WO2013047481A1 - 撮影装置、撮影方法、記録媒体およびプログラム - Google Patents

撮影装置、撮影方法、記録媒体およびプログラム Download PDF

Info

Publication number
WO2013047481A1
WO2013047481A1 PCT/JP2012/074488 JP2012074488W WO2013047481A1 WO 2013047481 A1 WO2013047481 A1 WO 2013047481A1 JP 2012074488 W JP2012074488 W JP 2012074488W WO 2013047481 A1 WO2013047481 A1 WO 2013047481A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnification
finder
photographing
finder magnification
cpu
Prior art date
Application number
PCT/JP2012/074488
Other languages
English (en)
French (fr)
Inventor
内田 亮宏
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280047961.7A priority Critical patent/CN104246597B/zh
Priority to JP2013536285A priority patent/JP5546691B2/ja
Publication of WO2013047481A1 publication Critical patent/WO2013047481A1/ja
Priority to US14/229,390 priority patent/US8948585B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/02Viewfinders
    • G03B13/10Viewfinders adjusting viewfinders field
    • G03B13/12Viewfinders adjusting viewfinders field to compensate for change of camera lens or size of picture
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/02Viewfinders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/18Signals indicating condition of a camera member or suitability of light
    • G03B17/20Signals indicating condition of a camera member or suitability of light visible in viewfinder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/635Region indicators; Field of view indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Definitions

  • the present invention relates to a photographing apparatus, a photographing method, a recording medium, and a program, and more particularly to a photographing apparatus, a photographing method, a recording medium, and a program having an optical viewfinder capable of zooming.
  • An imaging device that has an optical system for an optical viewfinder separately from the optical system for shooting performs zooming and focusing operations for the optical system for the optical viewfinder along with the zooming operation and focusing operation of the optical system for shooting. Do.
  • magnification of the finder optical system is simply switched according to the zoom magnification of the photographic optical system
  • finder magnification switching that is, hunting is frequently performed. Will occur.
  • the focus position is moved before and after a certain focus position, hunting occurs.
  • Patent Document 1 In order to cope with such a problem, in Patent Document 1, when the focus position of the finder optical system is switched discretely, the finder optical system is moved infinitely than the original focus position switching point when moved to the infinity side from the nearest position. When the finder optical system is moved from the infinite side to the close side, an imaging device is disclosed in which the close side of the original focus position switching point is used as the actual focus position switching point. In the photographing apparatus according to Patent Document 1, so-called hysteresis is provided between the original focus switching point and the actual focus switching point. This prevents frequent switching (hunting) of the focus position of the finder optical system.
  • Patent Document 1 corresponds to focusing and cannot solve the problem caused by the change in the angle of view during zooming. Since zooming involves a change in the angle of view, the user feels more bothered than when focusing.
  • Patent Document 1 does not consider the timing for adjusting the finder optical system. Therefore, when there is a continuous change in the subject distance that exceeds the hysteresis, such as changing the subject to be photographed by the camera, there is a problem that frequent switching occurs in the optical viewfinder.
  • the present invention has been made in view of such circumstances, and includes a photographing apparatus, a photographing method, and a processing of the photographing apparatus that have a user-friendly variable magnification optical viewfinder that suppresses frequent switching while following the zoom operation of the camera.
  • An object of the present invention is to provide a program for controlling the program and a recording medium storing the program.
  • an imaging apparatus is provided with an imaging unit that obtains an imaging image of subject light that has passed through an imaging optical system and a magnification of the imaging image continuously.
  • the zoom means to be changed the optical viewfinder capable of observing the subject image via an optical system different from the photographing optical system, and the optical viewfinder when the magnification is changed to the first photographing magnification in the direction in which the magnification of the photographed image is increased.
  • the finder magnification which is the magnification
  • the finder magnification is switched from the first finder magnification to the second finder magnification, and the finder magnification is changed when the photographic magnification is changed to a second photographing magnification smaller than the first photographing magnification in the direction of decreasing the magnification of the photographed image.
  • Scaling means for switching from the second finder magnification to the first finder magnification.
  • the finder magnification that is the magnification of the optical finder is changed stepwise. Then, the finder magnification is switched from the first finder magnification to the second finder magnification when the photographic magnification is changed to the first photographing magnification in the direction in which the magnification of the photographed image increases. On the other hand, the finder magnification is switched from the second finder magnification to the first finder magnification when the photographic magnification is changed to a second photographic magnification smaller than the first photographic magnification in the direction of decreasing the photographic image magnification.
  • the photographing magnification may be changed by changing the focal length of the photographing optical system. Further, the photographing magnification may be changed by extracting and enlarging a part of the photographed image like an electronic zoom. In addition, the photographing magnification may be changed by changing the focal length up to a certain magnification, and when changing the photographing magnification beyond a certain magnification, the photographing magnification may be changed by extracting a part of the photographed image.
  • a display unit that displays an image showing a shooting angle of view of a captured image, and an image displayed on the display unit is displayed superimposed on a subject image observed by an optical viewfinder Image superimposing means to be further provided.
  • Examples of the image showing the shooting angle of view include a frame of the size of the shooting angle of view, marks displayed at the four corners of the shooting angle of view, masking outside the shooting angle of view, and the like. This makes it easier for the user to adjust the shooting angle of view.
  • the display unit may further display a mark indicating a photographing field angle at which the finder magnification is changed.
  • the scaling unit may change the finder magnification when the determination unit determines that the magnification of the shooting angle of view has not been changed for a predetermined time.
  • the magnification of the optical viewfinder can be always constant during zooming. Therefore, the user's troublesomeness can be reduced, and the user can easily adjust the shooting angle of view.
  • the scaling unit may set the finder magnification to the minimum magnification while the magnification of the photographed image is changed. Thereby, the finder field angle does not always fall below the appropriate bright frame size, and the shooting field angle can be confirmed at any zoom position.
  • the photographing apparatus when the magnification of the photographed image is changed, the photographing apparatus further includes a change amount detecting unit that detects a change amount of the magnification of the photographed image, and the scaling unit includes a magnification of the photographed image. If the amount of change is less than or equal to a predetermined value, the finder magnification may be changed when the determination means determines that a predetermined time has elapsed.
  • the finder magnification may be changed when the determination means determines that a predetermined time has elapsed.
  • the imaging apparatus may further include a predetermined time changing unit that changes the predetermined time according to the amount of change detected by the change amount detecting unit. Thereby, the standby time can be changed according to the speed of zoom movement.
  • the predetermined time changing means may shorten the predetermined time as the amount of change is larger. Therefore, when zooming at a stretch, the finder magnification can be switched quickly. In addition, when zooming at a stretch, it is possible to immediately shift to the subsequent fine angle adjustment.
  • the step of changing the magnification of the photographed image, and the magnification of the photographed image A step of changing a finder magnification, which is a magnification of a finder optical system different from the photographing optical system, when the finder magnification is changed to the first photographing magnification in a direction in which the magnification of the photographed image increases.
  • the finder magnification is changed from the second finder magnification to the first finder magnification. Switching to the magnification.
  • a step of acquiring a photographed image formed by subject light passing through the photographing optical system, a step of changing a magnification of the photographed image, and photographing according to the magnification of the photographed image A step of changing a finder magnification which is a magnification of a finder optical system different from the optical system, and the finder magnification is changed to the first finder magnification when the photographic magnification is changed to the first photographic magnification in a direction in which the magnification of the photographed image increases.
  • the step of switching to is executed by the arithmetic unit.
  • an imaging apparatus having an easy-to-use variable magnification optical finder that follows frequent zoom operations while suppressing frequent switching, an imaging method, a program for controlling processing of the imaging apparatus, and the program Can be provided.
  • Block diagram of the imaging device The flowchart which shows the flow of the finder magnification switching process in 1st Embodiment.
  • FIG. 1 is a block diagram illustrating an example of the internal configuration of the digital camera 1.
  • the digital camera 1 receives light that has passed through a lens by an imaging device, converts the light into a digital signal, and records it on a storage medium.
  • the overall operation of the digital camera 1 is centrally controlled by a central processing unit (CPU) 41.
  • CPU central processing unit
  • a digital camera 1 includes a power source 11, a photographing optical system 12, an image sensor 13, an AFE (Analog Front End) 14, a DSP (Digital Signal Processor) 15, a recording medium 16, an operation unit 17, and a display driver. 18, a system bus 19, a SDRAM (Synchronous Dynamic Random Access Memory) 20, a flash ROM (Read-Only Memory) 21, a flash light emitting unit 27, and a display unit (for example, LCD (Liquid Crystal Display)) 22.
  • the digital camera 1 includes a lens driver 25 for driving the photographing optical system 12, an optical viewfinder 51, and drivers for driving the electronic viewfinder 52 (23 and 24, respectively).
  • the lens driver 25 and the drivers 23 and 24 are connected to a serial input / output (I / O) terminal of the DSP 15.
  • the power source 11 includes a battery and a power control unit (not shown), and supplies power to each block of the digital camera 1. Each block supplied with power is controlled by the CPU 41 provided in the DSP 15 to operate. The CPU 41 executes a predetermined control program based on the input from the operation unit 17 and controls each unit of the digital camera 1.
  • the operation unit 17 includes a release switch, a mode dial, a cross key, a playback button, a MENU / OK key, and a BACK key.
  • a signal from the operation unit 17 is input to the CPU 41, and the CPU 41 controls each circuit of the digital camera 1 based on the input signal.
  • the release switch is an operation button for inputting an instruction to start shooting, and includes a two-stroke switch having an S1 switch that is turned on when half-pressed and an S2 switch that is turned on when fully pressed.
  • the mode dial is selection means for selecting a 2D shooting mode, a 3D shooting mode, an auto shooting mode, a manual shooting mode, a scene position such as a person, a landscape, a night view, a macro mode, a moving image mode, and a parallax priority shooting mode.
  • the playback button is a button for switching to a playback mode in which a still image or a moving image of a stereoscopic image (3D image), a planar image (2D image), or a captured image is displayed on the LCD 22.
  • the MENU / OK key is an operation key having both a function as a menu button for instructing to display a menu on the screen of the LCD 22 and a function as an OK button for instructing confirmation and execution of selection contents.
  • the cross key is an operation unit for inputting instructions in four directions, up, down, left, and right, and functions as a button (cursor moving operation means) for selecting an item from the menu screen or instructing selection of various setting items from each menu. To do.
  • the up / down key of the cross key functions as a zoom switch for shooting or a playback zoom switch in playback mode
  • the left / right key functions as a frame advance (forward / reverse feed) button in playback mode.
  • the BACK key is used to delete a desired object such as a selection item, cancel an instruction content, or return to the previous operation state.
  • the flash ROM 21 stores a control program executed by the CPU 41, various parameters necessary for control, pixel defect data of an image pickup device (CCD (Charge-Coupled Device)) 13, and the like.
  • the CPU 41 controls each part of the digital camera 1 by reading out the control program recorded in the flash ROM 21 to the SDRAM 20 and sequentially executing it.
  • the SDRAM 20 is used as a program execution processing area.
  • the SDRAM 20 is used as a temporary storage area for image data and various work areas.
  • the photographing optical system 12 includes a zoom lens 31, a focus lens 32, an iris 33, and a shutter 34.
  • the zoom lens 31, the focus lens 32, the iris 33, and the shutter 34 are each driven by the lens driver 25 based on a command from the CPU 41.
  • the zoom lens 31 and the focus lens 32 move back and forth on the same optical axis to perform zoom and focus.
  • the iris 33 controls the amount of light incident on the CCD 13 and controls the shutter speed and exposure.
  • the iris 33 is made up of, for example, five aperture blades, and is subjected to aperture control in 6 steps from 1 to an aperture value from aperture values F1.4 to F11.
  • the shutter 34 operates so that subject light that has passed through the zoom lens 31, the focus lens 32, and the iris 33 is incident on the CCD 13 for a predetermined time.
  • the CCD 13 is disposed downstream of the shutter 34 and receives subject light via the photographing optical system 12.
  • the CCD 13 includes a light receiving surface on which a large number of light receiving elements are arranged in a matrix.
  • the subject light that has passed through the photographing optical system 12 forms an image on the light receiving surface of the CCD 13 and is converted into an electric signal by each light receiving element.
  • the type of the image sensor is not limited to the CCD.
  • other image sensors such as CMOS (Complementary Metal Oxide Semiconductor) are also applicable.
  • the AFE 14 includes an analog signal processing unit 35, an A / D converter 36, and a timing generator (TG) 37.
  • the CCD 13 synchronizes with the vertical transfer clock and horizontal transfer clock supplied from the timing generator 37 and outputs the charge accumulated in each pixel as a serial image signal line by line.
  • the CPU 41 controls the timing generator 37 to control the driving of the CCD 13.
  • the charge accumulation time (exposure time) of each pixel is determined by the electronic shutter drive signal given from the timing generator 37.
  • the CPU 41 instructs the timing generator 37 on the charge accumulation time.
  • the output of the image signal is started when the digital camera 1 is set to the shooting mode. That is, when the digital camera 1 is set to the shooting mode, the live view image (through image) is displayed on the LCD 22, and output of the image signal is started.
  • the output of the image signal for the through image is temporarily stopped when the instruction for the main photographing is given, and is started again when the main photographing is finished.
  • the image signal output from the CCD 13 is an analog signal, and this analog image signal is taken into the analog signal processing unit 35.
  • the analog signal processing unit 35 includes a correlated double sampling circuit (CDS) and an automatic gain control circuit (AGC). CDS removes noise contained in an image signal.
  • the AGC amplifies the image signal from which noise has been removed with a predetermined gain.
  • the analog image signal subjected to the required signal processing by the analog signal processing unit 35 is taken into the A / D converter 36.
  • the A / D converter 36 converts the captured analog image signal into a digital image signal having a gradation width of a predetermined bit.
  • This image signal is so-called RAW data, and has gradation values indicating densities of R (red), G (green), and B (blue) for each pixel.
  • This digital image signal is taken into the DSP 15.
  • the DSP 15 includes the CPU 41, the image buffer 42, the YC processing unit 43, the AE / AWB detection circuit 44, the AF detection circuit 45, the timer 46, the compression / decompression unit 47, the recording media interface (I / F) 48, and the video encoder 49. I have. These are connected to the system bus 19 and can transmit / receive information to / from each other via the system bus 19.
  • the image buffer 42 stores an image signal for one frame taken from the A / D converter 36.
  • the AF detection circuit 45 takes in R, G, and B image signals stored in the image buffer 42 according to a command from the CPU 41, and calculates a focus evaluation value necessary for AF (Automatic Focus) control.
  • the AF detection circuit 45 includes a high-pass filter that passes only a high-frequency component of the G signal, an absolute value processing unit, and an AF area extraction unit that cuts out a signal within a predetermined focus area (hereinafter referred to as an AF area) set on the screen. And an accumulating unit for accumulating absolute value data in the AF area.
  • the AF detection circuit 45 outputs the absolute value data in the AF area integrated by the integration unit to the CPU 41 as a focus evaluation value.
  • a position where the focus evaluation value is maximized is searched and the focus lens 32 is moved to that position, or the focus lens group is moved in a direction in which the focus evaluation value increases.
  • a hill-climbing method in which a focus lens group is set at that position can be used.
  • the AE / AWB detection circuit 44 takes in the R, G, and B image signals stored in the image buffer 42, integrates the G signals of the entire screen, or gives different weights to the central and peripheral portions of the screen. The signals are integrated and an integrated value necessary for the AE control is output to the CPU 41.
  • CPU41 calculates a luminance value from an integrated value, and calculates
  • the AE / AWB detection circuit 44 divides one screen into a plurality of areas (for example, 16 ⁇ 16) as physical quantities necessary for AWB control, and the colors of the R, G, and B image signals for each divided area. Calculate another average integrated value.
  • the CPU 41 obtains the ratio of R / G and B / G for each divided area from the obtained R accumulated value, B accumulated value, and G accumulated value, and R of the obtained R / G and B / G values.
  • the light source type is discriminated based on the distribution in the color space of / G and B / G.
  • the AE / AWB detection circuit 44 performs white balance adjustment by applying a digital gain corresponding to the light source type to the image signal for one frame stored in the image buffer 42, and also performs gamma (gradation characteristic) processing and sharpness processing. I do.
  • the YC processing unit 43 performs predetermined signal processing on the image signals of R, G, and B colors captured in a dot-sequential manner, and generates an image signal (Y / C signal) composed of a luminance signal Y and color difference signals Cr and Cb. ) Is generated.
  • This Y / C signal is stored in the SDRAM 20.
  • the compression / decompression unit 47 performs compression processing of a predetermined format (for example, JPEG (Joint Photographic Experts Group)) on the input Y / C signal in accordance with a compression command from the CPU 41 to generate compressed image data. Further, in accordance with a decompression command from the CPU 41, the input compressed image data is subjected to decompression processing in a predetermined format to generate uncompressed image data.
  • a predetermined format for example, JPEG (Joint Photographic Experts Group)
  • the video encoder 49 controls display on the LCD 22 via the display driver 18 in accordance with a command from the CPU 41.
  • the LCD 22 displays a moving image (through image) and can be used as an electronic viewfinder, and also displays a photographed image before recording (preview image), a reproduced image read from the recording medium 16 loaded in the digital camera 1, and the like. be able to.
  • the LCD 22 displays various menu screens for manually setting the operation mode, white balance, the number of pixels of the image, sensitivity, and the like of the digital camera 1 according to the operation of the mode dial and menu button.
  • a screen for a graphical user interface (GUI) capable of setting manual setting items in accordance with the operation is displayed.
  • GUI graphical user interface
  • the recording media interface 48 controls reading / writing of data with respect to the recording media 16 in accordance with a command from the CPU 41.
  • the recording medium 16 may be detachable from the camera body such as a memory card, or may be built into the camera body. In the case of detachable, a card slot is provided in the main body of the digital camera 1, and the card slot is used by being loaded.
  • the viewfinder (HVF) 50 includes an optical viewfinder 51, an electronic viewfinder (EVF) 52, and a prism 53.
  • the user can visually recognize the optical image of the optical viewfinder 51 and the electronic image of the electronic viewfinder 52 through one eyepiece.
  • the optical viewfinder 51 is a variable magnification optical viewfinder whose magnification can be changed stepwise as the photographing optical system 12 changes magnification.
  • the optical viewfinder 51 has a viewfinder optical system including an objective lens, an eyepiece lens, and two insertion lenses provided between the objective lens, the eyepiece lens, and an optical path of the optical viewfinder 51.
  • finder magnification magnification of the optical finder 51
  • finder magnification magnification of the optical finder 51
  • the viewfinder magnification is changed from 2 times to 3 times.
  • the configuration of the lens included in the optical viewfinder 51 and the aspect of magnification control are not limited to the above.
  • the electronic viewfinder 52 includes a display unit (for example, a liquid crystal panel).
  • the display of the electronic viewfinder 52 is guided to the eyepiece portion of the optical finder 51 by a prism 53 disposed in the optical path of the optical finder 51.
  • This imaging process is controlled by the CPU 41.
  • a program for causing the CPU 41 to execute this imaging process is stored in a program storage unit in the CPU 41, for example.
  • the subject light that has passed through the lenses 31 and 32 of the photographing optical system 12 is imaged on the light receiving surface of the CCD 13 via the iris 33.
  • the signal charges stored in each pixel of the CCD 13 are sequentially read out at a predetermined frame rate as a voltage signal (image signal) corresponding to the signal charges in accordance with the horizontal and vertical transfer clocks from the timing generator 37, and the image data is sequentially read. Generated.
  • the generated image data is sequentially input to the SDRAM 20.
  • CPU41 changes the opening amount (F value) of the iris 33 based on image data. Further, the CPU 41 performs zooming by moving the zoom lens 31 along the optical axis via the lens driver 25 in response to an input from the operation unit 17.
  • FIGS. 2A and 2B are flowcharts showing the flow of processing for adjusting the finder magnification. This process is mainly performed by the CPU 41. This process is repeatedly performed at regular detection timings of the position of the zoom lens 31 (for example, in units of several tens of ms).
  • the CPU 41 determines whether the position of the zoom lens 31 (hereinafter referred to as the zoom position), that is, the focal length has changed (step S10). If the zoom position has not changed (NO in step S10), the process ends. If the zoom position has changed (YES in step S10), the CPU 41 acquires the focal length from the position of the zoom lens 31 (step S11).
  • the CPU 41 determines in which direction the zoom lens 31 has moved (that is, whether the zoom lens 31 has moved from the wide side to the tele side (from the low magnification side to the high magnification side) or from the tele side to the wide side (from the high magnification side). Is it moved to the low magnification side) (step S12).
  • the magnification of the optical finder 51 (hereinafter referred to as finder magnification) is changed between when the zoom lens 31 is moved from the wide side to the tele side and when the zoom lens 31 is moved from the tele side to the wide side.
  • finder magnification magnification of the optical finder 51
  • the CPU 41 obtains the current finder magnification (step S13).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is larger than the threshold 1A in the finder magnification switching diagram shown in FIG. (Step S14). When the focal length is equal to or less than the threshold value 1A (NO in step S14), the CPU 41 sets the finder magnification to 1 (step S16). When the focal length is larger than the threshold value 1A (YES in step S14), the CPU 41 sets the finder magnification to double (step S17).
  • the CPU 41 determines whether or not the focal length acquired at step S12 is larger than the threshold value 1B in the finder magnification switching diagram shown in FIG. (Step S15). When the focal length is equal to or less than the threshold value 1B (NO in step S15), the CPU 41 sets the finder magnification to double (step S17). When the focal length is larger than the threshold value 1B (YES in step S15), the CPU 41 sets the finder magnification to 3 times (step S18).
  • the CPU 41 sets the finder magnification to 3 times (step S18).
  • CPU41 acquires the present finder magnification (step S19).
  • step S19 If the finder magnification is 1 time (1 time in step S19), the finder magnification remains 1 time and is not changed (step S22).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is equal to or less than the threshold value 2A in the finder magnification switching diagram shown in FIG. (Step S20). When the focal length is equal to or less than the threshold value 2A (YES in step S20), the CPU 41 sets the finder magnification to 1 (step S22). When the focal length is larger than the threshold value 2A (NO in step S20), the CPU 41 sets the finder magnification to double (step S23).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is equal to or less than the threshold value 2B in the finder magnification switching diagram shown in FIG. (Step S21). If the focal length is equal to or less than the threshold value 2B (YES in step S21), the CPU 41 sets the finder magnification to double (step S23). If the focal length is greater than the threshold value 2B (NO in step S21), the CPU 41 sets the finder magnification to 3 times (step S24).
  • the finder magnification switching diagram (see FIG. 3) will be described.
  • hysteresis is provided so that the finder magnification does not change immediately even if the zoom position changes near the threshold. That is, the determination thresholds 1A, 1B, 2A, and 2B are set so as to satisfy the relationship shown in Equation 1.
  • Threshold value 1B> Threshold value 2B The threshold value 1A is higher than the threshold value 2A, and the threshold value 1B is higher than the threshold value 2B.
  • the CPU 41 determines whether or not the current finder magnification obtained in steps S13 and S19 is the same as the finder magnification determined in steps S16 to S18 and S22 to S24 (step S25). If they are the same (YES in step S25), the process proceeds to step S27. If they are different (NO in step S25), the CPU 41 inserts or removes the insertion lens via the driver 23, and changes the finder magnification determined in steps S16 to S18 and S22 to S24 (step S26).
  • the CPU 41 determines the focal length acquired in step S11 and step S26.
  • the bright frame F is displayed on the electronic viewfinder 52 based on the finder magnification switched in (Step S27).
  • the zoom lens 31 can perform stepless magnification, but the optical finder 51 can perform stepwise magnification switching (or the number of magnification steps of the zoom lens 31 can switch the magnification of the optical finder 51. More than the number of stages). For this reason, the range of the subject that can be visually recognized through the optical viewfinder 51 and the shooting area (effective shooting angle of view) actually shot using the shooting optical system 12 may be different. Therefore, the CPU 41 causes the electronic viewfinder 52 to display a bright frame F indicating the shooting area.
  • FIG. 4 is a diagram showing a display image of the finder 50 in the digital camera 1.
  • a bright frame F is superimposed on the optical image of the optical viewfinder 51.
  • the size (size) of the bright frame F is obtained from the difference between the focal length of the optical viewfinder 51 and the zoom lens 31 (for example, the focal length in terms of 35 mm size).
  • the position of the bright frame F is obtained based on the subject distance calculated from the focus position in the AF operation performed after the S1 ON signal was input in the previous shooting. However, when there is no information on the focus position obtained in the previous shooting such as immediately after the power is turned on, the position of the bright frame F is determined based on the subject distance calculated from the initially set focus position.
  • the zoom magnification of the photographic optical system 12 changes from the state shown in FIG. 4A, the photographic angle of view changes, so that the size of the bright frame F changes as shown in FIG. 4B.
  • the difference between the angle of view of the optical viewfinder 51 and the actual shooting angle of view becomes large, making it difficult to take a picture. Therefore, as shown in FIG. 4C, when the focal length exceeds a predetermined threshold, the magnification of the optical viewfinder 51 is switched within the range in which the bright frame F enters the viewfinder angle of view.
  • the magnification of the optical viewfinder 51 is switched, the size of the bright frame F is also switched.
  • the threshold values 1A, 1B, 2A, and 2B in FIG. 3 are basically determined so that the size of the bright frame F is equal to or smaller than the angle of view of the optical viewfinder 51.
  • the display of the bright frame F may also be performed immediately after the start of shooting a through image (before the start of the process of adjusting the finder magnification shown in FIG. 2). Thereby, it is possible to recognize the difference between the field angle confirmed by the optical finder 51 and the photographing field angle before the zooming process.
  • the CPU 41 may control the photographing optical system 12 and the optical finder 51 so that the photographing field angle matches the finder magnification.
  • the shooting angle of view is not limited to the case indicated by the bright frame F.
  • marks may be displayed at the four corners of the shooting area indicating the shooting angle of view.
  • the CPU 41 may mask the outside of the bright frame F of the electronic viewfinder 52 to display a semi-transparent gray as shown in FIG. Thereby, it is possible to make the shooting angle of view easier to understand.
  • an S1 ON signal is input to the CPU 41, and the CPU 41 performs an AE / AF / AWB operation via the AF detection circuit 45 and the AE / AWB detection circuit 44.
  • the CPU 41 calculates the position of the bright frame F from the subject distance, and finely adjusts the bright frame F to a position that takes parallax into consideration.
  • the subject distance is short (about 3 m)
  • the bright frame F moves before and after S1 due to parallax.
  • the subject distance is long, the bright frame F hardly moves because the influence of the parallax is small.
  • an S2 ON signal is input to the CPU 41, and the CPU 41 starts photographing and recording processing. That is, the CCD 13 is exposed with the shutter speed and aperture value determined based on the photometric result.
  • the image data output from the CCD 13 is taken into the YC processing unit 43 via the AFE 14 and converted into a luminance / color difference signal (Y / C signal).
  • the image data is compressed in accordance with a predetermined compression format (for example, JPEG format) by the compression / decompression unit 47 and then stored in the SDRAM 20.
  • a predetermined compression format for example, JPEG format
  • An image file is generated from the compressed data stored in the SDRAM 20, and the image file is recorded on the recording medium 16 via the recording medium interface 48. As a result, an image is taken and recorded.
  • the image recorded on the recording medium 16 as described above can be reproduced and displayed on the LCD 22 by setting the operation mode of the digital camera 1 to the reproduction mode with the reproduction button.
  • the CPU 41 reads the image file last recorded on the recording medium 16 via the recording medium interface 48.
  • the compressed image data of the read image file is added to the compression / decompression unit 47, decompressed to an uncompressed luminance / color difference signal, and then output to the LCD 22 via the video encoder 49.
  • the finder magnification of the optical finder 51 does not change over and over, and there is no inconvenience. Therefore, the user can adjust the angle of view without stress.
  • a digital camera in which the photographing optical system 12 can be replaced has been described as an example.
  • the embodiment of the present invention is not limited to this.
  • the present invention can also be applied to a digital camera having a lens integrated type and a variable magnification optical viewfinder.
  • the zoom unit is not limited to the optical zoom.
  • the present invention can be applied to a photographing apparatus using an electronic zoom that cuts out a part of an image formed on the CCD 13 and changes a photographing magnification.
  • the present invention can also be applied to a photographing apparatus using electronic zoom after the zoom lens 31 is moved to the telephoto end by optical zoom.
  • the finder magnification is switched in three stages, but is not limited to three stages.
  • the bright frame F is displayed on the electronic viewfinder 52 and superimposed on the optical image.
  • the display of the bright frame F is not essential.
  • the present invention can also be applied to an optical viewfinder (one in which an electronic viewfinder is not superimposed and displayed).
  • the bright frame F is displayed on the electronic viewfinder 52.
  • the electronic viewfinder 52 is not limited to the electronic viewfinder 52 as long as the bright frame F can be displayed superimposed on the optical viewfinder 51.
  • a liquid crystal monitor may be provided in the optical axis of the optical viewfinder 51 and a frame may be displayed on the liquid crystal monitor.
  • the first embodiment of the present invention is a form in which the bright frame F indicating the photographing area is displayed on the electronic viewfinder 52, but the display form of the bright frame F is not limited to this.
  • the bright frame F and the finder magnification switching assist are displayed in the finder.
  • the digital camera 1-1 according to the second embodiment will be described below. Note that description of the same parts as those of the first embodiment is omitted.
  • 6A and 6B are flowcharts showing the flow of processing for adjusting the finder magnification. This process is mainly performed by the CPU 41. This process is repeatedly performed at regular detection timings of the position of the zoom lens 31 (for example, in units of several tens of ms).
  • the CPU 41 determines whether the zoom position has changed (step S10). If the zoom position has not changed (NO in step S10), the process ends. If the zoom position has changed (YES in step S10), the CPU 41 acquires the focal length from the position of the zoom lens 31 (step S11).
  • the CPU 41 determines in which direction the zoom lens 31 has moved (step S12).
  • the CPU 41 When the zoom lens 31 is moving from the wide side to the tele side, the CPU 41 first acquires the current finder magnification (step S13). When the finder magnification is 1 (1 in step S13), the CPU 41 determines whether or not the focal length acquired in step S12 is larger than the threshold 1A (step S14). When the focal length is equal to or less than the threshold value 1A (NO in step S14), the CPU 41 sets the finder magnification to 1 (step S16). When the focal length is larger than the threshold value 1A (YES in step S14), the CPU 41 sets the finder magnification to double (step S17).
  • step S15 determines whether or not the focal length acquired in step S12 is larger than the threshold value 1B (step S15). When the focal length is equal to or less than the threshold value 1B (NO in step S15), the CPU 41 sets the finder magnification to double (step S17). When the focal length is larger than the threshold value 1B (YES in step S15), the CPU 41 sets the finder magnification to 3 times (step S18).
  • the CPU 41 sets the finder magnification to 3 times (step S18).
  • the CPU 41 acquires the current finder magnification (step S19).
  • the finder magnification is 1 time (1 time in step S19)
  • the finder magnification remains 1 time and is not changed (step S22).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is equal to or less than the threshold value 2A (step S20). When the focal length is equal to or less than the threshold value 2A (YES in step S20), the CPU 41 sets the finder magnification to 1 (step S22). When the focal length is larger than the threshold value 2A (NO in step S20), the CPU 41 sets the finder magnification to double (step S23).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is equal to or less than the threshold 2B (step S21). If the focal length is equal to or less than the threshold value 2B (YES in step S21), the CPU 41 sets the finder magnification to double (step S23). If the focal length is greater than the threshold value 2B (NO in step S21), the CPU 41 sets the finder magnification to 3 times (step S24).
  • the CPU 41 determines whether or not the current finder magnification obtained in steps S13 and S19 is the same as the finder magnification determined in steps S16 to S18 and S22 to S24 (step S25). If they are the same (YES in step S25), the process proceeds to step S27. If they are different (NO in step S25), the CPU 41 inserts or removes the insertion lens via the driver 23, and sets the finder magnification determined in steps S16 to S18 and S22 to S24 (step S26).
  • the CPU 41 displays a finder magnification switching assist on the electronic viewfinder 52 based on the focal length acquired in step S11 and the finder magnification switched in step S26 (step S31). After the finder magnification switching assist is displayed (step S31), or when the determined finder magnification is the same as the current finder magnification (YES in step S25), the CPU 41 calculates the focal length acquired in step S11, The bright frame F is displayed on the electronic viewfinder 52 based on the finder magnification switched in step S26 (step S27).
  • FIG. 7 is a diagram showing a display image of the finder 50 in the digital camera 1-1.
  • the finder magnification switching assist is a display for notifying the user of how large the bright frame F (shooting field angle) is to be switched.
  • a finder magnification switching assist A1 on the low magnification side is displayed outside the bright frame F, and a finder magnification switching assist A2 on the high magnification side is displayed inside the bright frame F.
  • the finder magnification switching assist A1 When the bright frame F is increased to the low-magnification side finder magnification switching assist A1, the (D) portion to the (C) portion, the (C) portion to the (B) portion, and the (B) portion in FIG. As shown in part A), the finder magnification is switched to the lower side.
  • the bright frame F is reduced to the high-magnification side finder magnification switching assist A2 the (A) portion to (B) portion, (B) portion to (C) portion, and (C) portion in FIG. To (D), the finder magnification is switched to the higher side.
  • the finder magnification switching assist display may be performed before the start of the process for adjusting the finder magnification shown in FIGS. 6A and 6B. Thus, the user can know how far the finder magnification is switched before zooming.
  • the bright frame F and the finder magnification switching assist can be updated when zooming is performed or when the finder magnification is changed. Thereby, the troublesomeness caused by switching the finder magnification can be reduced.
  • the bright frame F and the viewfinder magnification switching assist are displayed on the electronic viewfinder 52.
  • any means capable of superimposing the bright frame F and the viewfinder magnification switching assist on the optical viewfinder 51 can be used.
  • the viewfinder 52 is not limited.
  • a liquid crystal monitor may be provided in the optical axis of the optical viewfinder 51 and a frame may be displayed on the liquid crystal monitor.
  • the finder magnification is determined and changed when there is a change in the focal length. However, it may be better that the finder magnification does not change when the angle of view is adjusted.
  • the finder magnification is determined and changed when zooming is not performed for a certain period of time after zooming.
  • the digital camera 1-2 according to the third embodiment will be described below. The description of the same parts as those in the first and second embodiments is omitted.
  • FIGS. 8A to 8C are flowcharts showing the flow of processing for adjusting the finder magnification. This process is mainly performed by the CPU 41. This process is repeatedly performed at regular detection timings of the position of the zoom lens 31 (for example, in units of several tens of ms).
  • CPU41 acquires a focal distance from the position of the zoom lens 31 (step S11).
  • the CPU 41 determines whether or not the zoom lens 31 has not been moved for a predetermined time after the zoom lens 31 has been moved, that is, whether or not the shooting angle of view has been changed (step S41). For example, the presence or absence of a zoom change is detected from the difference between the focal length acquired last time and the focal length acquired this time, and if the focal length has not changed, the time not changed is acquired, and this time is a predetermined time. It is judged whether it is over. This predetermined time must be set to a time that always exceeds the polling interval (several tens of milliseconds) for detecting the zoom position. This is because if the predetermined time is set to be equal to or less than the polling interval for zoom position detection, the finder magnification is switched when the zoom position is changed.
  • Step S41 If the zoom lens 31 has not been moved, or if a predetermined time has not passed since the zoom lens 31 has been moved (NO in step S41), the process waits for a periodic zoom position detection interval (for example, in units of 10 ms). (Step S42), the process returns to Step S11. That is, until the predetermined time is exceeded, the focal length detection (step S11) and the zoom stop time determination (step S41) are repeated.
  • a periodic zoom position detection interval for example, in units of 10 ms.
  • step S41 If a predetermined time has elapsed after the zoom lens 31 is moved (YES in step S41), the CPU 41 performs a finder magnification determination process (steps S13 to S24) before that.
  • the focal length acquired at the time of breaking is acquired (step S43).
  • the CPU 41 compares the focal length acquired in step S43 with the focal length acquired in step S11, and whether the zoom lens 31 is moving from the wide side to the tele side or the zoom lens 31 is wide from the tele side. It is determined whether it is moving to the side (step S44).
  • the CPU 41 obtains the current finder magnification (step S13).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is larger than the threshold 1A (step S14).
  • the CPU 41 sets the finder magnification to 1 (step S16).
  • the CPU 41 sets the finder magnification to double (step S17).
  • step S15 determines whether or not the focal length acquired in step S12 is larger than the threshold value 1B (step S15). When the focal length is equal to or less than the threshold value 1B (NO in step S15), the CPU 41 sets the finder magnification to double (step S17). When the focal length is larger than the threshold value 1B (YES in step S15), the CPU 41 sets the finder magnification to 3 times (step S18).
  • the CPU 41 sets the finder magnification to 3 times (step S18).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is equal to or less than the threshold value 2A (step S20). When the focal length is equal to or less than the threshold value 2A (YES in step S20), the CPU 41 sets the finder magnification to 1 (step S22). When the focal length is larger than the threshold value 2A (NO in step S20), the CPU 41 sets the finder magnification to double (step S23).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is equal to or less than the threshold 2B (step S21). If the focal length is equal to or less than the threshold value 2B (YES in step S21), the CPU 41 sets the finder magnification to double (step S23). If the focal length is greater than the threshold value 2B (NO in step S21), the CPU 41 sets the finder magnification to 3 times (step S24).
  • the CPU 41 determines whether or not the current finder magnification obtained in steps S13 and S19 is the same as the finder magnification determined in steps S16 to S18 and S22 to S24 (step S25). If they are the same (YES in step S25), the process proceeds to step S27. If they are different (NO in step S25), the CPU 41 inserts or removes the insertion lens via the driver 23, and sets the finder magnification determined in steps S16 to S18 and S22 to S24 (step S26).
  • step S26 After the finder magnification is switched (step S26), or when the determined finder magnification is the same as the current finder magnification (YES in step S25), the CPU 41 determines the focal length acquired in step S11 and step S26.
  • the bright frame F is displayed on the electronic viewfinder 52 based on the finder magnification switched in (Step S27).
  • the magnification of the optical finder can always be constant while the zoom lens 31 of the photographing optical system 12 is moved. Therefore, the user's troublesomeness can be reduced, and the user can easily adjust the shooting angle of view.
  • the CPU 41 After switching the finder magnification (step S26), the CPU 41 displays a finder magnification switching assist on the electronic viewfinder 52 based on the focal length acquired in step S11 and the finder magnification switched in step S26 ( Step S31). Thereby, when zooming is performed or when the finder magnification is changed, the bright frame and finder magnification switching assist can be updated.
  • the finder magnification is determined and changed when zooming is not performed for a certain period of time after zooming.
  • the view angle of the finder does not fall below an appropriate bright frame size regardless of the zoom drive direction in the third embodiment.
  • the fourth embodiment of the present invention is a mode in which the finder magnification is set to 1 when zooming is performed.
  • the digital camera 1-3 according to the fourth embodiment will be described below. The description of the same parts as those in the first to third embodiments is omitted.
  • FIG. 10A to FIG. 10C are flowcharts showing a flow of processing for adjusting the finder magnification. This process is mainly performed by the CPU 41. This process is repeatedly performed at regular detection timings of the position of the zoom lens 31 (for example, in units of several tens of ms).
  • step S11 acquires a focal distance from the position of the zoom lens 31 (step S11).
  • the CPU 41 determines whether the zoom position has changed (step S10). If the zoom position has changed (YES in step S10), the CPU 41 determines whether or not the current finder magnification is 1 (step S50). If the current finder magnification is not 1 time (NO in step S50), the finder magnification is switched to 1 time (step S51). That is, when there is a zoom change, the finder magnification is set to the widest angle (1 ⁇ ).
  • step S10 If the zoom position has not changed (NO in step S10), and if the current finder magnification is 1 (YES in step S50), the CPU 41 moves the zoom lens 31 and moves the zoom lens 31 for a predetermined time. It is determined whether or not has been moved (step S41).
  • Step S41 If the zoom lens 31 has not been moved, or if a predetermined time has not passed since the zoom lens 31 has been moved (NO in step S41), the process waits for a periodic zoom position detection interval (for example, in units of 10 ms). (Step S42), the process returns to Step S11. That is, until the predetermined time is exceeded, the focal length detection (step S11) and the zoom stop time determination (step S41) are repeated.
  • a periodic zoom position detection interval for example, in units of 10 ms.
  • step S41 If a predetermined time has elapsed after the zoom lens 31 is moved (YES in step S41), the CPU 41 obtains the focus obtained when the finder magnification determination process (steps S13 to S24) was performed before that. The distance is acquired (step S43).
  • the CPU 41 compares the focal length acquired in step S43 with the focal length acquired in step S11, and whether the zoom lens 31 is moving from the wide side to the tele side or the zoom lens 31 is wide from the tele side. It is determined whether it is moving to the side (step S44).
  • the CPU 41 obtains the current finder magnification (step S13).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is larger than the threshold 1A (step S14).
  • the CPU 41 sets the finder magnification to 1 (step S16).
  • the CPU 41 sets the finder magnification to double (step S17).
  • step S15 determines whether or not the focal length acquired in step S12 is larger than the threshold value 1B (step S15). When the focal length is equal to or less than the threshold value 1B (NO in step S15), the CPU 41 sets the finder magnification to double (step S17). When the focal length is larger than the threshold value 1B (YES in step S15), the CPU 41 sets the finder magnification to 3 times (step S18).
  • the CPU 41 sets the finder magnification to 3 times (step S18).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is equal to or less than the threshold value 2A (step S20). When the focal length is equal to or less than the threshold value 2A (YES in step S20), the CPU 41 sets the finder magnification to 1 (step S22). When the focal length is larger than the threshold value 2A (NO in step S20), the CPU 41 sets the finder magnification to double (step S23).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is equal to or less than the threshold 2B (step S21). If the focal length is equal to or less than the threshold value 2B (YES in step S21), the CPU 41 sets the finder magnification to double (step S23). If the focal length is greater than the threshold value 2B (NO in step S21), the CPU 41 sets the finder magnification to 3 times (step S24).
  • the CPU 41 determines whether or not the current finder magnification obtained in steps S13 and S19 is the same as the finder magnification determined in steps S16 to S18 and S22 to S24 (step S25). If they are the same (YES in step S25), the process proceeds to step S27. If they are different (NO in step S25), the CPU 41 inserts or removes the insertion lens via the driver 23, and sets the finder magnification determined in steps S16 to S18 and S22 to S24 (step S26).
  • step S26 After the finder magnification is switched (step S26), or when the determined finder magnification is the same as the current finder magnification (YES in step S25), the CPU 41 determines the focal length acquired in step S11 and step S26.
  • the bright frame F is displayed on the electronic viewfinder 52 based on the finder magnification switched in (Step S27).
  • the finder magnification is always constant. For this reason, it is possible to reduce the troublesomeness of the user and to easily adjust the shooting angle of view. Further, the finder field angle does not always fall below the appropriate bright frame size, and the shooting field angle can be confirmed at any zoom position.
  • the finder magnification is determined and changed when there is a change in the focal length. However, it may be better that the finder magnification does not change when the angle of view is adjusted.
  • FIG. 11A to FIG. 11C are flowcharts showing the flow of processing for adjusting the finder magnification. This process is mainly performed by the CPU 41. This process is repeatedly performed at regular detection timings of the position of the zoom lens 31 (for example, in units of several tens of ms).
  • step S11 acquires a focal distance from the position of the zoom lens 31 (step S11).
  • the CPU 41 determines whether the zoom position has changed (step S10). If the zoom position has changed (YES in step S10), the focal length acquired in the process for adjusting the finder magnification performed last time and the focal length acquired in the process for adjusting the finder magnification this time.
  • a change amount is calculated, and it is determined whether or not the change amount exceeds a change threshold value (step S60).
  • the amount of change in the focal length is calculated based on the formula shown in Formula 2.
  • Step S42 the process returns to Step S11. That is, until the predetermined time is exceeded, the focal length detection (step S11) and the zoom stop time determination (step S41) are repeated. That is, when performing fine angle adjustment, the viewfinder magnification is not switched while the zoom lens 31 is being driven to facilitate angle adjustment.
  • step S60 If the amount of change in the focal length exceeds the threshold (YES in step S60), it may be possible to zoom at a stroke. In this case, the zoom stop time determination (steps S41 and S42) is not performed, and the finder magnification can be switched quickly. Therefore, when the amount of change in the focal length exceeds the threshold value (YES in step S60) and when a predetermined time has elapsed after the zoom lens 31 is moved (YES in step S41), the CPU 41 displays the finder before that.
  • the focal length acquired when the magnification determination process (steps S13 to S24) is performed is acquired (step S43).
  • the CPU 41 compares the focal length acquired in step S43 with the focal length acquired in step S11. Then, the CPU 41 determines whether the zoom lens 31 is moving from the wide side to the tele side or whether the zoom lens 31 is moving from the tele side to the wide side (step S44).
  • the CPU 41 obtains the current finder magnification (step S13).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is larger than the threshold 1A (step S14).
  • the CPU 41 sets the finder magnification to 1 (step S16).
  • the CPU 41 sets the finder magnification to double (step S17).
  • step S15 determines whether or not the focal length acquired in step S12 is larger than the threshold value 1B (step S15). When the focal length is equal to or less than the threshold value 1B (NO in step S15), the CPU 41 sets the finder magnification to double (step S17). When the focal length is larger than the threshold value 1B (YES in step S15), the CPU 41 sets the finder magnification to 3 times (step S18).
  • the CPU 41 sets the finder magnification to 3 times (step S18).
  • the CPU 41 acquires the current finder magnification (step S19).
  • the finder magnification is 1 time (1 time in step S19)
  • the finder magnification remains 1 time and is not changed (step S22).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is equal to or less than the threshold value 2A (step S20). When the focal length is equal to or less than the threshold value 2A (YES in step S20), the CPU 41 sets the finder magnification to 1 (step S22). When the focal length is larger than the threshold value 2A (NO in step S20), the CPU 41 sets the finder magnification to double (step S23).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is equal to or less than the threshold 2B (step S21). If the focal length is equal to or less than the threshold value 2B (YES in step S21), the CPU 41 sets the finder magnification to double (step S23). If the focal length is greater than the threshold value 2B (NO in step S21), the CPU 41 sets the finder magnification to 3 times (step S24).
  • the CPU 41 determines whether or not the current finder magnification obtained in steps S13 and S19 is the same as the finder magnification determined in steps S16 to S18 and S22 to S24 (step S25). If they are the same (YES in step S25), the process proceeds to step S27. If they are different (NO in step S25), the CPU 41 inserts or removes the insertion lens via the driver 23, and sets the finder magnification determined in steps S16 to S18 and S22 to S24 (step S26).
  • step S26 After the finder magnification is switched (step S26), or when the determined finder magnification is the same as the current finder magnification (YES in step S25), the CPU 41 determines the focal length acquired in step S11 and step S26.
  • the bright frame F is displayed on the electronic viewfinder 52 based on the finder magnification switched in (Step S27).
  • the present embodiment when performing subtle angle adjustment while zooming, it is possible to easily adjust the angle of view by switching the viewfinder magnification during zoom driving, while zooming at once while making it easier to adjust the angle of view. Makes it possible to change the viewfinder magnification quickly, so that it is possible to immediately shift to the subsequent fine angle adjustment.
  • FIG. 12A to FIG. 12C are flowcharts showing the flow of processing for adjusting the finder magnification in the modification of the fifth embodiment.
  • the difference between the fifth embodiment and the modification of the fifth embodiment is whether or not to display a finder magnification switching assist.
  • symbol is attached
  • the CPU 41 After switching the finder magnification (step S26), the CPU 41 displays a finder magnification switching assist on the electronic viewfinder 52 based on the focal length acquired in step S11 and the finder magnification switched in step S26 ( Step S31). Thereby, when zooming is performed or when the finder magnification is changed, the bright frame and finder magnification switching assist can be updated.
  • the fifth embodiment of the present invention is a mode in which the finder magnification switching process is varied depending on the zooming speed, but the method of varying the finder magnification switching process is not limited to this.
  • the zoom stop time threshold value is made different depending on the zooming speed.
  • a digital camera 1-5 according to the sixth embodiment will be described. The description of the same parts as those in the first to fifth embodiments is omitted.
  • FIGS. 13A to 13C are flowcharts showing a flow of processing for adjusting the finder magnification. This process is mainly performed by the CPU 41. This process is repeatedly performed at regular detection timings of the position of the zoom lens 31 (for example, in units of several tens of ms).
  • step S10 acquires a focal distance from the position of the zoom lens 31 (step S11).
  • the CPU 41 determines whether the zoom position has changed (step S10). If the zoom position has changed (YES in step S10), the CPU 41 determines the focal length acquired in the previous process for adjusting the finder magnification and the focus acquired in the process for adjusting the current finder magnification. A change amount with respect to the distance is calculated, and a zoom stop time determination threshold value is calculated according to the change amount (step S70).
  • FIG. 14 is a graph showing the relationship between the zoom determination time threshold and the amount of change in focal length.
  • the CPU 41 determines a zoom determination time threshold based on this graph.
  • the zoom determination time threshold is fixed at 1000 ms.
  • the change amount is three times or more, it is fixed at 0 ms. That is, the finder magnification can be switched immediately when zooming quickly.
  • the zoom stop time determination threshold value is switched steplessly according to the focal length change amount so that the zoom stop time determination threshold value decreases as the change amount increases.
  • This graph is an example, and the relationship between the zoom determination time threshold and the amount of change in focal length is not limited to this.
  • the CPU 41 determines whether or not the time during which the zoom lens 31 is not moved is equal to or greater than the zoom stop time determination threshold value determined in step S70 after the zoom lens 31 is moved (step S71).
  • step S71 If the zoom lens 31 has not been moved, or if the zoom stop time determination threshold value has not elapsed after the zoom lens 31 has been moved (NO in step S71), a periodic zoom position detection interval, for example, 10 ms. (Unit) is waited (step S72), and the process returns to step S11.
  • a periodic zoom position detection interval for example, 10 ms. (Unit) is waited (step S72), and the process returns to step S11.
  • step S71 If the zoom stop time determination threshold value has elapsed after the zoom lens 31 has been moved (YES in step S71), a case where the zoom lens is zoomed at once is considered. For this reason, the finder magnification can be switched quickly. That is, the CPU 41 obtains the focal length obtained when the finder magnification determination process (steps S13 to S24) was performed before (step S43).
  • the CPU 41 compares the focal length acquired in step S43 with the focal length acquired in step S11, and whether the zoom lens 31 is moving from the wide side to the tele side or the zoom lens 31 is wide from the tele side. It is determined whether it is moving to the side (step S44).
  • the CPU 41 obtains the current finder magnification (step S13).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is larger than the threshold 1A (step S14).
  • the CPU 41 sets the finder magnification to 1 (step S16).
  • the CPU 41 sets the finder magnification to double (step S17).
  • step S15 determines whether or not the focal length acquired in step S12 is larger than the threshold value 1B (step S15). When the focal length is equal to or less than the threshold value 1B (NO in step S15), the CPU 41 sets the finder magnification to double (step S17). When the focal length is larger than the threshold value 1B (YES in step S15), the CPU 41 sets the finder magnification to 3 times (step S18).
  • the CPU 41 sets the finder magnification to 3 times (step S18).
  • the CPU 41 acquires the current finder magnification (step S19).
  • the finder magnification is 1 time (1 time in step S19)
  • the finder magnification remains 1 time and is not changed (step S22).
  • the CPU 41 determines whether or not the focal length acquired in step S12 is equal to or less than the threshold value 2A (step S20). When the focal length is equal to or less than the threshold value 2A (YES in step S20), the CPU 41 sets the finder magnification to 1 (step S22). When the focal length is larger than the threshold value 2A (NO in step S20), the CPU 41 sets the finder magnification to double (step S23).
  • the CPU 41 determines whether or not the current finder magnification obtained in steps S13 and S19 is the same as the finder magnification determined in steps S16 to S18 and S22 to S24 (step S25). If they are the same (YES in step S25), the process proceeds to step S27. If they are different (NO in step S25), the CPU 41 inserts or removes the insertion lens via the driver 23, and sets the finder magnification determined in steps S16 to S18 and S22 to S24 (step S26).
  • step S26 After the finder has been switched (step S26), or when the determined finder magnification is the same as the current finder magnification (YES in step S25), the CPU 41 determines the focal length acquired in step S11 and the step S26. Based on the switched viewfinder magnification, the bright frame F is displayed on the electronic viewfinder 52 (step S27).
  • the time until the finder magnification is switched can be changed according to the speed of zooming when slowly zooming. It is conceivable that the zooming speed when determining the shooting angle of view varies depending on the user. Even when the same angle of view is determined, a person who can determine the shooting angle of view while moving the zoom lens quickly is considered to be able to quickly determine whether to move or stop the zoom lens. In such a case, it is better to switch the viewfinder magnification quickly so that the shooting can be started quickly. Therefore, by changing the time until the finder magnification is switched according to the speed of zooming, the finder magnification can be switched at an appropriate speed according to the user, so that there is no unnecessary waiting time until the finder magnification is switched.
  • FIG. 15A to FIG. 15C are flowcharts showing the flow of processing for adjusting the finder magnification in the modification of the sixth embodiment.
  • the difference between the sixth embodiment and the modification of the sixth embodiment is whether or not to display a finder magnification switching assist.
  • symbol is attached
  • the CPU 41 After switching the finder magnification (step S26), the CPU 41 displays a finder magnification switching assist on the electronic viewfinder 52 based on the focal length acquired in step S11 and the finder magnification switched in step S26 ( Step S31). Thereby, when zooming is performed or when the finder magnification is changed, the bright frame and finder magnification switching assist can be updated.
  • the present invention relates to a computer readable program code for causing a device (for example, an electronic camera) to perform the above processing, a non-transitory and computer readable recording medium in which the program code is stored (for example, an optical disc (eg, CD (Compact Disc), DVD (Digital Versatile Disc), BD (Blu-ray Disc)), magnetic disc (eg, hard disk, magneto-optical disc)), and executable for the method It can be provided as a computer program product that stores code.
  • a device for example, an electronic camera
  • a non-transitory and computer readable recording medium in which the program code is stored
  • an optical disc eg, CD (Compact Disc), DVD (Digital Versatile Disc), BD (Blu-ray Disc)
  • magnetic disc eg, hard disk, magneto-optical disc

Abstract

 本発明の一態様に係る撮影方法は、撮影光学系を通過した被写体からの光を結像して撮影画像を取得し、前記撮影光学系の撮影倍率を変更し、前記撮影倍率が増加したときに、前記撮影光学系とは別のファインダ光学系のファインダ倍率を第1のファインダ倍率から第2のファインダ倍率に切り替え、前記撮影倍率が減少したときに前記ファインダ倍率を前記第2のファインダ倍率から前記第1のファインダ倍率に切り替える。

Description

撮影装置、撮影方法、記録媒体およびプログラム
 本発明は撮影装置、撮影方法、記録媒体およびプログラムに係り、特に変倍が可能な光学ファインダを有する撮影装置、撮影方法、記録媒体およびプログラムに関する。
 撮影用の光学系とは別に光学ファインダ用の光学系を有する撮影装置は、撮影用の光学系のズーミング動作やピント合わせ動作に伴って光学ファインダ用の光学系についてもズーミング動作やピント合わせ動作を行う。
 しかしながら、撮影光学系のズーム倍率に合わせて単純にファインダ光学系の倍率を切り替えるとすると、あるズーム位置の前後で撮影光学系のズームを動かした場合には、頻繁にファインダ倍率切り替え、すなわちハンチングが発生してしまう。このような場合には、ユーザーが光学ファインダを覗きながらズーム位置(画角)を決定することが難しくなり、使い勝手の悪いカメラとなってしまう。ピント合わせ動作を行う場合についても同様に、あるピント位置の前後でピント位置を動かした場合にはハンチングが発生してしまう。
 このような問題に対応するため、特許文献1には、ファインダ光学系のピント位置を離散的に切り替えるにあたって、ファインダ光学系を至近より無限側に移動させる場合は本来のピント位置切り替え点よりも無限側、ファインダ光学系を無限側から至近へと移動させる場合は本来のピント位置切り替え点よりも至近側を、実際のピント位置切り替え点とする撮影装置が開示されている。特許文献1に係る撮影装置では、本来のピント切り替え点と実際のピント切り替え点との間に、いわゆるヒステリシスが設けられる。これにより、ファインダ光学系のピント位置の頻繁な切り替え(ハンチング)が防止される。
特開平11-142721号公報
 しかしながら、特許文献1に記載の発明は、ピント合わせに対応するものであり、ズーミング時の画角変化による問題を解決することはできない。ズーミングは画角変化を伴うため、ユーザーは、ピント合わせ時よりも煩わしさを感じる。
 また、特許文献1に記載の発明は、ファインダ光学系を調整するタイミングについては考慮されていない。したがって、カメラが撮影する被写体を変える等のヒステリシスを超える程度の被写体距離変化が連続的にあった場合には、光学ファインダに頻繁な切り替えが発生してしまうという問題がある。
 本発明はこのような事情に鑑みてなされたもので、カメラのズーム動作に追随しつつも頻繁な切り替えを抑えた使い勝手のよい変倍光学ファインダを有する撮影装置、撮影方法、該撮影装置の処理を制御するためのプログラムおよび該プログラムが格納された記録媒体を提供することを目的とする。
 前記目的を達成するために、本発明の一の態様に係る撮影装置は、撮影光学系を通過した被写体光が結像された撮影画像を取得する撮影手段と、撮影画像の倍率を連続的に変更するズーム手段と、撮影光学系とは異なる光学系を介して被写体像を観察可能な光学ファインダと、撮影画像の倍率が増加する方向で第1の撮影倍率に変更されたときに光学ファインダの倍率であるファインダ倍率を第1のファインダ倍率から第2のファインダ倍率に切り替え、撮影画像の倍率が減少する方向で第1の撮影倍率より小さい第2の撮影倍率に変更されたときにファインダ倍率を第2のファインダ倍率から第1のファインダ倍率に切り替える変倍手段とを備える。
 本発明の一の態様に係る撮影装置によれば、ズーム手段により撮影画像の倍率が変更されると、光学ファインダの倍率であるファインダ倍率が段階的に変更される。そして、撮影画像の倍率が増加する方向で第1の撮影倍率に変更されたときにファインダ倍率を第1のファインダ倍率から第2のファインダ倍率に切り替える。一方、撮影画像の倍率が減少する方向で第1の撮影倍率より小さい第2の撮影倍率に変更されたときにファインダ倍率を第2のファインダ倍率から第1のファインダ倍率に切り替える。これにより、ズームを小刻みに動かしながら画角を決めているときに、光学ファインダが何度も切り替わることがなく、煩わしさがない。したがって、ユーザーはストレスなく画角合わせを行うことができる。なお、撮影倍率は、撮影光学系の焦点距離を変えることによって変更してもよい。また、撮影倍率は、電子ズームのように撮影画像の一部を抜き出して拡大することにより変更してもよい。また、ある倍率までは焦点距離を変更することにより撮影倍率を変更し、撮影倍率をある倍率以上に変更する場合には撮影画像の一部を抜き出すことにより撮影倍率を変更してもよい。
 本発明の他の態様に係る撮影装置において、撮影画像の撮影画角を示す画像を表示する表示手段と、表示手段に表示された画像を、光学ファインダで観察される被写体像に重畳して表示させる画像重畳手段とを更に備えてもよい。なお、撮影画角を示す画像としては、撮影画角の大きさの枠、撮影画角の4隅に表示されるマーク、撮影画角の外側のマスキング等が考えられる。これにより、ユーザーが撮影画角を調整しやすくなる。
 本発明の他の態様に係る撮影装置において、表示手段は、ファインダ倍率が変更される撮影画角を示すマークを更に表示してもよい。これにより、どこまでズームするとファインダ倍率が切り替わるかをユーザーが知ることができるため、ファインダ倍率の切り替えによっておこる煩わしさを低減させることができる。
 本発明の他の態様に係る撮影装置において、ズーム手段により撮影画像の倍率が第1の撮影倍率または第2の撮影倍率に変更された後、撮影画角の倍率が所定時間変更されていないかを判断する判断手段を更に備え、変倍手段は、判断手段により撮影画角の倍率が所定時間変更されていないと判断された場合にファインダ倍率を変更してもよい。これにより、ズーミングの間は、常に光学ファインダの倍率を一定とすることができる。したがって、よりユーザーの煩わしさを軽減でき、ユーザーが撮影画角を合わせやすくすることができる。
 本発明の他の態様に係る撮影装置において、変倍手段は、撮影画像の倍率が変更されている間は、ファインダ倍率を最小倍率にしてもよい。これにより、常にファインダ画角が適正なブライトフレームサイズを下回ることがなく、どのズーム位置でも撮影画角を確認することができる。
 本発明の他の態様に係る撮影装置において、撮影画像の倍率が変更された場合に、撮影画像の倍率の変化量を検出する変化量検出手段を更に備え、変倍手段は、撮影画像の倍率の変化量が所定値以下の場合には、判断手段により所定時間経過したと判断された場合にファインダ倍率を変更してもよい。これにより、ズーミングしながら微妙な画角合わせを行う場合には、ズーム駆動中はファインダ倍率を切り替えないようにすることで、画角合わせしやすくすることができる。
 本発明の他の態様に係る撮影装置において、変化量検出手段により検出された変化量に応じて所定時間を変更する所定時間変更手段を更に備えてもよい。これにより、ズーム移動の速さに応じて待機時間を変えることができる。
 本発明の他の態様に係る撮影装置において、所定時間変更手段は、変化量が大きい場合ほど所定時間を短くしてもよい。これにより、一気にズームした場合には、素早くファインダ倍率を切り替え可能とすることができる。また、一気にズームした場合には、その後の微妙な画角合わせにすぐに移ることが出来るようにすることができる。
 本発明の他の態様に係る撮影方法において、撮影光学系を通過した被写体光が結像された撮影画像を取得するステップと、撮影画像の倍率を変更するステップと、撮影画像の倍率に応じて撮影光学系とは異なるファインダ光学系の倍率であるファインダ倍率を変更するステップであって、撮影画像の倍率が増加する方向で第1の撮影倍率に変更されたときにファインダ倍率を第1のファインダ倍率から第2のファインダ倍率に切り替え、撮影画像の倍率が減少する方向で第1の撮影倍率より小さい第2の撮影倍率に変更されたときにファインダ倍率を第2のファインダ倍率から第1のファインダ倍率に切り替えるステップとを備える。
 本発明の他の態様に係るプログラムにおいて、撮影光学系を通過した被写体光が結像された撮影画像を取得するステップと、撮影画像の倍率を変更するステップと、撮影画像の倍率に応じて撮影光学系とは異なるファインダ光学系の倍率であるファインダ倍率を変更するステップであって、撮影画像の倍率が増加する方向で第1の撮影倍率に変更されたときにファインダ倍率を第1のファインダ倍率から第2のファインダ倍率に切り替え、撮影画像の倍率が減少する方向で第1の撮影倍率より小さい第2の撮影倍率に変更されたときにファインダ倍率を第2のファインダ倍率から第1のファインダ倍率に切り替えるステップとを演算装置に実行させる。
 本発明によれば、カメラのズーム動作に追随しつつも頻繁な切り替えを抑えた使い勝手のよい変倍光学ファインダを有する撮影装置、撮影方法、該撮影装置の処理を制御するためのプログラムおよび該プログラムが格納された記録媒体を提供することができる。
撮影装置のブロック図 第1の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート 第1の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 焦点距離とファインダ倍率との関係を示す図 ファインダの表示のイメージを示す図 ファインダの表示のイメージを示す図 第2の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート 第2の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) ファインダの表示のイメージを示す図 第3の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート 第3の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第3の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第3の実施の形態の変形例におけるファインダ倍率切り替え処理の流れを示すフローチャート 第3の実施の形態の変形例におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第3の実施の形態の変形例におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第4の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート 第4の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第4の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第5の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート 第5の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第5の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第5の実施の形態の変形例におけるファインダ倍率切り替え処理の流れを示すフローチャート 第5の実施の形態の変形例におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第5の実施の形態の変形例におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第6の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート 第6の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第6の実施の形態におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 焦点距離の変化量とズーム停止時間判定閾値との関係を示す図 第6の実施の形態の変形例におけるファインダ倍率切り替え処理の流れを示すフローチャート 第6の実施の形態の変形例におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき) 第6の実施の形態の変形例におけるファインダ倍率切り替え処理の流れを示すフローチャート(つづき)
 以下、添付図面に従って本発明に係る撮影装置の実施の形態について詳細に説明する。
 <第1の実施の形態>
 [撮像装置の構成の説明]
 図1は、デジタルカメラ1の内部構成の一例を示すブロック図である。このデジタルカメラ1は、レンズを通った光を撮像素子で受け、デジタル信号に変換して記憶メディアに記録する。デジタルカメラ1全体の動作は中央処理装置(CPU)41によって統括制御される。
 図1に示すように、デジタルカメラ1は、電源11、撮影光学系12、撮像素子13、AFE(Analog Front End)14、DSP(Digital Signal Processor)15、記録メディア16、操作部17、表示ドライバ18、システムバス19、SDRAM(Synchronous Dynamic Random Access Memory)20、フラッシュROM(Read-Only Memory)21、フラッシュ発光部27、表示部(例えば、LCD(Liquid Crystal Display))22を備えている。さらに、デジタルカメラ1は、撮影光学系12を駆動するためのレンズドライバ25、光学ファインダ51、電子ビューファインダ52を駆動するためのドライバ(それぞれ23、24)を備えている。レンズドライバ25、ドライバ23および24は、DSP15のシリアル入出力(I/O)端子と接続されている。
 電源11は、図示しないバッテリーおよび電源制御部を含み、デジタルカメラ1の各ブロックに電源供給を行う。電源供給された各ブロックはDSP15に備えられたCPU41に制御されて動作する。CPU41は、操作部17からの入力に基づき所定の制御プログラムを実行し、デジタルカメラ1の各部を制御する。
 操作部17は、レリーズスイッチ、モードダイヤル、十字キー、再生ボタン、MENU/OKキー、BACKキーを含んでいる。この操作部17からの信号はCPU41に入力され、CPU41は入力信号に基づいてデジタルカメラ1の各回路を制御し、例えば、レンズ駆動制御、絞り駆動制御、撮影動作制御、画像処理制御、画像データの記録/再生制御、立体表示が可能なLCD22の表示制御などを行う。
 レリーズスイッチは、撮影開始の指示を入力する操作ボタンであり、半押し時にONするS1スイッチと、全押し時にONするS2スイッチとを有する2段ストローク式のスイッチで構成されている。モードダイヤルは、2D撮影モード、3D撮影モード、オート撮影モード、マニュアル撮影モード、人物、風景、夜景等のシーンポジション、マクロモード、動画モード、視差優先撮影モードを選択する選択手段である。
 再生ボタンは、撮影記録した立体視画像(3D画像)、平面画像(2D画像)の静止画または動画をLCD22に表示させる再生モードに切り替えるためのボタンである。MENU/OKキーは、LCD22の画面上にメニューを表示させる指令を行うためのメニューボタンとしての機能と、選択内容の確定および実行などを指令するOKボタンとしての機能とを兼備した操作キーである。十字キーは、上下左右の4方向の指示を入力する操作部であり、メニュー画面から項目を選択したり、各メニューから各種設定項目の選択を指示したりするボタン(カーソル移動操作手段)として機能する。また、十字キーの上/下キーは撮影時のズームスイッチあるいは再生モード時の再生ズームスイッチとして機能し、左/右キーは再生モード時のコマ送り(順方向/逆方向送り)ボタンとして機能する。BACKキーは、選択項目など所望の対象の消去や指示内容の取消し、あるいは1つ前の操作状態に戻らせるときなどに使用される。
 フラッシュROM21にはCPU41が実行する制御プログラムと、制御に必要な各種パラメータや撮像素子(CCD(Charge Coupled Device))13の画素欠陥データ等が記録されている。CPU41は、このフラッシュROM21に記録された制御プログラムをSDRAM20に読み出し、逐次実行することにより、デジタルカメラ1の各部を制御する。なお、このSDRAM20は、プログラムの実行処理領域として利用される。また、SDRAM20は、画像データ等の一時記憶領域、各種作業領域として利用される。
 撮影光学系12は、ズームレンズ31、フォーカスレンズ32、アイリス33およびシャッタ34を含んでいる。ズームレンズ31、フォーカスレンズ32、アイリス33、およびシャッタ34は、それぞれCPU41の命令に基づいてレンズドライバ25により駆動される。
 ズームレンズ31およびフォーカスレンズ32は、同じ光軸上を前後移動し、ズームおよびフォーカスを行う。
 アイリス33は、CCD13へ入射する光量を制御し、シャッタスピードおよび露出の制御を行う。アイリス33は、例えば、5枚の絞り羽根からなり、絞り値F1.4~F11まで1AV刻みで6段階に絞り制御される。
 シャッタ34は、ズームレンズ31、フォーカスレンズ32およびアイリス33を介した被写体光を、所定の時間だけCCD13へ入射させるように動作する。
 CCD13は、シャッタ34の後段に配置されており、撮影光学系12を介した被写体光を受光する。CCD13は、周知のように多数の受光素子がマトリクス状に配列された受光面を備えている。撮影光学系12を介した被写体光は、このCCD13の受光面上に結像され、各受光素子によって電気信号に変換される。なお、撮像素子の種類は、CCDに限定されるものではない。撮像素子としては、CMOS(Complementary Metal Oxide Semiconductor)等の他のイメージセンサも適用可能である。
 AFE14は、アナログ信号処理部35、A/D変換器36およびタイミングジェネレータ(TG)37を含んでいる。CCD13は、タイミングジェネレータ37から供給される垂直転送クロックおよび水平転送クロックに同期して、各画素に蓄積された電荷を1ラインずつシリアルな画像信号として出力する。CPU41は、タイミングジェネレータ37を制御して、CCD13の駆動を制御する。
 なお、各画素の電荷蓄積時間(露出時間)は、タイミングジェネレータ37から与えられる電子シャッタ駆動信号によって決められる。CPU41は、タイミングジェネレータ37に対して電荷蓄積時間を指示する。
 また、画像信号の出力は、デジタルカメラ1が撮影モードにセットされると開始される。すなわち、デジタルカメラ1が撮影モードにセットされると、LCD22にライブビュー画像(スルー画像)を表示するため、画像信号の出力が開始される。このスルー画像用の画像信号の出力は、本撮影の指示が行われると、一旦停止され、本撮影が終了すると、再度開始される。
 CCD13から出力される画像信号は、アナログ信号であり、このアナログの画像信号は、アナログ信号処理部35に取り込まれる。
 アナログ信号処理部35は、相関2重サンプリング回路(CDS)、および自動ゲインコントロール回路(AGC)を含んでいる。CDSは、画像信号に含まれるノイズの除去を行う。AGCは、ノイズ除去された画像信号を所定のゲインで増幅する。このアナログ信号処理部35で所要の信号処理が施されたアナログの画像信号は、A/D変換器36に取り込まれる。
 A/D変換器36は、取り込んだアナログの画像信号を所定ビットの階調幅を持ったデジタルの画像信号に変換する。この画像信号は、いわゆるRAWデータであり、画素毎R(赤)、G(緑)、B(青)の濃度を示す階調値を有している。このデジタルの画像信号は、DSP15に取り込まれる。
 DSP15は、前述したCPU41、画像バッファ42、YC処理部43、AE・AWB検出回路44、AF検出回路45、タイマー46、圧縮伸張部47、記録メディアインターフェース(I/F)48、ビデオエンコーダ49を備えている。これらはシステムバス19と接続されており、システムバス19を介して互いに情報を送受信することが可能である。
 画像バッファ42は、A/D変換器36から取り込んだ1コマ分の画像信号を格納する。
 AF検出回路45は、CPU41の指令に従い、画像バッファ42に格納されたR、G、Bの画像信号を取り込み、AF(Automatic Focus)制御に必要な焦点評価値を算出する。このAF検出回路45は、G信号の高周波成分のみを通過させるハイパスフィルタ、絶対値化処理部、画面に設定された所定のフォーカス領域(以下、AFエリアという)内の信号を切り出すAFエリア抽出部、および、AFエリア内の絶対値データを積算する積算部を含んでいる。AF検出回路45は、この積算部で積算されたAFエリア内の絶対値データを焦点評価値としてCPU41に出力する。焦点評価値に基づくフォーカスレンズ群の制御方式としては、焦点評価値が極大となる位置をサーチし、その位置にフォーカスレンズ32を移動させる方式や、フォーカスレンズ群を焦点評価値が増加する方向に移動させて、焦点評価値が減少し始める点を検出するとその位置にフォーカスレンズ群を設定する山登り方式を用いることができる。
 AE・AWB検出回路44は、画像バッファ42に格納されたR、G、Bの画像信号を取り込み、画面全体のG信号を積算し、または画面中央部と周辺部とで異なる重みづけをしたG信号を積算し、そのAE制御に必要な積算値をCPU41に出力する。CPU41は、積算値から輝度値を算出し、輝度値から露出値を求める。また、露出値から所定のプログラム線図に従って、絞り値およびシャッタ速度を決定する。
 また、AE・AWB検出回路44は、AWB制御に必要な物理量として、1画面を複数のエリア(例えば、16×16)に分割し、分割したエリア毎にR、G、Bの画像信号の色別の平均積算値を算出する。CPU41は、得られたRの積算値、Bの積算値、Gの積算値から分割エリア毎にR/GおよびB/Gの比を求め、求めたR/G、B/Gの値のR/G、B/Gの色空間における分布等に基づいて光源種判別を行う。そして、判別された光源種に適したホワイトバランス調整値に従って、例えば各比の値がおよそ1(つまり、1画面においてRGBの積算比率がR:G:B=1:1:1)になるように、ホワイトバランス調整回路のR、G、B信号に対するゲイン値(ホワイトバランス補正値)を決定する。AE・AWB検出回路44は、画像バッファ42に格納された1コマ分の画像信号に光源種に応じたデジタルゲインをかけることでホワイトバランス調整を行うとともに、ガンマ(階調特性)処理およびシャープネス処理を行う。
 YC処理部43は、点順次に取り込んだR、G、Bの各色の画像信号に対して所定の信号処理を施し、輝度信号Yと色差信号Cr、Cbとからなる画像信号(Y/C信号)を生成する。このY/C信号は、SDRAM20に格納される。
 圧縮伸張部47は、CPU41からの圧縮指令に従い、入力されたY/C信号に所定形式(例えば、JPEG(Joint Photographic Experts Group))の圧縮処理を施し、圧縮画像データを生成する。また、CPU41からの伸張指令に従い、入力された圧縮画像データに所定形式の伸張処理を施して、非圧縮の画像データを生成する。
 ビデオエンコーダ49は、CPU41からの指令に従い、表示ドライバ18を介してLCD22への表示を制御する。
 LCD22は、動画(スルー画像)を表示して電子ビューファインダとして使用できるとともに、撮影した記録前の画像(プレビュー画像)やデジタルカメラ1に装填された記録メディア16から読み出した再生画像等を表示することができる。また、LCD22は、デジタルカメラ1の動作モードやホワイトバランス、画像のピクセル数、感度等をマニュアル設定する際の各種のメニュー画面をモードダイヤルやメニューボタンの操作に応じて表示させ、操作部17の操作に応じてマニュアル設定項目の設定が可能なグラフィカル・ユーザ・インターフェース(GUI)用の画面を表示する。
 記録メディアインターフェース48は、CPU41からの指令に従い、記録メディア16に対してデータの読み/書きを制御する。なお、記録メディア16は、メモリカードのようにカメラ本体に対して着脱自在なものでもよいし、また、カメラ本体に内蔵されたものでもよい。着脱自在とする場合は、デジタルカメラ1の本体にカードスロットを設け、このカードスロットに装填して使用する。
 タイマー46は、セルフタイマーモードにおけるタイマー時間の計測を行う。
 ファインダ(HVF)50は、光学ファインダ51と、電子ビューファインダ(EVF)52と、プリズム53とを含んでいる。ユーザーは、1つの接眼部を介して光学ファインダ51の光学像と電子ビューファインダ52の電子像とを視認可能である。
 光学ファインダ51は、撮影光学系12の変倍に伴って倍率が段階的に変更可能な変倍光学ファインダである。光学ファインダ51は、対物レンズと、接眼レンズと、これらの間に設けられ、光学ファインダ51の光路内に進退自在に配設された2枚の挿入レンズとを含むファインダ光学系を有する。CPU41の指示により挿入レンズが1枚光路内に挿入されると、光学ファインダ51の倍率(以下、ファインダ倍率という)が1倍から2倍に変更される。さらに、挿入レンズがもう1枚光路内に挿入されると、ファインダ倍率が2倍から3倍に変更される。なお、光学ファインダ51に含まれるレンズの構成および倍率制御の態様は上記に限定されるものではない。
 電子ビューファインダ52は、表示部(例えば、液晶パネル)を含んでいる。電子ビューファインダ52の表示は、光学ファインダ51の光路内に配設されたプリズム53により光学ファインダ51の接眼部に導かれる。
 [撮像装置の動作の説明]
 次に、デジタルカメラ1の動作について説明する。この撮像処理はCPU41によって制御される。この撮像処理をCPU41に実行させるためのプログラムは、例えば、CPU41内のプログラム格納部に記憶されている。
 撮影光学系12の各レンズ31および32を通過した被写体光は、アイリス33を介してCCD13の受光面に結像される。CCD13の各画素に蓄えられた信号電荷は、タイミングジェネレータ37からの水平および垂直転送クロックに従って、信号電荷に応じた電圧信号(画像信号)として所定のフレームレートで順次読み出され、画像データが順次生成される。生成された画像データは順次SDRAM20に入力される。
 CPU41は、画像データに基づいて、アイリス33の開口量(F値)を変更する。また、CPU41は、操作部17からの入力に応じて、レンズドライバ25を介してズームレンズ31を光軸に沿って移動させてズーミングを行う。
 図2Aおよび図2Bは、ファインダ倍率を調整する処理の流れを示すフローチャートである。この処理は、主としてCPU41によって行われる。この処理は、定期的なズームレンズ31の位置の検出のタイミング(例えば、数10ms単位)で繰り返し実施される。
 CPU41は、ズームレンズ31の位置(以下、ズーム位置という)、すなわち焦点距離が変わったかどうかを判断する(ステップS10)。ズーム位置が変わっていない場合(ステップS10でNO)には処理を終了する。ズーム位置が変わっている場合(ステップS10でYES)には、CPU41は、ズームレンズ31の位置から焦点距離を取得する(ステップS11)。
 CPU41は、ズームレンズ31がどの方向に移動したか(すなわち、ズームレンズ31がワイド側からテレ側(低倍率側から高倍率側)に移動しているか、テレ側からワイド側(高倍率側から低倍率側)に移動しているか)を判断する(ステップS12)。本実施の形態では、ズームレンズ31がワイド側からテレ側に移動している場合と、テレ側からワイド側へ移動している場合とで光学ファインダ51の倍率(以下、ファインダ倍率という)を変える点に特徴がある。したがって、焦点距離だけでなく、ズームレンズ31の変化の方向を取得することが重要である。
 まず、ズームレンズ31がワイド側からテレ側に移動している場合を説明する。CPU41は、現在のファインダ倍率を取得する(ステップS13)。
 ファインダ倍率が1倍である場合(ステップS13で1倍)には、CPU41は、ステップS12で取得された焦点距離が、図3に示すファインダ倍率切り替え線図における閾値1Aより大きいか否かを判断する(ステップS14)。焦点距離が閾値1A以下の場合(ステップS14でNO)には、CPU41はファインダ倍率を1倍とする(ステップS16)。焦点距離が閾値1Aより大きい場合(ステップS14でYES)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。
 ファインダ倍率が2倍である場合(ステップS13で2倍)には、CPU41は、ステップS12で取得された焦点距離が、図3に示すファインダ倍率切り替え線図における閾値1Bより大きいか否かを判断する(ステップS15)。焦点距離が閾値1B以下の場合(ステップS15でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。焦点距離が閾値1Bより大きい場合(ステップS15でYES)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 ファインダ倍率が3倍である場合(ステップS13で3倍)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 次に、ズームレンズ31がテレ側からワイド側に移動している場合を説明する。CPU41は、現在のファインダ倍率を取得する(ステップS19)。
 ファインダ倍率が1倍である場合(ステップS19で1倍)には、ファインダ倍率は1倍のまま変更されない(ステップS22)。
 ファインダ倍率が2倍である場合(ステップS19で2倍)には、CPU41は、ステップS12で取得された焦点距離が、図3に示すファインダ倍率切り替え線図における閾値2A以下か否かを判断する(ステップS20)。焦点距離が閾値2A以下の場合(ステップS20でYES)には、CPU41は、ファインダ倍率を1倍とする(ステップS22)。焦点距離が閾値2Aより大きい場合(ステップS20でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS23)。
 ファインダ倍率が3倍である場合(ステップS19で3倍)には、CPU41は、ステップS12で取得された焦点距離が、図3に示すファインダ倍率切り替え線図における閾値2B以下か否かを判断する(ステップS21)。焦点距離が閾値2B以下の場合(ステップS21でYES)には、CPU41は、ファインダ倍率を2倍とする(ステップS23)。焦点距離が閾値2Bより大きい場合(ステップS21でNO)には、CPU41は、ファインダ倍率を3倍とする(ステップS24)。
 ここで、ファインダ倍率の切り替え線図(図3参照)について説明する。本実施の形態では、閾値近辺でズーム位置が変化してもすぐにはファインダ倍率が切り替わらないように、ヒステリシスを設ける。すなわち、判定用の閾値1A、1B、2A、2Bは数式1に示すような関係を満足するように設定する。
 [数1]
  閾値1A>閾値2A
  閾値1B>閾値2B
 閾値1Aは閾値2Aより高倍率側であり、閾値1Bは閾値2Bより高倍率側である。このようなヒステリシスを持たせない場合には、撮影光学系12のズーム位置がファインダ倍率の切り替え位置近傍で連続して変わった場合に、その都度ファインダ倍率が切り替えるいわゆるハンチングが発生する。このため、ユーザーが光学ファインダ51を介して視認する被写体の倍率が頻繁に変更されるために、不快感を覚えやすい。それに対し、図3に示すようなヒステリシスを持たせた場合には、ハンチングが発生せず、光学ファインダ51を覗くユーザーはストレスなく画角合わせを行うことができる。
 図2の説明に戻る。CPU41は、ステップS13、S19で取得された現在のファインダ倍率と、ステップS16~S18、S22~S24で決定されたファインダ倍率とが同じか否かを判断する(ステップS25)。同じ場合(ステップS25でYES)には、ステップS27に進む。異なる場合(ステップS25でNO)には、CPU41は、ドライバ23を介して挿入レンズを挿入しまたは取り出し、ステップS16~S18、S22~S24で決定されたファインダ倍率に変更する(ステップS26)。
 ファインダ倍率が切り替えられた(ステップS26)後、または現在のファインダ倍率と決定されたファインダ倍率が同じ場合(ステップS25でYES)には、CPU41は、ステップS11で取得された焦点距離と、ステップS26で切り替えられたファインダ倍率とに基づいて、電子ビューファインダ52にブライトフレームFを表示する(ステップS27)。ズームレンズ31は無段階の変倍が可能であるが、光学ファインダ51は段階的な倍率切り替えが可能となっている(または、ズームレンズ31の変倍の段階数が光学ファインダ51の倍率の切り替えの段階数よりも多い)。このため、光学ファインダ51を介して視認可能な被写体の範囲と、撮影光学系12を用いて実際に撮影される撮影領域(有効撮影画角)が異なる場合がある。そこで、CPU41は、電子ビューファインダ52に撮影領域を示すブライトフレームFを表示させる。
 図4は、デジタルカメラ1でのファインダ50の表示のイメージを示す図である。光学ファインダ51の光学像に、ブライトフレームFが重なって表示されている。ブライトフレームFの大きさ(サイズ)は、光学ファインダ51とズームレンズ31の焦点距離(例えば、35mm判換算の焦点距離)との差から求められる。また、ブライトフレームFの位置は、前回の撮影においてS1ON信号が入力された後で行われたAF動作におけるフォーカス位置から算出される被写体距離に基づいて求められる。ただし、電源を入れた直後など前回の撮影で得られたフォーカス位置の情報がない場合には、初期設定されたフォーカス位置から算出される被写体距離に基づいてブライトフレームFの位置を決定する。
 図4の(A)部に示す状態から撮影光学系12のズーム倍率が変化すると、撮影画角が変わるため、図4の(B)部に示すようにブライトフレームFのサイズが変化する。ただし、さらにブライトフレームFが小さくなると、光学ファインダ51の画角と、実際の撮影画角(ブライトフレームF)のズレが大きくなり、撮影しづらい。したがって、図4の(C)部に示すように、焦点距離が所定の閾値を越えたときに、ブライトフレームFがファインダ画角に入る範囲で光学ファインダ51の倍率を切り替える。光学ファインダ51の倍率を切り替えた場合には、ブライトフレームFの大きさも合わせて切り替える。なお、図3の閾値1A、1B、2A、2Bは、基本的にブライトフレームFの大きさが光学ファインダ51の画角以下になるように決められている。
 なお、ブライトフレームFの表示は、スルー画像の撮影開始直後(図2に示すファインダ倍率を調整する処理の開始の前)にも行ってもよい。これにより、ズーミング処理の前にも光学ファインダ51で確認している画角と撮影画角との違いを認識することができる。スルー画像の撮影開始直後にブライトフレームFの表示をしない場合には、CPU41は、撮影画角がファインダ倍率と一致するように撮影光学系12と光学ファインダ51と制御してもよい。
 なお、撮影画角はブライトフレームFで示す場合に限定されない。例えば、撮影画角を示す撮影領域の4隅にマークを表示してもよい。さらに、ユーザーが撮影領域を認識しやすくするために、図5に示すように、CPU41は、電子ビューファインダ52のブライトフレームFの外側をマスキングして半透明のグレー表示としてもよい。これにより、撮影画角をよりわかり易くすることができる。
 これにより、図2に示すファインダ倍率を調整する処理を終了する。なお、ファインダ倍率を調整する処理は、一度終了したらそれで終わりではなく、S1ON信号が入力されるまで所定の間隔で繰り返し行われる。
 レリーズスイッチが半押しされると、S1ON信号がCPU41に入力され、CPU41はAF検出回路45およびAE・AWB検出回路44を介してAE/AF/AWB動作を実施する。なお、焦点評価値が極大となる位置をサーチするコントラストAFを行っている場合には、この段階で始めてAF検出回路45により被写体距離が取得される。したがって、CPU41は、ブライトフレームFの位置を被写体距離から算出し、パララックスを考慮した位置へとブライトフレームFを微調整する。被写体距離が短い(3m程度)場合には、パララックスがあるためにS1の前後でブライトフレームFが移動する。一方、被写体距離が長い場合には、パララックスの影響が少ないためブライトフレームFはほとんど移動しない。
 その後、レリーズスイッチが全押しされると、CPU41にS2ON信号が入力され、CPU41は、撮影、記録処理を開始する。すなわち、測光結果に基づき決定されたシャッタ速度、絞り値でCCD13を露光する。
 CCD13から出力された画像データは、AFE14を介してYC処理部43に取り込まれて輝度/色差信号(Y/C信号)に変換される。該画像データは、圧縮伸張部47で所定の圧縮フォーマット(例えば、JPEG形式)に従って圧縮された後、SDRAM20に格納される。
 SDRAM20に記憶された圧縮データから画像ファイルが生成され、その画像ファイルは記録メディアインターフェース48を介して記録メディア16に記録される。これにより、画像が撮影、記録される。
 以上のようにして記録メディア16に記録された画像は、再生ボタンによりデジタルカメラ1の動作モードを再生モードに設定することにより、LCD22で再生表示させることができる。
 再生モードに設定されると、CPU41は、記録メディアインターフェース48を介して、記録メディア16に最後に記録された画像ファイルを読み出す。
 読み出された画像ファイルの圧縮画像データは、圧縮伸張部47に加えられ、非圧縮の輝度/色差信号に伸張されたのち、ビデオエンコーダ49を介してLCD22に出力される。
 画像のコマ送りは、十字キーの左右のキー操作によって行われる。十字キーの右キーが押されると、次の画像ファイルが記録メディア16から読み出され、LCD22に再生表示される。また、十字キーの左キーが押されると、1つ前の画像ファイルが記録メディア16から読み出され、LCD22に再生表示される。
 本実施の形態によれば、ズームを小刻みに動かしながら画角を決めているときに、光学ファインダ51のファインダ倍率が何度も切り替わることがなく、煩わしさがない。したがって、ユーザーはストレスなく画角合わせを行うことができる。
 なお、本実施の形態では、撮影光学系12が交換可能なデジタルカメラを例に説明したが、本発明の実施の形態はこれに限定されるものではない。本発明はレンズ一体型で変倍光学ファインダを備えたデジタルカメラにも適用可能である。
 また、本実施の形態では、ズームレンズ31を移動させる光学ズームにより画角調整する場合を例に説明したが、ズーム手段は光学ズームに限定されるものではない。例えば、CCD13に結像された画像の一部を切り出して撮影倍率を変化させる電子ズームを用いる撮影装置にも適用可能である。また、光学ズームによりズームレンズ31がテレ端に移動された後、電子ズームを用いる撮影装置にも適用することができる。また、本実施の形態では、ファインダ倍率の切り替えが3段階であるが、3段階に限定されるものではない。
 なお、本実施の形態では、電子ビューファインダ52にブライトフレームFを表示させて光学像に重畳表示させたが、ブライトフレームFの表示は必須ではない。この場合には、光学ファインダ(電子ビューファインダが重畳表示されないもの)にも適用可能である。また、本実施の形態では、ブライトフレームFを電子ビューファインダ52に表示させたが、ブライトフレームFを光学ファインダ51に重畳表示することが可能な手段であれば電子ビューファインダ52には限定されない。例えば、光学ファインダ51の光軸内に液晶モニタを配設し、液晶モニタに枠を表示させるようにしてもよい。
 <第2の実施の形態>
 本発明の第1の実施の形態は、電子ビューファインダ52に撮影領域を示すブライトフレームFを表示させる形態であるが、ブライトフレームFの表示形態はこれに限られない。
 本発明の第2の実施の形態は、ブライトフレームFおよびファインダ倍率切り替えアシストをファインダ表示する形態である。以下、第2の実施の形態に係るデジタルカメラ1-1について説明する。なお、第1の実施の形態と同一の部分については説明を省略する。
 図6Aおよび図6Bは、ファインダ倍率を調整する処理の流れを示すフローチャートである。この処理は、主としてCPU41によって行われる。この処理は、定期的なズームレンズ31の位置の検出のタイミング(例えば、数10ms単位)で繰り返し実施される。
 CPU41は、ズーム位置が変わったかどうかを判断する(ステップS10)。ズーム位置が変わっていない場合(ステップS10でNO)には処理を終了する。ズーム位置が変わっている場合(ステップS10でYES)には、CPU41は、ズームレンズ31の位置から焦点距離を取得する(ステップS11)。
 CPU41は、ズームレンズ31がどの方向に移動したかを判断する(ステップS12)。
 ズームレンズ31がワイド側からテレ側に移動している場合には、まずCPU41は、現在のファインダ倍率を取得する(ステップS13)。ファインダ倍率が1倍である場合(ステップS13で1倍)には、CPU41は、ステップS12で取得された焦点距離が閾値1Aより大きいか否かを判断する(ステップS14)。焦点距離が閾値1A以下の場合(ステップS14でNO)には、CPU41はファインダ倍率を1倍とする(ステップS16)。焦点距離が閾値1Aより大きい場合(ステップS14でYES)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。
 ファインダ倍率が2倍である場合(ステップS13で2倍)には、CPU41は、ステップS12で取得された焦点距離が閾値1Bより大きいか否かを判断する(ステップS15)。焦点距離が閾値1B以下の場合(ステップS15でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。焦点距離が閾値1Bより大きい場合(ステップS15でYES)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 ファインダ倍率が3倍である場合(ステップS13で3倍)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 ズームレンズ31がテレ側からワイド側に移動している場合には、まず、CPU41は、現在のファインダ倍率を取得する(ステップS19)。ファインダ倍率が1倍である場合(ステップS19で1倍)には、ファインダ倍率は1倍のまま変更されない(ステップS22)。
 ファインダ倍率が2倍である場合(ステップS19で2倍)には、CPU41は、ステップS12で取得された焦点距離が閾値2A以下か否かを判断する(ステップS20)。焦点距離が閾値2A以下の場合(ステップS20でYES)には、CPU41は、ファインダ倍率を1倍とする(ステップS22)。焦点距離が閾値2Aより大きい場合(ステップS20でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS23)。
 ファインダ倍率が3倍である場合(ステップS19で3倍)には、CPU41は、ステップS12で取得された焦点距離が閾値2B以下か否かを判断する(ステップS21)。焦点距離が閾値2B以下の場合(ステップS21でYES)には、CPU41は、ファインダ倍率を2倍とする(ステップS23)。焦点距離が閾値2Bより大きい場合(ステップS21でNO)には、CPU41は、ファインダ倍率を3倍とする(ステップS24)。
 CPU41は、ステップS13、S19で取得された現在のファインダ倍率と、ステップS16~S18、S22~S24で決定されたファインダ倍率とが同じか否かを判断する(ステップS25)。同じ場合(ステップS25でYES)には、ステップS27に進む。異なる場合(ステップS25でNO)には、CPU41は、ドライバ23を介して挿入レンズを挿入しまたは取り出し、ステップS16~S18、S22~S24で決定されたファインダ倍率とする(ステップS26)。
 CPU41は、ステップS11で取得された焦点距離と、ステップS26で切り替えられたファインダ倍率とに基づいて、電子ビューファインダ52にファインダ倍率切り替えアシストを表示する(ステップS31)。ファインダ倍率切り替えアシストが表示された(ステップS31)後、または現在のファインダ倍率と決定されたファインダ倍率が同じ場合(ステップS25でYES)には、CPU41は、ステップS11で取得された焦点距離と、ステップS26で切り替えられたファインダ倍率とに基づいて、電子ビューファインダ52にブライトフレームFを表示する(ステップS27)。
 図7は、デジタルカメラ1-1でのファインダ50の表示のイメージを示す図である。ファインダ倍率切り替えアシストとは、ブライトフレームF(撮影画角)がどの程度の大きさになった場合にファインダ倍率が切り替わるかをユーザーに知らせるための表示である。ブライトフレームFの外側には低倍率側のファインダ倍率切り替えアシストA1が表示され、ブライトフレームFの内側には高倍率側のファインダ倍率切り替えアシストA2が表示される。
 ブライトフレームFが低倍率側のファインダ倍率切り替えアシストA1まで大きくなった場合には、図7の(D)部から(C)部、(C)部から(B)部、(B)部から(A)部のようにファインダ倍率が低い側に切り替えられる。また、ブライトフレームFが高倍率側のファインダ倍率切り替えアシストA2まで小さくなった場合には、図7の(A)部から(B)部、(B)部から(C)部、(C)部から(D)部のようにファインダ倍率が高い側に切り替えられる。これにより、どこまでズームするとファインダ倍率が切り替わるかをユーザーが知ることができるため、ファインダ倍率の切り替えによっておこる煩わしさを低減させることができる。
 なお、このファインダ倍率切り替えアシスト表示では、低倍率側のファインダ倍率切り替えアシストA1と高倍率側のファインダ倍率切り替えアシストA2とで枠の色、枠の太さ、枠の線種等を変えることもできる。これにより、ユーザーにとっては、アシストA1とA2がよりわかり易く表示される。同様の理由により、ブライトフレームFと低倍率側のファインダ倍率切り替えアシストA1、高倍率側のファインダ倍率切り替えアシストA2との色、太さ、線種等も変えることが望ましい。
 なお、ファインダ倍率切り替えアシスト表示は、図6Aおよび図6Bに示すファインダ倍率を調整する処理の開始の前に行うようにしてもよい。これにより、ズーミング処理の前にもどこまでズームするとファインダ倍率が切り替わるかをユーザーが知ることができる。
 本実施の形態によれば、ズーミングが行われたときやファインダ倍率が変わったときには、ブライトフレームFおよびファインダ倍率切り替えアシストを更新することができる。これにより、ファインダ倍率の切り替えによっておこる煩わしさを低減させることができる。
 なお、本実施の形態では、ブライトフレームFおよびファインダ倍率切り替えアシストを電子ビューファインダ52に表示させたが、ブライトフレームFおよびファインダ倍率切り替えアシストを光学ファインダ51に重畳表示が可能な手段であれば電子ビューファインダ52には限定されない。例えば、光学ファインダ51の光軸内に液晶モニタを配設し、液晶モニタに枠を表示させるようにしてもよい。
 <第3の実施の形態>
 本発明の第1の実施の形態では、焦点距離の変化があった場合にはファインダ倍率の決定および変更をする形態であるが、画角調整時にはファインダ倍率が変わらない方がよい場合もある。
 本発明の第3の実施の形態は、ズーミングが行われた後一定時間ズームングが行われなかった場合にファインダ倍率の決定および変更をする形態である。以下、第3の実施の形態に係るデジタルカメラ1-2について説明する。なお、第1、2の実施の形態と同一の部分については説明を省略する。
 図8Aから図8Cは、ファインダ倍率を調整する処理の流れを示すフローチャートである。この処理は、主としてCPU41によって行われる。この処理は、定期的なズームレンズ31の位置の検出のタイミング(例えば、数10ms単位)で繰り返し実施される。
 CPU41は、ズームレンズ31の位置から焦点距離を取得する(ステップS11)。
 CPU41は、ズームレンズ31が移動された後、所定時間ズームレンズ31が移動されていないか否か、すなわち撮影画角が変更されていないか否かを判断する(ステップS41)。例えば、前回取得した焦点距離と今回取得した焦点距離との差からズーム変化の有無を検出し、もし焦点距離が変化していない場合には変化していない時間を取得し、この時間が所定時間を越えているか否かを判断する。なお、この所定時間は、ズーム位置検出のポーリング間隔(数10ms)を必ず超えるような時間に設定する必要がある。所定時間をズーム位置検出のポーリング間隔以下に設定すると、ズーム位置に変化があった時点でファインダ倍率が切り替わってしまうためである。
 ズームレンズ31が移動されていない場合、ズームレンズ31が移動された後所定時間経過していない場合(ステップS41でNO)には、定期的なズーム位置検出の間隔、例えば10ms単位)だけ待機し(ステップS42)、ステップS11へ戻る。すなわち、所定時間を超えるまで、焦点距離検出(ステップS11)とズーム停止時間判定(ステップS41)を繰り返す。
 ズームレンズ31が移動された後、ズームレンズ31が移動された後所定時間経過した場合(ステップS41でYES)には、CPU41は、その前にファインダ倍率の判定処理(ステップS13~S24)が行われたときに取得された焦点距離を取得する(ステップS43)。
 CPU41は、ステップS43で取得された焦点距離と、ステップS11で取得された焦点距離とを比較し、ズームレンズ31がワイド側からテレ側に移動しているのか、ズームレンズ31がテレ側からワイド側に移動しているのかを判断する(ステップS44)。
 ズームレンズ31がワイド側からテレ側に移動している場合には、まず、CPU41は、現在のファインダ倍率を取得する(ステップS13)。ファインダ倍率が1倍である場合(ステップS13で1倍)には、CPU41は、ステップS12で取得された焦点距離が閾値1Aより大きいか否かを判断する(ステップS14)。焦点距離が閾値1A以下の場合(ステップS14でNO)には、CPU41はファインダ倍率を1倍とする(ステップS16)。焦点距離が閾値1Aより大きい場合(ステップS14でYES)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。
 ファインダ倍率が2倍である場合(ステップS13で2倍)には、CPU41は、ステップS12で取得された焦点距離が閾値1Bより大きいか否かを判断する(ステップS15)。焦点距離が閾値1B以下の場合(ステップS15でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。焦点距離が閾値1Bより大きい場合(ステップS15でYES)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 ファインダ倍率が3倍である場合(ステップS13で3倍)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 ズームレンズ31がテレ側からワイド側に移動している場合には、まず、CPU41は、現在のファインダ倍率を取得する(ステップS19)。ファインダ倍率が1倍である場合(ステップS19で1倍)には、ファインダ倍率は1倍のまま変更されない(ステップS22)。
 ファインダ倍率が2倍である場合(ステップS19で2倍)には、CPU41は、ステップS12で取得された焦点距離が閾値2A以下か否かを判断する(ステップS20)。焦点距離が閾値2A以下の場合(ステップS20でYES)には、CPU41は、ファインダ倍率を1倍とする(ステップS22)。焦点距離が閾値2Aより大きい場合(ステップS20でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS23)。
 ファインダ倍率が3倍である場合(ステップS19で3倍)には、CPU41は、ステップS12で取得された焦点距離が閾値2B以下か否かを判断する(ステップS21)。焦点距離が閾値2B以下の場合(ステップS21でYES)には、CPU41は、ファインダ倍率を2倍とする(ステップS23)。焦点距離が閾値2Bより大きい場合(ステップS21でNO)には、CPU41は、ファインダ倍率を3倍とする(ステップS24)。
 CPU41は、ステップS13、S19で取得された現在のファインダ倍率と、ステップS16~S18、S22~S24で決定されたファインダ倍率とが同じか否かを判断する(ステップS25)。同じ場合(ステップS25でYES)には、ステップS27に進む。異なる場合(ステップS25でNO)には、CPU41は、ドライバ23を介して挿入レンズを挿入しまたは取り出し、ステップS16~S18、S22~S24で決定されたファインダ倍率とする(ステップS26)。
 ファインダ倍率が切り替えられた(ステップS26)後、または現在のファインダ倍率と決定されたファインダ倍率が同じ場合(ステップS25でYES)には、CPU41は、ステップS11で取得された焦点距離と、ステップS26で切り替えられたファインダ倍率とに基づいて、電子ビューファインダ52にブライトフレームFを表示する(ステップS27)。
 本実施の形態によれば、撮影光学系12のズームレンズ31を動かしている間は、常に光学ファインダの倍率を一定とすることができる。したがって、よりユーザーの煩わしさを軽減でき、ユーザーが撮影画角を合わせやすくすることができる。
 <第3の実施の形態の変形例>
 図9Aから図9Cは、第3の実施の形態の変形例におけるファインダ倍率を調整する処理の流れを示すフローチャートである。第3の実施の形態と第3の実施の形態の変形例との違いは、ファインダ倍率切り替えアシストを表示するか否かである。なお、図8と同一の部分については、同一の符号を付して説明を省略する。
 CPU41は、ファインダ倍率を切り替えた(ステップS26)後、ステップS11で取得された焦点距離と、ステップS26で切り替えられたファインダ倍率とに基づいて、電子ビューファインダ52にファインダ倍率切り替えアシストを表示する(ステップS31)。これにより、ズーミングが行われたときやファインダ倍率が変わったときには、ブライトフレームおよびファインダ倍率切り替えアシストを更新することができる。
 <第4の実施の形態>
 本発明の第3の実施の形態では、ズーミングが行われた後一定時間ズームングが行われなかった場合にファインダ倍率の決定および変更を行う。本実施形態は、上記第3の実施の形態において、ズーム駆動方向によらず、ファインダの画角が適正なブライトフレームサイズを下回らないようにするものである。
 本発明の第4の実施の形態は、ズーミングが行われた場合にはファインダ倍率を1倍にする形態である。以下、第4の実施の形態に係るデジタルカメラ1-3について説明する。なお、第1~3の実施の形態と同一の部分については説明を省略する。
 図10Aから図10Cは、ファインダ倍率を調整する処理の流れを示すフローチャートである。この処理は、主としてCPU41によって行われる。この処理は、定期的なズームレンズ31の位置の検出のタイミング(例えば、数10ms単位)で繰り返し実施される。
 CPU41は、ズームレンズ31の位置から焦点距離を取得する(ステップS11)。CPU41は、ズーム位置が変わったかどうかを判断する(ステップS10)。ズーム位置が変わっている場合(ステップS10でYES)には、CPU41は、現在のファインダ倍率が1倍であるか否かを判断する(ステップS50)。現在のファインダ倍率が1倍でない場合(ステップS50でNO)には、ファインダ倍率を1倍に切り替える(ステップS51)。すなわち、ズーム変化があった場合には、最も広角(1倍)なファインダ倍率とする。
 ズーム位置が変わっていない場合(ステップS10でNO)、現在のファインダ倍率が1倍である場合(ステップS50でYES)には、CPU41は、ズームレンズ31が移動された後、所定時間ズームレンズ31が移動されていないか否かを判断する(ステップS41)。
 ズームレンズ31が移動されていない場合、ズームレンズ31が移動された後所定時間経過していない場合(ステップS41でNO)には、定期的なズーム位置検出の間隔、例えば10ms単位)だけ待機し(ステップS42)、ステップS11へ戻る。すなわち、所定時間を超えるまで、焦点距離検出(ステップS11)とズーム停止時間判定(ステップS41)を繰り返す。
 ズームレンズ31が移動された後、所定時間経過した場合(ステップS41でYES)には、CPU41は、その前にファインダ倍率の判定処理(ステップS13~S24)が行われたときに取得された焦点距離を取得する(ステップS43)。
 CPU41は、ステップS43で取得された焦点距離と、ステップS11で取得された焦点距離とを比較し、ズームレンズ31がワイド側からテレ側に移動しているのか、ズームレンズ31がテレ側からワイド側に移動しているのかを判断する(ステップS44)。
 ズームレンズ31がワイド側からテレ側に移動している場合には、まず、CPU41は、現在のファインダ倍率を取得する(ステップS13)。ファインダ倍率が1倍である場合(ステップS13で1倍)には、CPU41は、ステップS12で取得された焦点距離が閾値1Aより大きいか否かを判断する(ステップS14)。焦点距離が閾値1A以下の場合(ステップS14でNO)には、CPU41はファインダ倍率を1倍とする(ステップS16)。焦点距離が閾値1Aより大きい場合(ステップS14でYES)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。
 ファインダ倍率が2倍である場合(ステップS13で2倍)には、CPU41は、ステップS12で取得された焦点距離が閾値1Bより大きいか否かを判断する(ステップS15)。焦点距離が閾値1B以下の場合(ステップS15でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。焦点距離が閾値1Bより大きい場合(ステップS15でYES)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 ファインダ倍率が3倍である場合(ステップS13で3倍)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 ズームレンズ31がテレ側からワイド側に移動している場合には、まず、CPU41は、現在のファインダ倍率を取得する(ステップS19)。ファインダ倍率が1倍である場合(ステップS19で1倍)には、ファインダ倍率は1倍のまま変更されない(ステップS22)。
 ファインダ倍率が2倍である場合(ステップS19で2倍)には、CPU41は、ステップS12で取得された焦点距離が閾値2A以下か否かを判断する(ステップS20)。焦点距離が閾値2A以下の場合(ステップS20でYES)には、CPU41は、ファインダ倍率を1倍とする(ステップS22)。焦点距離が閾値2Aより大きい場合(ステップS20でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS23)。
 ファインダ倍率が3倍である場合(ステップS19で3倍)には、CPU41は、ステップS12で取得された焦点距離が閾値2B以下か否かを判断する(ステップS21)。焦点距離が閾値2B以下の場合(ステップS21でYES)は、CPU41は、ファインダ倍率を2倍とする(ステップS23)。焦点距離が閾値2Bより大きい場合(ステップS21でNO)には、CPU41は、ファインダ倍率を3倍とする(ステップS24)。
 CPU41は、ステップS13、S19で取得された現在のファインダ倍率と、ステップS16~S18、S22~S24で決定されたファインダ倍率とが同じか否かを判断する(ステップS25)。同じ場合(ステップS25でYES)には、ステップS27に進む。異なる場合(ステップS25でNO)は、CPU41は、ドライバ23を介して挿入レンズを挿入しまたは取り出し、ステップS16~S18、S22~S24で決定されたファインダ倍率とする(ステップS26)。
 ファインダ倍率が切り替えられた(ステップS26)後、または現在のファインダ倍率と決定されたファインダ倍率が同じ場合(ステップS25でYES)には、CPU41は、ステップS11で取得された焦点距離と、ステップS26で切り替えられたファインダ倍率とに基づいて、電子ビューファインダ52にブライトフレームFを表示する(ステップS27)。
 本実施の形態によれば、撮影光学系12のズームレンズ31を動かしている間は、常にファインダ倍率が一定となる。このため、よりユーザーの煩わしさを軽減でき、撮影画角を合わせやすくすることができる。また、常にファインダ画角が適正なブライトフレームサイズを下回ることがなく、どのズーム位置でも撮影画角を確認することができる。
 <第5の実施の形態>
 本発明の第1の実施の形態は、焦点距離の変化があった場合にはファインダ倍率の決定および変更をする形態であるが、画角調整時にはファインダ倍率が変わらない方がよい場合もある。
 本発明の第5の実施の形態は、ズーミングの速さによりファインダ倍率を変えるか否かを異ならせる形態である。以下、第5の実施の形態に係るデジタルカメラ1-4について説明する。なお、第1~第4の実施の形態と同一の部分については説明を省略する。
 図11Aから図11Cは、ファインダ倍率を調整する処理の流れを示すフローチャートである。この処理は、主としてCPU41によって行われる。この処理は、定期的なズームレンズ31の位置の検出のタイミング(例えば、数10ms単位)で繰り返し実施される。
 CPU41は、ズームレンズ31の位置から焦点距離を取得する(ステップS11)。CPU41は、ズーム位置が変わったかどうかを判断する(ステップS10)。ズーム位置が変わっている場合(ステップS10でYES)には、前回行われたファインダ倍率を調整する処理において取得された焦点距離と、今回のファインダ倍率を調整する処理で取得された焦点距離との変化量を算出し、その変化量が変化閾値を超えているか否かを判断する(ステップS60)。焦点距離の変化量は、数式2に示す式に基づいて算出する。
 [数2]
  ワイドからテレ方向の焦点距離変化量(倍)=変化後の焦点距離(mm)/変化前の焦点距離(mm)
  テレからワイド方向の焦点距離変化量(倍)=変化前の焦点距離(mm)/変化後の焦点距離(mm)
 焦点距離の変化量が閾値を超えていない場合(ステップS60でNO)は、微妙な画角合わせを行う場合が考えられる。この場合には、CPU41は、ズームレンズ31が移動された後、所定時間ズームレンズ31が移動されていないか否かを判断する(ステップS41)。
 ズームレンズ31が移動されていない場合、ズームレンズ31が移動された後所定時間経過していない場合(ステップS41でNO)には、定期的なズーム位置検出の間隔、例えば、10ms単位)だけ待機し(ステップS42)、ステップS11へ戻る。すなわち、所定時間を超えるまで、焦点距離検出(ステップS11)とズーム停止時間判定(ステップS41)を繰り返す。すなわち、微妙な画角合わせを行う場合には、ズームレンズ31駆動中はファインダ倍率の切り替えを行わないようにし、画角合わせを容易にする。
 焦点距離の変化量が閾値を超えている場合(ステップS60でYES)には、一気にズームした場合等が考えられる。この場合には、ズーム停止時間判定(ステップS41、S42)は行わず、素早くファインダ倍率を切り替え可能とする。したがって、焦点距離の変化量が閾値を超えている場合(ステップS60でYES)およびズームレンズ31が移動された後所定時間経過した場合(ステップS41でYES)には、CPU41は、その前にファインダ倍率の判定処理(ステップS13~S24)が行われたときに取得された焦点距離を取得する(ステップS43)。
 CPU41は、ステップS43で取得された焦点距離と、ステップS11で取得された焦点距離とを比較する。そして、CPU41は、ズームレンズ31がワイド側からテレ側に移動しているのか、ズームレンズ31がテレ側からワイド側に移動しているのかを判断する(ステップS44)。
 ズームレンズ31がワイド側からテレ側に移動している場合には、まず、CPU41は、現在のファインダ倍率を取得する(ステップS13)。ファインダ倍率が1倍である場合(ステップS13で1倍)には、CPU41は、ステップS12で取得された焦点距離が閾値1Aより大きいか否かを判断する(ステップS14)。焦点距離が閾値1A以下の場合(ステップS14でNO)には、CPU41はファインダ倍率を1倍とする(ステップS16)。焦点距離が閾値1Aより大きい場合(ステップS14でYES)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。
 ファインダ倍率が2倍である場合(ステップS13で2倍)には、CPU41は、ステップS12で取得された焦点距離が閾値1Bより大きいか否かを判断する(ステップS15)。焦点距離が閾値1B以下の場合(ステップS15でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。焦点距離が閾値1Bより大きい場合(ステップS15でYES)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 ファインダ倍率が3倍である場合(ステップS13で3倍)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 ズームレンズ31がテレ側からワイド側に移動している場合には、まず、CPU41は、現在のファインダ倍率を取得する(ステップS19)。ファインダ倍率が1倍である場合(ステップS19で1倍)には、ファインダ倍率は1倍のまま変更されない(ステップS22)。
 ファインダ倍率が2倍である場合(ステップS19で2倍)には、CPU41は、ステップS12で取得された焦点距離が閾値2A以下か否かを判断する(ステップS20)。焦点距離が閾値2A以下の場合(ステップS20でYES)には、CPU41は、ファインダ倍率を1倍とする(ステップS22)。焦点距離が閾値2Aより大きい場合(ステップS20でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS23)。
 ファインダ倍率が3倍である場合(ステップS19で3倍)には、CPU41は、ステップS12で取得された焦点距離が閾値2B以下か否かを判断する(ステップS21)。焦点距離が閾値2B以下の場合(ステップS21でYES)には、CPU41は、ファインダ倍率を2倍とする(ステップS23)。焦点距離が閾値2Bより大きい場合(ステップS21でNO)には、CPU41は、ファインダ倍率を3倍とする(ステップS24)。
 CPU41は、ステップS13、S19で取得された現在のファインダ倍率と、ステップS16~S18、S22~S24で決定されたファインダ倍率とが同じか否かを判断する(ステップS25)。同じ場合(ステップS25でYES)には、ステップS27に進む。異なる場合(ステップS25でNO)には、CPU41は、ドライバ23を介して挿入レンズを挿入しまたは取り出し、ステップS16~S18、S22~S24で決定されたファインダ倍率とする(ステップS26)。
 ファインダ倍率が切り替えられた(ステップS26)後、または現在のファインダ倍率と決定されたファインダ倍率が同じ場合(ステップS25でYES)には、CPU41は、ステップS11で取得された焦点距離と、ステップS26で切り替えられたファインダ倍率とに基づいて、電子ビューファインダ52にブライトフレームFを表示する(ステップS27)。
 本実施の形態によれば、ズーミングしながら微妙な画角合わせを行う場合には、ズーム駆動中はファインダ倍率を切り替えないようにすることで、画角合わせしやすくしつつ、一気にズームした場合には、素早くファインダ倍率を切り替え可能とすることで、その後の微妙な画角合わせにすぐに移ることが出来るようにする。
 <第5の実施の形態の変形例>
 図12Aから図12Cは、第5の実施の形態の変形例におけるファインダ倍率を調整する処理の流れを示すフローチャートである。第5の実施の形態と第5の実施の形態の変形例との違いは、ファインダ倍率切り替えアシストを表示するか否かである。なお、図8と同一の部分については、同一の符号を付して説明を省略する。
 CPU41は、ファインダ倍率を切り替えた(ステップS26)後、ステップS11で取得された焦点距離と、ステップS26で切り替えられたファインダ倍率とに基づいて、電子ビューファインダ52にファインダ倍率切り替えアシストを表示する(ステップS31)。これにより、ズーミングが行われたときやファインダ倍率が変わったときには、ブライトフレームおよびファインダ倍率切り替えアシストを更新することができる。
 <第6の実施の形態>
 本発明の第5の実施の形態は、ズーミングの速さによりファインダ倍率の切り替え処理を異ならせる形態であるが、ファインダ倍率の切り替え処理を異ならせる方法はこれに限られない。
 本発明の第6の実施の形態は、ズーミングの速さによりズーム停止時間の閾値を異ならせる形態である。以下、第6実施の形態に係るデジタルカメラ1-5について説明する。なお、第1~第5の実施の形態と同一の部分については説明を省略する。
 図13Aから図13Cは、ファインダ倍率を調整する処理の流れを示すフローチャートである。この処理は、主としてCPU41によって行われる。この処理は、定期的なズームレンズ31の位置の検出のタイミング(例えば、数10ms単位)で繰り返し実施される。
 CPU41は、ズームレンズ31の位置から焦点距離を取得する(ステップS11)。CPU41は、ズーム位置が変わったかどうかを判断する(ステップS10)。ズーム位置が変わっている場合(ステップS10でYES)には、CPU41は、前回行われたファインダ倍率を調整する処理において取得された焦点距離と、今回のファインダ倍率を調整する処理で取得された焦点距離との変化量を算出し、その変化量に応じてズーム停止時間判定閾値を算出する(ステップS70)。
 図14は、ズーム判定時間閾値と焦点距離の変化量との関係を示すグラフである。本実施の形態では、CPU41は、このグラフに基づいてズーム判定時間閾値を決定する。図14に示すグラフによれば、変化量が1.5倍以下の場合には、ズーム判定時間閾値は1000msで固定される。また、変化量が3倍以上の場合には0msで固定される。すなわち、素早くズーミングしている場合にはすぐにファインダ倍率を切り替え可能とする。そして、変化量が1.5倍~3倍の間は、変化量が大きくなるにつれてズーム停止時間判定閾値が短くなるように、焦点距離変化量に応じてズーム停止時間判定閾値を無段階に切り替える。なお、このグラフは一例であり、ズーム判定時間閾値と焦点距離の変化量との関係はこれに限られない。
 CPU41は、ズームレンズ31が移動された後、ズームレンズ31が移動されていない時間がステップS70で決定されたズーム停止時間判定閾値以上であるか否かを判断する(ステップS71)。
 ズームレンズ31が移動されていない場合、ズームレンズ31が移動された後ズーム停止時間判定閾値以上経過していない場合(ステップS71でNO)には、定期的なズーム位置検出の間隔、例えば、10ms単位)だけ待機し(ステップS72)、ステップS11へ戻る。
 ズームレンズ31が移動された後ズーム停止時間判定閾値以上経過している場合(ステップS71でYES)には、一気にズームした場合等が考えられる。このため、素早くファインダ倍率を切り替え可能とする。すなわち、CPU41は、その前にファインダ倍率の判定処理(ステップS13~S24)が行われたときに取得された焦点距離を取得する(ステップS43)。
 CPU41は、ステップS43で取得された焦点距離と、ステップS11で取得された焦点距離とを比較し、ズームレンズ31がワイド側からテレ側に移動しているのか、ズームレンズ31がテレ側からワイド側に移動しているのかを判断する(ステップS44)。
 ズームレンズ31がワイド側からテレ側に移動している場合には、まず、CPU41は、現在のファインダ倍率を取得する(ステップS13)。ファインダ倍率が1倍である場合(ステップS13で1倍)には、CPU41は、ステップS12で取得された焦点距離が閾値1Aより大きいか否かを判断する(ステップS14)。焦点距離が閾値1A以下の場合(ステップS14でNO)には、CPU41はファインダ倍率を1倍とする(ステップS16)。焦点距離が閾値1Aより大きい場合(ステップS14でYES)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。
 ファインダ倍率が2倍である場合(ステップS13で2倍)には、CPU41は、ステップS12で取得された焦点距離が閾値1Bより大きいか否かを判断する(ステップS15)。焦点距離が閾値1B以下の場合(ステップS15でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS17)。焦点距離が閾値1Bより大きい場合(ステップS15でYES)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 ファインダ倍率が3倍である場合(ステップS13で3倍)には、CPU41は、ファインダ倍率を3倍とする(ステップS18)。
 ズームレンズ31がテレ側からワイド側に移動している場合には、まず、CPU41は、現在のファインダ倍率を取得する(ステップS19)。ファインダ倍率が1倍である場合(ステップS19で1倍)には、ファインダ倍率は1倍のまま変更されない(ステップS22)。
 ファインダ倍率が2倍である場合(ステップS19で2倍)には、CPU41は、ステップS12で取得された焦点距離が閾値2A以下か否かを判断する(ステップS20)。焦点距離が閾値2A以下の場合(ステップS20でYES)には、CPU41は、ファインダ倍率を1倍とする(ステップS22)。焦点距離が閾値2Aより大きい場合(ステップS20でNO)には、CPU41は、ファインダ倍率を2倍とする(ステップS23)。
 ファインダ倍率が3倍である場合(ステップS19で3倍)には、CPU41は、ステップS12で取得された焦点距離が閾値2B以下か否かを判断する(ステップS21)。焦点距離が閾値2B以下の場合(ステップS21でYES)には、CPU41は、ファインダ倍率を2倍とする(ステップS23)。焦点距離が閾値2Bより大きい場合(ステップS21でNO)には、CPU41は、ファインダ倍率を3倍とする(ステップS24)。
 CPU41は、ステップS13、S19で取得された現在のファインダ倍率と、ステップS16~S18、S22~S24で決定されたファインダ倍率とが同じか否かを判断する(ステップS25)。同じ場合(ステップS25でYES)には、ステップS27に進む。異なる場合(ステップS25でNO)には、CPU41は、ドライバ23を介して挿入レンズを挿入しまたは取り出し、ステップS16~S18、S22~S24で決定されたファインダ倍率とする(ステップS26)。
 ファインダが切り替えられた(ステップS26)後、または現在のファインダ倍率と決定されたファインダ倍率が同じ場合(ステップS25でYES)には、CPU41は、ステップS11で取得された焦点距離と、ステップS26で切り替えられたファインダ倍率とに基づいて、電子ビューファインダ52にブライトフレームFを表示する(ステップS27)。
 本実施の形態によれば、ゆっくりズーミングする(例えば微妙な画角合わせを行う)場合には、ズーム駆動中はファインダ倍率を切り替えないようにすることで、画角合わせしやすくする。一方、一気にズームした場合には、素早くファインダ倍率を切り替え可能とすることで、その後の微妙な画角合わせにすぐに移ることが出来るようにする。
 また、本実施の形態では、ゆっくりズーミングしたときのズーミングの早さに応じてファインダ倍率切り替えまでの時間を変えることができる。ユーザーによって撮影画角を決定するときのズーミングの速さが異なることが考えられる。同じような画角決定をする場合でも、ズームレンズを速く動かしながら撮影画角を決定できる人は、ズームレンズを動かすか止めるかの判断も速くできると考えられる。このような場合には、ファインダ倍率を速く切り替え、撮影に早く移れるようにした方がよい。したがって、ズーミングの早さに応じてファインダ倍率切り替えまでの時間を変えることで、ユーザーに合わせた適正なスピードでファインダ倍率を切り替えることができ、ファインダ倍率切り替えまで不要な待ち時間がないようにできる。
 <第6の実施の形態の変形例>
 図15Aから図15Cは、第6の実施の形態の変形例におけるファインダ倍率を調整する処理の流れを示すフローチャートである。第6の実施の形態と第6の実施の形態の変形例との違いは、ファインダ倍率切り替えアシストを表示するか否かである。なお、図13と同一の部分については、同一の符号を付して説明を省略する。
 CPU41は、ファインダ倍率を切り替えた(ステップS26)後、ステップS11で取得された焦点距離と、ステップS26で切り替えられたファインダ倍率とに基づいて、電子ビューファインダ52にファインダ倍率切り替えアシストを表示する(ステップS31)。これにより、ズーミングが行われたときやファインダ倍率が変わったときには、ブライトフレームおよびファインダ倍率切り替えアシストを更新することができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
 本発明は、デバイス(例えば、電子カメラ)に上記の処理を行わせるためのコンピューター読取可能なプログラムコード、該プログラムコードが格納される非一次的(non-transitory)かつコンピューター読取可能な記録媒体(例えば、光ディスク(例えば、CD(Compact Disc)、DVD(Digital Versatile Disc)、BD(Blu-ray Disc))、磁気ディスク(例えば、ハードディスク、光磁気ディスク))、および該方法のための実行可能なコードを格納するコンピューター・プログラム・プロダクトとして提供することができる。
 特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 1、1-1、1-2、1-3、1-4…デジタルカメラ、12…撮影光学系、13…CCD、14…AFE、15…DSP、31…ズームレンズ、32…フォーカスレンズ、33…アイリス、34…シャッタ、41…CPU、44…AE・AWB検出回路、45…AF検出回路、50…ファインダ、51…光学ファインダ、52…電子ビューファインダ

Claims (11)

  1.  撮影光学系を通過した被写体からの光を結像して撮影画像を取得する撮影手段と、
     前記撮影光学系の撮影倍率を連続的に変更するズーム手段と、
     前記撮影光学系とは異なるファインダ光学系を介して前記被写体の像を観察可能な光学ファインダと、
     前記撮影倍率が第1の撮影倍率に増加したときに前記ファインダ光学系の倍率であるファインダ倍率を第1のファインダ倍率から第2のファインダ倍率に切り替え、前記撮影倍率が前記第1の撮影倍率より小さい第2の撮影倍率に減少したときに前記ファインダ倍率を前記第2のファインダ倍率から前記第1のファインダ倍率に切り替える変倍手段と、
     を備える撮影装置。
  2.  前記撮影画像の撮影画角を示す画像を表示する表示手段と、
     前記表示手段に表示された画像を、前記光学ファインダで観察される被写体像に重畳して表示させる画像重畳手段と、
     を更に備える請求項1に記載の撮影装置。
  3.  前記表示手段は、前記ファインダ倍率が変更される撮影画角を示すマークを更に表示する請求項2に記載の撮影装置。
  4.  前記ズーム手段により前記撮影画像の倍率が前記第1の撮影倍率又は前記第2の撮影倍率に変更された後、前記撮影画角の倍率が所定時間変更されていないかを判断する判断手段を更に備え、
     前記変倍手段は、前記判断手段により前記撮影画角の倍率が前記所定時間変更されていないと判断された場合に前記ファインダ倍率を変更する請求項1から3のいずれかに記載の撮影装置。
  5.  前記変倍手段は、前記撮影画像の倍率が変更されている間は、前記ファインダ倍率を最小倍率にする請求項4に記載の撮影装置。
  6.  前記撮影画像の倍率が変更された場合に、前記撮影画像の倍率の変化量を検出する変化量検出手段を更に備え、
     前記変倍手段は、前記撮影画像の倍率の変化量が所定値以下の場合には、前記判断手段により前記所定時間経過したと判断された場合に前記ファインダ倍率を変更する請求項4又は5に記載の撮影装置。
  7.  前記変化量検出手段により検出された変化量に応じて前記所定時間を変更する所定時間変更手段を更に備える請求項6に記載の撮影装置。
  8.  前記所定時間変更手段は、前記変化量が大きい場合ほど前記所定時間を短くする請求項7に記載の撮影装置。
  9.  撮影光学系を通過した被写体からの光を結像して撮影画像を取得するステップと、
     前記撮影光学系の撮影倍率を変更するステップと、
     前記撮影倍率に応じて前記撮影光学系とは異なるファインダ光学系の倍率であるファインダ倍率を変更するステップであって、前記撮影倍率が第1の撮影倍率に増加したときに前記ファインダ倍率を第1のファインダ倍率から第2のファインダ倍率に切り替え、前記撮影倍率が前記第1の撮影倍率より小さい第2の撮影倍率に減少したときに前記ファインダ倍率を前記第2のファインダ倍率から前記第1のファインダ倍率に切り替えるステップと、
     を備える撮影方法。
  10.  撮影光学系を通過した被写体からの光を結像して撮影画像を取得するステップと、
     前記撮影光学系の撮影倍率を変更するステップと、
     前記撮影倍率に応じて前記撮影光学系とは異なるファインダ光学系の倍率であるファインダ倍率を変更するステップであって、前記撮影倍率が第1の撮影倍率に増加したときに前記ファインダ倍率を第1のファインダ倍率から第2のファインダ倍率に切り替え、前記撮影倍率が前記第1の撮影倍率より小さい第2の撮影倍率に減少したときに前記ファインダ倍率を前記第2のファインダ倍率から前記第1のファインダ倍率に切り替えるステップと、
     を演算装置に実行させるプログラム。
  11.  非一次的かつコンピューター読取可能な記録媒体であって、前記記録媒体に格納された指令がプロセッサによって読み取られた場合に、前記プロセッサが、
     撮影光学系を通過した被写体からの光を結像して撮影画像を取得するステップと、
     前記撮影光学系の撮影倍率を変更するステップと、
     前記撮影倍率に応じて前記撮影光学系とは異なるファインダ光学系の倍率であるファインダ倍率を変更するステップであって、前記撮影倍率が第1の撮影倍率に増加したときに前記ファインダ倍率を第1のファインダ倍率から第2のファインダ倍率に切り替え、前記撮影倍率が前記第1の撮影倍率より小さい第2の撮影倍率に減少したときに前記ファインダ倍率を前記第2のファインダ倍率から前記第1のファインダ倍率に切り替えるステップと、
     を実行する、記録媒体。
PCT/JP2012/074488 2011-09-30 2012-09-25 撮影装置、撮影方法、記録媒体およびプログラム WO2013047481A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280047961.7A CN104246597B (zh) 2011-09-30 2012-09-25 成像装置以及成像方法
JP2013536285A JP5546691B2 (ja) 2011-09-30 2012-09-25 撮影装置、撮影方法およびプログラム
US14/229,390 US8948585B2 (en) 2011-09-30 2014-03-28 Imaging device, imaging method, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-217890 2011-09-30
JP2011217890 2011-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/229,390 Continuation US8948585B2 (en) 2011-09-30 2014-03-28 Imaging device, imaging method, and recording medium

Publications (1)

Publication Number Publication Date
WO2013047481A1 true WO2013047481A1 (ja) 2013-04-04

Family

ID=47995513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074488 WO2013047481A1 (ja) 2011-09-30 2012-09-25 撮影装置、撮影方法、記録媒体およびプログラム

Country Status (4)

Country Link
US (1) US8948585B2 (ja)
JP (1) JP5546691B2 (ja)
CN (1) CN104246597B (ja)
WO (1) WO2013047481A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2961155A1 (en) * 2014-06-24 2015-12-30 Nokia Technologies Oy A method and an apparatus for image capturing and viewing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153354B2 (ja) * 2013-03-15 2017-06-28 オリンパス株式会社 撮影機器及び撮影方法
CN103197491B (zh) * 2013-03-28 2016-03-30 华为技术有限公司 快速自动聚焦的方法和图像采集装置
TWI539226B (zh) * 2014-10-09 2016-06-21 聚晶半導體股份有限公司 物件追蹤影像處理方法及其系統
CN111131662B (zh) * 2018-10-31 2021-09-24 杭州海康威视数字技术股份有限公司 图像输出方法、装置、摄像机及存储介质
CN109769090A (zh) * 2019-02-18 2019-05-17 桂林长海发展有限责任公司 一种基于图像处理的长焦变倍快速聚焦方法及系统
CN112261287B (zh) * 2020-10-10 2023-03-21 Oppo(重庆)智能科技有限公司 变焦控制方法、装置、电子设备和计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396933A (ja) * 1989-09-08 1991-04-22 Minolta Camera Co Ltd ズームカメラ
JPH05191704A (ja) * 1992-01-16 1993-07-30 Olympus Optical Co Ltd 電子的撮像装置
JP2002189167A (ja) * 2000-12-20 2002-07-05 Fuji Photo Film Co Ltd ズーム制御方法及びズーム付き撮影装置
JP2010041186A (ja) * 2008-08-01 2010-02-18 Panasonic Corp 撮像装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142721A (ja) * 1997-11-14 1999-05-28 Olympus Optical Co Ltd ファインダ装置
JP2002182097A (ja) * 2000-12-11 2002-06-26 Fuji Photo Optical Co Ltd ズーム連動装置
JP3566698B2 (ja) * 2002-01-17 2004-09-15 キヤノン株式会社 ファインダー及びそれを用いた光学機器
JP3566712B2 (ja) * 2002-08-26 2004-09-15 キヤノン株式会社 カメラ
JP2004126087A (ja) * 2002-10-01 2004-04-22 Olympus Corp 撮像機器及びその制御方法
US20060233540A1 (en) * 2005-04-19 2006-10-19 Funai Electric Co., Ltd. Optical finder
JP5343310B2 (ja) * 2006-10-10 2013-11-13 株式会社ニコン カメラおよびカメラシステム
JP2008203643A (ja) * 2007-02-21 2008-09-04 Sony Corp 実像式変倍ファインダー光学系及び撮像装置
JP4999571B2 (ja) * 2007-06-19 2012-08-15 キヤノン株式会社 変倍ファインダーおよびそれを用いた撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396933A (ja) * 1989-09-08 1991-04-22 Minolta Camera Co Ltd ズームカメラ
JPH05191704A (ja) * 1992-01-16 1993-07-30 Olympus Optical Co Ltd 電子的撮像装置
JP2002189167A (ja) * 2000-12-20 2002-07-05 Fuji Photo Film Co Ltd ズーム制御方法及びズーム付き撮影装置
JP2010041186A (ja) * 2008-08-01 2010-02-18 Panasonic Corp 撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2961155A1 (en) * 2014-06-24 2015-12-30 Nokia Technologies Oy A method and an apparatus for image capturing and viewing

Also Published As

Publication number Publication date
CN104246597A (zh) 2014-12-24
JP5546691B2 (ja) 2014-07-09
US20140211070A1 (en) 2014-07-31
CN104246597B (zh) 2016-10-12
US8948585B2 (en) 2015-02-03
JPWO2013047481A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
US8860870B2 (en) Imaging device, imaging method and recording medium
US7668451B2 (en) System for and method of taking image
JP5546691B2 (ja) 撮影装置、撮影方法およびプログラム
JP5607260B2 (ja) 撮影装置、撮影方法及びプログラム
JP4982997B2 (ja) 画像処理装置
US8988579B2 (en) Imaging apparatus
KR20120025882A (ko) 초점 조절 장치
JP2007264049A (ja) 撮像方法および装置
JP4760302B2 (ja) 撮像装置
JP2008278354A (ja) 撮像装置
JP2007212724A (ja) 合焦位置決定方法および装置
JP2007142702A (ja) 画像処理装置
JP5092673B2 (ja) 撮像装置及びそのプログラム
JP2007225897A (ja) 合焦位置決定装置及び方法
JP2008263478A (ja) 撮像装置
JP2007279333A (ja) 合焦位置決定装置及び方法
JP4680022B2 (ja) 撮影装置
JP4887840B2 (ja) 撮影装置及びプログラム
JP4977996B2 (ja) 撮像装置
JP5403087B2 (ja) 画像処理装置
EP2835961B1 (en) Image display device
JP2007266692A (ja) 撮像方法および装置
JP5113213B2 (ja) 撮像方法および装置
JP2011109695A (ja) 撮影装置及びプログラム
JP2007124281A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835194

Country of ref document: EP

Kind code of ref document: A1