WO2013051068A1 - 慣性センサ - Google Patents

慣性センサ Download PDF

Info

Publication number
WO2013051068A1
WO2013051068A1 PCT/JP2011/005644 JP2011005644W WO2013051068A1 WO 2013051068 A1 WO2013051068 A1 WO 2013051068A1 JP 2011005644 W JP2011005644 W JP 2011005644W WO 2013051068 A1 WO2013051068 A1 WO 2013051068A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
lid
gap
glass
electrode
Prior art date
Application number
PCT/JP2011/005644
Other languages
English (en)
French (fr)
Inventor
秀明 鷹野
後藤 康
千咲紀 田窪
山中 聖子
内藤 孝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/005644 priority Critical patent/WO2013051068A1/ja
Publication of WO2013051068A1 publication Critical patent/WO2013051068A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5769Manufacturing; Mounting; Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0172Seals
    • B81C2203/019Seals characterised by the material or arrangement of seals between parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0837Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being suspended so as to only allow movement perpendicular to the plane of the substrate, i.e. z-axis sensor

Definitions

  • the present invention relates to an inertial sensor.
  • the present invention relates to an inertial sensor that detects an inertial force acting in a direction perpendicular to the substrate surface.
  • inertia sensors such as an acceleration sensor and an angular velocity sensor have been miniaturized and are widely used in automobiles, portable game machines and the like.
  • a capacitive MEMS inertial sensor using an SOI (Silicon On Insulator) substrate is known.
  • Patent Document 1 is an example.
  • the movable part provided on the SOI substrate is fixed to the fixed part via the beam, and is displaced in a predetermined direction according to the acceleration acting on the sensor. This amount of displacement is detected as a change in capacitance between the movable part and the fixed part, and converted into a voltage signal using an external CV conversion circuit.
  • the movable part and the fixed part of Patent Document 1 are provided in the same layer.
  • Patent Document 2 describes a method in which a recess is provided in advance in a lid by etching and the periphery thereof is bonded to a silicon substrate. By matching the position of the movable part of the silicon substrate and the recessed portion of the lid, the movable part can be hermetically sealed when the silicon substrate and the lid are joined.
  • the joining method methods such as anodic joining and direct joining are described.
  • Patent Document 1 describes a configuration in which a wiring layer is formed on a lid.
  • Patent Document 2 describes a configuration in which a through electrode is formed on a lid. Solder or a conductive adhesive is used for electrical connection between the wiring layer or through electrode formed on the lid and the silicon substrate.
  • the lid has a wiring function in addition to protection and hermetic sealing, if the lid is provided with a recess, the wiring area is reduced, the yield is lowered due to disconnection, and the process is complicated. For this reason, it is desirable that the lid remains flat and does not require dent processing. In this case, it is necessary to adjust the height between the lid and the SOI substrate using a conductive adhesive so that the movable portion does not adhere to the lid.
  • a polymer adhesive is first considered as such a conductive adhesive.
  • the solvent component volatilizes in the process of curing or the like, it can be applied to an angular velocity sensor or the like that needs to keep the moving part environment in a vacuum. Application is difficult.
  • Patent Document 3 describes low-melting glass paste bonding capable of vacuum-tight sealing. According to this, since the flat lid and the flat substrate can be bonded with a certain distance, even if the lid is flat, the movable part does not stick, and vacuum-tight sealing is performed as necessary. Is also possible.
  • the glass paste of Patent Document 3 can be made conductive by mixing a conductive filler, and can be electrically connected to a flat lid having a wiring function and an SOI substrate.
  • the movable portion and the fixed portion are provided in the same layer, it is a sensor for inertial force in a direction parallel to the substrate surface (hereinafter referred to as “in-plane direction”).
  • in-plane direction a direction parallel to the substrate surface
  • a sensor that detects the inertial force acting in the direction perpendicular to the substrate surface become.
  • a fixed electrode is provided using a wiring layer of a flat lid and electrically connected to an SOI substrate using a conductive paste, the static between the movable part and the fixed electrode in a direction perpendicular to the substrate surface. The electric capacity can be detected.
  • the gap is controlled by using the thickness of the wiring layer itself of the lid.
  • a step of directly bonding the lid and the SOI substrate specifically, a step of planarizing the surface of the lid and the SOI substrate, and a surface activation treatment in a high vacuum A process and a process of aligning and bonding the wafer are required.
  • an expensive apparatus is required and the processing throughput is small, so that mass productivity is lacking.
  • Patent Document 1 also describes a method using a conductive adhesive such as solder connection or silver paste, but does not describe a configuration in which the gap is controlled by the conductive adhesive.
  • a conductive adhesive such as solder connection or silver paste
  • Patent Document 2 describes a configuration in which a flat lid and a silicon substrate are connected by solder bumps in FIG.
  • gap control cannot be realized in an in-vehicle sensor that requires high temperature resistance and high reliability.
  • Au-Sn solder is expensive and has a problem of poor cost performance.
  • anodic bonding is also known as a method for bonding the lid and the silicon substrate, but this is not only limited to glass for the lid material, but also requires a recess processing on the lid side, so that it is flat. Not applicable to the lid. For this reason, since the gap between the movable part and the fixed electrode cannot be reduced, a highly accurate sensor cannot be realized.
  • Patent Document 3 describes a method of putting a filler in order to adjust the thermal expansion coefficient between a substrate and glass in a low melting point glass paste joint capable of vacuum-tight sealing, but a flat lid A method for accurately adjusting the gap between the substrate and the substrate is not described.
  • an object of the present invention is to provide an inertial sensor that detects an inertial force acting in a direction perpendicular to the substrate surface with higher accuracy or at lower cost.
  • an inertial sensor which is a support layer, an intermediate insulating layer provided on the support layer, and provided on the intermediate insulating layer and movable.
  • a conductor layer provided with a portion, a lid provided above the conductor layer and sealing a region where the movable portion is provided, and a first fixed electrode provided on a side of the lid facing the movable portion
  • the lid and the conductor layer are joined by a glass fired coating film, and the glass fired coating film contains a plurality of first fillers.
  • an inertial sensor that detects an inertial force acting in a direction perpendicular to the substrate surface with higher accuracy or at a lower cost.
  • a capacitive MEMS acceleration sensor that detects acceleration acting in a direction perpendicular to a substrate surface is shown. Note that throughout this specification, a capacitive MEMS inertial sensor using an SOI substrate has been described. However, even if an intermediate insulating layer and a polysilicon layer (active layer) are deposited on a normal silicon substrate, the Similar effects can be obtained. Further, throughout the present specification, the acceleration sensor is described, but the same effect can be obtained for the angular velocity sensor.
  • FIG. 1 shows a cross-sectional view of the capacitive MEMS acceleration sensor in the XZ plane.
  • the SOI substrate 100 and the lid 200 are joined by glass fired coating films 300 and 301.
  • the SOI substrate 100 includes three layers of a conductor layer (active layer) 131 on which a MEMS structure is formed, an intermediate insulating layer 132, and a support layer 133.
  • FIG. 2 shows a top view of the SOI substrate.
  • the movable part 101 is fixed to the fixed part 103 via the beam 102.
  • the beam is designed to be soft in the vertical direction (z direction) of the substrate and hard in the in-plane direction (x direction or y direction).
  • z direction the vertical direction
  • x direction or y direction the in-plane direction
  • the movable portion 101 is displaced in the z direction.
  • the capacitance value between the movable portion 101 and the comb-shaped detection electrode 104 formed in the same plane changes according to the displacement amount.
  • both the movable portion 101 and the detection electrode 104 are in the same conductor layer 131, it is possible to compare the case where the movable portion 101 is displaced in the + z direction with the case where the movable portion 101 is displaced in the ⁇ z direction. If the displacement amount of the part is equal, the change in the capacitance value is also equal. For this reason, the direction of the displacement cannot be distinguished only by detecting the change in capacitance between the movable portion 101 and the detection capacitor 104. Therefore, in the present invention, the displacement direction of the movable part 101 is detected by a change in electrostatic capacitance between the movable part 101 and the electrode 201 provided on the lid 200 that seals the region where the movable part 101 is provided.
  • FIG. 1 is a cross-sectional view along A-A ′ in FIG.
  • the lid 200 is provided with an electrode 201 facing the movable part 101, and the movable part 101 and the electrode 201 constitute a capacitor. Since the capacitance is inversely proportional to the distance between the electrodes, if the capacitance value between the movable portion 101 and the electrode 201 is increased, the movable portion 101 is in the + z direction, and if the capacitance value is decreased, the ⁇ z direction is used. It can be seen that they are displaced.
  • the movable part 101 and the electrode 201 are electrically connected to the CV conversion circuit 400 through the through electrode 202.
  • the glass fired coating film 300 is hermetically sealed to maintain the cavity 302 that is the environmental pressure of the movable portion 101 at a desired value from atmospheric pressure to vacuum.
  • the glass fired coating film 301 contains a filler 302.
  • the feature of the present invention is that the lid 200 has a flat plate shape, and the inter-electrode distance d1 is mechanically adjusted to the particle size of the filler 302.
  • FIG. 3 shows the joint surface of the lid 200.
  • An electrode 201 is formed on the surface of the silicon substrate on which the through electrode 202 is formed.
  • the electrode 201 is made of a general metal thin film such as aluminum so as to have substantially the same shape as the movable portion 101.
  • the capacitances of the movable part 101 and the detection electrode 104, and the two parts of the movable part 101 and the electrode 201 are measured.
  • the displacement direction and the displacement amount of the movable part 101 are measured only with the latter. Needless to say, the former can be omitted. In that case, the detection electrode 104 becomes unnecessary, and the movable part 101 may have a simple rectangular shape.
  • the inter-electrode distance d1 is mechanically adjusted by the particle size of the filler 302 contained in the glass fired coating film 301, but the conductive filler 302 is made finer than d1, and the glass fired coating film 300 is formed.
  • the structure may be such that it is mechanically adjusted by the particle size of the filler contained.
  • an intermediate portion located below the movable portion is passed through an etching hole 105 provided in the movable portion 101.
  • the insulating layer 132 is removed, and the movable portion 101 is separated from the support layer 133.
  • any material can be used as long as the insulating film 204 is formed on the surface of the base material 203, the through electrode 202 is provided at a desired position, and the electrode 201 is formed on the bonding surface of the lid 200. Is unquestionable.
  • the thermal expansion coefficient on the SOI substrate side and the thermal expansion coefficient of the lid can be matched in bonding with the SOI substrate, and the sensor structure has excellent temperature characteristics. The body can be realized.
  • the manufacturing method which forms a through hole is used. First, after forming a deep hole by deep dry etching in the silicon substrate 203, a through hole is formed by backside polishing. Next, an insulating film is formed inside the through hole by thermal oxidation or the like, and the through hole is filled with a conductive material using MOCVD method, plating method or the like. Finally, the through electrode is formed by polishing both surfaces of the substrate.
  • an insulating film is formed on the substrate surface, and the insulating film in the through electrode portion is removed by photolithography and etching. Then, a general metal material such as aluminum is formed, and the upper electrode 201 having a desired shape is formed by photolithography and etching.
  • the entire lid 200 conductive as an electrode facing the movable portion 101.
  • the electrostatic capacitance with the conductor layer 131 such as the beam 102 and the fixed portion 103 other than the movable portion 101 can be considered.
  • the capacitance is superimposed as a parasitic capacitance.
  • the shape of the electrode 201 on the XY plane is almost the same as that of the movable part 101, such parasitic capacitance can be suppressed as much as possible, and the change rate of the electrostatic capacity accompanying the displacement of the movable part 101 increases. Therefore, highly accurate detection is possible.
  • Fig. 4 shows the state where the above process is completed.
  • the movable portion 101 is released from the support layer 133.
  • the lid 200 a through electrode 202 and an electrode 201 are formed at desired positions on the silicon substrate 203.
  • FIG. 5 shows a state in which glass pastes 300a and 301a are formed on the surface of the lid 200 by screen printing and pre-baked.
  • the temperature condition of this temporary baking step there is an optimum temperature depending on the glass paste material, but it is, for example, about 450 ° C. for about 10 minutes.
  • the glass pastes 300a and 301a may be provided on the SOI substrate 100 side, but in that case, there is a concern that the yield may be reduced due to contamination of the MEMS structure due to the addition of a post-process or deterioration of mechanical characteristics due to a temperature cycle. Is done. For this reason, the glass pastes 300a and 301a are preferably provided on the lid 200 side.
  • the SOI substrate 100 and the lid 200 are aligned, main baking is performed in a state where a bonding pressure is applied in a direction in which the two wafers are pressure-bonded, and the two wafers are bonded to obtain the state shown in FIG.
  • the temperature condition of the main baking step there is an optimum temperature depending on the glass paste material, but it is, for example, about 350 ° C. and about 10 minutes.
  • the feature of the present invention is that the particle diameter of the filler contained in the glass paste and the gap d1 are substantially equal (the gap d1 is movable when no inertial force is particularly applied to the sensor).
  • a filler having a small particle diameter for example, 1 ⁇ m
  • a filler having a particle size substantially equal to the gap d1 to be realized for example, 5 ⁇ m is included.
  • the heat-softened glass pastes 300a and 301a are deformed in the in-plane direction of the substrate according to the bonding pressure applied from the outside, and the filler 302 serves as a stopper.
  • the filler 302 has a material hardness sufficient to prevent deformation with respect to a joining pressure applied from the outside.
  • the glass pastes 300a and 301a are sintered in a deformed state to become the glass fired coating films 300 and 301, respectively.
  • the inertial sensor in the present embodiment is provided with the support layer (133), the intermediate insulating layer (132) provided on the support layer, the intermediate insulating layer, and the movable portion (101).
  • a conductor layer (131), a lid (200) provided above the conductor layer and sealing a region where the movable portion is provided, and a fixed electrode provided on the surface of the lid facing the movable portion (201), the lid and the conductor layer are joined by a glass fired coating film (300, 301), and the glass fired coating film contains a plurality of fillers (302).
  • the gap d1 can be controlled by the particle size of the filler, and there is an effect of suppressing in-plane variation of the gap d1, variation between wafers or lots.
  • the gap d1 is set in accordance with process variations such as the in-plane distribution of the printing shape of the glass paste, the absolute value of the bonding pressure, and the deviation of the pressure application direction from the vertical direction.
  • process variations such as the in-plane distribution of the printing shape of the glass paste, the absolute value of the bonding pressure, and the deviation of the pressure application direction from the vertical direction.
  • the filler plays a role of adjusting the gap, so that a uniform gap can be formed in the wafer surface.
  • the gap d1 between wafers and lots can be suppressed to the extent of the filler particle size variation. That is, there is an effect that is excellent in mass productivity.
  • the present invention is effective in improving the mass productivity of high-precision sensors. This is because, in order to increase the accuracy, the gap between the movable part and the fixed electrode is narrowed to increase the capacitance value, but in this case, the slight difference in the gap is sensitively reflected. Therefore, it is required to accurately control the gap in the manufacturing process. In other words, the above process variation becomes a larger variation in sensor characteristics, and the yield decreases.
  • the present invention by using a filler that sufficiently suppresses the variation in particle size, the effect of improving the mass productivity of the high-precision sensor by suppressing the in-plane variation of the gap d1 and the variation between wafers and lots. There is.
  • the filler 302 that plays the role of gap adjustment described above may be one by one so as to surround the cavity 303. In that case, however, the bonding pressure in the main firing step is concentrated on the three, and if the filler is damaged or the like, there is a possibility that the role of gap adjustment cannot be achieved. Therefore, in order to obtain the above-described effect, it is desirable that the filler 302 is contained in the glass fired coating film 301 with a density of a certain level or more.
  • the particle size of the filler 302 that plays the role of gap adjustment is substantially equal to the gap d1, but here, “substantially equal” means as follows.
  • the filler 302 is spherical and makes point contact with the two substrates.
  • a bonding pressure is applied to the filler 302 in the main firing step. Therefore, in theory, an infinite force is applied to the contact point, so depending on the relationship between the hardness of the filler and the applied pressure, the filler shape is actually larger or smaller to increase the contact area. Deform.
  • an insulating film or a metal film is present on the surface of the SOI substrate 100 or the lid 200 with which the filler 302 is in contact, and there may be a difference from the gap d1 corresponding to the film thickness. .
  • the particle diameters of the gap d1 and the filler 302 are not exactly the same, but the gap d1 is not mechanically controlled by the filler particle diameter, and therefore, in this specification, “ It is expressed as “substantially equal”.
  • the gap d1 is determined not by the filler particle size distribution but by the maximum value. Therefore, if the particle size is selected with a mesh screen having a desired size and then sufficiently stirred, the filler having the maximum particle size can be distributed spatially and uniformly.
  • the capacitance value between the movable portion 101 and the lid electrode 201 is inversely proportional to the gap, and therefore can be suppressed to the target value ⁇ 5%.
  • the variation in capacitance value can be set to the target value ⁇ 5%, so the yield is remarkably improved and mass productivity is improved. There is an effect to make.
  • a filler 302 is contained in a glass fired coating film 301 that electrically connects the conductor layer 131 and the through electrode 202 and requires electrical conductivity.
  • the filler 302 in this embodiment is made of a conductive material made of noble metal such as Ag or Ni, and in order to fulfill the function of gap adjustment of the present invention. A hard material is selected. In that case, since it is close to point contact with the upper and lower substrates, the conductivity is lowered.
  • a flat filler instead of a spherical shape may be used, but in this case, the filler particle size cannot be controlled, so that the gap adjustment accuracy is lowered. Therefore, in such a structure, a trade-off occurs between conductivity and gap controllability.
  • the glass fired coating film 301 that requires electrical conductivity may have a configuration including two types of fillers, ie, a hard filler 302 for adjusting a gap and an electrically conductive filler 305.
  • FIG. 6 shows a case where the conductive filler 305 has a small particle size (for example, 1 ⁇ m) and the gap adjusting filler 302 has a large particle size (for example, 5 ⁇ m).
  • the conductive filler 305 may be flat because the shape is not required, and the conductivity can be increased.
  • the gap adjusting filler 302 may be either conductive or insulating.
  • the filler 302 is not filled up, and an area where the conductive filler 305 contacts the upper and lower substrates can be secured.
  • the reason why the particle size of the conductive filler is smaller than the particle size of the gap adjusting filler 302 is to make it easier to enter the gap of the gap adjusting filler 302, thereby increasing the contact area with the upper and lower substrates and increasing the conductivity. effective.
  • the capacitance change rate becomes small because the capacitance at a location that does not face the movable portion 101, for example, a location such as the beam 102 or the fixed portion 103, becomes a parasitic capacitance.
  • the shape of the electrode 201 can be freely designed so as to face the movable portion 101, so that the parasitic capacitance as described above can be suppressed as much as possible. Therefore, the rate of change in capacitance can be increased, and a highly accurate sensor can be realized.
  • the capacitance is measured by an external CV conversion circuit via the through electrode 202, but the fluctuation of the potential of the base material 203 is one of noise components in the capacitance measurement. Therefore, in order to realize a highly accurate capacitive sensor, it is preferable to stabilize the potential by making the base material 203 a high-resistance substrate or making it conductive and grounding it.
  • a polymer adhesive is often used, but in this case, vacuum hermetic sealing is difficult. This is because a method of joining two substrates using a thermosetting resin such as polyimide as an intermediate layer generates gas in the joining process, and the cavity cannot be kept in a vacuum.
  • the present invention since it is a method of joining two substrates using a heat-softened glass layer as an intermediate layer, if the solvent component contained in the glass paste is sufficiently volatilized in the temporary firing step, Since the gas generated in the subsequent main firing step (wafer bonding step) can be suppressed, the cavity can be maintained in a vacuum. Therefore, the present invention can be applied to an angular velocity sensor or the like that needs to maintain the movable part environment in a vacuum.
  • the width of the glass paste 300 that is hermetically sealed varies depending on the temperature at the time of joining and the presence or absence of joining pressure, but if it is approximately 100 to 200 ⁇ m, it has practically sufficient hermeticity.
  • a low melting point solder having a melting point of around 200 ° C. cannot be applied to an in-vehicle sensor that requires high temperature resistance and high reliability.
  • Au-Sn solder is high temperature resistant and highly reliable but expensive, and has poor cost performance.
  • the melting point of the glass fired coating film is around 400 ° C., it has high temperature resistance, high reliability, and excellent cost performance because it does not use expensive materials.
  • the gap adjusting filler 302 is included in the glass fired coating film 301 that requires electrical conductivity, but may be included in the glass fired coating film 300 for hermetic sealing.
  • the glass fired coating film 300 has a wide width of about 100 to 200 ⁇ m as described above, and the number of fillers 302 per wafer can be increased, so that the probability of the filler 302 being damaged during bonding can be lowered. , Gap controllability can be improved. Furthermore, since the glass-fired coating film 301 requiring electrical conductivity can use the flat conductive filler described in Example 1, high electrical conductivity can also be realized.
  • the glass fired coating film 300 is a pattern having a size of about 1 mm so as to surround the sensor element for hermetic sealing. If there is a difference in thermal expansion coefficient between the glass fired coating film 300 and the upper and lower substrates, there is a concern that cracks will occur due to the large pattern.
  • the thermal expansion coefficient is the same as that of the substrate in accordance with the thermal expansion coefficient of the glass fired coating film 300 and the thermal expansion coefficient and content ratio of the gap adjusting filler. It is preferable to include a second filler 306 different from the filler. With this configuration, the thermal expansion coefficient can be adjusted with the second filler, and high conductivity, hermetic sealing, and gap adjustment can be satisfied at the same time.
  • vanadium-based glass paste a glass paste having p-type or n-type conductivity (hereinafter abbreviated as vanadium-based glass paste) can be realized without containing a conductive filler. it can.
  • the filler 302 contained in the glass fired coating film 301 can be either conductive or insulating. For this reason, there is an effect that the material selectivity of the filler 302 is widened.
  • the glass fired coating 301 using the vanadium glass paste can be electrically connected to the movable portion 101 regardless of whether it is p-type or n-type.
  • the material of the through electrode 202 is a semiconductor material such as polysilicon
  • the through electrode 202 when the through electrode 202 is p-type, the glass fired coating film 301 using the vanadium glass paste is also p-type.
  • the through electrode 202 is n-type.
  • a device structure in which the gap between the upper cavity 303 of the movable portion 101 and the lower cavity 304 is equal can be realized.
  • a MEMS inertial sensor structure in which the upper and lower cavities are symmetrical can be realized by setting the particle size of the filler 302 for gap adjustment to 5 ⁇ m. If the cavity has a vertically symmetric structure, the upper and lower viscous resistances are also symmetrized, and the vibration characteristics of the inertial sensor are improved.
  • the through electrode 202 is provided only on the lid 200, but the SOI substrate 100 may be provided with a through electrode.
  • the upper electrode of the first MEMS inertial sensor and the lower electrode of the second MEMS inertial sensor are electrically connected using a conductive adhesive such as solder or the present invention, and three-dimensional mounting is performed. There is an effect that downsizing can be realized.

Abstract

 基板面に垂直な方向に働く慣性力を検出するセンサにおいて、可動部(101)と固定電極(201)の間のギャップ制御を高精度で行うため、導電体層(131)と蓋(200)をガラス焼成塗膜(300、301)で接合し、ガラス焼成塗膜内に複数のフィラー(302)を含む構造とする。係る構造により、当該ギャップをフィラーの粒径で制御することが可能となり、より高精度またはより安価な慣性センサを提供しうる。

Description

慣性センサ
 本発明は慣性センサに関する。特に、基板面に垂直な方向に働く慣性力を検出する慣性センサに関する。
 近年、加速度センサ、角速度センサなどの慣性センサは小型化が進み、自動車や携帯ゲーム機等に幅広く用いられている。その代表例の一つに、SOI(Silicon On Insulator)基板を用いた静電容量型MEMS慣性センサが知られている。
 特許文献1はその一例である。SOI基板に設けられた可動部が、梁を介して固定部に固定されており、センサに働く加速度に応じて所定の方向に変位する。この変位量を可動部と固定部の間の静電容量変化として検出し、外部のCV変換回路を用いて電圧信号に変換する。ここで、特許文献1の可動部と固定部とは互いに同一層に設けられている。
 また、可動部の保護や環境圧力調整を目的に、上記SOI基板に蓋を接合する技術が知られている。特許文献2には、蓋にあらかじめエッチング加工により窪み箇所を設け、その周囲をシリコン基板と接合する方法が記載されている。シリコン基板の可動部と、蓋の窪み箇所の位置を一致させることにより、シリコン基板と蓋とを接合した際に、可動部を気密封止することができる。接合方法としては、陽極接合や直接接合などの方法が記載されている。
 蓋には、上述した保護と気密封止の2種の機能に加えて、配線の機能をもたせることもできる。特許文献1には、蓋に配線層を形成した構成が記載されている。特許文献2には、蓋に貫通電極を形成した構成が記載されている。蓋に形成された配線層や貫通電極とシリコン基板との電気的な接続には、はんだや導電性接着剤が用いられる。
 このように蓋が保護、気密封止に加えて、配線の機能をも有する場合には、蓋に窪み加工を設けると、配線面積の減少や段切れによる歩留り低下、プロセスの複雑化などを招くため、蓋は平坦なままで窪み加工を必要としない方が望ましい。この場合、可動部が蓋と固着しないように導電性接着剤を用いて、蓋とSOI基板との間の高さを調整する必要がある。
 このような導電性接着剤としてまず考えられるのはポリマー系接着剤であるが、キュアなどの過程において溶媒分が揮発するために、可動部環境を真空に保持する必要のある角速度センサなどへの適用は困難である。
 これに対して特許文献3には、真空気密封止が可能な低融点ガラスペースト接合が記載されている。これによれば、平坦な蓋と平坦な基板とをある程度の間隔をあけて接着することができるので、蓋が平坦であっても可動部が固着することなく、必要に応じて真空気密封止も可能である。特許文献3のガラスペーストは、導電性フィラーを混入させることにより導電性をもたせることが可能であり、配線の機能を有する平坦な蓋と、SOI基板との電気的接続も可能である。
特開2010-145176号 特開2006-102876号 特開2010-184852号
 上記従来技術では、可動部と固定部が同一層に設けられているために、基板面に平行な方向(以下、「面内方向」と称する)の慣性力に対するセンサとなっている。これに対して、可動部の上下いずれかに固定電極を設け、且つ梁構造を最適化して基板面に垂直方向に変位するようにすれば、基板面に垂直方向に働く慣性力を検出するセンサになる。例えば、平坦な蓋の配線層を使って固定電極を設け、導電性ペーストを用いてSOI基板と電気的に接続すれば、基板面に垂直な方向において、可動部と固定電極との間の静電容量を検出することが可能となる。
 しかしながら、係るデバイス構造をとると、可動部と固定部の間のギャップの違いが容量値に反映されるため、製造工程によるギャップのばらつきの影響を大きく受けるという課題がある。この課題は、高精度化のため可動部と固定部の間のギャップを狭くして静電容量値を大きくした際に特に顕在化し、高精度センサの量産性を妨げるものとなる。
 このようなギャップの課題に対し、特許文献1では、図2に、蓋の配線層自体の厚みを利用してギャップ制御をしている。しかしながら、係るギャップ制御を行うためには、蓋とSOI基板とを直接接合する工程、具体的には、蓋とSOI基板の表面を平坦化処理する工程と、高真空中で表面活性化処理する工程と、ウエハの位置合わせと接合を行う工程が必要になる。これらの工程を実現するには、高価な装置が必要であり、且つ処理スループットも小さいために量産性に欠ける。
 また、特許文献1には、はんだ接続や銀ペーストなどの導電性接着剤を用いる方法も記載されているが、導電性接着剤によりギャップ制御をする構成については記載がない。配線部25aと気密封止部25bとが同一の高さとなっていない場合に、導電性接着剤が変形することを、むしろ積極的に利用した方法となっており、導電性接着剤の高さについては着目していないものである。
 特許文献2には、図13に、平坦な蓋とシリコン基板をはんだバンプ接続した構成が記載されている。しかしながら、低融点はんだでは、耐高温、高信頼が要求される車載用センサにおいて、ギャップ制御を実現することはできない。Au-Sn系はんだは高価であり、コストパフォーマンスが悪いという課題もある。
 また、一般に、蓋とシリコン基板との接合方法として陽極接合も知られているが、これは蓋の材料がガラスに限定されるだけでなく、蓋側に窪み加工が必要となるため、平坦な蓋には適用できない。そのため、可動部と固定電極のギャップを縮めることができないため、高精度なセンサを実現できない。
 さらに、ポリマー系導電性接着剤の場合には、キュアなどの過程において溶媒分が揮発するために、可動部環境を真空に保持する必要のある角速度センサなどへの適用は困難である。
 特許文献3には、真空気密封止が可能な低融点ガラスペースト接合において、基板とガラスとの間の熱膨張係数を調整するためにフィラーを入れる方法が記載されてはいるが、平坦な蓋と基板とのギャップを正確に調整する方法については記載されていない。
 以上を踏まえ、本発明の目的は、基板面に垂直な方向に働く慣性力をより高精度にまたはより安価に検出する慣性センサを提供することにある。
[規則91に基づく訂正 25.11.2011] 
 本発明における課題を解決する手段のうち、代表的なものを例示すれば、慣性センサであって、支持層と、支持層上に設けられる中間絶縁層と、中間絶縁層上に設けられ、可動部が設けられる導電体層と、導電体層の上方に設けられ、可動部が設けられる領域を封止する蓋と、蓋の表面のうち、可動部に対向する側に設けられる第1固定電極と、を有し、蓋と導電体層が、ガラス焼成塗膜により接合され、ガラス焼成塗膜に、複数の第1フィラーが含まれることを特徴とする。
 本発明によれば、基板面に垂直な方向に働く慣性力をより高精度にまたはより安価に検出する慣性センサを提供しうる。
本発明の実施の形態を示すMEMS加速度センサの断面図である。 本発明の実施の形態を示すMEMS加速度センサの上面図である。 本発明の実施の形態を示すMEMS加速度センサの蓋の下面図である。 本発明の実施の形態を示すMEMS加速度センサの作製プロセスである。 本発明の実施の形態を示すMEMS加速度センサの作製プロセスである。 本発明の別の実施の形態を示すガラスペーストの断面図である。 本発明の別の実施の形態を示すガラスペーストの断面図である。
 本発明の実施の一形態として、基板面に垂直方向に働く加速度を検出する静電容量型MEMS加速度センサを示す。なお、本明細書全般にわたり、SOI基板を用いた静電容量型MEMS慣性センサに関して記載しているが、通常のシリコン基板に中間絶縁層とポリシリコン層(活性層)を堆積しても、全く同様の効果を得ることができる。また、本明細書全般にわたり、加速度センサに関して記載しているが、角速度センサにも全く同様の効果を得ることができる。
 (基本構造と検出原理)
図1に、静電容量型MEMS加速度センサのXZ平面における断面図を示す。図1においては、SOI基板100と、蓋200とが、ガラス焼成塗膜300、301で接合されている。SOI基板100は、MEMS構造体が形成された導電体層(活性層)131、中間絶縁層132、支持層133、の3層から構成される。
 図2に、SOI基板の上面図を示す。可動部101は、梁102を介して固定部103に固定されている。梁は基板の垂直方向(z方向)には柔らかく、面内方向(x方向またはy方向)には硬くなるよう形状設計されている。基板面に垂直方向(z方向)に加速度が印加されると、可動部101がz方向へ変位する。その変位量に応じて、可動部101と同一面内に形成された櫛歯型の検出電極104との間の静電容量値が変化する。但し、可動部101と検出電極104はともに同一の導電体層131にあるので、+z方向に可動部101が変位した場合と、-z方向に可動部101が変位した場合とを比較すると、可動部の変位量が等しければその静電容量値の変化も等しい。そのため、可動部101と検出容量104の静電容量の変化を検出するのみでは変位の向きが区別できない。そこで、本発明では、可動部101と、可動部101が設けられる領域を封止する蓋200に設けられた電極201との静電容量の変化によって、可動部101の変位の向きを検出する。
 図1は、図2におけるA-A’に沿った断面図となっている。蓋200には、可動部101に対向して電極201が設けられており、可動部101と電極201はキャパシタを構成している。静電容量は電極間距離に反比例するので、可動部101と電極201の間の静電容量値が増えていれば可動部101が+z方向に、静電容量値が減っていれば-z方向に変位していることがわかる。
 可動部101と電極201は、貫通電極202を介して、CV変換回路400に電気的に接続されている。ガラス焼成塗膜300は、可動部101の環境圧力であるキャビティ302を、大気圧から真空まで所望の値に保持するための気密封止を行っている。ガラス焼成塗膜301は、フィラー302を含有している。
 ここで本発明の特徴は、蓋200が平板形状であり、且つ電極間距離d1がフィラー302の粒径に機械的に調整されている点にある。
 図3は、蓋200の接合面を示したものである。貫通電極202が形成されたシリコン基板の表面に、電極201が形成されている。電極201は、可動部101とほぼ同一の形状を有するよう、アルミなどの一般的な金属薄膜で構成されている。
 なお、本実施例においては可動部101と検出電極104、および可動部101と電極201との2箇所の静電容量を測定しているが、後者のみで可動部101の変位の向きと変位量とをともに検出できる場合には、前者が省略できることは言うまでもない。その場合には検出電極104が不要となり、可動部101は単純な矩形形状でよい。
 また、上記では、電極間距離d1はガラス焼成塗膜301に含まれるフィラー302の粒径により機械的に調整されているが、導電性フィラー302をd1よりも微粒子とし、ガラス焼成塗膜300に含まれるフィラーの粒径により機械的に調整されているような構成であってもよい。
 (作製プロセス)
次に、作製プロセスについて説明する。
 SOI基板100については、一般に知られているフォトリソグラフィ技術と深掘ドライエッチングプロセスを用いて導電体層131をパターニングした後に、可動部101に設けられたエッチングホール105を通して可動部の下部にある中間絶縁層132を除去し、可動部101を支持層133から分離することにより作製する。
 蓋200については、基材203の表面に絶縁膜204が形成され、所望の位置に貫通電極202が設けられており、且つ蓋200の接合面に電極201が形成された構造であれば、材料は不問である。但し、特に基材203の材料としてシリコン基板を用いることで、SOI基板との接合においてSOI基板側の熱膨張係数と、蓋の熱膨張係数を一致させることができ、温度特性の優れたセンサ構造体を実現できる。
 シリコン基板203に貫通電極202を設ける際には、スルーホールを形成する製法を用いる。まず、シリコン基板203を深掘ドライエッチングにより深孔を形成した後に、裏面研磨によりスルーホールを形成する。次に、熱酸化などによりスルーホール内側に絶縁膜を形成し、MOCVD法やめっき法などを用いて導電性材料でスルーホールを埋める。最後に、基板両面を研磨することで貫通電極を形成する。
 その後、基板表面に絶縁膜を成膜し、フォトリソグラフィとエッチングにより貫通電極部の絶縁膜を除去する。そしてアルミなどの一般的な金属材料を成膜し、フォトリソグラフィとエッチングにより所望の形状の上部電極201を形成する。
 ここで、可動部101に対向する電極として蓋200全体を導電性にすることも考えられるが、この場合、可動部101以外の例えば梁102、固定部103などの導電体層131との静電容量が寄生容量として重畳する問題がある。これに対して本発明では、XY平面における電極201の形状は可動部101とほぼ同一なので、そのような寄生容量を極力抑制でき、可動部101の変位に伴う静電容量の変化率が大きくなるので、高精度検出が可能となる。
 図4に、上記のプロセスが終了した状態を示す。SOI基板100については、可動部101が支持層133からリリースされた状態になっている。蓋200については、シリコン基板203の所望の位置に貫通電極202と、電極201が形成されている。
 図5を用いて、これら2枚のウエハをガラスペーストにより接合する工程を説明する。図5は、蓋200の表面にガラスペースト300a、301aをスクリーン印刷などで形成し、仮焼成を行った状態を示している。この仮焼成工程の温度条件については、ガラスペースト材料に応じて最適な温度があるが、例えば450℃、10分間程度である。
 ガラスペースト300a、301aについては、SOI基板100側に設けることも考えられるが、その場合には、後工程追加に伴うMEMS構造体への異物混入や温度サイクルによる機械特性劣化などによる歩留り低下が懸念される。そのため、ガラスペースト300a、301aは、蓋200側に設けることが好ましい。
 その後SOI基板100と蓋200をアライメントし、2枚のウエハを圧着させる方向に接合圧力を加えた状態で本焼成を行い、2枚のウエハを接合すると図1の状態が得られる。ここで本焼成工程の温度条件については、ガラスペースト材料に応じて最適な温度があるが、例えば350℃、10分間程度である。
 本発明の特徴は、ガラスペーストに含まれるフィラーの粒径と、ギャップd1とが実質的に等しい点にある(なお、ギャップd1は、本センサに特に慣性力が印加されていないときの、可動部と固定電極の距離を示す)。通常、ガラスペーストに含まれるフィラーは熱膨張係数の調整に使われるため、ペースト内部に均一に分布するよう粒径の小さい(例えば1μm)ものが用いられる。これに対して本発明では、実現したいギャップd1と実質的に等しい粒径(例えば5μm)のフィラーが含まれている。
 本焼成工程(ウエハ接合工程)においては、加熱軟化したガラスペースト300a、301aが外部より印加される接合圧力に応じて基板面内方向に変形し、フィラー302がストッパー機能を果たす。ここでフィラー302は、外部より印加される接合圧力に対して変形しない程度に十分な材料硬度を有している。本焼成工程後は、ガラスペースト300a、301aがそれぞれ変形した状態で焼結して、ガラス焼成塗膜300、301となる。
 以上をまとめると、本実施例における慣性センサは、支持層(133)と、支持層上に設けられる中間絶縁層(132)と、中間絶縁層上に設けられ、可動部(101)が設けられる導電体層(131)と、導電体層の上方に設けられ、可動部が設けられる領域を封止する蓋(200)と、蓋の表面のうち、可動部に対向する側に設けられる固定電極(201)とを有し、蓋と導電体層は、ガラス焼成塗膜(300、301)により接合され、ガラス焼成塗膜に複数のフィラー(302)が含まれることを特徴とする。係る構成によって、ギャップd1をフィラーの粒径によって制御することが可能となり、ギャップd1の面内ばらつき、ウエハ間やロット間のばらつきを抑制する効果がある。
 通常のガラスペーストを用いたウエハ接合プロセスにおいては、ガラスペーストの印刷形状の面内分布、接合圧力の絶対値、および圧力印加方向の垂直方向からのずれなどのプロセスばらつきに応じて、ギャップd1に面内ばらつきや、ウエハ間・ロット間ばらつきが発生する問題がある。これに対して本発明では、上記プロセスばらつきが存在してもフィラーがギャップ調整の役目を果たすので、ウエハ面内で均一なギャップを形成することができる。もちろん同一のフィラーを含むガラスペーストを用いている限り、ギャップd1のウエハ間・ロット間ばらつきもフィラー粒径のばらつき程度まで抑制することができる。すなわち、量産性に優れた効果がある。
 特に本発明は、高精度センサの量産性向上に効果がある。なぜならば、高精度化するためには可動部と固定電極との間のギャップを狭くして静電容量値を大きくすることになるが、この場合、ギャップのわずかな違いを敏感に反映してしまうので、製造工程においてギャップを正確に制御することが求められる。すなわち、上記のプロセスばらつきが、より大きなセンサ特性のばらつきになってしまい歩留りが低下する。これに対して本発明では、粒径のばらつきを十分抑制したフィラーにすることによって、ギャップd1の面内ばらつきや、ウエハ間・ロット間ばらつきを抑制し、高精度センサの量産性を向上させる効果がある。
 上述したギャップ調整の役目を果たすフィラー302は、キャビティ303を取り囲むように1個ずつあればよい。しかしその場合、本焼成工程における接合圧力がその3個に集中し、フィラーの破損などが起こった場合、ギャップ調整の役目を果たすことができない可能性がある。そのため上述した効果を得るためには、ある程度以上の密度で、ガラス焼成塗膜301の中にフィラー302が含まれていることが望ましい。
 上述したように、ギャップ調整の役目を果たすフィラー302の粒径はギャップd1と実質的に等しいが、ここで「実質的に等しい」とは次のような意味である。
 フィラー302は球状であり、2枚の基板と点接触する。一方、本発明では、フィラー302には本焼成工程において接合圧力が加わる。そのため理論上は無限大の力が接触点にかかることになるので、フィラーの硬度と印加される圧力の関係にもよるが、実際には大なり小なり接触面積を大きくするようにフィラー形状が変形する。
 また、実際のデバイス構造においては、フィラー302が接触するSOI基板100、もしくは蓋200の表面に絶縁膜や金属膜などが存在し、その膜厚分だけギャップd1との差分が発生する場合もある。
 このような理由により、ギャップd1とフィラー302の粒径は厳密には一致しないが、ギャップd1はフィラー粒径により機械的に制御されていることには変わりはないため、本明細書中では「実質的に等しい」と表現している。
 上述した目的のためには、フィラー302の粒径をそろえる必要があるが、これは次のように行うことができる。ギャップd1は、含まれているフィラー粒径の分布ではなく最大値で決まる。そのため、所望の大きさを有する網目のふるいで粒径を選別した上で、十分な攪拌を行えば、粒径が最大値となっているフィラーが空間的に均一に分布させることができる。
 例えば、本発明において、フィラー粒径を目標値±5%に揃えた場合、可動部101と蓋の電極201と間の静電容量値はギャップに反比例することから目標値±5%に抑制できる。上述したプロセスばらつきによらず、ウエハ面内のみならず、ウエハ間、ロット間での静電容量値のばらつきを目標値±5%にすることができるので歩留りが著しく向上し、量産性を向上させる効果がある。
 (フィラーの詳細)
図1においては、導電体層131と貫通電極202とを電気的に接続する、導電性が要求されるガラス焼成塗膜301中にフィラー302が含有された構造となっている。一般に、ガラスは導電性をもたないことが多いため、本実施例におけるフィラー302は、Agなどの貴金属やNiなどからなる導電性材料からなり、本発明のギャップ調整の機能を果たすためには硬い材料が選択される。その場合、上下基板とは点接触に近くなるため、導電性が低下する。一方、導電性を高めるために球形ではなく、扁平のフィラーが用いられる場合もあるが、その場合にはフィラー粒径が制御できなくなるので、ギャップ調整精度が低下する。したがって、このような構造においては、導電性とギャップ制御性との間にトレードオフが発生する。
 そこで、導電性が要求されるガラス焼成塗膜301については、ギャップ調整のための硬いフィラー302と、導電性フィラー305の2種類を含む構成であってもよい。図6には、導電性フィラー305が細かい粒径(例えば1μm)で、ギャップ調整用フィラー302が大きい粒径(例えば5μm)のようなケースを示している。導電性フィラー305は形状が不問であるため扁平であってもよく、導電性を高めることができる。またギャップ調整用フィラー302は導電性でも絶縁性でも不問である。また前述したように、ある程度以上の密度で含有されていればよいのでフィラー302で埋め尽くされることはなく、導電性フィラー305が上下の基板と接触する面積を確保することができる。導電性フィラーの粒径が、ギャップ調整用フィラー302の粒径よりも小さい理由は、ギャップ調整用フィラー302の隙間に入り込みやすくすることで、上下基板との接触面積を増大させ、導電性を高める効果がある。
 一般に、蓋200全体を導電性材料で構成し、可動部101との間の静電容量を検出することも可能である。しかしながらこの場合、可動部101と対向していない箇所、例えば梁102や固定部103などの箇所との静電容量が寄生容量となるため、静電容量の変化率が小さくなる問題がある。
 これに対して本発明では、電極201の形状を可動部101と対向するように自由に設計できるため、上述したような寄生容量を極力抑制することができる。したがって、静電容量の変化率を高くでき、高精度なセンサを実現することができる。
 また、図1では貫通電極202を介して、外部のCV変換回路で静電容量を測定しているが、基材203の電位のふらつきは、静電容量測定におけるノイズ成分の一つである。そのため、高精度な静電容量型センサを実現するためには、基材203を高抵抗基板とするか、もしくは導電性とした上でアース接続することによって電位を安定化した方が好ましい。
本発明と類似のデバイス構造を実現するためには、一般に、ポリマー系接着剤が用いられることが多いが、この場合には真空気密封止が困難である。なぜならば、ポリイミドなどの熱硬化型樹脂を中間層として2枚の基板を接合する方法であるため、接合工程でガスが発生し、キャビティを真空に保持することができない。
 これに対して本発明では、加熱軟化したガラス層を中間層として2枚の基板を接合する方法であるため、仮焼成工程においてガラスペースト中に含まれる溶媒成分を十分に揮発させておけば、後の本焼成工程(ウエハ接合工程)で発生するガスを抑制できるので、キャビティを真空に保持することができる。そのため、可動部環境を真空に保持する必要のある角速度センサなどへ適用できる。
 気密封止をしているガラスペースト300の幅は、接合時の温度や接合圧力の有無などによって異なるが、概ね100~200μmあれば実用的に十分な気密性を有する。
 また、一般に、融点が200℃前後である低融点はんだでは、耐高温、高信頼が要求される車載用センサに適用することはできない。Au-Sn系はんだは耐高温、高信頼ではあるが高価であり、コストパフォーマンスが悪い。これに対して本発明では、ガラス焼成塗膜の融点が400℃前後はあるので耐高温、高信頼であり、且つ高価な材料を用いていないためにコストパフォーマンスに優れている。
 図1では、ギャップ調整用フィラー302は、導電性が要求されるガラス焼成塗膜301に含まれる構成であったが、気密封止用のガラス焼成塗膜300に含まれる構成であってもよい。ガラス焼成塗膜300は、上述したように概ね100~200μmと幅が広く、フィラー302のウエハ当りの個数を増大することができるので、接合時のフィラー302の破損する確率を低くすることができ、ギャップ制御性を高められる。更に導電性が要求されるガラス焼成塗膜301は、実施例1で述べた扁平形状の導電性フィラーを用いることができるので、高い導電性も実現することができる。
 一方、ガラス焼成塗膜300は、気密封止を行うためにセンサエレメントを取り囲むような、1mm程度の大きさのパタンである。ガラス焼成塗膜300と、上下の基板とに熱膨張係数差が有ると、パタンが大きいためにクラックが入る懸念がある。
 そこでこの場合は、ガラス焼成塗膜300の熱膨張係数と、ギャップ調整用フィラーの熱膨張係数および含有割合に対応して、熱膨張係数を基板と同一にするため、熱膨張係数が第1のフィラーとは異なる第2のフィラー306を含む構成とするのが良い。本構成により、第2のフィラーで熱膨張係数を調整することが可能となり、高い導電性、気密封止、ギャップ調整を同時に満足させることができる。
 (ガラスに導電性を持たせる変形例)
一般に、ガラスは導電性をもつことができないが、バナジウムを含む低融点ガラス組成物においては、バナジウムの総量とバナジウムの5価と4価の割合を変化させることによって、電子の移動を制御し、これにより導電性をもたせることができる。言い換えると、バナジウムを含む低融点ガラス組成物を用いれば、導電性フィラーを含まずとも、p型もしくはn型の導電性を有するガラスペースト(以下、バナジウム系ガラスペーストと省略)を実現することができる。
 本発明においてバナジウム系ガラスペーストを用いれば、ガラス焼成塗膜301に含まれるフィラー302は導電性でも絶縁性でも不問となる。このため、フィラー302の材料選択性が広くなる効果がある。
 貫通電極202の材料がCuなどの金属である場合、バナジウム系ガラスペーストを用いたガラス焼成塗膜301がp型でもn型でも、可動部101との電気的に接続できる。
 これに対して、貫通電極202の材料がポリシリコンなどの半導体材料である場合、例えば貫通電極202がp型である場合には、バナジウム系ガラスペーストを用いたガラス焼成塗膜301もp型にする必要がある。なぜなら、もしn型を用いれば、貫通電極202とバナジウム系ガラスペーストを用いたガラス焼成塗膜301とでダイオードが形成され、可動部の変位量が正しく測定できなくなるからである。これは、貫通電極202がn型についても同様である。
 (キャビティ構造の変形例)
本発明によれば、可動部101の上側のキャビティ303と、下側のキャビティ304のギャップが等しいデバイス構造も実現できる。例えば、下側のキャビティ304のギャップが5μmであった場合に、ギャップ調整用のフィラー302の粒径を5μmにすることで、上下のキャビティが対称なMEMS慣性センサ構造を実現することができる。キャビティが上下対称の構造であると上下の粘性抵抗も対称化し、慣性センサの振動特性が向上する効果がある。
 また、これまでの実施例では、貫通電極202は蓋200のみに設けられていたが、SOI基板100にも貫通電極が設けられた構成であってもよい。この場合、例えば第1のMEMS慣性センサの上部電極と、第2のMEMS慣性センサの下部電極とをはんだや本発明のような導電性接着剤を用いて電気的に接続し、3次元実装による小型化を実現できる効果がある。
100 SOI基板
101 可動部
102 梁
103 固定部
104 検出電極
105 エッチングホール
131 導電体層(活性層)
132 中間絶縁層
133 支持層
200 蓋
201 電極
202 貫通電極
203 基材(シリコン基板)
204 絶縁膜
300 ガラス焼成塗膜
300a ガラスペースト
301 ガラス焼成塗膜
301a ガラスペースト
302 フィラー
303 (上側)キャビティ
304 下側キャビティ
305 第2のフィラー(導電性フィラー)
306 第2のフィラー(熱膨張係数調整用)
400 CV変換回路

Claims (8)

  1. [規則91に基づく訂正 25.11.2011] 
     支持層と、
     前記支持層上に設けられる中間絶縁層と、
     前記中間絶縁層上に設けられ、可動部が設けられる導電体層と、
     前記導電体層の上方に設けられ、前記可動部が設けられる領域を封止する蓋と、
     前記蓋の表面のうち、前記可動部に対向する側に設けられる固定電極と、を有し、
     前記蓋と前記導電体層が、ガラス焼成塗膜により接合され、
     前記ガラス焼成塗膜に、複数の第1フィラーが含まれることを特徴とする慣性センサ。
  2.  請求項1において、
     前記慣性センサに慣性力が印加されていないときの、前記可動部と前記固定電極のギャップは、前記複数の第1フィラーのうち最大のものの粒径と実質的に等しいことを特徴とする慣性センサ。
  3. [規則91に基づく訂正 25.11.2011] 
     請求項1において、
     前記蓋に設けられ、前記固定電極と電気的に接続される貫通電極をさらに有することを特徴とする慣性センサ。
  4.  請求項1において、
     前記複数の第1フィラーは、導電性材料からなることを特徴とする慣性センサ。
  5.  請求項1において、
     前記ガラス焼成塗膜に、複数の第2フィラーがさらに含まれ、
     前記複数の第2フィラーは、導電性材料からなることを特徴とする慣性センサ。
  6.  請求項1において、
     前記ガラス焼成塗膜に、前記複数の第1フィラーとは熱膨張係数が異なる複数の第2フィラーがさらに含まれることを特徴とする慣性センサ。
  7.  請求項1において、
     前記ガラス焼成塗膜が導電性材料からなることを特徴とする慣性センサ。
  8. [規則91に基づく訂正 25.11.2011] 
     請求項1において、
     前記可動部と前記固定電極のギャップは、前記中間絶縁層の厚さと等しいことを特徴とする慣性センサ。
PCT/JP2011/005644 2011-10-07 2011-10-07 慣性センサ WO2013051068A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005644 WO2013051068A1 (ja) 2011-10-07 2011-10-07 慣性センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005644 WO2013051068A1 (ja) 2011-10-07 2011-10-07 慣性センサ

Publications (1)

Publication Number Publication Date
WO2013051068A1 true WO2013051068A1 (ja) 2013-04-11

Family

ID=48043262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005644 WO2013051068A1 (ja) 2011-10-07 2011-10-07 慣性センサ

Country Status (1)

Country Link
WO (1) WO2013051068A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344506A (ja) * 1998-06-03 1999-12-14 Japan Aviation Electronics Ind Ltd 半導体加速度センサ
JP2004506203A (ja) * 2000-08-04 2004-02-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング マイクロマシニング技術を用いた構成素子
JP2007273178A (ja) * 2006-03-30 2007-10-18 Noritake Co Ltd 導電性組成物および導電性ペースト
JP2009216693A (ja) * 2008-02-13 2009-09-24 Denso Corp 物理量センサ
JP2010145212A (ja) * 2008-12-18 2010-07-01 Denso Corp 半導体装置
JP2010223640A (ja) * 2009-03-20 2010-10-07 Denso Corp 半導体装置およびその製造方法
JP2011144057A (ja) * 2010-01-13 2011-07-28 Tokyo Electronics Chemicals Corp 導電性ガラスペースト組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344506A (ja) * 1998-06-03 1999-12-14 Japan Aviation Electronics Ind Ltd 半導体加速度センサ
JP2004506203A (ja) * 2000-08-04 2004-02-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング マイクロマシニング技術を用いた構成素子
JP2007273178A (ja) * 2006-03-30 2007-10-18 Noritake Co Ltd 導電性組成物および導電性ペースト
JP2009216693A (ja) * 2008-02-13 2009-09-24 Denso Corp 物理量センサ
JP2010145212A (ja) * 2008-12-18 2010-07-01 Denso Corp 半導体装置
JP2010223640A (ja) * 2009-03-20 2010-10-07 Denso Corp 半導体装置およびその製造方法
JP2011144057A (ja) * 2010-01-13 2011-07-28 Tokyo Electronics Chemicals Corp 導電性ガラスペースト組成物

Similar Documents

Publication Publication Date Title
US8100012B2 (en) MEMS sensor with cap electrode
TWI471259B (zh) 微機電裝置與其製造方法
JP5554092B2 (ja) 電子デバイスパッケージの製造方法
US9561954B2 (en) Method of fabricating MEMS devices having a plurality of cavities
US20140260612A1 (en) Composite Sensor and Method for Manufacturing The Same
TWI675205B (zh) 微機械感測器裝置及製造微機械感測器的方法
US20110018113A1 (en) Method for packaging micromachined devices
JP2012210702A (ja) マイクロ電気機械システムセンサおよびその製造方法
JP2014187354A (ja) デバイス、及びデバイスの作製方法
TW201349414A (zh) 具微機電元件之封裝結構及其製法
JPWO2015151946A1 (ja) 加速度センサ
US9688532B2 (en) Method of manufacturing electronic device
US20040263186A1 (en) Capacitance type dynamic quantity sensor
WO2013051068A1 (ja) 慣性センサ
JP5771921B2 (ja) 封止型デバイス及びその製造方法
US11187528B2 (en) Rotation rate sensor, method for manufacturing a rotation rate sensor
TWI542019B (zh) 壓力感測器以及其製造方法
CN108365014B (zh) 半导体装置、半导体装置的制造方法
CN113295304A (zh) 用于应力传感器的微机械构件和用于应力传感器的微机械构件的制造方法
WO2014208043A1 (ja) 物理量センサ
KR100506073B1 (ko) 고진공패키징마이크로자이로스코프및그제조방법
JP2010197286A (ja) 加速度センサ及び加速度センサの製造方法
TW201807392A (zh) 壓力感測器以及其製造方法
JP2023012243A (ja) Memsモジュール及びその製造方法
JP2024027877A (ja) Memsモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP