WO2013047842A1 - エネルギー管理システム、エネルギー管理装置及び電力管理方法 - Google Patents

エネルギー管理システム、エネルギー管理装置及び電力管理方法 Download PDF

Info

Publication number
WO2013047842A1
WO2013047842A1 PCT/JP2012/075250 JP2012075250W WO2013047842A1 WO 2013047842 A1 WO2013047842 A1 WO 2013047842A1 JP 2012075250 W JP2012075250 W JP 2012075250W WO 2013047842 A1 WO2013047842 A1 WO 2013047842A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
unit
power
unit price
energy management
Prior art date
Application number
PCT/JP2012/075250
Other languages
English (en)
French (fr)
Inventor
健太 沖野
啓 岩田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/348,034 priority Critical patent/US9594362B2/en
Priority to EP12835626.8A priority patent/EP2763266B1/en
Publication of WO2013047842A1 publication Critical patent/WO2013047842A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/40Fuel cell technologies in production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to an energy management system including a fuel cell, an energy management apparatus, and a power management method.
  • a fuel cell such as SOFC (Solid Oxide Fuel Cell) can be considered.
  • SOFC Solid Oxide Fuel Cell
  • a power generation device that uses clean energy such as sunlight, wind power, and geothermal heat can be considered.
  • the power supplied from the fuel cell is generally controlled so as to follow the power consumption of the load provided in the consumer.
  • Patent Document 1 a technique for reducing the price selected by the user or the amount of carbon dioxide emission by changing the type of power source that supplies power to each load and the operation time of each load has been proposed (for example, Patent Document 1). ).
  • the energy management system includes a fuel cell.
  • the energy management system includes a control unit that controls the fuel cell, a power purchase unit price that is required to receive a unit power supply from the system, and a fuel cell unit price that the fuel cell needs to generate unit power. And an acquisition unit for acquiring.
  • the control unit controls the fuel cell in a suppressed state in which the output of the fuel cell is suppressed when the fuel cell unit price is higher than the power purchase unit price.
  • the energy management device is connected to a solar cell.
  • the acquisition unit acquires a power selling unit price of unit power generated by the solar cell.
  • the control unit controls the fuel cell in the restrained state when the fuel cell unit price is higher than the power selling unit price.
  • the exhaust heat generated by the operation of the fuel cell is used to warm water by the hot water supply unit.
  • the control unit corrects the fuel cell unit price based on the utilization efficiency of the exhaust heat, and uses the corrected fuel cell unit price as the fuel cell unit price.
  • the said control part performs control which consumes the electric power generated with the said solar cell preferentially with a load, when the said power sale unit price is lower than the said power purchase unit price.
  • the acquisition unit is a reception unit that receives the power purchase unit price via a network.
  • the acquisition unit is a reception unit that receives the power selling unit price via a network.
  • the suppression state is a stop state in which the operation of the fuel cell is stopped, or an idle state of the fuel cell.
  • the suppression state is a stop state in which the operation of the fuel cell is stopped.
  • the control unit corrects the unit price of the fuel cell based on a price necessary for stopping the operation of the fuel cell and restarting the operation of the fuel cell, and uses the corrected unit price of the fuel cell as the unit price of the fuel cell.
  • the suppression state is an idle state of the fuel cell.
  • the control unit corrects the fuel cell unit price based on a price necessary for maintaining the idle state, and uses the corrected fuel cell unit price as the fuel cell unit price.
  • the energy management device is connected to the fuel cell.
  • the energy management device includes a control unit for controlling the fuel cell, a power purchase unit price necessary for receiving supply of unit power from the system, and a fuel cell unit price necessary for the fuel cell to generate unit power. And an acquisition unit for acquiring.
  • the control unit controls the fuel cell in a suppressed state in which the output of the fuel cell is suppressed when the fuel cell unit price is higher than the power purchase unit price.
  • the power management method according to the third feature is applied to an energy management system including a fuel cell.
  • the power management method includes a step A for obtaining a power purchase unit price necessary for receiving supply of unit power from a system, and a step B for obtaining a fuel cell unit price necessary for the fuel cell to generate unit power. And when the fuel cell unit price is higher than the power purchase unit price, the fuel cell unit price is controlled in a suppressed state in which the output of the fuel cell is suppressed.
  • FIG. 1 is a diagram illustrating a power management system 1 according to the first embodiment.
  • FIG. 2 is a block diagram showing the HEMS 500 according to the first embodiment.
  • FIG. 3 is a diagram showing power generation efficiency and exhaust heat utilization efficiency according to the first embodiment.
  • FIG. 4 is a diagram illustrating hot water supply demand and the amount of remaining hot water according to the first embodiment.
  • FIG. 5 is a flowchart showing the energy management method according to the first embodiment.
  • the FIG. 6 is a diagram illustrating the power management system 1 according to the first modification.
  • FIG. 7 is a flowchart showing an energy management method according to the first modification.
  • the energy management system includes a fuel cell.
  • the energy management system includes: a control unit that controls the fuel cell; a power purchase unit price that is necessary for receiving supply of unit power from the system; and a fuel cell unit price that is required for the fuel cell to generate unit power.
  • the control unit controls the fuel cell in a suppressed state in which the output of the fuel cell is suppressed when the fuel cell unit price is higher than the power purchase unit price.
  • the control unit controls the fuel cell in a suppressed state in which the output of the fuel cell is suppressed. Therefore, when the electric power output from the fuel cell is used, the case where the price is increased is suppressed.
  • FIG. 1 is a diagram illustrating a power management system 1 according to the first embodiment.
  • the power management system 1 includes an SOFC unit 100, a hot water storage unit 200, a distribution board 300, a load 400, and a HEMS 500.
  • the SOFC unit 100 is a unit including a device (Solid Oxide Fuel Cell) that outputs electric power (for example, DC electric power) by a chemical reaction between hydrogen extracted from natural gas or the like and oxygen in the air.
  • a device Solid Oxide Fuel Cell
  • electric power for example, DC electric power
  • the SOFC unit 100 includes a SOFC 110, a SOFC PCS 120, a heat exchanger 130, and a SOFC controller 140.
  • the SOFC 110 is a device (Solid Oxide Fuel Cell) that generates electric power (for example, DC electric power) by a chemical reaction between hydrogen extracted from gas or the like and oxygen in the air.
  • the SOFC 110 is an example of a fuel cell.
  • the power generation amount of the SOFC 110 changes according to the amount of gas and air supplied to the SOFC 110.
  • the amount of gas and air supplied to the SOFC 110 is controlled by the SOFC controller 140.
  • the SOFC PCS 120 converts the DC power output from the SOFC 110 into AC power.
  • the SOFC PCS 120 outputs AC power to the distribution board 300 via the power line 12.
  • the heat exchanger 130 is connected to the hot water storage tank 210, and warms the water supplied from the hot water storage tank 210 by exhaust heat generated by the operation (power generation) of the SOFC 110. Specifically, the heat exchanger 130 warms the water supplied from the hot water storage tank 210 and returns the warmed hot water to the hot water storage tank 210. Thus, the exhaust heat generated by the operation (power generation) of the SOFC 110 is used for warming the water supplied from the hot water tank 210.
  • the SOFC controller 140 performs control for performing load following operation. Specifically, the SOFC controller 140 controls the SOFC 110 so that the power output from the SOFC unit 100 (SOFC 110) follows the power consumption of the load 400.
  • the SOFC controller 140 determines the target output power of the SOFC unit 100 (SOFC 110) so that the power supplied from the grid 10 becomes a predetermined value (for example, zero).
  • the SOFC controller 140 controls the SOFC 110 so that the output power of the SOFC unit 100 (SOFC 110) becomes the target output power.
  • the power supplied from the grid 10 changes according to the power consumption of the load 400. Therefore, it should be noted that the output power of the SOFC unit 100 (SOFC 110) follows the power consumption of the load 400 even when the target output power is determined according to the power supplied from the grid 10. .
  • the SOFC controller 140 determines a target output power that is equal to the power consumption of the load 400.
  • the SOFC controller 140 controls the SOFC 110 so that the output power of the SOFC unit 100 (SOFC 110) becomes the target output power.
  • the SOFC controller 140 notifies the HEMS 500 of the operating temperature of the SOFC 110.
  • the operating temperature of the SOFC 110 can be measured by, for example, a thermometer attached to the SOFC 110.
  • the hot water storage unit 200 has a hot water storage tank 210 connected to the heat exchanger 130.
  • Hot water storage tank 210 stores hot water heated by exhaust heat generated by operation of SOFC 110.
  • the hot water storage unit 200 has a function of controlling the amount of hot water stored in the hot water storage tank 210 by adjusting the amount of water supplied to the heat exchanger 130.
  • the hot water storage unit 200 notifies the HEMS 500 of the hot water storage amount of the hot water storage tank 210 via the SOFC controller 140.
  • the “hot water storage amount” may be considered as a temperature-converted value (ie, heat storage amount).
  • the distribution board 300 is connected to the system 10 via the power line 11, is connected to the SOFC unit 100 via the power line 12, and is connected to the load 400 via the power line 13.
  • the distribution board 300 distributes the power supplied from the system 10 via the power line 11 and the power supplied from the SOFC unit 100 via the power line 12 to the load 400 via the power line 13.
  • the distribution board 300 includes a measurement unit 310.
  • the measurement unit 310 measures the power supplied from the system 10.
  • the measurement unit 310 measures the power consumption of the load 400.
  • the measurement unit 310 may measure the total power consumption of the plurality of loads 400, or may measure the power consumption of each load 400 individually.
  • the measurement unit 310 is connected to the SOFC unit 100 and the HEMS 500 via signal lines, and transmits measurement values to the SOFC unit 100 and the HEMS 500.
  • the load 400 is a device that consumes power supplied through the power line 13.
  • the load 400 includes devices such as a refrigerator, lighting, an air conditioner, and a television.
  • the load 400 may be a single device or may include a plurality of devices.
  • the HEMS 500 is a device (HEMS; Home Energy Management System) that manages power of consumers.
  • the HEMS 500 is connected to the SOFC unit 100, the distribution board 300 (measurement unit 310), and the load 400 via signal lines.
  • the HEMS 500 has a function of controlling the operation mode of the load 400.
  • the HEMS 500 is an example of an energy management device.
  • the HEMS 500 includes a reception unit 510, a transmission unit 520, a storage unit 530, and a control unit 540.
  • the receiving unit 510 receives various types of information from the SOFC controller 140, the distribution board 300 (measurement unit 310), and the load 400. For example, the receiving unit 510 receives information indicating the amount of hot water stored in the hot water storage tank 210 from the SOFC controller 140. The receiving unit 510 may receive the power (measured value) supplied from the system 10 or the power consumption (measured value) of the load 400 from the measuring unit 310. The receiving unit 510 may receive load state information indicating the state of the load 400 (power ON / OFF, operation mode) from the load 400.
  • information indicating the amount of hot water stored in the hot water storage tank 210 is accumulated in a storage unit 530 described later, and can be managed as a usage history of hot water stored in the hot water storage tank 210 in the storage unit 530. preferable.
  • the transmission unit 520 transmits various information to the SOFC unit 100 and the load 400. Specifically, the transmission unit 520 transmits an SOFC control signal for controlling the SOFC 110 to the SOFC unit 100 (SOFC controller 140).
  • the SOFC control signal is a signal for controlling the SOFC 110 in a suppressed state in which the output of the SOFC 110 is suppressed.
  • the suppressed state is a state in which the operation of the SOFC 110 is stopped (hereinafter referred to as a stopped state).
  • the suppressed state is the state (idle state) of the SOFC 110. That is, the SOFC control signal is a signal for transitioning the SOFC 110 to the stop state or a signal for transitioning the SOFC 110 to the idle state.
  • the idle state is a state in which the SOFC 110 is in a temperature state where external output is possible and can be switched to an operation mode in which power can be transmitted quickly and can be electrically output, but is not outputting electric power to the outside.
  • a fuel cell such as the SOFC 110 requires a certain amount of power for gas supply or the like due to its configuration.
  • the state in which the fuel cell is operated weakly so that only the power necessary for such operation can be generated and covered by itself is called an idle state. By setting it in such an idle state, the gas to be consumed is reduced as much as possible, but the followability when power is required at the load is very good compared to when the fuel cell is completely stopped. It has the advantage that it can be.
  • the storage unit 530 stores various information.
  • the storage unit 530 stores a power purchase unit price necessary for receiving supply of unit power from the grid 10.
  • the power purchase unit price is a price for receiving a power supply of 1 kWh.
  • the storage unit 530 stores the unit price of the fuel cell necessary for the SOFC 110 to generate unit power. For example, the price is necessary for the SOFC 110 to generate 1 kWh of power.
  • the storage unit 530 preferably stores information necessary for calculating the unit price of the fuel cell.
  • the storage unit 530 stores the unit price of gas supplied to the SOFC 110.
  • the gas unit price is, for example, the price of 1 cubic meter of gas.
  • the unit price of the fuel cell varies depending on the power generation efficiency of the SOFC 110.
  • the power generation efficiency of the SOFC 110 is worse as the output of the SOFC 110 is smaller.
  • the fuel cell unit price increases as the output of the SOFC 110 decreases.
  • the storage unit 530 stores the exhaust heat utilization efficiency of the SOFC 110 for each predetermined condition.
  • the predetermined condition is, for example, a time zone or a season. As shown in FIG. 3, the exhaust heat utilization efficiency of the SOFC 110 is substantially constant without depending on the output of the SOFC 110.
  • hot water supply demand is smaller than the amount of hot water stored in the hot water storage tank 210 (remaining hot water amount), and the remaining hot water amount reaches a predetermined threshold (for example, the upper limit amount that can be stored in the hot water storage tank 210).
  • a predetermined threshold for example, the upper limit amount that can be stored in the hot water storage tank 210.
  • the hot water supply demand can be predicted from the usage history of hot water stored in the hot water tank 210.
  • the control unit 540 controls the HEMS 500. Specifically, the control unit 540 controls the output of the SOFC 110. For example, the control unit 540 controls the SOFC 110 in a suppressed state in which the output of the SOFC 110 is suppressed.
  • control unit 540 controls the SOFC 110 in a suppressed state when the fuel cell unit price is higher than the power purchase unit price.
  • the fuel cell unit price may be corrected by other parameters as described below.
  • the control unit 540 corrects the fuel cell unit price stored in the storage unit 530 based on the exhaust heat utilization efficiency, and when the corrected fuel cell unit price is higher than the power purchase unit price, The SOFC 110 is controlled in the suppressed state. For example, the control unit 540 corrects the fuel cell unit price to a lower price as the exhaust heat utilization efficiency is higher.
  • the control unit 540 corrects the fuel cell unit price stored in the storage unit 530 on the basis of the price necessary for stopping the operation of the SOFC 110 and restarting the operation of the SOFC 110.
  • the SOFC 110 is controlled in a suppressed state.
  • the control unit 540 corrects the fuel cell unit price to a lower price as the price required for stopping the operation of the SOFC 110 and restarting the operation of the SOFC 110 is higher.
  • the price necessary for stopping the operation of the SOFC 110 and restarting the operation of the SOFC 110 is, for example, the price of electric power necessary for stopping the operation and restarting the operation.
  • the control unit 540 corrects the fuel cell unit price stored in the storage unit 530 based on the price necessary for maintaining the idle state of the SOFC 110 to be corrected.
  • the SOFC 110 is controlled in a suppressed state.
  • the control unit 540 corrects the fuel cell unit price to a lower price as the price required for maintaining the idle state is higher.
  • the price necessary for maintaining the idle state is, for example, the price of the gas supplied to the SOFC 110 in the idle state.
  • the control unit 540 acquires various types of information such as the unit price of purchased power, the unit price of the fuel cell, and the exhaust heat utilization efficiency from the storage unit 530.
  • FIG. 5 is a flowchart showing the energy management method according to the first embodiment.
  • step 10 the HEMS 500 acquires a power purchase unit price.
  • step 20 the HEMS 500 acquires the fuel cell unit price.
  • step 30 the HEMS 500 determines whether or not the fuel cell unit price is higher than the power purchase unit price. If the determination result is “YES”, the HEMS 500 proceeds to the process of step 40. On the other hand, if the determination result is “NO”, the HEMS 500 ends the series of processes.
  • the HEMS 500 may use the fuel cell unit price corrected by various parameters as the fuel cell unit price to be compared with the purchased power unit price.
  • step 40 the HEMS 500 controls the SOFC 110 in a suppressed state in which the output of the SOFC 110 is suppressed.
  • the suppression state is a stop state or an idle state.
  • the HEMS 500 controls the SOFC 110 in a suppressed state in which the output of the SOFC 110 is suppressed when the fuel cell unit price is higher than the power purchase unit price. Therefore, when the power output from the SOFC 110 is used, the case where the price is increased is suppressed.
  • the power management system 1 includes a PV unit 600 as shown in FIG.
  • the PV unit 600 includes a PV 610 and a PV PCS 620.
  • PV610 generates power in response to the reception of sunlight.
  • the PV 610 outputs the generated DC power.
  • the amount of power generated by PV 610 varies depending on the amount of solar radiation applied to PV 610.
  • PV PCS 620 converts DC power output from PV 610 into AC power.
  • the PV PCS 620 outputs AC power to the distribution board 300 via the power line 14.
  • the above-described storage unit 530 stores the power selling unit price of the unit power generated by the PV 610.
  • the power selling unit price is a price for selling 1 kWh of power.
  • the above-described HEMS 500 controls the SOFC 110 in a suppressed state when the fuel cell unit price is higher than the power selling unit price.
  • the fuel cell unit price may be corrected by other parameters as in the first embodiment. As described above, the other parameters are the exhaust heat utilization efficiency, the price required for stopping the operation of the SOFC 110 and restarting the operation of the SOFC 110, the price required for maintaining the idle state, and the like.
  • the HEMS 500 acquires various information such as a power sale unit price, a fuel cell unit price, and exhaust heat utilization efficiency from the storage unit 530.
  • FIG. 7 is a flowchart showing an energy management method according to the first modification.
  • step 110 the HEMS 500 acquires a power selling unit price.
  • step 120 the HEMS 500 acquires the fuel cell unit price.
  • step 130 the HEMS 500 determines whether or not the fuel cell unit price is higher than the power selling unit price. If the determination result is “YES”, the HEMS 500 proceeds to the process of step 140. On the other hand, if the determination result is “NO”, the HEMS 500 ends the series of processes.
  • the HEMS 500 may use the fuel cell unit price corrected by various parameters as the fuel cell unit price to be compared with the power selling unit price.
  • step 140 the HEMS 500 controls the SOFC 110 in a suppressed state in which the output of the SOFC 110 is suppressed.
  • the suppression state is a stop state or an idle state.
  • the HEMS 500 is exemplified as the energy management device.
  • the energy management device may be, for example, a BEMS (Building and Energy Management System) or a FEMS (Factory Energy Management System).
  • various types of information such as a power purchase unit price, a power sale unit price, a fuel cell unit price, and exhaust heat utilization efficiency are stored in the storage unit 530, and the HEMS 500 (control unit 540) is stored in the storage unit 530. Acquire various stored information.
  • the embodiment is not limited to this.
  • Various types of information such as a power purchase unit price, a power sale unit price, a fuel cell unit price, and exhaust heat utilization efficiency may be received by the receiving unit 510 via a network (mobile communication network, wireless LAN, Internet, etc.).
  • the reception unit 510 constitutes an acquisition unit that acquires various types of information such as a power purchase unit price, a power sale unit price, a fuel cell unit price, and exhaust heat utilization efficiency.
  • the HEMS 500 (the control unit 540) preferentially consumes the power generated by the PV 610 at the load 400 when the power selling unit price is lower than the power buying unit price. That is, the electric power generated by the PV 610 is consumed by the load 400 without being sold.
  • the first embodiment and the first modification may be combined.
  • the HEMS 500 performs the SOFC 110
  • the SOFC 110 may be controlled in a suppressed state in which the output of is suppressed.
  • the HEMS 500 may control the SOFC 110 in a suppressed state in which the output of the SOFC 110 is suppressed.
  • control unit 540 may be provided by a device other than the HEMS 500.
  • the SOFC controller 140 may have the function of the control unit 540.
  • communication of a network constituted by the HEMS 500 and each device is performed according to a predetermined protocol (ECHONET Lite, ZigBEE SEP2.0). , KNX, etc.).
  • a predetermined protocol ECHONET Lite, ZigBEE SEP2.0. , KNX, etc.
  • various commands are communicated between the HEMS 500 and each device (SOFC unit 100, hot water storage unit 200, distribution board 300, and load 400) in a format defined by a predetermined protocol.
  • the SOFC control signal notified from the HEMS 500 to the SOFC unit 100 the load status information (power ON / OFF, operation mode) notified from the load 400 to the HEMS 500, the operation mode designation information notified from the HEMS 500 to the load 400 ( Information specifying the operation mode of the load 400 is notified in a format defined by a predetermined protocol.
  • an energy management system an energy management apparatus, and a power management method capable of reducing the price of the entire power and gas by appropriately controlling the fuel cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Public Health (AREA)
  • Marketing (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Fuel Cell (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 電力管理システム1は、燃料電池単位価格が買電単位価格よりも高い場合に、SOFC110の出力が抑制された抑制状態でSOFC110を制御する制御部540を備える。

Description

エネルギー管理システム、エネルギー管理装置及び電力管理方法
 本発明は、燃料電池を備えるエネルギー管理システム、エネルギー管理装置及び電力管理方法に関する。
 近年、需要家毎に設けられるエネルギー管理装置(例えば、HEMS;Home Energy Management System)によって、需要家に設けられる負荷又は需要家に設けられる分散電源などを制御する技術が知られている。
 分散電源としては、SOFC(Solid Oxide Fuel Cell)などの燃料電池が考えられる。或いは、分散電源としては、太陽光、風力、地熱などのクリーンなエネルギーを利用する発電装置が考えられる。
 ここで、燃料電池から供給される電力は、一般的に、需要家に設けられる負荷の消費電力に追従するように制御される。
 また、各負荷に電力を供給する電源の種類及び各負荷の稼働時刻を変更することによって、ユーザが選択する価格又は二酸化炭素の排出量を削減する技術も提案されている(例えば、特許文献1)。
 ところで、燃料電池の出力が低下すると、燃料電池の発電効率が低下する。すなわち、燃料電池の出力が低い状態では、燃料電池の発電単価が上昇する。従って、系統から供給される電力及び燃料電池から供給される電力、もしくは他の発電装置による発電電力のいずれを用いる方が適切であるかについて検討すべきである。言い換えると、負荷の消費電力に追従して燃料電池を制御するだけでは、価格面で有利にならないケースが存在する。
特開2007-104775号公報
 第1の特徴に係るエネルギー管理システムは、燃料電池を備える。エネルギー管理システムは、前記燃料電池を制御する制御部と、系統から単位電力の供給を受けるために必要な買電単位価格と、前記燃料電池が単位電力を発電するために必要な燃料電池単位価格とを取得する取得部とを備える。前記制御部は、前記燃料電池単位価格が前記買電単位価格よりも高い場合に、前記燃料電池の出力が抑制された抑制状態で前記燃料電池を制御する。
 第1の特徴において、前記エネルギー管理装置は、太陽電池に接続される。前記取得部は、前記太陽電池によって発電される単位電力の売電単位価格を取得する。前記制御部は、前記燃料電池単位価格が前記売電単位価格よりも高い場合に、前記抑制状態で前記燃料電池を制御する。
 第1の特徴において、前記燃料電池の運転によって生じる排熱は、給湯ユニットによって水を温めるために用いられる。前記制御部は、前記排熱の利用効率に基づいて、前記燃料電池単位価格を補正し、補正された燃料電池単位価格を前記燃料電池単位価格として用いる。
 第1の特徴において、前記制御部は、前記売電単位価格が前記買電単位価格よりも低い場合に、前記太陽電池によって発電された電力を負荷で優先的に消費する制御を行う。
 第1の特徴において、前記取得部は、ネットワークを介して前記買電単位価格を受信する受信部である。
 第1の特徴において、前記取得部は、ネットワークを介して前記売電単位価格を受信する受信部である。
 第1の特徴において、前記抑制状態は、前記燃料電池の運転を停止した停止状態、或いは、前記燃料電池のアイドル状態である。
 第1の特徴において、前記抑制状態は、前記燃料電池の運転を停止した停止状態である。前記制御部は、前記燃料電池の運転停止及び燃料電池の運転再開に必要な価格に基づいて、前記燃料電池単位価格を補正し、補正された燃料電池単位価格を前記燃料電池単位価格として用いる。
 第1の特徴において、前記抑制状態は、前記燃料電池のアイドル状態である。前記制御部は、前記アイドル状態の維持に必要な価格に基づいて、前記燃料電池単位価格を補正し、補正された燃料電池単位価格を前記燃料電池単位価格として用いる。
 第2の特徴に係るエネルギー管理装置は、燃料電池に接続される。エネルギー管理装置は、前記燃料電池を制御する制御部と、系統から単位電力の供給を受けるために必要な買電単位価格と、前記燃料電池が単位電力を発電するために必要な燃料電池単位価格とを取得する取得部とを備える。前記制御部は、前記燃料電池単位価格が前記買電単位価格よりも高い場合に、前記燃料電池の出力が抑制された抑制状態で前記燃料電池を制御する。
 第3の特徴に係る電力管理方法は、燃料電池を備えるエネルギー管理システムに適用される。電力管理方法は、系統から単位電力の供給を受けるために必要な買電単位価格を取得するステップAと、前記燃料電池が単位電力を発電するために必要な燃料電池単位価格を取得するステップBと、前記燃料電池単位価格が前記買電単位価格よりも高い場合に、前記燃料電池の出力が抑制された抑制状態で前記燃料電池を制御するステップCとを備える。
図1は、第1実施形態に係る電力管理システム1を示す図である。 図2は、第1実施形態に係るHEMS500を示すブロック図である。 図3は、第1実施形態に係る発電効率及び排熱利用効率を示す図である。 図4は、第1実施形態に係る給湯需要及び残湯量を示す図である。 図5は、第1実施形態に係るエネルギー管理方法を示すフロー図である。る。 図6は、変更例1に係る電力管理システム1を示す図である。 図7は、変更例1に係るエネルギー管理方法を示すフロー図である。る。
 以下において、本発明の実施形態に係るエネルギー管理システムについて、図面を参照しながら説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係又は比率が異なる部分が含まれていることは勿論である。
 [実施形態の概要]
 実施形態に係るエネルギー管理システムは、燃料電池を備える。エネルギー管理システムは、前記燃料電池を制御する制御部と、系統から単位電力の供給を受けるために必要な買電単位価格と、前記燃料電池が単位電力を発電するために必要な燃料電池単位価格とを取得する取得部とを備える。前記制御部は、前記燃料電池単位価格が前記買電単位価格よりも高い場合に、前記燃料電池の出力が抑制された抑制状態で前記燃料電池を制御する。
 実施形態では、制御部は、燃料電池単位価格が買電単位価格よりも高い場合に、燃料電池の出力が抑制された抑制状態で燃料電池を制御する。従って、燃料電池から出力される電力を用いると、却って価格が高くなるケースが抑制される。
 [第1実施形態]
 (エネルギー管理システム)
 以下において、第1実施形態に係るエネルギー管理システムについて説明する。図1は、第1実施形態に係る電力管理システム1を示す図である。
 図1に示すように、電力管理システム1は、SOFCユニット100と、貯湯ユニット200と、分電盤300と、負荷400と、HEMS500とを有する。
 SOFCユニット100は、天然ガスなどから取り出した水素と空気中の酸素との化学反応によって、電力(例えば、DC電力)を出力する装置(Solid Oxide Fuel Cell)を含むユニットである。
 詳細には、SOFCユニット100は、SOFC110と、SOFC PCS120と、熱交換器130と、SOFCコントローラ140とを有する。
 SOFC110は、ガスなどから取り出した水素と空気中の酸素との化学反応によって、電力(例えば、DC電力)を発電する装置(Solid Oxide Fuel Cell)である。SOFC110は、燃料電池の一例である。SOFC110の発電量は、SOFC110に供給されるガス及び空気の量に応じて変化する。SOFC110に供給されるガス及び空気の量は、SOFCコントローラ140によって制御される。
 SOFC PCS120は、SOFC110から出力されるDC電力をAC電力に変換する。SOFC PCS120は、電力ライン12を介してAC電力を分電盤300に出力する。
 熱交換器130は、貯湯槽210と連結されており、SOFC110の運転(発電)によって生じる排熱によって、貯湯槽210から供給される水を温める。詳細には、熱交換器130は、貯湯槽210から供給される水を温めて、温められた湯を貯湯槽210に還流する。このように、SOFC110の運転(発電)によって生じる排熱は、貯湯槽210から供給される水を温めるために用いられる。
 SOFCコントローラ140は、負荷追従運転を行うための制御を行う。具体的には、SOFCコントローラ140は、SOFCユニット100(SOFC110)から出力される電力が負荷400の消費電力に追従するように、SOFC110を制御する。
 SOFCコントローラ140は、系統10から供給される電力が所定値(例えばゼロ)となるように、SOFCユニット100(SOFC110)の目標出力電力を決定する。SOFCコントローラ140は、SOFCユニット100(SOFC110)の出力電力が目標出力電力となるように、SOFC110を制御する。
 系統10から供給される電力は、負荷400の消費電力に応じて変化する。従って、系統10から供給される電力に応じて目標出力電力を決定するケースであっても、SOFCユニット100(SOFC110)の出力電力は、負荷400の消費電力に追従することに留意すべきである。
 或いは、SOFCコントローラ140は、負荷400の消費電力と等しい目標出力電力を決定する。SOFCコントローラ140は、SOFCユニット100(SOFC110)の出力電力が目標出力電力となるように、SOFC110を制御する。
 第1実施形態において、SOFCコントローラ140は、SOFC110の動作温度をHEMS500に通知する。SOFC110の動作温度は、例えば、SOFC110に併設された温度計によって計測可能である。
 貯湯ユニット200は、熱交換器130と連結された貯湯槽210を有する。貯湯槽210は、SOFC110の運転によって生じる排熱によって温められた湯を貯留する。また、貯湯ユニット200は、熱交換器130に供給する水量の調整などによって、貯湯槽210の貯湯量を制御する機能を有する。
 ここで、貯湯ユニット200は、SOFCコントローラ140を経由して、貯湯槽210の貯湯量をHEMS500に通知する。「貯湯量」は、温度換算の値(すなわち、貯熱量)と考えてもよい。
 分電盤300は、電力ライン11を介して系統10と接続されており、電力ライン12を介してSOFCユニット100と接続されており、電力ライン13を介して負荷400と接続される。分電盤300は、電力ライン11を介して系統10から供給される電力及び電力ライン12を介してSOFCユニット100か供給される電力を、電力ライン13を介して負荷400に分配する。
 第1実施形態では、分電盤300は、計測部310を有する。計測部310は、系統10から供給される電力を計測する。また、計測部310は、負荷400の消費電力を計測する。
 複数の負荷400が設けられている場合には、計測部310は、複数の負荷400の消費電力の合計を計測してもよく、各負荷400の消費電力を個別に計測してもよい。
 ここで、計測部310は、SOFCユニット100及びHEMS500に信号線を介して接続されており、SOFCユニット100及びHEMS500に計測値を送信する。
 負荷400は、電力ライン13を介して供給される電力を消費する装置である。例えば、負荷400は、冷蔵庫、照明、エアコン、テレビなどの装置を含む。負荷400は、単数の装置であってもよく、複数の装置を含んでもよい。
 HEMS500は、需要家の電力を管理する装置(HEMS;Home Energy Management System)である。HEMS500は、SOFCユニット100、分電盤300(計測部310)及び負荷400に信号線を介して接続される。HEMS500は、負荷400の動作モードを制御する機能を有する。HEMS500は、エネルギー管理装置の一例である。
 具体的には、HEMS500は、図2に示すように、HEMS500は、受信部510と、送信部520と、記憶部530と、制御部540とを有する。
 受信部510は、SOFCコントローラ140、分電盤300(計測部310)及び負荷400から各種情報を受信する。例えば、受信部510は、貯湯槽210の貯湯量を示す情報をSOFCコントローラ140から受信する。受信部510は、系統10から供給される電力(計測値)又は負荷400の消費電力(計測値)を計測部310から受信してもよい。受信部510は、負荷400の状態(電源ON/OFF、動作モード)を示す負荷状態情報を負荷400から受信してもよい。
 第1実施形態において、貯湯槽210の貯湯量を示す情報は、後述する記憶部530に蓄積されており、記憶部530において、貯湯槽210に貯留される湯の使用履歴として管理されることが好ましい。
 送信部520は、SOFCユニット100及び負荷400に各種情報を送信する。詳細には、送信部520は、SOFC110を制御するためのSOFC制御信号をSOFCユニット100(SOFCコントローラ140)に送信する。
 ここで、SOFC制御信号は、SOFC110の出力が抑制された抑制状態でSOFC110を制御するための信号である。ここで、抑制状態とは、SOFC110の運転を停止した状態(以下、停止状態)である。或いは、抑制状態とは、SOFC110の状態(アイドル状態)である。すなわち、SOFC制御信号は、SOFC110を停止状態に遷移させるための信号、又は、SOFC110をアイドル状態に遷移させるための信号である。
 アイドル状態とは、SOFC110が外部出力可能な温度状態にあり、速やかに送電できる運転モードに切り換わり電気出力できる状態であるが、外部には電力を出力していない状態である。特に、SOFC110などの燃料電池の運転には、その構成上、ガスの供給などにおいて多少の電力を要することが知られている。このような運転に必要となる電力だけを自身で生成して賄うことが出来るよう、燃料電池が微弱に運転する状態のことを、アイドル状態と呼ぶ。このようなアイドル状態としておくことで、消費するガスが極力少なくしつつも、燃料電池を完全停止させた場合に比して負荷にて電力を必要としたときの追従性を非常に良好なものとすることが出来る、という利点を有する。
 記憶部530は、各種情報を記憶する。第1に、記憶部530は、系統10から単位電力の供給を受けるために必要な買電単位価格を記憶する。例えば、買電単位価格は、1kWhの電力の供給を受けるための価格である。
 第2に、記憶部530は、SOFC110が単位電力を発電するために必要な燃料電池単位価格を記憶する。例えば、1kWhの電力をSOFC110が発電するために必要な価格である。
 記憶部530は、燃料電池単位価格を算出するために必要な情報を記憶していることが好ましい。例えば、記憶部530は、SOFC110に供給されるガス単位価格を記憶する。ガス単位価格は、例えば、1立方メートルのガスの価格である。
 ここで、燃料電池単位価格は、SOFC110の発電効率に応じて異なる。例えば、図3に示すように、SOFC110の発電効率は、SOFC110の出力が小さいほど悪い。言い換えると、SOFC110の出力が小さいほど、燃料電池単位価格が上昇する。
 第3に、記憶部530は、SOFC110の排熱利用効率を所定条件毎に記憶する。所定条件は、例えば、時間帯、季節などである。SOFC110の排熱利用効率は、図3に示すように、SOFC110の出力に依存せずに略一定である。
 しかしながら、湯の需要(以下、給湯需要)が貯湯槽210に貯留される湯の量(残湯量)よりも少なく、残湯量が所定閾値(例えば、貯湯槽210に貯留可能な上限量)に達している場合には、SOFC110の排熱が必要とされないことに留意すべきである。
 例えば、図4に示すように、19:00~23:00、7:00~9:00の時間帯においては、給湯需要が存在するが、他の時間帯においては、給湯需要が存在しない。従って、17:00~18:00の時間帯では、残湯量が所定閾値に達しているため、SOFC110の排熱が必要とされない。言い換えると、17:00~18:00の時間帯では、SOFC110の排熱利用効率は、“0”である。
 給湯需要は、貯湯槽210に貯留される湯の使用履歴によって予測可能であることに留意すべきである。
 制御部540は、HEMS500を制御する。具体的には、制御部540は、SOFC110の出力を制御する。例えば、制御部540は、SOFC110の出力が抑制された抑制状態でSOFC110を制御する。
 第1実施形態において、制御部540は、燃料電池単位価格が買電単位価格よりも高い場合に、抑制状態でSOFC110を制御する。但し、燃料電池単位価格は、以下に示すように、他のパラメータによって補正されてもよい。
 (a)制御部540は、排熱利用効率に基づいて、記憶部530に記憶された燃料電池単位価格を補正して、補正された燃料電池単位価格が買電単位価格よりも高い場合に、抑制状態でSOFC110を制御する。例えば、制御部540は、排熱利用効率が高い程、燃料電池単位価格を低い価格に補正する。
 (b)抑制状態が停止状態であるケースにおいて、制御部540は、SOFC110の運転停止及びSOFC110の運転再開に必要な価格に基づいて、記憶部530に記憶された燃料電池単位価格を補正して、補正された燃料電池単位価格が買電単位価格よりも高い場合に、抑制状態でSOFC110を制御する。例えば、制御部540は、SOFC110の運転停止及びSOFC110の運転再開に必要な価格が高い程、燃料電池単位価格を低い価格に補正する。
 ここで、SOFC110の運転停止及びSOFC110の運転再開に必要な価格は、例えば、運転停止及び運転再開に必要な電力の価格である。
 (c)抑制状態がアイドル状態であるケースにおいて、制御部540は、SOFC110のアイドル状態の維持に必要な価格に基づいて、記憶部530に記憶された燃料電池単位価格を補正して、補正された燃料電池単位価格が買電単位価格よりも高い場合に、抑制状態でSOFC110を制御する。例えば、制御部540は、アイドル状態の維持に必要な価格が高い程、燃料電池単位価格を低い価格に補正する。
 ここで、アイドル状態の維持に必要な価格は、例えば、アイドル状態においてSOFC110に供給されるガスの価格である。
 制御部540は、買電単位価格、燃料電池単位価格、排熱利用効率などの各種情報を記憶部530から取得する。
 (エネルギー管理方法)
 以下において、第1実施形態に係るエネルギー管理方法について説明する。図5は、第1実施形態に係るエネルギー管理方法を示すフロー図である。
 図5に示すように、ステップ10において、HEMS500は、買電単位価格を取得する。
 ステップ20において、HEMS500は、燃料電池単位価格を取得する。
 ステップ30において、HEMS500は、燃料電池単位価格が買電単位価格よりも高いか否かを判定する。HEMS500は、判定結果が“YES”である場合には、ステップ40の処理に移る。一方で、HEMS500は、判定結果が“NO”である場合には、一連の処理を終了する。
 HEMS500は、買電単位価格と比較される燃料電池単位価格として、各種パラメータによって補正された燃料電池単位価格を用いてもよい。
 ステップ40において、HEMS500は、SOFC110の出力が抑制された抑制状態でSOFC110を制御する。抑制状態は、停止状態又はアイドル状態である。
 (作用及び効果)
 第1実施形態では、HEMS500は、燃料電池単位価格が買電単位価格よりも高い場合に、SOFC110の出力が抑制された抑制状態でSOFC110を制御する。従って、SOFC110から出力される電力を用いると、却って価格が高くなるケースが抑制される。
 [変更例1]
 以下において、第1実施形態の変更例1について説明する。以下においては、第1実施形態に対する相違点について主として説明する。
 具体的には、変更例1において、電力管理システム1は、図6に示すように、PVユニット600を備える。PVユニット600は、PV610及びPV PCS620とを有する。
 PV610は、太陽光の受光に応じて発電を行う。PV610は、発電されたDC電力を出力する。PV610の発電量は、PV610に照射される日射量に応じて変化する。
 PV PCS620は、PV610から出力されたDC電力をAC電力に変換する。PV PCS620は、電力ライン14を介してAC電力を分電盤300に出力する。
 ここで、上述した記憶部530は、PV610によって発電される単位電力の売電単位価格を記憶する。例えば、売電単位価格は、1kWhの電力の売電に対する価格である。
 また、上述したHEMS500(制御部540)は、燃料電池単位価格が売電単位価格よりも高い場合に、抑制状態でSOFC110を制御する。但し、燃料電池単位価格は、第1実施形態と同様に、他のパラメータによって補正されてもよい。他のパラメータは、上述したように、排熱利用効率、SOFC110の運転停止及びSOFC110の運転再開に必要な価格、アイドル状態の維持に必要な価格などである。
 HEMS500(制御部540)は、売電単位価格、燃料電池単位価格、排熱利用効率などの各種情報を記憶部530から取得する。
 (エネルギー管理方法)
 以下において、変更例1に係るエネルギー管理方法について説明する。図7は、変更例1に係るエネルギー管理方法を示すフロー図である。
 図7に示すように、ステップ110において、HEMS500は、売電単位価格を取得する。
 ステップ120において、HEMS500は、燃料電池単位価格を取得する。
 ステップ130において、HEMS500は、燃料電池単位価格が売電単位価格よりも高いか否かを判定する。HEMS500は、判定結果が“YES”である場合には、ステップ140の処理に移る。一方で、HEMS500は、判定結果が“NO”である場合には、一連の処理を終了する。
 HEMS500は、売電単位価格と比較される燃料電池単位価格として、各種パラメータによって補正された燃料電池単位価格を用いてもよい。
 ステップ140において、HEMS500は、SOFC110の出力が抑制された抑制状態でSOFC110を制御する。抑制状態は、停止状態又はアイドル状態である。
 変更例1においては、PV610によって電力が発電されていることを前提としていることに留意すべきである。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 実施形態では、エネルギー管理装置として、HEMS500を例示した。しかしながら、エネルギー管理装置は、例えば、BEMS(Building and Energy Manegement System)であってもよく、FEMS(Factory Energy Manegement System)であってもよい。
 実施形態では、買電単位価格、売電単位価格、燃料電池単位価格、排熱利用効率などの各種情報は、記憶部530に記憶されており、HEMS500(制御部540)は、記憶部530に記憶された各種情報を取得する。しかしながら、実施形態は、これに限定されるものではない。買電単位価格、売電単位価格、燃料電池単位価格、排熱利用効率などの各種情報は、ネットワーク(移動体通信網、無線LAN、インターネットなど)を介して、受信部510によって受信されてもよい。言い換えると、受信部510は、買電単位価格、売電単位価格、燃料電池単位価格、排熱利用効率などの各種情報を取得する取得部を構成する。
 実施形態では特に触れていないが、HEMS500(制御部540)は、売電単位価格が買電単位価格よりも低い場合に、PV610によって発電された電力を負荷400で優先的に消費する。すなわち、PV610によって発電された電力を売電せずに負荷400で消費する。
 実施形態では特に触れていないが、第1実施形態と変更例1とを組み合わせてもよい。例えば、燃料電池単位価格が買電単位価格よりも高いという条件(a)及び燃料電池単位価格が売電単位価格よりも高いという条件(b)の双方が満たされた場合に、HEMS500は、SOFC110の出力が抑制された抑制状態でSOFC110を制御してもよい。或いは、条件(a)及び条件(b)のいずれかが満たされた場合に、HEMS500は、SOFC110の出力が抑制された抑制状態でSOFC110を制御してもよい。
 実施形態では特に触れていないが、制御部540の機能は、HEMS500以外の装置が有していてもよい。例えば、SOFCコントローラ140が制御部540の機能を有していてもよい。
 実施形態では特に触れていないが、HEMS500及び各機器(SOFCユニット100、貯湯ユニット200、分電盤300及び負荷400)によって構成されるネットワークの通信は、所定のプロトコル(ECHONET Lite、ZigBEE SEP2.0、KNXなど)に準拠して行われることが好ましい。このようなケースにおいて、HEMS500及び各機器(SOFCユニット100、貯湯ユニット200、分電盤300及び負荷400)の間では、所定のプロトコルで規定される形式で各種コマンドの通信が行われる。例えば、HEMS500からSOFCユニット100に通知されるSOFC制御信号、負荷400からHEMS500に通知される負荷状態情報(電源ON/OFF、動作モード)は、HEMS500から負荷400に通知される動作モード指定情報(負荷400の動作モードを指定する情報)は、所定のプロトコルで規定される形式で通知される。
 なお、日本国特許出願第2011-213566号(2011年9月28日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明によれば、燃料電池を適切に制御することによって、電力とガス全体の価格を低減することを可能とするエネルギー管理システム、エネルギー管理装置及び電力管理方法を提供することができる。
 
 

Claims (11)

  1.  燃料電池を備えるエネルギー管理システムであって、
     前記燃料電池を制御する制御部と、
     系統から単位電力の供給を受けるために必要な買電単位価格と、前記燃料電池が単位電力を発電するために必要な燃料電池単位価格とを取得する取得部とを備え、
     前記制御部は、前記燃料電池単位価格が前記買電単位価格よりも高い場合に、前記燃料電池の出力が抑制された抑制状態で前記燃料電池を制御することを特徴とするエネルギー管理システム。
  2.  前記エネルギー管理装置は、太陽電池に接続されており、
     前記取得部は、前記太陽電池によって発電される単位電力の売電単位価格を取得し、
     前記制御部は、前記燃料電池単位価格が前記売電単位価格よりも高い場合に、前記抑制状態で前記燃料電池を制御することを特徴とする請求項1に記載のエネルギー管理システム。
  3.  前記燃料電池の運転によって生じる排熱は、給湯ユニットによって水を温めるために用いられており、
     前記制御部は、前記排熱の利用効率に基づいて、前記燃料電池単位価格を補正し、補正された燃料電池単位価格を前記燃料電池単位価格として用いることを特徴とする請求項1に記載のエネルギー管理システム。
  4.  前記制御部は、前記売電単位価格が前記買電単位価格よりも低い場合に、前記太陽電池によって発電された電力を負荷で優先的に消費する制御を行うことを特徴とする請求項2に記載のエネルギー管理システム。
  5.  前記取得部は、ネットワークを介して前記買電単位価格を受信する受信部であることを特徴とする請求項1に記載のエネルギー管理システム。
  6.  前記取得部は、ネットワークを介して前記売電単位価格を受信する受信部であることを特徴とする請求項2に記載のエネルギー管理システム。
  7.  前記抑制状態は、前記燃料電池の運転を停止した停止状態、或いは、前記燃料電池のアイドル状態であることを特徴とする請求項1に記載のエネルギー管理システム。
  8.  前記抑制状態は、前記燃料電池の運転を停止した停止状態であり、
     前記制御部は、前記燃料電池の運転停止及び燃料電池の運転再開に必要な価格に基づいて、前記燃料電池単位価格を補正し、補正された燃料電池単位価格を前記燃料電池単位価格として用いることを特徴とする請求項1に記載のエネルギー管理システム。
  9.  前記抑制状態は、前記燃料電池のアイドル状態であり、
     前記制御部は、前記アイドル状態の維持に必要な価格に基づいて、前記燃料電池単位価格を補正し、補正された燃料電池単位価格を前記燃料電池単位価格として用いることを特徴とする請求項1に記載のエネルギー管理システム。
  10.  燃料電池に接続されたエネルギー管理装置であって、
     前記燃料電池を制御する制御部と、
     系統から単位電力の供給を受けるために必要な買電単位価格と、前記燃料電池が単位電力を発電するために必要な燃料電池単位価格とを取得する取得部とを備え、
     前記制御部は、前記燃料電池単位価格が前記買電単位価格よりも高い場合に、前記燃料電池の出力が抑制された抑制状態で前記燃料電池を制御することを特徴とするエネルギー管理装置。
  11.  燃料電池を備えるエネルギー管理システムに適用される電力管理方法であって、
     系統から単位電力の供給を受けるために必要な買電単位価格を取得するステップAと、
     前記燃料電池が単位電力を発電するために必要な燃料電池単位価格を取得するステップBと、
     前記燃料電池単位価格が前記買電単位価格よりも高い場合に、前記燃料電池の出力が抑制された抑制状態で前記燃料電池を制御するステップCとを備えることを特徴とする電力管理方法。
     
PCT/JP2012/075250 2011-09-28 2012-09-28 エネルギー管理システム、エネルギー管理装置及び電力管理方法 WO2013047842A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/348,034 US9594362B2 (en) 2011-09-28 2012-09-28 Energy management system, energy management apparatus, and power management method
EP12835626.8A EP2763266B1 (en) 2011-09-28 2012-09-28 Energy management system, energy management device, and power management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011213566A JP5965123B2 (ja) 2011-09-28 2011-09-28 エネルギー管理システム、エネルギー管理装置及び電力管理方法
JP2011-213566 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013047842A1 true WO2013047842A1 (ja) 2013-04-04

Family

ID=47995866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075250 WO2013047842A1 (ja) 2011-09-28 2012-09-28 エネルギー管理システム、エネルギー管理装置及び電力管理方法

Country Status (4)

Country Link
US (1) US9594362B2 (ja)
EP (1) EP2763266B1 (ja)
JP (1) JP5965123B2 (ja)
WO (1) WO2013047842A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140244064A1 (en) * 2011-09-28 2014-08-28 Kyocera Corporation Energy management system, energy management apparatus, and power management method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020799B2 (en) * 2012-02-14 2015-04-28 GM Global Technology Operations LLC Analytic method of fuel consumption optimized hybrid concept for fuel cell systems
FR2993226B1 (fr) * 2012-07-13 2015-12-18 Commissariat Energie Atomique Motorisation de vehicule automobile incluant une pile a combustible et un systeme de stockage d'energie
US20170171822A1 (en) * 2015-12-10 2017-06-15 Wireless Input Technology, Inc. Power Saving Method for Battery-powered Zigbee Devices
JP7346211B2 (ja) * 2019-09-30 2023-09-19 大和ハウス工業株式会社 電力供給システム
JP7386029B2 (ja) * 2019-09-30 2023-11-24 大和ハウス工業株式会社 電力供給システム
JP7452967B2 (ja) * 2019-09-30 2024-03-19 大和ハウス工業株式会社 電力供給システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152976A (ja) * 2000-11-13 2002-05-24 Sharp Corp 分散電源電力供給システム
WO2003075427A1 (fr) * 2002-03-06 2003-09-12 Matsushita Electric Industrial Co., Ltd. Dispositif de reglage pour systeme de fourniture d'energie reparti
JP2005130550A (ja) * 2003-10-21 2005-05-19 Nippon Telegr & Teleph Corp <Ntt> 分散型エネルギーシステム運転計画作成装置および作成方法
JP2007104775A (ja) 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd 複合電源におけるエネルギー需給方法、および、エネルギー需給装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562496B2 (en) * 2000-05-01 2003-05-13 Delphi Technologies, Inc. Integrated solid oxide fuel cell mechanization and method of using for transportation industry applications
JP4984344B2 (ja) 2000-12-20 2012-07-25 トヨタ自動車株式会社 燃料電池システムおよび供給電力切換方法
EP1662593B1 (en) 2003-07-25 2015-07-01 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
JP4570904B2 (ja) * 2004-05-12 2010-10-27 東京瓦斯株式会社 固体酸化物形燃料電池システムのホットスタンバイ法及びそのシステム
JP5037214B2 (ja) 2007-05-01 2012-09-26 Jx日鉱日石エネルギー株式会社 改質器システム、燃料電池システム、及びその運転方法
JP5965123B2 (ja) * 2011-09-28 2016-08-03 京セラ株式会社 エネルギー管理システム、エネルギー管理装置及び電力管理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152976A (ja) * 2000-11-13 2002-05-24 Sharp Corp 分散電源電力供給システム
WO2003075427A1 (fr) * 2002-03-06 2003-09-12 Matsushita Electric Industrial Co., Ltd. Dispositif de reglage pour systeme de fourniture d'energie reparti
JP2005130550A (ja) * 2003-10-21 2005-05-19 Nippon Telegr & Teleph Corp <Ntt> 分散型エネルギーシステム運転計画作成装置および作成方法
JP2007104775A (ja) 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd 複合電源におけるエネルギー需給方法、および、エネルギー需給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763266A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140244064A1 (en) * 2011-09-28 2014-08-28 Kyocera Corporation Energy management system, energy management apparatus, and power management method
US9594362B2 (en) * 2011-09-28 2017-03-14 Kyocera Corporation Energy management system, energy management apparatus, and power management method

Also Published As

Publication number Publication date
JP2013074759A (ja) 2013-04-22
EP2763266B1 (en) 2019-07-24
EP2763266A1 (en) 2014-08-06
JP5965123B2 (ja) 2016-08-03
US20140244064A1 (en) 2014-08-28
EP2763266A8 (en) 2014-11-12
EP2763266A4 (en) 2015-09-16
US9594362B2 (en) 2017-03-14

Similar Documents

Publication Publication Date Title
WO2013047842A1 (ja) エネルギー管理システム、エネルギー管理装置及び電力管理方法
JP5789162B2 (ja) エネルギー管理システム、ガスメータ及びエネルギー管理装置
WO2013015225A1 (ja) 制御装置及び電力制御方法
JP5934041B2 (ja) 電力システム、装置及び方法
US9846418B2 (en) Energy control system, energy control device, and energy control method for prioritizing a power generation source based on the possibility of selling generated power
JP6166512B2 (ja) 制御装置、電力システム、及び制御方法
US10236525B2 (en) Control apparatus, fuel cell unit and control method
US20200203741A1 (en) Management system, management method, control apparatus, and power generation apparatus
US9847650B2 (en) Management system, management method, control apparatus, and power generation apparatus
JP5893319B2 (ja) 電力管理システム及び電力管理装置
JP5940263B2 (ja) 電力制御装置及び電力制御方法
JP2005248820A (ja) コージェネレーション装置の運転制御システム
JP6586281B2 (ja) 制御方法、制御装置、および電力供給システム
JP2003173808A (ja) 分散型発電装置の系統連系システム
JP5977109B2 (ja) 逆潮流制御装置
WO2013047843A1 (ja) エネルギー管理システム、エネルギー管理装置及び電力管理方法
JP6105476B2 (ja) 発電システム、制御装置、及び電力制御方法
JP5745986B2 (ja) 給電システム、制御装置、及び放電制御方法
JP6452330B2 (ja) 発電装置、発電システム、および発電方法
JP6689124B2 (ja) 電力制御装置
JP2016019428A (ja) 発電装置、発電システム、および発電方法
JP5886137B2 (ja) 電力制御システム、燃料電池、及び電力制御方法
JP2016186923A (ja) 制御方法、電力供給システム及び電力供給機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14348034

Country of ref document: US

Ref document number: 2012835626

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE