WO2013045231A1 - Dispositif de detection et de localisation de mobiles equipes de radars et procede associe - Google Patents

Dispositif de detection et de localisation de mobiles equipes de radars et procede associe Download PDF

Info

Publication number
WO2013045231A1
WO2013045231A1 PCT/EP2012/067232 EP2012067232W WO2013045231A1 WO 2013045231 A1 WO2013045231 A1 WO 2013045231A1 EP 2012067232 W EP2012067232 W EP 2012067232W WO 2013045231 A1 WO2013045231 A1 WO 2013045231A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
target
antenna
scanning
function
Prior art date
Application number
PCT/EP2012/067232
Other languages
English (en)
Inventor
Jean-Michel Quellec
Pascal Cornic
Daniel Jean Louis JAHAN
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to US14/348,025 priority Critical patent/US20150123839A1/en
Priority to EP12753737.1A priority patent/EP2761325A1/fr
Publication of WO2013045231A1 publication Critical patent/WO2013045231A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/58Rotating or oscillating beam systems using continuous analysis of received signal for determining direction in the plane of rotation or oscillation or for determining deviation from a predetermined direction in such a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements

Definitions

  • the present invention relates in particular to the field of maritime surveillance and more particularly to a device for detecting and locating mobiles equipped with at least one active radar.
  • Maritime surveillance can be conducted from different platforms, such as coast stations, ships or aircraft. These surveillance platforms are always equipped with at least one radar and sometimes radar detectors.
  • the radar can detect and locate other platforms, naval or airborne, called targets.
  • the goal is to search for undesirable or offending targets in the investigation area.
  • the radar detects and locates the targets in its coverage area, by their illumination and the use of backscattered power, or echoes, by the latter.
  • the radar detector detects and locates the targets in the environment, indirectly by the emissions of their radars, it is obviously for this reason that they are active.
  • the radar antenna performs a 360 ° sweep and, during the passage of the radar antenna towards the target, the radar measures the distance between it and this by measuring the delay time between transmission and reception of the radar signal.
  • the radar also measures the bearing of the target by measuring the bearing of the antenna for which the backscattered signal is maximum.
  • the target is thus located in distance and azimuth, with respect to the position of the platform, as soon as the antenna passes over the target. With each passing of the radar antenna on the target, the position of the latter is refreshed. This refreshment makes it possible to follow the evolutions of the target and allows its tracking.
  • it is not always necessary for the radar to transmit continuously especially if the targets are not very mobile or do not change course, which is the case for ships.
  • the fact of transmitting continuously can enable the radar detectors of the other platforms, to detect and locate the presence of the platform. form of surveillance equipped with these radars, and to identify it. The excessive use of radar is therefore an indiscretion.
  • the surveillance platform When the surveillance platform is equipped with a radar detector, the latter generally includes a set of antennas that can instantly cover the 360 ° surveillance area in the field. This set of antennas can be formed, for example, by 6 antennas each pointed every 60 ° in the field.
  • the installation also includes a box having the functions of reception, analysis, tracking and identification of radar transmissions received over a wide frequency range, for example between 0.5 and 18 GHz.
  • This type of sensor is characterized by instantaneous reception on both 360 ° of deposit and on a very wide frequency band. The consequence is a weak antenna gain, usually not exceeding a few dBi.
  • This low antenna gain combined with non-optimal signal detection conditions, makes the interception of radars with low radiated peak power (so-called Low Probability of Intercept (LPI) radars) impossible to Operational interest distances. This is even more true for a maritime surveillance aircraft that has horizons related to its flight altitudes.
  • LPI Low Probability of Intercept
  • an electronic intelligence measurement system comprising a radar and a passive receiver.
  • the invention aims to correct all or part of the aforementioned problems by proposing a device for increasing the antenna gain of the radar detectors.
  • the subject of the invention is a device for detecting and locating mobiles equipped with at least one radar, said device comprising a radar function comprising an antenna arranged on a rotating structure and a radar emission detector function comprising an antenna part, the device being characterized in that the antenna part of said radar emission detector function is placed on said rotating structure.
  • the antenna part of the radar emission detector function, of the device is formed of at least one antenna array delivering as many signals in parallel as there are antennas, all of these signals allowing goniometry on a single radar pulse (monopulse processing).
  • the antenna part of the radar emission detector function is an interferometry network.
  • the device comprises at least one transmission system between its fixed part and its rotating part and a signal concentration system able to transpose the signals received by the different antennas on a limited number of channels so as to be transmitted. through the transmission system.
  • the device comprises a control module able to rotate the rotating structure so as to perform an azimuthal scanning, by the group of antennas of the radar emission detector function, over at least one turn, in order to to locate, in an approximate manner, at least one target radar present in the scanning area of the device.
  • control module of the device, is able to orient the antenna group of the radar emission detector function in the direction of a target radar identified after the azimuthal scanning, so as to determine the precise azimuth of said target radar.
  • control module of the device is able to orient the antenna part of the radar emission detector function in the direction of a target radar identified after the azimuth scanning, so as to determine the precise scanning law of said target radar.
  • the device comprises a control module able to rotate the rotating structure so as to perform an azimuthal scanning, by the radar antenna part of the radar function, over at least one turn, in order to locate, so as to at least one platform equipped with at least one target radar present in the scanning zone of the device and then orienting the antenna portion of the radar emission detector function in the direction of a target radar identified in order to determine the precise azimuth of said target radar as well as its scanning law.
  • the device comprises a display system comprising a graphics module able to display a graphic representation of each target radar by a half-line having, for origin, the position of the device for detecting and locating the mobile in the representation. graph, and making an angle, relative to the north direction, equal to the measured azimuth.
  • the graphic module makes it possible to represent each target radar by a half-line of color or of a different nature.
  • the display system of the device is arranged to display the graphical representations of the target radars identified in superposition with a map obtained during the use of the radar part.
  • the main advantages of the invention are to allow an increase in the antenna gain of the radar detectors and an integrated visualization, based on the superposition of the contacts coming from the radar detection and those coming from the radar emission detector.
  • the invention also makes it possible to reduce the radar transmission time of mobile detection and location devices and thus greater discretion.
  • FIG. 1 shows a block diagram of an exemplary embodiment of the device according to the invention.
  • FIG. 2 shows an example of display, on a display device, the results of a search using the device according to the invention.
  • FIG. 3 represents an exemplary display, on a display device, of the results of a search using equipment of the radar and radar detector functions of the device according to the invention.
  • the present invention relates to a device for detecting and locating mobiles equipped with at least one radar.
  • This device can, for example, be on the ground or on board a mobile platform, such as an aircraft or a ship.
  • FIG. 1 shows an exemplary embodiment of a device for detecting and locating mobiles according to the invention.
  • This device integrates two functions, a radar function 12 and an MRE function 13.
  • the antenna 2, of the radar function 12 is mounted on a rotating structure 5 of the device.
  • an antenna function can be performed from a linear combination of signals from a set of elementary antennas or radiating elements, so-called beam formation. This can be more or less complicated, fixed or electronically adjustable.
  • the device according to the invention comprises at least a pilot 0, a radar transmitter 1, an antenna system 2, 3, a radar receiver 7, an MRE receiver 8, a radar processing unit 9, an MRE processing unit 10 and a display system 1 1.
  • the antenna part MRE 3 is mounted on the rotating structure 5 of the device.
  • placing the antennal part MRE 3 in the space left free for the evolution of the rotating structure 5 of the radar antenna and the large dimensions of these radar antennas offer the possibility of using MRE antennas. larger than the one currently used today.
  • the antenna part MRE 3 is placed on the same side as the radar antenna 2, that is to say with radiation in the same direction or in substantially similar directions. So that their radiation does not interfere, the antenna parts 2, 3 are placed in a substantially vertical plane, one above the other, or one next to the other. In another embodiment, the antenna portion MRE 3 is placed on the opposite side to the radiating face of the radar antenna 2, so that their radiation is in substantially opposite directions.
  • the composition of the antennal part MRE 3 depends on the frequency bands corresponding to the radar of the desired targets and the congestion constraints.
  • the invention makes it possible to use the volume on the carrier, usually dedicated to the rotating radar to also perform an MRE function.
  • it makes it possible to take advantage of the structure of the rotating antenna of the device to add appropriately placed MRE antennas.
  • the implantation of the antennal part MRE 3 on the rotating structure of the device avoids the multiplication of antennas in the field and makes it possible to house relatively large MRE antennas with respect to the wavelengths used. This has the advantage of conferring on the antenna part MRE 3 much more gain thus improving the sensitivity of the device and therefore the detectability of low power signals peak radius born.
  • the invention also allows easier integration on the carrier platform of the MRE device since the antenna part MRE 3 is installed in the scanning volume of the radar antenna 2.
  • the antenna parts 2 and 3 can respectively use several antennas so as to perform goniometries on a single pulse.
  • the antenna part 3 of the MRE function 13 is formed of at least one antenna array delivering as many signals in parallel as there are antennas.
  • This network of several antennas by delivering a set of signals carrying the information and the precision sought on a single pulse, allows an instantaneous goniometry on a single radar pulse also called monopulse processing.
  • This set of antennas, or array of direction finding antennas can give rise to treatments of a power distribution or amplitude in the case of an amplitude direction finding, a phase distribution in the case an interferometry treatment, or an arrival time distribution (or TDOA, for Time Difference Of Arrival).
  • the MRE function uses an antenna part formed of two antenna panels, one said to be “right” and the other to be “left”. These two panels, delivering two signals in parallel, allow a simple and very precise direction finding on a single pulse.
  • an antenna panel is formed of networks of planar radiating elements having a beam formation synthesizing the equivalent of a single antenna.
  • the antenna part 3 of the MRE function 13 is an interferometry network.
  • a difficulty in the field of radar detection is the broad frequency band to be covered.
  • One solution may be to cut this frequency band into different subbands. This can lead to hardware resources dedicated to each of the subbands. For example, in the case of panel antennas, a specific panel may be dedicated to each subband.
  • the latter comprises a transmission system between these two parts.
  • This transmission system may, for example, be a rotary joint for high frequency signals or a rotary commutator for low frequency signals.
  • the signals of the different channels of the antennal part MRE 3 as well as possibly the signals coming from the radar antenna 2, when it is out of transmission, are separated and sent to a signal concentration system 4.
  • This signal concentration system 4 consists in passing the signals received on the different antenna parts 2, 3 on a limited number of channels compatible with the transmission system 6.
  • the signals of the different channels of each MRE antenna 3 are transposed to a different frequency channel by mixing the signals with different oscillators whose frequencies are stepped so as to be able to pass the concentrated signal containing the signals. received, on a single channel of the transmission system 6.
  • bandpass filters are used to separate the signals and to retrieve the signals from the different antennas.
  • the transmission system 6 is a digital optical rotary joint, for example, at high speed.
  • the signals received on the different antennas are transposed into baseband and digitally coded by the concentration system 4.
  • the signals at the output of the transmission system 6 are then filtered in order to recover the signals coming from each of the antennas, to be processed respectively by a radar receiver 7 and a radar processing module 9 and an MRE receiver 8 and an MRE processing module. 10.
  • the bandwidths of the antennas of the antenna part MRE 3 are not wide so as to be able to detect all the possible radars, but are chosen narrower and in relation to the range of frequencies of the radar sought.
  • the selected frequency bands may, for example, be the X and S bands.
  • the detection and location of mobiles equipped with at least one radar is mainly in two stages.
  • the control module of the device rotates its antenna system 2, 3, on to at least one turn, so as to locate approximately the target radars then in a second time the device precisely determines the azimuth of the detected targets.
  • this rotation can be limited to one revolution.
  • the location of the target radars is performed only by the function MRE 13, the radar function 12 is not active.
  • the control module of the device rotates the rotating structure 5 of the device so as to perform an azimuthal scanning of the area to be monitored by the antenna part MRE 3.
  • the reception modules 8 and MRE processing 10 identify the different radar emissions present in the scan area of the device according to conventional techniques of MRE functions.
  • the high gain of the MRE antennas 3 enables the whole of the MRE function 13 to acquire the radar emissions both on their main lobe and on their diffuse lobes.
  • Reception on the main lobe of the target radar makes it possible to improve the knowledge of the basic parameters of the target radar detected, for example its pulse width, its pulse repetition period, its transmission frequency.
  • the reception on several main lobes in a row makes it possible to determine the rotation period of the antenna of the target radar and its scanning law.
  • the target radars are located approximately in azimuth and the scanning law of their antenna is known.
  • the MRE device will refine the azimuthal location of the various detected target radars.
  • control module of the detection and location device directs the rotating structure 5 so as to point temporarily the antennal portion MRE 3 in the direction of a target radar to be located at the presumed passage time of the main lobe of the antenna, said target radar, in the direction of the detection device.
  • the MRE device selects the antenna part of the sub-band corresponding to the transmission frequency of the target radar.
  • the MRE processing module 10 calculates the precise azimuth of the emission the target radar using a monopulse treatment, such as for example and in a nonlimiting manner, by deviation or by interferometry). This calculation is performed from the signals received from the different antennas constituting said panel, and by using a reception filter and an integrator corresponding to the characteristics of the target radar previously established.
  • the target radar emission being localized in azimuth, the carrier platform of this target radar is also located.
  • the azimuth of the target radar can be used to establish a graphical representation on the display device 1 1, such as a screen.
  • the graphical representations of the target radars can be superimposed on a geographical map of the area scanned by the device or a map of the area to be monitored.
  • the display system 1 1 has a graphic module capable of displaying a graphic representation of each target radar represented by a half-line 21 a, 21 b originating from the position of the device for detecting and locating mobiles on the geographical map and making an angle, relative to the north direction, equal to the precise azimuth of the measured target radar.
  • the graphics module of the display system 11 is arranged to display each localized target radar with a different color graphic representation.
  • the display of the half-lines representing the different target radars is of a different nature, for example, a single line or double, a solid line, dashed, dashed or any other equivalent form.
  • the operator can deselect the display of some target radars.
  • the display device 11 may have means for controlling the display of the graphical representations of the detected target radars. The operator can thus restrict the display to only detected target radars of interest.
  • the display system 1 1 may also include a memory zone capable of storing the position of the target radar measured during previous searches.
  • the display system 1 1 can thus display the half lines corresponding to the position of a target radar at different times and thus track the displacement of the carrier platform of the target radar.
  • each half-line 21 a, 21 b or 22 a, 22 b representing the same radar at different times, has a different origin 20a, 20b.
  • the accuracy of this triangulation operation is related to the angular displacement of the carrier of the detection and location device relative to the target radar; the bigger the scroll, the better the accuracy. Consequently, we will seek a displacement of the carrier of the detection device and fast location relative to the target, and non-confused and rather transversal routes.
  • the map, displayed on the display device be referenced with respect to a fixed landmark.
  • this triangulation operation can make it possible to dispense with the step of determining the target radar precise azimuth.
  • a location of the platforms carrying the target radar can be performed by the radar function 12 of the detection and location device and the precise azimuth of each radar, localized carrier platforms, can be determined by the MRE part 13 of the device.
  • the operating principle consists of initiating a tactical situation by the radar part 12 of the device and then maintaining this passive tactical situation by the MRE part 13 of the device.
  • an azimuthal scanning of the area to be monitored is performed by the radar portion 12 of the detection and location device.
  • the control module of the device rotates the rotating structure 5 over at least one turn so that the rotating antenna 2 scans the area to be monitored in order to locate the target platforms present on the scanning zone. .
  • the rotation is limited to one revolution in order to limit the transmission time of the radar antenna 2 and thus to minimize the detectability of the detection and localization device.
  • the control module of the radar detection and location device rotates the rotating structure 5 so as to temporarily orient the antenna group MRE 3 in the direction of a target radar detected during radar scanning.
  • the MRE part 13 will then measure the different parameters of the target radar, such as, for example, the values of pulse width, pulse repetition period and pulse frequency of the radar transmission. This part will also refine the measurement of the azimuth of this target radar.
  • FIG. 3 shows an example of display of a radar screen in which the graphical representations of target radars analyzed by the MRE part appear in superposition with the radar map of the targets detected during the use phase of the radar part. 12.
  • the visualization of the target radars can be superimposed with the map of the radar tracks extrapolated from the end of the radar emission.
  • the operator can thus see, without transmitting, whether the positions obtained by MRE triangulation diverge or not with respect to the extrapolated radar position of the target.
  • the operator can thus decide to redo or not a temporary radar emission to refresh the positions of the targets obtained by this means.

Abstract

La présente invention concerne un dispositif de détection et de localisation de mobiles équipés d'au moins un radar. Le dispositif comprend une fonction radar (12) comportant une antenne (2) disposée sur une structure tournante (5) et une fonction détecteur d'émissions radar (13) comportant une partie antennaire, et est caractérisé en ce que la partie antennaire (3) de la fonction détecteur d'émissions radar (13) est placée sur ladite structure tournante (5).

Description

DISPOSITIF DE DETECTION ET DE LOCALISATION DE MOBILES EQUIPES DE RADARS ET PROCEDE ASSOCIE
La présente invention concerne notamment le domaine de la surveillance maritime et plus particulièrement un dispositif de détection et de localisation de mobiles équipés d'au moins un radar actif.
La surveillance maritime peut être effectuée à partir de différentes plates- formes, comme par exemple, des stations côtières, des navires ou des aéronefs. Ces plates-formes de surveillance sont toujours équipées d'au moins un radar et parfois de détecteurs de radars.
Ces capteurs permettent de détecter et de localiser les autres plates-formes, navales ou aéroportées, appelées cibles. Le but est de rechercher la présence de cibles indésirables ou en infraction sur la zone d'investigation. Le radar détecte et localise les cibles dans sa zone de couverture, par leur illumination et l'utilisation de la puissance rétrodiffusée, ou échos, par ces dernières. Le détecteur de radars, quant à lui, détecte et localise les cibles dans l'environnement, indirectement par les émissions de leurs radars, il faut évidemment pour cela que ces derniers soient actifs.
De manière générale, pour couvrir le domaine angulaire d'intérêt, l'antenne du radar effectue un balayage en gisement sur 360° et, lors du passage de l'antenne radar en direction de la cible, le radar mesure la distance entre lui et celle-ci par mesure du temps de retard entre l'émission et la réception du signal radar. Le radar mesure également le gisement de la cible par mesure du gisement de l'antenne pour lequel le signal rétrodiffusé est maximal.
La cible est ainsi localisée en distance et azimut, par rapport à la position de la plate-forme, dès le passage de l'antenne sur la cible. À chaque passage de l'antenne radar sur la cible, la position de celle-ci est rafraîchie. Ce rafraîchissement permet de suivre les évolutions de la cible et permet son pistage. Cependant, le fait, pour le radar, d'émettre de manière continue n'est pas toujours nécessaire, surtout si les cibles sont assez peu mobiles ou ne changent pas de trajectoire, ce qui est le cas des navires. Par ailleurs, le fait d'émettre de manière continue peut permettre aux détecteurs de radars des autres plates-formes, de détecter et localiser la présence de la plate- forme de surveillance équipée de ces radars, et de l'identifier. L'utilisation excessive du radar est donc une indiscrétion.
Lorsque la plate-forme de surveillance est équipée d'un détecteur de radars, cette dernière comprend, en général, un ensemble d'antennes permettant de couvrir instantanément le domaine de surveillance de 360° en gisement. Cet ensemble d'antennes peut être formé, par exemple, par 6 antennes pointées chacune tous les 60° en gisement. L'installation comprend également un coffret ayant les fonctions de réception, d'analyse, de pistage et d'identification des émissions radar reçues sur une large gamme de fréquence, comme par exemple, entre 0,5 et 18 GHz.
Ce type de capteur est caractérisé par une réception instantanée sur à la fois 360° de gisement et sur une très large bande de fréquence. La conséquence est un gain d'antenne faible, n'excédant généralement pas quelques dBi. Ce gain d'antenne faible, associé à des conditions de détection du signal non optimales, rend l'interception des radars à faible puissance crête rayonnée (radars dits à faible probabilité d'interception ou LPI pour « Low Probability of Intercept ») impossible à des distances d'intérêt opérationnel. Cela est encore plus vrai pour un aéronef de surveillance maritime qui possède des horizons en rapport avec ses altitudes de vol. Ainsi la détection des radars, dits à faible probabilité d'interception, n'est pas aisée sur le passage de leur lobe principal et l'est encore moins sur leur lobe diffus, ce qui limite considérablement la possibilité de les détecter.
Un autre problème avec ce type d'équipements provient de la visualisation des résultats sur les écrans du radar et du détecteur de radars. En effet, quand la plate-forme est équipée à la fois d'un radar et d'un détecteur de radar, le radar utilise une représentation superposable à une carte géographique de la zone, et le détecteur de radars utilise une représentation, généralement en coordonnées cartésiennes azimut-fréquence. Ces deux représentations ne permettent pas un mode de présentation global car elles ne se superposent pas.
Il est également connu dans l'art antérieur, comme par exemple par la demande de brevet japonaise publiée sous le numéro JP 2001 264 420, un système de mesures de renseignement électronique (ou ESM) comprenant un radar et un récepteur passif. L'invention vise à corriger tout ou partie des problèmes précités en proposant un dispositif permettant d'augmenter le gain des antennes des détecteurs de radars.
A cet effet, l'invention a pour objet un dispositif de détection et de localisation de mobiles équipés d'au moins un radar, ledit dispositif comprenant une fonction radar comportant une antenne disposée sur une structure tournante et une fonction détecteur d'émission radar comportant une partie antennaire, le dispositif étant caractérisé en ce que la partie antennaire de ladite fonction détecteur d'émissions radar est placée sur ladite structure tournante.
Selon une particularité de l'invention, la partie antennaire de la fonction détecteur d'émissions radar, du dispositif, est formée d'au moins un réseau d'antennes délivrant autant de signaux en parallèle qu'il y a d'antennes, l'ensemble de ces signaux permettant la goniométrie sur une seule impulsion radar (traitement monopulse).
Selon une autre particularité, la partie antennaire de la fonction détecteur d'émissions radar est un réseau d'interférométrie.
Selon une autre particularité, le dispositif comprend au moins un système de transmission entre sa partie fixe et sa partie tournante et un système de concentration des signaux apte à transposer les signaux reçus par les différentes antennes sur un nombre limité de voies de façon à être transmis à travers le système de transmission.
Selon une autre particularité, le dispositif comporte un module de commande apte à mettre en rotation la structure tournante de façon à effectuer un balayage azimutal, par le groupe d'antennes de la fonction détecteur d'émissions radar, sur au moins un tour, afin de localiser, de façon approximative, au moins un radar cible présent dans la zone de balayage du dispositif.
Selon une autre particularité, le module de commande, du dispositif, est apte à orienter le groupe d'antenne de la fonction détecteur d'émission radar dans la direction d'un radar cible repéré suite au balayage azimutal, de manière à déterminer l'azimut précis dudit radar cible.
Selon une autre particularité, le module de commande du dispositif est apte à orienter la partie antennaire de la fonction détecteur d'émission radar dans la direction d'un radar cible repéré suite au balayage azimutal, de manière à déterminer la loi de balayage précise dudit radar cible.
Selon une autre particularité, le dispositif comporte un module de commande apte à mettre en rotation la structure tournante de façon à effectuer un balayage azimutal, par la partie antennaire radar de la fonction radar, sur au moins un tour, afin de localiser, de façon approximative, au moins une plateforme équipée d'au moins un radar cible présent dans la zone de balayage du dispositif puis à orienter la partie antennaire de la fonction détecteur d'émissions radar dans la direction d'un radar cible repéré de manière à déterminer l'azimut précis dudit radar cible ainsi que sa loi de balayage.
Selon une autre particularité, le dispositif comprend un système de visualisation comportant un module graphique apte à afficher une représentation graphique de chaque radar cible par une demi-droite ayant, pour origine, la position du dispositif de détection et de localisation de mobile dans la représentation graphique, et faisant un angle, par rapport à la direction nord, égal à l'azimut mesuré.
Selon une autre particularité, le module graphique permet de représenter chaque radar cible par une demi-droite de couleur ou de nature différente. Selon une autre particularité, le système de visualisation du dispositif est arrangé pour afficher les représentations graphiques des radars cible identifiés en superposition avec une carte obtenue lors de l'emploi de la partie radar.
L'invention a notamment pour principaux avantages de permettre une d'augmentation du gain des antennes des détecteurs de radars et une visualisation intégrée, basée sur la superposition des contacts issus de la détection radar et de ceux issus du détecteur d'émission radar. L'invention permet également de réduire le temps d'émission radar des dispositifs de détection et de localisation de mobile et donc une plus grande discrétion.
D'autres particularités et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après, donnée à titre illustratif et non limitatif, et faite en référence aux dessins annexés, dans lesquels : - La figure 1 représente un schéma fonctionnel d'un exemple de réalisation du dispositif selon l'invention.
- La figure 2 représente un exemple d'affichage, sur un dispositif de visualisation, des résultats d'une recherche à l'aide du dispositif suivant l'invention.
- La figure 3 représente un exemple d'affichage, sur un dispositif de visualisation, des résultats d'une recherche à l'aide des équipements des fonctions radar et détecteur de radars du dispositif selon l'invention.
La présente invention concerne un dispositif de détection et de localisation de mobiles équipés d'au moins un radar. Ce dispositif peut, par exemple, être au sol ou embarqué sur une plate-forme mobile, comme par exemple, un aéronef ou un navire.
Il convient de noter que par la suite le détecteur de radars sera désigné par le sigle MRE pour « Mesure de Recherche Électronique » (ou, en anglais, ESM pour « Electronic Support Measure »). La figure 1 présente un exemple de réalisation d'un dispositif de détection et de localisation de mobiles selon l'invention. Ce dispositif intègre deux fonctions, une fonction radar 12 et une fonction MRE 13. L'antenne 2, de la fonction radar 12, est montée sur une structure tournante 5 du dispositif. Suivant un exemple de réalisation, une fonction antenne peut être réalisée à partir d'une combinaison linéaire des signaux issus d'un ensemble d'antennes élémentaires ou éléments rayonnants, on parle alors de formation de faisceaux. Celle-ci peut être plus ou moins compliquée, fixe ou réglable électroniquement. Le dispositif selon l'invention comprend au moins, un pilote 0, un émetteur radar 1 , un système d'antenne 2, 3, un récepteur radar 7, un récepteur MRE 8, une unité de traitement radar 9, une unité de traitement MRE 10 et un système de visualisation 1 1 . Selon une particularité de l'invention, la partie antennaire MRE 3 est montée sur la structure tournante 5 du dispositif. De façon avantageuse, le fait de placer la partie antennaire MRE 3 dans l'espace laissé libre pour l'évolution de la structure tournante 5 de l'antenne radar et les grandes dimensions de ces antennes radar offrent la possibilité d'utiliser des antennes MRE plus grandes que celle couramment utilisées aujourd'hui.
Suivant un mode de réalisation, la partie antennaire MRE 3 est placée du même côté que l'antenne 2 radar, c'est-à-dire avec un rayonnement dans la même direction ou dans des directions sensiblement voisines. Afin que leur rayonnement ne se gêne pas, les parties antennaires 2, 3 sont placées dans un plan sensiblement vertical, l'une au-dessus de l'autre, ou l'une à côté de l'autre. Suivant un autre mode de réalisation, la partie antennaire MRE 3 est placée sur le côté opposé à la face rayonnante de l'antenne radar 2, de façon à ce que leur rayonnement se fasse dans des directions sensiblement opposées.
La composition de la partie antennaire MRE 3 dépend des bandes de fréquences correspondant aux radars des cibles recherchées et des contraintes d'encombrement.
De façon avantageuse, l'invention permet d'utiliser le volume sur le porteur, habituellement dédié au radar tournant pour réaliser également une fonction MRE. En particulier, elle permet de tirer profit de la structure de l'antenne tournante du dispositif pour y adjoindre des antennes MRE placées judicieusement.
De plus, l'implantation de la partie antennaire MRE 3 sur la structure tournante du dispositif évite la multiplication des antennes en gisement et permet de loger des antennes MRE relativement grandes par rapport aux longueurs d'onde utilisées. Ceci a pour avantage de conférer, à la partie antennaire MRE 3 beaucoup plus de gain améliorant ainsi la sensibilité du dispositif et donc la détectabilité des signaux de faible puissance crête rayon née.
De façon avantageuse, l'invention permet également une intégration plus facile, sur la plate-forme porteuse, du dispositif MRE car la partie antennaire MRE 3 est installée dans le volume de balayage de l'antenne radar 2. Suivant une particularité de l'invention, les parties antennaires 2 et 3 peuvent utiliser respectivement plusieurs antennes de façon à effectuer des goniométries sur une seule impulsion.
Suivant un exemple de réalisation, la partie antennaire 3 de la fonction MRE 13 est formée d'au moins un réseau d'antennes délivrant autant de signaux en parallèle qu'il y a d'antennes. Ce réseau de plusieurs antennes, en délivrant un ensemble de signaux portant l'information et la précision recherchées sur une seule impulsion, permet une goniométrie instantanée sur une seule impulsion radar aussi appelé traitement monopulse. Cet ensemble d'antennes, ou réseau d'antennes de goniométrie, peut donner lieu à des traitements d'une distribution de puissance ou d'amplitude dans le cas d'une goniométrie d'amplitude, d'une distribution de phase dans le cas d'un traitement par interférométrie, ou d'une distribution de temps d'arrivée (ou TDOA, en anglais, pour Time Différence Of Arrivai).
Suivant un mode de réalisation particulier, illustré figure 1 , la fonction MRE utilise une partie antennaire formée de deux panneaux d'antennes, l'un dit « droite » et l'autre dit « gauche ». Ces deux panneaux, délivrant deux signaux en parallèle, permettent de réaliser une goniométrie simple et très précise sur une seule impulsion.
Nous rappelons qu'un panneau d'antennes est formé de réseaux d'éléments rayonnants plans possédant une formation de faisceau synthétisant l'équivalent d'une seule antenne.
Dans d'autres modes de réalisation, la partie antennaire 3 de la fonction MRE 13 est un réseau d'interférométrie.
Une difficulté, dans le domaine de la détection de radars, est la large bande de fréquence à couvrir. Une solution peut consister à découper cette bande de fréquence en différentes sous-bandes. Ceci peut aboutir à des moyens matériels dédiés à chacune des sous-bandes. Par exemple, dans le cas des antennes panneaux, un panneau spécifique peut être dédié à chaque sous- bande.
Afin de transmettre les signaux entre la partie fixe et la partie mobile du dispositif de détection et de localisation de mobiles, ce dernier comporte un système de transmission entre ces deux parties. Ce système de transmission peut, par exemple, être un joint tournant pour les signaux de fréquences élevées ou un collecteur tournant pour les signaux de fréquences basses. Les signaux des différentes voies de la partie antennaire MRE 3 ainsi qu'éventuellement les signaux issus de l'antenne radar 2, quand celle-ci est hors d'émission, sont séparés et envoyés vers un système de concentration des signaux 4.
Ce système de concentration des signaux 4 consiste à faire passer les signaux reçus sur les différentes parties antennaires 2, 3 sur un nombre limité de voies compatible avec le système de transmission 6.
Suivant un mode de réalisation, les signaux des différentes voies de chaque antenne MRE 3 sont transposés vers un canal fréquentiel différent en faisant le mélange des signaux avec différents oscillateurs dont les fréquences sont étagées de manière à pouvoir faire passer le signal concentré, contenant les signaux reçus, sur une seule voie du système de transmission 6.
En sortie du système de transmission 6, des filtres passe-bande permettent de séparer les signaux et de retrouver les signaux issus des différentes antennes.
Suivant un autre mode de réalisation le système de transmission 6 est un joint tournant optique numérique, par exemple, à haut débit. Afin de transmettre les signaux à travers ce collecteur, les signaux reçus sur les différentes antennes sont transposés en bande de base et codés en numérique par le système de concentration 4.
Les signaux en sortie du système de transmission 6 sont ensuite filtrés afin de retrouver les signaux issus de chacune des antennes, pour être traités respectivement par un récepteur radar 7 et un module de traitement radar 9 et un récepteur MRE 8 et un module de traitement MRE 10.
Suivant un mode de réalisation, les bandes passantes des antennes de la partie antennaire MRE 3 ne sont pas choisies larges de façon à pouvoir détecter tous les radars possibles, mais sont choisies plus étroites et en relation avec la gamme des fréquences des radars recherchés. Les bandes de fréquences choisies pourront, par exemple, être les bandes X et S.
La détection et la localisation de mobiles équipés d'au moins un radar se fait principalement en deux étapes. Dans un premier temps, le module de commande du dispositif met en rotation son système d'antennes 2, 3, sur au moins un tour, de façon à localiser approximativement les radars cible puis dans un second temps le dispositif détermine de façon précise l'azimut des cibles détectées. Suivant un exemple de mise en œuvre, cette rotation peut être limitée à un tour.
Suivant un premier mode de mise en œuvre, la localisation des radars cible est effectuée seulement par la fonction MRE 13, la fonction radar 12 n'étant pas active. Pour cela, le module de commande du dispositif met en rotation la structure tournante 5 du dispositif de façon à effectuer un balayage azimutal de la zone à surveiller par la partie antennaire MRE 3.
Pendant la rotation de la structure mobile 5, les modules de réception 8 et de traitement MRE 10, recensent les différentes émissions radar présentes dans la zone de balayage du dispositif selon les techniques classiques des fonctions MRE.
Suivant une particularité de l'invention, le gain élevé des antennes MRE 3 permet à l'ensemble de la fonction MRE 13 d'acquérir les émissions radar aussi bien sur leur lobe principal que sur leurs lobes diffus.
Lors de la rotation, lorsqu'une émission radar a été interceptée par la fonction MRE, son traitement MRE 10 recherche l'instant pour lequel l'émission radar est dirigée vers la fonction MRE. Cela se fait par analyse de la puissance de signal délivrée par la partie antennaire MRE 3.
La réception sur le lobe principal du radar cible permet d'améliorer la connaissance des paramètres de base du radar cible détecté comme par exemple, sa largeur d'impulsion, sa période de répétition des impulsions, sa fréquence d'émission. La réception sur plusieurs lobes principaux d'affilé permet de déterminer la période de rotation de l'antenne du radar cible et sa loi de balayage.
Suite au balayage de la zone à surveiller par la partie antennaire MRE 3, les radars cible sont localisés de façon approximative en azimut et la loi de balayage de leur antenne est connue.
Dans un deuxième temps, grâce aux informations recueillies lors de l'étape de balayage azimutal, le dispositif MRE va affiner la localisation azimutale des différents radars cible détectés.
Pour cela, le module de commande du dispositif de détection et de localisation oriente la structure tournante 5 de façon à pointer temporairement la partie antennaire MRE 3 dans la direction d'un radar cible à localiser à l'instant de passage présumé du lobe principal de l'antenne, dudit radar cible, dans la direction du dispositif de détection.
Dans la mesure où les antennes MRE 3 sont structurées en sous-bandes de fréquences, la fréquence du radar cible à localiser étant connue, le dispositif MRE sélectionne la partie antennaire de la sous-bande correspondant à la fréquence d'émission du radar cible.
Dans la mesure où les antennes MRE 3 sont des panneaux antennaires offrant une directivité avec un lobe principal, lorsque ce dernier reçoit le lobe principal de l'antenne du radar cible, le module de traitement MRE 10 calcule l'azimut précis de l'émission du radar cible en utilisant un traitement monopulse, comme par exemple et de façon non limitative, par écartométrie ou par interférométrie). Ce calcul est effectué à partir des signaux reçus des différentes antennes constituant ledit panneau, et en utilisant un filtre de réception et un intégrateur correspondant aux caractéristiques du radar cible préalablement établies. L'émission du radar cible étant localisée en azimut, la plate-forme porteuse de ce radar cible l'est également.
L'azimut du radar cible, étant déterminé de façon précise, peut servir à établir une représentation graphique sur le dispositif de visualisation 1 1 , comme par exemple un écran. Afin de faciliter l'exploitation, les représentations graphiques des radars cible peuvent être superposées à une carte géographique de la zone de balayée par le dispositif ou une carte de la zone à surveiller.
En référence à la figure 2, suivant un exemple de réalisation, le système de visualisation 1 1 possède un module graphique apte à afficher une représentation graphique de chaque radar cible représentée par une demi- droite 21 a, 21 b ayant pour origine la position du dispositif de détection et de localisation de mobiles sur la carte géographique et faisant un angle, par rapport à la direction nord, égal à l'azimut précis du radar cible mesuré.
Suivant une particularité de l'invention, le module graphique du système de visualisation 1 1 est arrangé pour afficher chaque radar cible localisé avec une représentation graphique de couleur différente. Suivant un autre mode de réalisation, l'affichage des demi-droites représentant les différents radars cibles est de nature différente, comme par exemple, une ligne simple ou double, une ligne pleine, en pointillée, en tirets ou toutes autres formes équivalentes.
De façon à ne pas surcharger l'image présentée, l'opérateur peut désélectionner l'affichage de certains radars cible. Pour cela, le dispositif de visualisation 1 1 peut posséder des moyens de contrôle de l'affichage des représentations graphiques des radars cible détectés. L'opérateur peut ainsi restreindre l'affichage aux seuls radars cible détectés l'intéressant.
Le système de visualisation 1 1 peut également comporter une zone mémoire apte à mémoriser la position des radars cible mesurée lors de recherches précédentes. Le système de visualisation 1 1 peut ainsi afficher les demi- droites correspondant à la position d'un radar cible à différents instants et ainsi suivre le déplacement de la plate-forme porteuse de ce radar cible.
En référence à la figure 3, lorsque le dispositif de détection et de localisation est embarqué sur une plate-forme mobile, comme par exemple un navire ou un aéronef, chaque demi-droite 21 a, 21 b ou 22a, 22b, représentant le même radar à des instants différents, a une origine 20a, 20b différente. Dans ce cas, il est possible, par une opération de triangulation, de visualiser la position estimée 210, 220 du radar cible et de calculer la distance entre ce radar cible et le dispositif de détection et de localisation de radars.
La précision de cette opération de triangulation est liée au défilement angulaire du porteur du dispositif de détection et de localisation par rapport au radar cible ; plus ce défilement est grand, meilleure est la précision. En conséquence, on recherchera un déplacement du porteur du dispositif de détection et de localisation rapide par rapport à la cible, et des routes non confondues et plutôt transversales.
De plus, pour pouvoir effectuer cette visualisation, il est préférable que la carte, affichée sur le dispositif de visualisation, soit référencée par rapport à un repère fixe au sol.
De façon avantageuse, cette opération de triangulation peut permettre de se passer de l'étape de détermination de l'azimut précis radar cible.
Suivant un autre mode de réalisation, une localisation des plates-formes porteuses des radars cible peut être effectuée par la fonction radar 12 du dispositif de détection et de localisation puis l'azimut précis de chaque radar, des plates-formes porteuses localisées, peut être déterminé par la partie MRE 13 du dispositif.
Dans ce mode de mise en œuvre, le principe de fonctionnement consiste à initialiser une situation tactique par la partie radar 12 du dispositif et ensuite à entretenir cette situation tactique en passif par la partie MRE 13 du dispositif. Dans un premier temps, un balayage azimutal de la zone à surveiller est réalisé par la partie radar 12 du dispositif de détection et de localisation. Pour cela, le module de commande du dispositif met en rotation la structure tournante 5 sur au moins un tour de façon à ce que l'antenne 2 tournante balaie la zone à surveiller afin de localiser les plates-formes cible présentes sur la zone de balayage.
Suivant un mode de mise en œuvre préférentiel, la rotation est limitée à un tour afin de limiter le temps d'émission de l'antenne radar 2 et ainsi minimiser la détectabilité du dispositif de détection et de localisation.
Une fois les positions de ces plates-formes connues la recherche et l'analyse est poursuivie, de façon passive, par la fonction MRE 13 du dispositif. Le module de commande du dispositif de détection et de localisation de radar met en rotation la structure tournante 5 de façon à orienter temporairement le groupe d'antennes MRE 3 dans la direction d'un radar cible détecté pendant le balayage radar.
La partie MRE 13 va ensuite mesurer les différents paramètres du radar cible, comme par exemple, les valeurs de largeur d'impulsion, de période de répétition d'impulsion et de fréquence d'impulsion de l'émission radar. Cette partie va également affiner la mesure de l'azimut de ce radar cible.
Une fois les différents paramètres connus, la visualisation des cibles, sur un dispositif de visualisation, peut être réalisée, comme décrit précédemment, par des demi-droites. La figure 3 présente un exemple d'affichage d'un écran radar dans lequel les représentations graphiques, des radars cible analysés par la partie MRE, apparaissent en superposition avec la carte radar des cibles détectées lors de la phase d'utilisation de la partie radar 12.
Dans le cas où le dispositif selon l'invention est embarqué sur une plateforme mobile, la visualisation des radars cible peut être superposée avec la carte des pistes radar extrapolées à partir de la fin de l'émission radar. L'opérateur peut ainsi voir, sans émettre, si les positions obtenues par triangulation MRE divergent ou non par rapport à la position radar extrapolée de la cible. L'opérateur peut ainsi décider de refaire ou non une émission radar temporaire pour rafraîchir les positions des cibles obtenues par ce moyen.

Claims

REVENDICATIONS
1 . Dispositif de détection et de localisation de mobiles équipés d'au moins un radar, ledit dispositif comprenant une fonction radar (12) comportant une antenne (2) disposée sur une structure tournante (5) et une fonction (13) détecteur d'émission radar comportant une partie antennaire, le dispositif étant caractérisé en ce que la partie antennaire (3) de ladite fonction détecteur d'émissions radar (13) est placée sur ladite structure tournante.
2. Dispositif selon la revendication précédente caractérisé en ce que la partie antennaire (3) de la fonction détecteur d'émissions radar (13) est formée d'au moins un réseau d'antennes délivrant autant de signaux en parallèle qu'il y a d'antennes, l'ensemble de ces signaux permettant la goniométrie sur une seule impulsion radar (traitement monopulse).
3. Dispositif selon la revendication 1 , caractérisé en ce que la partie antennaire (3) de la fonction détecteur d'émissions radar (13) est un réseau d'interférométrie.
4. Dispositif selon une des revendications précédentes caractérisé en ce qu'il comprend au moins un système de transmission (6) entre sa partie fixe et sa partie tournante et un système de concentration (4) des signaux apte à transposer les signaux reçus par les différentes antennes (2, 3) sur un nombre limité de voies de façon à être transmis à travers le système de transmission (6).
5. Dispositif selon l'une des revendications 1 à 4 caractérisé en ce qu'il comporte un module de commande apte à mettre en rotation la structure tournante (5) de façon à effectuer un balayage azimutal, par le groupe d'antennes (3) de la fonction détecteur d'émissions radar (13), sur au moins un tour, afin de localiser, de façon approximative, au moins un radar cible présent dans la zone de balayage du dispositif.
6. Dispositif selon la revendication précédente caractérisé en ce que le module de commande est apte à orienter le groupe d'antenne (3) de la fonction détecteur d'émission radar (13) dans la direction d'un radar cible repéré suite au balayage azimutal, de manière à déterminer l'azimut précis dudit radar cible.
7. Dispositif selon la revendication 5 ou 6 caractérisé en ce que le module de commande est apte à orienter la partie antennaire (3) de la fonction détecteur d'émission radar (13) dans la direction d'un radar cible repéré suite au balayage azimutal, de manière à déterminer la loi de balayage précise dudit radar cible.
8. Dispositif selon l'une des revendications 1 à 4 caractérisé en ce qu'il comporte un module de commande apte à mettre en rotation la structure tournante (5) de façon à effectuer un balayage azimutal, par la partie antennaire radar (2) de la fonction radar (12), sur au moins un tour, afin de localiser, de façon approximative, au moins une plate-forme équipée d'au moins un radar cible présent dans la zone de balayage du dispositif puis à orienter la partie antennaire (3) de la fonction détecteur d'émissions radar (13) dans la direction d'un radar cible repéré de manière à déterminer l'azimut précis dudit radar cible ainsi que sa loi de balayage.
9. Dispositif selon une des revendications précédentes caractérisé en ce qu'il comprend un système de visualisation (1 1 ) comportant un module graphique apte à afficher une représentation graphique de chaque radar cible par une demi-droite (21 , 22) ayant, pour origine, la position du dispositif de détection et de localisation de mobile (20) dans la représentation graphique, et faisant un angle, par rapport à la direction nord, égal à l'azimut mesuré.
10. Dispositif selon la revendication précédente caractérisé en ce que le module graphique permet de représenter chaque radar cible par une demi- droite de couleur ou de nature différente.
1 1 . Dispositif selon la revendication 9 caractérisé en ce que le système de visualisation (1 1 ) est arrangé pour afficher les représentations graphiques des radars cible identifiés en superposition avec une carte obtenue lors de l'emploi de la partie radar (12).
PCT/EP2012/067232 2011-09-30 2012-09-04 Dispositif de detection et de localisation de mobiles equipes de radars et procede associe WO2013045231A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/348,025 US20150123839A1 (en) 2011-09-30 2012-09-04 Device for detecting and locating mobile bodies provided with radars, and related method
EP12753737.1A EP2761325A1 (fr) 2011-09-30 2012-09-04 Dispositif de detection et de localisation de mobiles equipes de radars et procede associe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1102963 2011-09-30
FR1102963A FR2980853B1 (fr) 2011-09-30 2011-09-30 Dispositif de detection et de localisation de mobiles equipes de radars et procede associe

Publications (1)

Publication Number Publication Date
WO2013045231A1 true WO2013045231A1 (fr) 2013-04-04

Family

ID=46785431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/067232 WO2013045231A1 (fr) 2011-09-30 2012-09-04 Dispositif de detection et de localisation de mobiles equipes de radars et procede associe

Country Status (4)

Country Link
US (1) US20150123839A1 (fr)
EP (1) EP2761325A1 (fr)
FR (1) FR2980853B1 (fr)
WO (1) WO2013045231A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572354A (zh) * 2017-03-08 2018-09-25 通用汽车环球科技运作有限责任公司 使用三维位置和速度的主设备控制
CN109298398A (zh) * 2018-10-17 2019-02-01 中国人民解放军32181部队 具有随动功能的雷达装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE541952C2 (en) * 2015-10-19 2020-01-14 Qamcom Tech Ab Radar apparatus and method with interference detection
JP7190820B2 (ja) * 2018-04-02 2022-12-16 パナソニックホールディングス株式会社 侵入検知システムおよび侵入検知方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175559A (en) * 1991-10-24 1992-12-29 Westinghouse Electric Corp. Combined Radar/ESM antenna system and method
JP2001264420A (ja) 2000-03-15 2001-09-26 Mitsubishi Electric Corp 電子支援対策受信システム
EP1505688A1 (fr) * 2003-08-08 2005-02-09 EADS Deutschland GmbH Système d'antenne et mât intégrés à bord d'un bateau de guerre
US7843375B1 (en) * 2007-01-16 2010-11-30 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for monitoring the RF environment to prevent airborne radar false alarms that initiate evasive maneuvers, reactionary displays or actions
EP2267837A1 (fr) * 2009-06-23 2010-12-29 Ineo Defense Mât intégré à deux étages comportant un radome à panneau démontable et radome associé

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469165A (en) * 1993-12-23 1995-11-21 Hughes Aircraft Company Radar and electronic warfare systems employing continuous transverse stub array antennas
JP3456148B2 (ja) * 1998-06-30 2003-10-14 三菱電機株式会社 レーダ装置およびビーム制御方法
US20020167449A1 (en) * 2000-10-20 2002-11-14 Richard Frazita Low profile phased array antenna
JP2003066133A (ja) * 2001-08-29 2003-03-05 Mitsubishi Electric Corp レーダ装置
US7109909B2 (en) * 2004-03-11 2006-09-19 Lockheed Martin Corporation System for establishing an attenuation frequency
US7626538B2 (en) * 2007-10-24 2009-12-01 Northrop Grumman Systems Corporation Augmented passive tracking of moving emitter
US7602478B2 (en) * 2007-11-21 2009-10-13 Lockheed Martin Corporation Fused sensor situation display
IL192601A (en) * 2008-07-03 2014-07-31 Elta Systems Ltd Discovery / Transmission Device, System and Method
EP2182375A1 (fr) * 2008-10-30 2010-05-05 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Système, procédé et produit de programme informatique
WO2011008146A1 (fr) * 2009-07-16 2011-01-20 Saab Ab Procédé et système d’antenne à large bande pour réduire l’influence de sources d’interférence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175559A (en) * 1991-10-24 1992-12-29 Westinghouse Electric Corp. Combined Radar/ESM antenna system and method
JP2001264420A (ja) 2000-03-15 2001-09-26 Mitsubishi Electric Corp 電子支援対策受信システム
EP1505688A1 (fr) * 2003-08-08 2005-02-09 EADS Deutschland GmbH Système d'antenne et mât intégrés à bord d'un bateau de guerre
US7843375B1 (en) * 2007-01-16 2010-11-30 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for monitoring the RF environment to prevent airborne radar false alarms that initiate evasive maneuvers, reactionary displays or actions
EP2267837A1 (fr) * 2009-06-23 2010-12-29 Ineo Defense Mât intégré à deux étages comportant un radome à panneau démontable et radome associé

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOSEF G WORMS: "Signal detection by square law receivers using the experimental system PALES", RADAR CONFERENCE, 2008. RADAR '08. IEEE, IEEE, PISCATAWAY, NJ, USA, 26 May 2008 (2008-05-26), pages 1 - 5, XP031376266, ISBN: 978-1-4244-1538-0 *
STEPHANE KEMKEMIAN ET AL: "Toward common radar & EW multifunction active arrays", PHASED ARRAY SYSTEMS AND TECHNOLOGY (ARRAY), 2010 IEEE INTERNATIONAL SYMPOSIUM ON, IEEE, PISCATAWAY, NJ, USA, 12 October 2010 (2010-10-12), pages 777 - 784, XP031828584, ISBN: 978-1-4244-5127-2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572354A (zh) * 2017-03-08 2018-09-25 通用汽车环球科技运作有限责任公司 使用三维位置和速度的主设备控制
CN108572354B (zh) * 2017-03-08 2022-08-26 通用汽车环球科技运作有限责任公司 使用三维位置和速度的主设备控制
CN109298398A (zh) * 2018-10-17 2019-02-01 中国人民解放军32181部队 具有随动功能的雷达装置
CN109298398B (zh) * 2018-10-17 2024-03-22 中国人民解放军32181部队 具有随动功能的雷达装置

Also Published As

Publication number Publication date
EP2761325A1 (fr) 2014-08-06
US20150123839A1 (en) 2015-05-07
FR2980853B1 (fr) 2014-11-28
FR2980853A1 (fr) 2013-04-05

Similar Documents

Publication Publication Date Title
EP2122388B1 (fr) Dispositif et procede de localisation d'un mobile a l'approche d'une surface reflechissant les ondes electromagnetiques
EP0322005B1 (fr) Senseur radioélectrique pour l'établissement d'une carte radioélectrique d'un site
FR2859538A1 (fr) Systeme de radar a ondes de surface
EP2189810B1 (fr) Dispositif de radar pour la surveillance maritime
EP2686699B1 (fr) Procede de surveillance radar et d'acquisition de signaux radar
EP2455778B1 (fr) Procédé d'estimation de la position angulaire d'une cible par détection radar et radar mettant en oeuvre le procédé
WO2013045231A1 (fr) Dispositif de detection et de localisation de mobiles equipes de radars et procede associe
FR2931952A1 (fr) Procede d'elimination des echos de sol pour un radar meteorologique
EP0852734B1 (fr) Procede et dispositif de geodesie et/ou d'imagerie par traitement de signaux satellitaires
EP2737337B1 (fr) Dispositif de detection d'une cible resistant au fouillis
EP3417310B1 (fr) Procédé de localisation de sources d'émission d'impulsions électromagnétiques dans un environnement comprenant des réflecteurs
EP1227333B1 (fr) Procédé et dispositif de localisation d'un émetteur terrestre à partir d'un satellite
EP4165435B1 (fr) Système radar bi-statique ou multi-statique pour la surveillance aérienne avec illumination spatiale
FR3090893A1 (fr) Procede et systeme de mesure de la vitesse d’un porteur par rapport au sol
FR2962811A1 (fr) Dispositif d'antenne a ouverture synthetique d'emission de signaux d'un systeme de navigation par satellites comprenant une porteuse et des moyens de determination de sa trajectoire
EP2639596B1 (fr) Objet volant guidé sur faisceaux électro-magnétiques
EP3904904B1 (fr) Surveillance de l espace à l aide d'un radar bistatique dont le système récepteur est au moins partiellement embarqué dans un satellite
EP2681579B1 (fr) Procédé de positionnement d'un mobile sur une image radar
FR2550347A1 (fr) Perfectionnements aux radars doppler a impulsions
EP3538919B1 (fr) Procédé de contrôle de la compatibilité électromagnétique d'un détecteur de radars avec au moins un émetteur de bord de signaux impulsionnels
FR3140177A1 (fr) Procédé et dispositif de détection d’obstacles proches par Radar Passif Multistatique GNSS pour plateformes mobiles
FR3133928A1 (fr) Procédé de localisation d'une source de brouillage GNSS, produit programme d'ordinaeur et dispositif de localisation associés
FR2955671A1 (fr) Procede de detection de cibles marines et dispositif associe
FR3133678A1 (fr) Système radar et procédé associé pour optimiser l'élimination de fouillis radar
EP2255148A2 (fr) Dispositif de conduite de tir bas cout contre cibles fixes et mobiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12753737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012753737

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012753737

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14348025

Country of ref document: US