WO2013046608A1 - Thin film forming method - Google Patents

Thin film forming method Download PDF

Info

Publication number
WO2013046608A1
WO2013046608A1 PCT/JP2012/005985 JP2012005985W WO2013046608A1 WO 2013046608 A1 WO2013046608 A1 WO 2013046608A1 JP 2012005985 W JP2012005985 W JP 2012005985W WO 2013046608 A1 WO2013046608 A1 WO 2013046608A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzles
ink
substrate
line width
nozzle
Prior art date
Application number
PCT/JP2012/005985
Other languages
French (fr)
Japanese (ja)
Inventor
啓裕 鈴木
智洋 甲斐
雅幸 小谷
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to KR1020147008027A priority Critical patent/KR20140084002A/en
Priority to CN201280047881.1A priority patent/CN103906576A/en
Publication of WO2013046608A1 publication Critical patent/WO2013046608A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present invention relates to a thin film forming method, and more particularly to a thin film forming method that can be used for forming a functional layer of an organic electroluminescence (EL) element.
  • EL organic electroluminescence
  • the ink jet method can discharge a minute amount of ink to a desired position according to the resolution of the head to be used, so that it is easy to form a fine pattern or a thin film having a desired film thickness. It has the feature. Taking advantage of this feature, the inkjet method is used for manufacturing organic EL elements and color filters that require fine coating. In addition, a technique has been proposed in which a paste-like functional material is continuously discharged from a nozzle having a single or a plurality of fine discharge ports to form a predetermined pattern on a substrate.
  • the inkjet method or the nozzle method When the inkjet method or the nozzle method is applied to the manufacture of an organic EL element, a required amount of EL material is dispersed or dissolved in a predetermined solvent to form an ink, thereby making the EL more than the vapor deposition method or the sputtering method. There is an advantage that the utilization efficiency of the material can be improved.
  • the tact time becomes longer as the substrate size becomes larger, so the productivity is lowered.
  • the tact time can be shortened and productivity can be increased.
  • the discharge amount of each nozzle varies, the thickness of the functional film to be formed varies. , Causing uneven emission.
  • the functional liquid stored in a single supply source is branched and supplied to the plurality of nozzles, and simultaneously applied onto the substrate from each nozzle,
  • a method of applying a functional liquid to a plurality of positions simultaneously In order to discharge an accurate discharge amount from the nozzle, it is necessary to measure and manage the actual discharge flow rate discharged from the nozzle. For example, the actual discharge flow rate discharged from the nozzle is discharged from the nozzle into a predetermined container, and is measured by the weight in the container with respect to the unit discharge time (see, for example, Patent Document 1).
  • an object of the present invention is to provide a thin film forming method that makes it easy to adjust the discharge amount of liquid discharged from each of a plurality of nozzles.
  • the present invention relates to a thin film forming method for forming a thin film by applying ink to a plurality of regions partitioned on a substrate using a plurality of nozzles.
  • the discharge ports of the plurality of nozzles are brought close to the surface of the test substrate, and the ink is discharged from the plurality of nozzles while the test substrate and the plurality of nozzles are relatively moved.
  • the discharge ports of the plurality of nozzles are brought close to the surface of the test substrate, and ink is discharged from the plurality of nozzles while the test substrate and the plurality of nozzles are relatively moved.
  • the step of performing test coating the step of measuring the line width of the trajectory drawn by each of the plurality of nozzles at the time of test coating, while changing the relative movement speed of the plurality of nozzles and the test substrate, Repeating the test application step and the step of measuring the line width, obtaining a combination of relative movement speeds of the plurality of nozzles such that the line width of the trajectory drawn by each of the plurality of nozzles is the same, and While moving a plurality of nozzles and the substrate relative to each other at the relative movement speed obtained in the step of obtaining a combination of relative movement speeds by bringing a plurality of nozzles close to the surface of the substrate. And a step of ejecting ink from a plurality of nozzles onto a substrate.
  • the discharge amount of each nozzle is adjusted based on the line width of the application mark applied to the test application part.
  • the film thickness unevenness of the formed thin film can be reduced.
  • FIG. 1 is a cross-sectional view of an organic EL element substrate according to an embodiment.
  • FIG. 2 is a schematic view of a thin film shaper using a nozzle coating method.
  • FIG. 3 is a detailed view of the cross section of the nozzle head.
  • FIG. 4 is a schematic diagram of the test ejection device.
  • FIG. 5 is a graph showing the relationship between the line width and the flow rate (before adjustment).
  • FIG. 6 is a graph showing the relationship between the line width and the flow rate (after adjustment).
  • FIG. 7 is a graph showing the relationship between the speed and the discharge amount.
  • FIG. 8 is a graph showing the relationship between the line width and the flow rate (before adjustment).
  • FIG. 9 is a graph showing the relationship between the line width and the flow rate (after adjustment).
  • an organic EL element substrate is manufactured using a nozzle coating device.
  • the present invention is not limited to an organic EL, and constitutes a display screen of another display display. It can be suitably used to form an optical component.
  • optical components other than organic EL include color filters, circuit boards, thin film transistors, microlenses, and biochips.
  • the pattern forming body of the hole injection layer, the hole transport layer, and the organic light emitting layer included in the organic EL element is collectively referred to as a functional layer, and this functional layer is formed using the coating apparatus according to the above embodiment. The case will be described with reference to FIG.
  • the organic EL element is formed on the substrate.
  • a translucent substrate 1 is preferably used as the substrate.
  • a glass substrate or a plastic film or sheet can be used as the translucent substrate 1.
  • a plastic film it is possible to wind up at the time of manufacturing a polymer EL element, and a display panel can be provided at a low cost.
  • the plastic film that can be used include polyethylene terephthalate, polypropylene, cycloolefin polymer, polyamide, polyethersulfone, polymethyl methacrylate, and polycarbonate.
  • These films are composed of metal oxides such as silicon oxide that exhibit water vapor barrier properties and oxygen barrier properties, oxynitrides such as silicon nitride, polyvinylidene chloride, polyvinyl chloride, ethylene-vinyl acetate copolymer saponified products. It is preferable to provide a barrier layer as necessary.
  • a patterned pixel electrode 2 is provided as an anode.
  • transparent electrode materials such as ITO (indium tin composite oxide), IZO (indium zinc composite oxide), tin oxide, zinc oxide, indium oxide, and aluminum oxide composite oxide can be used. Of these electrode materials, ITO is preferably used because of its low resistance, solvent resistance, and transparency. ITO is formed on the translucent substrate by sputtering, and is patterned by photolithography to form line-shaped pixel electrodes 2.
  • a partition wall 3 is formed between adjacent pixel electrodes 2.
  • the partition walls 3 are provided in a lattice shape or a stripe shape on the substrate and the inspection substrate. Each region surrounded by the partition walls 3 becomes a discharge region that is a target for forming a thin film of ink by nozzle coating.
  • the partition 3 is formed by a photolithography method using a photosensitive material.
  • the photosensitive material for forming the partition wall 3 may be either a positive type resist or a negative type resist, but it must have insulating properties. If the partition 3 does not have sufficient insulation, a current flows to the adjacent pixel electrode through the partition and a display defect occurs.
  • a light shielding material may be included in the photosensitive material.
  • an ink repellent such as a fluorine-containing compound or a silicon-containing compound
  • the thickness (height) of the partition wall 3 is preferably 0.5 to 5.0 ⁇ m.
  • Hole injection materials include metal phthalocyanines such as copper phthalocyanine and tetra (t-butyl) copper phthalocyanine, metal-free phthalocyanines, quinacridone compounds, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N , N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine, N, N'-di (1-naphthyl) -N, N'- Aromatic amine low molecular hole injection / transport materials such as diphenyl-1,1'-biphenyl-4,4'-diamine, polymer hole injection materials
  • Examples of the solvent for dissolving or dispersing the hole injection material include halogen solvents such as chloroform, dichloromethane, dichloroethane, trichloroethylene, ethylene chloride, tetrachloroethane, chlorobenzene, N-methyl-2-pyrrolidone (NMP), dimethyl Polar solvents such as aprotic polar solvents such as formamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), and alkoxy alcohols such as propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether Etc.
  • halogen solvents such as chloroform, dichloromethane, dichloroethane, trichloroethylene, ethylene chloride, tetrachloroethane, chlorobenzene, N-methyl-2-pyrrolidone (NMP), dimethyl Polar solvents such as a
  • hole transporting substance examples include poly (N-vinylcarbazole) (hereinafter also referred to as PVK), poly (para-phenylene vinylene), carbazole biphenyl (hereinafter also referred to as CBP), N, N′—.
  • NPD N-bis (1-naphthyl) -1,1′-biphenyl-4,4′-diamine
  • TPD N-bis (3 -Methylphenyl) -1,1'-biphenyl-4,4'-diamine
  • TPD 4,4'-bis (10-phenothiazinyl) biphenyl
  • 1,3,5-triazole polyfluorene derivatives
  • a copolymer of triphenylamine and fluorene 1,3,5-triazole, polyfluorene derivatives, and a copolymer of triphenylamine and fluorene.
  • Examples of the solvent for the functional ink that forms the hole transport layer include siemen, tetralin, cumene, decalin, durene, cyclohexylbenzene, dihexylbenzene, tetramethylbenzene, and dibutylbenzene.
  • the organic light emitting layer 6 is a layer that emits light when an electric current is applied.
  • the organic light-emitting material for forming the organic light-emitting layer 6 include, for example, coumarin-based, perylene-based, pyran-based, anthrone-based, porphyrin-based, quinacridone-based, N, N′-dialkyl-substituted quinacridone-based, naphthalimide-based, N, N '-Diaryl-substituted pyrrolopyrrole, iridium complex and other luminescent dyes dispersed in polymers such as polystyrene, polymethylmethacrylate, polyvinylcarbazole, polyarylene, polyarylene vinylene and polyfluorene Examples include polymer materials.
  • Examples of the solvent for the functional ink that forms the organic light emitting layer 6 include siemen, tetralin, cumene, decalin, durene, cyclohexylbenzene, dihexylbenzene, tetramethylbenzene, and dibutylbenzene.
  • a functional ink containing a hole injection material is ejected to the substrate 1 on which the partition walls 3 are formed by a nozzle coating method described later, thereby forming a hole injection layer 4.
  • the hole transport layer 5 is formed by discharging a functional ink containing a hole transport material by a nozzle coating method described later.
  • the cathode layer 7 is formed in a line pattern orthogonal to the line pattern of the pixel electrode 2.
  • a material corresponding to the light emission characteristics of the organic light emitting layer 6 can be used.
  • a simple metal such as lithium, magnesium, calcium, ytterbium, and aluminum or a stable metal such as gold and silver can be used. And alloys thereof.
  • a conductive oxide such as indium, zinc, or tin can be used.
  • the method for forming the cathode layer include a method using a vacuum vapor deposition method using a mask.
  • a glass cap 8 and an adhesive 9 are hermetically sealed to obtain an organic EL display panel.
  • any method may be used as long as the organic EL structure can be protected from external oxygen and moisture.
  • substrate 1 has flexibility, you may seal using a sealing agent and a flexible film.
  • the hole injection layer 4, the hole transport layer 5, and the organic light emitting layer 6 are disposed between the pixel electrode 2 that is an anode and the cathode layer 7 in order from the anode layer side.
  • layers such as a hole blocking layer, an electron transport layer, and an electron injection layer are provided as needed between the anode layer and the cathode layer.
  • a laminated structure can be taken.
  • the formation method similar to the organic light emitting layer 6 is applicable.
  • the ink 11 filled in the ink supply tank 10 is supplied to the nozzle head 13 through the ink supply tube 12.
  • Supply of the ink 11 to the nozzle head 13 is performed by pressurizing the inside of the ink supply tank 10 with the pressurizer 14 and pushing out the ink 11 from the ink supply tank 10.
  • a flow rate control valve 15 for controlling the discharge amount of the ink 11
  • a flow meter 16 for measuring the flow rate of the ink 11 supplied to the nozzle head 13.
  • the flow rate control valve 15 is controlled based on information from the flow meter 16 (that is, ink flow rate) and can adjust the ink flow rate, a stable desired ink flow rate can be obtained.
  • a plurality of nozzle heads 13 are provided in the nozzle coating device, a plurality of sets of configurations from the nozzle head 13 to the ink supply tank 10 are provided.
  • the nozzle coating device includes a table 17 and an operation stage 19 which is disposed on the table 17 and is movable on the table 17 in the X direction and the Y direction perpendicular thereto.
  • the movable stage 19 By moving the movable stage 19 in the Y direction or Y ′ direction (or X direction or X ′ direction) while discharging the ink 11 from the discharge port of the nozzle head 13, the nozzle 11 is continuously arranged on the movable stage 19.
  • a coating film can be formed on the translucent substrate 18.
  • a translucent substrate 18 in which a plurality of pixel formation regions extending in parallel to each other in the X direction are provided in a stripe shape is disposed on a movable stage 19, and the movable stage 19 and the nozzle head 13 are relative to each other in the Y direction.
  • Move to based on the positional information of the movable stage 19 and the nozzle head 13, the movement of the movable stage 19 and the nozzle head 13 is synchronized, and R (Red), G (Green), or B (Blue) 1
  • the ink 11 is continuously applied to the pixel formation region of the book to form a coating film.
  • the movable stage 19 and the nozzle head 13 are relatively moved to a X direction, and a coating film is formed in the following pixel formation area .
  • the ink 11 enters a cylindrical or cuboid case 22 made of SUS (stainless steel) or the like from the ink supply tube 12.
  • the case 22 is generally made of metal, but any case having ink resistance may be used.
  • the inside of the case 22 is a manifold, and the liquid column 25 is discharged from the nozzle 23 having a minute hole having a diameter of about 5 to 20 microns to the translucent substrate 18.
  • the nozzle is generally a film of polyimide or the like, but any nozzle can be used as long as it can accurately make a hole.
  • ink ejected from the nozzles be ejected continuously. For this reason, a portion that is not desired to be ejected may be masked or a dummy pattern may be provided, but any method may be used as long as there is no problem as a panel.
  • FIG. 4 shows a schematic configuration of a test coating apparatus that performs the test coating of the present invention.
  • the test coating apparatus shown in FIG. 4 includes an image receiving layer film 28, a line width inspection unit 34 for optically capturing information of an image for line width inspection recorded on the image receiving layer film 28, and a line width inspection unit 34.
  • An image information processing unit 32 for inspecting the line width from the image information taken in, a film unit 36 for feeding and winding the image receiving layer film 28, and a control unit (not shown) for controlling these operations. At least).
  • the image-receiving layer film 28 is a recording medium for line width inspection for producing a locus-like line width inspection image 35 drawn by ejecting ink from a plurality of nozzles.
  • a commercially available ordinary film can be used as the image receiving layer film 28 .
  • a PET (polyethylene terephthalate) film can be used as a transparent film, and an image-receiving layer provided with a coating layer in which fine pigments are uniformly dispersed can be used. What is necessary is just to select suitably according to conditions, such as.
  • the line width inspection image 35 recorded on the image receiving layer film 28 is moved by the drive roller 37 to a place where the line width inspection section 34 is located.
  • the line width inspection camera 27 captures the line width inspection image as image information and transfers the image information to the image information processing unit 32.
  • the illumination 29 is turned on to illuminate the inspection image recorded on the image receiving layer film, thereby adding contrast and clearly recognizing the shape of the inspection image. Can be taken in.
  • the illumination 29 can be installed on the camera side from the image receiving layer film, or the camera 27 can capture an image using only external light.
  • the inspection image recorded on the image receiving layer film 28 is fine, it can be handled by appropriately selecting the resolution, viewing angle, etc. of the optical camera of the image information detection unit. It is.
  • the gap between the image receiving layer film 28 and the nozzle is set to be equal to the gap between the substrate and the nozzle when the substrate is placed on the stage of the nozzle coating apparatus.
  • the test coating device is installed so that the driving direction of the image receiving layer film is perpendicular to the driving direction of the nozzle of the nozzle coating device.
  • the coating device and the test coating device are installed adjacent to each other. Moreover, when it is non-ejection when test-applying, it discharges again and it coats. That is, non-ejection inspection can be performed at the same time.
  • the relationship between the line width and the flow rate is first grasped.
  • a line width inspection image is created by aligning the flow rate of each nozzle, and line width data of each nozzle is acquired. By repeating it at a plurality of flow rates, the relationship between the flow rate of each nozzle and the line width is obtained.
  • Fig. 5 shows the line width of each nozzle when three nozzles are used and the flow rate is applied at five levels a1 to a5. As shown in FIG. 5, the line width is usually different even if the flow rate is uniform for each nozzle.
  • the flow rate is adjusted so that the target line width is obtained.
  • an approximate straight line between the flow rate and the line width of each nozzle is obtained. From the approximate straight line, the flow rate is calculated so that the line widths of the nozzles 2 and 3 are the same as the line width of the nozzle 1.
  • the line widths of the nozzles 2 and 3 can be matched with the line width of the nozzle 1 as shown in FIG. Since the line width and the discharge amount are in a proportional relationship, if the line width is equal, the discharge amount is equal.
  • a method for adjusting the flow rate described above as a method for adjusting the line width and a method for adjusting at a speed at which the nozzle is moved relative to the substrate.
  • the discharge amount and the speed indicate a power function relationship. Therefore, the line width can be adjusted by changing the speed, as in the case where the line width is adjusted by the flow rate.
  • the relationship between speed and flow rate is shown in FIG.
  • each of the plurality of nozzles is configured to be independently movable at a different speed.
  • a plurality of line width inspection images are created while changing the relative movement speed of each nozzle, and the relationship between the relative speed of each nozzle and the line width as shown in FIG.
  • the hole injection layer, the hole transport layer, and the organic light emitting layer are formed by the nozzle coating method, but it is not necessary to form all these layers by the nozzle coating method.
  • a pixel electrode was formed by forming an ITO (indium-tin oxide) thin film on a 3-inch diagonal glass substrate by sputtering and patterning the ITO film by photolithography and etching with an acid solution. .
  • the line pattern of the pixel electrode was a pattern in which about 590 lines were formed in about 7.6 mm square with a line width of 70 ⁇ m and a space of 60 ⁇ m.
  • an insulating layer was formed as follows. First, a polyimide resist material was spin-coated on the entire surface of a glass substrate on which pixel electrodes were formed. The spin coating condition was rotated at 150 rpm for 5 seconds, and then rotated at 500 rpm for 20 seconds to form a single coating. The height of the insulating layer was 2.5 ⁇ m. A partition which is an insulating layer having a stripe pattern between pixel electrodes was formed by photolithography on the photoresist material applied to the entire surface. This partition has ink repellency.
  • the hole injection ink using a mixture of polymer hole injection materials such as poly (p-phenylene vinylene) and polyaniline and propylene glycol monobutyl ether, the solid content concentration of the ink is 1.5%, the viscosity is An ink of 7 mPa ⁇ s was prepared.
  • polymer hole injection materials such as poly (p-phenylene vinylene) and polyaniline and propylene glycol monobutyl ether
  • the prepared hole injection ink was put in an ink supply tank.
  • the hole injection ink in the ink supply tank is supplied to the nozzle head through the ink supply tube by pressurizing the ink supply tank.
  • a flow rate control valve that controls the amount of ink ejected between the ink supply tank and the nozzle, and a flow meter for measuring the flow rate of ink flowing to the nozzle head are provided. Based on the information of the ink flow meter, By feeding back to the flow control valve and adjusting the flow rate, a stable desired ink flow rate can be obtained.
  • the positions of the nozzle head and the table are relatively fixed, and the above-described translucent substrate having the stripe pattern partition walls imparted with ink repellency was fixed to a movable stage.
  • the above-mentioned movable stage can move on the above-mentioned table in the direction of Y or Y ′ in the vertical direction.
  • the nozzle head can move in the direction X or X ′ in the lateral direction orthogonal to the Y or Y ′ direction.
  • the ink enters the rectangular nozzle head made of stainless steel from the ink supply tube.
  • the inside of the nozzle head is a manifold, and can be discharged in a vertical direction with respect to the translucent substrate from a polyimide film nozzle having a minute hole with a diameter of 8 microns. In this example, three nozzles were used.
  • FIG. 8 shows the relationship between the flow rate before adjustment and the line width
  • FIG. 9 shows the relationship between the flow rate after adjustment and the line width
  • Table 1 shows the flow rate and line width of each nozzle before and after adjustment.
  • the hole injection layer was applied at the adjusted flow rate.
  • the amount of ink ejected from the nozzles is maintained uniformly.
  • the hole injection layer was formed by putting the board
  • an ink having a solid content concentration of 4.0% and a viscosity of 10 mPa ⁇ s was prepared using a hole transport material made of a polyfluorene derivative and cyclohexylbenzene.
  • hole transport layer discharging was performed on the substrate on which the hole injection layer was formed with the same apparatus and procedure as when the hole injection layer was formed. After discharging, it was confirmed that a hole transport layer having a desired film thickness was obtained by firing at 200 ° C. for 1 hour in a nitrogen atmosphere to form a hole transport layer.
  • the solid content concentration of the ink is 7.0%
  • the R ink has a viscosity of 30 mPa ⁇ s
  • the solid content concentration is 5.0%.
  • a G ink having a viscosity of 5 mPa ⁇ s, a B ink having a solid content concentration of 6.0% and a viscosity of 20 mPa ⁇ s were prepared.
  • the organic light emitting layer discharging was performed on the substrate on which the hole transport layer was formed by the same apparatus and procedure as those for forming the hole injection layer described above. After discharge, an RGB organic light emitting layer was formed by baking at 130 ° C. for 30 minutes in a nitrogen atmosphere. Then, it confirmed that the organic light emitting layer of the desired film thickness was obtained by the film thickness measurement.
  • a cathode layer made of Ca and Al was formed thereon by mask vapor deposition using a resistance heating vapor deposition method in a line pattern orthogonal to the pixel electrode line pattern. Finally, in order to protect these organic EL constituents from external oxygen and moisture, they were hermetically sealed using a glass cap and an adhesive to produce an organic EL display panel.
  • anode side extraction electrode and a cathode side extraction electrode connected to each pixel electrode in the periphery of the display portion of the organic EL element substrate obtained in this way, and these are obtained by connecting them to a power source.
  • the lighting display of the obtained organic EL element substrate was confirmed, and the light emission state was checked.
  • an organic EL element substrate with a material utilization efficiency of 90% and no unevenness in light emission luminance could be obtained.
  • Comparative Example 1 As a comparative example, when ink is applied with the discharge amount from each nozzle as the value before adjustment in Table 1, a difference in film thickness occurs due to the difference in discharge amount for each nozzle in the light emission region of the panel, resulting in uneven brightness of light emission However, a high-quality organic EL element substrate could not be obtained.
  • the present invention can be used for manufacturing organic EL elements and the like.

Abstract

While the discharge ports of a plurality of nozzles (23) are brought close to an image receiving layer film (28) which is a discharge inspection recording body and the image receiving layer film (28) and the plurality of nozzles (23) are moved relative to each other, ink is discharged from the plurality of nozzles (23), and a test coating is carried out. Next, a line width measurement is carried out on tracks which are drawn by each of the nozzles (23) when the test coating is carried out. Next, the test coating and the line width measurement are repeated while the ink flow quantities which are supplied to the nozzles (23) are varied and a combination of flow quantities which are supplied to the nozzles (23) derived such that the line widths of the tracks which are drawn by each of the nozzles (23) are uniform. By discharging ink using the derived flow quantity combination, it is possible to keep the ink discharge quantities at a given level.

Description

薄膜形成方法Thin film formation method
 本発明は、薄膜形成方法に関し、より特定的には、有機エレクトロルミネッセンス(EL)素子の機能層の形成に利用可能な薄膜形成方法に関する。 The present invention relates to a thin film forming method, and more particularly to a thin film forming method that can be used for forming a functional layer of an organic electroluminescence (EL) element.
 近年、インクジェット法を用いた成膜技術が注目されている。インクジェット法は、用いるヘッドの解像度に応じて微少なインクを所望の位置に吐出することが可能であることから、微細なパターンの形成や、所望の膜厚を備えた薄膜の形成が容易であるという特長を有する。この特長を利用し、インクジェット法は微細な塗り分けが必要な有機EL素子やカラーフィルタの製造などに利用されている。また、ペースト状の機能性材料を微細な単数または複数の吐出口を有するノズルから連続的に吐出して、所定のパターンを基板上に形成する技術が提案されている。 In recent years, a film forming technique using an ink jet method has attracted attention. The ink jet method can discharge a minute amount of ink to a desired position according to the resolution of the head to be used, so that it is easy to form a fine pattern or a thin film having a desired film thickness. It has the feature. Taking advantage of this feature, the inkjet method is used for manufacturing organic EL elements and color filters that require fine coating. In addition, a technique has been proposed in which a paste-like functional material is continuously discharged from a nozzle having a single or a plurality of fine discharge ports to form a predetermined pattern on a substrate.
 インクジェット法やノズル法を、有機EL素子の製造に応用した場合には、必要な量のEL材料を所定の溶媒に分散または溶解させてインク化することにより、蒸着法やスパッタ法に比べてEL材料の利用効率を向上させることができるという利点がある。 When the inkjet method or the nozzle method is applied to the manufacture of an organic EL element, a required amount of EL material is dispersed or dissolved in a predetermined solvent to form an ink, thereby making the EL more than the vapor deposition method or the sputtering method. There is an advantage that the utilization efficiency of the material can be improved.
 ただし、ノズル法において、1ノズルで塗布する場合は、基板サイズが大きくなればなるほどタクトタイムが長くなるので、生産性が落ちてしまう。複数ノズルを使用することでタクトタイムを短縮し生産性を上げることができるが、それぞれのノズルの吐出量がばらついていると、形成される機能膜の膜厚がバラツキ、有機EL素子の場合は、発光ムラの原因となる。 However, in the case of coating with one nozzle in the nozzle method, the tact time becomes longer as the substrate size becomes larger, so the productivity is lowered. By using multiple nozzles, the tact time can be shortened and productivity can be increased. However, if the discharge amount of each nozzle varies, the thickness of the functional film to be formed varies. , Causing uneven emission.
 複数のノズルのそれぞれの吐出量を調整する方法として、単一の供給源に貯留された機能液を複数のノズルへ分岐して供給し、それぞれのノズルから基材上に同時に塗布することによって、複数の位置に同時に機能液を塗布する方法が提案されている。ノズルから正確な吐出量を吐出するためには、ノズルから吐出される実吐出流量を計測して管理する必要がある。例えば、ノズルから吐出される実吐出流量は、当該ノズルから所定の容器内に吐出させ、単位吐出時間に対する当該容器内の重量によって測定される(例えば、特許文献1参照)。 As a method of adjusting the discharge amount of each of the plurality of nozzles, the functional liquid stored in a single supply source is branched and supplied to the plurality of nozzles, and simultaneously applied onto the substrate from each nozzle, There has been proposed a method of applying a functional liquid to a plurality of positions simultaneously. In order to discharge an accurate discharge amount from the nozzle, it is necessary to measure and manage the actual discharge flow rate discharged from the nozzle. For example, the actual discharge flow rate discharged from the nozzle is discharged from the nozzle into a predetermined container, and is measured by the weight in the container with respect to the unit discharge time (see, for example, Patent Document 1).
特開2006-205024号公報JP 2006-205024 A
 しかしながら、複数のノズルから同時に吐出する塗布装置の場合、ノズル系統毎に上述した実吐出流量の測定を行って、関係式をそれぞれ導くことが必要となる。また、高精度な関係式を導き出すためには、1つのノズル系統に対して流量が異なる複数ポイントの実吐出流量の計測を行う必要がある。また、複数のノズルを備える塗布装置において、塗布する機能液を変更する場合、機能液変更後にも実吐出流量の測定が必要となるため、塗布装置の流量管理工数が増大する。また、塗布装置の実吐出流量計測時間が長くなると、容器内に吐出した機能液中の溶媒が蒸発することによって実吐出流量が変動することがあり、正確な実吐出流量の計測が困難となることがある。 However, in the case of a coating apparatus that discharges simultaneously from a plurality of nozzles, it is necessary to measure the actual discharge flow rate described above for each nozzle system and derive the respective relational expressions. Moreover, in order to derive a highly accurate relational expression, it is necessary to measure actual discharge flow rates at a plurality of points with different flow rates for one nozzle system. In addition, when changing the functional liquid to be applied in a coating apparatus having a plurality of nozzles, it is necessary to measure the actual discharge flow rate even after the functional liquid is changed, so that the number of man-hours for flow management of the coating apparatus increases. In addition, when the actual discharge flow rate measurement time of the coating apparatus becomes longer, the actual discharge flow rate may fluctuate due to evaporation of the solvent in the functional liquid discharged into the container, making it difficult to accurately measure the actual discharge flow rate. Sometimes.
 そこで、本発明の目的は、複数のノズルの各々から吐出される液体の吐出量調整が容易となる薄膜形成方法を提供することである。 Therefore, an object of the present invention is to provide a thin film forming method that makes it easy to adjust the discharge amount of liquid discharged from each of a plurality of nozzles.
 本発明は、複数のノズルを用いて、基材上に区画された複数の領域にインクを塗布して薄膜を形成する薄膜形成方法に関する。本発明に係る薄膜形成方法は、試験用基材の表面に複数のノズルの吐出口を近接させ、試験用基材と複数のノズルとを相対移動させながら、複数のノズルからインクを吐出させて、試験塗布を行うステップと、試験塗布時に、複数のノズルの各々によって描かれた軌跡の線幅を測定するステップと、複数のノズルの各々に供給するインクの流量を変化させながら、試験塗布を行うステップと、線幅を測定するステップとを繰り返し、複数のノズルの各々によって描かれる軌跡の線幅が同一となるような、複数のノズルの各々に供給するインクの流量の組み合わせを求めるステップと、基材の表面に複数のノズルを近接させ、基材と複数のノズルを相対移動させながら、流量の組み合わせを求めるステップで求めた流量の組み合わせを用いて、複数のノズルから基材上にインクを吐出させるステップとを備える。 The present invention relates to a thin film forming method for forming a thin film by applying ink to a plurality of regions partitioned on a substrate using a plurality of nozzles. In the thin film forming method according to the present invention, the discharge ports of the plurality of nozzles are brought close to the surface of the test substrate, and the ink is discharged from the plurality of nozzles while the test substrate and the plurality of nozzles are relatively moved. A test application step, a step of measuring a line width of a locus drawn by each of the plurality of nozzles during the test application, and a test application while changing a flow rate of ink supplied to each of the plurality of nozzles. Repeating the step of measuring and the step of measuring the line width to obtain a combination of the flow rates of ink supplied to each of the plurality of nozzles such that the line width of the trajectory drawn by each of the plurality of nozzles is the same; Using a combination of flow rates obtained in the step of obtaining a combination of flow rates while moving a plurality of nozzles close to the surface of the substrate and relatively moving the substrate and the plurality of nozzles, And a step of ejecting the ink onto a substrate from the number of nozzles.
 あるいは、本発明に係る薄膜形成方法は、試験用基材の表面に複数のノズルの吐出口を近接させ、試験用基材と複数のノズルとを相対移動させながら、複数のノズルからインクを吐出させて、試験塗布を行うステップと、試験塗布時に、複数のノズルの各々によって描かれた軌跡の線幅を測定するステップと、複数のノズルと試験用基板との相対移動速度を変化させながら、試験塗布を行うステップと、線幅を測定するステップとを繰り返し、複数のノズルの各々によって描かれる軌跡の線幅が同一となるような、複数のノズルの相対移動速度の組み合わせを求めるステップと、基材の表面に複数のノズルを近接させ、相対移動速度の組み合わせを求めるステップで求められた相対移動速度で、複数のノズルと基材とを相対移動させながら、複数のノズルから基材上にインクを吐出させるステップとを備える。 Alternatively, in the thin film forming method according to the present invention, the discharge ports of the plurality of nozzles are brought close to the surface of the test substrate, and ink is discharged from the plurality of nozzles while the test substrate and the plurality of nozzles are relatively moved. The step of performing test coating, the step of measuring the line width of the trajectory drawn by each of the plurality of nozzles at the time of test coating, while changing the relative movement speed of the plurality of nozzles and the test substrate, Repeating the test application step and the step of measuring the line width, obtaining a combination of relative movement speeds of the plurality of nozzles such that the line width of the trajectory drawn by each of the plurality of nozzles is the same, and While moving a plurality of nozzles and the substrate relative to each other at the relative movement speed obtained in the step of obtaining a combination of relative movement speeds by bringing a plurality of nozzles close to the surface of the substrate. And a step of ejecting ink from a plurality of nozzles onto a substrate.
 本発明によれば、複数のノズルを用いてインクを塗布して薄膜を形成する際に、試験塗布部に塗布した塗布跡の線幅をもとに、各ノズルの吐出量を調整することで、形成された薄膜の膜厚ムラを低減することができる。 According to the present invention, when a thin film is formed by applying ink using a plurality of nozzles, the discharge amount of each nozzle is adjusted based on the line width of the application mark applied to the test application part. The film thickness unevenness of the formed thin film can be reduced.
図1は、実施形態に係る有機EL素子基板の断面図である。FIG. 1 is a cross-sectional view of an organic EL element substrate according to an embodiment. 図2は、ノズル塗布法を用いた薄膜形性装置の概略図である。FIG. 2 is a schematic view of a thin film shaper using a nozzle coating method. 図3は、ノズルヘッド断面の詳細図である。FIG. 3 is a detailed view of the cross section of the nozzle head. 図4は、試験吐出装置の概略図である。FIG. 4 is a schematic diagram of the test ejection device. 図5は、線幅と流量の関係(調整前)を示すグラフである。FIG. 5 is a graph showing the relationship between the line width and the flow rate (before adjustment). 図6は、線幅と流量の関係(調整後)を示すグラフである。FIG. 6 is a graph showing the relationship between the line width and the flow rate (after adjustment). 図7は、速度と吐出量の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the speed and the discharge amount. 図8は、線幅と流量の関係(調整前)を示すグラフである。FIG. 8 is a graph showing the relationship between the line width and the flow rate (before adjustment). 図9は、線幅と流量の関係(調整後)を示すグラフである。FIG. 9 is a graph showing the relationship between the line width and the flow rate (after adjustment).
 以下、図面を参照に本発明の好適な実施形態について説明する。以下の説明では、ノズル塗布装置を用いて有機EL素子基板を製造する例に基づいて本発明を説明しているが、本発明は、有機ELに限らず、他の表示ディスプレイの表示画面を構成する光学部品を形成するために好適に利用できる。有機EL以外の光学部品としては、カラーフィルタ、回路基板、薄膜トランジスタ、マイクロレンズ、バイオチップ等を例示できる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the present invention is described based on an example in which an organic EL element substrate is manufactured using a nozzle coating device. However, the present invention is not limited to an organic EL, and constitutes a display screen of another display display. It can be suitably used to form an optical component. Examples of optical components other than organic EL include color filters, circuit boards, thin film transistors, microlenses, and biochips.
 以下、有機EL素子に含まれる正孔注入層と正孔輸送層と有機発光層のパターン形成体を総称して機能層と呼び、この機能層を上記実施形態に係る塗布装置を用いて形成する場合について図1を用いて説明する。 Hereinafter, the pattern forming body of the hole injection layer, the hole transport layer, and the organic light emitting layer included in the organic EL element is collectively referred to as a functional layer, and this functional layer is formed using the coating apparatus according to the above embodiment. The case will be described with reference to FIG.
 (基板の準備)
 有機EL素子は基板上に形成される。基板としては透光性基板1が好適に用いられる。透光性基板1としては、ガラス基板やプラスチック製のフィルムまたはシートを用いることができる。プラスチック製のフィルムを用いる場合、高分子EL素子の製造時に巻き取りが可能となり、安価にディスプレイパネルを提供できる。プラスチック製のフィルムとしては、例えば、ポリエチレンテレフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルスルホン、ポリメタクリル酸メチル、ポリカーボネート等を用いることができる。また、これらのフィルムには、水蒸気バリア性、酸素バリア性を示す酸化ケイ素といった金属酸化物、窒化ケイ素といった酸化窒化物やポリ塩化ビニリデン、ポリ塩化ビニル、エチレン-酢酸ビニル共重合体鹸化物からなるバリア層を必要に応じて設けることが好ましい。
(Preparation of substrate)
The organic EL element is formed on the substrate. A translucent substrate 1 is preferably used as the substrate. As the translucent substrate 1, a glass substrate or a plastic film or sheet can be used. When a plastic film is used, it is possible to wind up at the time of manufacturing a polymer EL element, and a display panel can be provided at a low cost. Examples of the plastic film that can be used include polyethylene terephthalate, polypropylene, cycloolefin polymer, polyamide, polyethersulfone, polymethyl methacrylate, and polycarbonate. These films are composed of metal oxides such as silicon oxide that exhibit water vapor barrier properties and oxygen barrier properties, oxynitrides such as silicon nitride, polyvinylidene chloride, polyvinyl chloride, ethylene-vinyl acetate copolymer saponified products. It is preferable to provide a barrier layer as necessary.
 (画素電極の作製)
 透光性基板1の上には、陽極として、パターニングされた画素電極2が設けられる。画素電極2の材料としては、ITO(インジウム錫複合酸化物)、IZO(インジウム亜鉛複合酸化物)、酸化錫、酸化亜鉛、酸化インジウム、酸化アルミニウム複合酸化物等の透明電極材料等が使用できる。なお、これらの電極材料の中でも、低抵抗であること、耐溶剤性があること、透明性があることなどからITOを用いることが好ましい。ITOはスパッタ法により透光性基板上に形成されて、フォトリソグラフィ法によりパターニングされライン状の画素電極2となる。
(Production of pixel electrode)
On the translucent substrate 1, a patterned pixel electrode 2 is provided as an anode. As the material of the pixel electrode 2, transparent electrode materials such as ITO (indium tin composite oxide), IZO (indium zinc composite oxide), tin oxide, zinc oxide, indium oxide, and aluminum oxide composite oxide can be used. Of these electrode materials, ITO is preferably used because of its low resistance, solvent resistance, and transparency. ITO is formed on the translucent substrate by sputtering, and is patterned by photolithography to form line-shaped pixel electrodes 2.
 (隔壁の作製)
 ライン状の画素電極2を形成後、隣接する画素電極2の間に隔壁3を形成する。隔壁3は、基板および検査用基板上に、格子状またはストライプ状に設けられる。隔壁3に囲まれた各領域は、ノズル塗布によってインクの薄膜を成膜する対象である吐出領域となる。隔壁3は、感光性材料を用いて、フォトリソグラフィ法により形成される。隔壁3を形成する感光性材料としてはポジ型レジスト、ネガ型レジストのどちらであってもよいが、絶縁性を備えている必要がある。隔壁3に十分な絶縁性がない場合には隔壁を通じて隣り合う画素電極に電流が流れてしまい表示不良が発生してしまう。具体的にはポリイミド系、アクリル樹脂系、ノボラック樹脂系、フルオレン系といったものが挙げられるが、これらに限定されるものではない。また、有機EL素子の表示品位を上げる目的で、光遮光性の材料を感光性材料に含有させても良い。また、隔壁材料に含フッ素化合物や含ケイ素化合物等の撥インク剤を適量添加することで、適度な撥インク性を持たせることができる。
(Production of partition walls)
After the line-shaped pixel electrode 2 is formed, a partition wall 3 is formed between adjacent pixel electrodes 2. The partition walls 3 are provided in a lattice shape or a stripe shape on the substrate and the inspection substrate. Each region surrounded by the partition walls 3 becomes a discharge region that is a target for forming a thin film of ink by nozzle coating. The partition 3 is formed by a photolithography method using a photosensitive material. The photosensitive material for forming the partition wall 3 may be either a positive type resist or a negative type resist, but it must have insulating properties. If the partition 3 does not have sufficient insulation, a current flows to the adjacent pixel electrode through the partition and a display defect occurs. Specific examples include polyimide, acrylic resin, novolak resin, and fluorene, but are not limited thereto. Further, for the purpose of improving the display quality of the organic EL element, a light shielding material may be included in the photosensitive material. In addition, by adding an appropriate amount of an ink repellent such as a fluorine-containing compound or a silicon-containing compound to the partition wall material, an appropriate ink repellency can be provided.
 本実施形態に係る隔壁3の厚み(高さ)は、0.5~5.0μmであることが望ましい。隔壁3を隣接する画素電極2間に設けることによって、各画素電極上に印刷された正孔輸送インクの広がりを抑え、また透明導電膜端部からのショート発生を防ぐことが出来る。隔壁が低すぎるとショートの防止効果が得られないことがあり注意が必要である。 The thickness (height) of the partition wall 3 according to this embodiment is preferably 0.5 to 5.0 μm. By providing the partition wall 3 between the adjacent pixel electrodes 2, it is possible to suppress the spreading of the hole transport ink printed on each pixel electrode, and to prevent the occurrence of a short circuit from the edge of the transparent conductive film. If the partition walls are too low, the effect of preventing a short circuit may not be obtained, so care must be taken.
 (正孔注入層インクの調整)
 正孔注入層4を形成するためのインク調整について説明する。形成される正孔注入層4の体積抵抗率は、発光効率の点から1×10Ω・cm以下であることが好ましい。正孔注入材料は、銅フタロシアニン、テトラ(t-ブチル)銅フタロシアニン等の金属フタロシアニン類や無金属フタロシアニン類、キナクリドン化合物、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジ(1‐ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン等の芳香族アミン系低分子正孔注入輸送材料や、ポリ(p-フェニレンビニレン)、ポリアニリン等の高分子正孔注入材料、ポリチオフェンオリゴマー材料、その他の既知の正孔注入材料の中から選ぶことができる。
(Adjustment of hole injection layer ink)
The ink adjustment for forming the hole injection layer 4 will be described. The volume resistivity of the formed hole injection layer 4 is preferably 1 × 10 6 Ω · cm or less from the viewpoint of light emission efficiency. Hole injection materials include metal phthalocyanines such as copper phthalocyanine and tetra (t-butyl) copper phthalocyanine, metal-free phthalocyanines, quinacridone compounds, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N , N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine, N, N'-di (1-naphthyl) -N, N'- Aromatic amine low molecular hole injection / transport materials such as diphenyl-1,1'-biphenyl-4,4'-diamine, polymer hole injection materials such as poly (p-phenylene vinylene) and polyaniline, polythiophene oligomers The material can be selected from other known hole injection materials.
 正孔注入材料を溶解または分散させる溶媒としては、例えば、クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエチレン、2塩化エチレン、テトラクロロエタン、クロルベンゼンなどのハロゲン系溶媒、N-メチル-2-ピロリドン(NMP)、ジメチルフォルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル等のアルコキシアルコール等の極性溶媒などが挙げられる。 Examples of the solvent for dissolving or dispersing the hole injection material include halogen solvents such as chloroform, dichloromethane, dichloroethane, trichloroethylene, ethylene chloride, tetrachloroethane, chlorobenzene, N-methyl-2-pyrrolidone (NMP), dimethyl Polar solvents such as aprotic polar solvents such as formamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), and alkoxy alcohols such as propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether Etc.
 (正孔輸送層インクの作製)
 正孔輸送層5を形成するためのインク調整について説明する。正孔輸送性物質としては、例えば、ポリ(N-ビニルカルバゾール)(以下、PVKともいう。)、ポリ(パラ-フェニレンビニレン)、カルバゾールビフェニル(以下、CBPとも言う。)、N,N’-ジフェニル-N,N’-ビス(1-ナフチル)―1,1’-ビフェニル-4,4’-ジアミン(以下NPDとも言う。)、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン(以下TPDともいう。)、4,4’-ビス(10-フェノチアジニル)ビフェニルや、2,4,6-トリフェニル-1,3,5-トリアゾール、ポリフルオレン誘導体、トリフェニルアミンとフルオレンの共重合体などを挙げることができる。
正孔輸送層を形成する機能性インクの溶媒としては、シメン、テトラリン、クメン、デカリン、ジュレン、シクロヘキシルベンゼン、ジヘキシルベンゼン、テトラメチルベンゼン、およびジブチルベンゼン等が挙げられる。
(Preparation of hole transport layer ink)
The ink adjustment for forming the hole transport layer 5 will be described. Examples of the hole transporting substance include poly (N-vinylcarbazole) (hereinafter also referred to as PVK), poly (para-phenylene vinylene), carbazole biphenyl (hereinafter also referred to as CBP), N, N′—. Diphenyl-N, N′-bis (1-naphthyl) -1,1′-biphenyl-4,4′-diamine (hereinafter also referred to as NPD), N, N′-diphenyl-N, N′-bis (3 -Methylphenyl) -1,1'-biphenyl-4,4'-diamine (hereinafter also referred to as TPD), 4,4'-bis (10-phenothiazinyl) biphenyl, 2,4,6-triphenyl- Examples thereof include 1,3,5-triazole, polyfluorene derivatives, and a copolymer of triphenylamine and fluorene.
Examples of the solvent for the functional ink that forms the hole transport layer include siemen, tetralin, cumene, decalin, durene, cyclohexylbenzene, dihexylbenzene, tetramethylbenzene, and dibutylbenzene.
 (有機発光層インクの作製)
 有機発光層6を形成するためのインク調整について説明する。有機発光層6は電流を流すことにより発光する層である。有機発光層6を形成する有機発光材料としては、例えば、クマリン系、ペリレン系、ピラン系、アンスロン系、ポルフィレン系、キナクリドン系、N,N’-ジアルキル置換キナクリドン系、ナフタルイミド系、N,N’―ジアリール置換ピロロピロール系、イリジウム錯体系等の発光性色素をポリスチレン、ポリメチルメタクリレート、ポリビニルカルバゾール等の高分子中に分散させたものや、ポリアリーレン系、ポリアリーレンビニレン系やポリフルオレン系の高分子材料が挙げられる。有機発光層6を形成する機能性インクの溶媒としては、シメン、テトラリン、クメン、デカリン、ジュレン、シクロヘキシルベンゼン、ジヘキシルベンゼン、テトラメチルベンゼン、およびジブチルベンゼン等が挙げられる。
(Preparation of organic light emitting layer ink)
The ink adjustment for forming the organic light emitting layer 6 will be described. The organic light emitting layer 6 is a layer that emits light when an electric current is applied. Examples of the organic light-emitting material for forming the organic light-emitting layer 6 include, for example, coumarin-based, perylene-based, pyran-based, anthrone-based, porphyrin-based, quinacridone-based, N, N′-dialkyl-substituted quinacridone-based, naphthalimide-based, N, N '-Diaryl-substituted pyrrolopyrrole, iridium complex and other luminescent dyes dispersed in polymers such as polystyrene, polymethylmethacrylate, polyvinylcarbazole, polyarylene, polyarylene vinylene and polyfluorene Examples include polymer materials. Examples of the solvent for the functional ink that forms the organic light emitting layer 6 include siemen, tetralin, cumene, decalin, durene, cyclohexylbenzene, dihexylbenzene, tetramethylbenzene, and dibutylbenzene.
 (正孔注入層の形成)
 隔壁3を形成した基板1に対して、後述のノズル塗布法により正孔注入材料を含んだ機能性インクを吐出し、正孔注入層4を形成する。
(Formation of hole injection layer)
A functional ink containing a hole injection material is ejected to the substrate 1 on which the partition walls 3 are formed by a nozzle coating method described later, thereby forming a hole injection layer 4.
 (正孔輸送層の形成)
 正孔注入層4形成後、後述のノズル塗布法により正孔輸送性物質を含む機能性インクを吐出して正孔輸送層5を形成する。
(Formation of hole transport layer)
After the hole injection layer 4 is formed, the hole transport layer 5 is formed by discharging a functional ink containing a hole transport material by a nozzle coating method described later.
 (有機発光層の形成)
 正孔輸送層5形成後、後述のノズル塗布法により有機発光材料を含む機能性インクを吐出して、有機発光層6を形成する。
(Formation of organic light emitting layer)
After the hole transport layer 5 is formed, a functional ink containing an organic light emitting material is discharged by a nozzle coating method described later to form the organic light emitting layer 6.
 (陰極層の形成)
 有機発光層6形成後、陰極層7を画素電極2のラインパターンと直交するラインパターンで形成する。陰極層7の材料としては、有機発光層6の発光特性に応じたものを使用でき、例えば、リチウム、マグネシウム、カルシウム、イッテルビウム、アルミニウムなどの金属単体やこれらと金、銀などの安定な金属との合金などが挙げられる。また、インジウム、亜鉛、錫などの導電性酸化物を用いることもできる。陰極層の形成方法としてはマスクを用いた真空蒸着法による形成方法が挙げられる。
(Formation of cathode layer)
After the organic light emitting layer 6 is formed, the cathode layer 7 is formed in a line pattern orthogonal to the line pattern of the pixel electrode 2. As the material of the cathode layer 7, a material corresponding to the light emission characteristics of the organic light emitting layer 6 can be used. For example, a simple metal such as lithium, magnesium, calcium, ytterbium, and aluminum or a stable metal such as gold and silver can be used. And alloys thereof. Alternatively, a conductive oxide such as indium, zinc, or tin can be used. Examples of the method for forming the cathode layer include a method using a vacuum vapor deposition method using a mask.
 (封止工程の説明)
 最後にこれらの有機EL構成体を、外部の酸素や水分から保護するために、ガラスキャップ8と接着剤9を用いて密閉封止し、有機ELディスプレイパネルを得ることが出来る。封止方式としては、有機EL構成体を外部の酸素や水分から保護できればどのような方法をとっても良い。また、透光性基板1が可撓性を有する場合は封止剤と可撓性フィルムとを用いて封止を行っても良い。
(Description of sealing process)
Finally, in order to protect these organic EL constituents from external oxygen and moisture, a glass cap 8 and an adhesive 9 are hermetically sealed to obtain an organic EL display panel. As a sealing method, any method may be used as long as the organic EL structure can be protected from external oxygen and moisture. Moreover, when the translucent board | substrate 1 has flexibility, you may seal using a sealing agent and a flexible film.
 なお、本実施形態に係る有機EL素子では、陽極である画素電極2と陰極層7との間に、陽極層側から順に、正孔注入層4と正孔輸送層5と有機発光層6を積層した構成であるが、陽極層と陰極層の間に、正孔輸送層5、有機発光層6以外に、正孔ブロック層、電子輸送層、電子注入層といった層を必要に応じて設けた積層構造をとることが出来る。また、これらの層を形成する際には有機発光層6と同様の形成方法を適用できる。 In the organic EL device according to this embodiment, the hole injection layer 4, the hole transport layer 5, and the organic light emitting layer 6 are disposed between the pixel electrode 2 that is an anode and the cathode layer 7 in order from the anode layer side. Although it is a laminated structure, in addition to the hole transport layer 5 and the organic light emitting layer 6, layers such as a hole blocking layer, an electron transport layer, and an electron injection layer are provided as needed between the anode layer and the cathode layer. A laminated structure can be taken. Moreover, when forming these layers, the formation method similar to the organic light emitting layer 6 is applicable.
 (ノズル塗布装置の構成)
 以下、正孔注入層、正孔輸送層、有機発光層の形成に用いるノズル塗布装置の構成例について、図2を参照しながら説明するが、本発明はこれに限定されるものではない。
(Configuration of nozzle coating device)
Hereinafter, a configuration example of a nozzle coating apparatus used for forming a hole injection layer, a hole transport layer, and an organic light emitting layer will be described with reference to FIG. 2, but the present invention is not limited to this.
 図2に示すノズル塗布装置は、インク供給タンク10と、インク供給チューブ12と、流量計16と、流量制御弁15と、ノズルヘッド13とを備える。インク供給タンク10に充填されているインク11は、インク供給チューブ12の内部を通してノズルヘッド13へと供給される。ノズルヘッド13へのインク11の供給は、インク供給タンク10内を加圧機14で加圧して、インク11をインク供給タンク10から押し出すことによって行われる。インク供給タンク10とノズルヘッド13との間には、インク11の吐出量を制御するための流量制御弁15と、ノズルヘッド13に供給するインク11の流量を測定するための流量計16とが配置されている。流量制御弁15は、流量計16からの情報(つまり、インク流量)を基に制御され、インク流量を調整することができるので、安定した所望のインク流量を得ることができる。ノズル塗布装置に複数のノズルヘッド13を設ける場合、ノズルヘッド13からインク供給タンク10までの構成が複数セット設けられる。 2 includes an ink supply tank 10, an ink supply tube 12, a flow meter 16, a flow control valve 15, and a nozzle head 13. The ink 11 filled in the ink supply tank 10 is supplied to the nozzle head 13 through the ink supply tube 12. Supply of the ink 11 to the nozzle head 13 is performed by pressurizing the inside of the ink supply tank 10 with the pressurizer 14 and pushing out the ink 11 from the ink supply tank 10. Between the ink supply tank 10 and the nozzle head 13, there are a flow rate control valve 15 for controlling the discharge amount of the ink 11 and a flow meter 16 for measuring the flow rate of the ink 11 supplied to the nozzle head 13. Has been placed. Since the flow rate control valve 15 is controlled based on information from the flow meter 16 (that is, ink flow rate) and can adjust the ink flow rate, a stable desired ink flow rate can be obtained. When a plurality of nozzle heads 13 are provided in the nozzle coating device, a plurality of sets of configurations from the nozzle head 13 to the ink supply tank 10 are provided.
 更に、ノズル塗布装置は、テーブル17と、テーブル17上に配置され、テーブル17上をX方向及びこれに直交するY方向に移動自在な稼働ステージ19とを備える。ノズルヘッド13の吐出口からインク11を吐出させながら、可動ステージ19をY方向またはY’方向(或いは、X方向またはX’方向)に移動させることで、連続的に可動ステージ19上に配置された透光性基板18上に塗膜を形成することができる。例えば、互いに平行にかつX方向に延びる複数の画素形成領域がストライプ状に設けられた透光性基板18を可動ステージ19上に配置し、可動ステージ19とノズルヘッド13とをY方向に相対的に移動させる。この際、可動ステージ19とノズルヘッド13との位置情報などに基づいて、可動ステージ19とノズルヘッド13との移動を同期させて、R(Red)またはG(Green)またはB(Blue)の1本の画素形成領域に連続的にインク11を塗布し、塗膜を形成する。そして、RまたはGまたはBの1本の画素形成領域に塗膜を形成した後、X方向に可動ステージ19とノズルヘッド13を相対的に移動させ、次の画素形成領域に塗膜を形成する。 Furthermore, the nozzle coating device includes a table 17 and an operation stage 19 which is disposed on the table 17 and is movable on the table 17 in the X direction and the Y direction perpendicular thereto. By moving the movable stage 19 in the Y direction or Y ′ direction (or X direction or X ′ direction) while discharging the ink 11 from the discharge port of the nozzle head 13, the nozzle 11 is continuously arranged on the movable stage 19. A coating film can be formed on the translucent substrate 18. For example, a translucent substrate 18 in which a plurality of pixel formation regions extending in parallel to each other in the X direction are provided in a stripe shape is disposed on a movable stage 19, and the movable stage 19 and the nozzle head 13 are relative to each other in the Y direction. Move to. At this time, based on the positional information of the movable stage 19 and the nozzle head 13, the movement of the movable stage 19 and the nozzle head 13 is synchronized, and R (Red), G (Green), or B (Blue) 1 The ink 11 is continuously applied to the pixel formation region of the book to form a coating film. And after forming a coating film in one pixel formation area of R, G, or B, the movable stage 19 and the nozzle head 13 are relatively moved to a X direction, and a coating film is formed in the following pixel formation area .
 次にノズルヘッドについて図3のノズルヘッド断面図を用いて説明する。インク11は、インク供給チューブ12からSUS(ステンレス鋼)等で作られた円柱や直方体状のケース22に入る。ケース22は金属製が一般的であるが、インク耐性があればどのようなものを用いても構わない。ケース22内部はマニホールドとなっており、直径5ミクロンから20ミクロン程度の微小な穴の空いたノズル23から透光性基板18へと液柱25が吐出される。ノズルはポリイミド等のフィルムが一般的だが、精度良く穴をあけることができればどのようなものでも構わない。 Next, the nozzle head will be described with reference to the sectional view of the nozzle head in FIG. The ink 11 enters a cylindrical or cuboid case 22 made of SUS (stainless steel) or the like from the ink supply tube 12. The case 22 is generally made of metal, but any case having ink resistance may be used. The inside of the case 22 is a manifold, and the liquid column 25 is discharged from the nozzle 23 having a minute hole having a diameter of about 5 to 20 microns to the translucent substrate 18. The nozzle is generally a film of polyimide or the like, but any nozzle can be used as long as it can accurately make a hole.
 インク乾燥によるノズル詰まりや飛行曲がりを考慮すると、ノズルから吐出されるインクは、連続して吐出されることが好ましい。そのため、吐出したくない部分等をマスキングしたりダミーパターンを設けたりすることがあるが、パネルとして問題なければどのような方法をとっても構わない。 In consideration of nozzle clogging and flight bending due to ink drying, it is preferable that ink ejected from the nozzles be ejected continuously. For this reason, a portion that is not desired to be ejected may be masked or a dummy pattern may be provided, but any method may be used as long as there is no problem as a panel.
 (試験塗布装置の構成)
 図4に、本発明の試験塗布を行う試験塗布装置の概略の構成を示す。
(Configuration of test application device)
FIG. 4 shows a schematic configuration of a test coating apparatus that performs the test coating of the present invention.
 図4に示す試験塗布装置は、受像層フィルム28と、受像層フィルム28上に記録された線幅検査用画像の情報を光学的に取り込むための線幅検査部34と、線幅検査部34に取り込まれた画像情報から線幅を検査するための画像情報処理部32と、受像層フィルム28の繰出し及び巻取りを行うフィルム部36と、これらの動作を制御するための制御部(図示せず)とを少なくとも備える。 The test coating apparatus shown in FIG. 4 includes an image receiving layer film 28, a line width inspection unit 34 for optically capturing information of an image for line width inspection recorded on the image receiving layer film 28, and a line width inspection unit 34. An image information processing unit 32 for inspecting the line width from the image information taken in, a film unit 36 for feeding and winding the image receiving layer film 28, and a control unit (not shown) for controlling these operations. At least).
 受像層フィルム28は、複数のノズルからインクを吐出させて描かれる軌跡状の線幅検査用画像35を作製するための線幅検査用被記録体である。受像層フィルム28としては、一般に市販される通常のものを使用できる。例えば、透明フィルムとして、PET(ポリエチレンテレフタレート)フィルムを用い、受像層として、微細な顔料を均一分散させた塗布層を設けたものを使用できるが、使用する機能液のタイプ、フィルム移動機構の仕様等の条件に応じて、適宜選択すればよい。 The image-receiving layer film 28 is a recording medium for line width inspection for producing a locus-like line width inspection image 35 drawn by ejecting ink from a plurality of nozzles. As the image receiving layer film 28, a commercially available ordinary film can be used. For example, a PET (polyethylene terephthalate) film can be used as a transparent film, and an image-receiving layer provided with a coating layer in which fine pigments are uniformly dispersed can be used. What is necessary is just to select suitably according to conditions, such as.
 受像層フィルム28上に記録された線幅検査用画像35は、駆動ローラー37により線幅検査部34のある場所へと移動される。線幅検査部34では、線幅検査用のカメラ27が線幅検査用画像を画像情報として取り込み、その画像情報を画像情報処理部32へと転送する。カメラ27が検査用画像の情報を取り込む際は、照明29が点灯して受像層フィルム上に記録された検査用画像を照らすことにより、コントラストが付けられ、検査用画像の形状をはっきりと認識して取り込めるようになっている。照明29を受像層フィルムよりカメラ側に設置したり、または外光のみを利用してカメラ27が画像を取り込むこともできる。また、画像情報の取り込みに当たっては、受像層フィルム28上に記録された検査用画像が微細であっても、画像情報検出部の光学カメラの分解能、視野角等を適正に選択することで対応可能である。 The line width inspection image 35 recorded on the image receiving layer film 28 is moved by the drive roller 37 to a place where the line width inspection section 34 is located. In the line width inspection unit 34, the line width inspection camera 27 captures the line width inspection image as image information and transfers the image information to the image information processing unit 32. When the camera 27 captures the information of the inspection image, the illumination 29 is turned on to illuminate the inspection image recorded on the image receiving layer film, thereby adding contrast and clearly recognizing the shape of the inspection image. Can be taken in. The illumination 29 can be installed on the camera side from the image receiving layer film, or the camera 27 can capture an image using only external light. In addition, even when the inspection image recorded on the image receiving layer film 28 is fine, it can be handled by appropriately selecting the resolution, viewing angle, etc. of the optical camera of the image information detection unit. It is.
 受像層フィルム28とノズルとのギャップは、ノズル塗布装置のステージ上に基材を置いた場合の基材とノズルのギャップと等しくなるように設置されている。また、試験塗布装置は受像層フィルムの駆動方向がノズル塗布装置のノズルの駆動方向と垂直になるように設置される。塗布装置と試験塗布装置は隣接して設置される。また、試験塗布した際に、不吐出であった場合は、再度吐出をさせて塗工を行う。つまり、不吐出検査も同時に行える。 The gap between the image receiving layer film 28 and the nozzle is set to be equal to the gap between the substrate and the nozzle when the substrate is placed on the stage of the nozzle coating apparatus. Further, the test coating device is installed so that the driving direction of the image receiving layer film is perpendicular to the driving direction of the nozzle of the nozzle coating device. The coating device and the test coating device are installed adjacent to each other. Moreover, when it is non-ejection when test-applying, it discharges again and it coats. That is, non-ejection inspection can be performed at the same time.
 (吐出量調整方法)
 次に、試験塗布装置での線幅測定結果から吐出量を調整する方法を説明する。複数ノズルから流量計の値を揃えて吐出した場合、実際に各ノズルから吐出される実吐出量はそれぞれ微妙に異なる。ノズルのノズル径が異なっていたり、流量計の精度が装置毎に異なっていたりするためである。
(Discharge rate adjustment method)
Next, a method for adjusting the discharge amount from the line width measurement result in the test coating apparatus will be described. When the flow meter values are discharged from a plurality of nozzles, the actual discharge amount actually discharged from each nozzle is slightly different. This is because the nozzle diameters of the nozzles are different and the accuracy of the flowmeter is different for each apparatus.
 そこで、各ノズルの吐出量を調整するために、まず線幅と流量との関係を把握する。各ノズルの流量を揃えて、線幅検査画像を作成し、各ノズルの線幅データを取得する。複数の流量でそれを繰り返すことにより、各ノズルの流量と線幅との関係が得られる。 Therefore, in order to adjust the discharge amount of each nozzle, the relationship between the line width and the flow rate is first grasped. A line width inspection image is created by aligning the flow rate of each nozzle, and line width data of each nozzle is acquired. By repeating it at a plurality of flow rates, the relationship between the flow rate of each nozzle and the line width is obtained.
 図5に、3つのノズルを用いて、流量をa1~a5の5水準で塗布した場合の、各ノズルの線幅を示す。図5に示すように、通常はノズル毎に流量を揃えても線幅は異なる。次に、各ノズルの流量と線幅の関係から、狙いの線幅になるように流量を調整する。ノズル1の線幅にノズル2及び3の線幅を揃えるためには、各ノズルの流量と線幅の近似直線を求める。その近似直線からノズル2及び3の線幅をノズル1の線幅と同じになるような流量を算出する。各ノズルの流量を調整することで、図6に示すようにノズル2及び3の線幅をノズル1の線幅と一致させることが可能となる。線幅と吐出量は比例関係にあるので、線幅が揃えば吐出量が揃ったことになる。 Fig. 5 shows the line width of each nozzle when three nozzles are used and the flow rate is applied at five levels a1 to a5. As shown in FIG. 5, the line width is usually different even if the flow rate is uniform for each nozzle. Next, from the relationship between the flow rate of each nozzle and the line width, the flow rate is adjusted so that the target line width is obtained. In order to align the line widths of the nozzles 2 and 3 with the line width of the nozzle 1, an approximate straight line between the flow rate and the line width of each nozzle is obtained. From the approximate straight line, the flow rate is calculated so that the line widths of the nozzles 2 and 3 are the same as the line width of the nozzle 1. By adjusting the flow rate of each nozzle, the line widths of the nozzles 2 and 3 can be matched with the line width of the nozzle 1 as shown in FIG. Since the line width and the discharge amount are in a proportional relationship, if the line width is equal, the discharge amount is equal.
 線幅を調整する方法としては上記に記載した流量を調製する方法と、ノズルを基材に対し相対移動させる速度で調整する方法とがある。流量を固定し速度を変更した場合は、吐出量と速度は累乗関数の関係を示す。そこで、流量で線幅を調整した場合と同様に、速度を変更することによって線幅を調整することができる。速度と流量の関係を図7に示す。尚、ノズルと基材との相対速度によって線幅を調整する場合は、複数のノズルの各々が異なる速度で独立して移動可能に構成される。そして、試験塗布装置では、各ノズルの相対移動速度を変えながら、線幅検査画像を複数作成し、図7に示すような、各ノズルの相対速度と線幅との関係を求めれば良い。 There are a method for adjusting the flow rate described above as a method for adjusting the line width and a method for adjusting at a speed at which the nozzle is moved relative to the substrate. When the flow rate is fixed and the speed is changed, the discharge amount and the speed indicate a power function relationship. Therefore, the line width can be adjusted by changing the speed, as in the case where the line width is adjusted by the flow rate. The relationship between speed and flow rate is shown in FIG. When the line width is adjusted according to the relative speed between the nozzle and the substrate, each of the plurality of nozzles is configured to be independently movable at a different speed. In the test coating apparatus, a plurality of line width inspection images are created while changing the relative movement speed of each nozzle, and the relationship between the relative speed of each nozzle and the line width as shown in FIG.
 尚、本実施形態では、正孔注入層、正孔輸送層、有機発光層をノズル塗布法によって形成したが、これらのすべての層をノズル塗布法で形成する必要はない。 In this embodiment, the hole injection layer, the hole transport layer, and the organic light emitting layer are formed by the nozzle coating method, but it is not necessary to form all these layers by the nozzle coating method.
 次に、本発明を具体的に実施した実施例について説明する。 Next, examples in which the present invention is specifically implemented will be described.
 対角3インチサイズのガラス基板の上にスパッタ法を用いてITO(インジウム-錫酸化物)薄膜を形成し、フォトリソグラフィ法と酸溶液によるエッチングでITO膜をパターニングして、画素電極を形成した。画素電極のラインパターンは、線幅70μm、スペース60μmで、約7.6mm角の中に約590ライン形成されたパターンとした。 A pixel electrode was formed by forming an ITO (indium-tin oxide) thin film on a 3-inch diagonal glass substrate by sputtering and patterning the ITO film by photolithography and etching with an acid solution. . The line pattern of the pixel electrode was a pattern in which about 590 lines were formed in about 7.6 mm square with a line width of 70 μm and a space of 60 μm.
 次に、絶縁層を以下のように形成した。まず、画素電極を形成したガラス基板上にポリイミド系のレジスト材料を全面スピンコートした。スピンコートの条件を150rpmで5秒間回転させた後、500rpmで20秒間回転させ1回コーティングとし、絶縁層の高さを2.5μmとした。全面に塗布したフォトレジスト材料に対し、フォトリソグラフィ法により、画素電極の間にストライプパターンを有する絶縁層である隔壁を形成した。
この隔壁は、撥インク性を有している。
Next, an insulating layer was formed as follows. First, a polyimide resist material was spin-coated on the entire surface of a glass substrate on which pixel electrodes were formed. The spin coating condition was rotated at 150 rpm for 5 seconds, and then rotated at 500 rpm for 20 seconds to form a single coating. The height of the insulating layer was 2.5 μm. A partition which is an insulating layer having a stripe pattern between pixel electrodes was formed by photolithography on the photoresist material applied to the entire surface.
This partition has ink repellency.
 次に、正孔注入インクとして、ポリ(p-フェニレンビニレン)、ポリアニリン等の高分子正孔注入材料の混合物と、プロピレングリコールモノブチルエーテルとを用いて、インクの固形分濃度1.5%、粘度7mPa・sのインクを調製した。 Next, as the hole injection ink, using a mixture of polymer hole injection materials such as poly (p-phenylene vinylene) and polyaniline and propylene glycol monobutyl ether, the solid content concentration of the ink is 1.5%, the viscosity is An ink of 7 mPa · s was prepared.
 作製した正孔注入インクをインク供給タンクに入れた。インク供給タンク中の正孔注入インクはインク供給タンクを加圧することによりインク供給チューブを通ってノズルヘッドへと供給される。インク供給タンクとノズルの間には吐出されるインクの量を制御する流量制御弁、ノズルヘッドに流れるインク流量を測定するための流量計を備えており、インク流量計の情報をもとに、流量制御弁にフィードバックし流量を調整することで、安定した所望のインク流量を得ることができる。 The prepared hole injection ink was put in an ink supply tank. The hole injection ink in the ink supply tank is supplied to the nozzle head through the ink supply tube by pressurizing the ink supply tank. A flow rate control valve that controls the amount of ink ejected between the ink supply tank and the nozzle, and a flow meter for measuring the flow rate of ink flowing to the nozzle head are provided. Based on the information of the ink flow meter, By feeding back to the flow control valve and adjusting the flow rate, a stable desired ink flow rate can be obtained.
 ノズルヘッドとテーブルとは相対的に位置が固定されており、上述した撥インク性を付与したストライプパターン隔壁を有する透光性基板は、可動ステージに固定した。上述の可動ステージは、上述のテーブルの上を縦方向のYまたはY’の方向に動くことができる。また、ノズルヘッドはYまたはY’方向に直交する横方向のXまたは、X’の方向に動くことができる。ステージとノズルまたはノズルユニットは相対的に移動することで連続的にステージ上の基材の画素形成領域に画素となる塗膜を形成できる。 The positions of the nozzle head and the table are relatively fixed, and the above-described translucent substrate having the stripe pattern partition walls imparted with ink repellency was fixed to a movable stage. The above-mentioned movable stage can move on the above-mentioned table in the direction of Y or Y ′ in the vertical direction. Further, the nozzle head can move in the direction X or X ′ in the lateral direction orthogonal to the Y or Y ′ direction. By relatively moving the stage and the nozzle or the nozzle unit, it is possible to continuously form a coating film serving as a pixel in the pixel formation region of the substrate on the stage.
 インクは、インク供給チューブからステンレスで作られた直方体状のノズルヘッドに入る。ノズルヘッド内部はマニホールドとなっており、直径8ミクロンの微小な穴の空いたポリイミドフィルムのノズルから透光性基板に対して鉛直方向に吐出できる。本実施例では、3つのノズルを使用した。 The ink enters the rectangular nozzle head made of stainless steel from the ink supply tube. The inside of the nozzle head is a manifold, and can be discharged in a vertical direction with respect to the translucent substrate from a polyimide film nozzle having a minute hole with a diameter of 8 microns. In this example, three nozzles were used.
 3つのノズルからインクを吐出した状態で、試験吐出装置で狙いの線幅になるように調整した。図8に調整前流量と線幅の関係、図9に調整後の流量と線幅の関係、表1に調整前後の各ノズルの流量と線幅を示す。
Figure JPOXMLDOC01-appb-T000001
 
With the ink ejected from the three nozzles, the test ejection device was adjusted so as to achieve the target line width. FIG. 8 shows the relationship between the flow rate before adjustment and the line width, FIG. 9 shows the relationship between the flow rate after adjustment and the line width, and Table 1 shows the flow rate and line width of each nozzle before and after adjustment.
Figure JPOXMLDOC01-appb-T000001
 次に、調整後の流量で正孔注入層を塗工した。流量計の情報を用いて流量制御弁をフィードバック制御することにより、ノズルから吐出されるインクの量は均一に維持される。その後、インク塗布後の基板を200℃のホットプレートに30分置くことで正孔注入層を形成した。その後、膜厚測定により所望の膜厚の正孔注入層を得たことを確認した。 Next, the hole injection layer was applied at the adjusted flow rate. By performing feedback control of the flow control valve using the information of the flow meter, the amount of ink ejected from the nozzles is maintained uniformly. Then, the hole injection layer was formed by putting the board | substrate after ink application | coating on a 200 degreeC hotplate for 30 minutes. Thereafter, it was confirmed that a hole injection layer having a desired film thickness was obtained by film thickness measurement.
 次に、ポリフルオレン誘導体からなる正孔輸送材料とシクロヘキシルベンゼンとを用いて、インクの固形分濃度4.0%、粘度10mPa・sのインクを調製した。 Next, an ink having a solid content concentration of 4.0% and a viscosity of 10 mPa · s was prepared using a hole transport material made of a polyfluorene derivative and cyclohexylbenzene.
 正孔輸送層を形成する際にも、上述した正孔注入層を形成する際と同様の装置と手順で上述した正孔注入層を形成した基板に吐出を実施した。吐出後、窒素雰囲気化で200℃1時間焼成することにより正孔輸送層を形成し、所望の膜厚の正孔輸送層を得たことを確認した。 Also when forming the hole transport layer, discharging was performed on the substrate on which the hole injection layer was formed with the same apparatus and procedure as when the hole injection layer was formed. After discharging, it was confirmed that a hole transport layer having a desired film thickness was obtained by firing at 200 ° C. for 1 hour in a nitrogen atmosphere to form a hole transport layer.
 次に、ポリ(パラフェニレンビニレン)誘導体からなるRGBの有機発光材料とシクロヘキシルベンゼンとを用いて、インクの固形分濃度7.0%、粘度30mPa・sのRインク、固形分濃度5.0%、粘度5mPa・sのGインク、固形分濃度6.0%、粘度20mPa・sのBインクを調製した。 Next, using an RGB organic light emitting material composed of a poly (paraphenylene vinylene) derivative and cyclohexylbenzene, the solid content concentration of the ink is 7.0%, the R ink has a viscosity of 30 mPa · s, and the solid content concentration is 5.0%. A G ink having a viscosity of 5 mPa · s, a B ink having a solid content concentration of 6.0% and a viscosity of 20 mPa · s were prepared.
 有機発光層を形成する際にも、上述した正孔注入層を形成する際と同様の装置と手順で正孔輸送層を形成した基板に吐出を実施した。吐出後、窒素雰囲気化で130℃30分焼成することによりRGBの有機発光層を形成した。その後、膜厚測定により所望の膜厚の有機発光層を得たことを確認した。 Also when forming the organic light emitting layer, discharging was performed on the substrate on which the hole transport layer was formed by the same apparatus and procedure as those for forming the hole injection layer described above. After discharge, an RGB organic light emitting layer was formed by baking at 130 ° C. for 30 minutes in a nitrogen atmosphere. Then, it confirmed that the organic light emitting layer of the desired film thickness was obtained by the film thickness measurement.
 その上にCa、Alからなる陰極層を画素電極のラインパターンと直交するようなラインパターンで抵抗加熱蒸着法によりマスク蒸着して形成した。最後にこれらの有機EL構成体を、外部の酸素や水分から保護するために、ガラスキャップと接着剤を用いて密閉封止し、有機ELディスプレイパネルを作製した。 A cathode layer made of Ca and Al was formed thereon by mask vapor deposition using a resistance heating vapor deposition method in a line pattern orthogonal to the pixel electrode line pattern. Finally, in order to protect these organic EL constituents from external oxygen and moisture, they were hermetically sealed using a glass cap and an adhesive to produce an organic EL display panel.
 これにより得られた有機EL素子基板の表示部の周辺部には各画素電極に接続されている陽極側の取り出し電極と、陰極側の取り出し電極があり、これらを電源に接続することにより、得られた有機EL素子基板の点灯表示確認を行い、発光状態のチェックを行った。本実施例のように、各ノズルから吐出されたインクの線幅を一致させることによって、材料利用効率が90%で、発光輝度ムラが無い有機EL素子基板が得ることができた。 There are an anode side extraction electrode and a cathode side extraction electrode connected to each pixel electrode in the periphery of the display portion of the organic EL element substrate obtained in this way, and these are obtained by connecting them to a power source. The lighting display of the obtained organic EL element substrate was confirmed, and the light emission state was checked. By matching the line widths of the ink ejected from each nozzle as in this example, an organic EL element substrate with a material utilization efficiency of 90% and no unevenness in light emission luminance could be obtained.
 (比較例1)
 比較例として、各ノズルからの吐出量を、表1の調整前の値としてインクを塗布した場合、パネルの発光領域においてノズル毎の吐出量の違いにより膜厚差が生じ、発光輝度ムラが発生し高品質な有機EL素子基板を得ることができなかった。
(Comparative Example 1)
As a comparative example, when ink is applied with the discharge amount from each nozzle as the value before adjustment in Table 1, a difference in film thickness occurs due to the difference in discharge amount for each nozzle in the light emission region of the panel, resulting in uneven brightness of light emission However, a high-quality organic EL element substrate could not be obtained.
 本発明は、有機EL素子等の製造に利用できる。 The present invention can be used for manufacturing organic EL elements and the like.
 1  透光性基板
 2  画素電極
 3  隔壁
 4  正孔注入層
 5  正孔輸送層
 6  有機発光層
 7  陰極層
 8  ガラスキャップ
 9  接着剤
 10  インク供給タンク
 11  インク
 12  インク供給チューブ
 13  ノズルヘッド
 14  加圧機
 15  流量制御弁
 16  流量計
 17  テーブル
 18  透光性基板
 19  可動ステージ
 22  ケース
 23  ノズル
 25  液柱
 26  ヘッドユニット
 27  カメラ
 28  受像層フィルム(吐出検査用被記録体)
 29  照明
 30  繰り出しローラー
 31  巻取りローラー
 32  画像情報処理部
 33  線幅表示機構
 34  線幅検査部
 35  線幅検査用画像
 36  フィルム部
 37  駆動ローラー
DESCRIPTION OF SYMBOLS 1 Translucent substrate 2 Pixel electrode 3 Partition 4 Hole injection layer 5 Hole transport layer 6 Organic light emitting layer 7 Cathode layer 8 Glass cap 9 Adhesive 10 Ink supply tank 11 Ink 12 Ink supply tube 13 Nozzle head 14 Pressurizer 15 Flow control valve 16 Flow meter 17 Table 18 Translucent substrate 19 Movable stage 22 Case 23 Nozzle 25 Liquid column 26 Head unit 27 Camera 28 Image receiving layer film (recording medium for ejection inspection)
DESCRIPTION OF SYMBOLS 29 Illumination 30 Feeding roller 31 Winding roller 32 Image information processing part 33 Line width display mechanism 34 Line width inspection part 35 Image for line width inspection 36 Film part 37 Drive roller

Claims (2)

  1.  複数のノズルを用いて、基材上に区画された複数の領域にインクを塗布して薄膜を形成する薄膜形成方法であって、
     試験用基材の表面に前記複数のノズルの吐出口を近接させ、前記試験用基材と前記複数のノズルとを相対移動させながら、前記複数のノズルからインクを吐出させて、試験塗布を行うステップと、
     前記試験塗布時に、前記複数のノズルの各々によって描かれた軌跡の線幅を測定するステップと、
     前記複数のノズルの各々に供給するインクの流量を変化させながら、前記試験塗布を行うステップと、前記線幅を測定するステップとを繰り返し、前記複数のノズルの各々によって描かれる軌跡の線幅が同一となるような、前記複数のノズルの各々に供給するインクの流量の組み合わせを求めるステップと、
     前記基材の表面に前記複数のノズルを近接させ、前記基材と前記複数のノズルを相対移動させながら、前記流量の組み合わせを求めるステップで求めた流量の組み合わせを用いて、前記複数のノズルから前記基材上にインクを吐出させるステップとを備える、薄膜形成方法。
    A thin film forming method for forming a thin film by applying ink to a plurality of regions partitioned on a substrate using a plurality of nozzles,
    The test application is performed by ejecting ink from the plurality of nozzles while bringing the discharge ports of the plurality of nozzles close to the surface of the test substrate and moving the test substrate and the plurality of nozzles relative to each other. Steps,
    Measuring the line width of the trajectory drawn by each of the plurality of nozzles during the test application;
    While changing the flow rate of ink supplied to each of the plurality of nozzles, repeating the test application and measuring the line width, the line width of the trajectory drawn by each of the plurality of nozzles is Obtaining a combination of ink flow rates to be supplied to each of the plurality of nozzles so as to be the same;
    Using the combination of flow rates obtained in the step of obtaining the combination of flow rates while bringing the plurality of nozzles close to the surface of the substrate and relatively moving the substrate and the plurality of nozzles, from the plurality of nozzles And a step of discharging ink onto the substrate.
  2.  複数のノズルを用いて、基材上に区画された複数の領域にインクを塗布して薄膜を形成する薄膜形成方法であって、
     試験用基材の表面に前記複数のノズルの吐出口を近接させ、前記試験用基材と前記複数のノズルとを相対移動させながら、前記複数のノズルからインクを吐出させて、試験塗布を行うステップと、
     前記試験塗布時に、前記複数のノズルの各々によって描かれた軌跡の線幅を測定するステップと、
     前記複数のノズルと前記試験用基材との相対移動速度を変化させながら、前記試験塗布を行うステップと、前記線幅を測定するステップとを繰り返し、前記複数のノズルの各々によって描かれる軌跡の線幅が同一となるような、前記複数のノズルの相対移動速度の組み合わせを求めるステップと、
     前記基材の表面に前記複数のノズルを近接させ、前記相対移動速度の組み合わせを求めるステップで求められた相対移動速度で、前記複数のノズルと前記基材とを相対移動させながら、前記複数のノズルから前記基材上にインクを吐出させるステップとを備える、薄膜形成方法。
    A thin film forming method for forming a thin film by applying ink to a plurality of regions partitioned on a substrate using a plurality of nozzles,
    The test application is performed by ejecting ink from the plurality of nozzles while bringing the discharge ports of the plurality of nozzles close to the surface of the test substrate and moving the test substrate and the plurality of nozzles relative to each other. Steps,
    Measuring the line width of the trajectory drawn by each of the plurality of nozzles during the test application;
    While changing the relative movement speed between the plurality of nozzles and the test substrate, the step of performing the test application and the step of measuring the line width are repeated, and the trajectory drawn by each of the plurality of nozzles Obtaining a combination of relative movement speeds of the plurality of nozzles such that the line widths are the same;
    The plurality of nozzles are brought close to the surface of the base material, and the plurality of nozzles and the base material are relatively moved at the relative movement speed obtained in the step of obtaining a combination of the relative movement speeds. And a step of discharging ink onto the substrate from a nozzle.
PCT/JP2012/005985 2011-09-29 2012-09-20 Thin film forming method WO2013046608A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147008027A KR20140084002A (en) 2011-09-29 2012-09-20 Thin film forming method
CN201280047881.1A CN103906576A (en) 2011-09-29 2012-09-20 Thin film forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011214987 2011-09-29
JP2011-214987 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013046608A1 true WO2013046608A1 (en) 2013-04-04

Family

ID=47994693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005985 WO2013046608A1 (en) 2011-09-29 2012-09-20 Thin film forming method

Country Status (5)

Country Link
JP (1) JPWO2013046608A1 (en)
KR (1) KR20140084002A (en)
CN (1) CN103906576A (en)
TW (1) TW201321085A (en)
WO (1) WO2013046608A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137756A (en) * 1999-11-10 2001-05-22 Musashi Eng Co Ltd Method for applying liquid and device for applying liquid
JP2006205024A (en) * 2005-01-27 2006-08-10 Dainippon Screen Mfg Co Ltd Coater
JP2011104475A (en) * 2009-11-13 2011-06-02 Seiko Epson Corp Method and apparatus for ejecting droplet
JP2011235237A (en) * 2010-05-11 2011-11-24 Olympus Corp Method and apparatus for applying coating agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200638083A (en) * 2005-04-18 2006-11-01 Shibaura Mechatronics Corp The coating apparatus and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137756A (en) * 1999-11-10 2001-05-22 Musashi Eng Co Ltd Method for applying liquid and device for applying liquid
JP2006205024A (en) * 2005-01-27 2006-08-10 Dainippon Screen Mfg Co Ltd Coater
JP2011104475A (en) * 2009-11-13 2011-06-02 Seiko Epson Corp Method and apparatus for ejecting droplet
JP2011235237A (en) * 2010-05-11 2011-11-24 Olympus Corp Method and apparatus for applying coating agent

Also Published As

Publication number Publication date
KR20140084002A (en) 2014-07-04
JPWO2013046608A1 (en) 2015-03-26
CN103906576A (en) 2014-07-02
TW201321085A (en) 2013-06-01

Similar Documents

Publication Publication Date Title
Haverinen et al. Inkjet printed RGB quantum dot-hybrid LED
JP4148933B2 (en) Functional film manufacturing method, functional film forming coating liquid, functional element, electronic device, and display device
WO2009122957A1 (en) Lyophilic/lyophobic pattern-forming method and organic electroluminescent element manufacturing method
CN102960068A (en) Organic el display panel and method for manufacturing same
JP2010033971A (en) Organic electroluminescent element and its manufacturing method
JP4788144B2 (en) Method for manufacturing light emitting device
JP2011216268A (en) Manufacturing method of organic el element substrate
WO2022124242A1 (en) Ink ejection quantity measurement/adjustment method, ink ejection quantity measurement/adjustment device, panel manufacturing system for organic el display panel, organic el display panel manufacturing method, ink, and organic el display panel manufactured using ink
JP3949045B2 (en) Functional element sheet and manufacturing method thereof
JP2011023668A (en) Liquid column coating ink, method of manufacturing organic el element, and organic el display device with organic el element
WO2011118654A1 (en) Method for manufacturing light-emitting device
WO2013046608A1 (en) Thin film forming method
JP5625680B2 (en) Functional film forming method and electro-optic element manufacturing method
JP4391094B2 (en) Organic EL layer forming method
JP5258302B2 (en) Organic electronic devices and methods
JP2009238708A (en) Manufacturing method for organic electroluminescent apparatus
JP5899763B2 (en) Coating apparatus and organic functional element manufacturing method
JP2008077912A (en) Manufacturing method of organic electroluminescent element
JP4957318B2 (en) Manufacturing method of organic EL device
JP4998008B2 (en) Organic electroluminescence device and method for manufacturing the same
JP4830941B2 (en) Manufacturing method of organic EL device
JP2013077502A (en) Application device, application method, and method of manufacturing organic functional element
JP2014063700A (en) Coater, coating method and process of manufacturing organic functional element
JP2008186766A (en) Manufacturing method of organic electroluminescent element
JP5736897B2 (en) Method for manufacturing electro-optic element substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535882

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147008027

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835506

Country of ref document: EP

Kind code of ref document: A1