WO2013046657A1 - 充放電システム - Google Patents

充放電システム Download PDF

Info

Publication number
WO2013046657A1
WO2013046657A1 PCT/JP2012/006136 JP2012006136W WO2013046657A1 WO 2013046657 A1 WO2013046657 A1 WO 2013046657A1 JP 2012006136 W JP2012006136 W JP 2012006136W WO 2013046657 A1 WO2013046657 A1 WO 2013046657A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
storage battery
soc
power
discharge
Prior art date
Application number
PCT/JP2012/006136
Other languages
English (en)
French (fr)
Inventor
健司 泰間
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013046657A1 publication Critical patent/WO2013046657A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charge / discharge system for a storage battery.
  • An ancillary function refers to a function of maintaining power quality such as frequency stabilization of power transmitted and distributed by the power system.
  • the frequency maintenance function is taken up as a representative example of the ancillary function.
  • the power transmitted and distributed has the property that the frequency decreases instantaneously when the demand exceeds the supply, and the frequency increases instantaneously when the supply exceeds the demand. Therefore, it is conceivable to adjust the output so as to increase the power generation output when the frequency decreases and to decrease the power generation output when the frequency increases.
  • Storage batteries used for such ancillary services are often installed on the premises of large facilities (for example, hospitals). In this case, power can be supplied to the load of a large facility, and the usage of the storage battery can be increased.
  • Storage batteries are required to be used within the SOC (State Of Charge) range from the viewpoint of life. The same applies when the storage battery is used for ancillary service.
  • SOC State Of Charge
  • the SOC is an index indicating the ratio of the remaining capacity to the full charge capacity.
  • the storage battery operation management entity receives a charge instruction or discharge instruction from the power system operation management entity.
  • This instruction is issued in various patterns according to load fluctuations and power generation conditions.
  • the charge instruction and the discharge instruction may be issued in a well-balanced manner, the charge instruction may be continued many times, or the discharge instruction may be continued many times. Therefore, when using a storage battery for ancillary service, it is desirable to set the appropriate value of the SOC of the storage battery in the middle of the SOC range.
  • the storage battery when used as a power source for the load of the facility, it is desirable to set the appropriate value of the SOC to the upper limit of the SOC range. For example, when the storage battery is used as a backup power source in the event of a power failure, or when selling power to a facility during normal times, it is desirable that the storage battery is charged as much as possible.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technology for efficiently using a storage battery that can provide ancillary service and can supply power to a load of a facility. It is in.
  • a charge / discharge system includes a storage battery that can be charged from an electric power system, discharged to an electric power system, and discharged to a load, and a control device that controls charging / discharging of the storage battery.
  • the control device includes both a first mode in which an appropriate value of the SOC of the storage battery is charged / discharged between the power system and the storage battery in accordance with an instruction from the power system operator, and a second mode in which power is supplied to the load.
  • a charge / discharge control unit that charges or discharges the storage battery so that the SOC of the storage battery approaches the appropriate value determined by the appropriate value determination unit.
  • a storage battery that can provide an ancillary service and can supply power to a load of a facility.
  • FIG. 1 is a diagram showing an overall configuration of a power supply system 500.
  • the power supply system 500 has a configuration in which a plurality of power plants 30, a plurality of charge / discharge systems 100, a plurality of consumers 40, and a system operation device 200 are connected to the power system 50.
  • the charge / discharge system 100 is installed adjacent to the facility 150 and is connected to the power system 50 via the distribution board of the facility 150. Therefore, the charge / discharge system 100 can also supply power to the load of the facility 150.
  • the power transmission system and the distribution system are not distinguished from each other and are collectively referred to as a power system 50.
  • the facility 150 may be a public facility such as a hospital or school, or a private facility such as a factory or a data center. There may be a space in the facility 150 or in the vicinity thereof where a storage battery constituting the charge / discharge system 100 can be installed.
  • the entire power supply system 500 is basically managed by a local monopoly electric power company, and retailing of electric power by non-electric power companies is not permitted (as of September 2011).
  • Each local power company is responsible for supplying power to the local customers 40.
  • Japanese electric power companies supply high-quality and stable power to consumers 40 by implementing frequency control services.
  • PJM Pulnsylvania New Jersey Maryland
  • the PJM has a wholesale power exchange (PX) and an independent system operator (ISO).
  • PX wholesale power exchange
  • ISO independent system operator
  • a power system centered on a transmission line is owned by an electric power company, and is operated by ISO.
  • PJM operates a capacity market, a wholesale power market, a frequency adjustment market, and a financial power transmission rights market.
  • the power plant 30 connected to the power system 50 includes various types of power plants such as thermal power, nuclear power, hydropower, wind power, and solar power.
  • the energy sources of thermal power plants are mainly coal, gas and oil.
  • many of the main power plants are owned by local monopoly electric power companies.
  • many independent power producers (IPPs) produce power.
  • the locations are distributed and owned.
  • the grid operation device 200 is a device managed by an electric power company or ISO.
  • the grid operation device 200 detects a load fluctuation (that is, a fluctuation in demand for power) of the power system 50, and issues an instruction for maintaining the supply and demand balance of the entire power system 50 to at least one of the power plant 30 and the charge / discharge system 100.
  • the grid frequency fluctuates when the supply-demand balance is lost. If the difference between the system frequency and the reference frequency exceeds ⁇ 0.2 Hz, there is a possibility that some devices on the consumer 40 side will be adversely affected. In addition, when the difference between the system frequency and the reference frequency reaches several percent, there is a possibility that problems such as turbine blade resonance and generator shaft twist may occur in the generator.
  • the grid operation device 200 can instruct the power plant 30 via the communication network to adjust the power generation output according to the load fluctuation. Specifically, when the power demand exceeds the power supply, the power generation output is instructed, and when the power demand falls below the power supply, the power generation output is instructed to decrease. Since nuclear power generation and hydropower generation are difficult to adjust the output in a short time, the output adjustment by the power plant is mainly performed by the thermal power plant.
  • the grid operation device 200 can instruct the charge / discharge system 100 via the communication network to discharge the power system 50 from the storage battery or charge the storage battery from the power system 50 according to the load fluctuation. Specifically, when the power demand exceeds the power supply, the power system 50 is instructed to discharge from the storage battery, and when the power demand falls below the power supply, the power system 50 is instructed to charge the storage battery.
  • PJM has both a frequency adjustment market based on automatic power generation control (AGC) and a frequency adjustment market based on charge / discharge control.
  • AGC automatic power generation control
  • IPPs that have only generators that are difficult to adjust their output. That is, by paying for the frequency control service traded in the frequency adjustment market, the capital investment cost can be suppressed.
  • control of the system frequency by the charge / discharge system 100 will be described in this specification.
  • a business operator hereinafter referred to as a power storage business operator
  • the power storage business operator manages the charge / discharge system 100, and provides a frequency control service to the grid operation device 200.
  • An example to be provided will be described.
  • the power storage company can increase the profit by retailing the power to the facility 150 during the period when the frequency control service is not provided. Therefore, in this example, the system operation entity that manages the system operation apparatus 200, the operation management entity of the charge / discharge system 100, and the operation management entity of the facility 150 are different.
  • FIG. 2 is a diagram for explaining the charge / discharge system 100 according to the embodiment of the present invention.
  • the charge / discharge system 100 includes a storage battery 10, a switch circuit 11, a bidirectional AC-DC converter 12, a resistor R1, a control device 20, and a console terminal device 70.
  • the facility 150 includes a distribution board 151, a load 152, and a facility power management device 153.
  • the solid line arrows indicate the flow of electric power
  • the broken line arrows indicate the flow of control signals.
  • the storage battery 10 is a battery that can be charged from the power system 50, discharged to the power system 50, and discharged to the load 152 of the facility 150.
  • a lithium ion battery, a nickel metal hydride battery, a lead battery, or the like is employed as the storage battery 10.
  • the switch circuit 11 is provided between the storage battery 10, the bidirectional AC-DC converter 12, and the resistor R1.
  • the switch circuit 11 causes a current to flow from the storage battery 10 to the bidirectional AC-DC converter 12 and the distribution board 151 or from the distribution board 151 via the bidirectional AC-DC converter 12 in accordance with an instruction from the control device 20. Then, the current is supplied to the storage battery 10 or the current is supplied from the storage battery 10 to the resistor R1 to be switched.
  • the bidirectional AC-DC converter 12 converts the alternating current power supplied from the distribution board 151 into direct current power and supplies it to the storage battery 10 or the direct current supplied from the storage battery 10 according to an instruction from the control device 20.
  • the electric power is converted into AC power and supplied to the distribution board 151.
  • the resistor R1 releases the energy supplied from the storage battery 10 to the atmosphere as Joule heat.
  • Distribution board 151 is connected to power system 50 and distributes power to various loads belonging to facility 150.
  • various loads belonging to the facility 150 are collectively referred to as a load 152.
  • the distribution board 151 is connected to the charge / discharge system 100 and relays power exchange between the storage battery 10 and the power system 50. Further, the current flowing from the storage battery 10 is supplied to the load 152 in response to an instruction from the control device 20 or the facility power management device 153 of the charge / discharge system 100.
  • FIG. 2 illustrates a configuration in which the bidirectional AC-DC converter 12 and the power system 50 are connected via the distribution board 151 of the facility 150. However, the bidirectional AC-DC converter 12 and the power system 50 are depicted. And may be directly connected to each other.
  • the facility power management apparatus 153 is an apparatus constructed by a server or a PC for managing the power market situation of the load 152.
  • daily power consumption transitions that is, load curves
  • the facility power management apparatus 153 predicts a future power consumption transition (for example, tomorrow power consumption transition) of the load 152 based on past load curves, tomorrow's weather information, and the like accumulated in the database.
  • a future power consumption transition for example, tomorrow power consumption transition
  • the facility power management apparatus 153 notifies the control apparatus 20 of this predicted power consumption amount transition via the communication network 60 (for example, the Internet).
  • the facility power management device 153 requests the control device 20 to supply power from the storage battery 10 to the load 152 via the communication network 60 in accordance with the operation of the power manager of the facility 150. This request may be made offline. For example, when the facility power management apparatus 153 cannot be used due to a power failure, the power manager of the facility 150 may request the operation manager of the charge / discharge system 100 over the phone or directly. In addition, a pre-contract may be concluded between the facility 150 and the power storage company so that power is supplied from the storage battery 10 to the load 152 in an emergency such as a power failure.
  • the facility 150 and the power storage company can arbitrarily conclude a power purchase / purchase contract that supplies power from the storage battery 10 to the load 152 at a price agreed by the both in a predetermined time period.
  • This sales contract may be concluded online or may be concluded offline.
  • the facility power management device 153 and the control device 20 (including the console terminal device 70) are used for fastening.
  • the control device 20 may display the offer rate of each time zone on the screen of the facility power management device 153, and the facility power management device 153 may display the bit rate of each time zone on the screen of the console terminal device 70. .
  • the system operation device 200, the control device 20, the console terminal device 70, and the facility power management device 153 are connected to the communication network 60. Further, a frequency control service exchange system (not shown) is also connected. In the present embodiment, as in the case of PJM, it is assumed that there are two types of frequency control service markets, a one-day market and a real-time market.
  • the PJM one-day market is operated as follows.
  • the power storage company bids on an hourly basis from 0:00 to 18:00 (excluding 12 to 16:00) the day before the frequency control service provision date.
  • the minimum unit for bidding is 0.5 MW.
  • the successful bid result is notified at 20:00 on the day before the service provision date.
  • the settlement price is determined not at the bid price but at the market price.
  • the market price is the price at which the supply and demand match at the exchange.
  • the demand is calculated from the predicted value of power demand on the day, the scheduled value of power supply on the day, and the like.
  • the grid operation organization can secure auxiliary power for frequency control in the market one day ago.
  • the power supply-demand balance may expand more than expected.
  • a real-time market will be established and additional participants in the frequency control service will be recruited.
  • the real-time market will not be opened if the power supply / demand balance is within the expected range.
  • the system operation device 200 sends a charge instruction signal or a discharge instruction signal via the communication network 60 to the control device 20 of the charge / discharge system 100 that provides the frequency control service at that time according to fluctuations in the power supply / demand balance. Send.
  • the grid operation apparatus 200 periodically transmits a charge instruction signal or a discharge instruction signal (for example, once every 2 seconds or 4 seconds). Note that, in a cycle in which charging and discharging are not necessary, a signal may not be transmitted, or a standby instruction signal may be transmitted.
  • the grid operation device 200 monitors the power supply / demand balance and, when a gap occurs in the supply / demand balance, calculates the amount of power to fill the gap.
  • a discharge instruction signal is transmitted to the control device 20 of at least one charge / discharge system 100 so as to discharge the calculated electric energy.
  • a charging instruction signal is transmitted to the control device 20 of at least one charging / discharging system 100 so as to charge the calculated electric energy.
  • the grid operation device 200 manages the charge amount and discharge amount of the storage battery 10 of each charge / discharge system 100 in real time, and the charge amount and discharge amount of the storage battery 10 of each charge / discharge system 100 are made as equal as possible.
  • the charging / discharging system 100 which should issue a discharge instruction
  • an algorithm for determining the charge / discharge system 100 to issue the discharge instruction and the charge instruction an existing general algorithm may be used.
  • the console terminal device 70 is a device constructed by a PC or the like used by a user of a power storage company.
  • the console terminal device 70 may be installed in the vicinity of the place where the storage battery 10 is installed, or may be installed far away.
  • a common console terminal device 70 of the plurality of charge / discharge systems 100 may be installed in the operation room of the power storage company.
  • the console terminal device 70 accesses the exchange system of the frequency control service according to the user operation of the power storage company, bids for the market one day ago or the real time market, and receives the successful bid result.
  • the console terminal device 70 is used to conclude a contract for supplying power from the storage battery 10 to the load 152 of the facility 150. Further, the console terminal device 70 changes settings of various parameters of the control device 20 according to the user operation of the power storage business operator, or manually sets the storage battery 10, the switch circuit 11, the bidirectional AC-DC converter 12 and the distribution board 151. Or control.
  • Control device 20 mainly controls charging / discharging of storage battery 10.
  • the control device 20 includes a charge / discharge instruction receiving unit 21, an operation instruction receiving unit 22, an SOC monitoring unit 23, an appropriate value determining unit 24, a charge / discharge control unit 25, and a charge / discharge start time determining unit 26.
  • These configurations can be realized by an arbitrary processor, memory, or other LSI in terms of hardware, and are realized by a program loaded in the memory in terms of software.
  • Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
  • the charge / discharge instruction receiving unit 21 receives an instruction signal from the system operation device 200. More specifically, a charge instruction, a discharge instruction, or a standby instruction is periodically received from the system operation device 200 during a period of providing a frequency control service that has been awarded in the market one day ago or in the real-time market. For the power storage business operator, this service provision period is a period during which the grid operating organization is obliged to maintain a chargeable / dischargeable state between the power grid 50 and the storage battery 10 in accordance with an instruction from the grid operating device 200. It becomes.
  • a mode in which charging / discharging between the electric power system 50 and the storage battery 10 in accordance with an instruction from the system operation device 200 is referred to as a first mode.
  • a mode in which power is supplied from the storage battery 10 to the load 152 of the facility 150 is referred to as a second mode.
  • the execution period of the first mode is a period in which the storage battery 10 is provided to the grid operating organization as a frequency control power source for the power grid 50.
  • the execution period of the second mode is a period during which the storage battery 10 is provided to the facility 150 as a power source for the load 152.
  • the operation instruction receiving unit 22 receives an instruction from the console terminal device 70.
  • the SOC monitoring unit 23 continuously acquires the SOC of the storage battery 10 and monitors its value.
  • the SOC value can be measured by an integrating ammeter or the like. In addition, in a lithium ion battery, it can measure with a voltmeter.
  • the appropriate value determination unit 24 determines an appropriate value of the SOC of the storage battery 10. Considering only the second mode, it is preferable to store as much energy as possible. Therefore, it is desirable to set the appropriate value of the SOC of the storage battery 10 to the upper limit value of the SOC range of the storage battery 10. That is, it is desirable to set the charge end voltage.
  • the appropriate SOC value of the storage battery 10 is set in the vicinity of the intermediate value of the SOC range of the storage battery 10. This is based on a model in which an expected value that receives a charge instruction from the grid operation device 200 is equal to an expected value that receives a discharge instruction. For example, when the SOC range is 10% to 90%, it is desirable to set the appropriate value to about 50% to 60%. Generally, since the discharge rate is faster than the charge rate, it is preferable to set the discharge rate higher by a predetermined value than the intermediate value of the SOC range.
  • the storage battery 10 is used in both the first mode and the second mode.
  • the appropriate value determination unit 24 determines the appropriate value of the SOC of the storage battery 10 in consideration of both the first mode and the second mode. For example, an SOC obtained by adding a predetermined increment value (for example, 10%) to the SOC for the first mode may be set as an appropriate value for the SOC in which both the first mode and the second mode are considered.
  • a predetermined increment value for example, 10%
  • the appropriate value determining unit 24 sets the appropriate value of the SOC for the first mode according to the predicted power consumption transition of the load 152.
  • the appropriate value of the SOC of the storage battery 10 may be determined by adding the increment value.
  • FIG. 3 is a diagram showing an example of a predicted power consumption amount transition of the daily load 152.
  • the appropriate value determining unit 24 sets the minimum value of the predicted power consumption transition of the daily load 152 to 0, sets the maximum value to a predetermined value (for example, 10), and sets the predicted power consumption at each time from zero to a predetermined value. Normalize between.
  • the appropriate value determination unit 24 determines the appropriate value of the SOC at each time by adding the normalized value at each time to the appropriate value of the SOC for the first mode at each time.
  • the appropriate value of the SOC in which both the first mode and the second mode are taken into consideration is the SOC of the storage battery 10 that is on standby to respond to either the real-time market holding or the power supply request from the facility 150. It is effective as an appropriate value.
  • the appropriate value determination unit 24 changes the capacity value corresponding to the appropriate value according to the change.
  • the charge / discharge control unit 25 charges or discharges the storage battery 10 so that the SOC of the storage battery 10 approaches the appropriate value determined by the appropriate value determination unit 24.
  • the discharge for adjusting the SOC is performed by passing a current through the resistor R1.
  • the charge for this SOC adjustment may be charged from the electric power system 50, or may be charged from the generator when a generator (for example, a solar panel) is provided.
  • the charging / discharging for adjusting the SOC is basically performed in a period other than the execution period of the first mode and the second mode.
  • the charge / discharge control unit 25 may charge or discharge the storage battery 10 so that the SOC of the storage battery 10 approaches the appropriate value of the SOC for the first mode at the start time of the first mode. Further, the charge / discharge control unit 25 may charge or discharge the storage battery 10 so that the SOC of the storage battery 10 approaches the appropriate value of the SOC for the second mode at the start time of the second mode. When the schedule of the storage battery 10 is determined in advance, the SOC of the storage battery 10 may be controlled to be close to the appropriate value of the SOC for the mode in the time zone in which the mode is determined.
  • the SOC of the storage battery 10 may be controlled to approach.
  • the charge / discharge technique for adjusting the SOC uses the same technique as that described above.
  • the charge / discharge control unit 25 determines the SOC of the storage battery 10 by the appropriate value determination unit 24 during a period when it is not necessary to exchange power between the power system 50 and the storage battery 10 within the execution period of the first mode.
  • the storage battery 10 is charged or discharged so as to approach an appropriate value.
  • the period in which it is not necessary to exchange power between the electric power system 50 and the storage battery 10 is the next charging instruction and the following charging instruction or discharging instruction based on the charging instruction or discharging instruction received from the system operation device 200. This refers to the period until one of the discharge instructions is received.
  • This control can be applied to both the frequency control service awarded by the market one day ago and the frequency control service awarded in the real-time market.
  • it is effective for a frequency control service that has been awarded in the real-time market, where the SOC of the storage battery 10 and the appropriate value thereof are likely to be separated.
  • the charge / discharge technique for adjusting the SOC uses the same technique as that described above.
  • FIG. 4 is a flowchart for explaining the SOC adjustment processing by the control device 20 in a period other than the execution period of the first mode and the second mode.
  • the console terminal device 70 accesses the frequency control service exchange system according to the user operation of the power storage company, bids on the market one day before, and makes a successful bid for the frequency control service after a predetermined time (S10).
  • the appropriate value determination unit 24 determines an appropriate value of the SOC of the storage battery 10 and sets it in the charge / discharge control unit 25 (S11). This appropriate value may be an appropriate value of the SOC for the first mode, or may be an appropriate value of the SOC in which both the first mode and the second mode are taken into account.
  • the SOC monitoring unit 23 acquires the SOC of the storage battery 10 (S12).
  • the charge / discharge control unit 25 compares the acquired SOC with the set appropriate value (S13). When both do not correspond (N of S13), charge / discharge control of the storage battery 10 is performed (S14). Specifically, when the SOC is higher than the appropriate value, the charge / discharge control unit 25 controls the switch circuit 11 to discharge from the storage battery 10 to the resistor R1. On the other hand, when the SOC is lower than the appropriate value, the charge / discharge control unit 25 controls the switch circuit 11, the bidirectional AC-DC converter 12, and the distribution board 151 to charge the storage battery 10 from the power system 50. Thereafter, the process proceeds to step S12, and the SOC acquisition process of the storage battery 10 and the comparison process between the SOC and the appropriate value are continued.
  • step S13 if the SOC and the appropriate value match (Y in S13), the SOC adjustment process ends.
  • the SOC adjustment processing ends even if the SOC and the appropriate value do not match.
  • FIG. 5 is a flowchart for explaining the SOC adjustment process by the control device 20 during the execution period of the first mode.
  • the determination and setting processing of the SOC by the appropriate value determination unit 24 is omitted.
  • system operation device 200 issues a charge instruction, a discharge instruction, or a standby instruction to control device 20 of each charge / discharge system 100 periodically (for example, once every 2 seconds or 4 seconds). To do.
  • the charge / discharge system 100 starts providing the frequency control service (S20).
  • the charge / discharge control unit 25 determines whether or not the execution period of the first mode has ended (S21). If completed (Y in S21), the provision of the frequency control service is terminated. If not completed (N in S21), the process proceeds to step S22.
  • the SOC monitoring unit 23 acquires the SOC of the storage battery 10 (S22).
  • the charge / discharge instruction receiving unit 21 receives an instruction from the system operation device 200 (S23).
  • the charge / discharge control unit 25 determines whether or not the instruction is a standby instruction (S24). If it is not a standby instruction (N in S24), the instruction is a charge instruction or a discharge instruction.
  • the charge / discharge control unit 25 performs charge / discharge control of the storage battery 10 in accordance with the received charge instruction or discharge instruction (S25). Specifically, in the case of a charge instruction, the storage battery 10 is charged from the power system 50, and in the case of a discharge instruction, the storage battery 10 is discharged to the power system 50. Then, the process of this cycle is complete
  • step S24 when the instruction received from the grid operation device 200 is a standby instruction (Y in S24), the charge / discharge control unit 25 performs charge / discharge control of the storage battery 10 for SOC adjustment (S26). Specifically, in the case of charging, charging is performed from the power system 50 or the generator, and in the case of discharging, discharging is performed to the resistor R1. Then, the process of this cycle is complete
  • the charge / discharge control unit 25 sets the SOC of the storage battery 10 to the appropriate value of the SOC for the first mode or the appropriate value of the SOC taking the first mode and the second mode into account at the start time of the next first mode.
  • the storage battery 10 is charged or discharged so that it becomes.
  • the charge / discharge start time determination unit 26 determines the charge start time at which charging should be started from the start time of the next first mode, the lower limit value of the SOC of the storage battery 10, the appropriate value of the SOC, and the maximum charge rate of the storage battery 10. To do.
  • the charge / discharge control unit 25 stops the charge or discharge for adjusting the SOC of the storage battery 10 until the charge start time determined by the charge / discharge start time determination unit 26.
  • the charging / discharging start time determination unit 26 starts the discharge from the start time of the next first mode, the upper limit value of the SOC of the storage battery 10, the appropriate value of the SOC, and the maximum discharge speed of the storage battery 10. To decide.
  • the charge / discharge control unit 25 stops charging or discharging for adjusting the SOC of the storage battery 10 until the discharge start time determined by the charge / discharge start time determination unit 26.
  • FIG. 6 is a diagram for explaining an example of charge start time determination processing by the charge / discharge start time determination unit 26 and charge / discharge control for SOC adjustment by the charge / discharge control unit 25.
  • the charge / discharge start time determination unit 26 determines the appropriate SOC at the next start time t2 of the first mode, the lower limit value of the SOC of the storage battery 10 (10% in the example of FIG. 6), and the start time t2 of the first mode.
  • the charging start time t1 is determined from the value (60% in the example of FIG. 6) and the maximum charging speed of the storage battery 10 (indicated by the charging speed function fc in FIG. 6).
  • the charging / discharging control unit 25 stops charging or discharging for adjusting the SOC of the storage battery 10 from the current time t0 to the charging start time t1. As a result, power can be sold to the facility 150 from the current time t0 to the charging start time t1, and the profit opportunities can be increased. In addition, when the discharge for SOC adjustment is started at a low speed from the current time t0 (see the dotted line), this profit opportunity is eliminated. The charge / discharge control unit 25 starts charging for SOC adjustment from the charging start time t1.
  • FIG. 7 is a flowchart for explaining charge start time determination processing by the charge / discharge start time determination unit 26 and charge / discharge control for SOC adjustment by the charge / discharge control unit 25.
  • the console terminal device 70 accesses the exchange system of the frequency control service according to the user operation of the power storage company, bids on the market one day before, and makes a successful bid for the frequency control service after a predetermined time (S30).
  • the appropriate value determination unit 24 determines an appropriate value of the SOC of the storage battery 10 and sets it in the charge / discharge control unit 25 (S31). This appropriate value may be an appropriate value of the SOC for the first mode, or may be an appropriate value of the SOC in which both the first mode and the second mode are taken into account.
  • the charge / discharge start time determination unit 26 determines the charge start time from the start time of the service, the lower limit value of the SOC of the storage battery 10, the appropriate value of the SOC determined by the appropriate value determination unit 24, and the maximum charge rate of the storage battery 10. Determine (S32).
  • the SOC monitoring unit 23 acquires the SOC of the storage battery 10 (S33).
  • the charge / discharge control unit 25 stops the charge / discharge control for SOC adjustment until the charge start time determined by the charge / discharge start time determination unit 26 (S34). When the acquired SOC exceeds the SOC range, charge / discharge control for SOC adjustment is performed.
  • the charge / discharge control unit 25 determines whether or not the charging start time has arrived (S35). When it has not arrived (N of S35), it changes to step S33 and waits for the arrival of the charge start time. When the charging start time has arrived (Y in S35), the charge / discharge control unit 25 starts charging control of the storage battery 10 for SOC adjustment (S36). Although not shown, when the appropriate SOC value of the storage battery 10 is reached, the charging control is terminated.
  • discharge start time determination process by the charge / discharge start time determination unit 26 and the charge / discharge control for SOC adjustment by the charge / discharge control unit 25 are also basically realized by the same algorithm.
  • the lower limit value of the SOC range in step S32 may be replaced with the upper limit value of the SOC range, and the charge in steps S32, S35, and S36 may be read as discharge.
  • FIG. 8 is a diagram for explaining another example of charge / discharge start time determination processing by the charge / discharge start time determination unit 26 and charge / discharge control for SOC adjustment by the charge / discharge control unit 25.
  • the determination method of the charging start time t1c is the same as the determination method of FIG.
  • the charge / discharge start time determination unit 26 determines the appropriate SOC at the next start time t2 of the first mode, the upper limit value of the SOC of the storage battery 10 (90% in the example of FIG. 8), and the start time t2 of the first mode.
  • the discharge start time t1d is determined from the value (60% in the example of FIG. 8) and the maximum discharge rate of the storage battery 10 (indicated by the discharge rate function fd in FIG. 8).
  • the charge / discharge control unit 25 postpones the start of charging.
  • the charge / discharge control unit 25 starts charging at time t1ci when the SOC of the storage battery 10 and the charging speed function fc intersect.
  • the charge / discharge control unit 25 postpones the discharge start.
  • the charge / discharge control unit 25 starts discharging at time t1di when the SOC of the storage battery 10 and the discharge speed function fd intersect.
  • the storage battery 10 that can provide a frequency control service and can supply power to the load 152 of the facility 150 can be used efficiently.
  • any method of use can be dealt with by controlling the SOC of the storage battery 10 as close as possible to the appropriate value of SOC that takes into account both methods of use during standby. Therefore, the profit opportunity of the storage battery 10 can be increased and the economic value of the storage battery 10 can be increased.
  • some functions of the charge / discharge instruction reception unit 21, the appropriate value determination unit 24, the charge / discharge control unit 25, and the charge / discharge start time determination unit 26 of the control device 20 are separately provided on the console terminal device 70 or the communication network 60. It may be carried by the device. The designer can appropriately distribute various functions to the control device 20, the console terminal device 70, and another device.
  • the storage battery 10 is provided as a frequency control power source for the power system 50 to the grid operating organization for a fee.
  • the power system 50 and the charge / discharge system 100 may be managed by the same power company.
  • the electric power company may provide the frequency control service free of charge, or may obtain compensation from an operator who owns the power plant 30 other than the electric power company.
  • the operation manager of the facility 150 may own the charge / discharge system 100. In this case, electric power can be supplied free of charge from the storage battery 10 to the load 152 of the facility 150 during a period when the frequency control service is not provided.
  • the invention according to the present embodiment may be specified by the items described below.
  • a storage battery capable of charging from the power system, discharging to the power system, and discharging to the load;
  • a control device for controlling charging and discharging of the storage battery includes: A first mode in which an appropriate value of SOC (State Of Charge) of the storage battery is charged / discharged between the power system and the storage battery according to an instruction from an operating entity of the power system, and power is supplied to the load An appropriate value determining unit that determines both of the second modes to be determined; A charge / discharge control unit that charges or discharges the storage battery so that the SOC of the storage battery approaches the appropriate value determined by the appropriate value determination unit; Including charging and discharging system.
  • SOC State Of Charge
  • the said appropriate value determination part adds the increment value according to the prediction power consumption amount transition of the said load to the appropriate value of SOC of the said 1st mode,
  • the item 1 which determines the appropriate value of SOC of the said storage battery is described Charging and discharging system.
  • the charge / discharge control unit charges or discharges the storage battery so that the SOC of the storage battery approaches the appropriate value during a time when the power does not need to be exchanged during the execution period of the first mode. 2.
  • the charge / discharge system according to 2.
  • the execution period of the first mode is a period in which the storage battery is provided as a frequency control power source for the power system to the operating entity for a fee or free of charge.
  • the execution period of the second mode is a period in which the storage battery is provided to the facility as a power source for a load of a neighboring facility, for a fee or free of charge.
  • the charge / discharge control unit may charge or discharge the storage battery so that the SOC of the storage battery becomes the appropriate value during a period other than the execution period of the first mode and the second mode.
  • the charge / discharge system according to 1.
  • the charge / discharge control unit determines whether the SOC of the storage battery is an appropriate value of the SOC for the first mode or the SOC in which both the first mode and the second mode are taken into account at the start time of the next first mode. Charge or discharge the storage battery to an appropriate value,
  • the charge / discharge system includes: A start time determination unit for determining a charge start time at which charging should be started from a start time of the next first mode, a lower limit value of the SOC of the storage battery, an appropriate value of the SOC, and a maximum charge rate of the storage battery;
  • the charge / discharge system according to item 1, wherein the charge / discharge control unit stops the charge for adjusting the SOC of the storage battery until the charge start time determined by the start time determination unit.
  • 100 charge / discharge system 150 facilities, 200 system operation device, 500 power supply system, 10 storage battery, 11 switch circuit, 12 bidirectional AC-DC converter, R1 resistance, 20 control device, 21 charge / discharge instruction accepting unit, 22 operation instruction Reception unit, 23 SOC monitoring unit, 24 Appropriate value determination unit, 25 Charge / discharge control unit, 26 Charge / discharge start time determination unit, 151 Distribution board, 152 load, 153 Facility power management device, 30 power plant, 40 consumers, 50 power system, 60 communication network, 70 console terminal device.
  • the present invention can be used for ancillary services using storage batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 蓄電池10は、電力系統50から充電、電力系統50に放電、および負荷152に放電することが可能である。適正値決定部24は、蓄電池10のSOC(StateOfCharge)の適正値を、電力系統50の運用主体からの指示に応じて電力系統50と蓄電池10との間で充放電する第1モード、および負荷152に電力を供給する第2モードの両方を参酌して決定する。充放電制御部25は、適正値決定部24により決定された適正値に、蓄電池10のSOCが近づくよう蓄電池10を充電または放電する。

Description

充放電システム
 本発明は、蓄電池の充放電システムに関する。
 近年、大手電力会社以外が保有する発電機や、自然エネルギー(太陽光や風力など)をもとにした発電機が、送配電用の電力系統に連結されることが多くなってきている。これらの発電機により発電された電力は低品質なものが多く、アンシラリー機能が重要になってきている。アンシラリー機能とは、電力系統により送配電される電力の、周波数安定化などの電力品質を維持する機能を指す。以下、本明細書ではアンシラリー機能の代表例として周波数維持機能を取り上げる。
 送配電される電力は、需要が供給を超過した場合、瞬時に周波数が低下し、供給が需要を超過した場合、瞬時に周波数が上昇する性質がある。そこで、周波数が低下した場合、発電出力を増加させ、周波数が上昇した場合、発電出力を減少させるよう出力調整することが考えられる。
 当該出力調整の手法として、火力発電所のガスタービンの回転速度を変更することが考えられる。この手法は数分~10分程度で発電出力を変更できる。この手法より短時間で電力供給を調整可能な手法として、電力系統に蓄電池(二次電池ともいう)を接続し、電力系統と蓄電池との間で充放電する手法が考えられる(たとえば、特許文献1参照)。この手法では、蓄電池の運用管理主体は、電力系統の運用管理主体からの充放電指示にしたがって、電力系統から充電または電力系統へ放電する。
 このようなアンシラリーサービスに使用される蓄電池は、大型施設(たとえば、病院など)の敷地内に設置されることが多い。この場合、大型施設の負荷にも電源供給することができ、蓄電池の用途を増やすことができる。
米国特許7839027号明細書
 蓄電池は寿命などの観点から、SOC(State Of Charge)範囲内で使用されることが求められる。蓄電池をアンシラリーサービスに使用する場合も同様である。SOCとは満充電容量に対する残容量の割合を示す指標である。
 上述したように、蓄電池をアンシラリーサービスに使用している期間中、蓄電池の運用管理主体は、電力系統の運用管理主体から充電指示または放電指示を受ける。この指示は負荷変動や発電状況に応じて様々なパターンで出される。充電指示と放電指示がバランスよく出されることもあれば、充電指示が多数回連続することもあれば、放電指示が多数回連続することもある。したがって、蓄電池をアンシラリーサービスに使用する場合、蓄電池のSOCの適正値を、SOC範囲の中間に設定することが望ましい。
 一方、蓄電池を施設の負荷への電源として使用する場合、SOCの適正値を、SOC範囲の上限に設定することが望ましい。たとえば、蓄電池を停電時のバックアップ電源として使用する場合や、平常時に施設に売電する場合において、蓄電池にできるだけ多く蓄電されている状態が望ましい。
 本発明はこうした状況に鑑みなされたものであり、その目的は、アンシラリーサービスを提供することも、施設の負荷に電源を供給することも可能な蓄電池を効率的に使用する技術を提供することにある。
 本発明のある態様の充放電システムは、電力系統から充電、電力系統に放電、および負荷に放電することが可能な蓄電池と、蓄電池の充放電を制御する制御装置と、を備える。制御装置は、蓄電池のSOCの適正値を、電力系統の運用主体からの指示に応じて電力系統と蓄電池との間で充放電する第1モード、および負荷に電力を供給する第2モードの両方を参酌して決定する適正値決定部と、適正値決定部により決定された適正値に、蓄電池のSOCが近づくよう蓄電池を充電または放電する充放電制御部と、を含む。
 本発明によれば、アンシラリーサービスを提供することも、施設の負荷に電源を供給することも可能な蓄電池を効率的に使用できる。
電力供給システムの全体構成を示す図である。 本発明の実施の形態に係る充放電システムを説明するための図である。 一日の負荷の予測消費電力量推移の一例を示す図である。 第1モードおよび第2モードの実行期間以外の期間における、制御装置によるSOC調整処理を説明するためのフローチャートである。 第1モードの実行期間内における、制御装置によるSOC調整処理を説明するためのフローチャートである。 充放電開始時刻決定部による充電開始時刻決定処理、および充放電制御部によるSOC調整のための充放電制御の一例を説明するための図である。 充放電開始時刻決定部による充電開始時刻決定処理、および充放電制御部によるSOC調整のための充放電制御を説明するためのフローチャートである。 充放電開始時刻決定部による充放電開始時刻決定処理、および充放電制御部によるSOC調整のための充放電制御の別の例を説明するための図である。
 図1は、電力供給システム500の全体構成を示す図である。電力供給システム500は、電力系統50に、複数の発電所30、複数の充放電システム100、複数の需要者40および系統運用装置200が接続される構成である。充放電システム100は、施設150に隣接して設置され、施設150の分電盤を介して電力系統50に接続される。したがって、充放電システム100は施設150の負荷にも電力を供給できる。本明細書では説明を簡略化するため、送電系統と配電系統を区別せずに両者をまとめて電力系統50と表記する。
 施設150は、病院や学校などの公共施設であってもよいし、工場やデータセンターなどの民間施設であってもよい。施設150内またはその近傍に、充放電システム100を構成する蓄電池を設置できるスペースがあればよい。
 電力供給システム500の運営形態には様々な形態がある。日本では、基本的に地域独占の電力会社により電力供給システム500全体が管理される形態であり、電力会社以外による電力の小売は認められていない(2011年9月現在)。各地域の電力会社はその地域の需要者40に対して電力供給責任を負う。また、日本の電力会社は周波数制御サービスを実施することにより、高品質で安定した電力を需要者40に供給している。
 一方、電力の小売が自由化されている国や地域もある。その代表例として、PJM(Pennsylvania New Jersey Maryland)が挙げられる。PJMには、卸売電力取引所(PX;Power Exchange)および独立系統運用機関(ISO;Independent System Operator)が設置されている。送電線を中心とする電力系統は電力会社が所有し、その運用をISOが行う仕組みである。PJMでは、設備容量市場、卸電力市場、周波数調整市場および金融的送電権市場が運営されている。
 電力系統50に連結される発電所30には、火力、原子力、水力、風力、太陽光など、様々な種類の発電所がある。火力発電所のエネルギー源は、主に、石炭、ガス、石油である。日本のように主力の発電所の多くを地域独占の電力会社が所有しているケースもあれば、PJMのように電力会社に加え、多くの独立発電事業者(IPP;Independent Power Producer)が発電所を分散して所有しているケースもある。
 系統運用装置200は、電力会社またはISOにより管理される装置である。系統運用装置200は、電力系統50の負荷変動(すなわち、電力の需要変動)を検知し、電力系統50全体の需給バランスを維持するための指示を、発電所30および充放電システム100の少なくとも一方に与える。上述したように、需給バランスが崩れると系統周波数が変動する。系統周波数と基準周波数との差が±0.2Hzを超えると、需要者40側の一部の機器に悪影響が及ぶ可能性がある。また、系統周波数と基準周波数との差が数%に及ぶと、発電機に、タービン翼共振や発電機軸ねじれなどの不具合が発生する可能性がある。
 系統運用装置200は、負荷変動に応じて発電出力を調整するよう発電所30に通信ネットワークを介して指示することができる。具体的には、電力需要が電力供給を上回ると、発電出力を増加させるよう指示し、電力需要が電力供給を下回ると、発電出力を減少させるよう指示する。原子力発電や水力発電は短時間での出力調整が難しいため、発電所による出力調整は主に、火力発電所により行われる。
 系統運用装置200は、負荷変動に応じて、電力系統50に蓄電池から放電または電力系統50から蓄電池に充電するよう充放電システム100に通信ネットワークを介して指示することができる。具体的には、電力需要が電力供給を上回ると、電力系統50に蓄電池から放電するよう指示し、電力需要が電力供給を下回ると、電力系統50から蓄電池に充電するよう指示する。
 前者の火力発電所による発電出力の変更には数分から10分程度かかる。後者の充放電システム100による電力供給の調整は瞬時に可能であるため、瞬時の負荷変動に対して、とくに有効である。PJMには、自動発電制御(AGC;Automatic Generation Control)による周波数調整市場と、充放電制御による周波数調整市場の両方がある。これらの市場が整備されていることにより、出力調整が困難な発電機しか保有しないIPPでも新規参入が容易となる。すなわち、周波数調整市場で取引される周波数制御サービスに対価を支払うことにより、設備投資費用を抑えることができる。
 以下、本明細書では充放電システム100による系統周波数の制御について説明する。また、周波数調整市場により収益を上げることを目的とした事業者(以下、蓄電事業者という)が存在し、その蓄電事業者が充放電システム100を管理し、系統運用装置200に周波数制御サービスを提供する例について説明する。この例では、その蓄電事業者は周波数制御サービスを提供していない期間、施設150に電力を小売りして収益を上げることができることとする。したがって、この例では、系統運用装置200を管理する系統運用主体と、充放電システム100の運用管理主体と、施設150の運営管理主体が異なることになる。
 図2は、本発明の実施の形態に係る充放電システム100を説明するための図である。充放電システム100は、蓄電池10、スイッチ回路11、双方向AC-DCコンバータ12、抵抗R1、制御装置20およびコンソール端末装置70を備える。施設150は、分電盤151、負荷152および施設電力管理装置153を備える。図2において、実線の矢印は電力の流れを示し、破線の矢印は制御信号の流れを示す。
 蓄電池10は、電力系統50から充電、電力系統50に放電、および施設150の負荷152に放電することが可能な電池である。蓄電池10にはリチウムイオン電池、ニッケル水素電池、鉛電池などが採用される。スイッチ回路11は、蓄電池10と、双方向AC-DCコンバータ12および抵抗R1との間に設けられる。スイッチ回路11は、制御装置20からの指示に応じて、蓄電池10から双方向AC-DCコンバータ12および分電盤151に電流を流すか、分電盤151から双方向AC-DCコンバータ12を介して蓄電池10に電流を流すか、蓄電池10から抵抗R1に電流を流すか、切り替える。
 双方向AC-DCコンバータ12は、制御装置20からの指示に応じて、分電盤151から供給される交流電力を直流電力に変換して蓄電池10に供給するか、蓄電池10から供給される直流電力を交流電力に変換して分電盤151に供給する。抵抗R1は蓄電池10から供給されるエネルギーをジュール熱として大気に放出する。
 分電盤151は電力系統50に接続され、施設150に属する各種の負荷に分電する。なお、図2および以下の説明では施設150に属する各種の負荷を総称して負荷152と表記する。また、分電盤151は充放電システム100に接続され、蓄電池10と電力系統50との間の電力のやりとりを中継する。また、充放電システム100の制御装置20または施設電力管理装置153からの指示に応じて、蓄電池10から流れる電流を負荷152に供給する。
 なお、図2では双方向AC-DCコンバータ12と電力系統50とが、施設150の分電盤151を介して接続される構成を描いているが、双方向AC-DCコンバータ12と電力系統50とが直接接続される構成であってもよい。
 施設電力管理装置153は、負荷152の電力市場状況を管理するための、サーバまたやPCなどで構築される装置である。施設電力管理装置153が保持するデータベースには、負荷152の毎日の消費電力推移(すなわち、負荷曲線)が蓄積される。施設電力管理装置153は、データベースに蓄積された過去の負荷曲線、明日の天気情報などをもとに、負荷152の将来の消費電力量推移(たとえば、明日の消費電力量推移)を予測する。この予測アルゴリズムについては、既存の一般的なものを使用すればよい。本実施の形態では、施設電力管理装置153は、この予測消費電力量推移を通信ネットワーク60(たとえば、インターネット)を介して制御装置20に通知する。
 施設電力管理装置153は、施設150の電力管理者の操作にしたがい、通信ネットワーク60を介して制御装置20に、蓄電池10から負荷152への電力供給を依頼する。なお、この依頼はオフラインでなされてもよい。たとえば、停電により施設電力管理装置153が使用できない場合、施設150の電力管理者は、充放電システム100の運用管理者に電話で依頼してもよいし、直接会って依頼してもよい。また、停電などの緊急時には蓄電池10から負荷152へ電力が供給されるよう、施設150と蓄電事業者との間で事前契約が締結されていてもよい。
 また、施設150と蓄電事業者は、所定の時間帯に蓄電池10から負荷152に両者が合意した対価で電力を供給する電力売買契約を、任意に締結できる。この売買契約はオンラインで締結されてもよいし、オフラインで締結されてもよい。前者の場合、施設電力管理装置153と、制御装置20(コンソール端末装置70を含む)とを使用して締結される。その際、制御装置20が施設電力管理装置153の画面に各時間帯のオファーレートを表示させ、施設電力管理装置153がコンソール端末装置70の画面に各時間帯のビットレートを表示させてもよい。
 通信ネットワーク60に、系統運用装置200、制御装置20、コンソール端末装置70および施設電力管理装置153が接続される。また、図示しない周波数制御サービスの取引所システムも接続される。本実施の形態では、PJMと同様に、周波数制御サービス市場として、一日前市場とリアルタイム市場の二種類があることを前提とする。
 たとえば、PJMの一日前市場はつぎのように運営されている。蓄電事業者は、周波数制御サービス提供日の前日の0時~18時(12~16時を除く)に一時間単位で応札する。応札の最小単位は0.5MWである。落札結果はサービス提供日の前日の20時に通知される。決済価格は応札価格ではなく市場価格に決定される。市場価格は取引所で需要と供給が一致した価格である。なお、当該需要は当日の電力需要の予測値、当日の電力供給の予定値などから算出される。
 系統運用機関は、一日前市場で周波数制御用の補助電源を確保できる。しかしながら、当日の天気や発電所の稼働状況の変化などにより、電力の需給バランスが予想以上に拡大することがある。その場合、リアルタイム市場を開設して、追加的に周波数制御サービスへの参加者を募る。リアルタイム市場は電力の需給バランスが予想の範囲内の場合、開設されない。
 系統運用装置200は、電力の需給バランスの変動に応じて、その時間に周波数制御サービスを提供している充放電システム100の制御装置20に、通信ネットワーク60を介して充電指示信号または放電指示信号を送信する。系統運用装置200は、充電指示信号または放電指示信号を定期的(たとえば、2秒または4秒に1回)に送信する。なお、充電および放電が必要ない周期では、信号を送信しなくてもよいし、待機指示信号を送信してもよい。
 以下、より具体的に説明する。系統運用装置200は、電力の需給バランスを監視し、需給バランスにギャップが生じた場合、そのギャップを埋めるための電力量を算出する。放電が必要な場合、算出された電力量を放電するよう少なくとも一つの充放電システム100の制御装置20に放電指示信号を送信する。同様に、充電が必要な場合、算出された電力量を充電するよう少なくとも一つの充放電システム100の制御装置20に充電指示信号を送信する。
 系統運用装置200は、各充放電システム100の蓄電池10の充電量と放電量をリアルタイムに管理し、各充放電システム100の蓄電池10の充電量と放電量とが可及的に等しくなるよう、放電指示および充電指示を発行すべき充放電システム100を決定する。この放電指示および充電指示を発行すべき充放電システム100を決定するためのアルゴリズムは、既存の一般的なアルゴリズムを使用すればよい。
 コンソール端末装置70は、蓄電事業者のユーザが使用する、PCなどで構築される装置である。コンソール端末装置70は、蓄電池10が設置されている場所の近隣に設置されていてもよいし、遠方に設置されていてもよい。一つの蓄電事業者が複数の充放電システム100を運用管理する場合、その蓄電事業者のオペレーションルームに当該複数の充放電システム100の共通のコンソール端末装置70が設置されてもよい。
 コンソール端末装置70は、蓄電事業者のユーザ操作にしたがい、周波数制御サービスの取引所システムにアクセスして、一日前市場またはリアルタイム市場に応札し、その落札結果を受領する。また、コンソール端末装置70は、蓄電池10から施設150の負荷152へ電力を供給する契約を締結するために使用される。また、コンソール端末装置70は、蓄電事業者のユーザ操作にしたがい、制御装置20の各種パラメータを設定変更したり、蓄電池10、スイッチ回路11、双方向AC-DCコンバータ12および分電盤151を手動制御したりする。
 制御装置20は、主に蓄電池10の充放電を制御する。制御装置20は、充放電指示受付部21、操作指示受付部22、SOC監視部23、適正値決定部24、充放電制御部25および充放電開始時刻決定部26を含む。これらの構成は、ハードウエア的には、任意のプロセッサ、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
 充放電指示受付部21は、系統運用装置200からの指示信号を受信する。より具体的には、一日前市場またはリアルタイム市場により落札した、周波数制御サービスを提供する期間に、系統運用装置200から定期的に充電指示、放電指示または待機指示を受ける。蓄電事業者にとって、このサービス提供期間は、系統運用機関に対して、系統運用装置200からの指示に応じて電力系統50と蓄電池10との間で充放電可能な状態に維持する義務を負う期間となる。
 以下、系統運用装置200からの指示に応じて電力系統50と蓄電池10との間で充放電するモードを第1モードとよぶ。また、蓄電池10から施設150の負荷152に電力を供給するモードを第2モードとよぶ。第1モードの実行期間は、蓄電池10を電力系統50の周波数制御用電源として系統運用機関に提供する期間である。第2モードの実行期間は、蓄電池10を負荷152の電源として施設150に提供する期間である。
 操作指示受付部22は、コンソール端末装置70からの指示を受け付ける。SOC監視部23は、蓄電池10のSOCを継続的に取得して、その値を監視する。SOCの値は積算電流計などにより計測できる。なお、リチウムイオン電池では電圧計により計測できる。
 適正値決定部24は、蓄電池10のSOCの適正値を決定する。第2モードだけを考えた場合、できるだけ多くのエネルギーを蓄積しておくことが好ましいため、蓄電池10のSOCの適正値は、蓄電池10のSOC範囲の上限値に設定することが望ましい。すなわち、充電終止電圧に設定することが望ましい。
 これに対し、第1モードだけを考えた場合、蓄電池10のSOCの適正値は、蓄電池10のSOC範囲の中間値近傍に設定することが望ましい。これは、系統運用装置200から充電指示を受ける期待値と放電指示を受ける期待値が等しくなるというモデルに基づく。たとえば、SOC範囲が10%~90%の場合、適正値を50%~60%程度に設定することが望ましい。一般的に、放電速度のほうが充電速度より速いため、SOC範囲の中間値より所定の値、高く設定するとよい。
 本実施の形態では、蓄電池10は第1モードと第2モードの両方で使用される。これに対応して、適正値決定部24は、蓄電池10のSOCの適正値を、第1モードおよび第2モードの両方を参酌して決定する。たとえば、第1モード用のSOCに所定の増分値(たとえば、10%)を加えたSOCを、第1モードおよび第2モードの両方が参酌されたSOCの適正値としてもよい。
 また、施設電力管理装置153から負荷152の予測消費電力量推移が取得される場合、適正値決定部24は、第1モード用のSOCの適正値に、負荷152の予測消費電力量推移に応じた増分値を加えて、蓄電池10のSOCの適正値を決定してもよい。
 図3は、一日の負荷152の予測消費電力量推移の一例を示す図である。適正値決定部24は、一日の負荷152の予測消費電力量推移の最小値を0とし、最大値を所定値(たとえば、10)とし、各時刻の予測消費電力量をゼロから所定値の間で正規化する。適正値決定部24は、各時刻において第1モード用のSOCの適正値に、各時刻の正規化値を加算することにより、各時刻におけるSOCの適正値を決定する。
 このような、第1モードおよび第2モードの両方が参酌されたSOCの適正値は、リアルタイム市場の開催、施設150からの電力供給依頼のいずれにも対応すべく待機している蓄電池10のSOCの適正値として有効である。
 なお、経時変化などにより蓄電池10の満充電容量が変化した場合、適正値決定部24は、その変化に応じて、適正値に対応する容量値を変更する。
 図2に戻る。充放電制御部25は、適正値決定部24により決定された適正値に、蓄電池10のSOCが近づくよう蓄電池10を充電または放電する。このSOC調整のための放電は、抵抗R1に電流を流すことにより行う。また、このSOC調整のための充電は、電力系統50から充電してもよいし、発電機(たとえば、太陽光パネル)を併設している場合、当該発電機から充電してもよい。なお、このSOC調整のための充放電は、基本的に、第1モードおよび第2モードの実行期間以外の期間に、実施される。
 充放電制御部25は、第1モードの開始時刻に蓄電池10のSOCを第1モード用のSOCの適正値に近づくよう、蓄電池10を充電または放電してもよい。また、充放電制御部25は、第2モードの開始時刻に蓄電池10のSOCを第2モード用のSOCの適正値に近づくよう、蓄電池10を充電または放電してもよい。あらかじめ蓄電池10のスケジュールが決定されている場合、モードが決定されている時間帯では、そのモード用のSOCの適正値に、蓄電池10のSOCを近づけるよう制御してもよい。なお、停電や緊急のリアルタイム市場への参加など、モードの実行期間中に、異なるモードに遷移する可能性を考慮して、第1モードおよび第2モードの両方が参酌されたSOCの適正値に、蓄電池10のSOCを近づけるよう制御してもよい。SOC調整のための充放電の手法は、上述した手法と同様の手法を使用する。
 充放電制御部25は、第1モードの実行期間内において、電力系統50と蓄電池10との間で電力のやりとりをする必要がない期間、蓄電池10のSOCが適正値決定部24により決定された適正値に近づくよう蓄電池10を充電または放電する。電力系統50と蓄電池10との間で電力のやりとりをする必要がない期間とは、系統運用装置200から最後に受けた充電指示または放電指示に基づく充電または放電が終了後、つぎの充電指示および放電指示のいずれかを受けるまでの期間を指す。
 この制御は、一日前市場により落札された周波数制御サービスおよびリアルタイム市場で落札された周波数制御サービスの両方に適用可能である。とくに、蓄電池10のSOCとその適正値が離れている可能性が高い、リアルタイム市場で落札された周波数制御サービスに有効である。SOC調整のための充放電の手法は、上述した手法と同様の手法を使用する。
 図4は、第1モードおよび第2モードの実行期間以外の期間における、制御装置20によるSOC調整処理を説明するためのフローチャートである。コンソール端末装置70は、蓄電事業者のユーザ操作にしたがい、周波数制御サービスの取引所システムにアクセスして、一日前市場に応札し、所定時間後の周波数制御サービスを落札する(S10)。適正値決定部24は、蓄電池10のSOCの適正値を決定し、充放電制御部25に設定する(S11)。この適正値は、第1モード用のSOCの適正値であってもよいし、第1モードおよび第2モードの両方が参酌されたSOCの適正値であってもよい。SOC監視部23は、蓄電池10のSOCを取得する(S12)。
 充放電制御部25は、取得されたSOCと設定された適正値とを比較する(S13)。両者が一致しない場合(S13のN)、蓄電池10を充放電制御する(S14)。具体的には、当該SOCが当該適正値より高い場合、充放電制御部25はスイッチ回路11を制御して、蓄電池10から抵抗R1に放電させる。一方、当該SOCが当該適正値より低い場合、充放電制御部25はスイッチ回路11、双方向AC-DCコンバータ12および分電盤151を制御して、電力系統50から蓄電池10に充電させる。その後、ステップS12に遷移し、蓄電池10のSOCの取得処理およびSOCと適正値との比較処理が継続される。
 ステップS13にて、SOCと適正値が一致した場合(S13のY)、SOC調整処理が終了する。なお、図示しないがつぎの第1モードの開始時刻が到来した場合、SOCと適正値が一致しない場合でも、SOC調整処理が終了する。
 図5は、第1モードの実行期間内における、制御装置20によるSOC調整処理を説明するためのフローチャートである。なお、図5のフローチャートを簡略化するため、適正値決定部24によるSOCの決定および設定処理については省略している。また、系統運用装置200は、各充放電システム100の制御装置20に、周期的(たとえば、2秒または4秒に1回)に充電指示、放電指示または待機指示のいずれかを発行するものとする。
 第1モードの実行期間が開始すると、充放電システム100は周波数制御サービスの提供を開始する(S20)。充放電制御部25は第1モードの実行期間が終了したか否か判定する(S21)。終了した場合(S21のY)、周波数制御サービスの提供を終了する。終了していない場合(S21のN)、ステップS22に遷移する。
 SOC監視部23は、蓄電池10のSOCを取得する(S22)。充放電指示受付部21は、系統運用装置200から指示を受信する(S23)。充放電制御部25は、その指示が待機指示であるか否か判定する(S24)。待機指示でない場合(S24のN)、その指示は充電指示または放電指示となる。充放電制御部25は、受信した充電指示または放電指示に応じて、蓄電池10の充放電制御を実施する(S25)。具体的には、充電指示の場合、電力系統50から蓄電池10に充電させ、放電指示の場合、蓄電池10から電力系統50に放電させる。その後、この周期の処理を終了し、ステップS21に遷移し、つぎの周期の処理に移る。
 ステップS24にて、系統運用装置200から受信した指示が待機指示である場合(S24のY)、充放電制御部25は、SOC調整のための蓄電池10の充放電制御を実施する(S26)。具体的には、充電の場合、電力系統50または発電機から充電し、放電の場合、抵抗R1に放電する。その後、この周期の処理を終了し、ステップS21に遷移し、つぎの周期の処理に移る。したがって、待機指示が続く場合、SOC調整のための充放電制御を継続することができる。
 図2に戻る。上述したように、充放電制御部25はつぎの第1モードの開始時刻に、蓄電池10のSOCが第1モード用のSOCの適正値または第1モードおよび第2モードを加味したSOCの適正値になるよう、蓄電池10を充電または放電する。
 充放電開始時刻決定部26は、つぎの第1モードの開始時刻、蓄電池10のSOCの下限値、当該SOCの適正値および蓄電池10の最大充電速度から、充電を開始すべき充電開始時刻を決定する。充放電制御部25は、充放電開始時刻決定部26により決定された充電開始時刻まで、蓄電池10のSOCを調整するための充電または放電を停止する。
 また、充放電開始時刻決定部26は、つぎの第1モードの開始時刻、蓄電池10のSOCの上限値、当該SOCの適正値および蓄電池10の最大放電速度から、放電を開始すべき放電開始時刻を決定する。充放電制御部25は、充放電開始時刻決定部26により決定された放電開始時刻まで、蓄電池10のSOCを調整するための充電または放電を停止する。
 図6は、充放電開始時刻決定部26による充電開始時刻決定処理、および充放電制御部25によるSOC調整のための充放電制御の一例を説明するための図である。図6では、蓄電池10のSOC調整のために充電が必要となる場合について説明する。充放電開始時刻決定部26は、つぎの第1モードの実行開始時刻t2と、蓄電池10のSOCの下限値(図6の例では10%)、第1モードの実行開始時刻t2におけるSOCの適正値(図6の例では60%)および蓄電池10の最大充電速度(図6では充電速度関数fcで示す)から、充電開始時刻t1を決定する。
 充放電制御部25は、現時刻t0から充電開始時刻t1まで、蓄電池10のSOCを調整するための充電または放電を停止する。これにより、現時刻t0から充電開始時刻t1まで、施設150に売電することができ、収益機会を増やすことができる。なお、現時刻t0から低速でSOC調整のための放電を開始した場合(矢印点線参照)、この収益機会をなくすことになる。充放電制御部25は、充電開始時刻t1からSOC調整のための充電を開始する。
 図7は、充放電開始時刻決定部26による充電開始時刻決定処理、および充放電制御部25によるSOC調整のための充放電制御を説明するためのフローチャートである。コンソール端末装置70は、蓄電事業者のユーザ操作にしたがい、周波数制御サービスの取引所システムにアクセスして、一日前市場に応札し、所定時間後の周波数制御サービスを落札する(S30)。適正値決定部24は、蓄電池10のSOCの適正値を決定し、充放電制御部25に設定する(S31)。この適正値は、第1モード用のSOCの適正値であってもよいし、第1モードおよび第2モードの両方が参酌されたSOCの適正値であってもよい。
 充放電開始時刻決定部26は、上記サービスの開始時刻と、蓄電池10のSOCの下限値、適正値決定部24により決定されたSOCの適正値および蓄電池10の最大充電速度から、充電開始時刻を決定する(S32)。SOC監視部23は、蓄電池10のSOCを取得する(S33)。充放電制御部25は、充放電開始時刻決定部26により決定された充電開始時刻まで、SOC調整のための充放電制御を停止する(S34)。なお、取得されたSOCが、SOC範囲を超える場合は、SOC調整のための充放電制御を実施する。
 充放電制御部25は、充電開始時刻が到来したか否かを判定する(S35)。到来していない場合(S35のN)、ステップS33に遷移して、充電開始時刻の到来を待つ。充電開始時刻が到来した場合(S35のY)、充放電制御部25は、SOC調整のための蓄電池10の充電制御を開始する(S36)。図示しないが、蓄電池10のSOCの適正値に到達したら、当該充電制御を終了する。
 なお、充放電開始時刻決定部26による放電開始時刻決定処理、および充放電制御部25によるSOC調整のための充放電制御についても、基本的に同様のアルゴリズムで実現である。ステップS32のSOC範囲の下限値をSOC範囲の上限値に、ステップS32、ステップS35およびステップS36の充電を放電に読みかえればよい。
 図8は、充放電開始時刻決定部26による充放電開始時刻決定処理、および充放電制御部25によるSOC調整のための充放電制御の別の例を説明するための図である。充電開始時刻t1cの決定方法は、図6の決定方法と同様である。充放電開始時刻決定部26は、つぎの第1モードの実行開始時刻t2と、蓄電池10のSOCの上限値(図8の例では90%)、第1モードの実行開始時刻t2におけるSOCの適正値(図8の例では60%)および蓄電池10の最大放電速度(図8では放電速度関数fdで示す)から、放電開始時刻t1dを決定する。
 充放電制御部25は、充電開始時刻t1cに、蓄電池10のSOCがSOC範囲の下限値とSOCの適正値との間にある場合、充電開始を延期する。充放電制御部25は、蓄電池10のSOCと充電速度関数fcが交わった時刻t1ciに充電を開始する。同様に、充放電制御部25は、放電開始時刻t1dに、蓄電池10のSOCがSOC範囲の上限値とSOCの適正値との間にある場合、放電開始を延期する。充放電制御部25は、蓄電池10のSOCと放電速度関数fdが交わった時刻t1diに放電を開始する。この例によれば、図6、7の例より、施設150に売電できる時間をさらに長くすることができ、収益機会をさらに増やすことができる。
 以上説明したように本実施の形態によれば、周波数制御サービスを提供することも、施設150の負荷152に電源を供給することも可能な蓄電池10を効率的に使用できる。すなわち、待機中に両方の使用方法を加味したSOCの適正値に、蓄電池10のSOCをできるだけ近づけるよう制御することにより、いずれの使用方法にも対処することができる。したがって、蓄電池10の収益機会を増やし、蓄電池10の経済的価値を高めることができる。
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 また、制御装置20の充放電指示受付部21、適正値決定部24、充放電制御部25、充放電開始時刻決定部26の一部の機能を、コンソール端末装置70または通信ネットワーク60上の別の装置で担ってもよい。設計者は各種機能を、制御装置20、コンソール端末装置70、および別の装置に適宜、振り分けることができる。
 また、上述の実施の形態では、蓄電池10を電力系統50の周波数制御用電源として、有償で系統運用機関に提供する例を挙げたが、これに限るものではない。電力系統50と充放電システム100とを同じ電力会社が運営管理してもよい。この場合、当該電力会社は周波数制御サービスを無償で実施してもよいし、当該電力会社以外で発電所30を所有する事業者から対価を得てもよい。
 また、上述の実施の形態では、蓄電事業者と施設150の運営管理者が異なる例を挙げたが、これに限るものではない。施設150の運営管理者が充放電システム100を所有していてもよい。この場合、周波数制御サービスを提供していない期間、蓄電池10から施設150の負荷152に無償で電力を供給できる。
 なお、本実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。
[項目1]
 電力系統から充電、前記電力系統に放電、および負荷に放電することが可能な蓄電池と、
 前記蓄電池の充放電を制御する制御装置と、を備え、
 前記制御装置は、
 前記蓄電池のSOC(State Of Charge)の適正値を、前記電力系統の運用主体からの指示に応じて前記電力系統と前記蓄電池との間で充放電する第1モード、および前記負荷に電力を供給する第2モードの両方を参酌して決定する適正値決定部と、
 前記適正値決定部により決定された適正値に、前記蓄電池のSOCが近づくよう前記蓄電池を充電または放電する充放電制御部と、
 を含む充放電システム。
[項目2]
 前記適正値決定部は、前記第1モード用のSOCの適正値に、前記負荷の予測消費電力量推移に応じた増分値を加えて、前記蓄電池のSOCの適正値を決定する項目1に記載の充放電システム。
[項目3]
 前記充放電制御部は、前記第1モードの実行期間内において、前記電力のやりとりをする必要がない時間に、前記蓄電池のSOCが前記適正値に近づくよう前記蓄電池を充電または放電する項目1または2に記載の充放電システム。
[項目4]
 前記第1モードの実行期間は、前記蓄電池を前記電力系統の周波数制御用電源として、有償または無償で前記運用主体に提供する期間であり、
 前記第2モードの実行期間は、前記蓄電池を近隣施設の負荷の電源として、有償または無償で前記施設に提供する期間であり、
 前記充放電制御部は、前記第1モードおよび前記第2モードの実行期間以外の期間に、前記蓄電池のSOCが前記適正値になるよう、前記蓄電池を充電または放電する項目1から3のいずれかに記載の充放電システム。
[項目5]
 前記充放電制御部は、つぎの第1モードの開始時刻に、前記蓄電池のSOCが前記第1モード用のSOCの適正値または前記第1モードおよび前記第2モードの両方が参酌されたSOCの適正値になるよう、前記蓄電池を充電または放電し、
 前記充放電システムは、
 つぎの第1モードの開始時刻、前記蓄電池のSOCの下限値、前記SOCの適正値および前記蓄電池の最大充電速度から、充電を開始すべき充電開始時刻を決定する開始時刻決定部をさらに含み、
 前記充放電制御部は、前記開始時刻決定部により決定された充電開始時刻まで前記蓄電池のSOCを調整するための充電を停止する項目1に記載の充放電システム。
 100 充放電システム、 150 施設、 200 系統運用装置、 500 電力供給システム、 10 蓄電池、 11 スイッチ回路、 12 双方向AC-DCコンバータ、 R1 抵抗、 20 制御装置、 21 充放電指示受付部、 22 操作指示受付部、 23 SOC監視部、 24 適正値決定部、 25 充放電制御部、 26 充放電開始時刻決定部、 151 分電盤、 152 負荷、 153 施設電力管理装置、 30 発電所、 40 需要者、 50 電力系統、 60 通信ネットワーク、 70 コンソール端末装置。
 本発明は、蓄電池を用いたアンシラリーサービスに利用可能である。

Claims (5)

  1.  電力系統から充電、前記電力系統に放電、および負荷に放電することが可能な蓄電池と、
     前記蓄電池の充放電を制御する制御装置と、を備え、
     前記制御装置は、
     前記蓄電池のSOC(State Of Charge)の適正値を、前記電力系統の運用主体からの指示に応じて前記電力系統と前記蓄電池との間で充放電する第1モード、および前記負荷に電力を供給する第2モードの両方を参酌して決定する適正値決定部と、
     前記適正値決定部により決定された適正値に、前記蓄電池のSOCが近づくよう前記蓄電池を充電または放電する充放電制御部と、
     を含む充放電システム。
  2.  前記適正値決定部は、前記第1モード用のSOCの適正値に、前記負荷の予測消費電力量推移に応じた増分値を加えて、前記蓄電池のSOCの適正値を決定する請求項1に記載の充放電システム。
  3.  前記充放電制御部は、前記第1モードの実行期間内において、前記電力のやりとりをする必要がない時間に、前記蓄電池のSOCが前記適正値に近づくよう前記蓄電池を充電または放電する請求項1または2に記載の充放電システム。
  4.  前記第1モードの実行期間は、前記蓄電池を前記電力系統の周波数制御用電源として、有償または無償で前記運用主体に提供する期間であり、
     前記第2モードの実行期間は、前記蓄電池を近隣施設の負荷の電源として、有償または無償で前記施設に提供する期間であり、
     前記充放電制御部は、前記第1モードおよび前記第2モードの実行期間以外の期間に、前記蓄電池のSOCが前記適正値になるよう、前記蓄電池を充電または放電する請求項1から3のいずれかに記載の充放電システム。
  5.  前記充放電制御部は、つぎの第1モードの開始時刻に、前記蓄電池のSOCが前記第1モード用のSOCの適正値または前記第1モードおよび前記第2モードの両方が参酌されたSOCの適正値になるよう、前記蓄電池を充電または放電し、
     前記充放電システムは、
     つぎの第1モードの開始時刻、前記蓄電池のSOCの下限値、前記SOCの適正値および前記蓄電池の最大充電速度から、充電を開始すべき充電開始時刻を決定する開始時刻決定部をさらに含み、
     前記充放電制御部は、前記開始時刻決定部により決定された充電開始時刻まで前記蓄電池のSOCを調整するための充電を停止する請求項1に記載の充放電システム。
PCT/JP2012/006136 2011-09-27 2012-09-26 充放電システム WO2013046657A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-211281 2011-09-27
JP2011211281A JP2014233098A (ja) 2011-09-27 2011-09-27 充放電システム

Publications (1)

Publication Number Publication Date
WO2013046657A1 true WO2013046657A1 (ja) 2013-04-04

Family

ID=47994740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006136 WO2013046657A1 (ja) 2011-09-27 2012-09-26 充放電システム

Country Status (2)

Country Link
JP (1) JP2014233098A (ja)
WO (1) WO2013046657A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192304A1 (ja) * 2013-05-29 2014-12-04 京セラ株式会社 被制御装置、制御装置、装置制御方法及び装置制御システム
WO2014198292A1 (en) * 2013-06-11 2014-12-18 Caterva Gmbh A method and system for charging an energy storage device
WO2015040721A1 (ja) * 2013-09-19 2015-03-26 東芝三菱電機産業システム株式会社 蓄電池システム
JP2016059186A (ja) * 2014-09-10 2016-04-21 オムロン株式会社 電力制御装置、電力制御方法、プログラム、および電力制御システム
JP2016059185A (ja) * 2014-09-10 2016-04-21 オムロン株式会社 電力制御装置、電力制御方法、プログラム、および電力制御システム
US9972036B2 (en) 2014-03-14 2018-05-15 Panasonic Intellectual Property Management Co., Ltd. Power supply and demand control method, power supply and demand control device
US10297877B2 (en) 2015-03-16 2019-05-21 Kabushiki Kaisha Toshiba Storage battery control device and storage battery control method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995653B2 (ja) * 2012-08-16 2016-09-21 三菱電機株式会社 充放電制御装置、充放電制御方法、プログラム及び充放電制御システム
JP6455661B2 (ja) * 2014-12-24 2019-01-23 富士電機株式会社 自立運転システム
JP6356643B2 (ja) * 2015-08-31 2018-07-11 株式会社デンソー 電力制御システム及びサーバー
JP6375549B2 (ja) 2015-09-29 2018-08-22 株式会社村田製作所 電力供給システム
JP6783641B2 (ja) * 2016-12-06 2020-11-11 株式会社東芝 充放電計画装置、方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274981A (ja) * 2003-01-15 2004-09-30 Sumitomo Electric Ind Ltd 2次電池制御方法、電源システム及び通信装置
JP2010226942A (ja) * 2009-02-26 2010-10-07 Sanyo Electric Co Ltd 系統連系装置、系統連系システム及び配電システム
WO2011016273A1 (ja) * 2009-08-04 2011-02-10 日本電気株式会社 エネルギーシステム
JP2011083083A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 電力供給システム及び電力供給システムの制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274981A (ja) * 2003-01-15 2004-09-30 Sumitomo Electric Ind Ltd 2次電池制御方法、電源システム及び通信装置
JP2010226942A (ja) * 2009-02-26 2010-10-07 Sanyo Electric Co Ltd 系統連系装置、系統連系システム及び配電システム
WO2011016273A1 (ja) * 2009-08-04 2011-02-10 日本電気株式会社 エネルギーシステム
JP2011083083A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 電力供給システム及び電力供給システムの制御装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192304A1 (ja) * 2013-05-29 2014-12-04 京セラ株式会社 被制御装置、制御装置、装置制御方法及び装置制御システム
JPWO2014192304A1 (ja) * 2013-05-29 2017-02-23 京セラ株式会社 被制御装置、制御装置、装置制御方法及び装置制御システム
US10090677B2 (en) 2013-05-29 2018-10-02 Kyocera Corporation Controlled device, control device, device control method, and device control system
WO2014198292A1 (en) * 2013-06-11 2014-12-18 Caterva Gmbh A method and system for charging an energy storage device
US10404076B2 (en) 2013-06-11 2019-09-03 Alelion Energy Systems Ab Method and system for charging an energy storage device
WO2015040721A1 (ja) * 2013-09-19 2015-03-26 東芝三菱電機産業システム株式会社 蓄電池システム
JPWO2015040721A1 (ja) * 2013-09-19 2017-03-02 東芝三菱電機産業システム株式会社 蓄電池システム
US9935473B2 (en) 2013-09-19 2018-04-03 Toshiba Mitsubishi-Electric Industrial Systems Corporation Storage battery system
US9972036B2 (en) 2014-03-14 2018-05-15 Panasonic Intellectual Property Management Co., Ltd. Power supply and demand control method, power supply and demand control device
JP2016059186A (ja) * 2014-09-10 2016-04-21 オムロン株式会社 電力制御装置、電力制御方法、プログラム、および電力制御システム
JP2016059185A (ja) * 2014-09-10 2016-04-21 オムロン株式会社 電力制御装置、電力制御方法、プログラム、および電力制御システム
US10297877B2 (en) 2015-03-16 2019-05-21 Kabushiki Kaisha Toshiba Storage battery control device and storage battery control method

Also Published As

Publication number Publication date
JP2014233098A (ja) 2014-12-11

Similar Documents

Publication Publication Date Title
WO2013046657A1 (ja) 充放電システム
Eckroad et al. EPRI-DOE handbook of energy storage for transmission & distribution applications
JP2014233096A (ja) 充放電システム
EP2688173B1 (en) Multi-service provision with energy storage system
RU2338311C2 (ru) Реагирующая подстанция электроэнергетической системы
US9229501B2 (en) Distributed grid-interactive photovoltaic-based power dispatching
JP5530314B2 (ja) 地域内電力融通システム
US20070005192A1 (en) Fast acting distributed power system for transmission and distribution system load using energy storage units
Kirby et al. Load as a resource in providing ancillary services
JP2013169068A (ja) 電力制御システム
JP2018530987A (ja) 発電装置用のインテリジェント制御システム
US8121743B2 (en) Power restoration management method and system
JP2013169069A (ja) 充放電システム
JP2003199249A (ja) 電力供給網の運用方法とそのシステム
KR101918625B1 (ko) 에너지 저장 장치를 이용하여 복수의 수용가를 대상으로 전력 서비스를 제공하는 시스템 및 방법
WO2013046656A1 (ja) 充放電システム
JP2013168010A (ja) 電力制御システム
Paananen et al. Grid-interactive data centers: enabling decarbonization and system stability
JP2013169067A (ja) 電力制御システム
Kolln et al. Common grid services: Terms and definitions report
Klausen Market opportunities and regulatory framework conditions for stationary battery storage systems in Germany
JP6143420B2 (ja) 料金請求を生成するためのシステムおよび方法
JP2019050667A (ja) 処理装置、処理方法及びプログラム
JP2014233097A (ja) 充放電システム
Ongsakul et al. Coordinated fuzzy constrained optimal power dispatch for bilateral contract, balancing electricity, and ancillary services markets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP