WO2013047920A1 - 주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법 - Google Patents

주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법 Download PDF

Info

Publication number
WO2013047920A1
WO2013047920A1 PCT/KR2011/007129 KR2011007129W WO2013047920A1 WO 2013047920 A1 WO2013047920 A1 WO 2013047920A1 KR 2011007129 W KR2011007129 W KR 2011007129W WO 2013047920 A1 WO2013047920 A1 WO 2013047920A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary
filter
electrons
detector
specimen
Prior art date
Application number
PCT/KR2011/007129
Other languages
English (en)
French (fr)
Inventor
김석
안재형
강순봉
Original Assignee
에스엔유프리시젼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스엔유프리시젼 주식회사 filed Critical 에스엔유프리시젼 주식회사
Priority to JP2014533170A priority Critical patent/JP5826942B2/ja
Priority to CN201180073722.4A priority patent/CN103890896B/zh
Publication of WO2013047920A1 publication Critical patent/WO2013047920A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24535Beam current

Definitions

  • the present invention relates to a scanning electron microscope and a method for measuring the amount of current of a primary electron using the same, and more particularly, by forming a filter and a first detector to apply an electromagnetic field to the primary and secondary electrons integrally inside the barrel.
  • the device is miniaturized by not installing a separate detection device externally, and the scanning electron microscope with the efficiency of inspection work can be easily measured by continuously measuring the current amount of the primary electrons while detecting the secondary electrons and the primary using the same.
  • the present invention relates to a method for measuring the current amount of electrons.
  • Scanning Electron Microscopes which are used in processes that require extremely fine and precise measurements and processing, such as semiconductor device manufacturing processes, induce electrons generated from the source into the specimen and collide with each other.
  • SEMs Scanning Electron Microscopes
  • the surface of the specimen placed in a vacuum of 10-3 Pa or more is scanned in a two-dimensional direction of xy with a fine electron beam of about 1 to 100 nm to detect the signal of the secondary electrons generated on the surface of the specimen.
  • the flow of electrons generated by scanning the electron beam of the scanning electron microscope toward the specimen naturally constitutes a current, which is called a scanning current.
  • the current amount of primary electrons incident by installing a separate detector 4 at the lower part of the test tube before the specimen analysis is installed.
  • a separate detector 4 was installed next to the specimen, and the incident primary electrons were refracted to enter the detector 4 to measure the current amount of the primary electrons.
  • the detector 4 must be installed separately for each analysis, and during analysis, it is difficult to measure the amount of current of the primary electrons, thereby reducing work efficiency, and the detector 4 is installed outside the barrel to increase the overall size of the device. There are disadvantages.
  • an object of the present invention is to solve such a conventional problem, by detecting a secondary electron by integrally forming a filter and a first detector for applying an electromagnetic field to the primary and secondary electrons inside the barrel. Since the current amount of the primary electrons can be easily measured continuously, the efficiency of the inspection work is secured, and the device provides a miniaturized scanning electron microscope and a method of measuring the amount of current of the primary electrons using the same.
  • a barrel having a receiving space therein; and a source installed inside the barrel to generate charged primary electrons toward a specimen outside the barrel;
  • a filter installed at the lower portion of the source inside the barrel to change a movement path of the secondary electrons emitted after the primary electrons and the primary electrons collide with the specimen; and the filter between the filter and the specimen.
  • a first detector installed inside the barrel and configured to detect an amount of current caused by the primary electron whose movement path is changed by an electromagnetic field generated by the filter, and installed inside the barrel between the source and the filter, wherein the filter
  • a second detector for detecting the secondary electrons whose movement paths are changed by the second detector; and the filter to selectively change the movement paths of the primary electrons and the secondary electrons.
  • Filter control section that controls; Clms is achieved by a scanning electron microscope according to claim.
  • the scanning electron microscope is preferably a raster scanning method of sequentially scanning the scanning area of the specimen with respect to the row.
  • the filter control unit controls the filter so that the secondary electrons flow into the second detector while the primary electrons are scanned in one row of the scanning region of the specimen, and the primary row in the next row of the specimen.
  • the filter is controlled such that the primary electrons flow into the first detector while the incident position of the primary electrons is moved to scan the electrons.
  • the apparatus may further include a tester configured to analyze signals detected by the first detector and the second detector, and a source controller configured to control an amount of current of the primary electrons scanned from a source according to a result value transmitted from the tester. It is desirable to.
  • the above object is, according to the present invention, in the method for measuring the current amount of primary electrons using the scanning electron microscope according to claim 1, wherein the charged primary electrons are scanned for one row of the test areas of the specimen. And controlling the filter to direct the secondary electrons to the second detector; and to move the scanning position of the primary electrons to the next row and to direct the primary electrons to the first detector. Controlling the filter; is achieved by the method of measuring the primary electron current amount of a scanning electron microscope.
  • the method may further include a test step of adjusting the primary electron generation amount of the source by comparing and analyzing the result values measured by the primary detector and the secondary detector.
  • the present invention it is possible to easily measure the current amount of the primary electrons continuously while detecting the secondary electrons to ensure the efficiency of the inspection work, it is installed integrally inside the barrel to reduce the size of the scanning electron microscope and using the same A method for measuring the amount of current of primary electrons is provided.
  • FIG. 1 is a view showing a schematic configuration of a conventional scanning electron microscope
  • FIG. 2 is a view for explaining a schematic configuration of the scanning electron microscope of the present invention and a method of use according to the present invention
  • FIG. 3 is a view for explaining a schematic configuration of the scanning electron microscope of the present invention and a method of use according to the present invention
  • FIG. 4 is a view showing another embodiment of the Faraday cup of the scanning electron microscope of the present invention.
  • FIG. 6 is a flowchart illustrating a method for measuring the amount of current of primary electrons using the scanning electron microscope of the present invention.
  • FIG. 2 is a view for explaining a schematic configuration of the scanning electron microscope and a method of use according to the present invention
  • Figure 3 is a view for explaining a schematic configuration of the scanning electron microscope and a method of use according to the present invention
  • 4 is a view showing another embodiment of the Faraday cup of the scanning electron microscope of the present invention
  • Figure 5 is a view for explaining the scanning method of the scanning electron microscope of the present invention.
  • the scanning electron microscope includes a cylindrical barrel 10 having an accommodating space therein, a source 20 for generating and supplying primary electrons, and a scan in which a specimen is installed.
  • a portion 90 is included.
  • the source 20 is a member that scans the primary electrons generated by heating the cathode to the scan unit 30 to be described later.
  • the source 20 is installed at the upper end of the barrel 10 and accelerates and aggregates the generated primary electrons to guide the specimen. It further comprises a hole plate 22 formed with an electrode 21 and a hole.
  • the scan unit 30 is provided below the barrel 10 so as to face the source 20 and the specimen is placed on the upper surface thereof. Primary electrons scanned by the source 20 are incident on a specimen provided on the upper surface of the scan unit 30, and the specimen emits various signals including secondary electrons. At this time, the discharged secondary battery is discharged to the source 20 side.
  • the filter 40 is a member for changing the path of the secondary electrons by being positioned on a path through which the primary and secondary electrons pass, and is installed below the hole plate 22 inside the barrel 10 to generate an electric field. Section and a magnetic field generating section. In this embodiment, a general Wien filter is used.
  • the movement path can be changed by changing the directions of the electric and magnetic fields through which the primary and secondary electrons pass by the filter 40.
  • the filter 40 has an equilibrium force between the electric field and the magnetic field, but there is no change in the path of the primary electron, but when the secondary electron moves upward, the electric field and the magnetic field act in the same direction. Therefore, a change occurs in the movement path of the secondary electrons, and the movement path of the primary electrons incident on the specimen may be directly changed by using an electric field and a magnetic field.
  • the filter control unit 50 is a device for controlling the movement path of the primary and secondary electrons by controlling the electric and magnetic fields of the filter 40.
  • the detection unit 60 includes a first detector 61 for measuring a current value by primary electrons and a second detector 62 for measuring secondary electrons.
  • a Faraday cup is used, and the shape is a cup shape or a disk shape with a hole formed in the center, but is not limited thereto.
  • the first detector 61 is provided below the filter 40 inside the barrel 10, and primary electrons whose movement paths are changed by the electric and magnetic fields of the filter 40 are introduced to the first electrons. It is a device for measuring the amount of current.
  • the second detector 62 is disposed between the hole plate 22 and the filter 40 inside the barrel, and detects secondary electrons generated after collision of primary electrons incident on the specimen. .
  • the first detector 61 and the second detector 62 for detecting the primary electrons and the secondary electrons are integrally installed in the barrel, thereby reducing the overall size of the device.
  • the inspection unit 70 compares the current amount of primary electrons measured from the first detector 61 with a display value detected and displayed from the secondary electrons or a range of current amount values of the primary electrons arbitrarily determined by the user. It is a device to control the amount of primary electrons generated.
  • the source control unit 80 is a device for controlling the scanning amount of the primary electrons generated from the source 20 according to the result value transmitted from the inspection unit 70.
  • the display unit 90 is an apparatus for imaging the specimen by detecting the secondary electrons generated from the specimen with the second detector 62.
  • the display unit 90 not only displays the image of the secondary electrons after the inspection unit 70 described above, but also simultaneously displays the analysis of the specimen of the scanning electron microscope.
  • the user may manipulate the scanning electron microscope to adjust the image imaged on the display unit 90.
  • the scanning electron microscope according to the present embodiment may further include a deflector (not shown) or a transfer part (not shown) so that the incident position of the primary electrons may be changed in the region to be measured of the specimen.
  • the scanning electron microscope scans the specimen in a raster manner, as shown in Figure 5, after scanning from the starting point (A) to the end point (B) in the x direction for the first row Return to the starting point (A) and move in the y direction to move to the next column. After that, the above process is repeated to scan a certain area of the specimen.
  • the scan method is not limited to the above example, and can be scanned in various ways.
  • the filter controller 50 may control the electromagnetic path of the filter 40 to control the movement path of the secondary electrons in a desired direction, and the second detector may control the movement path of the secondary electrons. Change to (62).
  • the second detector 62 detects various signals caused by the secondary electrons, and the display unit 90 connected to the second detector 62. Image the shape of the specimen by the signal input from the second detector 62.
  • the scanning position of the primary electrons is returned to the starting position of the first column, and then moved in the y direction to move from the starting point (A) of the second column to the end point (B).
  • the filter controller 50 controls the filter 40 to change the path of the primary electrons generated from the source 20 to the first detector 61 as shown in FIG. 3.
  • the inspection unit 70 compares the measured current amount of the primary electrons with the display value detected and displayed from the secondary electrons or the range of the current amount value of the primary electrons arbitrarily determined by the user, and the primary electrons emitted from the source 20. Control the amount of current.
  • the display unit 90 displays the image according to the secondary electrons by scanning while sequentially moving the region to be analyzed of the specimen.
  • the first detector 61 and the second detector 62 integrally installed inside the barrel 10 do not require a separate detection device, the overall size of the device is reduced and the incident position of the primary electrons is changed to the next row. Since the current amount of the primary current is measured while moving on the y-axis to move to, it is not necessary to stop scanning, thereby increasing work efficiency.
  • FIG. 5 is a view for explaining a scanning method of the scanning electron microscope of the present invention
  • Figure 6 is a flow chart of the current amount measurement method of the primary electron using the scanning electron microscope of the present invention.
  • the method for measuring the current amount of primary electrons includes the secondary electron detection step S10, the primary electron detection step S20, the inspection step S30, and the primary electron injection amount control.
  • a step S31 and a display step S40 are configured.
  • the secondary electron detection step S10 is a step of detecting secondary electrons generated when the primary electrons collide with the specimen by scanning the primary electrons generated from the source 20 onto the specimen, and moving in the x direction (S11). And a filter control step (S12) and a detection step (S13).
  • the x-direction moving step S11 may be performed by a deflector (not shown) or a transfer part (not shown) to an end point (B) based on the start point (A) of the first row of a certain region of the specimen to be analyzed.
  • the primary electrons are incident on the specimen while the secondary electrons are incident on the specimen to generate secondary electrons.
  • the filter control step S12 is performed at the same time as the x-direction moving step S11, and the filter control unit 50 controls the electromagnetic field of the filter 40 so that the secondary electrons are incident on the second detector 62. to be.
  • the secondary electrons generated by the primary electrons incident on the specimen are incident to the second detector 62 by the electromagnetic field generated by the filter 40 to measure the signal of the secondary electrons. to be.
  • the primary electron detection step S20 is a step in which the first detector 61 measures an amount of current of the primary electrons generated from the source 20, and includes a y-direction moving step S21 and a filter control step S22. And a detecting step (S23).
  • the y-direction moving step S21 is a step of changing the incidence position of the primary electrons moved to the end point B in order to analyze the next row of the specimen. After moving from the end point B to the starting point A again, The step of moving the incident position of the primary electrons incident on the specimen by moving in the y direction, which is the row movement direction.
  • the filter control step S22 is performed at the same time as the y-direction moving step S21.
  • the filter control unit 50 controls the electromagnetic field of the filter 40 so that the primary electrons are incident to the first detector 61. Step.
  • the detecting step S23 is a step in which primary electrons incident on the specimen are incident on the first detector 61 by an electromagnetic field generated by the filter 40 to measure the amount of current of the primary electrons.
  • the secondary electron detection step S10 is performed while the incident position of the primary electrons is moved from the start point A to the end point B, and the primary electron detection step S20 is performed at the end point B. This is performed while the incident position of the primary electrons is moved to the start point A of the next row. Therefore, since the above two steps are performed continuously, the efficiency of the inspection operation is increased to detect the primary electrons.
  • the inspection step S30 is a step of comparing the current amount of primary electrons measured by the inspection unit 70 with a display value detected and displayed from the secondary electrons or a range of current amount values of the primary electrons arbitrarily determined by the user. Accordingly, the first electron scanning amount control step S40 or the display step S50, which will be described later, is performed.
  • the secondary electrons vary depending on the type, shape, primary electron current, etc. of the specimen, and the primary electron efficiency is optimized for the same specimen when the secondary electron signal test is repeated while changing the primary electron current amount.
  • the amount of electron current can be obtained.
  • the primary electron injection amount control step S40 is performed when the comparison result of the primary and secondary electrons inspected in the inspection step S30 is not a result determined by the user.
  • the electronic scanning amount is controlled. If the result value is a desired result value, the display step S50 is performed.
  • the display step S50 is a step of imaging the specimen on the display based on the data of the secondary electrons detected by the second detector 62.
  • the device By integrally forming the filter and the first detector that apply the electromagnetic field to the primary and secondary electrons inside the barrel, the device is miniaturized without installing a separate detection device externally and continuously while detecting the secondary electrons. The amount of current in the vehicle can be easily measured to ensure the efficiency of inspection work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

본 발명은 주사전자현미경 및 이를 이용한 1차전자 및 2차전자의 전류량 측정 방법관한 것으로서, 주사전자현미경에 있어서, 내부에 수용공간이 형성된 경통;과, 상기 경통 내부에 설치되며 상기 경통 외부의 시편을 향하여 하전된 1차전자를 발생시키는 소스;와, 상기 경통 내부에서 상기 소스의 하부에 설치되며, 상기 1차전자 및 상기 1차전자가 상기 시편에 충돌한 후 방출되는 2차전자의 이동 경로를 바꾸는 필터;와, 상기 필터와 상기 시편 사이의 상기 경통 내부에 설치되고, 상기 필터에서 발생되는 전자기장에 의하여 이동 경로가 변경된 상기 1차전자에 의한 전류량을 검출하는 제1검출기;와, 상기 소스와 상기 필터 사이의 상기 경통 내부에 설치되고, 상기 필터에 의하여 이동 경로가 변경된 상기 2차전자를 검출하는 제2검출기;와, 상기 1차전자 및 상기 2차전자의 이동 경로를 선택적으로 변경하도록 상기 필터를 제어하는 필터제어부;를 포함하는 것을 특징으로 한다. 이에 의하여 검사 작업의 효율성이 확보되며, 장치가 전체 크기가 소형화된 주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법이 제공된다.

Description

주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법
본 발명은 주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법에 관한 것으로서, 보다 상세하게는 1차전자 및 2차전자에 전자기장을 인가하는 필터와 제1검출기를 경통 내부에 일체로 형성함으로써, 별도의 검출장치를 외부에 설치하지 않아 장치가 소형화되고, 2차전자를 검출하면서 연속적으로 1차전자의 전류량을 용이하게 측정할 수 있어 검사 작업의 효율성이 확보된 주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법에 관한 것이다.
반도체 장치 제조 공정 등 극히 미세하고 정밀한 측정과 가공이 필요한 공정에서 사용되는 주사전자현미경(Scanning Electron Microscope, SEM)은 소스에서 발생된 전자를 시편으로 유도하고 충돌시켜 그 결과 발생되는 여러 현상을 검출기로 측정하여 시편의 상태를 파악하는 장비로서, 10-3Pa이상의 진공중에 놓여진 시편의 표면을 1 내지 100nm 정도의 미세한 전자선으로 x-y의 이차원 방향으로 주사하여 시편의 표면에서 발생하는 2차전자의 신호를 검출하여 음극선관 화면상에 확대화상을 표시하거나 기록하여 시편의 형태, 미세구조 등을 분석하는 장치이다.
도 1은 주사전자 현미경의 개략적인 구성을 나타내는 도면이다. 주사전자현미경에서는 음극(1)에서 발생된 1차전자를 전자기 렌즈를 이루는 전극(2)를 통해 가속시키고 집약시켜 전자빔의 형태로 시편으로 유도하여 방출되는 2차전자를 검출기(3)를 통하여 시편의 일정 영역을 분석한다.
주사전자현미경의 전자빔이 시편쪽으로 주사되면서 이루어지는 전자의 흐름은 당연히 전류를 이루는 것이며 이를 주사전류라 한다.
그런데 일반적으로 주사전류는 주사전자현미경 설비를 일정하게 세팅하여 운영할지라도 설비의 특성상 어느 정도 시간에 따른 변이가 있으며, 이에 따라 작업자가 새로이 세팅하여 사용해야 하며, 주사전류가 변하여도 감지하기 어려워 변화된 상태로 장비를 운영함으로써 잘못된 측정값을 가지게 되는 문제점이 있다.
상술한 바와 같이 종래 주사전자현미경은 1차전자 전류량과 시편에서 방출되는 2차전자의 신호에 차이가 발생하게 되고, 이에 따라 시편이 대전됨으로써 획득되는 시편의 화상 이미지 또는 데이터 등에 왜곡이 발생하는 문제가 있었다.
이에 따라, 입사 에너지인 1차전자 전류량을 측정하기 위하여 종래에는 도 1(a)에서 보는 바와 같이 시편 분석 전 경통 하부의 시편 위치에 별도의 검출기(4)를 설치하여 입사되는 1차전자의 전류량을 측정하거나, 도 1(b)와 같이 시편의 옆에 별도의 검출기(4)를 설치하고 입사되는 1차전자를 굴절시켜 검출기(4)로 입사시켜 1차전자의 전류량을 측정하였다.
상기와 같이 시편의 일정 영역을 분석 중에 1차전자의 전류량을 측정하기 위해서는 스캐닝을 중지하고 1차전자의 전류량을 측정하였다.
따라서, 분석시마다 검출기(4)를 따로 설치해야 하고, 분석 중에는 1차전자의 전류량을 측정하기 어려운 단점이 있어 작업 효율이 떨어지게 되며, 경통 외부에 검출기(4)가 설치되어 장치의 전체 크기가 커지는 단점이 있다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 1차전자 및 2차전자에 전자기장을 인가하는 필터와 제1검출기를 경통 내부에 일체로 형성함으로써, 2차전자를 검출하면서 연속적으로 1차전자의 전류량을 용이하게 측정할 수 있어 검사 작업의 효율성이 확보되며, 장치가 소형화된 주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법을 제공함에 있다.
상기 목적은, 본 발명에 따라, 주사전자현미경에 있어서, 내부에 수용공간이 형성된 경통;과, 상기 경통 내부에 설치되며 상기 경통 외부의 시편을 향하여 하전된 1차전자를 발생시키는 소스;와, 상기 경통 내부에서 상기 소스의 하부에 설치되며, 상기 1차전자 및 상기 1차전자가 상기 시편에 충돌한 후 방출되는 2차전자의 이동 경로를 바꾸는 필터;와, 상기 필터와 상기 시편 사이의 상기 경통 내부에 설치되고, 상기 필터에서 발생되는 전자기장에 의하여 이동 경로가 변경된 상기 1차전자에 의한 전류량을 검출하는 제1검출기;와, 상기 소스와 상기 필터 사이의 상기 경통 내부에 설치되고, 상기 필터에 의하여 이동 경로가 변경된 상기 2차전자를 검출하는 제2검출기;와, 상기 1차전자 및 상기 2차전자의 이동 경로를 선택적으로 변경하도록 상기 필터를 제어하는 필터제어부;를 포함하는 것을 특징으로 하는 주사전자현미경에 의해 달성된다.
또한, 상기 주사전자현미경은 상기 시편의 주사 영역을 행에 대하여 순차적으로 스캔하는 래스터 주사 방식인 것이 바람직하다.
또한, 상기 필터제어부는 상기 시편의 주사 영역 중 하나의 행에 대하여 1차전자가 주사되는 동안에는 상기 2차전자가 상기 제2검출기로 유입되도록 상기 필터를 제어하고, 상기 시편의 다음 행에 1차전자를 주사하기 위하여 1차전자의 입사 위치를 이동하는 중에는 상기 1차전자가 상기 제1검출기로 유입되도록 상기 필터를 제어하는 것이 바람직하다.
또한, 상기 제1검출기 및 상기 제2검출기로부터 검출된 신호를 분석하는 검사부;와, 상기 검사부로부터 전달된 결과값에 따라 소스로부터 주사되는 상기 1차전자의 전류량을 제어하는 소스제어부;를 더 포함하는 것이 바람직하다.
상기 목적은, 본 발명에 따라, 제1항 내지 제4항의 주사전자현미경을 이용한 1차전자의 전류량 측정 방법에 있어서, 시편의 검사 영역 중 하나의 행에 대하여 하전된 상기 1차전자를 주사함과 동시에 상기 2차전자가 제2검출기로 유도되도록 상기 필터를 제어하는 단계;와, 상기 1차전자의 주사 위치를 다음 행으로 이동함과 동시에 상기 1차전자가 상기 제1검출기로 유도되도록 상기 필터를 제어하는 단계;를 포함하는 것을 특징으로 하는 주사전자현미경의 1차전자 전류량 측정 방법에 의해 달성된다.
또한, 상기 1차검출기와 상기 2차검출기로부터 측정된 결과값을 비교 분석하여 상기 소스의 상기 1차전자 발생량을 조절하는 검사 단계를 더 포함하는 것이 바람직하다.
본 발명에 따르면, 2차전자를 검출하면서 연속적으로 1차전자의 전류량을 용이하게 측정할 수 있어 검사 작업의 효율성이 확보되며, 경통 내부에 일체형으로 설치되어 장치가 소형화된 주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법이 제공된다.
도 1은 종래의 주사전자현미경의 개략적인 구성을 나타내는 도면이고,
도 2는 본 발명 주사전자현미경의 개략적인 구성과 본 발명에 따른 사용 방법을 설명하기 위한 도면이고,
도 3은 본 발명 주사전자현미경의 개략적인 구성과 본 발명에 따른 사용 방법을 설명하기 위한 도면이고,
도 4는 본 발명 주사전자현미경의 패러데이 컵의 또 다른 형태를 나타내는 도면이고,
도 5는 본 발명 주사전자현미경의 주사 방식을 설명하기 위한 도면이고,
도 6은 본 발명 주사전자현미경을 이용한 1차전자의 전류량 측정 방법의 흐름도이다.
설명에 앞서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 일실시예에서 설명하고, 그 외의 실시예에서는 일실시예와 다른 구성에 대해서 설명하기로 한다.
이하, 첨부한 도면을 참조하여 본 발명의 일실시예에 따른 주사전자현미경 에 대하여 상세하게 설명한다.
도 2는 본 발명 주사전자현미경의 개략적인 구성과 본 발명에 따른 사용 방법을 설명하기 위한 도면이고, 도 3은 본 발명 주사전자현미경의 개략적인 구성과 본 발명에 따른 사용 방법을 설명하기 위한 도면이고, 도 4는 본 발명 주사전자현미경의 패러데이 컵의 또 다른 형태를 나타내는 도면이고, 도 5는 본 발명 주사전자현미경의 주사 방식을 설명하기 위한 도면이다.
도 1 및 도 2를 참조하면, 본 발명에 따른 주사전자현미경은 내부에 수용공간이 형성된 원통형상의 경통(10)과, 1차전자를 발생하여 공급하는 소스(20)와, 시편이 설치되는 스캔부(30)와, 1차전자 및 2차전자의 이동 경로를 변경하는 필터(40)와, 필터(40)를 제어하는 필터제어부(50)와, 1차전자의 전류량 및 2차전자 신호를 검출하는 검출부(60)와, 검출부(60)의 신호를 분석하는 검사부(70)와, 소스(20)의 1차전자 발생량을 조절하는 소스제어부(80)와, 2차전자를 통하여 이미지화 하는 디스플레이부(90)를 포함한다.
소스(20)는 음극을 가열하여 발생되는 1차전자를 후술하는 스캔부(30)로 주사하는 부재로써 경통(10)의 상단부에 설치되며, 발생된 1차전자를 가속하고 집약시켜 시편로 유도하는 전극(21)과 정공이 형성된 정공판(22)을 더 포함한다.
스캔부(30)는 소스(20)와 대향되게 경통(10)의 하방에 마련되어 상면에는 시편이 놓여진다. 소스(20)에서 주사되는 1차전자는 스캔부(30)의 상면에 마련되는 시편에 입사되고, 시편에서는 2차전자를 포함한 다양한 신호를 방출한다. 이때 방출되는 2차전지는 소스(20) 측으로 방출된다.
필터(40)는 1차전자와 2차전자가 지나가는 경로상에 위치함으로써, 2차전자의 경로를 변경시키는 부재로서, 경통(10) 내부의 정공판(22)의 하방에 설치되며, 전기장발생부와 자기장 발생부를 포함하며 본 실시예에서는 일반적인 빈(Wien)필터가 사용된다.
필터(40)에 의하여 1차전자 및 2차전자가 지나가는 전기장 및 자기장의 방향을 변화시킴으로써 이동경로를 변화시킬 수 있다.
도 2 및 도 3을 참조하면, 필터(40)는 전기장과 자기장의 힘이 평형을 이루어 1차전자의 경로에 변화가 없으나 2차전자가 상측으로 이동하는 경우에는 전기장과 자기장이 동일한 방향으로 작용하여 2차전자의 이동경로에 변화가 발생하게 하게 되며, 또한, 전기장과 자기장을 이용하여 시편에 입사되는 1차전자의 이동경로를 직접적으로 변경할 수 있다.
한편, 필터제어부(50)는 필터(40)의 전기장과 자기장을 제어하여 1차전자 및 2차전자의 이동 경로를 제어하는 장치이다.
도 3 및 도 4를 참조하면, 검출부(60)는 1차전자에 의한 전류값을 측정하는 제1검출기(61)와, 2차전자를 측정하는 제2검출기(62)를 포함하여 구성되고 일반적인 패러데이 컵이 사용되며, 그 형상은 컵 형상 또는 중심에 구멍이 형성된 원판 형상이며, 이에 제한되는 것은 아니다.
제1검출기(61)는 상기 경통(10)의 내부에서 상기 필터(40)의 하방에 마련되고, 필터(40)의 전기장과 자기장에 의하여 이동 경로가 변경된 1차전자가 유입되어 제1전자의 전류량을 측정하는 장치이다.
제2검출기(62)는 상기 경통의 내부에서 상기 정공판(22)과 필터(40)의 사이에 배치되며, 시편에 입사된 1차전자가 충돌한 후 생성되는 2차전자를 검출하는 장치이다.
상술한 바와 같이 1차전자 및 2차전자를 검출하는 제1검출기(61) 및 제2검출기(62)가 경통 내부에 일체형으로 설치되어 장치의 전체 크기가 소형화되는 장점이 있다.
검사부(70)는 제1검출기(61)로부터 측정된 1차전자의 전류량과 2차전자로부터 검출되어 디스플레이되는 디스플레이값 또는 사용자가 임의로 정한 1차전자의 전류량 값의 범위와 비교하여 소스(20)의 1차전자 발생량을 조절하는 장치이다.
소스제어부(80)는 검사부(70)로부터 전달된 결과값에 따라 소스(20)로부터 발생되는 1차전자의 주사량을 제어하는 장치이다.
디스플레이부(90)는 시편으로부터 발생되는 2차전자를 제2검출기(62)로 검출하여 시편을 이미지화하는 장치이다.
한편, 디스플레이부(90)는 상술한 검사부(70) 후에만 2차전자의 이미지를 표시하는것 뿐만 아니라, 주사전자현미경의 시편 분석을 하면서 동시에 표시된다.
따라서, 상술한 검사부(70) 대신 사용자가 주사전자현미경을 조작하여 디스플레이부(90)에 이미지되는 화상을 조절할 수 있다.
한편, 본 실시예에 따른 주사전자현미경은 디플렉터(미도시) 또는 이송부(미도시)를 더 포함하여 시편의 측정하고자 하는 영역에 1차전자의 입사 위치를 변경할 수 있도록 구성되는 것이 바람직하다.
또한, 본 실시예에 따른 주사전자현미경은 시편에 대하여 래스터 방식으로 스캔을하며, 도 5에 도시된 바와 같이, 첫번째 행에 대하여 시작점(A)에서 x 방향으로 종점(B)까지 스캔을 한 후 다시 시작점(A)으로 돌아오고, 다음 열로 이동하기 위하여 y 방향으로 이동을 한다. 그 후, 다시 위의 과정을 반복하여 시편의 일정 영역을 스캔하게 된다.
그러나, 스캔 방식은 위의 예에 제한되는 것은 아니며, 다양한 방식으로 스캔할 수 있다.
지금부터는 상술한 주사전자현미경의 작동에 대하여 설명한다.
도 5를 참조하면 시편의 분석하고자 하는 영역의 첫번째 열의 시작 위치에서 소스(20)로부터 1차전자를 하방으로 시편에 주사하면서 시편의 첫번째 행에 대하여 시작점(A)에서 x 방향으로 이동을 하면, 스캔부(30) 상에 놓여지는 시편은 1차전자와 충돌하여 2차전자를 방출한다. 2차전자는 1차전자 이동경로의 반대방향, 즉, 소스(20) 방향으로 이동하고 필터(40)를 지난다.
이때, 필터제어부(50)는 도 2에 도시된 바와 같이, 필터(40)의 전자기장을 제어하여 2차전자의 이동경로를 원하는 방향으로 제어할 수 있으며, 2차전자의 이동경로를 제2검출기(62) 측으로 변경한다.
2차전자가 변경된 이동경로에 의하여 제2검출기(62)에 입사되면, 제2검출기(62)가 2차전자에 의한 다양한 신호가 검출되며, 제2검출기(62)와 연결된 디스플레이부(90)는 제2검출기(62)로부터 입력되는 신호에 의하여 시편의 형상을 이미지화한다.
상술한 바와 같이 시편의 분석 영역 첫 번째 열의 스캔이 끝나게 되면 1차전자의 주사 위치는 다시 첫번째열의 시작위치로 돌아간 후에 y 방향으로 이동하여 두 번째 열의 시작점(A)에서 종점(B)로 이동한다.
이와 동시에 필터제어부(50)는 도 3에 도시된 바와 같이 필터(40)를 제어하여 소스(20)로부터 발생되는 1차전자의 경로를 제1검출기(61) 측으로 변경한다.
따라서, 제1검출기(61)로 입사된 1차전자에 의하여 1차전자의 전류량을 검출할 수 있게 된다. 이어 검사부(70)는 측정된 1차전자의 전류량과 2차전자로부터 검출되어 디스플레이되는 디스플레이값 또는 사용자가 임의로 정한 1차전자의 전류량 값의 범위와 비교하여 소스(20)로부터 방출되는 1차전자의 전류량을 제어한다.
상술한 방법을 반복함으로써 시편의 분석하고자 하는 영역을 순차적으로 이동하면서 스캔하여 2차전자에 따른 이미지를 디스플레이부(90)가 표시한다.
따라서, 경통(10) 내부에 일체형으로 설치된 제1검출기(61) 및 제2검출기(62)에 의해 별도의 검출장치가 필요 없으므로 장치의 전체 크기가 소형화되고, 1차전자의 입사 위치를 다음 행으로 이동시키기 위해 y축으로 이동하는 동안 1차전류의 전류량을 측정하게 되므로 스캐닝을 중지할 필요가 없어 작업의 효율성이 증대된다.
지금부터는 상술한 주사전자현미경을 이용한 1차전자의 전류량 측정 방법에 대하여 설명한다.
도 5는 본 발명 주사전자현미경의 주사 방식을 설명하기 위한 도면이고, 도 6은 본 발명 주사전자현미경을 이용한 1차전자의 전류량 측정 방법의 흐름도이다.
도 6을 참조하면, 본 발명에 따른 1차전자의 전류량 측정 방법은 2차전자 검출 단계(S10)와, 1차전자 검출 단계(S20)와, 검사 단계(S30)와, 1차전자 주사량 제어 단계(S31)와, 디스플레이 단계(S40)를 포함하여 구성된다.
2차전자 검출 단계(S10)는 소스(20)로부터 발생되는 1차전자를 시편에 주사하여 1차전자가 시편에 충돌하면서 발생되는 2차전자를 검출하는 단계로서, x 방향 이동 단계(S11)와, 필터 제어 단계(S12)와, 검출 단계(S13)를 포함하여 구성된다.
도 5를 참조하면 x 방향 이동 단계(S11)는 분석하고자 하는 시편의 일정 영역의 첫번째 행의 시작점(A)을 기준으로 종점(B)까지 디플렉터(미도시) 또는 이송부(미도시)에 의하여 시편에 입사되는 1차전자의 입사 위치를 이동시키며 1차전자를 시편에 입사하여 2차전자를 발생시키는 단계이다.
필터 제어 단계(S12)는 x 방향 이동 단계(S11)와 동시에 수행되는 단계로서, 2차전자가 제2검출기(62)로 입사되도록 필터제어부(50)가 필터(40)의 전자기장을 제어하는 단계이다.
검출 단계(S13)는 시편에 입사되는 1차전자에 의하여 발생된 2차전자가 필터(40)에 의해 발생된 전자기장에 의하여 제2검출기(62)로 입사되어 2차전자의 신호를 측정하는 단계이다.
1차전자 검출 단계(S20)는 소스(20)로부터 발생되는 1차전자의 전류량을 제1검출기(61)가 측정하는 단계로서, y 방향 이동 단계(S21)와, 필터 제어 단계(S22)와, 검출 단계(S23)를 포함하여 구성된다.
y 방향 이동 단계(S21)는 시편의 다음 열을 분석하기 위하여 종점(B)까지 이동한 1차전자의 입사 위치를 변경하는 단계로써, 종점(B)에서 다시 시작점(A)까지 이동한 후, 행 이동 방향인 y 방향으로 이동하여 시편에 입사되는 1차전자의 입사 위치를 이동시키는 단계이다.
필터 제어 단계(S22)는 y 방향 이동 단계(S21)와 동시에 수행되는 단계로서, 필터제어부(50)가 필터(40)의 전자기장을 제어하여 1차전자가 제1검출기(61)로 입사되도록 하는 단계이다.
검출 단계(S23)는 시편에 입사되는 1차전자가 필터(40)에 의해 발생된 전자기장에 의하여 제1검출기(61)로 입사되어 1차전자의 전류량을 측정하는 단계이다.
상술한 바와 같이 2차전자 검출 단계(S10)는 시작점(A)에서 종점(B)로 1차전자의 입사위치가 이동되는 중에 수행되고, 1차전자 검출 단계(S20)는 종점(B)에서 다음 행의 시작점(A)로 1차전자의 입사위치가 이동되는 중에 수행된다. 따라서, 상술한 두 단계는 연속적으로 수행되므로 1차전자를 검출하기 위하여 검사 작업의 효율이 증대된다.
검사 단계(S30)는 검사부(70)에 의하여 측정된 1차전자의 전류량과 2차전자로부터 검출되어 디스플레이되는 디스플레이값 또는 사용자가 임의로 정한 1차전자의 전류량 값의 범위와 비교하는 단계로서, 결과에 따라 후술하는 1차 전자 주사량 제어 단계(S40) 또는 디스플레이 단계(S50)가 수행된다.
한편, 2차전자는 시편의 종류, 형상, 1차전자 전류량 등에 종속적으로 변하는바, 1차전자 전류량을 변화시키면서 2차전자 신호 검사를 반복하면 동일 시편에 대하여 2차전자 효율 최적이 되는 1차전자 전류량를 구할 수 있다.
상술한 바와 같이 1차 전자 주사량 제어 단계(S40)는 검사 단계(S30)에서 검사된 1차전자와 2차전자의 결과값 비교 결과가 사용자가 정한 결과값이 아닐 경우 소스(20)의 1차전자 주사량을 제어하는 단계이며, 결과 값이 사용자가 원하는 결과 값일 경우에는 디스플레이 단계(S50)가 수행된다.
디스플레이 단계(S50)는 제2검출부(62)에서 검출한 2차전자의 데이터를 토대로 하여 디스플레이 상에 시편을 이미지화하는 단계이다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.
1차전자 및 2차전자에 전자기장을 인가하는 필터와 제1검출기를 경통 내부에 일체로 형성함으로써, 별도의 검출장치를 외부에 설치하지 않아 장치가 소형화되고, 2차전자를 검출하면서 연속적으로 1차전자의 전류량을 용이하게 측정할 수 있어 검사 작업의 효율성이 확보된다.

Claims (6)

  1. 주사전자현미경에 있어서,
    내부에 수용공간이 형성된 경통;
    상기 경통 내부에 설치되며 상기 경통 외부의 시편을 향하여 하전된 1차전자를 발생시키는 소스;
    상기 경통 내부에서 상기 소스의 하부에 설치되며, 상기 1차전자 및 상기 1차전자가 상기 시편에 충돌한 후 방출되는 2차전자의 이동 경로를 바꾸는 필터;
    상기 필터와 상기 시편 사이의 상기 경통 내부에 설치되고, 상기 필터에서 발생되는 전자기장에 의하여 이동 경로가 변경된 상기 1차전자에 의한 전류량을 검출하는 제1검출기;
    상기 소스와 상기 필터 사이의 상기 경통 내부에 설치되고, 상기 필터에 의하여 이동 경로가 변경된 상기 2차전자를 검출하는 제2검출기;
    상기 1차전자 및 상기 2차전자의 이동 경로를 선택적으로 변경하도록 상기 필터를 제어하는 필터제어부;를 포함하는 것을 특징으로 하는 주사전자현미경.
  2. 제1항에 있어서,
    상기 주사전자현미경은 상기 시편의 주사 영역을 행에 대하여 순차적으로 스캔하는 래스터 주사 방식인 것을 특징으로 하는 주사전자현미경.
  3. 제2항에 있어서,
    상기 필터제어부는 상기 시편의 주사 영역중 하나의 행에 대하여 1차전자가 주사되는 동안에는 상기 2차전자가 상기 제2검출기로 유입되도록 상기 필터를 제어하고, 상기 시편의 다음 행에 1차전자를 주사하기 위하여 1차전자의 입사 위치를 이동하는 중에는 상기 1차전자가 상기 제1검출기로 유입되도록 상기 필터를 제어하는 것을 특징으로 하는 주사 전자 현미경.
  4. 제3항에 있어서,
    상기 제1검출기 및 상기 제2검출기로부터 검출된 신호를 분석하는 검사부;와, 상기 검사부로부터 전달된 결과값에 따라 소스로부터 주사되는 상기 1차전자의 전류량을 제어하는 소스제어부;를 더 포함하는 것을 특징으로 하는 주사전자현미경.
  5. 제1항 내지 제4항의 주사전자현미경을 이용한 1차전자의 전류량 측정 방법에 있어서,
    시편의 검사 영역 중 하나의 행에 대하여 하전된 상기 1차전자를 주사함과 동시에 상기 2차전자가 제2검출기로 유도되도록 상기 필터를 제어하는 단계;
    상기 1차전자의 주사 위치를 다음 행으로 이동함과 동시에 상기 1차전자가 상기 제1검출기로 유도되도록 상기 필터를 제어하는 단계;를 포함하는 것을 특징으로 하는 주사전자현미경의 1차전자 전류량 측정 방법.
  6. 제5항에 있어서,
    상기 1차검출기와 상기 2차검출기로부터 측정된 결과값을 비교 분석하여 상기 소스의 상기 1차전자 발생량을 조절하는 검사 단계를 더 포함하는 것을 특징으로 하는 주사전자현미경의 1차전자 전류량 측정 방법.
PCT/KR2011/007129 2011-09-27 2011-09-28 주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법 WO2013047920A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014533170A JP5826942B2 (ja) 2011-09-27 2011-09-28 走査電子顕微鏡及びこれを用いた1次電子の電流量測定方法
CN201180073722.4A CN103890896B (zh) 2011-09-27 2011-09-28 扫描电子显微镜及利用它的原电子电流量的检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0097829 2011-09-27
KR1020110097829A KR101348581B1 (ko) 2011-09-27 2011-09-27 주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법

Publications (1)

Publication Number Publication Date
WO2013047920A1 true WO2013047920A1 (ko) 2013-04-04

Family

ID=47995930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007129 WO2013047920A1 (ko) 2011-09-27 2011-09-28 주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법

Country Status (5)

Country Link
JP (1) JP5826942B2 (ko)
KR (1) KR101348581B1 (ko)
CN (1) CN103890896B (ko)
TW (1) TWI456622B (ko)
WO (1) WO2013047920A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016632A1 (ko) * 2013-07-31 2015-02-05 케이맥(주) 비행시간을 이용한 조성 및 정량 분석 장치 및 방법, 이에 이용되는 패러데이 컵 어셈블리
KR101493215B1 (ko) * 2013-07-31 2015-02-16 케이맥(주) 이온 및 전자 빔 전류 측정을 위한 패러데이 컵
KR101756171B1 (ko) 2015-12-15 2017-07-12 (주)새론테크놀로지 주사 전자 현미경
US20220254599A1 (en) * 2019-07-26 2022-08-11 Asml Netherlands B.V. Multiple landing energy scanning electron microscopy systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258703A (ja) * 1991-05-30 1993-10-08 Nippon K L Ee Kk 電子ビーム検査方法とそのシステム
JPH06243814A (ja) * 1993-02-16 1994-09-02 Jeol Ltd 走査電子顕微鏡
JPH07105888A (ja) * 1993-10-05 1995-04-21 Jeol Ltd 走査電子顕微鏡

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115447A (ja) * 1990-09-04 1992-04-16 Jeol Ltd イオンビーム装置
JP3376793B2 (ja) * 1995-12-20 2003-02-10 株式会社日立製作所 走査形電子顕微鏡
JP2003187733A (ja) * 2001-12-14 2003-07-04 Ebara Corp 電子線装置及びこの装置を用いたデバイス製造方法
JP4636897B2 (ja) * 2005-02-18 2011-02-23 株式会社日立ハイテクサイエンスシステムズ 走査電子顕微鏡
JP5075375B2 (ja) 2006-08-11 2012-11-21 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
JP4889105B2 (ja) * 2006-08-23 2012-03-07 エスアイアイ・ナノテクノロジー株式会社 荷電粒子ビーム装置
JP5276860B2 (ja) 2008-03-13 2013-08-28 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
US7960697B2 (en) * 2008-10-23 2011-06-14 Hermes-Microvision, Inc. Electron beam apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258703A (ja) * 1991-05-30 1993-10-08 Nippon K L Ee Kk 電子ビーム検査方法とそのシステム
JPH06243814A (ja) * 1993-02-16 1994-09-02 Jeol Ltd 走査電子顕微鏡
JPH07105888A (ja) * 1993-10-05 1995-04-21 Jeol Ltd 走査電子顕微鏡

Also Published As

Publication number Publication date
CN103890896A (zh) 2014-06-25
TWI456622B (zh) 2014-10-11
TW201314732A (zh) 2013-04-01
CN103890896B (zh) 2016-08-17
KR20130033877A (ko) 2013-04-04
KR101348581B1 (ko) 2014-01-09
JP2014528154A (ja) 2014-10-23
JP5826942B2 (ja) 2015-12-02

Similar Documents

Publication Publication Date Title
JP3724949B2 (ja) 基板検査装置およびこれを備えた基板検査システム並びに基板検査方法
CN110214361B (zh) 用于检查样本的方法和带电粒子多束装置
JP5103033B2 (ja) 荷電粒子線応用装置
KR100280164B1 (ko) 전자 빔을 이용한 검사방법 및 그 장치
US8035082B2 (en) Projection electron beam apparatus and defect inspection system using the apparatus
KR100721846B1 (ko) 패턴결함 검사방법 및 검사장치
US9390886B2 (en) Electro-optical inspection apparatus using electron beam
JP3996774B2 (ja) パターン欠陥検査方法及びパターン欠陥検査装置
US9991092B2 (en) Scanning electron microscope and sample observation method
CA1307057C (en) Electron beam testing of electronic components
WO2013047920A1 (ko) 주사전자현미경 및 이를 이용한 1차전자의 전류량 측정 방법
US9275829B2 (en) Image forming device and computer program
JP2013178103A (ja) パターン寸法測定装置、及びコンピュータプログラム
JP2008027737A (ja) パターン検査・計測装置
JP2005292157A (ja) ウェハ欠陥検査方法及びウェハ欠陥検査装置
EP1420259A1 (en) Apparatus and method for contacting of test objects
JP4253576B2 (ja) パターン欠陥検査方法及び検査装置
JP3984870B2 (ja) ウェハ欠陥検査方法及びウェハ欠陥検査装置
WO2017200124A1 (ko) 모노크로미터를 구비한 전자선장치
EP1703539A1 (en) Electron beam device
JP4484860B2 (ja) パターン欠陥検査方法
JP2001093950A (ja) 半導体パターン検査装置および半導体パターン検査方法
WO2013062158A1 (ko) 주사전자현미경용 빈필터 제어방법 및 전자빔 정렬 기능을 구비한 주사전자현미경
JP2005164608A (ja) パターン欠陥検査方法及びパターン欠陥検査装置
WO2023167414A1 (ko) 투과전자현미경 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873414

Country of ref document: EP

Kind code of ref document: A1