WO2013042567A1 - 地殻変動の監視方法及び異常地殻変動発生地域の特定方法並びに地殻変動監視システム - Google Patents

地殻変動の監視方法及び異常地殻変動発生地域の特定方法並びに地殻変動監視システム Download PDF

Info

Publication number
WO2013042567A1
WO2013042567A1 PCT/JP2012/073039 JP2012073039W WO2013042567A1 WO 2013042567 A1 WO2013042567 A1 WO 2013042567A1 JP 2012073039 W JP2012073039 W JP 2012073039W WO 2013042567 A1 WO2013042567 A1 WO 2013042567A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluctuation
crustal movement
observation
crustal
abnormal
Prior art date
Application number
PCT/JP2012/073039
Other languages
English (en)
French (fr)
Inventor
範洋 山口
Original Assignee
清水建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清水建設株式会社 filed Critical 清水建設株式会社
Publication of WO2013042567A1 publication Critical patent/WO2013042567A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/01Measuring or predicting earthquakes

Definitions

  • the present invention relates to a method for monitoring crustal deformation, a method for specifying an abnormal crustal deformation occurrence region using this monitoring method, and a crustal deformation monitoring system.
  • the Geospatial Information Authority of Japan has established a GPS continuous observation system (GEONET: GPS Earth Observation Network System) that installs electronic reference points (GPS receivers) throughout Japan and monitors crustal movements using these electronic reference points as observation points. It is constructed and the observation data (positioning data, fluctuation data) by this GPS continuous observation system is released at any time.
  • GPS continuous observation system GPS Earth Observation Network System
  • abnormal crustal deformation analysis has been carried out at various research institutions using such observation data.
  • a certain electronic reference point is set as a fixed point (observation reference point).
  • a method is used in which the relative displacement of other observation points with respect to is calculated and the crustal strain and stress velocities are calculated to track the crustal deformation.
  • find the relative displacement of other observation points with respect to the fixed point create a time series displacement graph, and calculate the spatial differential (distortion) of the displacement in the past period assumed to be stable and the displacement during the same period of the year you want to observe.
  • a method of tracking changes in the crust by capturing changes in strain based on comparison with spatial differentiation is used.
  • the displacement is obtained from the relative position of the fixed point and the observation point, so the displacement field (strain field) is affected by how the fixed point is selected. If the “displacement field that is assumed to be” is mistakenly extracted, the accuracy of the analysis is lowered, and the reliability of the analysis result is lowered. Moreover, the analysis accuracy is also lowered by converting the coordinates of the center of gravity of the earth observed at the electronic reference point into a plane rectangular coordinate system.
  • the inventor of the present application uses the earth's center of gravity as a fixed point, and observes the X, Y, Z coordinate values (coordinate values in a three-dimensional orthogonal coordinate system) of the observation point with respect to this fixed point to perform abnormal crustal deformation analysis.
  • a patent application has already been filed for the invention to be performed and patent rights have been obtained (Patent Document 1).
  • the stable position of the earth's center of gravity is always set as a fixed point, and the X, Y, Z coordinates of the observation point are determined from the fixed point, thereby eliminating the need for coordinate conversion, The reliability of the analysis result can be improved.
  • the present invention is to improve the accuracy of analysis and reliability of analysis results, monitor crustal movements, detect abnormalities before abnormal crustal movements occur, and identify abnormal crustal movement occurrence areas. It is an object of the present invention to provide a crustal deformation monitoring method, a method for identifying an abnormal crustal deformation occurrence region, and a crustal deformation monitoring system.
  • the present invention provides the following various aspects.
  • the method for monitoring crustal movement sets a plurality of observation points on the ground surface, observes the coordinate value of each observation point in a three-dimensional orthogonal coordinate system with the center of gravity of the earth as the origin,
  • the observation point fluctuation observation step for obtaining the fluctuation amount of the coordinate value of each observation point for each component in the three-dimensional orthogonal coordinate system, and a plurality of years for each observation point and for each component obtained from the fluctuation amount.
  • noise components of reversible fluctuations and / or irreversible fluctuations of the crust are removed from the stable fluctuation data.
  • the monitoring method includes an abnormal crustal movement termination determination step that determines that the abnormal crustal movement has ended when the new fluctuation data has changed along the reference line after the occurrence of abnormal crustal movement. May be.
  • the observation point where the deviation occurs on any one coordinate axis of the three-dimensional orthogonal coordinate system is displayed as a first symbol, and the deviation occurs on two coordinate axes of the three-dimensional orthogonal coordinate system.
  • a divergence occurrence situation map is generated in which the observation points are displayed with the second symbol, the observation points where the divergence occurs on the three coordinate axes of the three-dimensional orthogonal coordinate system are displayed with the third symbol, and the divergence at the plurality of observation points is created.
  • a divergence visualization process for visualizing the occurrence state may be provided.
  • an abnormal crustal deformation occurrence region is identified by monitoring crustal deformation using any one of the above-described crustal deformation monitoring methods, and the divergence is detected on any one coordinate axis of the three-dimensional orthogonal coordinate system.
  • An abnormal crustal movement occurrence region is identified from the distribution of observation points of the pattern and the occurrence frequency of each pattern.
  • a crustal movement monitoring system includes an observation unit that sets a plurality of observation points on the ground surface and observes coordinate values of the respective observation points in a three-dimensional orthogonal coordinate system with the center of gravity of the earth as the origin.
  • a calculation unit for calculating a variation amount of the coordinate value of each observation point for each component in the three-dimensional orthogonal coordinate system, and a plurality of years obtained from the variation amount for each observation point and for each component
  • noise components of reversible fluctuations and / or irreversible fluctuations of the crust are removed from the stable fluctuation data.
  • a reference line setting unit for setting a reference line for an annual fluctuation distortion period based on a plurality of stable fluctuation processing data obtained by removing the noise, and a new value obtained by observing coordinate values in the three-dimensional orthogonal coordinate system at each observation point
  • a deviation phenomenon confirmation unit that compares fluctuation data with the reference line and confirms whether there is a deviation of the new fluctuation data with respect to the reference line, and abnormal crustal movement when the deviation is confirmed by a factor other than the noise component
  • an abnormal crustal deformation determining unit that determines that occurrence of the
  • an abnormal crustal movement termination determination unit that determines that the abnormal crustal movement has ended when the new fluctuation data changes along the reference line after the abnormal crustal movement has occurred. You may have.
  • the observation point where the deviation occurs on any one coordinate axis of the three-dimensional orthogonal coordinate system is displayed as a first symbol, and the deviation occurs on two coordinate axes of the three-dimensional orthogonal coordinate system.
  • the generated observation point is displayed with the second symbol, and a deviation occurrence situation map is generated in which the observation point where the deviation occurs on the three coordinate axes of the three-dimensional orthogonal coordinate system is displayed with the third symbol.
  • the crustal movement monitoring method the abnormal crustal movement area identifying method, and the crustal movement monitoring system according to one aspect of the present invention
  • the center of gravity of the earth is used as the origin.
  • the displacement of the observation point is obtained from the conventional relative position of the fixed point and the observation point.
  • observation data variation data
  • the fluctuation amount of the position of each observation point is obtained for each component in the three-dimensional orthogonal coordinate system, and the time series fluctuation data for each component of each observation point is obtained.
  • a stable year based on a plurality of stable fluctuation processing data obtained by removing the noise component of the reversible fluctuation and / or irreversible fluctuation of the crust in the baseline setting process (reference line setting section) of the annual fluctuation distortion period. It is possible to obtain a reference line for the annual fluctuation strain period for each component at each observation point that accurately represents the fluctuation distortion period.
  • the reference line of each observation point that accurately represents a stable annual fluctuation strain period is used as an index.
  • crustal movement is monitored while confirming the presence or absence of deviation from the reference line for each component of a plurality of observation points.
  • Observation point of the first pattern in which a deviation occurs in any one coordinate axis of the three-dimensional orthogonal coordinate system observation point of the second pattern in which a deviation occurs in two coordinate axes of the three-dimensional orthogonal coordinate system, three of the three-dimensional orthogonal coordinate system
  • abnormal crustal movement occurs in the abnormal crustal movement termination determination step (abnormal crustal deformation termination determination unit). After that, when the new fluctuation data changes along the reference line, it can be determined that the abnormal crustal movement has ended, and for example, it is possible to determine when the aftershock ceases to occur.
  • the divergence visualization step which coordinate axis of the three-dimensional orthogonal coordinate system is used.
  • the crustal movement monitoring system A of the present embodiment includes an observation unit 1, a calculation unit 2, a reference line setting unit 3 for an annual fluctuation distortion period, a divergence phenomenon confirmation unit 4, an abnormality, And a crustal movement determining unit 5.
  • the observation unit 1 uses, for example, GPS, and the coordinate values (X-axis) of a plurality of observation points (GPS receivers, electronic reference points) set on the ground surface in the three-dimensional orthogonal coordinate system with the center of gravity of the earth as the origin. , Position on Y axis and Z axis). For example, since 1200 or more observation points have already been set all over Japan, an observation unit can be configured using such existing observation points or artificial satellites.
  • the calculation unit 2 calculates the amount of change in the coordinate value of each observation point observed by the observation unit 1 for each of the X, Y, and Z coordinate axes (each component in the three-dimensional orthogonal coordinate system).
  • the X, Y, and Z coordinate values of each observation point M can be observed using the center of gravity G of the earth as a fixed point (origin).
  • the fluctuation amount ⁇ L of each observation point M that changes daily is calculated with high accuracy.
  • the fixed points (Ga, Gb) can be set on the X axis, the Y axis, and the Z axis passing through the center of gravity G of the earth which is always stable.
  • the observation points M (M A , M B , M C , M D ) that change every day are the same as when the center of gravity G of the earth is set as the fixed point.
  • the fluctuation amount ⁇ L can be calculated with high accuracy.
  • the center of gravity G of the earth is used as the origin, and the positions of a plurality of observation points M at a certain point in time are fixed.
  • the coordinates of the observation point M are observed every day, and the fluctuation amount ⁇ L of the position of each observation point M is obtained for each coordinate axis (each component) of X, Y, Z, and the fixed position L and fluctuation amount ⁇ L.
  • the distortion is calculated from That is, by observing the coordinates for each of the X, Y, and Z coordinate axes of each observation point M with the center of gravity G of the earth as the origin in this way, the variation amount ⁇ L of each observation point M and further distortion are obtained, thereby
  • the observation point M is used as a strain gauge.
  • the calculation unit 2 calculates the variation ⁇ L of the position for each component of each observation point M and the distortion as described above, and for example, as shown in FIG. Fluctuation data 10 for each of the X, Y, and Z coordinate axes of each observation point M in time series is created.
  • the fluctuation data 10 shown in FIG. 4 is, for example, the fluctuation data of the X axis of one observation point M, the left side of the horizontal axis is from January to December of the previous year, and the right side is January of the next year.
  • the fluctuation data (observation line) 10 indicated by a single line indicates the cumulative value of distortion from the previous year to the next year.
  • the data for one year shown on the right side of the horizontal axis of one variation data 10 showing the accumulated value of the distortion for a certain two years is the accumulated value of the distortion for the next two consecutive years.
  • the fluctuation data 10 for a plurality of consecutive years is represented.
  • the reference line setting unit 3 of the annual fluctuation strain period is shown in FIG. 4 from the fluctuation data 10 for each of the X, Y, and Z coordinate axes of the time series observation points M obtained from the fluctuation amount ⁇ L.
  • a plurality of stable fluctuation data 10a for a year in which no abnormal crustal movement has occurred are extracted, and as shown in FIG. 5, noise components of reversible and / or irreversible fluctuations of the crust are extracted from these stable fluctuation data 10a.
  • the reference line 11 of the annual fluctuation distortion period shown in FIG. 6 is set based on the stable fluctuation processing data 10b from the plurality of stable fluctuation processing data 10b obtained by removing the noise component.
  • the divergence phenomenon confirmation unit 4 compares the new fluctuation data 12 obtained by observing the X, Y, and Z coordinate values at each observation point M with the reference line 11, and determines the divergence of the new fluctuation data 12 with respect to the reference line 11. The presence or absence is confirmed (see FIG. 6).
  • the abnormal crustal movement determination unit 5 determines that an abnormal crustal movement occurs when the deviation is confirmed by a factor other than the noise component by the deviation phenomenon confirmation unit 4.
  • the abnormal crustal movement termination determination unit 6 that determines that the abnormal crustal movement has ended, and the occurrence of divergence at a plurality of observation points M are displayed.
  • a divergence visualization unit 7 for visualization is provided.
  • the observation unit 1 sets a plurality of observation points M on the ground surface, The X, Y, and Z coordinate values of each observation point M with the center of gravity G of the earth as the origin are observed, and at the same time, the calculation unit 2 calculates the variation amount ⁇ L of the position of each observation point M as X, Y, and Z. It calculates
  • the earth's center of gravity G which is always stable, is set as a fixed point (or any position on the X, Y, and Z axes passing through the center of gravity G of the earth).
  • a plurality of observation points M are used as strain gauges, and the amount of variation ⁇ L for each component at each observation point M that changes daily, and hence distortion. Is calculated with high accuracy.
  • the reference line setting process for the annual fluctuation distortion cycle is performed.
  • the reference line setting unit 3 for the annual fluctuation distortion period uses the fluctuation data 10 for the X, Y, and Z coordinate axes of the observation points M in time series for a plurality of years. As shown in FIG. 4, a plurality of stable fluctuation data 10a for a year in which no abnormal crustal movement has occurred is extracted.
  • noise components of reversible fluctuation and / or irreversible fluctuation of the crust are removed from the stable fluctuation data 10a, and a plurality of stable fluctuation processing data 10b obtained by removing the noise components as shown in FIG. 5 is acquired.
  • each stable fluctuation data (X-axis) 10a has a variation.
  • the noise component of the reversible fluctuation of the crust includes a fluctuation of the crust caused by a snow cover, a magnetic storm, heavy rain, a pressure valley, and the like.
  • noise components of irreversible fluctuations in the crust include crustal fluctuations associated with receiver replacement, pillar tilt, tree overgrowth, eruptions, earthquakes, and low-frequency tremors.
  • the reference line (annual fluctuation distortion period of the annual fluctuation distortion period) as shown in FIG. Reference band 11 is set.
  • a belt-like reference line 11 having a range of distortion from the intermediate value 11a, the highest value 11b, and the lowest value 11c of the plurality of stable fluctuation processing data 10b is set for each of the X, Y, and Z coordinate axes.
  • the desired upper threshold value 11b and lower threshold value 11c may be set, and the reference line 11 having a distortion range between the upper threshold value 11b and the lower threshold value 11c may be set.
  • an abnormal crustal deformation determination process is performed.
  • this abnormal crustal movement determination step as shown in FIGS. 1 and 6, X, Y, and Z coordinate values are observed at the reference line 11 set in the reference line setting step of the annual fluctuation strain period and each observation point M.
  • the new fluctuation data 12 obtained in this way is compared by the deviation phenomenon confirmation unit 4. Then, new fluctuation data (observation line) 12 deviates downward from the reference line 11 as shown in part (a) of FIG. 7, or as shown in part (b) of FIG. Then, it is confirmed whether or not the new fluctuation data 12 deviates upward from the reference line 11.
  • the abnormal crustal movement determination unit 5 determines that an abnormal crustal movement occurs. That is, when such a divergence phenomenon occurs, for example, it is determined that there is a high possibility that an earthquake will occur.
  • the divergence visualization step as shown in FIGS. 8 and 9, an observation in which divergence has occurred on any one of the coordinate axes of the X axis, the Y axis, and the Z axis (three-dimensional orthogonal coordinate system).
  • the point M is displayed with the symbol S1
  • the observation point M where the deviation occurs between the two coordinate axes of the X, Y, and Z axes is displayed with the symbol S2, and the three coordinate axes of the X, Y, and Z axes are displayed.
  • the observation point M where the divergence has occurred is displayed as a symbol S3, and the divergence occurrence state map 13 is created in which the divergence visualization unit 7 visualizes the divergence occurrence state at the plurality of observation points M. Furthermore, in the crustal movement monitoring method, the abnormal crustal movement area identification method, and the crustal movement monitoring system A of the present embodiment, as shown in FIG. A plurality of maps 13 are created to be updated. As shown in FIG. 7, it is more preferable to change the symbol when the deviation occurs below the reference line 11 and when the deviation occurs above.
  • the crustal movement is monitored while confirming the presence or absence of deviation from the reference line 11 for each of the X, Y, and Z coordinate axes of the plurality of observation points M, and the X, Y, and Z axes (three-dimensional orthogonal coordinate system) are monitored.
  • the abnormal crustal movement termination determination unit 6 detects abnormal crustal movement in the abnormal crustal movement termination determination step. After the occurrence, when the new fluctuation data 12 changes along the reference line 11, it is determined that the abnormal crustal movement has ended. That is, after the earthquake occurs, when the behavior of the new fluctuation data 12 substantially matches the reference line 11 such as the observation line of the new fluctuation data 12 changes with substantially the same inclination as the inclination of the reference line 11, the aftershock It is determined that it will not occur.
  • the crustal movement monitoring method, the abnormal crustal movement area identification method, and the crustal movement monitoring system A first, in the observation point fluctuation observation process (observation unit 1, calculation unit 2), the center of gravity G of the earth Is used to observe the position of each observation point M on the three-dimensional Cartesian coordinate system (X-axis, Y-axis, Z-axis Cartesian coordinate system) and obtain the amount of variation for each component in the three-dimensional Cartesian coordinate system.
  • the observation data (variation data 10) with high accuracy and reliability can be used.
  • the fluctuation amount ⁇ L of the position of each observation point M is obtained for each component in the three-dimensional orthogonal coordinate system, and for each component of each observation point M.
  • Time-series fluctuation data 10 is acquired, and the noise component of the reversible fluctuation and / or irreversible fluctuation of the crust is removed in the reference line setting step (annual fluctuation distortion period reference line setting unit 3) of the annual fluctuation distortion period.
  • the reference line setting step annual fluctuation distortion period reference line setting unit 3 of the annual fluctuation distortion period.
  • new fluctuation data 12 obtained by observing three-dimensional orthogonal coordinates at each observation point M in the abnormal crustal movement determination process is compared with the reference line 11.
  • an abnormal crustal movement such as an earthquake occurs.
  • the reference line 11 of each observation point M that accurately represents a stable annual fluctuation strain period is used as an index.
  • the crustal movement is monitored while confirming whether or not there is a deviation from the reference line 11 for each component of the plurality of observation points M, and a three-dimensional orthogonal coordinate system.
  • abnormal crustal movement occurs in the abnormal crustal movement termination determination step (abnormal crustal deformation termination determination unit 6). After that, when the new fluctuation data 12 changes along the reference line 11, it can be determined that the abnormal crustal movement has ended, and for example, it is possible to determine when the aftershock ceases to occur.
  • the divergence visualization step uses any coordinate axis of the three-dimensional orthogonal coordinate system.
  • the divergence occurrence situation at a plurality of observation points M is created by creating the divergence occurrence situation map 13 in which each observation point M is displayed with the symbols S1, S2, S3 (patterns P1, P2, P3) depending on whether the divergence has occurred.
  • S1, S2, S3 patterns P1, P2, P3 depending on whether the divergence has occurred.
  • the crustal movement monitoring method, the abnormal crustal movement area identification method, and the crustal movement monitoring system according to an embodiment of the present invention have been described above, but the present invention is not limited to the above-described embodiment. Changes can be made as appropriate without departing from the spirit of the invention.
  • the explanation has been made on the assumption that the abnormal crustal movement is caused by an earthquake.
  • the present invention may be applied to, for example, monitoring of crustal movement accompanying volcanic activity or the like and specifying the abnormal crustal movement area. Is applicable to any case as long as it involves a crustal movement.
  • the various aspects of the present invention can be used for earthquake prediction, volcanic eruption prediction, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

 複数の観測点を地表面上に設定し、地球の重心を原点とする3次元直交座標系における前記各観測点の座標値の変動量を前記3次元直交座標系における各成分毎に求める観測点変動観測工程と、前記変動量から求めた複数年分の時系列変動データから、異常地殻変動が発生していない年の安定変動データを複数抽出するとともに、ノイズ成分を除去処理した複数の安定変動処理データに基づいて年変動歪周期の基準線を設定する基準線設定工程と、前記各観測点で前記3次元直交座標系における座標値を観測して得た新たな変動データを前記基準線と対比し、前記基準線に対する前記新たな変動データの乖離の有無を確認し、前記ノイズ成分以外の要因で乖離が確認された場合に異常地殻変動が発生すると判定する異常地殻変動判定工程と、を備えた地殻変動の監視方法。

Description

地殻変動の監視方法及び異常地殻変動発生地域の特定方法並びに地殻変動監視システム
 本発明は、地殻変動を監視する方法及びこの監視方法を用いて異常地殻変動発生地域を特定する方法並びに地殻変動監視システムに関する。
本願は、2011年9月21日に、日本に出願された特願2011-206069号に基づき優先権を主張し、その全内容をここに援用する。
 例えば、国土地理院は、日本全国各地に電子基準点(GPS受信機)を設置し、これら電子基準点を観測点として地殻変動を監視するGPS連続観測システム(GEONET:GPS Earth Observation Network System)を構築し、このGPS連続観測システムによる観測データ(測位データ、変動データ)などを随時公開している。また、世界各地にも電子基準点が設置されており、例えば大陸プレート、海洋プレートの地殻変動の観測データなども公開されている。
 従来、このような観測データを用いて様々な研究機関で異常地殻変動解析が実施されている。そして、多くの異常地殻変動解析では、電子基準点で観測された地球重心座標を平面直角座標系等に変換した上で、ある電子基準点を固定点(観測基準点)に設定し、固定点に対する他の観測点の相対変位を求めるとともに地殻の歪み速度、応力速度を算出して、地殻の変動を追跡する方法が用いられている。あるいは、固定点に対する他の観測点の相対変位を求め、時系列変位グラフを作成し、安定と想定される過去の期間の変位の空間微分(歪)と、観測したい年の同期間の変位の空間微分との比較等から歪の変化を捉えて、地殻の変動を追跡する方法が用いられている。
 しかしながら、上記の異常地殻変動解析では、固定点と観測点の相対位置から変位を求めているため、固定点の選び方によって変位場(歪場)が影響を受けることになり、解析時に用いる「安定と想定される変位場」の抽出を誤ると、解析精度の低下、ひいては解析結果の信頼性の低下を招くことになる。また、電子基準点で観測された地球重心座標を平面直角座標系に座標変換することによっても解析精度が低下する。
 これに対し、本願の発明者は、地球重心を固定点とし、この固定点に対する観測点のX,Y,Z座標値(3次元直交座標系における座標値)を観測して異常地殻変動解析を行う発明について既に特許出願を行い、特許権を取得している(特許文献1)。そして、この手法によれば、常に安定した地球重心を固定点に設定し、さらに、固定点から観測点のX,Y,Z座標を求めることにより座標変換を不要にすることで、解析精度、解析結果の信頼性を向上させることができる。
日本国特許第4139229号公報
 一方、歪を検出するための日々の安定変位場が定量的に取得できていないため、また、日々の地殻変動を追跡するシステムが構築されていないため、現状では、日本全国の日常的な歪場の変化を追跡することができていない。そして、これに伴い、異常地殻変動解析の研究結果のほとんどは、地震が発生した後に歪が地震発生前からどのように変化してきたかを求める過去予知作業に限定されていた。
 このため、解析精度、解析結果の信頼性を向上させつつ、日々の地殻変動を監視して異常地殻変動が発生する前にその異常を捉える手法、さらに異常地殻変動発生地域を特定する手法の開発が強く望まれていた。
 本発明は、上記事情に鑑み、解析精度、解析結果の信頼性を向上させつつ、地殻変動を監視して異常地殻変動が発生する前に異常を捉え、異常地殻変動発生地域を特定することを可能にする地殻変動の監視方法及び異常地殻変動発生地域の特定方法並びに地殻変動監視システムを提供することを目的とする。
 上記の目的を達するために、この発明は以下の各種態様を提供する。
 本発明の一態様による地殻変動の監視方法は、複数の観測点を地表面上に設定し、地球の重心を原点とする3次元直交座標系における前記各観測点の座標値を観測し、前記各観測点の座標値の変動量を前記3次元直交座標系における各成分毎に求める観測点変動観測工程と、前記各観測点について、かつ前記各成分について、前記変動量から求めた複数年分の時系列変動データから、異常地殻変動が発生していない年の安定変動データを複数抽出するとともに、該安定変動データから地殻の可逆変動及び/または非可逆変動のノイズ成分を除去し、ノイズ成分を除去処理した複数の安定変動処理データに基づいて年変動歪周期の基準線を設定する基準線設定工程と、前記各観測点で前記3次元直交座標系における座標値を観測して得た新たな変動データを前記基準線と対比し、前記基準線に対する前記新たな変動データの乖離の有無を確認し、該乖離が前記ノイズ成分以外の要因で確認された場合に異常地殻変動が発生すると判定する異常地殻変動判定工程と、を備えている。
 上記監視方法においては、異常地殻変動が発生した後、前記新たな変動データが前記基準線に沿うように推移したときに、異常地殻変動が終息したと判定する異常地殻変動終息判定工程を備えていてもよい。
 上記監視方法においては、前記3次元直交座標系のいずれか一つの座標軸で前記乖離が発生した観測点を第1シンボルで表示し、前記3次元直交座標系の二つの座標軸で前記乖離が発生した観測点を第2シンボルで表示し、前記3次元直交座標系の三つの座標軸で前記乖離が発生した観測点を第3シンボルで表示した乖離発生状況マップを作成し、前記複数の観測点における乖離発生状況を視覚化する乖離視覚化工程を備えていてもよい。
 本発明の一態様による異常地殻変動発生地域の特定方法は、上記のいずれかの地殻変動の監視方法によって地殻変動の監視を行い、前記3次元直交座標系のいずれか一つの座標軸で前記乖離が発生した第1パターンの観測点、前記3次元直交座標系の二つの座標軸で前記乖離が発生した第2パターンの観測点、前記3次元直交座標系の三つの座標軸で前記乖離が発生した第3パターンの観測点の分布状況、及び各パターンの発生頻度から、異常地殻変動発生地域を特定する。
 本発明の一態様による地殻変動監視システムは、複数の観測点を地表面上に設定し、地球の重心を原点とする3次元直交座標系における前記各観測点の座標値を観測する観測部と、前記各観測点の座標値の変動量を前記3次元直交座標系における各成分毎に算出する演算部と、前記各観測点について、かつ前記各成分について、前記変動量から求めた複数年分の時系列変動データから、異常地殻変動が発生していない年の安定変動データを複数抽出するとともに、該安定変動データから地殻の可逆変動及び/または非可逆変動のノイズ成分を除去し、ノイズ成分を除去処理した複数の安定変動処理データに基づいて年変動歪周期の基準線を設定する基準線設定部と、前記各観測点で前記3次元直交座標系における座標値を観測して得た新たな変動データを前記基準線と対比し、前記基準線に対する前記新たな変動データの乖離の有無を確認する乖離現象確認部と、前記乖離が前記ノイズ成分以外の要因で確認された場合に異常地殻変動が発生すると判定する異常地殻変動判定部とを備えている。
 上記地殻変動監視システムにおいては、異常地殻変動が発生した後、前記新たな変動データが前記基準線に沿うように推移したときに、異常地殻変動が終息したと判定する異常地殻変動終息判定部を備えていてもよい。
 上記地殻変動監視システムにおいては、前記3次元直交座標系のいずれか一つの座標軸で前記乖離が発生した観測点を第1シンボルで表示し、前記3次元直交座標系の二つの座標軸で前記乖離が発生した観測点を第2シンボルで表示し、前記3次元直交座標系の三つの座標軸で前記乖離が発生した観測点を第3シンボルで表示した乖離発生状況マップを作成して、前記複数の観測点における乖離発生状況を視覚化する乖離視覚化部を備えていてもよい。
 本発明の一態様による地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムにおいては、まず、観測点変動観測工程(観測部、演算部)で、地球の重心を原点とする3次元直交座標系における各観測点の座標値を観測して変動量を3次元直交座標系における各成分毎に求めるため、従来の、固定点と観測点の相対位置から観測点の変位を求める場合と比較し、精度や信頼性の高い観測データ(変動データ)を用いることができる。
 そして、観測点変動観測工程(観測部、演算部)で、各観測点の位置の変動量を3次元直交座標系における各成分毎に求め、各観測点の各成分毎の時系列変動データを取得し、年変動歪周期の基準線設定工程(基準線設定部)で、地殻の可逆変動及び/または非可逆変動のノイズ成分を除去処理した複数の安定変動処理データに基づいて、安定した年変動歪周期を精度よく表す各観測点の各成分毎の年変動歪周期の基準線を得ることができる。
 また、異常地殻変動判定工程(乖離現象確認部、異常地殻変動判定部)では、各観測点で3次元直交座標系における座標値を観測して得た新たな変動データを基準線と対比し、新たな変動データが基準線の上閾値や下閾値から上下に外れる乖離現象の発生を確認することによって、地震等の異常地殻変動が発生すると判定することができる。
 よって、本発明の一態様による地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムにおいては、安定した年変動歪周期を精度よく表す各観測点の基準線を指標とし、この基準線に対する乖離を捉えることで、解析精度、ひいては解析結果の信頼性を大幅に向上させることが可能になるとともに、日々の地殻変動を監視して異常地殻変動が発生する前にその異常を捉えることが可能になる。
 また、本発明の一態様による異常地殻変動地域の特定方法においては、上記のように複数の観測点の各成分毎に基準線に対する乖離の有無を確認しながら地殻変動の監視を行って、3次元直交座標系のいずれか一つの座標軸で乖離が発生した第1パターンの観測点、3次元直交座標系の二つの座標軸で乖離が発生した第2パターンの観測点、3次元直交座標系の三つの座標軸で乖離が発生した第3パターンの観測点の分布状況、及び各パターンの発生頻度を確認することにより、異常地殻変動発生地域を特定することが可能になる。
 さらに、本発明の一態様による地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムにおいては、異常地殻変動終息判定工程(異常地殻変動終息判定部)で、異常地殻変動が発生した後、新たな変動データが基準線に沿うように推移したときに、異常地殻変動が終息したと判定することができ、例えば余震が発生しなくなる時点を判別することが可能になる。
 また、本発明の一態様による地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムにおいては、乖離視覚化工程(乖離視覚化部)で、3次元直交座標系のどの座標軸で乖離が発生しているかによって、各観測点を第1、第2、第3シンボル(第1、第2、第3パターン)で表示した乖離発生状況マップを作成することによって、複数の観測点における乖離発生状況を視覚化することができ、日々の地殻変動を監視して容易に異常地殻変動が発生する前にその異常を捉えることが可能になる。
本発明の一実施形態に係る地殻変動監視システムを示す図である。 本発明の一実施形態に係る地殻変動の監視方法において、地球の重心を原点とする各観測点の3次元直交座標系における座標値を観測し、各観測点の変動量を3次元直交座標系における各成分毎に求め、観測点を歪計として利用することを示した図である。 本発明の一実施形態に係る地殻変動の監視方法が観測点を歪計として利用することを示す図である。 観測点で観測した変動量から求めた変動データ(安定変動データ)を示す図である。 ノイズ成分を除去処理した安定変動処理データの一例を示す図である。 基準線の一例を示す図である。 基準線に対する新たな変動データの乖離現象を示す図である。 観測点の3次元直交座標系における各成分毎の乖離発生状況に応じたパターン、及びシンボルを示す図である。 乖離発生状況マップを示す図である。
 以下、図1から図9を参照し、本発明の一実施形態に係る地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムについて説明する。
 まず、本実施形態の地殻変動監視システムAは、図1に示すように、観測部1と、演算部2と、年変動歪周期の基準線設定部3と、乖離現象確認部4と、異常地殻変動判定部5とを備えて構成されている。
 観測部1は、例えばGPSを用い、地表面上に設定された複数の観測点(GPS受信機、電子基準点)の、地球の重心を原点とする3次元直交座標系における座標値(X軸,Y軸,Z軸上の位置)を観測する。例えば、日本全国には、既に1200箇所以上の観測点が設定されているため、このような既設の観測点や人工衛星などを用いて観測部を構成することができる。
 演算部2は、観測部1で観測される各観測点の座標値の変動量をX,Y,Zの座標軸毎(3次元直交座標系における各成分毎)に算出する。
 ここで、図2に示すように、地球の重心Gは常に安定しているため、この地球の重心Gを固定点(原点)として各観測点MのX,Y,Z座標値を観測すれば、日々変化する各観測点Mの変動量△Lが精度よく算出される。なお、図2に示すように、固定点(Ga、Gb)は、常に安定している地球の重心Gを通るX軸,Y軸,Z軸上に設定することも可能であり、勿論、このように固定点(Ga、Gb)を設定しても、地球の重心Gを固定点としたときと同様に、日々変化する各観測点M(M、M、M、M)の変動量△Lを精度よく算出することができる。そして、図2及び図3のパート(a)、パート(b)に示すように、地球の重心Gを原点とし、ある時点における複数の観測点Mの位置を固定し、この固定した位置に対する各観測点Mの座標を日々観測して、各観測点Mの位置の変動量△LをX,Y,Zの各座標軸毎(各成分毎)に求め、さらに固定した位置Lと変動量△Lから歪を算出する。すなわち、このように地球の重心Gを原点として各観測点MのX,Y,Zの座標軸毎の座標を観測し、各観測点Mの変動量△L、さらに歪を求めることで、複数の観測点Mを歪計として利用することになる。
 また、演算部2は、このように各観測点Mの各成分毎の位置の変動量△L、さらに歪を算出するとともに、例えば、図4に示すように、縦軸を歪、横軸を時間とした時系列的な各観測点MのX,Y,Zの座標軸毎の変動データ10を作成する。
 ここで、図4に示す変動データ10は、一つの観測点Mの例えばX軸の変動データであり、横軸の左側が前年の1月~12月まで、右側がその次の年の1月から12月までを示し、1本の線で示された変動データ(観測線)10が前年から次年までの歪の累積値を示している。また、図4では、ある2年分の歪の累積値を示した一つの変動データ10の横軸右側に示された1年分のデータを、連続する次の2年分の歪の累積値を示す変動データ10の横軸左側の1年分のデータとして、連続する複数年の変動データ10を表している。
 年変動歪周期の基準線設定部3は、変動量△Lから求めた複数年分の時系列的な各観測点MのX,Y,Zの座標軸毎の変動データ10から、図4に示すように、異常地殻変動が発生していない年の安定変動データ10aを複数抽出し、図5に示すように、これらの安定変動データ10aから地殻の可逆変動及び/または非可逆変動のノイズ成分を除去する。そして、ノイズ成分を除去処理した複数の安定変動処理データ10bから、これら安定変動処理データ10bに基づいて図6に示す年変動歪周期の基準線11を設定する。
 乖離現象確認部4は、各観測点MでX,Y,Z座標値を観測して得た新たな変動データ12を基準線11と対比し、基準線11に対する新たな変動データ12の乖離の有無を確認する(図6参照)。
 異常地殻変動判定部5は、乖離現象確認部4で乖離がノイズ成分以外の要因で確認された場合に異常地殻変動が発生すると判定する。
 また、本実施形態の異常地殻変動監視システムAにおいては、図1に示すように、異常地殻変動が終息したと判定する異常地殻変動終息判定部6と、複数の観測点Mにおける乖離発生状況を視覚化する乖離視覚化部7とを備えている。
 そして、本実施形態の地殻変動の監視方法では、はじめに、観測点変動観測工程で、図1及び図2に示すように、観測部1によって、複数の観測点Mを地表面上に設定し、地球の重心Gを原点とする各観測点MのX,Y,Z座標値を観測し、これとともに、演算部2によって、各観測点Mの位置の変動量△LをX,Y,Zの各成分毎に求め、さらに歪を算出する。
 本実施形態の観測点変動観測工程では、常に安定している地球の重心Gを固定点(あるいは地球の重心Gを通るX軸,Y軸,Z軸上の任意の位置を固定点)として各観測点MのX,Y,Zの座標軸毎の位置を観測するため、複数の観測点Mが歪計として利用され、日々変化する各観測点Mの各成分毎の変動量△L、ひいては歪が精度よく算出される。そして、本実施形態では、演算部2によって、このように精度よく算出された歪を縦軸に、時間を横軸にした図4に示すような時系列的な各観測点MのX,Y,Zの座標軸毎の変動データ10の作成が行われる。
 次に、年変動歪周期の基準線設定工程を行う。この年変動歪周期の基準線設定工程では、年変動歪周期の基準線設定部3によって、複数年分の時系列的な各観測点MのX,Y,Zの座標軸毎の変動データ10から、図4に示すように、異常地殻変動が発生していない年の安定変動データ10aを複数抽出する。
 そして、これらの安定変動データ10aから地殻の可逆変動及び/または非可逆変動のノイズ成分を除去して、図5に示すようなノイズ成分を除去処理した複数の安定変動処理データ10bを取得する。図4に示すように各安定変動データ(X軸)10aはバラツキが認められるが、これら安定変動データ10aからノイズ成分を除去すると、図5に示すようにバラツキが大幅に小さくなった安定変動処理データ10bが得られる。ここで、例えば、地殻の可逆変動のノイズ成分としては、積雪、磁気嵐、豪雨、気圧の谷などに伴う地殻の変動が挙げられる。また、地殻の非可逆変動のノイズ成分としては、受信機交換、ピラー傾斜、樹木の繁茂、噴火、地震、低周波微動などに伴う地殻の変動が挙げられる。
 次に、年変動歪周期の基準線設定工程では、ノイズ成分を除去処理した複数の安定変動処理データ10bに基づいて、図6に示すような年変動歪周期の基準線(年変動歪周期の基準帯)11を設定する。複数の安定変動処理データ10bの中間値11a、最上値11b、最下値11cから歪に範囲を持った帯状の基準線11をX,Y,Zの座標軸毎に設定する。なお、所望の上閾値11b、下閾値11cを設定し、これらの上閾値11b、下閾値11cの間の歪の範囲を持った基準線11を設定するようにしてもよい。
 次に、異常地殻変動判定工程を行う。この異常地殻変動判定工程では、図1、図6に示すように、年変動歪周期の基準線設定工程で設定した基準線11と、各観測点MでX,Y,Z座標値を観測して得た新たな変動データ12とを乖離現象確認部4によって対比する。そして、基準線11に対し、図7のパート(a)に示すように新たな変動データ(観測線)12が基準線11から下方に外れたり、また、図7のパート(b)に示すように新たな変動データ12が基準線11から上方に外れる乖離の有無を確認する。
 そして、異常地殻変動判定工程では、このようなノイズ成分以外の要因で乖離が生じたと確認された場合に、異常地殻変動判定部5によって異常地殻変動が発生すると判定される。すなわち、このような乖離現象が生じた場合に、例えば地震が発生する可能性が大きいと判定する。
 また、本実施形態では、乖離視覚化工程で、図8及び図9に示すように、X軸,Y軸,Z軸(3次元直交座標系)のいずれか一つの座標軸で乖離が発生した観測点MをシンボルS1で表示し、X軸,Y軸,Z軸のうち二つの座標軸で乖離が発生した観測点MをシンボルS2で表示し、X軸,Y軸,Z軸の三つの座標軸で乖離が発生した観測点MをシンボルS3で表示し、乖離視覚化部7によって複数の観測点Mにおける乖離発生状況を視覚化した乖離発生状況マップ13を作成する。さらに、本実施形態の地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムAでは、図9に示すように、乖離視覚化工程で経日的(経時的)に乖離発生状況マップ13を更新するように複数作成する。なお、図7に示したように基準線11に対して下方に乖離が生じた場合と上方に乖離が生じた場合のシンボルを変えることがより望ましい。
 これにより、複数の観測点MのX,Y,Zの座標軸毎に基準線11に対する乖離の有無を確認しながら地殻変動の監視を行い、X軸,Y軸,Z軸(3次元直交座標系)のいずれか一つの座標軸で乖離が発生したパターンP1(シンボルS1)の観測点M、X軸,Y軸,Z軸のうち二つの座標軸で乖離が発生したパターンP2(シンボルS2)の観測点M、X軸,Y軸,Z軸の三つの座標軸で乖離が発生したパターンP3(シンボルS3)の観測点Mの分布状況、及び各パターンの発生頻度を確認することによって、異常地殻変動発生地域の特定が容易に行えることになる(図9参照)。例えば、シンボルS3が集中的に発生している場合など、その地域を含む領域を設定し、異常地殻変動発生地域として特定する。
 一方、異常地殻変動判定工程で乖離が確認され、地震等の異常地殻変動が発生すると、図6、図7に示すように、基準線11から大きく逸脱した新たな変動データ12が確認される。そして、大地震時には、その後、余震が続くことにより、新たな変動データ12は安定せず、しばらく経過した段階で、基準線11に沿うように推移する。
 このため、本実施形態の地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムAにおいては、異常地殻変動終息判定工程で、異常地殻変動終息判定部6によって、異常地殻変動が発生した後、新たな変動データ12が基準線11に沿うように推移したときに、異常地殻変動が終息したと判定する。すなわち、地震が発生した後、新たな変動データ12の観測線が基準線11の傾きと略同じ傾きで推移するなど、新たな変動データ12の挙動が基準線11と略一致したとき、余震が発生することがなくなると判定される。
 したがって、本実施形態の地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムAにおいては、まず、観測点変動観測工程(観測部1、演算部2)で、地球の重心Gを原点とする各観測点Mの3次元直交座標系(X軸,Y軸,Z軸の直交座標系)上の位置を観測して変動量を3次元直交座標系における各成分毎に求めるため、従来の、固定点と観測点の相対位置から観測点の変位を求める場合と比較し、精度や信頼性の高い観測データ(変動データ10)を用いることができる。
 そして、観測点変動観測工程(観測部1、演算部2)で、各観測点Mの位置の変動量△Lを3次元直交座標系における各成分毎に求め、各観測点Mの各成分毎の時系列的な変動データ10を取得し、年変動歪周期の基準線設定工程(年変動歪周期の基準線設定部3)で、地殻の可逆変動及び/または非可逆変動のノイズ成分を除去処理した複数の安定変動処理データ10bに基づいて、安定した年変動歪周期を精度よく表す各観測点Mの各成分毎の年変動歪周期の基準線11を得ることができる。
 また、異常地殻変動判定工程(乖離現象確認部4、異常地殻変動判定部5)で、各観測点Mで3次元直交座標を観測して得た新たな変動データ12を基準線11と対比し、新たな変動データ12が基準線11の上閾値11bや下閾値11cから上下に外れる乖離現象の発生を確認することによって、地震等の異常地殻変動が発生すると判定することができる。
 よって、本実施形態の地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムAにおいては、安定した年変動歪周期を精度よく表す各観測点Mの基準線11を指標とし、この基準線11に対する乖離を捉えることで、解析精度、ひいては解析結果の信頼性を大幅に向上させることが可能になるとともに、日々の地殻変動を監視して異常地殻変動が発生する前にその異常を捉えることが可能になる。
 また、本実施形態の異常地殻変動地域の特定方法においては、複数の観測点Mの各成分毎に基準線11に対する乖離の有無を確認しながら地殻変動の監視を行って、3次元直交座標系のいずれか一つの座標軸で乖離が発生したパターンP1の観測点M、3次元直交座標系のうち二つの座標軸で乖離が発生したパターンP2の観測点M、3次元直交座標系の三つの座標軸で乖離が発生したパターンP3の観測点Mの分布状況、及び各パターンの発生頻度を確認することにより、異常地殻変動発生地域を特定することが可能になる。
 さらに、本実施形態の地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムAにおいては、異常地殻変動終息判定工程(異常地殻変動終息判定部6)で、異常地殻変動が発生した後、新たな変動データ12が基準線11に沿うように推移したときに、異常地殻変動が終息したと判定することができ、例えば余震が発生しなくなる時点を判別することが可能になる。
 また、本実施形態の地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムAにおいては、乖離視覚化工程(乖離視覚化部7)で、3次元直交座標系のどの座標軸で乖離が発生しているかによって、各観測点MをシンボルS1、S2、S3(パターンP1、P2、P3)で表示した乖離発生状況マップ13を作成することによって、複数の観測点Mにおける乖離発生状況を視覚化することができ、日々の地殻変動を監視して容易に異常地殻変動が発生する前にその異常を捉えることが可能になる。
 以上、本発明に係る地殻変動の監視方法及び異常地殻変動地域の特定方法並びに地殻変動監視システムの一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、異常地殻変動が地震によるものとして説明を行ったが、例えば火山活動などに伴う地殻変動の監視や異常地殻変動地域の特定に本発明を適用してもよく、本発明は、地殻変動を伴う現象であれば、あらゆるケースに適用可能である。
本発明の上記各種態様は、地震予知、火山噴火予知等に利用することができる。
1 観測部
2 演算部
3 年変動歪周期の基準線設定部
4 乖離現象確認部
5 異常地殻変動判定部
6 異常地殻変動終息判定部
7 乖離視覚化部
10 変動データ
10a 安定変動データ
10b 安定変動処理データ
11 基準線(基準帯)
11b 上閾値(最大値)
11c 下閾値(最小値)
12 新たな変動データ
13 乖離発生状況マップ
A 地殻変動監視システム
G 地球の重心
M 観測点(電子基準点)

Claims (7)

  1.  複数の観測点を地表面上に設定し、地球の重心を原点とする3次元直交座標系における前記各観測点の座標値を観測し、前記各観測点の座標値の変動量を前記3次元直交座標系における各成分毎に求める観測点変動観測工程と、
     前記各観測点について、かつ前記各成分について、前記変動量から求めた複数年分の時系列変動データから、異常地殻変動が発生していない年の安定変動データを複数抽出するとともに、該安定変動データから地殻の可逆変動及び/または非可逆変動のノイズ成分を除去し、ノイズ成分を除去処理した複数の安定変動処理データに基づいて年変動歪周期の基準線を設定する基準線設定工程と、
     前記各観測点で前記3次元直交座標系における座標値を観測して得た新たな変動データを前記基準線と対比し、前記基準線に対する前記新たな変動データの乖離の有無を確認し、該乖離が前記ノイズ成分以外の要因で確認された場合に異常地殻変動が発生すると判定する異常地殻変動判定工程と、を備えた地殻変動の監視方法。
  2.  請求項1記載の地殻変動の監視方法であって、
     異常地殻変動が発生した後、前記新たな変動データが前記基準線に沿うように推移したときに、異常地殻変動が終息したと判定する異常地殻変動終息判定工程を備えた地殻変動の監視方法。
  3.  請求項1または請求項2に記載の地殻変動の監視方法であって、
     前記3次元直交座標系のいずれか一つの座標軸で前記乖離が発生した観測点を第1シンボルで表示し、前記3次元直交座標系のうち二つの座標軸で前記乖離が発生した観測点を第2シンボルで表示し、前記3次元直交座標系の三つの座標軸で前記乖離が発生した観測点を第3シンボルで表示した乖離発生状況マップを作成し、前記複数の観測点における乖離発生状況を視覚化する乖離視覚化工程を備えた地殻変動の監視方法。
  4.  請求項1から請求項3のいずれかに記載の地殻変動の監視方法によって地殻変動の監視を行い、
     前記3次元直交座標系のいずれか一つの座標軸で前記乖離が発生した第1パターンの観測点、前記3次元直交座標系の二つの座標軸で前記乖離が発生した第2パターンの観測点、前記3次元直交座標系の三つの座標軸で前記乖離が発生した第3パターンの観測点の分布状況、及び各パターンの発生頻度から、異常地殻変動発生地域を特定する、異常地殻変動発生地域の特定方法。
  5.  複数の観測点を地表面上に設定し、地球の重心を原点とする3次元直交座標系における前記各観測点の座標値を観測する観測部と、
     前記各観測点の座標値の変動量を前記3次元直交座標系における各成分毎に算出する演算部と、
     前記各観測点について、かつ前記各成分について、前記変動量から求めた複数年分の時系列変動データから、異常地殻変動が発生していない年の安定変動データを複数抽出するとともに、該安定変動データから地殻の可逆変動及び/または非可逆変動のノイズ成分を除去し、ノイズ成分を除去処理した複数の安定変動処理データに基づいて年変動歪周期の基準線を設定する基準線設定部と、
     前記各観測点で前記3次元直交座標系における座標値を観測して得た新たな変動データを前記基準線と対比し、前記基準線に対する前記新たな変動データの乖離の有無を確認する乖離現象確認部と、
     前記乖離が前記ノイズ成分以外の要因で確認された場合に異常地殻変動が発生すると判定する異常地殻変動判定部と、を備えた地殻変動監視システム。
  6.  請求項5記載の地殻変動監視システムであって、
     異常地殻変動が発生した後、前記新たな変動データが前記基準線に沿うように推移したときに、異常地殻変動が終息したと判定する異常地殻変動終息判定部を備えた地殻変動監視システム。
  7.  請求項5または請求項6に記載の地殻変動監視システムであって、
     前記3次元直交座標系のいずれか一つの座標軸で前記乖離が発生した観測点を第1シンボルで表示し、前記3次元直交座標系の二つの座標軸で前記乖離が発生した観測点を第2シンボルで表示し、前記3次元直交座標系の三つの座標軸で前記乖離が発生した観測点を第3シンボルで表示した乖離発生状況マップを作成して、前記複数の観測点における乖離発生状況を視覚化する乖離視覚化部を備えた地殻変動監視システム。
PCT/JP2012/073039 2011-09-21 2012-09-10 地殻変動の監視方法及び異常地殻変動発生地域の特定方法並びに地殻変動監視システム WO2013042567A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-206069 2011-09-21
JP2011206069A JP5915987B2 (ja) 2011-09-21 2011-09-21 地殻変動の監視方法及び異常地殻変動発生地域の特定方法並びに地殻変動監視システム

Publications (1)

Publication Number Publication Date
WO2013042567A1 true WO2013042567A1 (ja) 2013-03-28

Family

ID=47914340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073039 WO2013042567A1 (ja) 2011-09-21 2012-09-10 地殻変動の監視方法及び異常地殻変動発生地域の特定方法並びに地殻変動監視システム

Country Status (2)

Country Link
JP (1) JP5915987B2 (ja)
WO (1) WO2013042567A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108734609A (zh) * 2018-05-24 2018-11-02 深圳市鹰硕技术有限公司 基于数学模型的地球板块运动教学方法以及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024975B2 (ja) * 2013-01-15 2016-11-16 清水建設株式会社 地殻変動の監視方法及び地殻変動監視システム
JP6397972B1 (ja) * 2017-08-09 2018-09-26 公立大学法人兵庫県立大学 地震予測装置、地震予測マップ作成装置、地震予測方法、地震予測マップ作成方法、およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215259A (ja) * 2002-01-22 2003-07-30 Yamaha Corp 情報収集システムおよび地震予知方法
JP2006234746A (ja) * 2005-02-28 2006-09-07 Kazuo Omura 地震予知法
JP4139229B2 (ja) * 2003-01-07 2008-08-27 清水建設株式会社 地盤災害予測方法、地盤災害予測システム及び地盤災害予測プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215259A (ja) * 2002-01-22 2003-07-30 Yamaha Corp 情報収集システムおよび地震予知方法
JP4139229B2 (ja) * 2003-01-07 2008-08-27 清水建設株式会社 地盤災害予測方法、地盤災害予測システム及び地盤災害予測プログラム
JP2006234746A (ja) * 2005-02-28 2006-09-07 Kazuo Omura 地震予知法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKIO KOBAYASHI: "Spatial monitoring of GPS coordinates using 6-hour analysis in the Tokai area", QUARTERLY JOURNAL OF SEISMOLOGY, vol. 70, no. 1-4, March 2007 (2007-03-01), pages 67 - 72 *
KUNIHIKO SHIMAZAKI: "Sotei Tokai Jishin to sono Shingen'iki no Saikin Josei", KENCHIKU BOSAI, no. 296, 1 September 2002 (2002-09-01), pages 11 - 16 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108734609A (zh) * 2018-05-24 2018-11-02 深圳市鹰硕技术有限公司 基于数学模型的地球板块运动教学方法以及装置
CN108734609B (zh) * 2018-05-24 2021-02-02 深圳市鹰硕技术有限公司 基于数学模型的地球板块运动教学方法以及装置

Also Published As

Publication number Publication date
JP2013068469A (ja) 2013-04-18
JP5915987B2 (ja) 2016-05-11

Similar Documents

Publication Publication Date Title
Ghanem et al. Health monitoring for strongly non‐linear systems using the Ensemble Kalman filter
US20170307360A1 (en) Status determination device and status determination method
JP6024975B2 (ja) 地殻変動の監視方法及び地殻変動監視システム
JP4191772B1 (ja) 異常要因特定方法およびシステム、上記異常要因特定方法をコンピュータに実行させるためのプログラム、並びに上記プログラムを記録したコンピュータ読み取り可能な記録媒体
JP2014137323A (ja) 異常診断装置およびこれを用いた異常診断方法
WO2013042567A1 (ja) 地殻変動の監視方法及び異常地殻変動発生地域の特定方法並びに地殻変動監視システム
CN102539192B (zh) 一种基于ica重构的故障预测方法
CN103095485A (zh) 基于贝叶斯算法及矩阵方法相结合的网络风险评估方法
US10311703B1 (en) Detection of spikes and faults in vibration trend data
CN116738353B (zh) 基于数据分析的制药车间空气滤芯性能检测方法
CN111597970A (zh) 异常行为的识别方法及装置
WO2017035377A1 (en) History compare software
CN111400911A (zh) 一种基于ewma控制图的gnss变形信息识别与预警方法
CN118311645A (zh) 一种地震前兆信息提取方法、装置、设备及存储介质
JP6894319B2 (ja) ボルト緩み検査装置
CN113761048B (zh) 地质灾害异常数据可视化处理方法及系统
JP4608643B2 (ja) 地震の予知方法、地震の予知システム、地震の予知プログラム及び記録媒体
CN116678368A (zh) 基于bim技术的装配式钢结构数据智能采集方法
JP6457276B2 (ja) 地震動補正装置、それを用いた地震動補正システム、及び地震動補正方法
CN110984114A (zh) 一种深基坑全周期动态监测方法
CN113627051B (zh) 一种重力异常场分离方法、系统、存储介质和电子设备
CN115451904A (zh) 基于三维gis的变形监测系统
CN104731056B (zh) 快速判断化工生产装置的运行稳定性的方法
CN109828146B (zh) 一种通过设备电参数ad采样判断设备工况的方法
CN116089866B (zh) 基于振动信号的设备故障分析方法、系统、终端及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014/03141

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834452

Country of ref document: EP

Kind code of ref document: A1