WO2013047270A1 - ディーゼルエンジン - Google Patents

ディーゼルエンジン Download PDF

Info

Publication number
WO2013047270A1
WO2013047270A1 PCT/JP2012/073833 JP2012073833W WO2013047270A1 WO 2013047270 A1 WO2013047270 A1 WO 2013047270A1 JP 2012073833 W JP2012073833 W JP 2012073833W WO 2013047270 A1 WO2013047270 A1 WO 2013047270A1
Authority
WO
WIPO (PCT)
Prior art keywords
doc
dpf
exhaust temperature
control means
value
Prior art date
Application number
PCT/JP2012/073833
Other languages
English (en)
French (fr)
Inventor
勝支 井上
健太 三田村
礼良 江口
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2013047270A1 publication Critical patent/WO2013047270A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a diesel engine, and more particularly, to a diesel engine that can prevent a problem that unburned fuel slips through the DOC due to deterioration of the DOC.
  • DOC refers to a diesel oxidation catalyst
  • DPF refers to a diesel particulate filter
  • PM refers to a particulate material.
  • the control means performs DPF regeneration processing by post injection on the DPF regeneration means
  • the unburned fuel is mixed into the exhaust gas
  • the exhaust temperature is raised by catalytic combustion of the unburned fuel in the DOC
  • PM accumulated in the DPF is incinerated, and when a predetermined DPF regeneration completion condition is satisfied
  • the control means completes the regeneration process of the DPF by post injection (see, for example, Patent Document 1).
  • this type of diesel engine there is an advantage that the DPF can be regenerated and reused.
  • this conventional technique has a problem because the post injection amount is increased as the DOC outlet exhaust temperature increases.
  • An object of the present invention is to provide a diesel engine capable of preventing a problem that unburned fuel slips through the DOC due to deterioration of the DOC.
  • the control means (3) causes the DPF regeneration means (4) to perform the regeneration process of the DPF (2) by post injection (S4), and mixes unburned fuel into the exhaust (5), so that the unreacted fuel in the DOC (1)
  • the control means (3) performs post injection DPF (2) In the diesel engine that completes the regeneration process (S11), As illustrated in FIGS.
  • the control means (3) performs post-injection based on the exhaust flow rate and the DOC inlet exhaust temperature. After calculating the amount (S3) and carrying out the regeneration process of DPF (2) by post injection (S4), the control means (3) has no deterioration of the detected value of the DOC outlet exhaust temperature and DOC (1) In the case where the detected value of the DOC outlet exhaust temperature is lower than the theoretical value of the DOC outlet exhaust temperature, the control means (3) sets the exhaust flow rate and the DOC inlet exhaust temperature.
  • a diesel engine characterized in that a post-injection amount calculated based on a reduction correction (S7).
  • the invention according to claim 1 has the following effects. ⁇ Effect> It is possible to prevent the unburned fuel from slipping through the DOC due to the deterioration of the DOC.
  • the control means (3) corrects the post-injection amount by decreasing (S7).
  • the detected value of the DOC outlet exhaust temperature becomes lower than the theoretical value of the DOC outlet exhaust temperature, so that the post injection amount is corrected to decrease, and the oxidation of the DOC (1) is performed.
  • the amount of post-injection exceeding the capacity is prevented, and a problem that unburned fuel slips through the DOC (1) due to deterioration of the DOC (1) can be prevented.
  • FIGS. 1 and 2 are diagrams for explaining a diesel engine according to an embodiment of the present invention.
  • a common rail type water-cooled in-line multi-cylinder diesel engine will be described.
  • This diesel engine is configured as follows.
  • the cylinder head (7) is assembled to the top of the cylinder block (6), the engine cooling fan (8) is arranged at the front of the cylinder block (6), and the flywheel (9) is arranged at the rear of the cylinder block (6). is doing.
  • An exhaust manifold (10) is assembled to one side of the cylinder head (7), a supercharger (11) is assembled to the exhaust manifold (10), and an exhaust treatment device ( 12) is arranged.
  • a common rail (15) is connected to the fuel tank (13) via a fuel supply pump (14), and a fuel injector (16) for each cylinder is connected to the common rail (15).
  • the pulsar rotor (17) is attached to the flywheel (9)
  • the camshaft rotor (19) is attached to the valve camshaft (18)
  • the pickup coil (20) is opposed to the pulsar rotor (17)
  • the cylinder discrimination sensor (21) is opposed to the engine, the actual engine speed and the crank angle are detected by the pickup coil (20), and the top dead center of a predetermined cylinder is the compression top dead center by the cylinder discrimination sensor (21).
  • the combustion stroke of each cylinder is detected, such as whether it is exhaust top dead center.
  • the target rotational speed detection sensor (23) detects the speed control position of the speed control lever (22), that is, the engine target speed.
  • a pickup coil (20), a cylinder discrimination sensor (21), and a target rotational speed detection sensor (23) are linked to the electromagnetic valve (30) of the fuel injector (16) via the control means (3).
  • the control means (3) calculates a fuel injection amount (main injection amount) based on the target engine speed and the actual engine speed, and based on the crank angle, the solenoid valve (16) of the fuel injector (16) at a predetermined timing. 30) is opened and closed, and a predetermined amount of main injection is performed at a predetermined timing from the fuel injector (16).
  • the control means (3) is a microcomputer.
  • the configuration of the exhaust treatment device (12) is as follows.
  • the DOC (1) and the DPF (2) are accommodated in the casing (24).
  • the DOC (1) is arranged upstream, and the DPF (2) is arranged downstream.
  • the DOC (1) is a ceramic honeycomb carrier that supports the oxidation catalyst and is a flow-through type in which both ends of the cell (1a) are opened.
  • the exhaust (5) passes through the inside of the cell (1a).
  • the DPF (2) is a ceramic honeycomb carrier and is a wall flow type in which the ends of adjacent cells (2a) are alternately plugged.
  • the exhaust gas passes through the inside of the cell (2a) and the wall (1b) of the cell (2a), and captures PM by the wall (2b) of the cell (2a).
  • a DOC inlet exhaust temperature sensor (25) is disposed on the inlet side of the DOC (1), and a DOC outlet exhaust temperature sensor (31) is disposed on the outlet side of the DOC (1).
  • a DFF inlet exhaust temperature sensor (26) is disposed between the DOC (1) and the DPF (2).
  • a DPF inlet exhaust pressure sensor (27) is arranged between the DOC (1) and the DPF (2), and the exhaust pressure on the inlet side and the outlet side is between the inlet side and the outlet side of the DPF (2).
  • a differential pressure sensor (28) for detecting the differential pressure is arranged.
  • the DOC inlet exhaust temperature sensor (25), the DOC outlet exhaust temperature sensor (31), the DFF inlet exhaust temperature sensor (26), the DPF inlet exhaust pressure sensor (27), and the differential pressure sensor (28) are control means (3). It is made to cooperate with the solenoid valve (30) of a fuel injector (16) through this.
  • the control means (3) calculates the first PM accumulation estimated value of the DPF (2) based on the fuel injection amount and the DPF inlet exhaust temperature, and also calculates the DPF inlet exhaust pressure, the inlet side and the outlet of the DPF (2). Based on the pressure difference on the side, the second estimated PM deposition value of the DPF (2) is calculated. After either the first PM deposition estimated value or the second PM deposition estimated value reaches a predetermined regeneration request value, the control means (3) causes the DPF regeneration means (4) to regenerate the DPF (2). Let it be implemented.
  • the DPF regeneration means (4) comprises a combination of the common rail system (29) and the DOC (1), and the regeneration process of the DPF (2) performs the post injection from the fuel injector (16) after the main injection, and the unburned fuel. This is performed by catalytic combustion of the fuel with DOC (1).
  • the DOC (1) and DPF (2) are arranged in the exhaust path, and after the estimated PM accumulation amount of the DPF (2) reaches a predetermined regeneration request value, the control means ( 3) causes the DPF regeneration means (4) to perform post-injection (S4), and mixes unburned fuel into the exhaust (5), so that the exhaust temperature is increased by catalytic combustion of unburned fuel in the DOC (1).
  • the PM accumulated in the DPF (2) is incinerated, and when a predetermined DPF regeneration completion condition is satisfied, the control means (3) completes the regeneration process of the DPF (2) by post injection (S11). I have to.
  • the control means (3) performs post injection amount based on the exhaust flow rate and the DOC inlet exhaust temperature. Is calculated (S3) and post injection is performed (S4), then the control means (3) detects the DOC outlet exhaust temperature and the theoretical value of the DOC outlet exhaust temperature when DOC (1) is not deteriorated. If the detected value of the DOC outlet exhaust temperature is lower than the theoretical value of the DOC outlet exhaust temperature, the post-injection amount calculated by the control means (3) based on the exhaust flow rate and the DOC inlet exhaust temperature is reduced. Correction (S7) is performed.
  • step (S1) it is determined whether the PM deposition estimated value of DPF (2) has reached the DPF regeneration request value. If the determination is negative, step (S1) is repeated until the determination is positive. If the determination in step (S1) is affirmed, it is determined in step (S2) whether or not the estimated temperature of DOC (1) has reached the activation temperature. If the determination is negative, the determination is affirmed. Repeat step (S2). If the determination in step (S2) is affirmative, the post-injection amount is calculated based on the exhaust flow rate and the DOC inlet exhaust temperature in step (S3), and the DPF (2) regeneration process by post-injection is performed in step (S3). To implement.
  • step (S4) post injection is performed in step (S4), the DOC outlet exhaust temperature is detected in step (S5), and whether or not the detected value of the DOC outlet exhaust temperature is lower than the theoretical value of the DOC outlet temperature in step (S6). Is determined. If the determination in step (S6) is affirmative, in step (S7), the post-injection amount is corrected to decrease based on the temperature deviation between the detected value of the DOC outlet exhaust temperature and the theoretical value of the DOC outlet exhaust temperature. Next, in step (S8), it is determined whether or not the estimated temperature of DOC (1) has reached the activation temperature. If the determination is negative, step (S8) is repeated until the determination is affirmed. If affirmative is determined, post injection is performed in step (S9).
  • step (S10) it is determined whether or not the DPF regeneration end condition is satisfied. If the determination is affirmative, the regeneration process of DPF (2) by post injection is completed in step (S11). If the determination in step (S6) is negative, it is determined in step (S12) whether or not the DPF regeneration end condition is satisfied. If the determination is affirmative, post injection is performed in step (S11). When the DPF regeneration process is completed and the determination is negative, the process returns to step (S2). If the determination in step (S10) is negative, the process returns to step (S5).
  • the estimated temperature of the DOC (1) is calculated by the control means (3) based on the DOC inlet exhaust temperature, the specific heat of the DOC (1), the heat radiation from the DOC (1), and the like.
  • the activation temperature of DOC (1) is 250 ° C.
  • the post-injection amount is calculated by the control means (3) based on the DPF inlet exhaust temperature, the DOC inlet exhaust temperature, and the exhaust flow rate, with the target temperature of the DPF inlet exhaust temperature being 600 ° C.
  • the exhaust gas flow rate is calculated by the control means (3) from the intake air amount, the main injection amount, and the DOC inlet exhaust temperature. Post injection is performed during the exhaust stroke after the main injection near the compression top dead center from the injector (16) of the common rail system (29).
  • the theoretical value of the DOC outlet exhaust temperature is calculated by the control means (3) based on the estimated temperature of the DOC (1), the oxidation ability when the DOC (1) is not deteriorated, and the post injection amount.
  • the completion condition of the regeneration process of the DPF (2) is when the regeneration progress integration time when the DPF inlet exhaust temperature reaches 600 ° C. or more has passed 15 minutes.

Abstract

 DOCの劣化で未燃燃料がDOCをスリップする不具合を防止することができるディーゼルエンジンを提供する。 この課題解決のため、DPFのPM堆積推定値が所定の再生要求値に至った後、排気流量とDOC入口排気温度に基づいて、制御手段がポスト噴射量を演算S3し、ポスト噴射によるDPFの再生処理を実施S4させた後、制御手段がDOC出口排気温度の検出値と、DOCの劣化がない場合のDOC出口排気温度の理論値とを比較し、DOC出口排気温度の検出値がDOC出口排気温度の理論値よりも低い場合には、制御手段がポスト噴射量を減量補正S7する。

Description

ディーゼルエンジン
 本発明は、ディーゼルエンジンに関し、詳しくは、DOCの劣化で未燃燃料がDOCをスリップする不具合を防止することができるディーゼルエンジンに関する。この明細書及び特許請求の範囲で、DOCとはディーゼル酸化触媒、DPFとはディーゼルパティキュレートフィルタ、PMとは粒子状物質をいう。
 従来、ディーゼルエンジンとして、排気経路にDOCとDPFとを配置し、DPFのPM堆積推定値が所定の再生要求値に至った後、制御手段がDPF再生手段にポスト噴射によるDPFの再生処理を実施させ、排気中に未燃燃料を混入させることにより、DOCでの未燃燃料の触媒燃焼で排気温度を上昇させて、DPFに堆積したPMを焼却させ、所定のDPF再生完了条件が満たされたら、制御手段がポスト噴射によるDPFの再生処理を完了させるようにしたものがある(例えば、特許文献1参照)。
 この種のディーゼルエンジンによれば、DPFを再生して再利用することができる利点がある。
 しかし、この従来技術では、DOC出口排気温度が高まるのに応じてポスト噴射量を増加させるようになっているため、問題がある。
特開2005-307744号公報(図1参照)
 《問題》 DOCの劣化で未燃燃料がDOCをスリップする不具合を防止することができない。
 DOC出口排気温度が高まるのに応じてポスト噴射量を増加させるようになっているため、DOCが劣化している場合であっても、高負荷時にはメイン燃料噴射量の増加でDOC出口温度が高まり、DOCの酸化能力を越える量のポスト噴射が実施され、DOCの劣化で未燃燃料がDOCをスリップする不具合を防止することができない。未燃燃料がDOCをスリップすると、下流のDPFで未燃燃料が火炎燃焼し、その燃焼熱でDPFが熱損傷することがある。
 本発明の課題は、DOCの劣化で未燃燃料がDOCをスリップする不具合を防止することができるディーゼルエンジンを提供することにある。
 請求項1に係る発明の発明特定事項は、次の通りである。
 図1、図2に例示するように、排気経路にDOC(1)とDPF(2)とを配置し、DPF(2)のPM堆積推定値が所定の再生要求値に至った後、制御手段(3)がDPF再生手段(4)にポスト噴射によるDPF(2)の再生処理を実施(S4)させ、排気(5)中に未燃燃料を混入させることにより、DOC(1)での未燃燃料の触媒燃焼で排気温度を上昇させて、DPF(2)に堆積したPMを焼却させ、所定のDPF再生の完了条件が満たされたら、制御手段(3)がポスト噴射によるDPF(2)の再生処理を完了(S11)させるようにしたディーゼルエンジンにおいて、
 図1、図2に例示するように、DPF(2)のPM堆積推定値が所定の再生要求値に至った後、排気流量とDOC入口排気温度に基づいて、制御手段(3)がポスト噴射量を演算(S3)し、ポスト噴射によるDPF(2)の再生処理を実施(S4)させた後、制御手段(3)がDOC出口排気温度の検出値と、DOC(1)の劣化がない場合のDOC出口排気温度の理論値とを比較し、DOC出口排気温度の検出値がDOC出口排気温度の理論値よりも低い場合には、制御手段(3)が排気流量とDOC入口排気温度に基づいて演算するポスト噴射量を減量補正(S7)する、ことを特徴とするディーゼルエンジン。
 (請求項1に係る発明)
 請求項1に係る発明は、次の効果を奏する。
 《効果》 DOCの劣化で未燃燃料がDOCをスリップする不具合を防止することができる。
 図1、図2に例示するように、DOC出口排気温度の検出値がDOC出口排気温度の理論値よりも低い場合には、制御手段(3)がポスト噴射量を減量補正(S7)するので、DOC(1)が劣化している場合には、DOC出口排気温度の検出値がDOC出口排気温度の理論値よりも低くなることにより、ポスト噴射量が減量補正され、DOC(1)の酸化能力を越える量のポスト噴射が防止され、DOC(1)の劣化で未燃燃料がDOC(1)をスリップする不具合を防止することができる。
本発明の実施形態に係るディーゼルエンジンの模式図である。 図1のエンジンの制御手段による処理のフローチャートである。
 図1、図2は本発明の実施形態に係るディーゼルエンジンを説明する図であり、この実施形態では、コモンレール式の水冷立形直列多気筒ディーゼルエンジンについて説明する。
 このディーゼルエンジンは、次のように構成されている。
 シリンダブロック(6)の上部にシリンダヘッド(7)を組み付け、シリンダブロック(6)の前部にエンジン冷却ファン(8)を配置し、シリンダブロック(6)の後部にフライホイール(9)を配置している。シリンダヘッド(7)の横一側には排気マニホルド(10)を組み付け、排気マニホルド(10)に過給機(11)を組み付け、過給機(11)の下流の排気経路に排気処理装置(12)を配置している。
 燃料タンク(13)に燃料サプライポンプ(14)を介してコモンレール(15)を接続し、コモンレール(15)に各気筒毎の燃料インジェクタ(16)を接続している。
 フライホイール(9)にパルサロータ(17)を取り付け、動弁カム軸(18)にカム軸ロータ(19)を取り付け、パルサロータ(17)にピックアップコイル(20)を対向させ、カム軸ロータ(19)に気筒判別センサ(21)を対向させ、ピックアップコイル(20)でエンジン実回転数とクランク角度とを検出し、気筒判別センサ(21)で所定の気筒の上死点が圧縮上死点であるか排気上死点であるか等、各気筒の燃焼行程を検出する。目標回転数検出センサ(23)で調速レバー(22)の調速位置、すなわちエンジン目標回転数を検出する。
 ピックアップコイル(20)と気筒判別センサ(21)と目標回転数検出センサ(23)とを制御手段(3)を介して燃料インジェクタ(16)の電磁弁(30)に連携させている。
 制御手段(3)は、エンジン目標回転数とエンジン実回転数とに基づいて燃料噴射量(メイン噴射量)を演算し、クランク角度に基づいて、所定タイミングで燃料インジェクタ(16)の電磁弁(30)を開閉し、燃料インジェクタ(16)から所定タイミングで所定量のメイン噴射を行う。制御手段(3)は、マイコンである。
 排気処理装置(12)の構成は、次の通りである。
 ケーシング(24)内にDOC(1)とDPF(2)とを収容している。上流にDOC(1)を配置し、下流にDPF(2)を配置している。
 DOC(1)は、セラミックのハニカム担体で、酸化触媒を担持させ、セル(1a)の両端を開口したフロースルータイプで、セル(1a)の内部を排気(5)が通過するようになっている。
 DPF(2)は、セラミックのハニカム担体で、隣合うセル(2a)の端部を交互に目封じたウォールフロータイプである。セル(2a)の内部とセル(2a)の壁(1b)を排気が通過し、セル(2a)の壁(2b)でPMを捕捉する。
 DOC(1)の入口側にはDOC入口排気温度センサ(25)を配置し、DOC(1)の出口側にはDOC出口排気温度センサ(31)を配置している。DOC(1)とDPF(2)との間にDFF入口排気温度センサ(26)を配置している。また、DOC(1)とDPF(2)との間にDPF入口排気圧センサ(27)を配置し、DPF(2)の入口側と出口側との間に入口側と出口側の排気圧の差圧を検出する差圧センサ(28)を配置している。
 DOC入口排気温度センサ(25)とDOC出口排気温度センサ(31)とDFF入口排気温度センサ(26)とDPF入口排気排気圧センサ(27)と差圧センサ(28)とは制御手段(3)を介して燃料インジェクタ(16)の電磁弁(30)に連携させている。
 制御手段(3)は、燃料噴射量とDPF入口排気温度とに基づいてDPF(2)の第1のPM堆積推定値を演算するとともに、DPF入口排気圧とDPF(2)の入口側と出口側の差圧に基づいてDPF(2)の第2のPM堆積推定値を演算する。第1のPM堆積推定値と第2のPM堆積推定値のいずれかが所定の再生要求値に至った後、制御手段(3)がDPF再生手段(4)にDPF(2)の再生処理を実施させる。DPF再生手段(4)は、コモンレールシステム(29)とDOC(1)との組み合わせからなり、DPF(2)の再生処理は燃料インジェクタ(16)からメイン噴射の後にボスト噴射を行い、その未燃燃料をDOC(1)で触媒燃焼させることにより行う。
 図1、図2に示すように、排気経路にDOC(1)とDPF(2)とを配置し、DPF(2)のPM堆積推定量が所定の再生要求値に至った後、制御手段(3)がDPF再生手段(4)にポスト噴射を実施(S4)させ、排気(5)中に未燃燃料を混入させることにより、DOC(1)での未燃燃料の触媒燃焼で排気温度を上昇させて、DPF(2)に堆積したPMを焼却させ、所定のDPF再生完了条件が満たされたら、制御手段(3)がポスト噴射によるDPF(2)の再生処理を完了(S11)させるようにしている。
 図1、図2に示すように、DPF(2)のPM堆積推定値が所定の再生要求値に至った後、排気流量とDOC入口排気温度に基づいて、制御手段(3)がポスト噴射量を演算(S3)し、ポスト噴射を実施(S4)させた後、制御手段(3)がDOC出口排気温度の検出値と、DOC(1)の劣化がない場合のDOC出口排気温度の理論値とを比較し、DOC出口排気温度の検出値がDOC出口排気温度の理論値よりも低い場合には、制御手段(3)が排気流量とDOC入口排気温度に基づいて演算するポスト噴射量を減量補正(S7)する。
 制御手段(3)による処理の流れは次の通りである。
 ステップ(S1)でDPF(2)のPM堆積推定値がDPF再生要求値に至ったか否かが判定され、判定が否定の場合には、判定が肯定されまでステップ(S1)を繰り返す。ステップ(S1)での判定が肯定されると、ステップ(S2)でDOC(1)の推定温度が活性化温度に至っているか否かが判定され、判定が否定の場合には、判定が肯定されまでステップ(S2)を繰り返す。ステップ(S2)での判定が肯定の場合にはステップ(S3)で排気流量とDOC入口排気温度に基づいてポスト噴射量を演算し、ステップ(S3)でポスト噴射によるDPF(2)の再生処理を実施する。
 次にステップ(S4)でポスト噴射を実施し、ステップ(S5)でDOC出口排気温度を検出し、ステップ(S6)でDOC出口排気温度の検出値がDOC出口温度の理論値よりも低いか否かが判定される。ステップ(S6)での判定が肯定である場合には、ステップ(S7)でDOC出口排気温度の検出値がDOC出口排気温度の理論値との温度偏差に基づいてポスト噴射量を減量補正する。次に、ステップ(S8)でDOC(1)の推定温度が活性化温度に至っているか否かが判定され、判定が否定の場合には判定が肯定されるまでステップ(S8)が繰り返され、判定が肯定されると、ステップ(S9)でポスト噴射が実施される。
 次に、ステップ(S10)でDPF再生の終了条件が満たされたか否かが判定され、判定が肯定の場合にはステップ(S11)でポスト噴射によるDPF(2)の再生処理を完了する。
 ステップ(S6)での判定が否定の場合には、ステップ(S12)でDPF再生の終了条件が満たされたか否かが判定され、判定が肯定である場合には、ステップ(S11)でポスト噴射によるDPFの再生処理を完了し、判定が否定である場合にはステップ(S2)に戻る。ステップ(S10)で判定が否定の場合にはステップ(S5)に戻る。
 DOC(1)の推定温度は、DOC入口排気温度、DOC(1)の比熱、DOC(1)からの放熱等に基づいて制御手段(3)が演算する。
 DOC(1)の活性化温度は250℃である。
 ポスト噴射量は、DPF入口排気温度の目標温度を600℃とし、DPF入口排気温度、DOC入口排気温度、排気流量に基づいて制御手段(3)が演算する。排気流量は吸気量とメイン噴射量とDOC入口排気温度から制御手段(3)が演算する。
 ポスト噴射は、コモンレールシステム(29)のインジェクタ(16)から、圧縮上死点付近でのメイン噴射の後、排気行程中に行う。
 DOC出口排気温度の理論値は、DOC(1)の推定温度、DOC(1)の劣化がない場合の酸化能力、ポスト噴射量に基づいて制御手段(3)が演算する。
 DPF(2)の再生処理の完了条件は、DPF入口排気温度が600℃以上に至っている再生進捗積算時間が15分を経過した時とする。
(1) DOC
(2) DPF
(3) 制御手段
(4) DPF再生手段
(5) 排気
(S3) ポスト噴射量を演算
(S4) ポスト噴射を実施
(S7) ポスト噴射量を減量補正
(S11) 再生処理を完了

Claims (1)

  1.  排気経路にDOC(1)とDPF(2)とを配置し、DPF(2)のPM堆積推定値が所定の再生要求値に至った後、制御手段(3)がDPF再生手段(4)にポスト噴射によるDPF(2)の再生処理を実施(S4)させ、排気(5)中に未燃燃料を混入させることにより、DOC(1)での未燃燃料の触媒燃焼で排気温度を上昇させて、DPF(2)に堆積したPMを焼却させ、所定のDPF再生の完了条件が満たされたら、制御手段(3)がDPF(2)の再生処理を完了(S11)させるようにしたディーゼルエンジンにおいて、
     DPF(2)のPM堆積推定値が所定の再生要求値に至った後、排気流量とDOC入口排気温度に基づいて、制御手段(3)がポスト噴射量を演算(S3)し、ポスト噴射によるDPF(2)の再生処理を実施(S4)させた後、制御手段(3)がDOC出口排気温度の検出値と、DOC(1)の劣化がない場合のDOC出口排気温度の理論値とを比較し、DOC出口排気温度の検出値がDOC出口排気温度の理論値よりも低い場合には、制御手段(3)がポスト噴射量を減量補正(S7)する、ことを特徴とするディーゼルエンジン。
PCT/JP2012/073833 2011-09-26 2012-09-18 ディーゼルエンジン WO2013047270A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-208553 2011-09-26
JP2011208553A JP2013068185A (ja) 2011-09-26 2011-09-26 ディーゼルエンジン

Publications (1)

Publication Number Publication Date
WO2013047270A1 true WO2013047270A1 (ja) 2013-04-04

Family

ID=47995302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073833 WO2013047270A1 (ja) 2011-09-26 2012-09-18 ディーゼルエンジン

Country Status (2)

Country Link
JP (1) JP2013068185A (ja)
WO (1) WO2013047270A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3090737A1 (fr) * 2018-12-21 2020-06-26 Renault Ligne d’échappement et procédé de pilotage associé

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6769281B2 (ja) * 2016-12-15 2020-10-14 いすゞ自動車株式会社 内燃機関システム
JP7238818B2 (ja) * 2020-02-04 2023-03-14 いすゞ自動車株式会社 排気浄化装置の制御装置、排気浄化装置、及び車両

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060443A (ja) * 2002-07-24 2004-02-26 Mazda Motor Corp エンジンの排気浄化装置
JP2005201251A (ja) * 2003-12-15 2005-07-28 Nissan Motor Co Ltd 排気浄化装置
JP2005307745A (ja) * 2004-04-16 2005-11-04 Nissan Diesel Motor Co Ltd 排気浄化装置
JP2008069648A (ja) * 2006-09-12 2008-03-27 Nissan Motor Co Ltd パティキュレートフィルタの再生制御装置
JP2010169052A (ja) * 2009-01-26 2010-08-05 Toyota Motor Corp 内燃機関の排気浄化装置
JP2011153617A (ja) * 2009-12-28 2011-08-11 Mitsubishi Heavy Ind Ltd ディーゼルエンジンの排気浄化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060443A (ja) * 2002-07-24 2004-02-26 Mazda Motor Corp エンジンの排気浄化装置
JP2005201251A (ja) * 2003-12-15 2005-07-28 Nissan Motor Co Ltd 排気浄化装置
JP2005307745A (ja) * 2004-04-16 2005-11-04 Nissan Diesel Motor Co Ltd 排気浄化装置
JP2008069648A (ja) * 2006-09-12 2008-03-27 Nissan Motor Co Ltd パティキュレートフィルタの再生制御装置
JP2010169052A (ja) * 2009-01-26 2010-08-05 Toyota Motor Corp 内燃機関の排気浄化装置
JP2011153617A (ja) * 2009-12-28 2011-08-11 Mitsubishi Heavy Ind Ltd ディーゼルエンジンの排気浄化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3090737A1 (fr) * 2018-12-21 2020-06-26 Renault Ligne d’échappement et procédé de pilotage associé

Also Published As

Publication number Publication date
JP2013068185A (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
JP2013068184A (ja) ディーゼルエンジン
JP6641238B2 (ja) ディーゼルエンジン
JP4371045B2 (ja) 内燃機関の排気浄化装置
EP1722088B1 (en) Exhaust gas treatment system for internal combustion engine
WO2013047270A1 (ja) ディーゼルエンジン
US9458753B2 (en) Diesel engine with reduced particulate material accumulation and related method
JP2013068183A (ja) ディーゼルエンジン
JP5913158B2 (ja) ディーゼルエンジン
JP2008232073A (ja) 排気浄化装置
JP2013068186A (ja) ディーゼルエンジン
KR101409994B1 (ko) 배기가스 후처리 장치의 dpf 재생시 승온과정 오류 발생시의 제어방법
JP5678484B2 (ja) 排気管噴射制御装置
JP7152988B2 (ja) ディーゼルエンジン
JP7158341B2 (ja) ディーゼルエンジン
JP6213260B2 (ja) 排ガス浄化システム及びその制御方法
JP2009138702A (ja) 排気後処理装置
CN113874613B (zh) 柴油发动机
JP5913159B2 (ja) ディーゼルエンジン
WO2020255537A1 (ja) ディーゼルエンジン
JP5386465B2 (ja) 内燃機関における排気ガス浄化装置
JP7152989B2 (ja) ディーゼルエンジン
JP2014177890A (ja) ディーゼルエンジンの排気浄化装置
JP7132902B2 (ja) ディーゼルエンジン
JP7232167B2 (ja) ディーゼルエンジン
JP2010077894A (ja) Dpf再生制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835653

Country of ref document: EP

Kind code of ref document: A1