色度表上におけるX座標、Y座標についての所定範囲(例えば±10%)が良品判定範囲(しきい値)として設定される。他のBinコード[2]~[5]に対応した適正樹脂塗布量についても同様に、発光特性測定結果に基づいて良品判定範囲(しきい値)が設定される(図16に示す色度表上の色度座標ZB0~ZE0参照)。ここで、しきい値として設定される所定範囲は、製品としてのLEDパッケージ50に求められる発光特性の精度レベルに応じて適宜設定される。 For example, as shown in FIG. 15A, when the phosphor concentration of the resin 8 is 5%, the Bin code 12b corresponds to the application amount indicated by the appropriate resin application amount 15 (11). Measurement by measuring the light emission characteristics of the light emitted by the resin 8 by irradiating the resin 8 after applying the first resin 8A and the second resin 8B with the respective application amounts with the blue light of the LED element 5 by the light emission characteristic measuring unit. The result is shown in the measured emission characteristic value 39a (1). Then, threshold data 81a (1) is set based on the respective emission characteristic measurement values 39a (1). For example, the measurement result of measuring the light emission characteristics of the resin 8 coated with the first resin 8A with the appropriate resin coating amount VA0 corresponding to the Bin code [1] is the chromaticity coordinate ZA0 on the chromaticity table shown in FIG. It is represented by (X A0 , Y A0 ). With this chromaticity coordinate ZA0 as the center, a predetermined range (for example, ± 10%) for the X coordinate and Y coordinate on the chromaticity table is set as a non-defective product determination range (threshold value). Similarly, for the appropriate resin coating amounts corresponding to the other Bin codes [2] to [5], a non-defective product determination range (threshold value) is set based on the light emission characteristic measurement results (chromaticity table shown in FIG. 16). (See chromaticity coordinates ZB0 to ZE0 above). Here, the predetermined range set as the threshold is appropriately set according to the accuracy level of the light emission characteristics required for the LED package 50 as a product.
 そして図15(b)、(c)は、同様に第1樹脂8Aの蛍光体濃度がそれぞれ10%、15%である場合の、発光特性測定値および良品判定範囲(しきい値)を示している。図14(b)、(c)において、適正樹脂塗布量15(2)、適正樹脂塗布量15(3)はそれぞれ蛍光体濃度がそれぞれ10%、15%である場合の適正樹脂塗布量を示しており、発光特性測定値39a(2)、発光特性測定値39a(3)は、それぞれ蛍光体濃度がそれぞれ10%、15%である場合の発光特定測定値を、またしきい値データ81a(2)、しきい値データ81a(3)はそれぞれの場合の良品判定範囲(しきい値)を示している。このようにして作成されたしきい値データは、生産用塗布作業において、対象となるLED素子5の属するBinコード12bに応じて使い分けられる。なお、(ST6)に示すしきい値データ作成処理は、LEDパッケージ製造システム1とは別に設けられた単独の検査装置によってオフライン作業として実行し、管理コンピュータ3に予めしきい値データ81aとして記憶させたものをLANシステム2経由で樹脂塗布装置M4に送信して用いるようにしてもよい。 FIGS. 15B and 15C show the measured emission characteristics and the non-defective product determination range (threshold value) when the phosphor concentration of the first resin 8A is 10% and 15%, respectively. Yes. 14B and 14C, the appropriate resin application amount 15 (2) and the appropriate resin application amount 15 (3) indicate the appropriate resin application amounts when the phosphor concentrations are 10% and 15%, respectively. The emission characteristic measurement value 39a (2) and the emission characteristic measurement value 39a (3) are emission specific measurement values when the phosphor concentrations are 10% and 15%, respectively, and threshold data 81a ( 2) The threshold value data 81a (3) indicates a non-defective product determination range (threshold value) in each case. The threshold data created in this way is selectively used according to the Bin code 12b to which the target LED element 5 belongs in the production coating operation. The threshold value data creation process shown in (ST6) is executed as an off-line operation by a single inspection device provided separately from the LED package manufacturing system 1, and is previously stored in the management computer 3 as threshold value data 81a. It is also possible to transmit the received data to the resin coating apparatus M4 via the LAN system 2.
 この後、ワイヤボンディング後の基板4は樹脂塗布装置M4に搬送され(ST7)、図20(a)に示すように、反射部4cで囲まれるLED実装部4bの内部に、ディスペンサ33Aの塗布ノズル33aから第1樹脂8Aを吐出させ、次いで図20(b)に示すように、第1樹脂8Aが塗布されたLED実装部4bに、ディスペンサ33Bの塗布ノズル33aから第2樹脂8Bを吐出させる。ここでは、マップデータ18、しきい値データ81aおよび樹脂塗布情報14に基づき、規定量の第1樹脂8A、第2樹脂8BをLED素子5を覆って塗布する作業が実行される(ST8)。この樹脂塗布作業処理の詳細について、図15(a)~(c)、図16を参照して説明する。まず樹脂塗布作業の開始に際しては、必要に応じて樹脂収納容器の交換が行われる(ST21)。すなわち樹脂吐出ヘッド32のディスペンサ33A、33Bに装着されるシリンジを、LED素子5の特性に応じて選択された蛍光体濃度の第1樹脂8A、第2樹脂8Bを収納したものに交換する。 Thereafter, the substrate 4 after wire bonding is conveyed to the resin coating device M4 (ST7), and as shown in FIG. 20A, the coating nozzle of the dispenser 33A is placed inside the LED mounting portion 4b surrounded by the reflecting portion 4c. First resin 8A is discharged from 33a, and then, as shown in FIG. 20B, second resin 8B is discharged from application nozzle 33a of dispenser 33B to LED mounting portion 4b to which first resin 8A has been applied. Here, based on the map data 18, the threshold data 81a, and the resin application information 14, a work of applying a prescribed amount of the first resin 8A and the second resin 8B over the LED element 5 is performed (ST8). Details of this resin coating operation processing will be described with reference to FIGS. 15 (a) to 15 (c) and FIG. First, at the start of the resin coating operation, the resin container is exchanged as necessary (ST21). That is, the syringe attached to the dispensers 33A and 33B of the resin discharge head 32 is replaced with one containing the first resin 8A and the second resin 8B having a phosphor concentration selected according to the characteristics of the LED element 5.
 次いで樹脂塗布部Cによって、第1樹脂8A、第2樹脂8Bを発光特性測定用として透光部材43に試し塗布する(測定用塗布工程)(ST22)。すなわち、測定用塗布工程においては、試し打ち・測定ユニット40にて複数の塗布ノズル33aによってそれぞれ種類の異なる蛍光体を含む複数の樹脂を試し打ちステージ40aに引き出された同一の透光部材43に順次試し塗布する。ここでは、図4にて規定される各Binコード12b毎の適正樹脂塗布量(VA0~VE0)の第1樹脂8Aおよび前述の規定量の第2樹脂8Bを塗布する。 Next, the first resin 8A and the second resin 8B are trial-applied to the translucent member 43 for measurement of light emission characteristics by the resin application part C (measurement application process) (ST22). That is, in the measurement application step, the test hitting / measurement unit 40 applies a plurality of resins containing different types of phosphors to the same translucent member 43 drawn to the test hitting stage 40a by the plurality of application nozzles 33a. Test-apply sequentially. Here, the first resin 8A with the appropriate resin application amount (VA0 to VE0) for each Bin code 12b specified in FIG. 4 and the second resin 8B with the above-mentioned specified amount are applied.
 このとき適正樹脂塗布量(VA0~VE0)、前述の規定量に対応する吐出動作パラメータを樹脂吐出機構35に指令しても、ディスペンサ33A、33Bの塗布ノズル33aから吐出されて透光部材43に塗布される実際の樹脂塗布量は、第1樹脂8A、第2樹脂8Bの性状の経時変化などによって必ずしも上述の適正樹脂塗布量、前述の規定量とはならず、図18(a)に示すように、第1樹脂8Aの実際樹脂塗布量はVA0~VE0とは幾分異なるVA1~VE1となる。 At this time, even if an appropriate resin application amount (VA0 to VE0) and a discharge operation parameter corresponding to the above-mentioned specified amount are instructed to the resin discharge mechanism 35, the resin is discharged from the application nozzles 33a of the dispensers 33A and 33B to the translucent member 43. The actual resin application amount to be applied is not necessarily the above-mentioned appropriate resin application amount and the above-mentioned prescribed amount due to changes in the properties of the first resin 8A and the second resin 8B over time, and is shown in FIG. As described above, the actual resin application amount of the first resin 8A is VA1 to VE1, which is somewhat different from VA0 to VE0.
 次いで試し打ち・測定ユニット40において透光部材43を送ることにより、第1樹脂8A、第2樹脂8Bが試し塗布された透光部材43を送り、透光部材載置部41に載置する(透光部材載置工程)。そして透光部材載置部41の上方に配置された光源部45から、蛍光体を励起する励起光を発光する(励起光発光工程)。そしてこの励起光を透光部材43に試し塗布された第1樹脂8A、第2樹脂8Bよりなる樹脂8に上方から照射することにより、この樹脂8が発する光を透光部材43の下方から積分球44を介して分光器42によって受光し、発光特性測定処理部39によってこの光の発光特性測定を行う(発光特性測定工程)(ST23)。 Next, by transmitting the translucent member 43 in the test hitting / measurement unit 40, the translucent member 43 on which the first resin 8A and the second resin 8B are applied by trial is sent and placed on the translucent member mounting portion 41 ( Translucent member placement step). And the excitation light which excites a fluorescent substance is light-emitted from the light source part 45 arrange | positioned above the translucent member mounting part 41 (excitation light emission process). Then, the excitation light is irradiated from above on the resin 8 made of the first resin 8A and the second resin 8B that have been trial-applied to the translucent member 43, whereby the light emitted from the resin 8 is integrated from below the translucent member 43. Light is received by the spectroscope 42 via the sphere 44, and the light emission characteristic measurement processing unit 39 measures the light emission characteristic (light emission characteristic measurement step) (ST23).
 これにより、図18(b)に示すように、色度座標Z(図16参照)で表される発光特性測定値が得られる。この測定結果は、上述の塗布量の誤差および樹脂8中の蛍光体粒子の濃度変化などによって、必ずしも予め規定された発光特性、すなわち図15(a)に示す適正樹脂塗布時における標準的な色度座標ZA0~ZE0とは一致しない。このため、得られた色度座標ZA1~ZE1と、図15(a)に示す適正樹脂塗布時における標準的な色度座標ZA0~ZE0との、X、Y座標における隔たりを示す偏差(ΔX、ΔY)~(ΔX、ΔY)を求め、所望の発光特性を得るための補正の要否を判定する。 As a result, as shown in FIG. 18B, a light emission characteristic measurement value represented by the chromaticity coordinate Z (see FIG. 16) is obtained. This measurement result is not necessarily based on the above-described error in the coating amount and the change in the concentration of the phosphor particles in the resin 8, and so on, and the standard color at the time of proper resin coating shown in FIG. The degree coordinates ZA0 to ZE0 do not match. For this reason, the deviation (ΔX A) indicating the difference in the X and Y coordinates between the obtained chromaticity coordinates ZA1 to ZE1 and the standard chromaticity coordinates ZA0 to ZE0 at the time of proper resin application shown in FIG. , ΔY A ) to (ΔX E , ΔY E ) are determined to determine whether correction is necessary to obtain desired light emission characteristics.
 ここでは測定結果はしきい値以内であるか否かの判定が行われ(ST24)、図18(c)に示すように、(ST23)にて求められた偏差としきい値とを比較することにより、偏差(ΔX、ΔY)~(ΔX、ΔY)がZA0~ZE0に対して±10%の範囲内にあるか否かを判断する。ここで、偏差がしきい値以内であれば、既設定の適正樹脂塗布量VA0~VE0に対応する吐出動作パラメータをそのまま維持する。これに対し、偏差がしきい値を超えている場合には、塗布量の補正を行う(ST25)。すなわち発光特性測定工程における測定結果と予め規定された発光特性との偏差を求め、図18(d)に示すように、求められた偏差に基づいて、LED素子5に塗布されるべき実生産用の新たな適正樹脂塗布量(VA2~VE2)を導出する処理を、塗布量導出処理部38によって実行する(塗布量導出処理工程)。 Here, it is determined whether or not the measurement result is within the threshold value (ST24), and as shown in FIG. 18C, the deviation obtained in (ST23) is compared with the threshold value. Thus, it is determined whether the deviations (ΔX A , ΔY A ) to (ΔX E , ΔY E ) are within ± 10% of ZA0 to ZE0. Here, if the deviation is within the threshold value, the discharge operation parameters corresponding to the preset appropriate resin application amounts VA0 to VE0 are maintained as they are. On the other hand, when the deviation exceeds the threshold value, the application amount is corrected (ST25). That is, the deviation between the measurement result in the light emission characteristic measurement step and the predetermined light emission characteristic is obtained, and as shown in FIG. 18 (d), the actual production to be applied to the LED element 5 based on the obtained deviation. The process of deriving the new appropriate resin application amount (VA2 to VE2) is executed by the application amount deriving processing unit 38 (application amount deriving process step).
 ここで、補正後の適正樹脂塗布量(VA2~VE2)は、既設定の適正樹脂塗布量VA0~VE0に、それぞれの偏差に応じた補正分を加えた更新値である。偏差と補正分との関係は、予め既知の付随データとして樹脂塗布情報14に記録されている。そして補正後の適正樹脂塗布量(VA2~VE2)に基づいて(ST22)、(ST23)、(ST24)、(ST25)の処理が反復実行され、(ST24)にて測定結果と予め規定された発光特性との偏差がしきい値以内であることが確認されることにより、実生産用の適正樹脂塗布量が確定する。すなわち上述の樹脂塗布方法においては、測定用塗布工程、透光部材載置工程、励起光発光工程、発光特性測定工程および塗布量導出工程を反復実行することにより、適正樹脂塗布量を確定的に導出するようにしている。そして確定した適正樹脂塗布量は、記憶部81に実生産用塗布量81bとして記憶される。 Here, the corrected appropriate resin coating amount (VA2 to VE2) is an updated value obtained by adding a correction amount corresponding to each deviation to the preset appropriate resin coating amount VA0 to VE0. The relationship between the deviation and the correction amount is recorded in the resin application information 14 as known accompanying data in advance. Then, based on the corrected appropriate resin coating amount (VA2 to VE2), the processes of (ST22), (ST23), (ST24), and (ST25) are repeatedly executed, and the measurement result is defined in advance in (ST24). When it is confirmed that the deviation from the light emission characteristic is within the threshold value, the proper resin coating amount for actual production is determined. That is, in the above-described resin coating method, the appropriate resin coating amount is determined by repeatedly executing the measurement coating step, the translucent member placement step, the excitation light emission step, the light emission characteristic measurement step, and the coating amount derivation step. I try to derive. The determined proper resin application amount is stored in the storage unit 81 as the actual production application amount 81b.
 なお上述例では、塗布量導出において第2樹脂8Bについては樹脂塗布情報14によって規定される規定値に固定し、第1樹脂8Aのみについて補正分を加えた更新値を導出する例を示している。このとき第1樹脂8Aについての補正のみでは、偏差をしきい値以内に収めることができない場合には、第2樹脂8Bについても第1樹脂8Aを対象として行った塗布量導出処理と同様の塗布量導出処理を実行する。すなわち塗布量導出処理工程において、複数の樹脂8(第1樹脂8A、第2樹脂8B)について、それぞれ適正樹脂塗布量を導出する処理を行う。 In the above-described example, the second resin 8B is fixed to a specified value defined by the resin application information 14 in the application amount derivation, and an updated value obtained by adding a correction amount for only the first resin 8A is shown. . At this time, when the deviation cannot be kept within the threshold value only by the correction for the first resin 8A, the application similar to the application amount derivation process performed for the first resin 8A is also applied to the second resin 8B. Execute quantity derivation process. That is, in the coating amount derivation processing step, processing for deriving the appropriate resin coating amount is performed for each of the plurality of resins 8 (first resin 8A and second resin 8B).
 そしてこの後、次のステップに移行して捨て打ちが実行される(ST26)。ここでは、所定量の樹脂8を塗布ノズル33aから吐出させることにより、樹脂吐出経路内の樹脂流動状態を改善して、ディスペンサ33A、33B、樹脂吐出機構35の動作を安定させる。なお図17にて破線枠によって示す(ST27)、(ST28)、(ST29)、(ST30)の処理は、(ST22)、(ST23)、(ST24)、(ST25)に示す処理内容と同様であり、所望の発光特性が完全に確保されていることを入念的に確認する必要がある場合に実行されるものであり、必ずしも必須実行事項ではない。 Then, after that, the process moves to the next step, and discarding is executed (ST26). Here, by discharging a predetermined amount of the resin 8 from the application nozzle 33a, the resin flow state in the resin discharge path is improved, and the operations of the dispensers 33A and 33B and the resin discharge mechanism 35 are stabilized. Note that the processes of (ST27), (ST28), (ST29), and (ST30) indicated by the broken line frame in FIG. 17 are the same as the processes shown in (ST22), (ST23), (ST24), and (ST25). It is executed when it is necessary to carefully check that the desired light emission characteristics are completely secured, and is not necessarily an essential execution item.
 このようにして、所望の発光特性を与える適正樹脂塗布量が確定したならば、生産用塗布が実行される(ST31)。すなわち、塗布量導出処理部38によって導出され実生産用塗布量81bとして記憶されたた複数の樹脂8(第1樹脂8A、第2樹脂8B)についての適正樹脂塗布量を、樹脂吐出機構35を制御する塗布制御部36に生産実行処理部37が指令することにより、この適正樹脂塗布量の第1樹脂8A、第2樹脂8Bを基板4に実装された同一のLED素子5に順次塗布する生産用塗布処理を実行させる(生産実行工程)。 In this way, when the appropriate resin coating amount that gives the desired light emission characteristics is determined, the production coating is executed (ST31). That is, the appropriate resin application amount for the plurality of resins 8 (the first resin 8A and the second resin 8B) derived by the application amount derivation processing unit 38 and stored as the actual production application amount 81b is stored in the resin discharge mechanism 35. The production execution processing unit 37 commands the application control unit 36 to control, so that the appropriate resin application amount of the first resin 8A and the second resin 8B are sequentially applied to the same LED element 5 mounted on the substrate 4. The coating process is executed (production execution process).
 そしてこの生産用塗布処理を反復実行する過程においては、ディスペンサ33A、33Bによる塗布回数をカウントしており、塗布回数が予め設定された所定回数を経過したか否かが監視される(ST32)。すなわちこの所定回数に到達するまでは、第1樹脂8A、第2樹脂8Bの性状や蛍光体濃度の変化は少ないと判断して、同一の実生産用塗布量81bを維持したまま生産用塗布実行(ST31)を反復する。そして(ST32)にて所定回数の経過が確認されたならば、第1樹脂8A、第2樹脂8Bの性状や蛍光体濃度が変化している可能性有りと判断して(ST22)に戻り、以下同様の発光特性の測定とその測定結果に基づく塗布量補正処理が反復して実行される。 In the process of repeatedly executing this production coating process, the number of coatings by the dispensers 33A and 33B is counted, and it is monitored whether the number of coatings has passed a predetermined number of times (ST32). That is, until the predetermined number of times is reached, it is determined that there is little change in the properties of the first resin 8A and the second resin 8B and the phosphor concentration, and the production coating is executed while maintaining the same actual production coating amount 81b. Repeat (ST31). If the predetermined number of times has been confirmed in (ST32), it is determined that the properties of the first resin 8A and the second resin 8B and the phosphor concentration may have changed, and the process returns to (ST22). Thereafter, the measurement of the same light emission characteristic and the coating amount correction process based on the measurement result are repeatedly executed.
 このようにして1枚の基板4を対象とする樹脂塗布が終了すると、基板4はキュア装置M5に送られ、キュア装置M5によって加熱することにより樹脂8を硬化させる(ST9)。これにより、図20(c)に示すように、LED素子5を覆って塗布された樹脂8は熱硬化して樹脂8*となり、LED実装部4b内で固着状態となる。次いで、樹脂キュア後の基板4は個片切断装置M6に送られ、ここで基板4を個片基板4a毎に切断することにより、図20(d)に示すように、個片のLEDパッケージ50に分割する(ST10)。これにより、LEDパッケージ50が完成する。 Thus, when the resin coating for one substrate 4 is completed, the substrate 4 is sent to the curing device M5, and the resin 8 is cured by heating by the curing device M5 (ST9). As a result, as shown in FIG. 20C, the resin 8 applied so as to cover the LED element 5 is thermally cured to become a resin 8 *, which is fixed in the LED mounting portion 4b. Next, the substrate 4 after the resin curing is sent to the individual piece cutting device M6, where the substrate 4 is cut into individual piece substrates 4a, and as shown in FIG. (ST10). Thereby, the LED package 50 is completed.
 上記説明したように、上記実施の形態に示す樹脂塗布装置M4は、種類の異なる第1蛍光体、第2蛍光体をそれぞれ含む第1樹脂8A、第2樹脂8Bを、塗布量を可変に吐出して任意の塗布対象位置に塗布する複数の塗布ノズル33aを有する樹脂塗布部Cと、樹脂塗布部Cを制御することにより、第1樹脂8A、第2樹脂8Bを発光特性測定用として透光部材43に試し塗布する測定用塗布処理および実生産用としてLED素子5に塗布する生産用塗布処理を実行させる塗布制御部36と、蛍光体を励起する励起光を発光する光源部45と、測定用塗布処理において第1樹脂8A、第2樹脂8Bが試し塗布された透光部材43が載置される透光部材載置部41と、光源部45から発光された励起光を透光部材43に塗布された樹脂8に照射することによりこの樹脂8が発する光の発光特性を測定する発光特性測定部と、発光特性測定部の測定結果と予め規定された発光特性との偏差を求め、この偏差に基づいて適正樹脂塗布量を補正することにより、LED素子5に塗布されるべき実生産用の適正樹脂塗布量を導出する塗布量導出処理部38と、導出された適正樹脂塗布量を塗布制御部36に指令することにより、この適正樹脂塗布量の樹脂をLED素子5に塗布する生産用塗布処理を実行させる生産実行処理部37とを備えた構成となっている。 As described above, the resin coating apparatus M4 shown in the above embodiment ejects the first resin 8A and the second resin 8B each including different types of the first phosphor and the second phosphor in variable amounts. By controlling the resin application part C having a plurality of application nozzles 33a to be applied to arbitrary application target positions and the resin application part C, the first resin 8A and the second resin 8B are used for measuring the light emission characteristics. An application control unit 36 for executing a measurement application process for trial application to the member 43 and a production application process for application to the LED element 5 for actual production, a light source unit 45 for emitting excitation light for exciting the phosphor, and measurement In the coating process, the translucent member mounting portion 41 on which the translucent member 43 on which the first resin 8A and the second resin 8B are trial-coated is placed, and the excitation light emitted from the light source unit 45 is transmitted through the translucent member 43. The resin 8 applied to the The light emission characteristic measuring unit for measuring the light emission characteristic of the light emitted from the resin 8, the deviation between the measurement result of the light emission characteristic measuring part and the predetermined light emission characteristic is obtained, and the appropriate resin coating amount is obtained based on this deviation By correcting the above, the application amount deriving processing unit 38 for deriving the appropriate resin application amount for actual production to be applied to the LED element 5 and the derived appropriate resin application amount are instructed to the application control unit 36. The production execution processing unit 37 is configured to execute a production application process for applying the appropriate resin application amount of resin to the LED element 5.
 上述構成により、LED素子5を蛍光体を含む樹脂によって覆って成るLEDパッケージ50の製造に用いられる樹脂塗布において、それぞれ種類の異なる蛍光体を含む第1樹脂8A、第2樹脂8Bを同一の透光部材43に順次試し塗布し、試し塗布された第1樹脂8A、第2樹脂8Bを対象として発光特性を測定し、発光特性を測定した測定結果に基づいて実生産用としてLED素子5に塗布されるべき第1樹脂8A、第2樹脂8Bの適正樹脂塗布量を導出し、さらに導出された適正樹脂塗布量を塗布制御部36に指令することにより、複数の塗布ノズル33aによって第1樹脂8A、第2樹脂8Bを同一のLED素子5に順次塗布することが可能となっている。これにより、個片のLED素子5の発光波長がばらつく場合にあっても、LEDパッケージ50の発光特性を均一にして、生産歩留まりを向上させるとともに、単一種類の樹脂のみでは困難な発光色の多様な色調調整を行うことができる。 With the above-described configuration, in the resin coating used for manufacturing the LED package 50 in which the LED element 5 is covered with a resin containing a phosphor, the first resin 8A and the second resin 8B each containing different types of phosphors are made the same transparent. Test application is sequentially performed on the optical member 43, the light emission characteristics are measured for the first resin 8 </ b> A and the second resin 8 </ b> B that have been test applied, and the light emission characteristics are measured and applied to the LED element 5 for actual production. By deriving the appropriate resin application amounts of the first resin 8A and the second resin 8B to be performed, and by instructing the application control unit 36 of the derived appropriate resin application amounts, the first resin 8A is provided by the plurality of application nozzles 33a. The second resin 8B can be sequentially applied to the same LED element 5. Thereby, even when the emission wavelengths of the individual LED elements 5 vary, the emission characteristics of the LED package 50 are made uniform, the production yield is improved, and the emission color that is difficult with only a single type of resin is achieved. Various color tone adjustments can be made.
 なお上記実施の形態では、2つのディスペンサ33A、33Bによって種類の異なる蛍光体を含む2種類の第1樹脂8A、第2樹脂8Bを順次塗布するようにしているが、樹脂の種類は2種類に限定されるものではない。すなわち色度調整の必要度に応じて3種類以上の樹脂を塗布する場合においても、本発明を適用することができる。 In the above embodiment, two types of first resin 8A and second resin 8B containing different types of phosphors are sequentially applied by two dispensers 33A and 33B. However, there are two types of resins. It is not limited. That is, the present invention can be applied even when three or more kinds of resins are applied depending on the degree of chromaticity adjustment.
 本出願は、2011年10月6日出願の日本国特許出願(特願2011-221627)に基づくものであり、それらの内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on October 6, 2011 (Japanese Patent Application No. 2011-221627), the contents of which are incorporated herein by reference.
 本発明の樹脂塗布装置および樹脂塗布方法は、LEDパッケージ製造システムにおいて、個片のLED素子の発光波長がばらつく場合にあってもLEDパッケージの発光特性を均一にして、生産歩留まりを向上させるとともに、発光色の多様な色調調整が可能となるという効果を有し、LED素子を蛍光体を含む樹脂で覆った構成のLEDパッケージを製造する分野において利用可能である。 The resin coating apparatus and the resin coating method of the present invention, in the LED package manufacturing system, make the light emission characteristics of the LED package uniform and improve the production yield even when the light emission wavelength of the individual LED elements varies. It has the effect that various color tones of emitted colors can be adjusted, and can be used in the field of manufacturing an LED package in which an LED element is covered with a resin containing a phosphor.
 1 LEDパッケージ製造システム
 2 LANシステム
 4 基板
 4a 個片基板
 4b LED実装部
 4c 反射部
 5 LED素子
 8 樹脂
 8A 第1樹脂
 8B 第2樹脂
 12 素子特性情報
 13A、13B、13C、13D、13E LEDシート
 14 樹脂塗布情報
 18 マップデータ
 23 樹脂接着剤
 24 接着剤転写機構
 25 部品供給機構
 26 部品実装機構
 32 樹脂吐出ヘッド
 33A、33B ディスペンサ
 33a 塗布ノズル
 40、140 試し打ち・測定ユニット
 40a 試し打ちステージ
 41、141 透光部材載置部
 42 分光器
 43 透光部材
 44 積分球
 46 照射部
 50 LEDパッケージ
DESCRIPTION OF SYMBOLS 1 LED package manufacturing system 2 LAN system 4 Board | substrate 4a Single piece board 4b LED mounting part 4c Reflection part 5 LED element 8 Resin 8A 1st resin 8B 2nd resin 12 Element characteristic information 13A, 13B, 13C, 13D, 13E LED sheet 14 Resin application information 18 Map data 23 Resin adhesive 24 Adhesive transfer mechanism 25 Component supply mechanism 26 Component mounting mechanism 32 Resin ejection head 33A, 33B Dispenser 33a Application nozzle 40, 140 Test strike / measurement unit 40a Test strike stage 41, 141 Through Optical member placement part 42 Spectroscope 43 Translucent member 44 Integrating sphere 46 Irradiation part 50 LED package

Claims (4)

  1.  基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムに用いられ、前記基板に実装された前記LED素子を覆って前記樹脂を塗布する樹脂塗布装置であって、
     前記樹脂を塗布量を可変に吐出して任意の塗布対象位置に塗布する複数の塗布ノズルを有する樹脂塗布部と、
     前記樹脂塗布部を制御することにより、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布処理および実生産用として前記LED素子に塗布する生産用塗布処理を実行させる塗布制御部と、
     前記蛍光体を励起する励起光を発光する光源部と、
     前記測定用塗布処理において前記樹脂が試し塗布された前記透光部材が載置される透光部材載置部と、
     前記光源部から発光された前記励起光を前記透光部材に塗布された前記樹脂に照射することによりこの樹脂が発する光の発光特性を測定する発光特性測定部と、
     前記発光特性測定部の測定結果と予め規定された発光特性とに基づいて実生産用として前記LED素子に塗布されるべき前記樹脂の適正樹脂塗布量を導出する塗布量導出処理部と、
     前記適正樹脂塗布量を前記塗布制御部に指令することにより、この適正樹脂塗布量の樹脂を前記LED素子に塗布する生産用塗布処理を実行させる生産実行処理部とを備え、
     前記塗布制御部は、前記複数の塗布ノズルによってそれぞれ種類の異なる蛍光体を含む複数の前記樹脂を発光特性測定用として同一の前記透光部材に順次試し塗布させ、
     前記発光特性測定部は、前記試し塗布された複数の前記樹脂を対象として発光特性を測定し、
     前記塗布量導出処理部は、前記複数の樹脂についてそれぞれ前記適正樹脂塗布量を導出し、
     前記生産実行処理部は、導出された前記複数の樹脂についての前記適正樹脂塗布量を前記塗布制御部に指令することにより、前記複数の塗布ノズルによって前記複数の樹脂を同一の前記LED素子に順次塗布させることを特徴とする樹脂塗布装置。
    A resin coating apparatus that is used in an LED package manufacturing system for manufacturing an LED package formed by covering an LED element mounted on a substrate with a resin containing a phosphor, and coats the LED element mounted on the substrate Because
    A resin application unit having a plurality of application nozzles that discharge the resin in a variable amount and apply it to any application target position;
    By controlling the resin coating unit, a coating control unit that executes a coating process for measurement for applying the resin to a light-transmitting member for light emission characteristic measurement and a production coating process for coating the LED element for actual production. When,
    A light source unit that emits excitation light for exciting the phosphor;
    A translucent member placement portion on which the translucent member on which the resin has been trial-applied in the measurement application treatment is placed;
    A light emission characteristic measuring unit that measures light emission characteristics of light emitted by the resin by irradiating the resin applied to the light transmitting member with the excitation light emitted from the light source unit;
    An application amount derivation processing unit for deriving an appropriate resin application amount of the resin to be applied to the LED element for actual production based on a measurement result of the light emission characteristic measurement unit and a predetermined light emission characteristic;
    A production execution processing unit for executing a production coating process for coating the LED element with a resin having the proper resin coating amount by commanding the appropriate resin coating amount to the coating control unit;
    The application control unit sequentially applies a plurality of the resins containing different types of phosphors by the plurality of application nozzles to the same translucent member for light emission characteristic measurement,
    The light emission characteristic measurement unit measures light emission characteristics for the plurality of trial-applied resins,
    The application amount derivation processing unit derives the appropriate resin application amount for each of the plurality of resins,
    The production execution processing unit sequentially instructs the plurality of resins to be applied to the same LED element by the plurality of coating nozzles by instructing the coating control unit of the appropriate resin coating amount for the plurality of derived resins. A resin coating apparatus characterized by being applied.
  2.  前記光源部として、LED素子を用いることを特徴とする請求項1記載の樹脂塗布装置。 The resin coating apparatus according to claim 1, wherein an LED element is used as the light source unit.
  3.  基板に実装されたLED素子を蛍光体を含む樹脂によって覆って成るLEDパッケージを製造するLEDパッケージ製造システムに用いられ、前記基板に実装された前記LED素子を覆って前記樹脂を塗布する樹脂塗布方法であって、
     前記樹脂を塗布量を可変に吐出する複数の塗布ノズルを有する樹脂塗布部によって、前記樹脂を発光特性測定用として透光部材に試し塗布する測定用塗布工程と、
     前記樹脂が試し塗布された前記透光部材を透光部材載置部に載置する透光部材載置工程と、
     前記蛍光体を励起する励起光を発光する光源部から発光された前記励起光を前記透光部材に塗布された前記樹脂に照射することによりこの樹脂が発する光の発光特性を測定する発光特性測定工程と、
     前記発光特性測定工程における測定結果と予め規定された発光特性に基づいて実生産用として前記LED素子に塗布されるべき前記樹脂の適正樹脂塗布量を導出する塗布量導出処理工程と、
     前記導出された前記適正樹脂塗布量を前記樹脂塗布部を制御する塗布制御部に指令することにより、この適正樹脂塗布量の樹脂を前記LED素子に塗布する生産用塗布処理を実行させる生産実行工程とを含み、
     前記測定用塗布工程において、前記複数の塗布ノズルによってそれぞれ種類の異なる蛍光体を含む複数の前記樹脂を同一の前記透光部材に順次試し塗布し、
     前記発光特性測定工程において、前記試し塗布された複数の前記樹脂を対象として発光特性を測定し、
     前記塗布量導出処理工程において、前記複数の樹脂についてそれぞれ前記適正樹脂塗布量を導出し、
     前記生産実行工程において、導出された前記複数の樹脂についての前記適正樹脂塗布量を前記塗布制御部に指令することにより、前記複数の塗布ノズルによって前記複数の樹脂を同一の前記LED素子に順次塗布することを特徴とする樹脂塗布方法。
    A resin coating method used in an LED package manufacturing system for manufacturing an LED package formed by covering an LED element mounted on a substrate with a resin containing a phosphor, and applying the resin to cover the LED element mounted on the substrate Because
    An application process for measurement in which the resin is applied to a light-transmitting member as a light emission characteristic measurement by a resin application part having a plurality of application nozzles that discharge the resin in a variable amount.
    A translucent member placement step of placing the translucent member on which the resin has been trial-applied on the translucent member placement portion;
    Emission characteristic measurement for measuring the emission characteristic of light emitted from the resin by irradiating the resin applied to the translucent member with the excitation light emitted from a light source unit that emits excitation light for exciting the phosphor. Process,
    An application amount derivation process step for deriving an appropriate resin application amount of the resin to be applied to the LED element for actual production based on the measurement result in the light emission characteristic measurement step and a predetermined light emission characteristic;
    A production execution step of executing a production coating process for coating the LED element with the resin of the proper resin coating amount by instructing the derived control resin coating amount to the coating control unit that controls the resin coating unit. Including
    In the measurement application step, a plurality of the resins including different types of phosphors are sequentially applied to the same translucent member by the plurality of application nozzles,
    In the light emission characteristic measurement step, the light emission characteristic is measured for the plurality of the test-applied resins,
    In the coating amount derivation processing step, the appropriate resin coating amount is derived for each of the plurality of resins,
    In the production execution step, the plurality of resins are sequentially applied to the same LED element by the plurality of application nozzles by instructing the application control unit to apply the appropriate resin application amount for the plurality of derived resins. A resin coating method characterized by:
  4.  前記光源部として蛍光体を含まない樹脂で封止されたLED素子を用い、前記予め規定された発光特性は、前記LED素子に塗布された前記樹脂が硬化した状態の完成製品について求められる正規の発光特性を、前記樹脂が未硬化の状態であることによる発光特性の相違分だけ偏らせた発光特性であることを特徴とする請求項3に記載の樹脂塗布方法。 As the light source unit, an LED element sealed with a resin that does not contain a phosphor is used, and the predetermined light emission characteristics are obtained for a finished product in a state where the resin applied to the LED element is cured. 4. The resin coating method according to claim 3, wherein the light emission characteristic is a light emission characteristic that is biased by a difference in light emission characteristic due to the resin being in an uncured state.
PCT/JP2012/005759 2011-10-06 2012-09-11 Resin coating device and resin coating method WO2013051197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-221627 2011-10-06
JP2011221627A JP5768217B2 (en) 2011-10-06 2011-10-06 Resin coating apparatus and resin coating method

Publications (1)

Publication Number Publication Date
WO2013051197A1 true WO2013051197A1 (en) 2013-04-11

Family

ID=48043383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005759 WO2013051197A1 (en) 2011-10-06 2012-09-11 Resin coating device and resin coating method

Country Status (2)

Country Link
JP (1) JP5768217B2 (en)
WO (1) WO2013051197A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260403A (en) * 2002-03-12 2003-09-16 Tatsumo Kk Apparatus and method for inspecting phosphor paste discharge state
JP2006093108A (en) * 2004-08-06 2006-04-06 Nordson Corp Phosphor spraying system for optical display
WO2006121197A1 (en) * 2005-05-12 2006-11-16 Matsushita Electric Industrial Co., Ltd. Apparatus for forming phosphor layer and method for forming phosphor layer using the apparatus
JP2007289081A (en) * 2006-04-26 2007-11-08 Fujitsu Ltd Substance-introducing apparatus and substance-introducing method
JP2007311663A (en) * 2006-05-19 2007-11-29 Sharp Corp Manufacturing method for light emitting device, light emitting device, and manufacturing apparatus for light emitting device
JP2008145300A (en) * 2006-12-11 2008-06-26 Sharp Corp Phosphor layer thickness determination method and manufacturing method of light-emitting device
JP2010177620A (en) * 2009-02-02 2010-08-12 Showa Denko Kk Production process of light-emitting device
JP2011096936A (en) * 2009-10-30 2011-05-12 Alpha- Design Kk Semiconductor light emitting device manufacturing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5869769B2 (en) * 2011-03-07 2016-02-24 コニカミノルタ株式会社 Method for forming phosphor layer and method for manufacturing light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260403A (en) * 2002-03-12 2003-09-16 Tatsumo Kk Apparatus and method for inspecting phosphor paste discharge state
JP2006093108A (en) * 2004-08-06 2006-04-06 Nordson Corp Phosphor spraying system for optical display
WO2006121197A1 (en) * 2005-05-12 2006-11-16 Matsushita Electric Industrial Co., Ltd. Apparatus for forming phosphor layer and method for forming phosphor layer using the apparatus
JP2007289081A (en) * 2006-04-26 2007-11-08 Fujitsu Ltd Substance-introducing apparatus and substance-introducing method
JP2007311663A (en) * 2006-05-19 2007-11-29 Sharp Corp Manufacturing method for light emitting device, light emitting device, and manufacturing apparatus for light emitting device
JP2008145300A (en) * 2006-12-11 2008-06-26 Sharp Corp Phosphor layer thickness determination method and manufacturing method of light-emitting device
JP2010177620A (en) * 2009-02-02 2010-08-12 Showa Denko Kk Production process of light-emitting device
JP2011096936A (en) * 2009-10-30 2011-05-12 Alpha- Design Kk Semiconductor light emitting device manufacturing apparatus

Also Published As

Publication number Publication date
JP2013084649A (en) 2013-05-09
JP5768217B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5310700B2 (en) LED package manufacturing system and resin coating method in LED package manufacturing system
WO2013121752A1 (en) Resin application device and resin application method
JP5899485B2 (en) Resin coating apparatus and resin coating method
JP5310699B2 (en) Resin coating apparatus and resin coating method
JP5413404B2 (en) LED package manufacturing system and resin coating method in LED package manufacturing system
JP5413405B2 (en) Resin coating apparatus and resin coating method
JP2013065644A (en) System and method for manufacturing light emitting element, and system and method for manufacturing light emitting element package
JP5861032B2 (en) Resin coating apparatus and resin coating method
WO2012032692A1 (en) Led-package manufacturing system
JP2013048130A (en) Resin coating device and resin coating method
WO2013121474A1 (en) Resin coating device, and resin coating method
KR20130093467A (en) Resin application device in led package manufacturing system
JP2014075546A (en) Resin application device and resin application method
JP2014236136A (en) Resin applying device and resin applying method in led package manufacturing system
JP5879508B2 (en) Resin coating apparatus and resin coating method
JP5768217B2 (en) Resin coating apparatus and resin coating method
JP2013048131A (en) Resin coating device and resin coating method
JP2013172052A (en) Resin applying device and resin applying method
WO2013051260A1 (en) Resin coating device and resin coating method
JP2014075545A (en) Led package manufacturing system and led package manufacturing method
JP2013093496A (en) Inspection apparatus for resin light emission and inspection method for resin light emission
JP2013098522A (en) Resin coating apparatus and resin coating method
JP2013084651A (en) Resin coating device and resin coating method
JP2013065646A (en) System and method for manufacturing light emitting element, and system and method for manufacturing light emitting element package
JP2013089746A (en) Resin coating apparatus and resin coating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838089

Country of ref document: EP

Kind code of ref document: A1