WO2013046789A1 - バックライトユニット、および、それを用いた液晶表示装置 - Google Patents

バックライトユニット、および、それを用いた液晶表示装置 Download PDF

Info

Publication number
WO2013046789A1
WO2013046789A1 PCT/JP2012/062008 JP2012062008W WO2013046789A1 WO 2013046789 A1 WO2013046789 A1 WO 2013046789A1 JP 2012062008 W JP2012062008 W JP 2012062008W WO 2013046789 A1 WO2013046789 A1 WO 2013046789A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
backlight unit
light
substrate
liquid crystal
Prior art date
Application number
PCT/JP2012/062008
Other languages
English (en)
French (fr)
Inventor
沖本 満男
陽介 鯉渕
美佳 平▲館▼
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Publication of WO2013046789A1 publication Critical patent/WO2013046789A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors

Definitions

  • the present invention relates to a backlight unit and a liquid crystal display device using the backlight unit, and in particular, in a backlight unit using a direct type LED light source, for use in making brightness on a liquid crystal panel uniform.
  • the present invention relates to a suitable backlight unit and a liquid crystal display device using the backlight unit.
  • CCFL Cold Cathode Fluorescent Lamp
  • EEFL Extra Electrode Fluorescent lamps such as Fluorescent lamps
  • LED Light Emitting Diode
  • An LED is a semiconductor element that emits light when a voltage is applied in the forward direction. Compared to conventional members, LEDs have a long life and have a simple structure, so that they can be mass-produced and are inexpensive. This is because it is low and has good color reproducibility.
  • a direct type in which a light source is arranged under a liquid crystal panel
  • an edge light type side light type
  • the direct type is a form in which a plurality of LED light sources are arranged directly behind the liquid crystal panel-diffusing plate, and the light from the light source is reflected directly or by a reflecting sheet placed on the frame of the base. Will head in the direction.
  • a top-view type LED whose light emission direction is substantially perpendicular to the electrode surface, or a side-view type LED whose light emission direction is substantially parallel to the electrode surface is used. Yes.
  • the LED light source is placed on the side portion of the liquid crystal panel, and the light from the light source is guided toward the diffusion plate by the light guide plate.
  • Patent Document 1 shows a configuration example of an edge light type backlight device in FIG. 1 and a direct type backlight device in FIG.
  • Patent Document 2 discloses a liquid crystal display device having a direct type backlight.
  • the LED When the LED is a direct type and used for the backlight of the liquid crystal panel, a large number of LEDs are arranged at regular intervals.
  • the light emitted from the LED may be directed directly toward the diffuser plate or reflected from the reflective sheet toward the diffuser plate.
  • the LED light source is close to a point light source, and there is light that goes directly from the LED to the vicinity of the portion immediately above the LED of the diffusion plate, and light that is reflected by the reflection sheet at the portion immediately before the LED and that goes to the vicinity of the portion directly above the LED of the diffusion plate Therefore, a so-called shining spot is formed in which the vicinity of the portion directly above the LED is locally brightened. There is a problem that unevenness of brightness is easily caused by such a light spot.
  • the LED is mounted on the LED substrate.
  • white printing formed as a reflective surface on the surface of the LED substrate the reflectance of light is poor, and the efficiency of light emitted from the LED is deteriorated. There is also a problem that it must be prevented from hitting the substrate.
  • the present invention has been made in view of the above problems.
  • a backlight unit directly under a light source using an LED used in a liquid crystal display device the brightness can be made uniform, and a backlight unit having excellent characteristics can be obtained. It is to provide.
  • the configuration related to the backlight unit of the present invention is a direct-type backlight unit that supplies light from a side-view type LED light source to a liquid crystal panel, and is laid on the frame and light from the LED light source. Is formed of a reflective sheet and an LED board on which an LED light source is mounted, and a plurality of LED boards are formed on the reflective sheet. And the position which an LED light source irradiates with respect to a reflective sheet is high.
  • the LED is provided beside the slit of the LED substrate so that the light emitted from the LED does not hit the LED substrate.
  • the brightness to a diffuser can be made uniform and the backlight unit excellent in the characteristic can be provided.
  • FIG. 1 is a perspective view showing a structure of a backlight unit according to an embodiment of the present invention.
  • 2A and 2B are side views showing the structure of the backlight unit according to the embodiment of the present invention.
  • the backlight unit 1 includes a frame (chassis) 20 made of a metal such as iron or aluminum, a side-view type LED 10 that is a light source, LED board 11 on which LED 10 is mounted, reflection sheet 12 that reflects light from LED 10 upward, diffusion plate 30 that diffuses light from LED 10 and light reflected by reflection sheet 12, and light diffused by diffusion plate 30 A diffusion sheet 40 for further diffusing light, a prism sheet 50 for improving the brightness by aligning the traveling direction of the diffused light in a direction perpendicular to the surface of the liquid crystal panel 100, and aligning the polarization direction of light from the prism sheet 50 And a deflecting / reflecting sheet 60 for emission.
  • a frame (chassis) 20 made of a metal such as iron or aluminum
  • a side-view type LED 10 that is a light source
  • LED board 11 on which LED 10 is mounted reflection sheet 12 that reflects light from LED 10 upward
  • diffusion plate 30 that diffuses light from LED 10 and light reflected by reflection sheet 12, and light diffused by diffusion plate
  • the light emission direction (optical axis direction) of the LED light source 10 is substantially parallel to the surface of the reflection sheet 20 or the diffusion plate 30.
  • the reflection sheet 12 is provided between the LED board 11 lower part and the LED board 11, and on the LED board 11, and as FIG. 2A and FIG. 2B show, the LED board 11 lower part and LED The reflection sheet 12 is tapered so as to connect the reflection sheet between the substrates 11 and the reflection sheet on the LED substrate 11.
  • the left-right direction on the paper surface corresponds to the vertical direction of the display device
  • the depth direction on the paper surface corresponds to the horizontal direction of the display device. That is, the LED 10 emits light in the vertical direction of the display device.
  • the backlight unit 1 is a member that irradiates the upper liquid crystal panel 100.
  • the liquid crystal panel 100 serves as a display screen, which is not shown, but includes a thin film transistor substrate (TFT substrate), a color filter substrate facing the TFT substrate, and a liquid crystal layer between the TFT substrate and the color filter substrate.
  • TFT substrate thin film transistor substrate
  • color filter substrate facing the TFT substrate
  • liquid crystal layer between the TFT substrate and the color filter substrate.
  • the LED substrate 11 is provided with a plurality of side view type LEDs 10 mounted in a row, and is installed on the reflection sheet 12.
  • the LED substrate 11 is separated from the reflective sheet 12 in a direction perpendicular to the reflective surface of the reflective sheet 12 at a position in front of the light emitting surface of the LED 10.
  • the spacer 16 is interposed between the LED board 11 and the portion of the frame 20 where the LED board 11 is mounted.
  • a convex-shaped stop is formed 21 upward (on the diffusion plate side) in a portion where the LED substrate 11 of the frame 20 is mounted. You may mount LED board 11 on top.
  • the diaphragm 21 may be formed on the frame 20, the spacer 16 may be provided on the diaphragm 21, and the LED substrate 11 may be provided on the spacer 16.
  • the spacer 16 or the diaphragm 21 or the combination of the spacer 16 and the diaphragm 21 allows the reflection sheet 12 to be positioned between the reflection sheet 12 and the LED substrate 11 at a position in front of the light emitting surface of the LED 10. It is characterized by being separated by a predetermined distance in a direction perpendicular to the reflecting surface. In other words, a predetermined distance is provided between the reflective sheet 12 and the LED substrate 11 in a direction perpendicular to the reflective surface of the reflective sheet 12. Details of this structure will be described later.
  • the LED substrate 11 is provided in a plurality of rows as shown in FIGS. 1, 2A, and 2B, and is arranged so that the liquid crystal panel 100 is evenly irradiated over the entire surface by the LEDs 10.
  • the LED board 11 is provided with an electronic circuit such as a driver for supplying a voltage in the PWM format from the LED board 11 to each LED 10 and supplies it to the LED light source 10.
  • the light emission intensity of the LED 10 is controlled in accordance with the PWM duty ratio.
  • the material of the reflection sheet 12 is, for example, PET (Polyethylene terephthalate), and has a role of reflecting light emitted from the LED 10 and guiding it toward the upper diffusion plate 30.
  • An air layer 22 is provided between the diffusion plate 30 and the LED substrate 11, the LED 10, and the reflection sheet 12.
  • the light emitted from the LED 10 irradiates the diffusion plate 30 through the air layer 22. Then, the light is diffused by the diffusion plate 30, passes through the diffusion sheet 20, the prism sheet 50, and the polarization reflection sheet 60, and is irradiated so as to have a uniform luminance distribution on the surface of the liquid crystal panel 100.
  • the diffusion sheet 20, the prism sheet 50, and the polarization reflection sheet 60 are for obtaining desired optical characteristics.
  • FIG. 3A shows an example of a structure for separating the distance between the LED substrate 11 and the reflective sheet 12 according to an embodiment of the present invention
  • FIG. 3B shows the LED substrate according to an embodiment of the present invention.
  • the other structural example for separating the distance between 11 and the reflective sheet 12 is shown.
  • FIG. 4 is a diagram showing the state of light traveling from the LED 10 when the configuration for separating the distance between the LED substrate 11 and the reflection sheet 12 is provided and when the configuration is not provided.
  • FIG. 5 is a graph showing a comparison of the luminance distribution on the diffusion plate when the configuration for separating the distance between the LED substrate 11 and the reflection sheet 12 is provided and when the configuration is not provided.
  • the reflection sheet 12 is drawn on the frame 20, and the spacer 16 is provided between the reflection sheet 12 and the LED substrate 11. It is a facility.
  • the spacer 16 is made of an insulating material and / or a heat diffusion material.
  • the portion of the frame 20 on which the LED substrate 11 is mounted is formed with a convex diaphragm 21 that is configured integrally with the frame 20 and extends upward (on the diffusion plate side). ing.
  • the reflective sheet 12 is placed on the diaphragm 21, and the LED substrate 11 is mounted thereon.
  • the reflection sheet 12 is bent along the shape of the diaphragm 21 of the frame 20 to insulate the frame 20 from the LED substrate 11.
  • the reflective sheet 12 is folded and covered in the direction where the LED of the LED substrate 11 is not present.
  • the position of the light emitting point of the LED 10 is higher than the reflecting surface of the reflecting sheet 12 by the diaphragm 21 or the spacer 16 of the frame 20, that is, separated by a predetermined distance in the direction perpendicular to the reflecting surface of the reflecting sheet 12. Therefore, light is not irradiated to the reflection sheet 12 in the immediate vicinity of the light emitting surface of the LED 10.
  • the portion of the reflective sheet 12 in the immediate vicinity of the light emitting surface of the LED 10 is also irradiated with light.
  • the light emitting point of the LED 10 is ⁇
  • the point where the boundary surface of the light irradiated from the LED 10 intersects the reflective sheet 12 is ⁇
  • the horizontal distance from ⁇ to ⁇ is ⁇ , ⁇ .
  • the horizontal distance from the substrate to the end face of the substrate is ⁇ .
  • the irradiation angle from the horizontal direction of the light source of the LED 10 is ⁇
  • the vertical distance from ⁇ to the reflection surface of the reflection sheet is ⁇ .
  • the thickness of the diaphragm 81 or the spacer 16 of the frame 20 is 2 mm
  • the thickness of the LED substrate 11 is 1.2 mm
  • the height of the light emitting point ⁇ of the LED 10 from the substrate surface is 1.2 mm
  • the irradiation angle ⁇ is 40 °.
  • FIG. 5 compares the luminance distribution on the diffusion plate 30 with and without the configuration for separating the distance between the LED substrate 11 and the reflection sheet 12. In the absence of such a configuration, it has been observed that partial brightening near the light emitting surface of the LED light source 10 can be suppressed.
  • the distance between the LED substrates 11 is 96 mm.
  • the horizontal axis indicates the horizontal direction of the backlight device shown in FIG. 2, that is, the vertical position of the display device (backlight device), and the LED 11 is 0 mm in the Y-axis direction of FIG. , 96 mm and 192 mm.
  • the vertical axis indicates the luminance [cd / m 2 ] on the diffusion plate 30.
  • FIG. 6 is a diagram showing the LED arrangement on the split substrate.
  • LED boards are mounted on a multi-sided board called a split board at the time of manufacture, and are used separately one by one at the time of use.
  • the split substrate 110 has each LED substrate 11 separated by slits 111 and perforations 112, and when used, the portions where the slits 111 and the perforations 112 are alternately formed are cut. Then, the LED boards 11 are separated one by one.
  • the LED 10 may be mounted beside the perforation 112, but as shown in FIG. 6 (a), the light emission surface of the LED 10 faces the slit 111 side. It is preferable that the LED 10 is mounted on the side of the slit 111 so as to face the light so that the light beam can be directed toward the cut hole 111 when the LED 10 emits light.
  • the horizontal distance ⁇ from the light source point ⁇ (the position of the light emitting surface of the LED 10) to the end face of the substrate was about 2.0 mm. ), ⁇ could be 1.0 mm.
  • the angle ⁇ irradiated from the light source point ⁇ can be increased, and the light efficiency can be increased.
  • the distance ⁇ between the light emitting surface of the LED 10 and the end of the LED substrate 11 facing the light emitting surface is set to It is preferable to be 1.0 mm or less.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

 本発明に係るバックライトユニットは、LED基板11と、LED基板が取り付けられるフレーム20と、フレーム20上に設けられ、LED1からの光を反射する反射シート12と、LED1及び反射シート12からの光を拡散する拡散板30と備える。そしてLED1はサイドビュー型のLEDであって、その光軸が反射シート12または拡散板30と略平行であり、LED1の光放出面前方の位置における反射シート12とLED基板30との間に、反射シート12の反射面と垂直な方向にスペーサ16により所定距離の間隔を設けた。 これにより、液晶表示装置に用いるLEDによる光源の直下型のバックライトユニットにおいて、拡散板までの明るさが均一になる。

Description

バックライトユニット、および、それを用いた液晶表示装置
 本発明は、バックライトユニット、および、それを用いた液晶表示装置に係り、特に、直下型のLED光源を用いたバックライトユニットにおいて、液晶パネル上の明るさを一様にする用途に用いて好適なバックライトユニット、および、それを用いた液晶表示装置に関する。
 従来、液晶表示装置(LCD:Liquid Crystal Display)に光を照射するための光源を供給する装置であるバックライトユニットの光源としては、CCFL(Cold Cathode Fluorescent Lamp:冷陰極管)やEEFL(External Electrode Fluorescent Lamp:外部電極蛍光管)などの蛍光管が使われてきた。
 しかしながら、近年、液晶表示装置のバックライトユニットの光源として、LED(Light Emitting Diode:発光ダイオード)が使われる傾向にある。LEDは、順方向に電圧を加えた際に発光する半導体素子のことであり、従来の部材に比べて、長寿命で構造が簡単なため大量生産が可能で安価であり、しかも、消費電力も低く、色再現性がよいという特徴があるためである。
 一般に、バックライトユニットは、液晶パネルの下に光源を配置する直下型と、液晶パネルの側部に光源を配置するエッジライト型(サイドライト型)がある。直下型は、液晶パネル-拡散板の真後ろに、LED光源を複数並べた形態であり、光源からの光は、直接または、ベースのフレーム上に置かれた反射シートにより反射されて、拡散板の方向に向かうことになる。また、LEDとしては、光の放出方向が電極面に対して、ほぼ垂直なトップビュー型のLED、または光の放出方向が電極面に対して、ほぼ平行なサイドビュー型のLEDが使用されている。
 エッジライト型は、LED光源を液晶パネルのサイド部分におき、導光板によって、光源からの光を拡散板の方向に誘導する。
 特許文献1には、図1にエッジライト型、図5に直下型のバックライト装置の構成例が示されている。
 また、特許文献2には、直下型のバックライトを有する液晶表示装置が開示されている。
特開2011-134620号公報 特開2010-210891号公報
 直下型で、LEDを液晶パネルのバックライトに用いるときには、多数のLEDを一定間隔ごとに配列する。LEDから発せられる光は、直接拡散板方向へ向かうのものと反射シートに反射されて拡散板方向に向かうものがある。LED光源は点光源に近く、かつLEDから直接的に拡散板のLEDの直上部分近傍に向かう光と、LED前方直近部分で反射シートによって反射され拡散板のLEDの直上部分近傍へ向かう光があるため、LEDの直上部分近傍が局所的に明るくなる、いわゆる光るスポットが形成される。かかる光スポットにより、明るさのむらができやすくなるという問題があった。
 また、LEDは、LED基板上に搭載されているが、LED基板の表面に反射面として形成される白色印刷では、光の反射率が悪く、LEDから発せられる光の効率が悪くなるため、LED基板にあたらないようにしなければならないという問題点もある。
 本発明は、上記問題点に鑑みてなされたもので、液晶表示装置に用いるLEDによる光源の直下型のバックライトユニットにおいて、明るさを均一にすることができ、特性の優れたバックライトユニットを提供することにある。
 本発明のバックライトユニットに関する構成は、サイドビュー型のLED光源からの光を、液晶パネルに供給する直下型のバックライトユニットであり、フレームと、フレーム上に敷かれて、LED光源からの光を反射する反射シートと、LED光源を搭載するLED基板とからなり、反射シート上に複数のLED基板が形成されたものである。そして、反射シートに対してLED光源の照射する位置が高くなっている。
 また、LEDはLED基板のスリットの横に設けられ、LEDから照射した光が、LED基板にあたらない様になっている。
 これにより、バックライトから照射される光の空間的な明るさのむらを抑えることができる。
 本発明によれば、液晶表示装置に用いるLEDによる光源の直下型のバックライトユニットにおいて、拡散板までの明るさを均一にすることができ、特性の優れたバックライトユニットを提供することができる。
本発明の一実施形態に係るバックライトユニットの構造を示す斜視図である。 本発明の一実施形態に係るバックライトユニットの構造を示す側面図である(その一)。 本発明の一実施形態に係るバックライトユニットの構造を示す側面図である(その二)。 本発明の一実施形態に係るLED基板11と反射シート12との間の距離を離すための一構造例を説明するための図である。 本発明の一実施形態に係るLED基板11と反射シート12との間の距離を離すための他の構造例を説明するための図である。 LED基板11と反射シート12との間の距離を離すための構成を設けたときと、設けないときのLED10からの光の進行の様子を対比して示した図である。 LED基板11と反射シート12との間の距離を離すための構成を設けたときと、設けないときの拡散板上の輝度分布を比較して示したグラフである。 割り基板上でのLED配置の一例を示した図である。
 以下、本発明に係る一実施形態を、図1ないし図6を用いて説明する。
  先ず、図1ないし図2Bを用いて本発明の第一の実施形態に係るバックライトユニットの構造について説明する。
  図1は、本発明の一実施形態に係るバックライトユニットの構造を示す斜視図である。
  図2A、図2Bは、本発明の一実施形態に係るバックライトユニットの構造を示す側面図である。
 図1と図2A、図2Bに示されるように、本実施形態に係るバックライトユニット1は、鉄やアルミニウム等の金属で構成されたフレーム(シャーシ)20、光源であるサイドビュー型のLED10、該LED10を搭載するLED基板11、LED10からの光を上方へ反射する反射シート12、LED10からの光及び反射シート12で反射された光を拡散する拡散板30、拡散板30で拡散された光を更に拡散するための拡散シート40、拡散された光の進行方向を液晶パネル100の面と垂直方向に揃えて輝度を向上させるためのプリズムシート50、プリズムシート50からの光の偏光方向を揃えて出射するための偏向反射シート60を有して構成される。ここで、LED光源10の光放出方向(光軸方向)は、反射シート20または拡散板30の面とほぼ平行である。また、本実施形態では、反射シート12は、LED基板11下部とLED基板11間、及びLED基板11上に設けられており、図2A、図2Bに示されるように、LED基板11下部とLED基板11間の反射シートと、LED基板11上の反射シートとを繋ぐように反射シート12にはテーパが設けられている。
 なお、図2において、紙面左右方向は表示装置の垂直方向に対応し、紙面奥行き方向が表示装置の水平方向に対応している。すなわち、LED10は表示装置の垂直方向に光を放出している。
 バックライトユニット1は、上部の液晶パネル100を照射する部材である。液晶パネル100は、表示画面となり、図示しないが、薄膜トランジスタ基板(TFT基板)、そのTFT基板と向き合うカラーフィルタ基板、および、TFT基板とカラーフィルタ基板との間の液晶層からなる。
 LED基板11は、複数のサイドビュー型のLED10が一列に取付けられており、反射シート12の上に設置される。そして本実施形態では、図2Aに示されるように、LED10の光放出面前方の位置において、反射シート12に対してLED基板11の位置を反射シート12の反射面と垂直な方向に離して構成しており、フレーム20のLED基板11が搭載される部分には、LED基板11との間にスペーサ16が介在する。また、図2Bに示されるように、スペーサ16に代えて、フレーム20のLED基板11が搭載される部分に、上方(拡散板側)に向けて凸形状の絞りを形成21し、該絞り21の上にLED基板11を搭載してもよい。もちろん、フレーム20に絞り21を形成し、その絞り21上にスペーサ16を設け、そのスペーサ16上にLED基板11を設けてもよい。
 すなわち、本実施形態は、スペーサ16または絞り21、あるいは、スペーサ16と絞り21との組み合わせによって、LED10の光放出面前方の位置における反射シート12とLED基板11との間を、反射シート12の反射面と垂直な方向に所定距離離したことを特徴とするものである。換言すれば、反射シート12とLED基板11との間に、反射シート12の反射面と垂直な方向に所定距離の間隔を設けたものである。なお、この構造の詳細については後述する。
 LED基板11は、図1と図2A、図2Bに示されるように、複数列設けられ、LED10により、液晶パネル100が全面に渡って均一に照射されるように配置されている。なお、LED基板11は、図示していないがLED基板11から各LED10に対して、例えば、PWM形式の電圧を供給するためのドライバ等の電子回路が取付けられており、LED光源10に供給するPWMのデューティ比に応じてLED10の発光強度を制御するようになっている。
 反射シート12は、その素材が、例えば、PET(Polyethylene terephthalate)であり、LED10から発せられる光を反射して、上方の拡散板30の方向に導く役割を有する。
 拡散板30と、LED基板11、LED10及び反射シート12との間には、空気層22が設けられている。
 LED10から発せられる光は、空気層22を介して拡散板30を照射する。そして、拡散板30により拡散されて、拡散シート20、プリズムシート50及び偏光反射シート60を通過して、液晶パネル100の表面上で均一な輝度分布になるよう照射される。拡散シート20、プリズムシート50及び偏光反射シート60は、所望の光学的特性を得るためのものである。
 次に、図3Aないし図5を用いて本発明の一実施形態に係るバックライトユニット1の構造の詳細について説明する。
  図3Aは、本発明の一実施形態に係るLED基板11と反射シート12との間の距離を離すための一構造例を示し、また、図3Bは、本発明の一実施形態に係るLED基板11と反射シート12との間の距離を離すための他の構造例を示している。
  図4は、LED基板11と反射シート12との間の距離を離すための構成を設けたときと、設けないときのLED10からの光の進行の様子を対比して示した図である。
  図5は、LED基板11と反射シート12との間の距離を離すための構成を設けたときと、設けないときの拡散板上の輝度分布を比較して示したグラフである。
 本発明の一実施形態に係るバックライトユニット1では、図3Aに示されようにフレーム20の上に反射シート12が引かれており、反射シート12とLED基板11との間に、スペーサ16が施設されている。このスペーサ16は、材質として、絶縁材及び/又は熱拡散材である。また、図3Bに示されるように、フレーム20のLED基板11が搭載される部分は、フレーム20と一体的な構成の、上方(拡散板側)に向けて凸形状の絞り21が形成形成されている。そして、絞り21上に反射シート12載置し、その上にLED基板11が搭載される。これにより、LED10及びLED基板11を、反射シート12の面から垂直方向に離す構成としている。また、フレーム20の絞り21の形状に沿って反射シート12を折り曲げて配置し、フレーム20とLED基板11の絶縁を行っている。
 また、LED基板11のLEDがない方向には、反射シート12が折り曲げられて、かぶせられている。
 本実施形態では、フレーム20の絞り21またはスペーサ16により、LED10の発光点の位置が反射シート12の反射面に対して高く、すなわち反射シート12の反射面の方垂直方向に所定間隔離されているため、LED10の発光面直近の反射シート12には、光が照射されなくなる。
 一方、フレーム20の絞り21またはスペーサ16を設けないときには、LED10の発光面直近の反射シート12の部分にも、光が照射されることになる。
 ここで、図3Aに示されるように、LED10の発光点をλ、LED10から照射する光の境界面が反射シート12と交わる地点をμとし、λからμまでの水平方向の距離をα、λから基板の端面までの水平方向の距離をβとする。
 また、LED10の光源の水平方向からの照射角をθとし、λから反射シートの反射面までの垂直方向の距離をδとする。
 ここで、例えば、フレーム20の絞り81またはスペーサ16の厚さが、2mm、LED基板11の厚さが、1.2mm、LED10の発光点λの基板面からの高さが、1.2mm、照射角θを、40°とする。
 フレーム20の絞り81またはスペーサ16があるときには、δ=4.4mmとなり、αとδは、以下の式1の関係があるので、α=5.2mmと計算できる。
   α=δ/tanθ   … (式1)
 フレーム20の絞り81またはスペーサ16がないときには、δ=2.4mmとなり、式1より、α=2.9mmとなる。
 図4(a)に示したように、LED基板11と反射シート12との間の距離を離すための構成を設けないときには、LED10の周辺部の拡散板30までの反射シート12からの反射が強くなりすぎ、明るさにむらがでる。
 一方、図4(b)に示したように、LED基板11と反射シート12との間を絞り81またはフレーム20により距離を離す構成を設けたときには、LED10の周辺部は、反射シート12からの反射がないので、拡散板30までの反射が抑えられる。従って、拡散板30に一様に光が照射されるので、拡散板30からの光の明るさが空間的に均一になり、輝度むらを軽減することができる。
 図5は、拡散板30上の輝度分布を、LED基板11と反射シート12との間の距離を離すための構成を設けたときと設けないときとを対比したものである。かかる構成がないときには、LED光源10の光放出面直近で部分的に明るくなり過ぎることが押さえられることが観測されている。なお、この例では、LED基板11の間隔を96mmとした。
 このグラフでは、横軸は図2に示されたバックライト装置の紙面左右方向、すなわち表示装置(バックライト装置)の垂直方向の位置を示しており、LED11は、図2のY軸方向の0mm、96mm、192mm上の地点に配置されている。また縦軸は、拡散板30上の輝度[cd/m]を示している。
 いずれも、LED基板11と反射シート12との間の距離を離すための構成を設けたときには、LED10を配置した地点の前方側に対応する部分、すなわち、LED10の光放出面直近部分で局所的な高輝度が抑えられている。
 次に、図6を用いて本発明の一実施形態に係るバックライトユニット1の構造の内で、LED基板11とLED10の配置関係について説明する。
  図6は、割り基板上でのLED配置を示した図である。
 通常、LED基板は、量産性をあげるために、製造時に、割り基板と呼ばれる多面取りの基板上にLEDを実装して、使用時には、一枚一枚切り離して用いられる。
 割り基板110は、図6に示されるように、各々のLED基板11がスリット111と、ミシン目112により区切られており、使用時には、スリット111とブミシン目112が交互に形成された部分が切れ目となり、LED基板11を一枚一枚を切り離す。
 ここで、図6(b)に示されるように、ミシン目112の横にLED10が搭載してもよいが、図6(a)に示されるように、LED10の光放出面がスリット111側を向くようにスリット111の横にLED10を搭載し、LED10の発光時に切り込み穴111の方に光線を向けられるようにすることが好ましい。
 これにより、図6(b)の場合は、光源地点λ(LED10の光放出面の位置)から基板の端面までの水平方向の距離βが2.0mmぐらいであったのを、図6(a)の場合では、βを1.0mmとすることができた。かかる構成によれば、LED10から反射シート12へ向かう光の経路にLED基板11が突出しないため、光源地点λから照射される角度θを大きくすることができ、光の効率をあげることができる。このように、LED10から反射シート12へ向かう光の経路にLED基板11が突出しないためには、LED10の光放出面と、該光放出面に対向するLED基板11の端部との距離βを1.0mm以下とすることが好ましい。
 これにより、LED10の近傍での反射シート12による反射の明るさを抑えることができる。
1…バックライトユニット
10…LED光源
11…LED基板
12…反射シート
16…スペーサ
20…フレーム
22…空気層
30…拡散板
40…拡散シート
50…プリズムシート
60…偏向反射シート
100…液晶パネル
110…割り基板
111…スリット
112…ミシン目

Claims (6)

  1.  LEDからの光を液晶パネルに供給するバックライトユニットにおいて、
     前記LEDを搭載するLED基板と、
     該LED基板が取り付けられるフレームと、
     前記フレーム上に設けられ、前記LEDからの光を反射する反射シートと、
     前記LEDからの光及び前記反射シートで反射された光を拡散するための拡散板と、備え、
     前記LEDはサイドビュー型のLEDであって、その光軸が前記反射シートまたは前記拡散板とほぼ平行であり、
     前記LEDの光放出面前方の位置における前記反射シートと前記LED基板との間に、前記反射シートの反射面と垂直な方向に所定距離の間隔を設けたことを特徴とするバックライトユニット。
  2.  請求項1に記載のバックライトユニットにおいて、前記フレームと前記LED基板との間にスペーサを設け、該スペーサにより前記所定距離の間隔を設けたことを特徴とするバックライトユニット。
  3.  請求項1に記載のバックライトユニットにおいて、前記フレームの前記LED基板が搭載される部分に、前記拡散板の方向に凸の形状を有する絞りを設け、該絞り上に前記LED基板を取り付けることによって、前記所定距離の間隔を設けたことを特徴とするバックライトユニット。
  4.  請求項1に記載のバックライトユニットにおいて、前記LEDの光放出面と、前記LED基板の前記光放出面と対向する端部の距離が1.0mm以下であることを特徴とするバックライトユニット。
  5.  請求項1記載のバックライトユニットにおいて、前記LED基板は、スリットとミシン目とが交互に形成された切れ目を有する割り基板を割ったものであり、
     前記LEDは、その光放出面が前記スリットを向くように、前記スリットの横に設けられることを特徴とするバックライトユニット。
  6.  請求項1ないし5のいずれかに記載のバックライトユニットを用いて液晶パネルを照射するように構成された液晶表示装置。
PCT/JP2012/062008 2011-09-29 2012-05-10 バックライトユニット、および、それを用いた液晶表示装置 WO2013046789A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011213997A JP2013073875A (ja) 2011-09-29 2011-09-29 バックライトユニット、および、それを用いた液晶表示装置
JP2011-213997 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013046789A1 true WO2013046789A1 (ja) 2013-04-04

Family

ID=47994856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062008 WO2013046789A1 (ja) 2011-09-29 2012-05-10 バックライトユニット、および、それを用いた液晶表示装置

Country Status (2)

Country Link
JP (1) JP2013073875A (ja)
WO (1) WO2013046789A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149469A (ja) * 2014-02-05 2015-08-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. バックライトアセンブリ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106212A (ja) * 2004-10-01 2006-04-20 Nippon Leiz Co Ltd バックライトユニット
WO2007138763A1 (ja) * 2006-06-01 2007-12-06 Sharp Kabushiki Kaisha 面状光源装置及びこれを設けた液晶表示装置
WO2011004683A1 (ja) * 2009-07-09 2011-01-13 シャープ株式会社 照明装置、表示装置、テレビ受信装置及び照明装置の製造方法
JP2011023331A (ja) * 2009-07-16 2011-02-03 Lg Display Co Ltd バックライトユニット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106212A (ja) * 2004-10-01 2006-04-20 Nippon Leiz Co Ltd バックライトユニット
WO2007138763A1 (ja) * 2006-06-01 2007-12-06 Sharp Kabushiki Kaisha 面状光源装置及びこれを設けた液晶表示装置
WO2011004683A1 (ja) * 2009-07-09 2011-01-13 シャープ株式会社 照明装置、表示装置、テレビ受信装置及び照明装置の製造方法
JP2011023331A (ja) * 2009-07-16 2011-02-03 Lg Display Co Ltd バックライトユニット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149469A (ja) * 2014-02-05 2015-08-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. バックライトアセンブリ

Also Published As

Publication number Publication date
JP2013073875A (ja) 2013-04-22

Similar Documents

Publication Publication Date Title
US7441938B2 (en) Planar light source device
JP4708307B2 (ja) 導光部材およびこの導光部材を用いた面光源装置、ならびに表示装置
US7637646B2 (en) Backlight assembly and liquid crystal display device having the same
WO2012023322A1 (ja) 照明装置、表示装置およびテレビ受信装置
KR100999780B1 (ko) 광학 어셈블리, 이를 구비한 백라이트 유닛 및 디스플레이 장치
JP2004342587A (ja) バックライトおよびそれを用いた液晶表示装置
JP2011009208A (ja) バックライト装置、導光板、及びこれを適用したディスプレイ装置
JP2010210891A (ja) 液晶表示装置
JP4499692B2 (ja) バックライトユニット及びこれを備えた液晶表示装置
WO2012032978A1 (ja) 反射シート、照明装置および表示装置
KR101020923B1 (ko) 광학 어셈블리, 이를 구비한 백라이트 유닛 및 디스플레이 장치
JP2006120355A (ja) バックライト装置及び液晶表示装置
KR20120030909A (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
KR20070108991A (ko) 백라이트 어셈블리 및 이를 이용한 액정 표시 장치
WO2013046789A1 (ja) バックライトユニット、および、それを用いた液晶表示装置
JP2010097783A (ja) 面状光源及び液晶表示装置
US9128229B2 (en) Backlight device and liquid display device including the same
JP5731418B2 (ja) 照明装置およびそれを備えた液晶表示装置
US10871604B2 (en) Display device and image forming apparatus
KR20090053631A (ko) 백라이트 유닛, 이를 구비한 액정표시장치 및 그 제조방법
KR101028294B1 (ko) 광학 어셈블리, 이를 구비한 백라이트 유닛 및 디스플레이 장치
WO2012035840A1 (ja) 照明装置およびこれを備えた液晶表示装置
JP5392930B2 (ja) 面状光源及び液晶表示装置
WO2013018646A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2012035898A1 (ja) 照明装置およびこれを備えた液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835325

Country of ref document: EP

Kind code of ref document: A1