WO2013046384A1 - 太陽電池、太陽電池モジュール、及び太陽電池の製造方法 - Google Patents

太陽電池、太陽電池モジュール、及び太陽電池の製造方法 Download PDF

Info

Publication number
WO2013046384A1
WO2013046384A1 PCT/JP2011/072312 JP2011072312W WO2013046384A1 WO 2013046384 A1 WO2013046384 A1 WO 2013046384A1 JP 2011072312 W JP2011072312 W JP 2011072312W WO 2013046384 A1 WO2013046384 A1 WO 2013046384A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
current collecting
finger
height
finger part
Prior art date
Application number
PCT/JP2011/072312
Other languages
English (en)
French (fr)
Inventor
悟司 東方田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2011/072312 priority Critical patent/WO2013046384A1/ja
Priority to JP2013535732A priority patent/JP5903600B2/ja
Publication of WO2013046384A1 publication Critical patent/WO2013046384A1/ja
Priority to US14/218,185 priority patent/US20140202516A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell, a solar cell module, and a method for manufacturing a solar cell.
  • the solar cell includes a photoelectric conversion unit and an electrode formed on the main surface of the photoelectric conversion unit (see, for example, Patent Document 1).
  • the electrode includes a thin line finger portion.
  • Patent Document 1 a structure in which finger portions having different widths are combined is disclosed.
  • a wiring material for electrically connecting a plurality of solar cells is attached to the finger portion.
  • the wiring member is, for example, thermocompression bonded onto the finger portion using an adhesive.
  • the convex portion comes into contact with the wiring member and serves as a current collection point.
  • current collection points may be randomly generated, resulting in a long current path, which may result in output loss.
  • the solar cell according to the present invention includes a current collecting finger portion formed on the main surface of the photoelectric conversion portion, and the separation region extends in a direction intersecting with the current collecting finger portion so as to separate the current collecting finger portion.
  • Current collecting finger portions provided on the main surface and located on both sides of the separation region are electrically separated from each other.
  • the solar cell module according to the present invention includes a plurality of the solar cells, and a wiring material for connecting the solar cells to each other, straddling between the ends of the current collecting finger portions located on both sides across the separation region, A wiring material is provided.
  • the method for manufacturing a solar cell according to the present invention includes a step of forming a current collecting finger portion on the main surface of the photoelectric conversion portion by a screen printing method. In this step, the method extends in a direction intersecting with the current collecting finger portion. Thus, a current collecting finger portion is formed by leaving a separation region for separating the current collecting finger portion on the main surface, and the current collecting finger portions located on both sides of the separation region are electrically separated from each other.
  • the output of the solar cell can be improved.
  • the solar cell 10 which is embodiment which concerns on this invention is demonstrated in detail.
  • the present invention is not limited to the following embodiments.
  • the drawings referred to in the embodiments are schematically described, and the dimensional ratios of the components drawn in the drawings may be different from the actual products. Specific dimensional ratios and the like should be determined in consideration of the following description.
  • the stacking direction of each semiconductor layer and each electrode in the photoelectric conversion unit 11 is a “thickness direction”.
  • FIG. 1 is a plan view of the solar cell 10 as seen from the light receiving surface side.
  • 2 is a cross-sectional view taken along the line AA in FIG. 1 and shows a cross section of the solar cell 10 cut in the thickness direction along the longitudinal direction of the finger portion 31.
  • FIG. FIG. 3 is a cross-sectional view of the solar cell module 50.
  • the arrangement of the wiring member 54 is indicated by a two-dot chain line.
  • the solar cell 10 includes a photoelectric conversion unit 11 that generates carriers (electrons and holes) by receiving sunlight, a light-receiving surface electrode 12 formed on the light-receiving surface of the photoelectric conversion unit 11, and the photoelectric conversion unit 11. And a back surface electrode 13 formed on the back surface.
  • carriers generated by the photoelectric conversion unit 11 are collected by the light receiving surface electrode 12 and the back surface electrode 13.
  • the solar cell 10 includes current collecting finger portions 32 and 42 to which the wiring material 54 is connected when modularized.
  • connecting finger portions 33 and 43 are further included, and these will be collectively referred to as finger portions 31 and 41.
  • the “light-receiving surface” means a main surface on which sunlight mainly enters from the outside of the solar cell 10. For example, more than 50% to 100% of the sunlight incident on the solar cell 10 enters from the light receiving surface side.
  • the “back surface” means a main surface opposite to the light receiving surface. Note that a surface along the thickness direction of the solar cell 10 and perpendicular to the main surface is a side surface.
  • the photoelectric conversion unit 11 includes, for example, a semiconductor substrate 20, an amorphous semiconductor layer 21 formed on the light receiving surface side of the substrate 20, and an amorphous semiconductor layer 22 formed on the back surface side of the substrate 20. .
  • the amorphous semiconductor layers 21 and 22 respectively cover the entire area of the light receiving surface and the back surface of the substrate 20 (including a state that can be regarded as substantially the entire region, for example, a state in which 95% of the light receiving surface is covered. The same applies hereinafter). It is formed as follows.
  • the substrate 20 include an n-type single crystal silicon substrate.
  • the amorphous semiconductor layer 21 has a layer structure in which, for example, an i-type amorphous silicon layer and a p-type amorphous silicon layer are sequentially formed.
  • the amorphous semiconductor layer 22 has a layer structure in which, for example, an i-type amorphous silicon layer and an n-type amorphous silicon layer are sequentially formed.
  • the photoelectric conversion unit 11 has an i-type amorphous silicon layer and an n-type amorphous silicon layer sequentially formed on the light-receiving surface of the n-type single crystal silicon substrate.
  • a structure in which an i-type amorphous silicon layer and a p-type amorphous silicon layer are formed in order may be employed.
  • the photoelectric conversion unit 11 can be formed by a known method.
  • the texture structure is a surface uneven structure that suppresses surface reflection and increases the light absorption amount of the photoelectric conversion unit 11.
  • the uneven height of the texture structure is about 1 ⁇ m to 15 ⁇ m. Since the thicknesses of the amorphous semiconductor layers 21 and 22 and the transparent conductive layers 30 and 40 are about several nanometers to several tens of nanometers, unevenness of the texture structure appears on the transparent conductive layers 30 and 40.
  • the texture structure may affect the surface shapes of the finger portions 31 and 41.
  • the light receiving surface electrode 12 preferably includes a transparent conductive layer 30 formed on the light receiving surface of the photoelectric conversion unit 11.
  • a transparent conductive oxide (TCO) in which tin (Sn), antimony (Sb) or the like is doped into a metal oxide such as indium oxide (In 2 O 3 ) or zinc oxide (ZnO) is used.
  • the transparent conductive layer 30 can be formed using a sputtering method.
  • the transparent conductive layer 30 may be formed over the entire area of the amorphous semiconductor layer 21. However, in the embodiment shown in FIG. 1, the transparent conductive layer 30 is formed over the entire area of the amorphous semiconductor layer 21 except for its edge. Yes.
  • the light-receiving surface electrode 12 includes a plurality of (for example, 50) finger portions 31 formed on the transparent conductive layer 30 and a plurality of finger portions 31 formed on the transparent conductive layer 30 extending in a direction intersecting the finger portions 31. It is preferable to include (for example, two) bus bar portions 34.
  • the finger part 31 is a thin wire electrode formed over a wide area on the transparent conductive layer 30.
  • the bus bar portion 34 is an electrode having a smaller number than the finger portions 31 and collects carriers from the finger portions 31.
  • the two bus bar portions 34 are arranged in parallel with each other at a predetermined interval, and are orthogonal to each other (a state that can be regarded as substantially orthogonal, for example, an angle formed between the finger portion 31 and the bus bar portion 34 is Including the state of 90 ° ⁇ 5 °, the same applies hereinafter), and a plurality of finger portions 31 are arranged.
  • the back electrode 13 preferably includes a transparent conductive layer 40, a plurality of finger portions 41, and a plurality of bus bar portions 44.
  • the finger portions 41 are less affected by light-shielding loss than the finger portions 31 on the light receiving surface side, it is preferable that the number of fingers is set larger and the interval is set narrower (for example, the number: 250, the interval). : 0.5 mm). In other words, the main surface formed with a large number of finger portions is the back surface.
  • a metal film such as a silver (Ag) thin film may be formed on substantially the entire back surface of the photoelectric conversion unit 11 instead of the finger portion 41. .
  • the finger portions 31 and 41 and the bus bar portions 34 and 44 can be formed by a plating method or a sputtering method, but are preferably formed by a screen printing method from the viewpoint of productivity.
  • a conductive paste for example, silver paste
  • the conductive paste include a binder resin such as an epoxy resin, a conductive filler such as silver or carbon dispersed in the binder resin, and a solvent such as butyl carbitol acetate (BCA). That is, the finger parts 31, 41 and the bus bar parts 34, 44 are made of a binder resin in which conductive filler is dispersed.
  • a plurality of solar cells 10 are arranged on the same plane, the first protection member 51 covering the light receiving surface side, the second protection member 52 covering the back surface side, the first protection member 51 and the second protection. It is modularized using a filler 53 provided between the member 52 (see FIG. 3).
  • the plurality of solar cells 10 included in the solar cell module 50 are electrically connected by a wiring member 54 that is a conductive member.
  • one wiring member 54 is connected to the light receiving surface electrode 12 of one adjacent solar cell 10 and is connected to the back surface electrode 13 of the other solar cell 10. That is, the wiring material 54 connects the adjacent solar cells 10 in series.
  • FIGS. 5 and FIG. 5 are enlarged views of a portion B in FIG. 1, and FIG. 6 is an enlarged view of a portion C in FIG. 2, both of which show the vicinity of the bus bar portion 34 in an enlarged manner.
  • the arrangement of the wiring member 54 is indicated by a two-dot chain line.
  • the finger part 31 includes a current collecting finger part 32 and a connecting finger part 33.
  • a separation region R extending in a direction intersecting with the current collecting finger portions 32 and separating the current collecting finger portions 32 is provided (see FIG. 4).
  • the separation region R is a region where the current collecting finger portions 32 are not formed, and the current collecting finger portions 32 are formed on both sides of the separation region R.
  • the bus-bar part 34 along the longitudinal direction and the connection finger part 33 which connects the current collection finger part 32 and the bus-bar part 34 are formed.
  • the current collecting finger part 32 and the connecting finger part 33 are formed on the same straight line orthogonal to the bus bar part 34, for example.
  • a current collecting finger portion 32 is connected to one end of the connecting finger portion 33, and a bus bar portion 34 is connected to the other end. That is, a part of the carrier collected by the current collecting finger part 32 is transmitted to the bus bar part 34 via the connecting finger part 33.
  • the connecting finger portion 33 extends from both ends of the bus bar portion 34 in the width direction and is formed in a range close to the bus bar portion 34.
  • the lengths of the connecting finger portions 33 are the same (including a state that can be regarded as substantially the same, for example, a state in which the difference in length is within 5%, and so on). That is, the pair of connecting finger portions 33a and 33b extending from both ends in the width direction of the bus bar portion 34 have the same length. And it is suitable to position the bus-bar part 34 in the center part between a pair of current collection finger parts 32a and 32b (namely, isolation
  • the connecting finger part 33 is preferably formed within a range of about 2.0 mm from the end of the bus bar part 34. That is, the length Lf of the connecting finger part 32 is preferably 2.0 mm or less.
  • the length Lf is preferably changed according to the width Wb of the bus bar portion 34 and the width Wt of the wiring member 54, but is usually more preferably 0.1 mm to 1.0 mm, and particularly preferably 0.2 mm to 0.7 mm. preferable.
  • ⁇ Lf ⁇ 2 + Wb ⁇ is equal to the distance Ld between the current collecting finger portions 32a and 32b (that is, the width of the separation region R).
  • the wiring member 54 is provided across the end portions of the current collecting finger portions 32a and 32b located on both sides of the separation region R (see FIG. 5). In the present embodiment, the wiring member 54 is provided along the longitudinal direction of the bus bar portion 34 so as to cover the entire bus bar portion 34.
  • the width Wt of the wiring material 54 is larger than the width Wb of the bus bar portion 34.
  • the wiring material 54 protrudes from the width direction both ends of the bus-bar part 34, and is provided on the current collection finger part 32a, 32b. That is, the interval Ld is set smaller than the width Wt.
  • the width Wb of the bus bar portion 34 is preferably 0.1 mm to 2.0 mm, and more preferably 0.5 mm to 1.5 mm.
  • the width Wt of the wiring member 54 is, for example, preferably 0.2 mm to 4.0 mm, and more preferably 1.0 mm to 2.0 mm within a range that satisfies the condition of Wt> Wb.
  • the connecting finger portions 33 a and 33 b are entirely covered with the wiring material 54.
  • the wiring member 54 is arranged so that the center portion in the width direction thereof coincides with the center portion in the width direction of the bus bar portion 34, and the lengths of the end portions of the current collecting finger portions 32 a and 32 b covered with the wiring member 54. It is preferable that Le is equivalent.
  • the length Le is preferably 0.05 mm to 1.0 mm, more preferably 0.1 mm to 0.5 mm, taking into account the shortening of the current path and the mounting error of the wiring member 54.
  • the height h1 of the connecting finger portion 33 is made lower than the height h2 of the end of the current collecting finger portion 32 on the separation region R side (see FIG. 6).
  • the heights h1 and h2 are the lengths along the thickness direction from the surface of the transparent conductive layer 30 to the surface of each finger part.
  • the heights h1 and h2 are average values of values measured by cross-sectional observation using a scanning electron microscope (SEM). Note that the height h1max of the highest portion of the connecting finger portion 33 is also preferably smaller than the height h2.
  • the height (average value) of the current collecting finger portion 32 is higher than the height h1 of the connecting finger portion 33 not only at the end portion on the separation region R side but throughout. And the height (average value) of the current collection finger part 32 is equivalent over the whole.
  • height h2 is demonstrated as height h2 of the current collection finger
  • the wiring member 54 and the connecting finger portion 33 are not in contact with each other or contact is suppressed, while the wiring member 54 and the current collecting finger portion 32 are in contact with each other.
  • Both ends of the wiring material 54 in the width direction are in contact with the ends of the current collecting finger portions 32a and 32b on the separation region R side.
  • the portion near the center away from both ends in the width direction of the wiring member 54 does not contact the finger portion 31.
  • the contact part of the wiring material 54 and the current collection finger part 32 becomes the current collection point P (refer FIG. 5).
  • the current collecting point P is preferably provided in each current collecting finger portion 32. The carriers collected by the current collecting finger unit 32 are transmitted to the wiring member 54 through the current collecting point P and taken out of the solar cell module 50.
  • the height difference Hd (that is, h2 ⁇ h1) between the current collecting finger portion 32 and the connecting finger portion 33 at the portion where the current collecting point P is provided is larger than the surface unevenness height h3 of the current collecting finger portion 32. It is preferable to do. In particular, when the finger portions 31 are formed by the screen printing method, since the unevenness is easily formed on the electrode surface, this configuration is preferable. By making the height difference Hd larger than the surface unevenness height h3, the wiring material 54 and the connecting finger portion 33 are more difficult to contact, and the current collection point P is more reliably separated from the current collection finger portion 32. It can be located at the end on the R side.
  • the surface unevenness height h3 is an average value obtained by a three-dimensional measurement SEM.
  • the height h2 of the current collecting finger part 32 is preferably 15 ⁇ m to 50 ⁇ m, and more preferably 20 ⁇ m to 40 ⁇ m.
  • the height h1 of the connecting finger portion 33 is preferably 5 ⁇ m to 30 ⁇ m, and more preferably 10 ⁇ m to 20 ⁇ m, as long as the condition of height h2> height h1 is satisfied.
  • the height h2 is preferably set to approximately 1 ⁇ 2 of the height h1. By setting such heights h1 and h2, the current collecting point P can be more reliably positioned at the end of the current collecting finger portion 32 on the separation region R side.
  • FIG. 7 shows the relationship between the electrode height (average) and the opening width of the screen plate when the finger portions 31 are formed by the screen printing method.
  • FIG. 7 shows the results of Experiments 1 to 3. Actually, as shown in FIG. 6, there are irregularities in the electrode height. In Experiments 1 to 3, screen printing was performed under the same conditions using the same silver paste. From any of the experimental results, the electrode height was constant above the predetermined screen plate opening width, but the electrode height gradually decreased as the opening width decreased below the predetermined screen plate opening width.
  • the connecting finger part 33 can be formed.
  • the line width of the connecting finger portion 33 is set to about 40 ⁇ m to 50 ⁇ m, and the current collecting finger portion 32 having a height h2 of 20 ⁇ m to 25 ⁇ m is formed.
  • the line width of the current collecting finger portion 32 may be 90 ⁇ m or more.
  • the line width can be changed by the opening width of the screen plate in the screen printing method.
  • the height h1 can be increased by using a silver paste having a high viscosity (* 3: viscosity or the like).
  • * 3 viscosity or the like.
  • the line width of the connecting finger part thinner than the line width of the current collecting finger, the part with the highest electrode height in the surroundings (the part that becomes the current collecting point P) Can be easily formed at the end of the current collecting finger on the separation region R side. This is because the highest part of the electrode height tends to appear depending on the area.
  • the height of the bus bar portion 34 is set to be equal to the height of the current collecting finger portion 32, and the current collecting points are also formed on the bus bar portion 34.
  • the wiring material 54 is connected to the bus bar portion 34 and the current collecting finger portion 32 by using an adhesive 55.
  • the adhesive 55 include a non-conductive adhesive and a conductive adhesive in which a conductive filler such as silver is dispersed in a resin.
  • the wiring material 54 is thermocompression bonded with the film-like adhesive 55 sandwiched between the current collecting finger portions 32 and the like. By this thermocompression bonding, the convex portions on the surface of the current collecting finger portions 32 and the like are pressed by the wiring member 54, and for example, the wiring member 54 and the convex portions come into contact with each other.
  • the adhesive 55 is mainly present in the recesses on the electrode surface, and strongly bonds the wiring material 54 and the electrode. Thus, the current collection point P is formed.
  • the connecting finger portion 33 and the wiring member 54 do not contact each other, and the current collecting point P Is formed by contacting the end of the current collecting finger 32 on the separation region R side and the end of the wiring member 54. Thereby, the carrier is transmitted from the current collecting point P at the end of the current collecting finger portion 32 to the end of the wiring member 54. Therefore, the current path between the light receiving surface electrode 12 and the wiring member 54 is shortened, and resistance loss in the wiring portion can be reduced.
  • the carrier collected by the current collecting finger part 32 is connected to the bus bar part via the connecting finger part 33. 34 and is taken out from the current collecting point of the bus bar portion 34.
  • the contact area between the wiring member 54 and the electrode becomes small, it is possible to reduce the pressure during thermocompression bonding. Thereby, even if it is a case where the thickness of the board
  • FIG. 9 shows a modification of the above embodiment.
  • the same components as those of the solar cell 10 are denoted by the same reference numerals as those in FIG.
  • a separation region R that intersects the current collecting finger portions 32 is provided on the light receiving surface.
  • the separation region R is, for example, orthogonal to the current collection finger portions 32 and separates the current collection finger portions 32, and the current collection finger portions 32 are formed on both sides of the separation region R.
  • the arrangement of the wiring member 54 is indicated by a two-dot chain line.
  • the wiring member 54 covers the separation region R and is provided across the end portions of the current collecting finger portions 32 located on both sides of the separation region R.
  • the distance Ld between the pair of current collecting finger portions 32a and 32b formed on the same straight line on both sides in the width direction across the separation region R is set to be slightly smaller than the width Wt of the wiring member 54. Then, the end of the current collecting finger portion 32 on the separation region R side and the end of the wiring member 54 come into contact with each other to form a current collecting point P. Even in such a configuration, it is possible to obtain the same operations and effects as in the above embodiment.
  • a connection finger part is formed in the isolation

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池10は、光電変換部11の受光面上に形成された集電フィンガー部32を備える。そして、分離領域Rが、集電フィンガー部32と交差する方向に延びて、集電フィンガー部32を分離するように受光面上に設けられ、分離領域Rを隔てた両側に位置する集電フィンガー部32同士が電気的に分離されている。

Description

太陽電池、太陽電池モジュール、及び太陽電池の製造方法
 本発明は、太陽電池、太陽電池モジュール、及び太陽電池の製造方法に関する。
 太陽電池は、光電変換部と、光電変換部の主面上に形成された電極とを備える(例えば、特許文献1参照)。そして、電極には、細線状のフィンガー部が含まれる。なお、特許文献1では、幅の異なるフィンガー部を組み合わせた構造が開示されている。
実用新案登録第3154145号公報
 ところで、太陽電池のモジュール化に際して、複数の太陽電池を電気的に接続する配線材がフィンガー部に取り付けられる。配線材は、例えば、接着剤を用いてフィンガー部上に熱圧着されるが、通常、フィンガー部上には凹凸が存在するため、凸部が配線材に接触して集電ポイントとなる。しかし、この凹凸は不規則に存在するため、集電ポイントがランダムに発生して、電流パスが長くなる場合があり、出力ロスにつながる恐れがある。
 本発明に係る太陽電池は、光電変換部の主面上に形成された集電フィンガー部を備え、分離領域が、集電フィンガー部と交差する方向に延びて、集電フィンガー部を分離するように主面上に設けられ、分離領域を隔てた両側に位置する集電フィンガー部同士が電気的に分離されている。
 本発明に係る太陽電池モジュールは、複数の上記太陽電池と、上記太陽電池同士を接続する配線材とを備え、分離領域を隔てた両側に位置する集電フィンガー部の端部間に跨って、配線材が設けられる。
 本発明に係る太陽電池の製造方法は、スクリーン印刷法により、光電変換部の主面上に、集電フィンガー部を形成する工程を備え、この工程では、集電フィンガー部と交差する方向に延びて集電フィンガー部を分離する分離領域を、主面上に残して集電フィンガー部を形成し、分離領域を隔てた両側に位置する集電フィンガー部同士を電気的に分離する。
 本発明によれば、太陽電池の出力を向上させることができる。
本発明に係る実施形態である太陽電池を受光面側から見た平面図であって、配線材の配置を二点鎖線で示す。 図1のA‐A断面を模式的に示した図である。 本発明に係る実施形態である太陽電池モジュールを模式的に示した断面図である。 図1のB部拡大図である。 図1のB部拡大図であって、配線材の配置を二点鎖線で示す。 図2のC部拡大図である。 本発明に係る実施形態において、電極高さとスクリーン版開口幅との関係を示した図である。 本発明に係る実施形態である太陽電池モジュールにおいて、受光面電極のバスバー部の近傍を模式的に示す断面図である。 本発明に係る実施形態である太陽電池の変形例を示す図である。 本発明に係る実施形態である太陽電池の変形例を示す図であって、配線材の配置を二点鎖線で示す。
 図面を参照して、本発明に係る実施形態である太陽電池10を詳細に説明する。
 本発明は、以下の実施形態に限定されない。また、実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 実施形態では、光電変換部11における各半導体層及び各電極の積層方向を「厚み方向」とする。
 図1及び図2を参照し、太陽電池10の構成について詳説する。また、図3を参照し、複数の太陽電池10を備えた太陽電池モジュール50の構成についても詳説する。
 図1は、太陽電池10を受光面側から見た平面図である。図2は、図1のA‐A断面を示す図であって、フィンガー部31の長手方向に沿って太陽電池10を厚み方向に切断した断面を示す。図3は、太陽電池モジュール50の断面図である。図1では、配線材54の配置を二点鎖線で示している。
 太陽電池10は、太陽光を受光することでキャリア(電子及び正孔)を生成する光電変換部11と、光電変換部11の受光面上に形成された受光面電極12と、光電変換部11の裏面上に形成された裏面電極13とを備える。太陽電池10では、光電変換部11で生成されたキャリアが受光面電極12及び裏面電極13により収集される。詳しくは後述するが、太陽電池10は、モジュール化に際して配線材54が接続される集電フィンガー部32,42を含む。本実施形態では、連結フィンガー部33,43をさらに含み、これらをフィンガー部31,41と総称して説明する。
 ここで、「受光面」とは、太陽電池10の外部から太陽光が主に入射する主面を意味する。例えば、太陽電池10に入射する太陽光のうち50%超過~100%が受光面側から入射する。また、「裏面」とは、受光面と反対側の主面を意味する。なお、太陽電池10の厚み方向に沿った面であって、主面に垂直な面が側面である。
 光電変換部11は、例えば、半導体の基板20と、基板20の受光面側に形成された非晶質半導体層21と、基板20の裏面側に形成された非晶質半導体層22とを有する。非晶質半導体層21,22は、それぞれ基板20の受光面及び裏面の全域(実質的に全域とみなせる状態、例えば、受光面の95%が覆われた状態を含む。以下同様。)を覆うように形成されている。
 基板20の具体例としては、n型単結晶シリコン基板が挙げられる。非晶質半導体層21は、例えば、i型非晶質シリコン層と、p型非晶質シリコン層とが順に形成された層構造である。非晶質半導体層22は、例えば、i型非晶質シリコン層と、n型非晶質シリコン層とが順に形成された層構造である。なお、光電変換部11は、n型単結晶シリコン基板の受光面上にi型非晶質シリコン層と、n型非晶質シリコン層とが順に形成され、n型単結晶シリコン基板の裏面上に、i型非晶質シリコン層と、p型非晶質シリコン層とが順に形成された構造でもよい。光電変換部11は、公知の方法により形成することができる。
 基板20の受光面及び裏面には、テクスチャ構造を形成することが好適である。テクスチャ構造とは、表面反射を抑制し、光電変換部11の光吸収量を増大させる表面凹凸構造である。テクスチャ構造の凹凸高さは、1μm~15μm程度である。非晶質半導体層21,22、及び透明導電層30,40の厚みは、数nm~数十nm程度であるから、透明導電層30,40上にもテクスチャ構造の凹凸が現れる。また、フィンガー部31,41の表面形状にもテクスチャ構造が影響する場合がある。
 受光面電極12は、光電変換部11の受光面上に形成される透明導電層30を含むことが好適である。透明導電層30としては、酸化インジウム(In23)や酸化亜鉛(ZnO)等の金属酸化物に、錫(Sn)やアンチモン(Sb)等をドープした透明導電性酸化物(TCO)を適用できる。透明導電層30は、スパッタリング法を用いて形成することができる。透明導電層30は、非晶質半導体層21上の全域に形成されてもよいが、図1に示す形態では、非晶質半導体層21上において、その端縁部を除く全域に形成されている。
 さらに、受光面電極12は、透明導電層30上に形成された複数(例えば、50本)のフィンガー部31と、フィンガー部31と交差する方向に延びて透明導電層30上に形成された複数(例えば、2本)のバスバー部34とを含むことが好適である。フィンガー部31は、透明導電層30上の広範囲に形成される細線状の電極である。バスバー部34は、フィンガー部31よりも本数の少ない電極であって、フィンガー部31からキャリアを収集する。
 本実施形態では、2本のバスバー部34が所定の間隔をあけて互いに平行に配置され、これに直交(実質的に直交とみなせる状態、例えば、フィンガー部31とバスバー部34とがなす角度が90°±5°の状態を含む。以下同様。)して複数のフィンガー部31が配置される。
 裏面電極13は、受光面電極12と同様に、透明導電層40と、複数のフィンガー部41と、複数のバスバー部44とを含むことが好ましい。但し、フィンガー部41は、受光面側のフィンガー部31に比べて遮光ロスの影響が少ないので、本数をより多く、間隔をより狭く設定することが好適である(例えば、本数:250本、間隔:0.5mm)。換言すると、フィンガー部の数が多く形成された主面が裏面である。なお、裏面側からの受光ロスを問題視しない場合、例えば、フィンガー部41の代わりとして、光電変換部11の裏面の略全面上に、銀(Ag)薄膜等の金属膜を形成してもよい。
 フィンガー部31,41及びバスバー部34,44は、めっき法やスパッタリング法によっても形成できるが、生産性等の観点から、スクリーン印刷法により形成することが好適である。スクリーン印刷法では、透明導電層30上に導電性ペースト(例えば、銀ペースト)を所望のパターンでスクリーン印刷した後、ペースト中に含まれる溶剤を揮発させると共に、フィンガー部31及びバスバー部34が形成される。導電性ペーストとしては、例えば、エポキシ樹脂等のバインダー樹脂、バインダー樹脂中に分散した銀やカーボン等の導電性フィラー、及びブチルカルビトールアセテート(BCA)等の溶剤を含むものである。すなわち、フィンガー部31,41及びバスバー部34,44は、導電性フィラーが分散したバインダー樹脂からなる。
 太陽電池10は、例えば、同一平面上に複数個並べられ、受光面側をカバーする第1保護部材51と、裏面側をカバーする第2保護部材52と、第1保護部材51と第2保護部材52との間に設けられる充填材53とを用いてモジュール化される(図3参照)。太陽電池モジュール50に含まれる複数の太陽電池10は、導電性部材である配線材54により電気的に接続される。1つの配線材54は、例えば、隣接する一方の太陽電池10の受光面電極12に接続され、他方の太陽電池10の裏面電極13に接続される。つまり、配線材54は、隣接する太陽電池10同士を直列に接続する。
 次に、図4~図6を参照し、受光面電極12のバスバー部34の近傍における構成について、さらに詳説する。なお、裏面電極13のバスバー部44の近傍の構成は、受光面電極12の場合と同様であるため、説明を省略する。
 図4及び図5は、図1のB部拡大図、図6は、図2のC部拡大図であって、いずれもバスバー部34の近傍を拡大して示す。図5では、配線材54の配置を二点鎖線で示す。
 本実施形態では、フィンガー部31は、集電フィンガー部32と、連結フィンガー部33とを含んで構成される。受光面上には、集電フィンガー部32と交差する方向に延びて集電フィンガー部32を分離する分離領域Rが設けられている(図4参照)。分離領域Rは、集電フィンガー部32が形成されない領域であって、集電フィンガー部32は、分離領域Rを隔てて、その両側に形成されている。そして、分離領域Rには、その長手方向に沿ったバスバー部34と、集電フィンガー部32とバスバー部34とを繋ぐ連結フィンガー部33とが形成されている。
 集電フィンガー部32と連結フィンガー部33とは、例えば、バスバー部34に直交する同一直線上に形成されている。連結フィンガー部33の一端には、集電フィンガー部32が接続され、他端には、バスバー部34が接続されている。すなわち、集電フィンガー部32で収集されたキャリアの一部は、連結フィンガー部33を介してバスバー部34に伝達される。連結フィンガー部33は、バスバー部34の幅方向の両端から延出して、バスバー部34に近接した範囲に形成される。
 連結フィンガー部33の長さは、いずれも同等(実質的に同等とみなせる状態、例えば、長さの差が5%以内である状態を含む。以下同様。)である。つまり、バスバー部34の幅方向の両端から延出する一対の連結フィンガー部33a,33bは、互いに同等の長さを有する。そして、連結フィンガー部33a,33bを介してバスバー部34に繋がる一対の集電フィンガー部32a,32bの間(すなわち、分離領域R)の中央部に、バスバー部34を位置させることが好適である。
 連結フィンガー部33は、バスバー部34の端から2.0mm程度の範囲内に形成されることが好ましい。つまり、連結フィンガー部32の長さLfは、2.0mm以下が好ましい。長さLfは、バスバー部34の幅Wb、配線材54の幅Wtに応じて変更することが好ましいが、通常、0.1mm~1.0mmがより好ましく、0.2mm~0.7mmが特に好ましい。本実施形態では、{Lf×2+Wb}が、集電フィンガー部32a,32bの間隔Ld(すなわち、分離領域Rの幅)と同等である。
 配線材54は、分離領域Rを隔てた両側に位置する集電フィンガー部32a,32bの端部間に跨って設けられる(図5参照)。本実施形態では、バスバー部34の長手方向に沿って、バスバー部34の全体を覆って配線材54が設けられる。配線材54の幅Wtがバスバー部34の幅Wbよりも大きい。そして、配線材54は、バスバー部34の幅方向両端からはみ出し、集電フィンガー部32a,32b上に設けられる。つまり、間隔Ldは、幅Wtよりも小さく設定される。なお、バスバー部34の幅Wbは、例えば、0.1mm~2.0mmが好ましく、0.5mm~1.5mmがより好ましい。配線材54の幅Wtは、Wt>Wbの条件を満たす範囲において、例えば、0.2mm~4.0mmが好ましく、1.0mm~2.0mmがより好ましい。
 連結フィンガー部33a,33bは、配線材54により全体が覆われている。集電フィンガー部32a,32bは、分離領域R側の端部のみが配線材54により覆われている。配線材54は、その幅方向の中央部と、バスバー部34の幅方向の中央部とが一致するように配置され、配線材54により覆われる集電フィンガー部32a,32bの端部の長さLeが同等であることが好ましい。長さLeは、電流パスの短縮、及び配線材54の取り付け誤差等を考慮して、0.05mm~1.0mmが好ましく、0.1mm~0.5mmがより好ましい。
 連結フィンガー部33の高さh1は、集電フィンガー部32の分離領域R側の端部の高さh2よりも低くする(図6参照)。ここで、高さh1,h2とは、透明導電層30の表面からそれぞれのフィンガー部の表面までの厚み方向に沿った長さである。高さh1,h2は、走査型電子顕微鏡(SEM)を用いた断面観察により計測される値の平均値である。なお、連結フィンガー部33の最も高い部分の高さh1maxも、高さh2よりも小さいことが好適である。本実施形態において、集電フィンガー部32の高さ(平均値)は、分離領域R側の端部だけでなく全体に亘って、連結フィンガー部33の高さh1よりも高い。そして、集電フィンガー部32の高さ(平均値)は、全体に亘って同等である。以下では、高さh2を、集電フィンガー部32の高さh2として説明する。
 高さh1を高さh2よりも低くすることにより、配線材54と連結フィンガー部33とは、接触せず又は接触が抑制されている一方、配線材54と集電フィンガー部32とが接触する。集電フィンガー部32a,32bの分離領域R側の端部には、配線材54の幅方向の両端部がそれぞれ接触する。一方、配線材54の幅方向の両端部から離れた中央部寄りの部分はフィンガー部31と接触しない。そして、配線材54と集電フィンガー部32との接触部が集電ポイントPとなる(図5参照)。集電ポイントPは、各集電フィンガー部32に設けられることが好適である。集電フィンガー部32により収集されたキャリアは、この集電ポイントPを通って配線材54へ伝達され、太陽電池モジュール50の外部に取り出される。
 集電ポイントPが設けられた部分の集電フィンガー部32と連結フィンガー部33との高さの差Hd(すなわち、h2-h1)は、集電フィンガー部32の表面凹凸高さh3よりも大きくすることが好適である。特に、スクリーン印刷法によりフィンガー部31を形成する場合には、電極表面に凹凸が形成され易いため、当該構成とすることが好適である。高さの差Hdを表面凹凸高さh3よりも大きくすることにより、配線材54と連結フィンガー部33とがさらに接触し難くなり、集電ポイントPをより確実に集電フィンガー部32の分離領域R側の端部に位置させることができる。ここで、表面凹凸高さh3は、三次元計測SEMにより求められる平均値である。
 具体的に、集電フィンガー部32の高さh2は、15μm~50μmが好ましく、20μm~40μmがより好ましい。連結フィンガー部33の高さh1は、高さh2>高さh1の条件を満たす範囲において、5μm~30μmが好ましく、10μm~20μmがより好ましい。例えば、高さh2は、高さh1の略1/2に設定することが好適である。このような高さh1,h2とすることによって、より確実に集電ポイントPを集電フィンガー部32の分離領域R側の端部に位置させることができる。
 図7に、スクリーン印刷法でフィンガー部31を形成した場合における電極高さ(平均)とスクリーン版の開口幅の関係を示す。図7には、実験1~3の結果を示している。実際には、図6に示すように電極高さに凹凸が存在している。
 実験1~3では、同じ銀ペーストを用いて、同じ条件でスクリーン印刷を行った。いずれの実験結果からも、所定のスクリーン版開口幅以上で電極高さは一定であるが、所定のスクリーン版開口幅以下になると開口幅の減少に伴い電極高さは次第に低くなった。
 図7に示す実験結果に基づき、連結フィンガー部33の線幅を集電フィンガー部32の線幅よりも細く形成することにより、1回のスクリーン印刷により互いに高さの異なる集電フィンガー部32と連結フィンガー部33とを形成することができる。例えば、高さh1が10μm~15μmの連結フィンガー部33を形成する場合には、連結フィンガー部33の線幅を40μm~50μm程度とし、高さh2が20μm~25μmの集電フィンガー部32を形成する場合には、集電フィンガー部32の線幅を90μm以上とすればよい。線幅は、スクリーン印刷法におけるスクリーン版の開口幅によって変更することができる。なお、粘度の高い銀ペースト(※3:粘度等)を用いること等により、例えば、高さh1をより大きくすることができる。
 また、スクリーン印刷法を用いなくとも、連結フィンガー部の線幅を集電フィンガーの線幅よりも細くすることで、周囲の中で電極高さの最も高い部分(集電ポイントPになる部分)を集電フィンガーの分離領域R側の端部にしやすくできる。電極高さの最も高い部分は面積に応じて出現しやすくなるからである。
 本実施形態では、バスバー部34の高さを、集電フィンガー部32の高さと同等に設定し、バスバー部34上にも集電ポイントを形成している。
 次に、図8を参照しながら、太陽電池10及び太陽電池モジュール50の作用効果について詳説する。
 図8では、太陽電池モジュール50におけるバスバー部34の近傍を拡大して示している。
 太陽電池モジュール50では、例えば、接着剤55を用いて、バスバー部34上及び集電フィンガー部32上に配線材54を接続する。接着剤55としては、例えば、非導電性接着剤や銀等の導電性フィラーが樹脂中に分散された導電性接着剤などである。配線材54は、例えば、集電フィンガー部32等との間にフィルム状の接着剤55を挟んだ状態で熱圧着される。この熱圧着により、配線材54に押圧されて集電フィンガー部32等の表面の凸部が圧縮され、例えば、配線材54と当該凸部とが接触する。接着剤55は、主に電極表面の凹部に存在し、配線材54と電極とを強く接着する。こうして、集電ポイントPが形成される。
 図8に例示する形態では、連結フィンガー部33の高さh1が、集電フィンガー部32の高さh2よりも低いため、連結フィンガー部33と配線材54とが接触せず、集電ポイントPは、集電フィンガー部32の分離領域R側の端部と配線材54の端部とが接触して形成される。これにより、キャリアは、集電フィンガー部32の端部にある集電ポイントPから配線材54の端部へと伝達される。したがって、受光面電極12と配線材54との電流パスが短くなり、配線部における抵抗損失を低減することができる。
 また、使用時の衝撃等により集電フィンガー部32の端部の集電ポイントPが失われた場合等には、集電フィンガー部32で収集されたキャリアが連結フィンガー部33を介してバスバー部34に伝達され、バスバー部34の集電ポイントから取り出される。
 また、太陽電池モジュール50では、配線材54と電極との接触面積が小さくなるため、熱圧着時の圧力を低減することも可能である。これにより、基板20の厚みが薄い場合であっても熱圧着時における太陽電池10の割れを抑制できる。
 なお、裏面電極13についても、受光面電極12と同様の構成とすることによって同様の作用・効果を得ることができる。
 上記実施形態は、発明の目的を損なわない範囲で適宜設計変更できる。
 図9に、上記実施形態の変形例を示す。図9では、太陽電池10と同様の構成要素には、図4と同一符号を使用して重複する説明を省略する。図9に例示する形態では、集電フィンガー部32に交差する分離領域Rが受光面上に設けられる。分離領域Rは、例えば、集電フィンガー部32に直交して、集電フィンガー部32を分離しており、集電フィンガー部32は、分離領域Rを隔てて、その両側に形成されている。図9に例示する形態は、以上の点において、太陽電池10と共通するが、分離領域Rにバスバー部及び連結フィンガー部が形成されず、分離領域Rを隔てた両側に位置する集電フィンガー部32同士が電気的に分離されている点で太陽電池10と相違する。
 図10では、配線材54の配置を二点鎖線で示している。配線材54は、分離領域R上を覆い、分離領域Rを隔てた両側に位置する集電フィンガー部32の端部間に跨って設けられる。分離領域Rを隔てて、その幅方向の両側で同一直線上に形成された一対の集電フィンガー部32a,32bの間隔Ldは、配線材54の幅Wtよりも、やや小さくなるように設定される。そして、集電フィンガー部32の分離領域R側の端部と配線材54の端部とが接触して集電ポイントPが形成される。このような構成においても、上記実施形態と同様の作用・効果を得ることができる。
 また、太陽電池10と共通するが、分離領域Rに連結フィンガー部は形成されるが、バスバー部は形成されない変形例とすることもできる。
 つまり、太陽電池10及びその変形例のいずれにおいても、分離領域Rを隔てた両側に、分離領域Rに交差する複数の集電フィンガー部32が形成されている。このため、集電ポイントに設定される集電フィンガー部32の端部が分離領域Rに沿って並び、分離領域Rの両側に集電ポイントを集中させることができる。したがって、太陽電池10及びその変形例によれば、電流パスを効率良く形成させることができ、出力ロスを低減できる。換言すると、集電ポイントのバラツキをなくして、出力を向上させることができる。
 10 太陽電池、11 光電変換部、12 受光面電極、13 裏面電極、20 基板、21,22 非晶質半導体層、30,40 透明導電層、31,41 フィンガー部、32,42 集電フィンガー部、33,43 連結フィンガー部、34,44 バスバー部、50 太陽電池モジュール、51 第1保護部材、52 第2保護部材、53 充填材、54 配線材、55 接着剤、P 集電ポイント、R 分離領域。

Claims (8)

  1.  光電変換部の主面上に形成された集電フィンガー部を、備え、
     分離領域が、前記集電フィンガー部と交差する方向に延びて、前記集電フィンガー部を分離するように前記主面上に設けられ、
     前記分離領域を隔てた両側に位置する前記集電フィンガー部同士が電気的に分離されている太陽電池。
  2.  請求項1に記載の太陽電池であって、
     前記分離領域には、前記集電フィンガー部同士を繋ぐ連結フィンガー部が形成され、
     前記連結フィンガー部の高さは、前記集電フィンガー部の前記分離領域側の端部の高さよりも低い太陽電池。
  3.  請求項2に記載の太陽電池であって、
     前記分離領域には、前記連結フィンガー部と交差する方向に延びたバスバー部が形成され、
     前記バスバー部の高さは、前記集電フィンガー部の前記分離領域側の端部の高さと同じである太陽電池。
  4.  請求項2又は3に記載の太陽電池であって、
     前記集電フィンガー部の前記分離領域側の端部と前記連結フィンガー部との高さの差は、前記集電フィンガー部の表面凹凸高さよりも大きい太陽電池。
  5.  請求項2~4のいずれか1項に記載の太陽電池であって、
     前記連結フィンガー部の線幅は、前記集電フィンガー部の前記分離領域側の端部の線幅よりも細い太陽電池。
  6.  請求項1~5のいずれか1項に記載の複数の太陽電池と、
     前記太陽電池同士を接続する配線材と、
     を備え、
     前記分離領域を隔てた両側に位置する前記集電フィンガー部の端部間に跨って、前記配線材が設けられた太陽電池モジュール。
  7.  スクリーン印刷法により、光電変換部の主面上に、集電フィンガー部を形成する工程を備え、
     前記工程では、
     前記集電フィンガー部と交差する方向に延びて前記集電フィンガー部を分離する分離領域を、前記主面上に残して前記集電フィンガー部を形成し、
     前記分離領域を隔てた両側に位置する前記集電フィンガー部同士を電気的に分離する太陽電池の製造方法。
  8.  請求項7に記載の太陽電池の製造方法であって、
     前記工程では、
     前記分離領域上に、前記集電フィンガー部同士を繋ぐ連結フィンガー部を形成し、
     前記連結フィンガー部の線幅を、前記集電フィンガー部の線幅よりも細く形成することにより、前記連結フィンガー部の高さを前記集電フィンガー部の前記分離領域側の端部の高さよりも低くする太陽電池の製造方法。
PCT/JP2011/072312 2011-09-29 2011-09-29 太陽電池、太陽電池モジュール、及び太陽電池の製造方法 WO2013046384A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/072312 WO2013046384A1 (ja) 2011-09-29 2011-09-29 太陽電池、太陽電池モジュール、及び太陽電池の製造方法
JP2013535732A JP5903600B2 (ja) 2011-09-29 2011-09-29 太陽電池モジュール及びこれの製造方法
US14/218,185 US20140202516A1 (en) 2011-09-29 2014-03-18 Solar cell, solar cell module, and method for manufacturing solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072312 WO2013046384A1 (ja) 2011-09-29 2011-09-29 太陽電池、太陽電池モジュール、及び太陽電池の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/218,185 Continuation US20140202516A1 (en) 2011-09-29 2014-03-18 Solar cell, solar cell module, and method for manufacturing solar cell

Publications (1)

Publication Number Publication Date
WO2013046384A1 true WO2013046384A1 (ja) 2013-04-04

Family

ID=47994492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072312 WO2013046384A1 (ja) 2011-09-29 2011-09-29 太陽電池、太陽電池モジュール、及び太陽電池の製造方法

Country Status (3)

Country Link
US (1) US20140202516A1 (ja)
JP (1) JP5903600B2 (ja)
WO (1) WO2013046384A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160254394A1 (en) * 2013-12-04 2016-09-01 Utilight Ltd. Solar Cell Bus Bars
JP2018152620A (ja) * 2013-06-04 2018-09-27 パナソニックIpマネジメント株式会社 太陽電池セル
JP2021168405A (ja) * 2014-09-30 2021-10-21 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 太陽電池及びそれを含む太陽電池パネル
US11769842B2 (en) 2014-09-30 2023-09-26 Shangrao Jinko Solar Technology Development Co., Ltd Solar cell and solar cell panel including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015004065U1 (de) * 2015-06-09 2015-07-30 Solarworld Innovations Gmbh Solarzellenanordnung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068699A (ja) * 1999-08-30 2001-03-16 Kyocera Corp 太陽電池
JP2005340020A (ja) * 2004-05-27 2005-12-08 Hitachi Displays Ltd 有機エレクトロルミネッセンス表示装置およびその製造方法
JP2008159895A (ja) * 2006-12-25 2008-07-10 Sanyo Electric Co Ltd 太陽電池セル及び太陽電池モジュール
JP2008288333A (ja) * 2007-05-16 2008-11-27 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
JP2008294366A (ja) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010118706A (ja) * 2007-03-19 2010-05-27 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010118705A (ja) * 2010-02-26 2010-05-27 Sanyo Electric Co Ltd 太陽電池モジュール

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279334B2 (ja) * 2008-04-28 2013-09-04 三洋電機株式会社 太陽電池モジュール
US8704086B2 (en) * 2008-11-07 2014-04-22 Solarworld Innovations Gmbh Solar cell with structured gridline endpoints vertices
JP5602498B2 (ja) * 2009-07-30 2014-10-08 三洋電機株式会社 太陽電池モジュール
TWM393802U (en) * 2010-07-28 2010-12-01 Neo Solar Power Corp Solar cell and electrode structure therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068699A (ja) * 1999-08-30 2001-03-16 Kyocera Corp 太陽電池
JP2005340020A (ja) * 2004-05-27 2005-12-08 Hitachi Displays Ltd 有機エレクトロルミネッセンス表示装置およびその製造方法
JP2008159895A (ja) * 2006-12-25 2008-07-10 Sanyo Electric Co Ltd 太陽電池セル及び太陽電池モジュール
JP2010118706A (ja) * 2007-03-19 2010-05-27 Sanyo Electric Co Ltd 太陽電池モジュール
JP2008288333A (ja) * 2007-05-16 2008-11-27 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
JP2008294366A (ja) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010118705A (ja) * 2010-02-26 2010-05-27 Sanyo Electric Co Ltd 太陽電池モジュール

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152620A (ja) * 2013-06-04 2018-09-27 パナソニックIpマネジメント株式会社 太陽電池セル
US20160254394A1 (en) * 2013-12-04 2016-09-01 Utilight Ltd. Solar Cell Bus Bars
US9960286B2 (en) * 2013-12-04 2018-05-01 Utilight Ltd. Solar cell bus bars
JP2021168405A (ja) * 2014-09-30 2021-10-21 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 太陽電池及びそれを含む太陽電池パネル
US11769842B2 (en) 2014-09-30 2023-09-26 Shangrao Jinko Solar Technology Development Co., Ltd Solar cell and solar cell panel including the same

Also Published As

Publication number Publication date
JP5903600B2 (ja) 2016-04-13
US20140202516A1 (en) 2014-07-24
JPWO2013046384A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
US10056504B2 (en) Photovoltaic module
US10181543B2 (en) Solar cell module having a conductive pattern part
WO2012102188A1 (ja) 太陽電池及び太陽電池モジュール
WO2012043516A1 (ja) 太陽電池モジュール及びその製造方法
US8969708B2 (en) Solar cell module
JP5903600B2 (ja) 太陽電池モジュール及びこれの製造方法
JP5084133B2 (ja) 光起電力素子、光起電力モジュールおよび光起電力モジュールの製造方法
WO2013014972A1 (ja) 光起電力モジュール
US20150083187A1 (en) Solar cell module and solar cell module manufacturing method
WO2013114555A1 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
US9640677B2 (en) Solar cell, solar cell module
US10700224B2 (en) Solar cell module manufacturing method
JP6414550B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
JP6590165B2 (ja) 太陽電池セルの製造方法
WO2013014810A1 (ja) 太陽電池モジュール及びその製造方法
TWI496303B (zh) 太陽能電池及其製造方法與太陽能電池模組
JP5906422B2 (ja) 太陽電池及び太陽電池モジュール
JP6418558B2 (ja) 太陽電池
TWI513019B (zh) 太陽能電池與太陽能電池模組
JP6681607B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
JP6429032B2 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
WO2013161069A1 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
WO2013140551A1 (ja) 太陽電池及び太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873034

Country of ref document: EP

Kind code of ref document: A1