WO2013046655A1 - Wireless device - Google Patents

Wireless device Download PDF

Info

Publication number
WO2013046655A1
WO2013046655A1 PCT/JP2012/006133 JP2012006133W WO2013046655A1 WO 2013046655 A1 WO2013046655 A1 WO 2013046655A1 JP 2012006133 W JP2012006133 W JP 2012006133W WO 2013046655 A1 WO2013046655 A1 WO 2013046655A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority
unit
packet signal
vehicle
base station
Prior art date
Application number
PCT/JP2012/006133
Other languages
French (fr)
Japanese (ja)
Inventor
真琴 永井
土居 義晴
浩司 武村
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013046655A1 publication Critical patent/WO2013046655A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the present invention relates to communication technology, and more particularly, to a radio apparatus that broadcasts a signal including predetermined information.
  • Road-to-vehicle communication is being studied to prevent collisions at intersections.
  • information on the situation of the intersection is communicated between the roadside device and the vehicle-mounted device.
  • Road-to-vehicle communication requires the installation of roadside equipment, which increases labor and cost.
  • installation of a roadside machine will become unnecessary.
  • the current position information is detected in real time by GPS (Global Positioning System), etc., and the position information is exchanged between the vehicle-mounted devices so that the own vehicle and the other vehicle each enter the intersection. (See, for example, Patent Document 1).
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for efficiently executing broadcast transmission even when a plurality of operators provide communication services.
  • a wireless device defines different priorities for each of a plurality of services, and includes data for any of the plurality of services.
  • a generating unit that generates the generated packet signal, a selection unit that selects any one of a plurality of periods in order to broadcast the packet signal generated by the generation unit, and a generation unit that is selected by the selection unit
  • a notifying unit for notifying the packet signal generated in.
  • Each of the plurality of periods to be selected by the selection unit is associated with a priority so that the notification opportunity increases as the priority is higher, and the selection unit generates a packet generated by the generation unit.
  • One of the periods corresponding to the service priority for the data included in the signal is selected.
  • broadcast transmission can be efficiently executed even when a plurality of providers provide communication services.
  • FIGS. 3A to 3D are diagrams showing frame formats defined in the communication system of FIG. It is a figure which shows the data structure of the table memorize
  • FIGS. 5A and 5B are diagrams showing a format of a packet signal generated by the base station apparatus of FIG. It is a figure which shows the structure of the terminal device mounted in the vehicle of FIG. It is a figure which shows the data structure of the table memorize
  • 10A and 10B are diagrams showing formats different from the example of FIG. 5 of the packet signal generated by the base station apparatus of FIG.
  • ITS Intelligent Transport Systems
  • 700 MHz band highway traffic system standards General Electric Industries Association
  • the communication forms are various.
  • a plurality of operators may provide communication services using road-to-vehicle communication. Even when a plurality of providers provide communication services, efficient communication is desired in order to improve frequency utilization efficiency.
  • Embodiments of the present invention relate to a communication system that performs vehicle-to-vehicle communication between terminal devices mounted on a vehicle, and also executes road-to-vehicle communication from a base station device installed at an intersection or the like to a terminal device.
  • the terminal device broadcasts a packet signal that stores information such as the speed or position of the vehicle.
  • the other terminal device receives the packet signal and recognizes the approach of the vehicle based on the above-described information.
  • the base station apparatus repeatedly defines a frame including a plurality of subframes. The base station apparatus selects any of a plurality of subframes for road-to-vehicle communication, and broadcasts a packet signal in which control information and the like are stored during the period of the head portion of the selected subframe.
  • the control information includes information related to a period (hereinafter referred to as “road vehicle transmission period”) for the base station apparatus to broadcast the packet signal.
  • the terminal device specifies a road and vehicle transmission period based on the control information, and transmits a packet signal by the CSMA method in a period other than the road and vehicle transmission period (hereinafter referred to as “vehicle transmission period”).
  • vehicle transmission period a period other than the road and vehicle transmission period
  • the collision probability of packet signals between them is reduced. That is, when the terminal device recognizes the content of the control information, interference between road-vehicle communication and vehicle-to-vehicle communication is reduced.
  • a terminal device that cannot receive control information from the base station device that is, a terminal device that exists outside the area formed by the base station device transmits a packet signal by the CSMA method regardless of the frame configuration.
  • the provision of services by such road-to-vehicle communication can be provided by a plurality of operators. For this reason, business operators and services are associated with each other, but the following description will be made without distinguishing them. For example, when each business operator installs its own base station device and operates the base station device, data related to the service of the business operator is notified. Services provided by each of a plurality of businesses vary from highly public information such as traffic jam information or construction information to low public information such as advertisements. When the number of installed base station apparatuses increases, there is a possibility that a base station apparatus that cannot secure a road and vehicle transmission period will appear. At that time, if a base station device that provides highly public information cannot secure a road-to-vehicle transmission period, a highly public service is not provided. In order to cope with this, the base station apparatus according to the present embodiment executes the following processing.
  • Priority is given to each of a plurality of business operators in advance, for example, a high priority is given to a business operator that provides a highly public service.
  • a priority is associated with each of the plurality of subframes included in the frame.
  • the base station apparatus operated by the operator selects any one of the subframes associated with the priority of the operator and sets a road and vehicle transmission period in the selected subframe. Further, the number of subframes associated with a high priority is made larger than the number of subframes associated with a low priority.
  • FIG. 1 shows a configuration of a communication system 100 according to an embodiment of the present invention. This corresponds to a case where one intersection is viewed from above.
  • the communication system 100 includes a base station device 10, a first vehicle 12a, a second vehicle 12b, a third vehicle 12c, a fourth vehicle 12d, a fifth vehicle 12e, a sixth vehicle 12f, and a seventh vehicle 12g, collectively referred to as a vehicle 12. , The eighth vehicle 12h, and the network 202.
  • the eighth vehicle 12h and the network 202.
  • the eighth vehicle 12h and the network 202.
  • An area 212 is formed around the base station apparatus 10, and an outside area 214 is formed outside the area 212.
  • the road that goes in the horizontal direction of the drawing that is, the left and right direction
  • intersects the vertical direction of the drawing that is, the road that goes in the up and down direction, at the central portion.
  • the upper side of the drawing corresponds to the direction “north”
  • the left side corresponds to the direction “west”
  • the lower side corresponds to the direction “south”
  • the right side corresponds to the direction “east”.
  • the intersection of the two roads is an “intersection”.
  • the first vehicle 12a and the second vehicle 12b are traveling from left to right
  • the third vehicle 12c and the fourth vehicle 12d are traveling from right to left
  • the fifth vehicle 12e and the sixth vehicle 12f are traveling from the top to the bottom
  • the seventh vehicle 12g and the eighth vehicle 12h are traveling from the bottom to the top.
  • the base station apparatus 10 is fixedly installed at an intersection.
  • the base station device 10 controls communication between terminal devices.
  • Base station apparatus 10 repeatedly generates a frame including a plurality of subframes based on a signal received from a GPS satellite (not shown) or a frame formed by another base station apparatus 10 (not shown).
  • the road vehicle transmission period can be set at the head of each subframe.
  • the base station apparatus 10 selects a subframe in which the road and vehicle transmission period is not set by another base station apparatus 10 from among a plurality of subframes in the frame.
  • the base station apparatus 10 sets a road and vehicle transmission period at the beginning of the selected subframe.
  • the base station apparatus 10 broadcasts a packet signal during the set road and vehicle transmission period.
  • a plurality of packet signals may be notified.
  • data to be included in the packet signal for example, dynamic data and static data are defined.
  • Dynamic data is data whose contents are frequently updated
  • static data is data whose update frequency is lower than that of dynamic data.
  • the former is data with high real-time property, and the latter can be said to be data with low real-time property.
  • dynamic data is information on road alignment, area, and obstacles
  • static data is sensor position, sensor information, and signal information.
  • the packet signal also includes information related to the timing at which the road and vehicle transmission period is set or control information related to the frame.
  • the terminal device 14 Since the terminal device 14 is mounted on the vehicle 12 as described above, the terminal device 14 is movable. When the terminal device 14 receives the packet signal from the base station device 10, the terminal device 14 generates a frame based on the control information included in the packet signal, in particular, the information on the timing when the road-to-vehicle transmission period is set or the information on the frame. To do. As a result, the frame generated in each of the plurality of terminal devices 14 is synchronized with the frame generated in the base station device 10. The terminal device 14 notifies the packet signal during the vehicle transmission period. Although the vehicle transmission period will be described later, it can be said that this is a period different from the road and vehicle transmission period in the frame.
  • CSMA / CA is executed in the vehicle transmission period.
  • the terminal device 14 acquires data and stores the data in a packet signal.
  • the data includes, for example, information related to the location.
  • the terminal device 14 also stores control information received from the base station device 10 in the packet signal. That is, the control information transmitted from the base station device 10 is transferred by the terminal device 14.
  • the terminal apparatus 14 notifies the packet signal by executing CSMA / CA regardless of the frame configuration.
  • FIG. 2 shows the configuration of the base station apparatus 10.
  • the base station apparatus 10 includes an antenna 20, an RF unit 22, a modem unit 24, a processing unit 26, a control unit 28, and a network communication unit 30.
  • the processing unit 26 includes a frame defining unit 32, a selecting unit 34, and a generating unit 36.
  • the RF unit 22 receives a packet signal from the terminal device 14 (not shown) or another base station device 10 by the antenna 20 as a reception process.
  • the RF unit 22 performs frequency conversion on the received radio frequency packet signal to generate a baseband packet signal. Further, the RF unit 22 outputs a baseband packet signal to the modem unit 24.
  • baseband packet signals are formed by in-phase and quadrature components, so two signal lines should be shown, but here only one signal line is shown for clarity. Shall be shown.
  • the RF unit 22 also includes an LNA (Low Noise Amplifier), a mixer, an AGC, and an A / D conversion unit.
  • LNA Low Noise Amplifier
  • the RF unit 22 performs frequency conversion on the baseband packet signal input from the modem unit 24 as a transmission process, and generates a radio frequency packet signal. Further, the RF unit 22 transmits a radio frequency packet signal from the antenna 20 during the road-vehicle transmission period.
  • the RF unit 22 also includes a PA (Power Amplifier), a mixer, and a D / A conversion unit.
  • PA Power Amplifier
  • the modem unit 24 demodulates the baseband packet signal from the RF unit 22 as a reception process. Further, the modem unit 24 outputs the demodulated result to the processing unit 26. The modem unit 24 also modulates the data from the processing unit 26 as a transmission process. Further, the modem unit 24 outputs the modulated result to the RF unit 22 as a baseband packet signal.
  • the modem unit 24 since the communication system 100 corresponds to the OFDM (Orthogonal Frequency Division Multiplexing) modulation method, the modem unit 24 also executes FFT (Fast Fourier Transform) as reception processing and IFFT (Inverse TransFastFast) as transmission processing. Also execute.
  • the frame defining unit 32 receives a signal from a GPS satellite (not shown), and acquires time information based on the received signal.
  • the frame defining unit 32 generates a plurality of frames based on the time information. For example, the frame defining unit 32 generates ten “100 msec” frames by dividing the “1 sec” period into ten on the basis of the timing indicated by the time information. By repeating such processing, the frame is defined to be repeated.
  • the frame defining unit 32 may detect control information from the demodulation result and generate a frame based on the detected control information. Such processing corresponds to generating a frame synchronized with the timing of the frame formed by another base station apparatus 10.
  • FIGS. 3A to 3D show frame formats defined in the communication system 100.
  • FIG. FIG. 3A shows the structure of the frame.
  • the frame is formed of N subframes indicated as the first subframe to the Nth subframe.
  • the terminal device 14 forms a frame by multiplexing a plurality of subframes that can be used for notification for a plurality of hours.
  • N may be other than 8.
  • the selection unit 34 selects a subframe in which a road and vehicle transmission period is to be set from among a plurality of subframes included in the frame. More specifically, the selection unit 34 receives a frame defined by the frame defining unit 32.
  • the selection unit 34 receives a frame defined by the frame defining unit 32.
  • priority given to a provider will be described.
  • FIG. 1 a plurality of base station apparatuses 10 are actually installed at various intersections. These base station apparatuses 10 are not installed by a single operator, but are installed by a plurality of operators. The business operator provides a communication service by installing the base station device 10.
  • the communication system 100 defines a plurality of priorities. For example, a high priority is assigned to a public or highly urgent communication service, and a low priority is assigned to a reverse communication service. This is equivalent to the fact that different priorities are defined for each of a plurality of business operators that provide data. Moreover, when the base station apparatus 10 is installed for every provider, it is equivalent to the priority being prescribed
  • FIG. 1 A high priority is assigned to a public or highly urgent communication service
  • a low priority is assigned to a reverse communication service.
  • each of a plurality of subframes included in the frame is associated with a priority.
  • FIG. 4 shows the data structure of the table stored in the selection unit 34. As illustrated, a priority column 220 and a subframe column 222 are included, and the priority and the subframe are associated with each other. It is assumed that the number of subframes in FIG. 3A is “16”, and three levels of “high”, “medium”, and “low” are defined as priorities. Further, subframes 1 to 16 are associated with high priority, subframes 6 to 16 are associated with medium priority, and subframe 11 is associated with low priority. ⁇ 16 are associated.
  • subframes 1 to 5 are periods that can be occupied by high-priority operators
  • subframes 6 to 10 are periods that can be shared by high-priority and medium-priority operators
  • 11 to 15 are periods that can be shared by all the operators.
  • the subframes and the priorities are associated with each other so that the notification opportunity increases as the priority increases.
  • the subframe corresponding to the low priority also corresponds to the high priority in an overlapping manner.
  • the priority and the subframe may be associated with each other on a one-to-one basis.
  • the selection unit 34 selects one of a plurality of subframes in order to broadcast the packet signal.
  • the selection unit 34 selects a subframe corresponding to the priority of the operator according to the table shown in FIG. Select one from the frame. For example, an instruction regarding a subframe to be selected is received from the outside. When the priority of the operator of the base station apparatus 10 is “medium”, when receiving an instruction to select subframes 1 to 5, the selection unit 34 discards the instruction. On the other hand, when receiving an instruction to select a subframe associated with the priority of the operator of the base station apparatus 10, the selection unit 34 selects a subframe corresponding to the instruction. Depending on the instruction, a plurality of subframes may be selected.
  • the selection unit 34 may automatically select a subframe.
  • the selection unit 34 inputs a demodulation result from another base station device 10 or the terminal device 14 (not shown) via the RF unit 22 and the modem unit 24.
  • the selection part 34 extracts the demodulation result from the other base station apparatus 10 among the input demodulation results.
  • the selection unit 34 specifies the subframe that has not received the demodulation result by specifying the subframe that has received the demodulation result.
  • the selection unit 34 selects one subframe at random.
  • the selection unit 34 acquires reception power corresponding to the demodulation result, and gives priority to subframes with low reception power. Select Even in this case, the selection target is limited as shown in FIG. 4 according to the priority.
  • FIG. 3B shows a configuration of a frame generated by the first base station apparatus 10a.
  • the high-priority base station apparatus 10 is the target of the description.
  • the first base station apparatus 10a sets a road and vehicle transmission period at the beginning of the first subframe.
  • the 1st base station apparatus 10a sets a vehicle transmission period following the road and vehicle transmission period in a 1st sub-frame.
  • the vehicle transmission period is a period during which the terminal device 14 can notify the packet signal. That is, the first base station apparatus 10a can notify the packet signal in the road and vehicle transmission period which is the first period of the first subframe, and the terminal apparatus in the vehicle and vehicle transmission period other than the road and vehicle transmission period in the frame. It is specified that 14 can broadcast the packet signal. Furthermore, the first base station apparatus 10a sets only the vehicle transmission period from the second subframe to the Nth subframe.
  • FIG. 3C shows a configuration of a frame generated by the second base station apparatus 10b.
  • the second base station apparatus 10b sets a road and vehicle transmission period at the beginning of the second subframe.
  • the second base station apparatus 10b sets the vehicle transmission period from the first stage of the road and vehicle transmission period in the second subframe, from the first subframe and the third subframe to the Nth subframe.
  • FIG. 3D shows a configuration of a frame generated by the third base station apparatus 10c.
  • the third base station apparatus 10c sets a road and vehicle transmission period at the beginning of the third subframe.
  • the third base station apparatus 10c sets the vehicle transmission period from the first stage of the road and vehicle transmission period in the third subframe, the first subframe, the second subframe, and the fourth subframe to the Nth subframe.
  • the plurality of base station apparatuses 10 select different subframes, and set the road and vehicle transmission period at the head portion of the selected subframe.
  • the selection unit 34 outputs the selected subframe number to the generation unit 36.
  • the generation unit 36 receives a subframe number from the selection unit 34.
  • the generation unit 36 sets a road and vehicle transmission period in the subframe of the received subframe number, and generates a packet signal to be notified during the road and vehicle transmission period.
  • the packet signal is composed of, for example, control information and a data payload.
  • the control information includes a subframe number in which a road and vehicle transmission period is set.
  • the control information includes information related to priority. In the information on priority, the priority itself may be indicated, or information for identifying a business operator may be used.
  • generation part 36 stores the data from the provider who installed this base station apparatus 10 in a data payload. These data are acquired from the network 202 (not shown) by the network communication unit 30.
  • FIG. 5A shows a physical frame format.
  • “PLCP preamble”, “signal”, “service”, “MAC header”, “RSU control header”, “payload”, “FCS”, and “tail bit” are arranged in order from the top.
  • a physical frame corresponds to the packet signal described above.
  • the “PLCP preamble” is a known signal defined in the physical layer
  • the “signal” is a control signal defined in the physical layer
  • the “MAC header” is a control signal defined in the MAC layer. It is.
  • the “RSU control header” is a control signal commonly used in road-to-vehicle communication and vehicle-to-vehicle communication, and details will be described later.
  • a “payload” is a data signal. Therefore, it can be said that a data signal is arranged in the packet signal following the control signal.
  • FIG. 5B is a diagram illustrating a configuration of the RSU control header generated by the generation unit 36.
  • the RSU control header includes “protocol version”, “transmission node type”, “transfer count / reuse count”, “reserve”, “TSF timer”, “RSU transmission period length”, “carrier type”, “reserve” Is arranged.
  • the protocol version indicates the version of the corresponding protocol.
  • the transmission node type indicates the type of the transmission node.
  • Base station apparatus 10 and terminal apparatus 14 are defined as types of transmission nodes.
  • the transfer count / reuse count indicates an index of validity when the RSU control header is transferred by the terminal device 14, and the TSF timer indicates the transmission time.
  • the RSU transmission period length indicates the length of the road and vehicle transmission period, and can be said to be information on the road and vehicle transmission period.
  • the operator type is information for identifying the operator who installed the base station apparatus 10, and can be said to be information for indicating the above-described priority. For example, “0b00” is a high priority operator, “0b01” is a medium priority operator, “0b10” is a first low priority operator, and “0b11” is a second low priority operator. Is done.
  • the processing unit 26 broadcasts the packet signal to the modem unit 24 and the RF unit 22 during the road and vehicle transmission period.
  • the control unit 28 controls processing of the entire base station device 10.
  • This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation.
  • Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms only by hardware, or by a combination of hardware and software.
  • FIG. 6 shows the configuration of the terminal device 14 mounted on the vehicle 12.
  • the terminal device 14 includes an antenna 50, an RF unit 52, a modem unit 54, a processing unit 56, and a control unit 58.
  • the processing unit 56 includes a timing specifying unit 60, a transfer determination unit 62, an acquisition unit 64, a generation unit 66, and a notification unit 70.
  • the timing identification unit 60 includes an extraction unit 72 and a carrier sense unit 74.
  • the antenna 50, the RF unit 52, and the modem unit 54 execute the same processing as the antenna 20, the RF unit 22, and the modem unit 24 in FIG. Here, the difference will be mainly described.
  • the modem unit 54 receives a packet signal from another terminal device 14 or the base station device 10 (not shown) in the reception process. As described above, the modem unit 54 and the processing unit 56 receive a packet signal from the base station apparatus 10 during the road-to-vehicle transmission period, and receive packet signals from other terminal apparatuses 14 during the vehicle-to-vehicle transmission period. To do.
  • the extraction unit 72 specifies the timing of the subframe in which the road and vehicle transmission period is arranged when the demodulation result from the modem unit 54 is a packet signal from the base station device 10 (not shown). Specifically, the extraction unit 72 determines whether or not the packet signal is from the base station apparatus 10 based on the control information included in the packet signal. In addition, the extraction unit 72 generates a frame based on the subframe timing and the timing information included in the control information. As a result, the extraction unit 72 generates a frame synchronized with the frame formed in the base station device 10. When the notification source of the packet signal is another terminal device 14, the extraction unit 72 omits the synchronized frame generation process.
  • the extraction unit 72 specifies the remaining vehicle transmission period after specifying the road and vehicle transmission period in use based on the control information.
  • the extraction unit 72 outputs information on frame and subframe timing and vehicle transmission period to the carrier sense unit 74.
  • the extraction unit 72 selects a timing unrelated to the frame configuration.
  • the extraction unit 72 instructs the carrier sense unit 74 to perform carrier sensing unrelated to the frame configuration. This corresponds to the operation outside the area 214 in FIG.
  • the carrier sense unit 74 receives information on frame and subframe timing and vehicle transmission period from the extraction unit 72. The carrier sense unit 74 determines the transmission timing by starting CSMA / CA within the vehicle transmission period. On the other hand, when the carrier sense unit 74 is instructed to perform carrier sense from the extraction unit 72, the carrier sense unit 74 determines the transmission timing by executing CSMA / CA without considering the frame configuration. The carrier sense unit 74 notifies the modem unit 54 and the RF unit 52 of the determined transmission timing, and broadcasts the packet signal.
  • the transfer determination unit 62 controls transfer of control information.
  • the transfer determination unit 62 extracts information to be transferred from the control information.
  • the transfer determination unit 62 generates information to be transferred based on the extracted information.
  • the maximum number of transfers is determined according to the priority of the provider that provides the data included in the packet signal. More specifically, it is stipulated that the higher the carrier priority, the greater the number of transfers of some information included in the packet signal.
  • FIG. 7 shows the data structure of the table stored in the transfer determination unit 62. As illustrated, a priority column 230 and a transfer count column 232 are included, and the priority and the transfer count are associated with each other. Three transfers are associated with high priority, two transfers are associated with medium priority, and one transfer is associated with low priority. It has been. Returning to FIG.
  • the transfer determination unit 62 outputs information to be transferred, that is, a part of the control information, to the generation unit 66.
  • the acquisition unit 64 includes a GPS receiver (not shown), a gyroscope, a vehicle speed sensor, and the like. Based on data supplied from these, the location of the vehicle 12 (not shown), that is, the position of the vehicle 12 on which the terminal device 14 is mounted, the progress The direction, the moving speed, etc. (hereinafter collectively referred to as “position information”) are acquired. The existence position is indicated by latitude and longitude. Since a known technique may be used for these acquisitions, description thereof is omitted here.
  • the GPS receiver, gyroscope, vehicle speed sensor, and the like may be outside the terminal device 14.
  • the acquisition unit 64 outputs the position information to the generation unit 66.
  • the generation unit 66 receives position information from the acquisition unit 64 and receives a part of control information from the transfer determination unit 62.
  • the generation unit 66 generates a packet signal by storing part of the control information in the control information and storing the position information in the payload.
  • the notification unit 70 acquires a packet signal from the base station device 10 (not shown) in the road and vehicle transmission period, and acquires a packet signal from another terminal device 14 (not shown) in the vehicle and vehicle transmission period. As a process for the acquired packet signal, the notification unit 70 notifies the driver of the approach of another vehicle 12 (not shown) or the like via a monitor or a speaker according to the content of the data stored in the packet signal.
  • the control unit 58 controls the operation of the terminal device 14.
  • each layer of the reception processing is included in the modulation / demodulation unit 54 and the processing unit 56 of FIG. 6, and the reception of the radio signal is included in the RF unit 52 of FIG.
  • the packet division / combination layer to the PHY layer are combined as baseband processing, and the reception of radio signals is combined as RF processing.
  • FIG. 8 is a flowchart showing a road and vehicle transmission period setting process in the base station apparatus 10. If the operator has a high priority (Y in S10), the selection unit 34 sets a road and vehicle transmission period in any of the subframes 1 to 16 (S12). If it is not a high priority business operator (N in S10) but a medium priority business operator (Y in S14), the selection unit 34 transmits the road to any of the subframes 6 to 16. A period is set (S16). If the operator is not the medium-priority business operator (N in S14), the selection unit 34 sets the road and vehicle transmission period in any of the subframes 11 to 16 (S18).
  • the road and vehicle transmission period is set in a subframe assigned in advance according to the priority of the operator.
  • the base station apparatus 10 in the modification sets the road and vehicle transmission period in another subframe in addition to the already assigned subframe.
  • the base station apparatus 10 selects a subframe assigned to a priority lower than its own priority, and sets an additional road and vehicle transmission period. For example, when the priority of the base station apparatus 10 is “high”, an additional road and vehicle transmission period is set in one of the subframes assigned to the priority “medium” or “low”. Is done.
  • FIG. 9 is a flowchart showing a road and vehicle transmission period setting process in the base station apparatus 10 according to the modification of the present invention.
  • the base station apparatus 10 executes data transmission in the road and vehicle transmission period in the allocated subframe. (S32).
  • the base station apparatus 10 selects a road and vehicle transmission period with a lower priority (S34). If the selection is successful (Y in S36), the base station apparatus 10 transmits the remaining data (S38). On the other hand, if the selection is not successful (N in S36), the base station apparatus 10 discards the remaining data (S40). If the allocated road and vehicle transmission period length is not shorter than the period necessary for transmitting data (N in S30), the base station apparatus 10 performs data transmission in the road and vehicle transmission period in the allocated subframe. Execute (S42).
  • the priority of the operator is associated with the subframe in advance, and the road and vehicle transmission period is set by selecting the subframe according to the priority. It is easy to select different subframes between different operators.
  • subframes corresponding to the priorities are used, broadcast transmission can be efficiently executed even when a plurality of carriers provide communication services.
  • the notification opportunity increases as the priority is higher, data can be easily notified.
  • the subframes corresponding to the low priority also correspond to the high priority, the number of subframes corresponding to the high priority can be increased.
  • the subframes corresponding to the low priority also correspond to the high priority, the number of unused subframes can be reduced.
  • the operator can be easily identified.
  • the higher the priority the greater the number of transfers, so that high priority data can be transmitted over a wide area.
  • the transfer process can be simplified. Further, it is possible to effectively use frequencies while providing services according to priority.
  • an additional road and vehicle transmission period is set in a subframe with a low priority, so the data volume increases while suppressing the impact on operators with a high priority. It can correspond to.
  • the transfer determination unit 62 specifies the number of transfers based on the priority, and performs transfer if the specified number of transfers has not been reached.
  • the present invention is not limited to this. For example, if the priority of the operator is low, the transfer determination unit 62 may determine whether or not to transfer according to the received power. For example, when the priority is low and the reception power is lower than the threshold value, the transfer determination unit 62 performs transfer according to the table of FIG. On the other hand, when the priority is low, if the received power is equal to or higher than the threshold value, the transfer determining unit 62 does not execute the transfer even if the specified transfer count has not been reached. According to this modification, since there is no transfer from the terminal device 14 that has received the packet signal in the vicinity of the base station device 10, the frequency can be used effectively.
  • the format of the packet signal generated by the base station apparatus 10 may be the format shown in FIGS. 10 (a)-(b).
  • FIG. 10A shows the format of a physical frame.
  • the physical frames are “PLCP preamble”, “signal”, “service”, “MAC header”, “LLC header”, “IR control header”, “layer 7 header”, “EL header”, “payload” in order from the top. ”,“ FCS ”, and“ tail bit ”.
  • a physical frame corresponds to the packet signal described above.
  • the “PLCP preamble” is a known signal defined in the physical layer
  • the “signal” is a control signal defined in the physical layer
  • the “MAC header” is defined in the MAC sublayer of layer 2.
  • the “LLC header” is a control signal defined in the LLC sublayer of layer 2
  • the “IR control header” is a control signal commonly used in road-to-vehicle communication and vehicle-to-vehicle communication. Details will be described later.
  • Layer 7 header is a control signal defined in layer 7
  • “EL header” is a control signal defined in the packet division / combination layer.
  • a “payload” is a data signal. Therefore, it can be said that a data signal is arranged in the packet signal following the control signal.
  • FIG. 10B is a diagram illustrating a configuration of an IR control header generated by the generation unit 36.
  • “version”, “identification information”, “synchronization information”, “reservation”, “transmission time”, “road-to-vehicle communication period information”, and “extended area” are arranged in order from the top.
  • the version indicates the version of the corresponding protocol.
  • the identification information indicates the type of the transmission node.
  • Base station apparatus 10 and terminal apparatus 14 are defined as types of transmission nodes.
  • the synchronization information indicates synchronous / asynchronous identification with respect to the control cycle.
  • the transmission time indicates timer information when the transmitting radio transmits a packet signal.
  • Road-to-vehicle communication period information indicates the start position and length of the road-to-vehicle transmission period, and can be said to be information related to the road-to-vehicle transmission period.
  • the operator type is set in any 2 bits of the extended area.
  • the operator type is information for identifying the operator who installed the base station apparatus 10, and can be said to be information for indicating the above-described priority. For example, “0b00” is a high priority operator, “0b01” is a medium priority operator, “0b10” is a first low priority operator, and “0b11” is a second low priority operator. Is done.
  • a wireless device generates a packet signal in which different priorities are defined for each of a plurality of services and includes data for any of the plurality of services And a selection unit that selects one of a plurality of periods, and a packet signal generated by the generation unit in the period selected by the selection unit in order to notify the packet signal generated by the generation unit A notification unit.
  • Each of the plurality of periods to be selected by the selection unit is associated with a priority so that the notification opportunity increases as the priority is higher, and the selection unit generates a packet generated by the generation unit.
  • One of the periods corresponding to the service priority for the data included in the signal is selected.
  • the priority of the service is associated with the subframe in advance, and the road and vehicle transmission period is set by selecting the subframe corresponding to the priority. It is easy to select another subframe.
  • the period corresponding to the low priority may overlap with the high priority. In this case, since the subframe corresponding to the low priority also corresponds to the high priority, the number of unused subframes can be reduced.
  • the generation unit may include information on priority in the packet signal. In this case, since information on the priority is included in the packet signal, it is possible to easily determine the service.
  • the priority of the service with respect to the data included in the packet signal generated in the generation unit is low, it may be determined whether to transfer according to the received power. In this case, since there is no transfer from another wireless device that has received the packet signal in the vicinity of the wireless device, the frequency can be used effectively.
  • broadcast transmission can be efficiently executed even when a plurality of providers provide communication services.

Abstract

A generation unit (36) generates a packet signal including data from one of multiple clients which are data providers and which each have a different priority level assigned thereto. A selection unit (34) selects one of a plurality of intervals to communicate the generated packet signal. Herein, an association is formed between priority levels and each of the plurality of intervals to be selected, in a manner such that communication opportunities increase as priority level increases. The selection unit (34) selects one interval from the intervals corresponding to the priority level of the client, which is the provider of the data included in the generated packet signal. A modulation/demodulation unit (24) and an RF unit (22) communicate the generated packet signal during the selected interval.

Description

無線装置Wireless device
 本発明は、通信技術に関し、特に所定の情報が含まれた信号を報知する無線装置に関する。 The present invention relates to communication technology, and more particularly, to a radio apparatus that broadcasts a signal including predetermined information.
 交差点の出会い頭の衝突事故を防止するために、路車間通信の検討がなされている。路車間通信では、路側機と車載器との間において交差点の状況に関する情報が通信される。路車間通信では、路側機の設置が必要になり、手間と費用が大きくなる。これに対して、車車間通信、つまり車載器間で情報を通信する形態であれば、路側機の設置が不要になる。その場合、例えば、GPS(Global Positioning System)等によって現在の位置情報をリアルタイムに検出し、その位置情報を車載器同士で交換しあうことによって、自車両および他車両がそれぞれ交差点へ進入するどの道路に位置するかを判断する(例えば、特許文献1参照)。 路 Road-to-vehicle communication is being studied to prevent collisions at intersections. In the road-to-vehicle communication, information on the situation of the intersection is communicated between the roadside device and the vehicle-mounted device. Road-to-vehicle communication requires the installation of roadside equipment, which increases labor and cost. On the other hand, if it is the form which communicates information between vehicle-to-vehicle communication, ie, onboard equipment, installation of a roadside machine will become unnecessary. In this case, for example, the current position information is detected in real time by GPS (Global Positioning System), etc., and the position information is exchanged between the vehicle-mounted devices so that the own vehicle and the other vehicle each enter the intersection. (See, for example, Patent Document 1).
特開2005-202913号公報JP 2005-202913 A 特開2010-21870号公報JP 2010-21870 A
 複数の事業者が通信サービスを提供する場合であっても、周波数の利用効率を向上させるために、効率的な通信が望まれる。 Even if multiple providers provide communication services, efficient communication is desired to improve frequency utilization efficiency.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、複数の事業者が通信サービスを提供する場合であっても、ブロードキャスト送信を効率的に実行する技術を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for efficiently executing broadcast transmission even when a plurality of operators provide communication services.
 上記課題を解決するために、本発明のある態様の無線装置は、複数のサービスのそれぞれに対して、互いに異なった優先度が規定されており、複数のサービスのうちのいずれかに対するデータが含まれたパケット信号を生成する生成部と、生成部において生成したパケット信号を報知するために、複数の期間のうちのいずれかを選択する選択部と、選択部において選択した期間にて、生成部において生成したパケット信号を報知する報知部とを備える。選択部での選択対象になる複数の期間のそれぞれには、優先度が高いほど報知機会が増加するように、優先度との対応づけがなされており、選択部は、生成部において生成したパケット信号に含まれたデータに対するサービスの優先度に対応した期間からいずれかを選択する。 In order to solve the above problems, a wireless device according to an aspect of the present invention defines different priorities for each of a plurality of services, and includes data for any of the plurality of services. A generating unit that generates the generated packet signal, a selection unit that selects any one of a plurality of periods in order to broadcast the packet signal generated by the generation unit, and a generation unit that is selected by the selection unit And a notifying unit for notifying the packet signal generated in. Each of the plurality of periods to be selected by the selection unit is associated with a priority so that the notification opportunity increases as the priority is higher, and the selection unit generates a packet generated by the generation unit. One of the periods corresponding to the service priority for the data included in the signal is selected.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described components and a conversion of the expression of the present invention between a method, an apparatus, a system, a recording medium, a computer program, etc. are also effective as an aspect of the present invention.
 本発明によれば、複数の事業者が通信サービスを提供する場合であっても、ブロードキャスト送信を効率的に実行できる。 According to the present invention, broadcast transmission can be efficiently executed even when a plurality of providers provide communication services.
本発明の実施例に係る通信システムの構成を示す図である。It is a figure which shows the structure of the communication system which concerns on the Example of this invention. 図1の基地局装置の構成を示す図である。It is a figure which shows the structure of the base station apparatus of FIG. 図3(a)-(d)は、図1の通信システムにおいて規定されるフレームのフォーマットを示す図である。FIGS. 3A to 3D are diagrams showing frame formats defined in the communication system of FIG. 図2の選択部に記憶されたテーブルのデータ構造を示す図である。It is a figure which shows the data structure of the table memorize | stored in the selection part of FIG. 図5(a)-(b)は、図2の基地局装置によって生成されるパケット信号のフォーマットを示す図である。FIGS. 5A and 5B are diagrams showing a format of a packet signal generated by the base station apparatus of FIG. 図1の車両に搭載された端末装置の構成を示す図である。It is a figure which shows the structure of the terminal device mounted in the vehicle of FIG. 図6の転送決定部に記憶されたテーブルのデータ構造を示す図である。It is a figure which shows the data structure of the table memorize | stored in the transfer determination part of FIG. 図2の基地局装置における路車送信期間の設定処理を示すフローチャートである。It is a flowchart which shows the setting process of the road and vehicle transmission period in the base station apparatus of FIG. 本発明の変形例に係る基地局装置における路車送信期間の設定処理を示すフローチャートである。It is a flowchart which shows the setting process of the road and vehicle transmission period in the base station apparatus which concerns on the modification of this invention. 図10(a)-(b)は、図2の基地局装置によって生成されるパケット信号の図5の例と異なるフォーマットを示す図である。10A and 10B are diagrams showing formats different from the example of FIG. 5 of the packet signal generated by the base station apparatus of FIG.
 本発明の実施例を具体的に説明する前に、基礎となった知見を説明する。IEEE802.11等の規格に準拠した無線LAN(Local Area Network)では、CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)と呼ばれるアクセス制御機能が使用されている。そのため、当該無線LANでは、複数の端末装置によって同一の無線チャネルが共有される。このようなCSMA/CAでは、キャリアセンスによって他のパケット信号が送信されていないことを確認した後に、パケット信号が送信される。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to specific description of embodiments of the present invention, the knowledge that is the basis will be described. In a wireless LAN (Local Area Network) compliant with a standard such as IEEE 802.11, an access control function called CSMA / CA (Carrier Sense Multiple Access Avididance) is used. Therefore, in the wireless LAN, the same wireless channel is shared by a plurality of terminal devices. In such CSMA / CA, a packet signal is transmitted after confirming that no other packet signal is transmitted by carrier sense.
 一方、ITS(Intelligent Transport Systems)は、例えば、700MHz帯高度道路交通システムの標準規格(一般社団法人電波産業会)に規定されている。ITSのような車車間通信に無線LANを適用する場合、不特定多数の端末装置へ情報を送信する必要があるために、信号はブロードキャストにて送信されることが望ましい。しかしながら、交差点などでは、車両数の増加、つまり端末装置数の増加がトラヒックを増加させることによって、パケット信号の衝突の増加が想定される。その結果、パケット信号に含まれたデータが他の端末装置へ伝送されなくなる。このような状態が、車車間通信において発生すれば、交差点の出会い頭の衝突事故を防止するという目的が達成されなくなる。さらに、車車間通信に加えて路車間通信が実行されれば、通信形態が多様になる。その際、複数の事業者が路車間通信を使用して通信サービスを提供することもあり得る。複数の事業者が通信サービスを提供する場合であっても、周波数の利用効率を向上させるために、効率的な通信が望まれる。 On the other hand, ITS (Intelligent Transport Systems) is stipulated in, for example, 700 MHz band highway traffic system standards (General Electric Industries Association). When a wireless LAN is applied to inter-vehicle communication such as ITS, it is necessary to transmit information to an unspecified number of terminal devices, and therefore it is desirable that the signal be transmitted by broadcast. However, at an intersection or the like, an increase in the number of vehicles, that is, an increase in the number of terminal devices increases traffic, and therefore, an increase in packet signal collision is assumed. As a result, data included in the packet signal is not transmitted to other terminal devices. If such a situation occurs in vehicle-to-vehicle communication, the objective of preventing a collision accident at the intersection encounter will not be achieved. Furthermore, if the road-to-vehicle communication is executed in addition to the vehicle-to-vehicle communication, the communication forms are various. At that time, a plurality of operators may provide communication services using road-to-vehicle communication. Even when a plurality of providers provide communication services, efficient communication is desired in order to improve frequency utilization efficiency.
 次に、本発明の実施例の概要を述べる。本発明の実施例は、車両に搭載された端末装置間において車車間通信を実行するとともに、交差点等に設置された基地局装置から端末装置へ路車間通信も実行する通信システムに関する。車車間通信として、端末装置は、車両の速度あるいは位置等の情報を格納したパケット信号をブロードキャスト送信する。また、他の端末装置は、パケット信号を受信するとともに、前述の情報をもとに車両の接近等を認識する。ここで、基地局装置は、複数のサブフレームが含まれたフレームを繰り返し規定する。基地局装置は、路車間通信のために、複数のサブフレームのいずれかを選択し、選択したサブフレームの先頭部分の期間において、制御情報等が格納されたパケット信号をブロードキャスト送信する。 Next, the outline of the embodiment of the present invention will be described. Embodiments of the present invention relate to a communication system that performs vehicle-to-vehicle communication between terminal devices mounted on a vehicle, and also executes road-to-vehicle communication from a base station device installed at an intersection or the like to a terminal device. As inter-vehicle communication, the terminal device broadcasts a packet signal that stores information such as the speed or position of the vehicle. In addition, the other terminal device receives the packet signal and recognizes the approach of the vehicle based on the above-described information. Here, the base station apparatus repeatedly defines a frame including a plurality of subframes. The base station apparatus selects any of a plurality of subframes for road-to-vehicle communication, and broadcasts a packet signal in which control information and the like are stored during the period of the head portion of the selected subframe.
 制御情報には、当該基地局装置がパケット信号をブローキャスト送信するための期間(以下、「路車送信期間」という)に関する情報が含まれている。端末装置は、制御情報をもとに路車送信期間を特定し、路車送信期間以外の期間(以下、「車車送信期間」という)においてCSMA方式にてパケット信号を送信する。このように、路車間通信と車車間通信とが時間分割多重されるので、両者間のパケット信号の衝突確率が低減される。つまり、端末装置が制御情報の内容を認識することによって、路車間通信と車車間通信との干渉が低減される。なお、基地局装置からの制御情報を受信できない端末装置、つまり基地局装置によって形成されたエリアの外に存在する端末装置は、フレームの構成に関係なくCSMA方式にてパケット信号を送信する。 The control information includes information related to a period (hereinafter referred to as “road vehicle transmission period”) for the base station apparatus to broadcast the packet signal. The terminal device specifies a road and vehicle transmission period based on the control information, and transmits a packet signal by the CSMA method in a period other than the road and vehicle transmission period (hereinafter referred to as “vehicle transmission period”). Thus, since the road-to-vehicle communication and the vehicle-to-vehicle communication are time-division multiplexed, the collision probability of packet signals between them is reduced. That is, when the terminal device recognizes the content of the control information, interference between road-vehicle communication and vehicle-to-vehicle communication is reduced. Note that a terminal device that cannot receive control information from the base station device, that is, a terminal device that exists outside the area formed by the base station device transmits a packet signal by the CSMA method regardless of the frame configuration.
 このような路車間通信によるサービスの提供は、複数の事業者によって提供されうる。そのため、事業者とサービスとが対応づけられるが、以下では、これらを区別せずに説明する。例えば、各事業者が自前の基地局装置を設置し、基地局装置を運用することによって、当該事業者のサービスに関連したデータが報知される。複数の事業者のそれぞれによって提供されるサービスは、渋滞情報あるいは工事情報等の公共性の高い情報から、広告等の公共性の低い情報までさまざまである。設置される基地局装置の数が増加した場合、路車送信期間を確保できない基地局装置が出現するおそれがある。その際、公共性の高い情報を提供する基地局装置が、路車送信期間を確保できなければ、公共性の高いサービスが提供されなくなる。これに対応するために、本実施例に係る基地局装置は、次の処理を実行する。 The provision of services by such road-to-vehicle communication can be provided by a plurality of operators. For this reason, business operators and services are associated with each other, but the following description will be made without distinguishing them. For example, when each business operator installs its own base station device and operates the base station device, data related to the service of the business operator is notified. Services provided by each of a plurality of businesses vary from highly public information such as traffic jam information or construction information to low public information such as advertisements. When the number of installed base station apparatuses increases, there is a possibility that a base station apparatus that cannot secure a road and vehicle transmission period will appear. At that time, if a base station device that provides highly public information cannot secure a road-to-vehicle transmission period, a highly public service is not provided. In order to cope with this, the base station apparatus according to the present embodiment executes the following processing.
 複数の事業者のそれぞれには優先度が予め付与されており、例えば、公共性の高いサービスを提供する事業者に対して高い優先度が付与されている。また、フレームに含まれた複数のサブフレームのそれぞれには、優先度が対応づけられている。事業者が運用している基地局装置は、当該事業者の優先度に対応づけられたサブフレームからいずれかを選択し、選択したサブフレームに路車送信期間を設定する。さらに、高い優先度が対応づけられたサブフレームの数が、低い優先度が対応づけられたサブフレームの数よりも多くされる。 Priority is given to each of a plurality of business operators in advance, for example, a high priority is given to a business operator that provides a highly public service. In addition, a priority is associated with each of the plurality of subframes included in the frame. The base station apparatus operated by the operator selects any one of the subframes associated with the priority of the operator and sets a road and vehicle transmission period in the selected subframe. Further, the number of subframes associated with a high priority is made larger than the number of subframes associated with a low priority.
 図1は、本発明の実施例に係る通信システム100の構成を示す。これは、ひとつの交差点を上方から見た場合に相当する。通信システム100は、基地局装置10、車両12と総称される第1車両12a、第2車両12b、第3車両12c、第4車両12d、第5車両12e、第6車両12f、第7車両12g、第8車両12h、ネットワーク202を含む。ここでは、第1車両12aのみに示しているが、各車両12には、端末装置14が搭載されている。また、エリア212が、基地局装置10の周囲に形成され、エリア外214が、エリア212の外側に形成されている。 FIG. 1 shows a configuration of a communication system 100 according to an embodiment of the present invention. This corresponds to a case where one intersection is viewed from above. The communication system 100 includes a base station device 10, a first vehicle 12a, a second vehicle 12b, a third vehicle 12c, a fourth vehicle 12d, a fifth vehicle 12e, a sixth vehicle 12f, and a seventh vehicle 12g, collectively referred to as a vehicle 12. , The eighth vehicle 12h, and the network 202. Here, only the first vehicle 12 a is shown, but each vehicle 12 is equipped with a terminal device 14. An area 212 is formed around the base station apparatus 10, and an outside area 214 is formed outside the area 212.
 図示のごとく、図面の水平方向、つまり左右の方向に向かう道路と、図面の垂直方向、つまり上下の方向に向かう道路とが中心部分で交差している。ここで、図面の上側が方角の「北」に相当し、左側が方角の「西」に相当し、下側が方角の「南」に相当し、右側が方角の「東」に相当する。また、ふたつの道路の交差部分が「交差点」である。第1車両12a、第2車両12bが、左から右へ向かって進んでおり、第3車両12c、第4車両12dが、右から左へ向かって進んでいる。また、第5車両12e、第6車両12fが、上から下へ向かって進んでおり、第7車両12g、第8車両12hが、下から上へ向かって進んでいる。 As shown in the figure, the road that goes in the horizontal direction of the drawing, that is, the left and right direction, intersects the vertical direction of the drawing, that is, the road that goes in the up and down direction, at the central portion. Here, the upper side of the drawing corresponds to the direction “north”, the left side corresponds to the direction “west”, the lower side corresponds to the direction “south”, and the right side corresponds to the direction “east”. The intersection of the two roads is an “intersection”. The first vehicle 12a and the second vehicle 12b are traveling from left to right, and the third vehicle 12c and the fourth vehicle 12d are traveling from right to left. Further, the fifth vehicle 12e and the sixth vehicle 12f are traveling from the top to the bottom, and the seventh vehicle 12g and the eighth vehicle 12h are traveling from the bottom to the top.
 通信システム100において、基地局装置10は、交差点に固定して設置される。基地局装置10は、端末装置間の通信を制御する。基地局装置10は、図示しないGPS衛星から受信した信号、あるいは図示しない他の基地局装置10にて形成されたフレームをもとに、複数のサブフレームが含まれたフレームを繰り返し生成する。ここで、各サブフレームの先頭部分に路車送信期間が設定可能であるような規定がなされている。基地局装置10は、フレーム中の複数のサブフレームのうち、他の基地局装置10によって路車送信期間が設定されていないサブフレームを選択する。基地局装置10は、選択したサブフレームの先頭部分に路車送信期間を設定する。 In the communication system 100, the base station apparatus 10 is fixedly installed at an intersection. The base station device 10 controls communication between terminal devices. Base station apparatus 10 repeatedly generates a frame including a plurality of subframes based on a signal received from a GPS satellite (not shown) or a frame formed by another base station apparatus 10 (not shown). Here, the road vehicle transmission period can be set at the head of each subframe. The base station apparatus 10 selects a subframe in which the road and vehicle transmission period is not set by another base station apparatus 10 from among a plurality of subframes in the frame. The base station apparatus 10 sets a road and vehicle transmission period at the beginning of the selected subframe.
 基地局装置10は、設定した路車送信期間においてパケット信号を報知する。路車送信期間において、複数のパケット信号が報知されることもある。また、パケット信号に含まれるべきデータとして、例えば、動的データと静的データとが規定される。動的データは、内容が頻繁に更新されるデータであり、静的データは、動的データよりも更新頻度の低いデータである。前者は、リアルタイム性の高いデータであり、後者は、リアルタイム性の低いデータともいえる。例えば、動的データが道路線形、エリア、障害物に関する情報であり、静的データがセンサ位置、センサ情報、信号情報である。なお、パケット信号には、路車送信期間が設定されたタイミングに関する情報あるいはフレームに関する制御情報も含まれる。 The base station apparatus 10 broadcasts a packet signal during the set road and vehicle transmission period. In the road and vehicle transmission period, a plurality of packet signals may be notified. In addition, as data to be included in the packet signal, for example, dynamic data and static data are defined. Dynamic data is data whose contents are frequently updated, and static data is data whose update frequency is lower than that of dynamic data. The former is data with high real-time property, and the latter can be said to be data with low real-time property. For example, dynamic data is information on road alignment, area, and obstacles, and static data is sensor position, sensor information, and signal information. Note that the packet signal also includes information related to the timing at which the road and vehicle transmission period is set or control information related to the frame.
 端末装置14は、前述のごとく、車両12に搭載されているので、移動可能である。端末装置14は、基地局装置10からのパケット信号を受信すると、パケット信号に含まれた制御情報、特に路車送信期間が設定されたタイミングに関する情報あるいはフレームに関する情報をもとに、フレームを生成する。その結果、複数の端末装置14のそれぞれにおいて生成されるフレームは、基地局装置10において生成されるフレームに同期する。端末装置14は、車車送信期間においてパケット信号を報知する。車車送信期間の説明は後述するが、これは、フレーム中の路車送信期間とは異なった期間であるといえる。ここで、車車送信期間においてCSMA/CAが実行される。 Since the terminal device 14 is mounted on the vehicle 12 as described above, the terminal device 14 is movable. When the terminal device 14 receives the packet signal from the base station device 10, the terminal device 14 generates a frame based on the control information included in the packet signal, in particular, the information on the timing when the road-to-vehicle transmission period is set or the information on the frame. To do. As a result, the frame generated in each of the plurality of terminal devices 14 is synchronized with the frame generated in the base station device 10. The terminal device 14 notifies the packet signal during the vehicle transmission period. Although the vehicle transmission period will be described later, it can be said that this is a period different from the road and vehicle transmission period in the frame. Here, CSMA / CA is executed in the vehicle transmission period.
 端末装置14は、データを取得し、データをパケット信号に格納する。データには、例えば、存在位置に関する情報が含まれる。また、端末装置14は、基地局装置10から受信した制御情報もパケット信号に格納する。つまり、基地局装置10から送信された制御情報は、端末装置14によって転送される。一方、端末装置14は、エリア外214に存在していると推定した場合、フレームの構成に関係なく、CSMA/CAを実行することによって、パケット信号を報知する。 The terminal device 14 acquires data and stores the data in a packet signal. The data includes, for example, information related to the location. The terminal device 14 also stores control information received from the base station device 10 in the packet signal. That is, the control information transmitted from the base station device 10 is transferred by the terminal device 14. On the other hand, when it is estimated that the terminal apparatus 14 exists outside the area 214, the terminal apparatus 14 notifies the packet signal by executing CSMA / CA regardless of the frame configuration.
 図2は、基地局装置10の構成を示す。基地局装置10は、アンテナ20、RF部22、変復調部24、処理部26、制御部28、ネットワーク通信部30を含む。また、処理部26は、フレーム規定部32、選択部34、生成部36を含む。 FIG. 2 shows the configuration of the base station apparatus 10. The base station apparatus 10 includes an antenna 20, an RF unit 22, a modem unit 24, a processing unit 26, a control unit 28, and a network communication unit 30. Further, the processing unit 26 includes a frame defining unit 32, a selecting unit 34, and a generating unit 36.
 RF部22は、受信処理として、図示しない端末装置14あるいは他の基地局装置10からのパケット信号をアンテナ20にて受信する。RF部22は、受信した無線周波数のパケット信号に対して周波数変換を実行し、ベースバンドのパケット信号を生成する。さらに、RF部22は、ベースバンドのパケット信号を変復調部24に出力する。一般的に、ベースバンドのパケット信号は、同相成分と直交成分によって形成されるので、ふたつの信号線が示されるべきであるが、ここでは、図を明瞭にするためにひとつの信号線だけを示すものとする。RF部22には、LNA(Low Noise Amplifier)、ミキサ、AGC、A/D変換部も含まれる。 The RF unit 22 receives a packet signal from the terminal device 14 (not shown) or another base station device 10 by the antenna 20 as a reception process. The RF unit 22 performs frequency conversion on the received radio frequency packet signal to generate a baseband packet signal. Further, the RF unit 22 outputs a baseband packet signal to the modem unit 24. In general, baseband packet signals are formed by in-phase and quadrature components, so two signal lines should be shown, but here only one signal line is shown for clarity. Shall be shown. The RF unit 22 also includes an LNA (Low Noise Amplifier), a mixer, an AGC, and an A / D conversion unit.
 RF部22は、送信処理として、変復調部24から入力したベースバンドのパケット信号に対して周波数変換を実行し、無線周波数のパケット信号を生成する。さらに、RF部22は、路車送信期間において、無線周波数のパケット信号をアンテナ20から送信する。また、RF部22には、PA(Power Amplifier)、ミキサ、D/A変換部も含まれる。 The RF unit 22 performs frequency conversion on the baseband packet signal input from the modem unit 24 as a transmission process, and generates a radio frequency packet signal. Further, the RF unit 22 transmits a radio frequency packet signal from the antenna 20 during the road-vehicle transmission period. The RF unit 22 also includes a PA (Power Amplifier), a mixer, and a D / A conversion unit.
 変復調部24は、受信処理として、RF部22からのベースバンドのパケット信号に対して、復調を実行する。さらに、変復調部24は、復調した結果を処理部26に出力する。また、変復調部24は、送信処理として、処理部26からのデータに対して、変調を実行する。さらに、変復調部24は、変調した結果をベースバンドのパケット信号としてRF部22に出力する。ここで、通信システム100は、OFDM(Orthogonal Frequency Division Multiplexing)変調方式に対応するので、変復調部24は、受信処理としてFFT(Fast Fourier Transform)も実行し、送信処理としてIFFT(Inverse Fast Fourier Transform)も実行する。 The modem unit 24 demodulates the baseband packet signal from the RF unit 22 as a reception process. Further, the modem unit 24 outputs the demodulated result to the processing unit 26. The modem unit 24 also modulates the data from the processing unit 26 as a transmission process. Further, the modem unit 24 outputs the modulated result to the RF unit 22 as a baseband packet signal. Here, since the communication system 100 corresponds to the OFDM (Orthogonal Frequency Division Multiplexing) modulation method, the modem unit 24 also executes FFT (Fast Fourier Transform) as reception processing and IFFT (Inverse TransFastFast) as transmission processing. Also execute.
 フレーム規定部32は、図示しないGPS衛星からの信号を受信し、受信した信号をもとに時刻の情報を取得する。なお、時刻の情報の取得には公知の技術が使用されればよいので、ここでは説明を省略する。フレーム規定部32は、時刻の情報をもとに、複数のフレームを生成する。例えば、フレーム規定部32は、時刻の情報にて示されたタイミングを基準にして、「1sec」の期間を10分割することによって、「100msec」のフレームを10個生成する。このような処理を繰り返すことによって、フレームが繰り返されるように規定される。なお、フレーム規定部32は、復調結果から制御情報を検出し、検出した制御情報をもとにフレームを生成してもよい。このような処理は、他の基地局装置10によって形成されたフレームのタイミングに同期したフレームを生成することに相当する。 The frame defining unit 32 receives a signal from a GPS satellite (not shown), and acquires time information based on the received signal. In addition, since a well-known technique should just be used for acquisition of the information of time, description is abbreviate | omitted here. The frame defining unit 32 generates a plurality of frames based on the time information. For example, the frame defining unit 32 generates ten “100 msec” frames by dividing the “1 sec” period into ten on the basis of the timing indicated by the time information. By repeating such processing, the frame is defined to be repeated. The frame defining unit 32 may detect control information from the demodulation result and generate a frame based on the detected control information. Such processing corresponds to generating a frame synchronized with the timing of the frame formed by another base station apparatus 10.
 図3(a)-(d)は、通信システム100において規定されるフレームのフォーマットを示す。図3(a)は、フレームの構成を示す。フレームは、第1サブフレームから第Nサブフレームと示されるN個のサブフレームによって形成されている。これは、端末装置14が報知に使用可能なサブフレームを複数時間多重することによってフレームが形成されているといえる。例えば、フレームの長さが100msecであり、Nが8である場合、12.5msecの長さのサブフレームが規定される。Nは、8以外であってもよい。図3(b)-(d)の説明は、後述し、図2に戻る。 FIGS. 3A to 3D show frame formats defined in the communication system 100. FIG. FIG. 3A shows the structure of the frame. The frame is formed of N subframes indicated as the first subframe to the Nth subframe. This can be said that the terminal device 14 forms a frame by multiplexing a plurality of subframes that can be used for notification for a plurality of hours. For example, when the frame length is 100 msec and N is 8, a subframe having a length of 12.5 msec is defined. N may be other than 8. The description of FIGS. 3B to 3D will be described later, and returns to FIG.
 選択部34は、フレームに含まれた複数のサブフレームのうち、路車送信期間を設定すべきサブフレームを選択する。具体的に説明すると、選択部34は、フレーム規定部32にて規定されたフレームを受けつける。ここでは、サブフレームの選択処理を説明する前に、事業者に対して付与された優先度について説明する。図1では、ひとつの基地局装置10が示されているが、実際は、さまざまな交差点に複数の基地局装置10が設置されている。これらの基地局装置10は、ひとつの事業者によって設置されているのではなく、複数の事業者によって設置されている。事業者は、基地局装置10を設置することによって通信サービスを提供する。 The selection unit 34 selects a subframe in which a road and vehicle transmission period is to be set from among a plurality of subframes included in the frame. More specifically, the selection unit 34 receives a frame defined by the frame defining unit 32. Here, prior to description of subframe selection processing, priority given to a provider will be described. Although one base station apparatus 10 is shown in FIG. 1, a plurality of base station apparatuses 10 are actually installed at various intersections. These base station apparatuses 10 are not installed by a single operator, but are installed by a plurality of operators. The business operator provides a communication service by installing the base station device 10.
 前述のごとく、通信サービスの公共性はさまざまであるとともに、通信サービスの緊急性もさまざまである。一般的に、公共性あるいは緊急性の高い通信サービスが優先的に提供されることが望まれる。これに対応するために、通信システム100は、複数の優先度を規定する。例えば、公共性あるいは緊急性の高い通信サービスに対して、高い優先度が付与され、逆の通信サービスに対して、低い優先度が付与される。これは、データの提供元になる複数の事業者のそれぞれに対して、互いに異なった優先度が規定されていることに相当する。また、事業者ごとに基地局装置10が設置される場合、基地局装置10ごとに優先度が規定されていることにも相当する。 As described above, the public nature of communication services varies, and the urgency of communication services varies. In general, it is desired that a communication service with high publicity or urgency be preferentially provided. In order to cope with this, the communication system 100 defines a plurality of priorities. For example, a high priority is assigned to a public or highly urgent communication service, and a low priority is assigned to a reverse communication service. This is equivalent to the fact that different priorities are defined for each of a plurality of business operators that provide data. Moreover, when the base station apparatus 10 is installed for every provider, it is equivalent to the priority being prescribed | regulated for every base station apparatus 10. FIG.
 また、フレームに含まれた複数のサブフレームのそれぞれは、優先度と対応づけられている。図4は、選択部34に記憶されたテーブルのデータ構造を示す。図示のごとく、優先度欄220、サブフレーム欄222が含まれており、優先度とサブフレームとが対応づけられている。なお、図3(a)におけるサブフレーム数は「16」であるとし、優先度として「高」、「中」、「低」の3段階が規定されているとする。また、高優先度に対して、サブフレーム1~16が対応づけられており、中優先度に対して、サブフレーム6~16が対応づけられており、低優先度に対して、サブフレーム11~16が対応づけられている。 Also, each of a plurality of subframes included in the frame is associated with a priority. FIG. 4 shows the data structure of the table stored in the selection unit 34. As illustrated, a priority column 220 and a subframe column 222 are included, and the priority and the subframe are associated with each other. It is assumed that the number of subframes in FIG. 3A is “16”, and three levels of “high”, “medium”, and “low” are defined as priorities. Further, subframes 1 to 16 are associated with high priority, subframes 6 to 16 are associated with medium priority, and subframe 11 is associated with low priority. ~ 16 are associated.
 つまり、サブフレーム1~5は、高優先度の事業者が占有可能な期間であり、サブフレーム6~10は、高優先度と中優先度の事業者が共有可能な期間であり、サブフレーム11~15は、すべての事業者が共有可能な期間である。このように、優先度が高いほど報知機会が増加するように、サブフレームと優先度との対応づけがなされている。また、低い優先度に対応したサブフレームは、高い優先度にも重複して対応している。なお、優先度とサブフレームとが1対1で対応づけられていてもよい。図2に戻る。 That is, subframes 1 to 5 are periods that can be occupied by high-priority operators, and subframes 6 to 10 are periods that can be shared by high-priority and medium-priority operators. 11 to 15 are periods that can be shared by all the operators. As described above, the subframes and the priorities are associated with each other so that the notification opportunity increases as the priority increases. In addition, the subframe corresponding to the low priority also corresponds to the high priority in an overlapping manner. The priority and the subframe may be associated with each other on a one-to-one basis. Returning to FIG.
 選択部34は、パケット信号を報知するために、複数のサブフレームのうちのいずれかを選択するが、ここでは、図4に示されたテーブルに応じて、事業者の優先度に対応したサブフレームからいずれかを選択する。例えば、選択すべきサブフレームに関する指示を外部から受けつける。なお、本基地局装置10の事業者についての優先度が「中」である場合に、サブフレーム1~5を選択する指示を受けつけたとき、選択部34は、その指示を破棄する。一方、本基地局装置10の事業者についての優先度に対応づけられたサブフレームを選択する指示を受けつけたとき、選択部34は、指示に応じたサブフレームを選択する。指示に応じて、複数のサブフレームを選択することもある。 The selection unit 34 selects one of a plurality of subframes in order to broadcast the packet signal. Here, the selection unit 34 selects a subframe corresponding to the priority of the operator according to the table shown in FIG. Select one from the frame. For example, an instruction regarding a subframe to be selected is received from the outside. When the priority of the operator of the base station apparatus 10 is “medium”, when receiving an instruction to select subframes 1 to 5, the selection unit 34 discards the instruction. On the other hand, when receiving an instruction to select a subframe associated with the priority of the operator of the base station apparatus 10, the selection unit 34 selects a subframe corresponding to the instruction. Depending on the instruction, a plurality of subframes may be selected.
 これとは別に、選択部34は、自動的にサブフレームを選択してもよい。その際、選択部34は、RF部22、変復調部24を介して、図示しない他の基地局装置10あるいは端末装置14からの復調結果を入力する。選択部34は、入力した復調結果のうち、他の基地局装置10からの復調結果を抽出する。選択部34は、復調結果を受けつけたサブフレームを特定することによって、復調結果を受けつけていないサブフレームを特定する。 Alternatively, the selection unit 34 may automatically select a subframe. At this time, the selection unit 34 inputs a demodulation result from another base station device 10 or the terminal device 14 (not shown) via the RF unit 22 and the modem unit 24. The selection part 34 extracts the demodulation result from the other base station apparatus 10 among the input demodulation results. The selection unit 34 specifies the subframe that has not received the demodulation result by specifying the subframe that has received the demodulation result.
 これは、他の基地局装置10によって路車送信期間が設定されていないサブフレーム、つまり未使用のサブフレームを特定することに相当する。未使用のサブフレームが複数存在する場合、選択部34は、ランダムにひとつのサブフレームを選択する。未使用のサブフレームが存在しない場合、つまり複数のサブフレームのそれぞれが使用されている場合に、選択部34は、復調結果に対応した受信電力を取得し、受信電力の小さいサブフレームを優先的に選択する。この場合であっても、選択対象は、優先度に応じて図4のように限定される。 This corresponds to specifying a subframe in which the road and vehicle transmission period is not set by another base station apparatus 10, that is, an unused subframe. When there are a plurality of unused subframes, the selection unit 34 selects one subframe at random. When there are no unused subframes, that is, when each of a plurality of subframes is used, the selection unit 34 acquires reception power corresponding to the demodulation result, and gives priority to subframes with low reception power. Select Even in this case, the selection target is limited as shown in FIG. 4 according to the priority.
 図3(b)は、第1基地局装置10aによって生成されるフレームの構成を示す。なお、説明を明瞭にするために、図3(b)-(d)では、高優先度の基地局装置10を説明の対象とする。第1基地局装置10aは、第1サブフレームの先頭部分に路車送信期間を設定する。また、第1基地局装置10aは、第1サブフレームにおいて路車送信期間につづいて車車送信期間を設定する。車車送信期間とは、端末装置14がパケット信号を報知可能な期間である。つまり、第1基地局装置10aは、第1サブフレームの先頭期間である路車送信期間においてパケット信号を報知可能であり、かつフレームのうち、路車送信期間以外の車車送信期間において端末装置14がパケット信号を報知可能であるような規定がなされる。さらに、第1基地局装置10aは、第2サブフレームから第Nサブフレームに車車送信期間のみを設定する。 FIG. 3B shows a configuration of a frame generated by the first base station apparatus 10a. In order to clarify the description, in FIGS. 3B to 3D, the high-priority base station apparatus 10 is the target of the description. The first base station apparatus 10a sets a road and vehicle transmission period at the beginning of the first subframe. Moreover, the 1st base station apparatus 10a sets a vehicle transmission period following the road and vehicle transmission period in a 1st sub-frame. The vehicle transmission period is a period during which the terminal device 14 can notify the packet signal. That is, the first base station apparatus 10a can notify the packet signal in the road and vehicle transmission period which is the first period of the first subframe, and the terminal apparatus in the vehicle and vehicle transmission period other than the road and vehicle transmission period in the frame. It is specified that 14 can broadcast the packet signal. Furthermore, the first base station apparatus 10a sets only the vehicle transmission period from the second subframe to the Nth subframe.
 図3(c)は、第2基地局装置10bによって生成されるフレームの構成を示す。第2基地局装置10bは、第2サブフレームの先頭部分に路車送信期間を設定する。また、第2基地局装置10bは、第2サブフレームにおける路車送信期間の後段、第1サブフレーム、第3サブフレームから第Nサブフレームに車車送信期間を設定する。図3(d)は、第3基地局装置10cによって生成されるフレームの構成を示す。第3基地局装置10cは、第3サブフレームの先頭部分に路車送信期間を設定する。また、第3基地局装置10cは、第3サブフレームにおける路車送信期間の後段、第1サブフレーム、第2サブフレーム、第4サブフレームから第Nサブフレームに車車送信期間を設定する。このように、複数の基地局装置10は、互いに異なったサブフレームを選択し、選択したサブフレームの先頭部分に路車送信期間を設定する。図2に戻る。選択部34は、選択したサブフレームの番号を生成部36へ出力する。 FIG. 3C shows a configuration of a frame generated by the second base station apparatus 10b. The second base station apparatus 10b sets a road and vehicle transmission period at the beginning of the second subframe. Also, the second base station apparatus 10b sets the vehicle transmission period from the first stage of the road and vehicle transmission period in the second subframe, from the first subframe and the third subframe to the Nth subframe. FIG. 3D shows a configuration of a frame generated by the third base station apparatus 10c. The third base station apparatus 10c sets a road and vehicle transmission period at the beginning of the third subframe. Also, the third base station apparatus 10c sets the vehicle transmission period from the first stage of the road and vehicle transmission period in the third subframe, the first subframe, the second subframe, and the fourth subframe to the Nth subframe. As described above, the plurality of base station apparatuses 10 select different subframes, and set the road and vehicle transmission period at the head portion of the selected subframe. Returning to FIG. The selection unit 34 outputs the selected subframe number to the generation unit 36.
 生成部36は、選択部34から、サブフレームの番号を受けつける。生成部36は、受けつけたサブフレーム番号のサブフレームに路車送信期間を設定し、路車送信期間において報知すべきパケット信号を生成する。ひとつの路車送信期間において複数のパケット信号が送信される場合、生成部36は、それらを生成する。パケット信号は、例えば、制御情報、データペイロードによって構成されている。制御情報には、路車送信期間を設定したサブフレーム番号等が含まれている。また、制御情報には、優先度に関する情報も含まれている。優先度に関する情報では、優先度そのものが示されていてもよいし、事業者を識別するための情報であってもよい。また、生成部36は、本基地局装置10を設置した事業者からのデータをデータペイロードに格納させる。これらのデータは、ネットワーク通信部30によって、図示しないネットワーク202から取得される。 The generation unit 36 receives a subframe number from the selection unit 34. The generation unit 36 sets a road and vehicle transmission period in the subframe of the received subframe number, and generates a packet signal to be notified during the road and vehicle transmission period. When a plurality of packet signals are transmitted in one road and vehicle transmission period, the generation unit 36 generates them. The packet signal is composed of, for example, control information and a data payload. The control information includes a subframe number in which a road and vehicle transmission period is set. The control information includes information related to priority. In the information on priority, the priority itself may be indicated, or information for identifying a business operator may be used. Moreover, the production | generation part 36 stores the data from the provider who installed this base station apparatus 10 in a data payload. These data are acquired from the network 202 (not shown) by the network communication unit 30.
 図5(a)-(b)は、基地局装置10によって生成されるパケット信号のフォーマットを示す。図5(a)は、物理フレームのフォーマットを示す。物理フレームは、先頭から順に、「PLCPプリアンブル」、「シグナル」、「サービス」、「MACヘッダ」、「RSUコントロールヘッダ」、「ペイロード」、「FCS」、「テールビット」を配置する。なお、物理フレームが前述のパケット信号に相当する。 5 (a)-(b) show the format of the packet signal generated by the base station apparatus 10. FIG. FIG. 5A shows a physical frame format. In the physical frame, “PLCP preamble”, “signal”, “service”, “MAC header”, “RSU control header”, “payload”, “FCS”, and “tail bit” are arranged in order from the top. A physical frame corresponds to the packet signal described above.
 「PLCPプリアンブル」は、物理レイヤにおいて規定されている既知信号であり、「シグナル」は、物理レイヤにおいて規定されている制御信号であり、「MACヘッダ」は、MACレイヤにおいて規定されている制御信号である。「RSUコントロールヘッダ」は、路車間通信および車車間通信において共通に使用される制御信号であり、詳細は後述する。「ペイロード」は、データ信号である。そのため、パケット信号には、制御信号につづいてデータ信号が配置されているといえる。 The “PLCP preamble” is a known signal defined in the physical layer, the “signal” is a control signal defined in the physical layer, and the “MAC header” is a control signal defined in the MAC layer. It is. The “RSU control header” is a control signal commonly used in road-to-vehicle communication and vehicle-to-vehicle communication, and details will be described later. A “payload” is a data signal. Therefore, it can be said that a data signal is arranged in the packet signal following the control signal.
 図5(b)は、生成部36によって生成されるRSUコントロールヘッダの構成を示す図である。RSUコントロールヘッダには、「プロトコルバージョン」、「送信ノード種別」、「転送回数/再利用回数」、「リザーブ」、「TSFタイマ」、「RSU送信期間長」、「事業者種別」、「リザーブ」が配置される。プロトコルバージョンは、対応しているプロトコルのバージョンを示す。送信ノード種別は、送信ノードの種別を示す。送信ノードの種別として、基地局装置10、端末装置14が規定されている。転送回数/再利用回数は、RSUコントロールヘッダが端末装置14によって転送される場合の有効性の指標を示し、TSFタイマは、送信時刻を示す。 FIG. 5B is a diagram illustrating a configuration of the RSU control header generated by the generation unit 36. The RSU control header includes “protocol version”, “transmission node type”, “transfer count / reuse count”, “reserve”, “TSF timer”, “RSU transmission period length”, “carrier type”, “reserve” Is arranged. The protocol version indicates the version of the corresponding protocol. The transmission node type indicates the type of the transmission node. Base station apparatus 10 and terminal apparatus 14 are defined as types of transmission nodes. The transfer count / reuse count indicates an index of validity when the RSU control header is transferred by the terminal device 14, and the TSF timer indicates the transmission time.
 RSU送信期間長は、路車送信期間の長さを示しており、路車送信期間に関する情報といえる。事業者種別は、基地局装置10を設置した事業者を識別するための情報であり、前述の優先度を示すための情報であるといえる。例えば、「0b00」が高優先度事業者、「0b01」が中優先度事業者、「0b10」が第1の低優先度事業者、「0b11」が第2の低優先度事業者であるとされる。図2に戻る。処理部26は、変復調部24、RF部22に対して、路車送信期間においてパケット信号をブロードキャスト送信させる。制御部28は、基地局装置10全体の処理を制御する。 The RSU transmission period length indicates the length of the road and vehicle transmission period, and can be said to be information on the road and vehicle transmission period. The operator type is information for identifying the operator who installed the base station apparatus 10, and can be said to be information for indicating the above-described priority. For example, “0b00” is a high priority operator, “0b01” is a medium priority operator, “0b10” is a first low priority operator, and “0b11” is a second low priority operator. Is done. Returning to FIG. The processing unit 26 broadcasts the packet signal to the modem unit 24 and the RF unit 22 during the road and vehicle transmission period. The control unit 28 controls processing of the entire base station device 10.
 この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ハードウエアとソフトウエアの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。 This configuration can be realized in terms of hardware by a CPU, memory, or other LSI of any computer, and in terms of software, it can be realized by a program loaded in the memory, but here it is realized by their cooperation. Draw functional blocks. Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms only by hardware, or by a combination of hardware and software.
 図6は、車両12に搭載された端末装置14の構成を示す。端末装置14は、アンテナ50、RF部52、変復調部54、処理部56、制御部58を含む。処理部56は、タイミング特定部60、転送決定部62、取得部64、生成部66、通知部70を含む。タイミング特定部60は、抽出部72、キャリアセンス部74を含む。アンテナ50、RF部52、変復調部54は、図2のアンテナ20、RF部22、変復調部24と同様の処理を実行する。ここでは差異を中心に説明する。 FIG. 6 shows the configuration of the terminal device 14 mounted on the vehicle 12. The terminal device 14 includes an antenna 50, an RF unit 52, a modem unit 54, a processing unit 56, and a control unit 58. The processing unit 56 includes a timing specifying unit 60, a transfer determination unit 62, an acquisition unit 64, a generation unit 66, and a notification unit 70. The timing identification unit 60 includes an extraction unit 72 and a carrier sense unit 74. The antenna 50, the RF unit 52, and the modem unit 54 execute the same processing as the antenna 20, the RF unit 22, and the modem unit 24 in FIG. Here, the difference will be mainly described.
 変復調部54は、処理部56は、受信処理において、図示しない他の端末装置14あるいは基地局装置10からのパケット信号を受信する。なお、前述のごとく、変復調部54、処理部56は、路車送信期間において、基地局装置10からのパケット信号を受信し、車車送信期間において、他の端末装置14からのパケット信号を受信する。 The modem unit 54 receives a packet signal from another terminal device 14 or the base station device 10 (not shown) in the reception process. As described above, the modem unit 54 and the processing unit 56 receive a packet signal from the base station apparatus 10 during the road-to-vehicle transmission period, and receive packet signals from other terminal apparatuses 14 during the vehicle-to-vehicle transmission period. To do.
 抽出部72は、変復調部54からの復調結果が、図示しない基地局装置10からのパケット信号である場合に、路車送信期間が配置されたサブフレームのタイミングを特定する。具体的に説明すると、抽出部72は、パケット信号に含まれた制御情報をもとに、基地局装置10からのパケット信号であるか否かを判定する。また、抽出部72は、サブフレームのタイミングと、制御情報に含まれたタイミング情報とをもとに、フレームを生成する。その結果、抽出部72は、基地局装置10において形成されたフレームに同期したフレームを生成する。パケット信号の報知元が、他の端末装置14である場合、抽出部72は、同期したフレームの生成処理を省略する。 The extraction unit 72 specifies the timing of the subframe in which the road and vehicle transmission period is arranged when the demodulation result from the modem unit 54 is a packet signal from the base station device 10 (not shown). Specifically, the extraction unit 72 determines whether or not the packet signal is from the base station apparatus 10 based on the control information included in the packet signal. In addition, the extraction unit 72 generates a frame based on the subframe timing and the timing information included in the control information. As a result, the extraction unit 72 generates a frame synchronized with the frame formed in the base station device 10. When the notification source of the packet signal is another terminal device 14, the extraction unit 72 omits the synchronized frame generation process.
 抽出部72は、制御情報をもとに、使用されている路車送信期間を特定した後、残りの車車送信期間を特定する。抽出部72は、フレームおよびサブフレームのタイミング、車車送信期間に関する情報をキャリアセンス部74へ出力する。一方、抽出部72は、基地局装置10からのパケット信号を受けつけていない場合、つまり基地局装置10に同期したフレームを生成していない場合、フレームの構成と無関係のタイミングを選択する。抽出部72は、フレームの構成と無関係のタイミングを選択すると、フレームの構成に関係のないキャリアセンスの実行をキャリアセンス部74に指示する。これは、図1のエリア外214での動作に相当する。 The extraction unit 72 specifies the remaining vehicle transmission period after specifying the road and vehicle transmission period in use based on the control information. The extraction unit 72 outputs information on frame and subframe timing and vehicle transmission period to the carrier sense unit 74. On the other hand, when the extraction unit 72 does not receive a packet signal from the base station apparatus 10, that is, when a frame synchronized with the base station apparatus 10 is not generated, the extraction unit 72 selects a timing unrelated to the frame configuration. When the extraction unit 72 selects a timing unrelated to the frame configuration, the extraction unit 72 instructs the carrier sense unit 74 to perform carrier sensing unrelated to the frame configuration. This corresponds to the operation outside the area 214 in FIG.
 キャリアセンス部74は、抽出部72から、フレームおよびサブフレームのタイミング、車車送信期間に関する情報を受けつける。キャリアセンス部74は、車車送信期間内でCSMA/CAを開始することによって送信タイミングを決定する。一方、キャリアセンス部74は、抽出部72から、キャリアセンスの実行を指示された場合、フレームの構成を考慮せずに、CSMA/CAを実行することによって、送信タイミングを決定する。キャリアセンス部74は、決定した送信タイミングを変復調部54、RF部52へ通知し、パケット信号をブロードキャスト送信させる。 The carrier sense unit 74 receives information on frame and subframe timing and vehicle transmission period from the extraction unit 72. The carrier sense unit 74 determines the transmission timing by starting CSMA / CA within the vehicle transmission period. On the other hand, when the carrier sense unit 74 is instructed to perform carrier sense from the extraction unit 72, the carrier sense unit 74 determines the transmission timing by executing CSMA / CA without considering the frame configuration. The carrier sense unit 74 notifies the modem unit 54 and the RF unit 52 of the determined transmission timing, and broadcasts the packet signal.
 転送決定部62は、制御情報の転送を制御する。転送決定部62は、制御情報のうち、転送対象となる情報を抽出する。転送決定部62は、抽出した情報をもとに、転送すべき情報を生成する。ここでは、この処理の説明を省略するが、パケット信号に含まれたデータの提供元になる事業者の優先度に応じた最大の転送回数が定められている。具体的に説明すると、事業者の優先度が高いほど、パケット信号に含まれた一部の情報の転送回数が多くなるような規定がなされている。図7は、転送決定部62に記憶されたテーブルのデータ構造を示す。図示のごとく、優先度欄230、転送回数欄232が含まれており、優先度と転送回数とが対応づけられている。高優先度に対して、転送回数3回が対応づけられており、中優先度に対して、転送回数2回が対応づけられており、低優先度に対して、転送回数1回が対応づけられている。図6に戻る。 The transfer determination unit 62 controls transfer of control information. The transfer determination unit 62 extracts information to be transferred from the control information. The transfer determination unit 62 generates information to be transferred based on the extracted information. Although the description of this process is omitted here, the maximum number of transfers is determined according to the priority of the provider that provides the data included in the packet signal. More specifically, it is stipulated that the higher the carrier priority, the greater the number of transfers of some information included in the packet signal. FIG. 7 shows the data structure of the table stored in the transfer determination unit 62. As illustrated, a priority column 230 and a transfer count column 232 are included, and the priority and the transfer count are associated with each other. Three transfers are associated with high priority, two transfers are associated with medium priority, and one transfer is associated with low priority. It has been. Returning to FIG.
 転送決定部62は、転送回数が図7に示された値に達していなければ、転送すべき情報、つまり制御情報のうちの一部を生成部66に出力する。取得部64は、図示しないGPS受信機、ジャイロスコープ、車速センサ等を含んでおり、それらから供給されるデータによって、図示しない車両12、つまり端末装置14が搭載された車両12の存在位置、進行方向、移動速度等(以下、「位置情報」と総称する)を取得する。なお、存在位置は、緯度・経度によって示される。これらの取得には公知の技術が使用されればよいので、ここでは説明を省略する。また、GPS受信機、ジャイロスコープ、車速センサ等は端末装置14の外部にあってもよい。取得部64は、位置情報を生成部66へ出力する。 If the number of transfers has not reached the value shown in FIG. 7, the transfer determination unit 62 outputs information to be transferred, that is, a part of the control information, to the generation unit 66. The acquisition unit 64 includes a GPS receiver (not shown), a gyroscope, a vehicle speed sensor, and the like. Based on data supplied from these, the location of the vehicle 12 (not shown), that is, the position of the vehicle 12 on which the terminal device 14 is mounted, the progress The direction, the moving speed, etc. (hereinafter collectively referred to as “position information”) are acquired. The existence position is indicated by latitude and longitude. Since a known technique may be used for these acquisitions, description thereof is omitted here. The GPS receiver, gyroscope, vehicle speed sensor, and the like may be outside the terminal device 14. The acquisition unit 64 outputs the position information to the generation unit 66.
 生成部66は、取得部64から位置情報を受けつけ、転送決定部62から制御情報の一部を受けつける。生成部66は、制御情報の一部を制御情報に格納し、位置情報をペイロードに格納することによって、パケット信号を生成する。通知部70は、路車送信期間において、図示しない基地局装置10からのパケット信号を取得するとともに、車車送信期間において、図示しない他の端末装置14からのパケット信号を取得する。通知部70は、取得したパケット信号に対する処理として、パケット信号に格納されたデータの内容に応じて、図示しない他の車両12の接近等を運転者へモニタあるいはスピーカを介して通知する。制御部58は、端末装置14の動作を制御する。 The generation unit 66 receives position information from the acquisition unit 64 and receives a part of control information from the transfer determination unit 62. The generation unit 66 generates a packet signal by storing part of the control information in the control information and storing the position information in the payload. The notification unit 70 acquires a packet signal from the base station device 10 (not shown) in the road and vehicle transmission period, and acquires a packet signal from another terminal device 14 (not shown) in the vehicle and vehicle transmission period. As a process for the acquired packet signal, the notification unit 70 notifies the driver of the approach of another vehicle 12 (not shown) or the like via a monitor or a speaker according to the content of the data stored in the packet signal. The control unit 58 controls the operation of the terminal device 14.
 受信処理の各レイヤの処理は、図6の変復調部54、処理部56に含まれ、無線信号受信は、図7のRF部52に含まれる。また、パケット分割・結合レイヤからPHYレイヤは、ベースバンド処理としてまとめられるとともに、無線信号受信は、RF処理としてまとめられる。これらは、図5(a)に示された各レイヤに対応した処理を実行する。 The processing of each layer of the reception processing is included in the modulation / demodulation unit 54 and the processing unit 56 of FIG. 6, and the reception of the radio signal is included in the RF unit 52 of FIG. In addition, the packet division / combination layer to the PHY layer are combined as baseband processing, and the reception of radio signals is combined as RF processing. These execute processing corresponding to each layer shown in FIG.
 以上の構成による通信システム100の動作を説明する。図8は、基地局装置10における路車送信期間の設定処理を示すフローチャートである。優先度「高」の事業者であれば(S10のY)、選択部34は、サブフレーム1~16のいずれかに路車送信期間を設定する(S12)。優先度「高」の事業者ではなく(S10のN)、優先度「中」の事業者であれば(S14のY)、選択部34は、サブフレーム6~16のいずれかに路車送信期間を設定する(S16)。優先度「中」の事業者でなければ(S14のN)、選択部34は、サブフレーム11~16のいずれかに路車送信期間を設定する(S18)。 The operation of the communication system 100 configured as above will be described. FIG. 8 is a flowchart showing a road and vehicle transmission period setting process in the base station apparatus 10. If the operator has a high priority (Y in S10), the selection unit 34 sets a road and vehicle transmission period in any of the subframes 1 to 16 (S12). If it is not a high priority business operator (N in S10) but a medium priority business operator (Y in S14), the selection unit 34 transmits the road to any of the subframes 6 to 16. A period is set (S16). If the operator is not the medium-priority business operator (N in S14), the selection unit 34 sets the road and vehicle transmission period in any of the subframes 11 to 16 (S18).
 ここまでの説明では、事業者の優先度に応じて予め割り当てたサブフレームに路車送信期間が設定されている。変形例における基地局装置10は、送信すべきデータ量が多くなった場合に、すでに割り当てられたサブフレームに加えて、別のサブフレームにも路車送信期間を設定する。その際、基地局装置10は、自らの優先度よりも低い優先度に対して割り当てられたサブフレームを選択して、追加の路車送信期間を設定する。例えば、基地局装置10の優先度が「高」である場合、優先度が「中」あるいは「低」に対して割り当てられたサブフレームのうちのいずれかに、追加の路車送信期間が設定される。 In the description so far, the road and vehicle transmission period is set in a subframe assigned in advance according to the priority of the operator. When the amount of data to be transmitted increases, the base station apparatus 10 in the modification sets the road and vehicle transmission period in another subframe in addition to the already assigned subframe. At that time, the base station apparatus 10 selects a subframe assigned to a priority lower than its own priority, and sets an additional road and vehicle transmission period. For example, when the priority of the base station apparatus 10 is “high”, an additional road and vehicle transmission period is set in one of the subframes assigned to the priority “medium” or “low”. Is done.
 図9は、本発明の変形例に係る基地局装置10における路車送信期間の設定処理を示すフローチャートである。割り当てられた路車送信期間長がデータを送信するために必要な期間よりも小さければ(S30のY)、基地局装置10は、割り当てられたサブフレームでの路車送信期間でデータ送信を実行する(S32)。基地局装置10は、優先度がより低い路車送信期間を選択する(S34)。選択に成功すれば(S36のY)、基地局装置10は、残りのデータを送信する(S38)。一方、選択に成功しなければ(S36のN)、基地局装置10は、残りのデータを破棄する(S40)。割り当てられた路車送信期間長がデータを送信するために必要な期間よりも小さくなければ(S30のN)、基地局装置10は、割り当てられたサブフレームでの路車送信期間でデータ送信を実行する(S42)。 FIG. 9 is a flowchart showing a road and vehicle transmission period setting process in the base station apparatus 10 according to the modification of the present invention. If the allocated road and vehicle transmission period length is smaller than the period necessary for transmitting data (Y in S30), the base station apparatus 10 executes data transmission in the road and vehicle transmission period in the allocated subframe. (S32). The base station apparatus 10 selects a road and vehicle transmission period with a lower priority (S34). If the selection is successful (Y in S36), the base station apparatus 10 transmits the remaining data (S38). On the other hand, if the selection is not successful (N in S36), the base station apparatus 10 discards the remaining data (S40). If the allocated road and vehicle transmission period length is not shorter than the period necessary for transmitting data (N in S30), the base station apparatus 10 performs data transmission in the road and vehicle transmission period in the allocated subframe. Execute (S42).
 本発明の実施例によれば、事業者の優先度とサブフレームとの対応づけが予めなされており、優先度に応じたサブフレームを選択して路車送信期間を設定するので、優先度の異なった事業者間において別のサブフレームを選択しやすくできる。また、優先度に応じたサブフレームを使用するので、複数の事業者が通信サービスを提供する場合であっても、ブロードキャスト送信を効率的に実行できる。また、優先度が高いほど報知機会が増加するので、データを通知しやすくできる。また、低い優先度に対応したサブフレームは、高い優先度にも重複して対応しているので、高い優先度に対応したサブフレーム数を増加できる。 According to the embodiment of the present invention, the priority of the operator is associated with the subframe in advance, and the road and vehicle transmission period is set by selecting the subframe according to the priority. It is easy to select different subframes between different operators. In addition, since subframes corresponding to the priorities are used, broadcast transmission can be efficiently executed even when a plurality of carriers provide communication services. In addition, since the notification opportunity increases as the priority is higher, data can be easily notified. In addition, since the subframes corresponding to the low priority also correspond to the high priority, the number of subframes corresponding to the high priority can be increased.
 また、低い優先度に対応したサブフレームは、高い優先度にも重複して対応しているので、使用されないサブフレーム数を低減できる。また、優先度に関する情報をパケット信号に含めるので、事業者の判別を容易にさせることができる。また、優先度が高いほど転送回数を多くするので、優先度の高いデータを広いエリアに伝送できる。また、優先度が低ければ転送回数を少なくするので、転送処理を簡易にできる。また、優先度にしたがいサービスを提供しつつ、周波数の有効利用を図ることができる。また、送信すべきデータ量が大きくなった場合に、優先度の低いサブフレームに追加の路車送信期間を設定するので、優先度の高い事業者に与える影響を抑制しながら、データ量の増加に対応できる。 Also, since the subframes corresponding to the low priority also correspond to the high priority, the number of unused subframes can be reduced. In addition, since information on priority is included in the packet signal, the operator can be easily identified. Also, the higher the priority, the greater the number of transfers, so that high priority data can be transmitted over a wide area. In addition, since the number of transfers is reduced if the priority is low, the transfer process can be simplified. Further, it is possible to effectively use frequencies while providing services according to priority. In addition, when the amount of data to be transmitted becomes large, an additional road and vehicle transmission period is set in a subframe with a low priority, so the data volume increases while suppressing the impact on operators with a high priority. It can correspond to.
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to each of those constituent elements or combinations of processing processes, and such modifications are also within the scope of the present invention. .
 本発明の実施例において、転送決定部62は、優先度をもとに転送回数を特定し、特定した転送回数に達していなければ、転送を実行する。しかしながらこれに限らず例えば、事業者の優先度が低くなれば、転送決定部62は、受信電力に応じて転送するか否かを決定してもよい。例えば、優先度が低い場合、受信電力がしきい値よりも低ければ、転送決定部62は、図7のテーブルにしたがって転送を実行する。一方、優先度が低い場合、受信電力がしきい値以上であれば、転送決定部62は、特定した転送回数に達していなくても、転送を実行しない。本変形例によれば、基地局装置10の近傍でパケット信号を受信した端末装置14からの転送がなくなるので、周波数を有効に利用できる。 In the embodiment of the present invention, the transfer determination unit 62 specifies the number of transfers based on the priority, and performs transfer if the specified number of transfers has not been reached. However, the present invention is not limited to this. For example, if the priority of the operator is low, the transfer determination unit 62 may determine whether or not to transfer according to the received power. For example, when the priority is low and the reception power is lower than the threshold value, the transfer determination unit 62 performs transfer according to the table of FIG. On the other hand, when the priority is low, if the received power is equal to or higher than the threshold value, the transfer determining unit 62 does not execute the transfer even if the specified transfer count has not been reached. According to this modification, since there is no transfer from the terminal device 14 that has received the packet signal in the vicinity of the base station device 10, the frequency can be used effectively.
 本発明の実施例において、基地局装置10によって生成されるパケット信号のフォーマットは、図10(a)-(b)の形式であってもよい。図10(a)は、物理フレームのフォーマットを示す。物理フレームは、先頭から順に、「PLCPプリアンブル」、「シグナル」、「サービス」、「MACヘッダ」、「LLCヘッダ」、「IR制御ヘッダ」、「レイヤ7ヘッダ」、「ELヘッダ」、「ペイロード」、「FCS」、「テールビット」を配置する。なお、物理フレームが前述のパケット信号に相当する。 In the embodiment of the present invention, the format of the packet signal generated by the base station apparatus 10 may be the format shown in FIGS. 10 (a)-(b). FIG. 10A shows the format of a physical frame. The physical frames are “PLCP preamble”, “signal”, “service”, “MAC header”, “LLC header”, “IR control header”, “layer 7 header”, “EL header”, “payload” in order from the top. ”,“ FCS ”, and“ tail bit ”. A physical frame corresponds to the packet signal described above.
 「PLCPプリアンブル」は、物理レイヤにおいて規定されている既知信号であり、「シグナル」は、物理レイヤにおいて規定されている制御信号であり、「MACヘッダ」は、レイヤ2のMAC副層において規定されている制御信号である。「LLCヘッダ」は、レイヤ2のLLC副層において規定されている制御信号であり、「IR制御ヘッダ」は、路車間通信および車車間通信において共通に使用される制御信号であり、詳細は後述する。「レイヤ7ヘッダ」はレイヤ7において規定されている制御信号であり、「ELヘッダ」はパケット分割・結合レイヤにおいて規定されている制御信号である。「ペイロード」は、データ信号である。そのため、パケット信号には、制御信号につづいてデータ信号が配置されているといえる。 The “PLCP preamble” is a known signal defined in the physical layer, the “signal” is a control signal defined in the physical layer, and the “MAC header” is defined in the MAC sublayer of layer 2. Control signal. The “LLC header” is a control signal defined in the LLC sublayer of layer 2, and the “IR control header” is a control signal commonly used in road-to-vehicle communication and vehicle-to-vehicle communication. Details will be described later. To do. “Layer 7 header” is a control signal defined in layer 7, and “EL header” is a control signal defined in the packet division / combination layer. A “payload” is a data signal. Therefore, it can be said that a data signal is arranged in the packet signal following the control signal.
 図10(b)は、生成部36によって生成されるIR制御ヘッダの構成を示す図である。IR制御ヘッダには、先頭から順に、「バージョン」、「識別情報」、「同期情報」、「予約」、「送信時刻」、「路車間通信期間情報」、「拡張領域」が配置される。バージョンは、対応しているプロトコルのバージョンを示す。識別情報は、送信ノードの種別を示す。送信ノードの種別として、基地局装置10、端末装置14が規定されている。同期情報は、制御周期への同期/非同期の識別を示す。送信時刻は、送信無線機がパケット信号を送信する際のタイマ情報を示す。 FIG. 10B is a diagram illustrating a configuration of an IR control header generated by the generation unit 36. In the IR control header, “version”, “identification information”, “synchronization information”, “reservation”, “transmission time”, “road-to-vehicle communication period information”, and “extended area” are arranged in order from the top. The version indicates the version of the corresponding protocol. The identification information indicates the type of the transmission node. Base station apparatus 10 and terminal apparatus 14 are defined as types of transmission nodes. The synchronization information indicates synchronous / asynchronous identification with respect to the control cycle. The transmission time indicates timer information when the transmitting radio transmits a packet signal.
 路車間通信期間情報は、路車送信期間の開始位置と長さを示しており、路車送信期間に関する情報といえる。拡張領域のうち、いずれか2ビットに事業者種別を設定する。事業者種別は基地局装置10を設置した事業者を識別するための情報であり、前述の優先度を示すための情報であるといえる。例えば、「0b00」が高優先度事業者、「0b01」が中優先度事業者、「0b10」が第1の低優先度事業者、「0b11」が第2の低優先度事業者であるとされる。 Road-to-vehicle communication period information indicates the start position and length of the road-to-vehicle transmission period, and can be said to be information related to the road-to-vehicle transmission period. The operator type is set in any 2 bits of the extended area. The operator type is information for identifying the operator who installed the base station apparatus 10, and can be said to be information for indicating the above-described priority. For example, “0b00” is a high priority operator, “0b01” is a medium priority operator, “0b10” is a first low priority operator, and “0b11” is a second low priority operator. Is done.
 本発明の一態様の概要は、次の通りである。本発明のある態様の無線装置は、複数のサービスのそれぞれに対して、互いに異なった優先度が規定されており、複数のサービスのうちのいずれかに対するデータが含まれたパケット信号を生成する生成部と、生成部において生成したパケット信号を報知するために、複数の期間のうちのいずれかを選択する選択部と、選択部において選択した期間にて、生成部において生成したパケット信号を報知する報知部とを備える。選択部での選択対象になる複数の期間のそれぞれには、優先度が高いほど報知機会が増加するように、優先度との対応づけがなされており、選択部は、生成部において生成したパケット信号に含まれたデータに対するサービスの優先度に対応した期間からいずれかを選択する。 The outline of one embodiment of the present invention is as follows. A wireless device according to an aspect of the present invention generates a packet signal in which different priorities are defined for each of a plurality of services and includes data for any of the plurality of services And a selection unit that selects one of a plurality of periods, and a packet signal generated by the generation unit in the period selected by the selection unit in order to notify the packet signal generated by the generation unit A notification unit. Each of the plurality of periods to be selected by the selection unit is associated with a priority so that the notification opportunity increases as the priority is higher, and the selection unit generates a packet generated by the generation unit. One of the periods corresponding to the service priority for the data included in the signal is selected.
 この態様によると、サービスの優先度とサブフレームとの対応づけが予めなされており、優先度に応じたサブフレームを選択して路車送信期間を設定するので、優先度の異なったサービス間において別のサブフレームを選択しやすくできる。 According to this aspect, the priority of the service is associated with the subframe in advance, and the road and vehicle transmission period is set by selecting the subframe corresponding to the priority. It is easy to select another subframe.
 低い優先度に対応した期間は、高い優先度にも重複して対応していてもよい。この場合、低い優先度に対応したサブフレームは、高い優先度にも重複して対応しているので、使用されないサブフレーム数を低減できる。 The period corresponding to the low priority may overlap with the high priority. In this case, since the subframe corresponding to the low priority also corresponds to the high priority, the number of unused subframes can be reduced.
 生成部は、優先度に関する情報もパケット信号に含めてもよい。この場合、優先度に関する情報をパケット信号に含めるので、サービスの判別を容易にさせることができる。 The generation unit may include information on priority in the packet signal. In this case, since information on the priority is included in the packet signal, it is possible to easily determine the service.
 生成部において生成したパケット信号に含まれたデータに対するサービスの優先度が高いほど、パケット信号に含まれた一部の情報の転送回数が多い。この場合、優先度が高いほど転送回数を多くするので、優先度の高いデータを広いエリアに伝送できる。 The higher the service priority for the data included in the packet signal generated by the generation unit, the greater the number of transfers of some information included in the packet signal. In this case, the higher the priority, the greater the number of transfers, so that data with a higher priority can be transmitted over a wide area.
 生成部において生成したパケット信号に含まれたデータに対するサービスの優先度が低くなれば、受信電力に応じて転送するか否かを決定させてもよい。この場合、無線装置の近傍でパケット信号を受信した他の無線装置からの転送がなくなるので、周波数を有効に利用できる。 If the priority of the service with respect to the data included in the packet signal generated in the generation unit is low, it may be determined whether to transfer according to the received power. In this case, since there is no transfer from another wireless device that has received the packet signal in the vicinity of the wireless device, the frequency can be used effectively.
 10 基地局装置、 12 車両、 14 端末装置、 20 アンテナ、 22 RF部、 24 変復調部、 26 処理部、 28 制御部、 30 ネットワーク通信部、 32 フレーム規定部、 34 選択部、 36 生成部、 50 アンテナ、 52 RF部、 54 変復調部、 56 処理部、 58 制御部、 60 タイミング特定部、 62 転送決定部、 64 取得部、 66 生成部、 70 通知部、 72 抽出部、 74 キャリアセンス部、 100 通信システム。 10 base station devices, 12 vehicles, 14 terminal devices, 20 antennas, 22 RF units, 24 modulation / demodulation units, 26 processing units, 28 control units, 30 network communication units, 32 frame definition units, 34 selection units, 36 generation units, 50 Antenna, 52 RF section, 54 modulation / demodulation section, 56 processing section, 58 control section, 60 timing identification section, 62 transfer determination section, 64 acquisition section, 66 generation section, 70 notification section, 72 extraction section, 74 carrier sense section, 100 Communications system.
 本発明によれば、複数の事業者が通信サービスを提供する場合であっても、ブロードキャスト送信を効率的に実行できる。 According to the present invention, broadcast transmission can be efficiently executed even when a plurality of providers provide communication services.

Claims (5)

  1.  複数のサービスのそれぞれに対して、互いに異なった優先度が規定されており、複数のサービスのうちのいずれかに対するデータが含まれたパケット信号を生成する生成部と、
     前記生成部において生成したパケット信号を報知するために、複数の期間のうちのいずれかを選択する選択部と、
     前記選択部において選択した期間にて、前記生成部において生成したパケット信号を報知する報知部とを備え、
     前記選択部での選択対象になる複数の期間のそれぞれには、優先度が高いほど報知機会が増加するように、優先度との対応づけがなされており、
     前記選択部は、前記生成部において生成したパケット信号に含まれたデータに対するサービスの優先度に対応した期間からいずれかを選択することを特徴とする無線装置。
    A different priority is defined for each of a plurality of services, and a generation unit that generates a packet signal including data for any of the plurality of services,
    A selection unit that selects one of a plurality of periods in order to broadcast the packet signal generated in the generation unit;
    A notification unit for reporting the packet signal generated in the generation unit in a period selected by the selection unit;
    Each of the plurality of periods to be selected by the selection unit is associated with a priority so that the notification opportunity increases as the priority is higher,
    The radio apparatus according to claim 1, wherein the selection unit selects any one of a period corresponding to a priority of service for data included in the packet signal generated by the generation unit.
  2.  低い優先度に対応した期間は、高い優先度にも重複して対応していることを特徴とする請求項1に記載の無線装置。 The radio apparatus according to claim 1, wherein the period corresponding to the low priority corresponds to the high priority in an overlapping manner.
  3.  前記生成部は、優先度に関する情報もパケット信号に含めることを特徴とする請求項1または2に記載の無線装置。 The wireless device according to claim 1 or 2, wherein the generation unit includes information on priority in a packet signal.
  4.  前記生成部において生成したパケット信号に含まれたデータに対するサービスの優先度が高いほど、パケット信号に含まれた一部の情報の転送回数が多いことを特徴とする請求項3に記載の無線装置。 The radio apparatus according to claim 3, wherein the higher the service priority for the data included in the packet signal generated by the generation unit, the greater the number of transfers of some information included in the packet signal. .
  5.  前記生成部において生成したパケット信号に含まれたデータに対するサービスの優先度が低くなれば、受信電力に応じて転送するか否かを決定させることを特徴とする請求項3に記載の無線装置。 4. The radio apparatus according to claim 3, wherein if the service priority with respect to the data included in the packet signal generated by the generation unit is low, it is determined whether or not to transfer according to the received power.
PCT/JP2012/006133 2011-09-30 2012-09-26 Wireless device WO2013046655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-217936 2011-09-30
JP2011217936A JP2014239267A (en) 2011-09-30 2011-09-30 Radio device

Publications (1)

Publication Number Publication Date
WO2013046655A1 true WO2013046655A1 (en) 2013-04-04

Family

ID=47994738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006133 WO2013046655A1 (en) 2011-09-30 2012-09-26 Wireless device

Country Status (2)

Country Link
JP (1) JP2014239267A (en)
WO (1) WO2013046655A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532343A (en) * 2013-09-27 2016-10-13 クゥアルコム・インコーポレイテッドQualcomm Incorporated Prioritizing different operators in the shared spectrum

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124418A (en) * 2007-11-14 2009-06-04 Sumitomo Electric Ind Ltd Communication system, radio communication method, and communication device
JP2011035566A (en) * 2009-07-30 2011-02-17 Sanyo Electric Co Ltd Terminal device
JP2011182138A (en) * 2010-02-26 2011-09-15 Sanyo Electric Co Ltd Base station device and terminal device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124418A (en) * 2007-11-14 2009-06-04 Sumitomo Electric Ind Ltd Communication system, radio communication method, and communication device
JP2011035566A (en) * 2009-07-30 2011-02-17 Sanyo Electric Co Ltd Terminal device
JP2011182138A (en) * 2010-02-26 2011-09-15 Sanyo Electric Co Ltd Base station device and terminal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532343A (en) * 2013-09-27 2016-10-13 クゥアルコム・インコーポレイテッドQualcomm Incorporated Prioritizing different operators in the shared spectrum
JP2017112636A (en) * 2013-09-27 2017-06-22 クゥアルコム・インコーポレイテッドQualcomm Incorporated Prioritization of different operators in shared spectrum
US9961558B2 (en) 2013-09-27 2018-05-01 Qualcomm Incorporated Prioritization of different operators in shared spectrum

Also Published As

Publication number Publication date
JP2014239267A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
WO2011152023A1 (en) Terminal device
JP5895199B2 (en) Wireless device
US20120236841A1 (en) Base station apparatus for transmitting or receiving a signal including predetermined information
JP2014007732A (en) Terminal device
JP5754998B2 (en) Terminal device
US20120269121A1 (en) Base station apparatus for transmitting or receiving a signal including predetermined information
JP2011035566A (en) Terminal device
JP5579511B2 (en) Terminal device
JP5608043B2 (en) Base station equipment
WO2011158484A1 (en) Terminal device
WO2013046655A1 (en) Wireless device
JP6072328B2 (en) Wireless device
JP5901458B2 (en) Terminal device
WO2012131830A1 (en) Terminal device
JP6267781B2 (en) Wireless device
JP5830259B2 (en) Wireless device
WO2013018318A1 (en) Communication system, base station device, and wireless device
WO2013042383A1 (en) Wireless equipment
JP2012199860A (en) Portable terminal
JP5963599B2 (en) Portable terminal device
JP2014199961A (en) Radio device
JP2011182137A (en) Base station device
JP2014199962A (en) Communication system and base station device
JP2011205349A (en) Base station device
JP2013077963A (en) Base station device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP