WO2013042237A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2013042237A1
WO2013042237A1 PCT/JP2011/071592 JP2011071592W WO2013042237A1 WO 2013042237 A1 WO2013042237 A1 WO 2013042237A1 JP 2011071592 W JP2011071592 W JP 2011071592W WO 2013042237 A1 WO2013042237 A1 WO 2013042237A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
correction wave
motor
control device
correction
Prior art date
Application number
PCT/JP2011/071592
Other languages
English (en)
French (fr)
Inventor
一将 伊藤
田邊 哲也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201180073562.3A priority Critical patent/CN103814517B/zh
Priority to PCT/JP2011/071592 priority patent/WO2013042237A1/ja
Priority to JP2013534538A priority patent/JP5755334B2/ja
Priority to KR1020147008806A priority patent/KR101543976B1/ko
Priority to US14/238,620 priority patent/US20140210388A1/en
Priority to DE112011105652.4T priority patent/DE112011105652T8/de
Priority to TW101100278A priority patent/TWI487267B/zh
Publication of WO2013042237A1 publication Critical patent/WO2013042237A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present invention relates to a motor control device, and more particularly to a motor control device that drives and controls a motor that uses a permanent magnet.
  • the motor generates torque depending on the relative angle between the stator and the rotor, but the torque generated by the motor using the permanent magnet has a harmonic component and pulsates.
  • This torque pulsation is divided into the following two.
  • One is called a torque ripple whose amplitude changes according to the magnitude of the generated torque.
  • the other is called cogging torque in which the amplitude shows a fixed value regardless of the magnitude of the generated torque. Since such torque pulsation also causes uneven motor speed and positional deviation, various attempts have been made to control the torque pulsation in a controlled manner (for example, Patent Documents 1 to 3). etc).
  • the pulsation of torque is divided into a fixed amplitude type cogging torque that does not depend on the generated torque of the motor and a variable amplitude type torque ripple that is proportional to the generated torque, and the motor at the time that is reflected in the actual torque.
  • a predictive control technique for predicting an angle and correcting torque ripple is disclosed.
  • a torque ripple correction wave is obtained by selecting a torque ripple correction wave as amplitude and phase data for each frequency, generating m sine wave signals, and synthesizing them. Further, it claims that torque ripples that are not an integral multiple of the electrical angular frequency of the motor are present, and a torque ripple correction method for eliminating torque ripples depending on the machine position of the motor is disclosed.
  • parameters for phase and amplitude for correcting the sixth harmonic component of torque ripple are selected according to the sign of output torque, and the motor is driven and controlled using a correction wave based on this parameter. Techniques to do this are disclosed.
  • JP 11-299277 A Japanese Patent Laying-Open No. 2005-80482 JP 2010-239681 A
  • Patent Document 3 discloses a technique for changing the amplitude and phase of a torque ripple correction wave depending on whether the torque is positive or negative.
  • a correction method related to cogging torque there is no disclosure or suggestion regarding a correction method related to cogging torque.
  • the angular frequency is only a description relating to the sixth harmonic, and further technical development is required to perform better torque ripple correction.
  • the present invention has been made in view of the above. With a simple configuration, the present invention appropriately reduces two types of torque pulsations according to the positive and negative state quantities that define the drive state that causes pulsation in the torque generated by the motor. It is an object of the present invention to obtain a motor control device that can perform correction.
  • the present invention provides a motor control device that controls driving of a motor based on an input torque command, and defines a driving state that causes pulsation in the generated torque of the motor.
  • Correction wave information corresponding to the positive and negative indicated by the determination result of the positive / negative determination unit from a positive / negative determination unit for determining whether the state quantity to be positive or negative is positive and negative and a storage unit for storing correction wave information
  • a correction wave generation unit that generates a sine wave-shaped correction wave for periodic torque pulsation based on the selected correction wave information, instead of the input torque command.
  • the motor is driven and controlled based on a correction torque command obtained by synthesizing the torque command and the generated correction wave.
  • correction wave information is prepared in a storage unit in advance, a state quantity (torque command, motor speed) that defines a drive state that causes pulsation in the generated torque of the motor is monitored, and the state quantity is positive.
  • the correction wave information corresponding to whether it is negative or negative is selected from the storage unit, and based on the selected correction wave information, a sine wave-shaped correction wave for periodic torque pulsation (torque ripple, cogging torque) is generated, Since the motor is driven and controlled based on a correction torque command obtained by combining the torque command and the generated correction wave instead of the torque command input from the host device to drive and control the motor, the torque of 2
  • the torque ripple There is an effect that it is possible to perform correction to reduce types of pulsations (torque ripple, cogging torque).
  • FIG. 1 is a block diagram illustrating a configuration example of a motor drive system to which a motor control device according to a first embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing the configuration of the motor control apparatus according to the first embodiment of the present invention shown in FIG.
  • FIG. 3 is a block diagram illustrating a configuration example of the torque control unit illustrated in FIG. 2.
  • FIG. 4 is a diagram showing a torque pulsation waveform when positive torque and negative torque are generated.
  • FIG. 5 is a diagram showing the amplitude of the result of order decomposition of the torque pulsation waveform shown in FIG.
  • FIG. 6 is a diagram showing a phase offset as a result of order decomposition of the torque pulsation waveform shown in FIG.
  • FIG. 1 is a block diagram illustrating a configuration example of a motor drive system to which a motor control device according to a first embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing the configuration of the motor
  • FIG. 7 is a block diagram showing the configuration of the motor control device according to the second embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a configuration example of the torque control unit illustrated in FIG. 7.
  • FIG. 9 is a block diagram showing the configuration of the motor control apparatus according to the third embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a configuration example of the torque control unit illustrated in FIG. 9.
  • FIG. 11 is a diagram illustrating an example of the contents stored in the four correction wave information storage units illustrated in FIG.
  • FIG. 12 is a diagram for explaining the relationship between the amplitude ratio of the harmonics (correction wave) and the absolute value of the torque command.
  • FIG. 13 is a block diagram illustrating another configuration example of the torque control unit illustrated in FIG.
  • FIG. 14 is a block diagram showing a configuration example of a motor drive system including a motor control device according to Embodiment 5 of the present invention.
  • FIG. 15 is a block diagram illustrating a configuration example of a motor drive system including a motor control device according to Embodiment 6 of the present invention.
  • FIG. 16 is a conceptual diagram illustrating a configuration example of a motor to be driven as a seventh embodiment of the present invention.
  • FIG. 17 is a conceptual diagram illustrating another configuration example of a motor to be driven as a seventh embodiment of the present invention.
  • FIG. 18 is a diagram for explaining the flow of magnetic flux when driving force is generated in the motor shown in FIGS. 16 and 17.
  • FIG. 19 is a diagram showing a torque ripple waveform in a motor cross section of the motor shown in FIGS. 16 and 17.
  • FIG. 1 is a block diagram illustrating a configuration example of a motor drive system including a motor control device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the motor control apparatus according to the first embodiment of the present invention shown in FIG.
  • FIG. 3 is a block diagram illustrating a configuration example of the torque control unit illustrated in FIG. 2.
  • a correction method for reducing torque ripple in the pulsation of generated torque will be described.
  • a motor 1 is a motor that uses a permanent magnet, and generates torque ripple and cogging torque as torque pulsation.
  • a position sensor 2 is attached to the motor 1.
  • the inverter circuit 3 includes a three-phase bridge circuit including a plurality of switching elements (generally IGBTs or MOSFETs are used).
  • the capacitor 4 is a DC power source that stores DC power serving as a power source for the motor 1 by a known method.
  • a current sensor 5 is disposed on a power cable connecting the inverter circuit 3 and the motor 1.
  • the three-phase bridge circuit in the inverter circuit 3 is formed and disposed between the positive electrode end and the negative electrode end of the capacitor 4 that is a DC power supply. Specifically, in the three-phase bridge circuit, two switching elements are connected in series between the positive electrode end and the negative electrode end of the capacitor 4, and three of the series circuits are connected in parallel. It is formed in a shape.
  • the inverter circuit 3 When the inverter circuit 3 receives drive signals pu, nu, pv, nv, pw, nw for turning on / off a plurality of switching elements constituting a three-phase bridge circuit from the motor control device 6a according to the first embodiment.
  • the DC power stored in the capacitor 4 is converted into three-phase AC power having an arbitrary frequency and voltage and supplied to the motor 1.
  • the motor 1 is driven to rotate, and a predetermined torque is generated in the motor 1.
  • the motor position Theta at this time is detected by the position sensor 2 and input to the motor control device 6a according to the first embodiment as a feedback signal. Further, the three-phase motor current flowing in the motor 1 at this time is detected by the current sensor 5 and digitized by the A / D converter 7 to become the three-phase digital motor currents Iu, Iv, Iw, and feedback. The signal is input to the motor control device 6a according to the first embodiment.
  • the motor control device 6a is based on the torque command Tref output from the host device 8, the motor position Theta that is a feedback signal, and the three-phase digital motor currents Iu, Iv, Iw.
  • the drive signals pu, nu, pv, nv, pw, nw to 3 are calculated and generated.
  • the motor control device 6a uses the torque command Tref output from the host device 8 as a state quantity that defines a driving state in which one of two types of torque pulsations (torque ripple) is generated. Based on the input and the motor position Theta, control is performed to reduce the periodically generated torque ripple, and the control result is generated for calculation generation of the drive signals pu, nu, pv, nv, pw, nw given to the inverter circuit 3 It is supposed to be reflected.
  • torque ripple torque ripple
  • the motor control device 6 a includes a torque control unit 10 a, a current control unit 11, and a voltage control unit 12.
  • the torque control unit 10a receives the d-axis and q-axis current commands idref and iqref given to the current control unit 11 according to the torque command Tref from the host device 8 as a conventional operation. Calculate.
  • the torque command Tref from the host device 8 is taken in as a state quantity that defines the driving state of the motor 1 that generates torque ripple, and based on this and the motor position Theta, Control for reducing periodically generated torque ripple is performed, and the result of the torque ripple reduction control is reflected in d-axis and q-axis current commands idref and iqref given to the current control unit 11. Specifically, it will be described later.
  • the current control unit 11 includes a three-phase / two-phase conversion unit 13, subtracters 14 and 15, for example, PID control units 16 and 17.
  • a PI control unit may be used instead of the PID control units 16 and 17.
  • the three-phase / two-phase conversion unit 13 converts the three-phase digital motor currents Iu, Iv, Iw digitized by the A / D converter 7 into a d-axis current id and a q-axis current iq at the motor position Theta.
  • the subtractor 14 obtains a difference (d-axis current deviation) between the d-axis current command idref output by the torque control unit 10a and the d-axis current id converted and output by the three-phase / two-phase conversion unit 13 and calculates the difference (PID control unit 16). Output to.
  • the subtractor 15 obtains a difference (q-axis current deviation) between the q-axis current command iqref output from the torque control unit 10a and the q-axis current iq converted and output by the three-phase / two-phase conversion unit 13, and calculates the difference (PID control unit 17). Output to.
  • the PID control units 16 and 17 perform PID control so that the current deviations of the d-axis and the q-axis output from the subtracters 14 and 15 become small, and the d-axis voltage command Vdref and the q-axis to be given to the voltage control unit 12. Voltage command Vqref is set.
  • the voltage control unit 12 includes a two-phase / three-phase conversion unit 18 and a PWM control unit 19.
  • the two-phase three-phase conversion unit 18 converts the d-axis voltage command Vdref and the q-axis voltage command Vqref output from the current control unit 11 into three-phase voltage commands Vudref, Vvdref, and Vwdref at the motor position Theta.
  • the PWM controller 19 generates drive signals pu, nu, pv, nv, pw, nw, which are PWM signals, from the three-phase voltage commands Vudref, Vvdref, Vwdref converted and output by the two-phase / three-phase converter 18, and an inverter Output to circuit 3.
  • the torque control unit 10 a has a configuration in which a correction wave calculation unit 20 and a torque command synthesis unit 21 are added to the input stage of the current command generation unit 22.
  • the correction wave calculation unit 20 includes a correction wave information selection unit 24, a torque command positive / negative determination unit 25, and a torque ripple correction wave generation unit 26.
  • the correction wave information selection unit 24 includes a storage unit 28 that stores positive correction wave information, a storage unit 29 that stores negative correction wave information, and a selection circuit 30.
  • the torque command Tref output from the host device 8 is input to the torque command combining unit 21 and input to the torque command positive / negative determining unit 25 and the torque ripple correction wave generating unit 26 as a state quantity that defines the driving state of the motor 1. Is done.
  • the output (correction wave information) of the selection circuit 30 and the motor position Theta are input to the torque ripple correction wave generation unit 26.
  • the torque command positive / negative determination unit 25 determines whether the torque command Tref input from the host device 8 is positive or negative and outputs the determination result to the selection circuit 30.
  • the selection circuit 30 selects the correction wave information stored in one of the storage unit 28 and the storage unit 29 according to the determination result of the torque command positive / negative determination unit 25 and outputs the correction wave information to the torque ripple correction wave generation unit 26.
  • the torque ripple correction wave generator 26 is a sinusoidal torque at the motor position Theta based on the torque command Tref (that is, the state quantity of the motor 1) input from the host device 8 and the correction wave information selected by the selection circuit 30.
  • a ripple correction wave Ttr is generated and output to the torque command synthesis unit 21.
  • the amplitude of the torque ripple correction wave Ttr depends on the amplitude of the torque generated by the torque command Tref.
  • the torque command combining unit 21 combines the torque command Tref input from the host device 8 and the torque ripple correction wave Ttr generated by the torque ripple correction wave generating unit 26 to generate a corrected torque command Tref2.
  • the current command generator 22 generates a d-axis current command idref and a q-axis current command iqref based on the corrected torque command Tref2 generated by the torque command synthesizer 21 and outputs it to the current controller 11.
  • the correction operation for reducing the torque ripple in the torque generated by the motor 1 is performed by the cooperative operation of the current control unit 11 and the voltage control unit 12.
  • the correction wave information stored in the storage units 28 and 29 will be described.
  • the correction wave information used for generating the torque ripple correction wave Ttr includes harmonic order information, a ratio (amplitude ratio) of the amplitude of the harmonic (correction wave) to the torque command Tref, and a phase (offset of the harmonic (correction wave)). Phase).
  • the storage units 28 and 29 store the harmonic order information and the amplitude ratio and phase (offset phase) associated with the harmonic order information.
  • FIG. 4 is a diagram showing a torque pulsation waveform when positive torque and negative torque are generated.
  • FIG. 5 is a diagram showing the amplitude of the result of order decomposition of the torque pulsation waveform shown in FIG.
  • FIG. 6 is a diagram showing a phase offset as a result of order decomposition of the torque pulsation waveform shown in FIG.
  • FIG. 4 (a) shows a torque pulsation waveform when a positive torque is generated
  • FIG. 4 (b) shows a torque pulsation waveform when a negative torque is generated
  • 4 (a) and 4 (b) show results obtained by experimentally acquiring a torque pulsation waveform with a torque meter when torque is generated by applying a constant load while rotating the motor 1 in the same rotational direction. . In the experiment, the absolute value of the time average value of the torque was made the same. It can be seen that the torque pulsation waveforms are clearly different between FIGS.
  • the harmonic order of torque pulsation (that is, torque ripple) depends on whether the generated torque is positive or negative. Focusing on the difference in components, a positive storage unit 28 and a negative storage unit 29 are prepared separately, and the corrective correction wave information mainly including positive harmonic order information is stored in the storage unit 28.
  • the storage unit 29 stores negative correction wave information mainly including negative harmonic order information, and selects the corresponding harmonic order information according to the sign of the torque command Tref, which is the motor state quantity.
  • the torque ripple correction wave is generated based on the selected harmonic order information and the motor position Theta.
  • the rotating machine frequency of the motor 1 depends on the rotational speed, and the motor 1 driven by the AC power frequency-converted by the inverter circuit 3 can rotate at various rotational speeds.
  • the correction wave information stored in the storage units 28 and 29 includes, in addition to the harmonic order information, a torque ripple correction wave (that is, a harmonic component) generated by the torque ripple correction wave generation unit 26 with respect to the torque command Tref. It is preferable to store the amplitude ratio An and the phase offset amount ⁇ n in association with the harmonic order n. As shown in FIG. 5, the 24th order amplitude is greatly different between positive torque (a) and negative torque (b), and the amplitude ratio An is switched simultaneously rather than simply switching the order n. It is considered that the effect of reducing torque pulsation (torque ripple) is greater. The same applies to the phase offset amount ⁇ n.
  • phase offset amount ⁇ n is different between when the positive torque is generated (a) and when the negative torque is generated (b).
  • the phase offset amount ⁇ n of the 24th harmonic is ⁇ 150 ° when the positive torque is generated (a), and + 135 ° when the negative torque is generated (b), which is different. Therefore, it is preferable to switch the phase offset amount ⁇ n simultaneously with the harmonic order n.
  • the sinusoidal torque ripple correction wave Ttr generated by the torque ripple correction wave generation unit 26 is obtained by using the above-described multiple (harmonic order) n, the amplitude ratio An of the harmonic (torque ripple correction wave Ttr), and the phase offset amount ⁇ n.
  • n multiple (harmonic order)
  • An of the harmonic torque ripple correction wave Ttr
  • ⁇ n phase offset amount
  • FIGS. 11A and 11B An example of the storage contents of the storage units 28 and 29 is shown in FIGS. 11A and 11B described later. It shows that the amplitude ratio and the phase offset amount are stored in association with the order.
  • correction wave information is prepared in a storage unit in advance, and a motor that generates torque ripple is provided.
  • the torque command input from the host device which is a state quantity that defines the drive state, is monitored, it is determined whether the acquired torque command is positive or negative, and correction wave information corresponding to the positive / negative is obtained.
  • the correction wave information stored in the storage unit includes harmonic order information and the corresponding amplitude ratio and phase. Is the harmonic order information positive or negative of the torque command? Therefore, it is only necessary to store only necessary harmonic order information in accordance with the sign of the torque command in the storage unit. Therefore, information such as the amplitude ratio and phase to be stored corresponding to the harmonic order information can be reduced, and the capacity of the storage unit can be reduced.
  • FIG. 7 is a block diagram showing the configuration of the motor control device according to the second embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a configuration example of the torque control unit illustrated in FIG. 7.
  • a correction method for reducing the cogging torque in the pulsation of the generated torque will be described. Since the components of the motor drive system are the same as those in FIG. 1, the illustration is omitted, and FIG. 7 (motor control device) and FIG. 8 (torque control unit) are shown.
  • the motor control device 6b according to the second embodiment is provided with a torque control unit 10b instead of the torque control unit 10a in the motor control device 6a shown in FIG. 2 (first embodiment).
  • Other configurations are the same as those in FIG.
  • the torque control unit 10 b is a state quantity of the motor 1 that defines a driving state that generates another one of two types of torque pulsations (cogging torque). A certain motor speed is input. The motor speed is obtained from the detected motor position Theta.
  • the torque control part 10b is provided with the correction wave calculation part 34 instead of the correction wave calculation part 20 in the torque control part 10a shown in FIG. 3 (Example 1).
  • the correction wave calculation unit 34 includes a correction wave information selection unit 35 in place of the correction wave information selection unit 24 in the correction wave calculation unit 20, a motor speed determination unit 36 in place of the torque command positive / negative determination unit 25, and torque ripple correction.
  • a cogging torque correction wave generation unit 37 is provided instead of the wave generation unit 26.
  • the correction wave information selection unit 35 includes a storage unit 38 that stores positive correction wave information, a storage unit 39 that stores negative correction wave information, and a selection circuit 40.
  • the correction wave information stored in the storage units 38 and 39 includes a harmonic order, correction wave amplitude and phase for cogging torque correction.
  • Cogging torque is generated at a fixed size regardless of the magnitude of the generated torque, but the shape of the mechanical parts such as pulleys, gears, and ball screws connected to the shaft end of the motor, and the transmission system such as backlash Due to the structure, pulsations with different harmonic orders can be generated during normal rotation and reverse rotation of the motor. Therefore, for example, when performing motor positioning operation, harmonics of cogging torque correction necessary to obtain good positioning characteristics when stopping the motor from the forward rotation state and when stopping the motor from the reverse rotation state Different orders can occur.
  • the speed of the motor 1 is obtained and monitored from the detected motor position Theta, the positive / negative of the motor speed is determined by the motor speed positive / negative determining unit 36, and based on the determination result,
  • the selection circuit 40 switches between using the stored information in the positive correction wave information storage unit 38 and using the stored information in the negative correction wave storage unit 39.
  • the cogging torque correction wave generation unit 37 generates a sinusoidal cogging torque correction wave Tco at the motor position Theta using the correction wave information stored in one of the correction wave information storage units 38 and 39, and generates a torque command synthesis. To the unit 21.
  • the amplitude of the cogging torque correction wave Tco is a constant value independent of the amplitude of the torque command Tref.
  • the torque command combining unit 21 combines the torque command Tref input from the host device 8 and the cogging torque correction wave Tco generated by the cogging torque correction wave generating unit 37 to generate a corrected torque command Tref2.
  • the current command generator 22 generates a d-axis current command idref and a q-axis current command iqref based on the corrected torque command Tref2 generated by the torque command synthesizer 21 and outputs it to the current controller 11.
  • a correction operation for reducing the cogging torque in the generated torque of the motor 1 is performed by the cooperative work of the current control unit 11 and the voltage control unit 12.
  • the correction wave information stored in the storage units 38 and 39 will be described.
  • the correction wave information used for generating the cogging torque correction wave Tco includes harmonic order information, the amplitude of the harmonic (correction wave), and the phase of the harmonic (correction wave).
  • the storage units 38 and 39 store harmonic order information, the amplitude of the harmonic (correction wave) and the phase of the harmonic (correction wave) in association with each other.
  • the storage units 38 and 39 preferably store the harmonic amplitude Bn and the phase offset amount ⁇ n of the harmonic order n in association with the harmonic order n.
  • the first embodiment stores the amplitude ratio An of the torque pulsation component of the harmonic order relative to the torque command Tref, whereas the second embodiment stores the amplitude Bn of the torque pulsation. This is because the cogging torque does not depend on the generated torque.
  • the sinusoidal cogging torque correction wave Tco generated by the cogging torque correction wave generation unit 37 is the above-described multiple (harmonic order) n and the amplitude of the harmonic (cogging torque correction wave Tco).
  • Bn and the phase offset amount ⁇ n it is expressed by Expression (2).
  • FIGS. 11C and 11D examples of stored contents of the storage units 38 and 39 are shown in FIGS. 11C and 11D described later. It shows that the amplitude and the phase offset amount are stored in association with the order.
  • the driving state of the motor that generates the cogging torque by preparing correction wave information in the storage unit in advance.
  • the motor speed which is a state quantity that defines the motor speed, is monitored, whether the motor speed is positive or negative, and correction wave information corresponding to the positive / negative is selected from the storage unit, and the selected correction wave
  • a correction torque command that generates a sinusoidal correction wave for periodic torque pulsation (cogging torque) and combines the torque command and the generated correction wave instead of the torque command input from the host device Therefore, the d-axis and q-axis current commands to be supplied to the current control unit are generated, so that it is possible to appropriately correct the torque pulsation (cogging torque).
  • the correction wave information stored in the storage unit includes the harmonic order information and the corresponding amplitude and phase.
  • the harmonic order information depends on whether the motor speed is positive or negative. Since they are different, it is only necessary to store only the necessary harmonic order information in accordance with the sign of the motor speed. Therefore, information such as amplitude and phase to be stored corresponding to the harmonic order information can be reduced, and the capacity of the storage unit can be reduced.
  • FIG. 9 is a block diagram showing the configuration of the motor control apparatus according to the third embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a configuration example of the torque control unit illustrated in FIG. 9.
  • the torque ripple correction method described in the first embodiment and the cogging torque correction method described in the second embodiment are performed in parallel will be described. Since the components of the motor drive system are the same as those in FIG. 1, the illustration is omitted, and FIG. 9 (motor controller) and FIG. 10 (torque controller) are shown.
  • the torque command Tref output from the host device 8 is taken into the torque control unit 10c, and the torque command Tref is input as one state quantity.
  • the motor speed is input as another state quantity.
  • the correction wave calculation unit 41 in the torque control unit 10 c includes, for example, the correction wave calculation unit 20 illustrated in FIG. 3, the correction wave calculation unit 34 illustrated in FIG. 8, and an adder 42. Can do.
  • the adder 42 adds the torque ripple correction wave Ttr generated by the correction wave calculation unit 20 shown in FIG. 3 and the cogging torque correction wave Tco generated by the correction wave calculation unit 34 shown in FIG. Output to the torque command combining unit 21.
  • the torque command synthesizing unit 21 synthesizes the torque command Tref input from the host device 8, the torque ripple correction wave Ttr and the cogging torque correction wave Tco added by the adder 42, and uses this as the corrected torque command Tref2. Output to the current control unit 22.
  • FIG. 10 shows a configuration in which the adder 42 adds the torque ripple correction wave Ttr and the cogging torque correction wave Tco and outputs them to the torque command synthesis unit 21.
  • the torque ripple correction wave Ttr and the cogging torque correction wave Tco are directly input to the torque command synthesizing unit 21 with the controller 42 omitted, and the torque ripple correction wave Ttr and the cogging torque correction wave Tco are added in the torque command synthesizing unit 21.
  • the structure to do may be sufficient.
  • FIG. 11 is a diagram illustrating an example of the contents stored in the four harmonic order information storage units illustrated in FIG. 11A shows an example of the contents stored in the correction wave information storage unit 28, FIG. 11B shows an example of the contents stored in the correction wave information storage unit 29, and FIG. 11C shows the correction wave information storage.
  • An example of the contents stored in the unit 38 is shown, and FIG. 11D shows an example of the contents stored in the correction wave information storage unit 39.
  • 11A and 11B show the order, amplitude ratio, and phase offset amount
  • FIGS. 11C and 11D show the order, amplitude, and phase offset amount.
  • positive is indicated by “p”
  • negative is indicated by “n”.
  • positive use is described as “Ap”
  • negative use is expressed as “An”.
  • “N” shown below is a “natural number” as described in the first to third embodiments.
  • the orders and the like are all represented by different codes, but some of the orders may be set to the same order and may be determined so that the torque pulsation due to the cogging torque and torque ripple can be reduced.
  • the harmonic order information in all combinations is information on the order of m sets, amplitude ratio (amplitude in cogging torque), and phase offset amount, but the number of sets may not be the same. Good.
  • the amplitude ratio An may be a fixed value, it may be a torque command or a function ⁇ An (Tref, Theta) ⁇ of the motor speed.
  • the torque command can be remade according to the driving state of the motor in more detail, so that the effect of reducing torque pulsation is enhanced.
  • phase offset amount ⁇ n may be a fixed value, but may be a torque command or a function ⁇ n (Tref, Theta) ⁇ of the motor speed.
  • FIG. 12 is a diagram showing the relationship between the amplitude ratio An of the harmonics (correction wave) and the absolute value of the torque command Tref.
  • the demagnetization start torque Tdemag and the demagnetization boundary line Ldemag are shown.
  • the demagnetization start torque Tdemag is a torque value at a boundary where the permanent magnet in the motor 1 causes combined demagnetization due to heat and a reverse magnetic field when the motor 1 tries to generate a torque greater than the demagnetization start torque Tdemag. It is.
  • the demagnetization boundary line Ldemag is a demagnetization start torque Tdemag which is a combined wave (corrected torque command Tref2) of the torque ripple correction wave Ttr generated based on the torque command Tref and the amplitude ratio An and the original torque command Tref. It is a boundary line for not exceeding.
  • the correction torque command Tref2 needs to be limited so as not to exceed the demagnetization start torque Tdemag.
  • the amplitude ratio An is preferably zero in a region where the absolute value of the command torque Tref is greater than or equal to the demagnetization start torque Tdemag.
  • the demagnetization start torque Tdemag is stored as a parameter in a storage device in the motor control device or included in a function of the amplitude ratio An in the harmonic order information stored in the correction wave report storage units 28 and 29 in advance. It is good to leave.
  • the amplitude ratio An is set to a region (hatched portion in FIG. 12) smaller than the demagnetization boundary line Ldemag in a region where the absolute value of the torque command Tref is smaller than the demagnetization start torque Tdemag. It is preferable.
  • ⁇ sin (n ⁇ Theta + ⁇ n) It can be expressed. Since the maximum value of the correction torque command Tref2 is when sin (n ⁇ Theta + ⁇ n) 1,
  • max
  • the amplitude ratio An is a region that satisfies the relationship of Expression (5) in a region where the absolute value of the torque command Tref is smaller than the demagnetization start torque Tdemag, in other words, the demagnetization boundary line Ldemag shown in Equation (6). It must exist in a smaller area.
  • the torque ripple correction method described in the first embodiment and the cogging torque correction method described in the second embodiment can be performed in parallel.
  • the amplitude ratio with respect to a certain harmonic order in the correction wave information stored in the positive correction wave information storage unit 28 and the negative correction wave information storage unit 29 is equal to or greater than the demagnetization start torque Tdemag in advance. In other words, the function loss of the motor 1 due to the demagnetization of the permanent magnet of the motor 1 can be prevented.
  • FIG. 13 is a block diagram showing another configuration example of the torque control unit shown in FIG. 9 as Example 4 of the present invention.
  • a correction wave calculation unit 43 is provided in place of the correction wave calculation unit 41 in the torque control unit 10c shown in FIG.
  • the “torque command generation means 44 for avoiding demagnetization” to which the torque command Tref is input is between the output terminal of the selection circuit 30 and the input terminal of the torque ripple correction wave generation unit 26. Is provided.
  • the amplitude ratio An is in a region (hatched portion in FIG. 12) smaller than the demagnetization boundary line Ldemag in a region where the absolute value of the torque command Tref is smaller than the demagnetization start torque Tdemag. Is set. That is, the amplitude ratio An is 0 ⁇ An ⁇ ⁇ (Tdemag /
  • the torque command generation means 44 for avoiding demagnetization is when the selection circuit 30 does not select any of the storage units 28 and 29 because the amplitude ratio An stored in the storage units 28 and 29 is a fixed value. Furthermore, it functions as a variable limiter that applies equation (7) to the absolute value of torque command Tref, and generates an amplitude ratio An (torque command for avoiding demagnetization) in the region defined by equation (7). Then, it is output to the torque ripple correction wave generator 26.
  • the torque command generation means 44 for avoiding demagnetization uses the amplitude ratio An in the region defined by the equation (7) as the torque.
  • the absolute value of the command Tref is on the limiter upper limit side, it is variably generated based on the equation (6), and when it is on the limiter lower limit side, it is fixed to zero.
  • the special setting described with reference to FIG. 12 is performed for the correction wave information stored in the positive correction wave information storage unit 28 and the negative correction wave information storage unit 29 in the third embodiment. Without this, it is possible to prevent the loss of function of the motor 1 due to the demagnetization of the permanent magnet of the motor 1.
  • Example 4 although the application example to Example 3 was shown, it can apply to Example 1 similarly.
  • FIG. 14 is a block diagram showing a configuration example of a motor drive system including a motor control device according to Embodiment 5 of the present invention.
  • components that are the same as or equivalent to the components shown in FIG. 1 (Example 1) are assigned the same reference numerals.
  • the description will be focused on the part related to the fifth embodiment.
  • the motor control device 6d is configured such that the correction wave information input means 50 can be connected to the motor control device 6a shown in FIG. 1 (first embodiment).
  • the correction wave information input unit 50 includes a keyboard, a touch panel, a push button, and the like.
  • correction wave number information will be described in the motor control device 6a or in the torque control unit 10a when described with reference to FIG. 2 (motor control device 6a) and FIG. 3 (torque control unit 10a).
  • a write control circuit for the storage units 28 and 29 is provided, and in the torque ripple correction method, the write control circuit operates the correction wave information input means 50 and inputs harmonic order information, amplitude ratio, and phase. The offset amount is written in the correction wave information storage units 28 and 29 as one set.
  • the correction wave information storage units 28 and 29 can be set.
  • the correction wave information input means 50 is operated to set the correction wave information for correcting the cogging torque and the correction wave information for the negative (harmonic order information, amplitude and phase set) in the correction wave information storage units 38 and 39. can do.
  • FIG. 15 is a block diagram illustrating a configuration example of a motor drive system including a motor control device according to Embodiment 6 of the present invention.
  • the motor control device 6e according to the sixth embodiment can connect a correction wave information display means 60 in addition to the correction wave information input means 50 shown in FIG.
  • the correction wave information display means 60 includes an LED display, a personal computer monitor, and the like.
  • correction wave information will be described in the motor control device 6a or the torque control unit 10a when described with reference to FIG. 2 (motor control device 6a) and FIG. 3 (torque control unit 10a).
  • a write control circuit and a read control circuit for the storage units 28 and 29 are provided, and the correction wave information input by operating the correction wave information input means 50 is written into the harmonic order information storage units 28 and 29. Write to.
  • the read control circuit When a display output instruction is input by operating the correction wave information input unit 50, the read control circuit displays the contents of the storage unit designated among the correction wave information storage units 28 and 29 as the correction wave information display unit. 60.
  • the correct and negative correction wave information for torque ripple correction suitable for the motor 1 is input,
  • the correction wave information storage units 28 and 29 can be set.
  • torque pulsation torque ripple
  • the application example to the fifth embodiment that is, the first embodiment
  • the present embodiment can be similarly applied to the second to fourth embodiments.
  • the motor 1 driven by the motor control device shown in the first to sixth embodiments is a permanent magnet motor, and has a V-shaped oblique skew or a V-shaped skew on at least one of the field side and the armature side. A step skew is formed.
  • the structure of the V-shaped oblique skew or the V-shaped step skew will be described with reference to FIGS.
  • FIG. 16 and FIG. 17 are conceptual diagrams showing a configuration example of a motor to be driven as Example 7 of the present invention.
  • FIG. 18 is a diagram for explaining the flow of magnetic flux when driving force is generated in the motor shown in FIGS. 16 and 17.
  • FIG. 19 is a diagram showing a torque ripple waveform in a motor cross section of the motor shown in FIGS. 16 and 17.
  • FIG. 16 shows an example of forming a V-shaped oblique skew.
  • FIG. 17 shows an example of forming a V-shaped step skew.
  • FIG. 16A and FIG. 17A are cross-sectional views of the motor 1 to be driven.
  • the motor 1 includes an armature 71 and a field 72 (rotor) fixed to the outer periphery of the shaft 74, substantially concentrically through a gap. And is rotatably supported by a support mechanism (not shown).
  • FIGS. 16 (a) and 17 (a) show the armature 71 side from a plane concentric with the armature 71 and the field magnet 72 including the gap center diameter 73 shown in FIGS. 16 (a) and 17 (a). Since it is the figure seen, in FIG.16 (b) and FIG.17 (b), the inner peripheral side surface of the armature 71 can be seen.
  • FIG. 16B in the V-shaped oblique skew, the armature core 75 and the slot opening 76 are alternately arranged in the circumferential direction in such a manner that the letter V of the alphabet is rotated 90 ° clockwise. Are lined up.
  • the letter V is substantially line symmetric with respect to the axial center 77 of the armature 71.
  • the V-shaped step skew has the same structure as the V-shaped oblique skew as shown in FIG.
  • 16 (a) and 17 (a) show a so-called inner rotor type motor in which the armature 71 is arranged outside the field 72, but the present invention is also applicable to an outer rotor type in which the inside and outside are reversed. Is applicable.
  • the skew technique in the motor is a technique for solving various harmonic problems by shifting the armature core while making an angle in the axial direction.
  • the skew structure is a structure as shown in FIGS. It is not limited to.
  • the phenomenon to which the present invention pays attention that the harmonic order of torque ripple is different between positive torque and negative torque occurs due to the magnetic structure of the motor.
  • the phenomenon in which the harmonic order of torque ripple differs between positive torque and negative torque is not rotationally symmetric with respect to the axial center 77 of the armature, even if the skew structure is not V-shaped. Both are phenomena that can occur remarkably.
  • the theory for explaining the phenomenon in which the harmonic order of the torque ripple is different between when the torque is positive and when the torque is negative is as follows.
  • the torque ripple is described with reference to, for example, FIG.
  • the integration of the torque ripple generated by the core 75 to the torque ripple generated by the armature core 75 existing at the axial end 78 cancels a specific harmonic order component of the torque ripple. is there.
  • FIG. 19 shows the result of analyzing the torque waveform of a certain motor cross section by electromagnetic field FEM (finite element method).
  • FIG. 19A shows a case where a positive torque is output
  • FIG. 19B shows a case where a negative torque is output.
  • the horizontal axis is at the same position (mechanical angle).
  • 19 (a) and 19 (b) it can be seen that the phase of torque ripple differs between when the positive torque is output and when the negative torque is output even in the same motor cross section at the same rotational position. Combining this phenomenon with a three-dimensional effect may cause a phenomenon in which the harmonic order of torque ripple at the time of positive torque is different from the harmonic order of torque ripple at the time of negative torque.
  • the motor 1 driven and controlled by the motor control device shown in the first to sixth embodiments is a permanent magnet type motor, it is not necessarily a requirement that a V-shaped oblique skew or step skew is applied. It is configured as follows. 16 and 17, the armature core 75 in which the steel plates having slots are laminated, the armature 71 in which the armature coils are disposed in the slots, and the relative rotation direction are mutually connected. A magnetic field 72 having permanent magnets arranged so that the magnetic poles are different from each other, and the armature 71 and the magnetic field 72 are rotatably supported by a gap and can be observed from the gap.
  • the armature core described in the seventh embodiment in which the steel plates having the slots are laminated and the armature in which the armature coils are disposed in the slots are different from each other in the relative rotation direction.
  • a permanent magnet motor having a field having permanent magnets arranged so as to be poles, and the armature and the field supported rotatably with respect to each other via a gap.
  • P is the number of slots on the armature side
  • Q is the ratio P / Q between the number of magnetic poles P and the number of slots Q, 2/3 ⁇ P / Q ⁇ 4/3 It is comprised so that it may become.
  • the harmonic order of the torque pulsation is defined as the first order of the rotational mechanical angular frequency, so that a correction wave can be easily generated even with a decimal order with respect to the electrical angular frequency. Torque pulsation can be reduced.
  • the permanent magnet motor 1 having the ratio P / Q of 2/3 ⁇ P / Q ⁇ 4/3 can be effectively achieved by controlling the driving by the motor control device shown in the first to sixth embodiments. Torque pulsation can be reduced.
  • the sixth order with respect to the electrical angular frequency which is a component that generally generates torque ripple and cogging torque.
  • the component of the order of the least common multiple of P and Q becomes smaller if normal motor design is performed. This indicates that at least one of P and Q may be set as the harmonic order information.
  • the motor control device has a simple configuration and appropriately reduces two types of torque pulsations in accordance with the sign of the state quantity that defines the drive state that causes pulsation in the torque generated by the motor. This is useful as a motor control device that can perform correction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 予め補正波情報を記憶部に用意し、モータの発生トルクに脈動を生じさせる駆動状態を規定する状態量(トルク指令、モータ速度)を監視し、その状態量の正負に応じた補正波情報を記憶部から選択し、その選択した補正波情報に基づき周期的トルク脈動(トルクリップル、コギングトルク)に対する正弦波状の補正波を生成し、モータを駆動制御すべく上位装置から入力されるトルク指令に代えて、該トルク指令と前記生成された補正波とを合成した補正トルク指令に基づき、モータを駆動制御する。

Description

モータ制御装置
 本発明は、モータ制御装置に関し、特に、永久磁石を利用するモータを駆動制御するモータ制御装置に関するものである。
 モータは、固定子と回転子との相対角度に依存してトルクを発生するが、永久磁石を利用するモータが発生するトルクは、高調波成分を有して脈動している。このトルクの脈動は、次の2つに分けられる。1つは、振幅が発生トルクの大きさに応じて変化するトルクリップルと呼ばれているものである。もう1つは、振幅が発生トルクの大きさに依らず固定値を示すコギングトルクと呼ばれているものである。このようなトルクの脈動は、モータの速度むらや位置偏差の要因ともなるため、従来から、このトルク脈動を制御的に低減しようとする種々の試みがなされている(例えば、特許文献1~3等)。
 例えば特許文献1では、トルクの脈動をモータの発生トルクに依存しない固定振幅型のコギングトルクと、発生トルクに比例する可変振幅型のトルクリップルとに分け、実際のトルクに反映する時刻でのモータ角度を予測してトルクリップルを補正する予測制御の技術が開示されている。また、コギングトルク及びトルクリップルそれぞれの補正データはモータの1回転分の角度(0度≦θn<360度:n=1、2、…、N)に対応したN個のデータとして記憶装置に記憶するという技術が開示されている。
 また、例えば特許文献2では、トルクリップルの補正波を周波数毎に振幅と位相のデータとして選択し、m個の正弦波信号を作り、合成することによってトルクリップルの補正波を得ている。また、トルクリップルにはモータの電気角周波数の整数倍でないものが存在する点を主張しており、モータの機械位置に依存したトルクリップルをなくすためのトルクリップル補正方法が開示されている。
 また、例えば特許文献3では、トルクリップルの6次高調波成分を補正するための位相や振幅のパラメータを出力トルクの正負に応じて選択し、これに基づいた補正波を用いてモータを駆動制御する技術が開示されている。
特開平11-299277号公報 特開2005-80482号公報 特開2010-239681号公報
 しかし、上記特許文献1に記載の技術では、コギングトルク及びトルクリップルの補正データをモータの1回転分の角度(0度≦θn<360度:n=1、2、…、N)に対応したN個のデータとして記憶装置に記憶している。このため、精度の良いトルクリップル補正を行うためには、制御装置等に必要とする記憶装置の容量が大きくなってしまうという問題がある。
 また、上記特許文献2に記載の技術では、トルクリップルにはモータの電気角周波数の整数倍でないものが存在する点を主張しているが、その角周波数の選択に関する具体的な方法については開示も示唆もなされておらず、良好なトルクリップル補正効果を得るためにはさらなる技術開発が求められる。
 また、上記特許文献3に記載の技術では、トルクの正負によってトルクリップルの補正波の振幅及び位相を変化させる技術を開示しているが、コギングトルクに関する補正方法に対しては開示も示唆もなされておらず、また、角周波数についても電気6次高調波に関する記述のみであり、より良好なトルクリップル補正を行うためにはさらなる技術開発が求められる。
 本発明は、上記に鑑みてなされたものであり、簡単な構成で、モータの発生トルクに脈動を生じさせる駆動状態を規定する状態量の正負に応じて適切に2種類のトルク脈動を減少させる補正が行えるモータ制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、入力されるトルク指令に基づいてモータを駆動制御するモータ制御装置において、前記モータの発生トルクに脈動を生じさせる駆動状態を規定する状態量が正極性であるか負極性であるかの正負を判定する正負判定部と、補正波情報を格納する記憶部から、前記正負判定部の判定結果が示す正負に応じた補正波情報を選択する補正波情報選択部と、前記選択された補正波情報に基づき、周期的トルク脈動に対する正弦波状の補正波を生成する補正波生成部とを備え、前記入力されるトルク指令に代えて、該トルク指令と前記生成された補正波とを合成した補正トルク指令に基づき前記モータを駆動制御することを特徴とする。
 本発明によれば、予め補正波情報を記憶部に用意し、モータの発生トルクに脈動を生じさせる駆動状態を規定する状態量(トルク指令、モータ速度)を監視し、その状態量が正極性であるか負極性であるかに応じた補正波情報を記憶部から選択し、その選択した補正波情報に基づき周期的トルク脈動(トルクリップル、コギングトルク)に対する正弦波状の補正波を生成し、モータを駆動制御すべく上位装置から入力されるトルク指令に代えて、該トルク指令と前記生成された補正波とを合成した補正トルク指令に基づき、モータを駆動制御するので、適切にトルクの2種類の脈動(トルクリップル、コギングトルク)を減少させる補正が行えるという効果を奏する。
図1は、本発明の実施例1によるモータ制御装置が適用されるモータ駆動システムの構成例を示すブロック図である。 図2は、図1に示す本発明の実施例1によるモータ制御装置の構成を示すブロック図である。 図3は、図2に示すトルク制御部の構成例を示すブロック図である。 図4は、正トルク及び負トルクの発生時におけるトルク脈動波形を示す図である。 図5は、図4に示したトルク脈動波形を次数分解した結果の振幅を示す図である。 図6は、図4に示したトルク脈動波形を次数分解した結果の位相オフセットを示す図である。 図7は、本発明の実施例2によるモータ制御装置の構成を示すブロック図である。 図8は、図7に示すトルク制御部の構成例を示すブロック図である。 図9は、本発明の実施例3によるモータ制御装置の構成を示すブロック図である。 図10は、図9に示すトルク制御部の構成例を示すブロック図である。 図11は、図10に示す4つの補正波情報記憶部の収納内容の一例を説明する図である。 図12は、高調波(補正波)の振幅比率とトルク指令の絶対値との関係を説明する図である。 図13は、本発明の実施例4として、図9に示すトルク制御部の他の構成例を示すブロック図である。 図14は、本発明の実施例5によるモータ制御装置を含むモータ駆動システムの構成例を示すブロック図である。 図15は、本発明の実施例6によるモータ制御装置を含むモータ駆動システムの構成例を示すブロック図である。 図16は、本発明の実施例7として、駆動するモータの構成例を示す概念図である。 図17は、本発明の実施例7として、駆動するモータの他の構成例を示す概念図である。 図18は、図16や図17に示すモータにおいて駆動力を発生する場合の磁束の流れを説明する図である。 図19は、図16や図17に示すモータでのあるモータ断面におけるトルクリップル波形を示す図である。
 以下に、本発明にかかるモータ制御装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。

 図1は、本発明の実施例1によるモータ制御装置を含むモータ駆動システムの構成例を示すブロック図である。図2は、図1に示す本発明の実施例1によるモータ制御装置の構成を示すブロック図である。図3は、図2に示すトルク制御部の構成例を示すブロック図である。本実施例1では、発生トルクの脈動のうちトルクリップルを低減させる補正方式について説明する。
 まず、適用されるシステムの概要を簡単に説明する。
 図1において、モータ1は、永久磁石を利用するモータであり、トルク脈動としてトルクリップルとコギングトルクとを発生する。このモータ1には、位置センサ2が取り付けられている。インバータ回路3は、複数のスイッチング素子(一般にはIGBTやMOSFETが用いられる)による3相のブリッジ回路を備えている。キャパシタ4は、モータ1の動力源となる直流電力を周知の方法で蓄積している直流電源である。インバータ回路3とモータ1とを接続する電源ケーブルには、電流センサ5が配置されている。
 インバータ回路3における3相のブリッジ回路は、直流電源であるキャパシタ4の正極端と負極端との間に形成配置されている。具体的には、3相のブリッジ回路は、キャパシタ4の正極端と負極端との間に、2つのスイッチング素子が対となって直列接続され、この直列回路の3個が並列に接続される形で形成されている。
 インバータ回路3は、実施例1によるモータ制御装置6aから、3相のブリッジ回路を構成する複数のスイッチング素子をオン・オフさせる駆動信号pu,nu,pv,nv,pw,nwが入力されると、複数のスイッチング素子のスイッチング動作により、キャパシタ4に蓄積された直流電力が任意の周波数及び電圧の3相交流電力へ変換され、モータ1に供給される。これによって、モータ1が回転駆動され、モータ1に所定のトルクが発生する。
 このときのモータ位置Thetaが位置センサ2にて検出され、フィードバック信号として、実施例1によるモータ制御装置6aに入力される。また、このときのモータ1に流れている3相のモータ電流が電流センサ5にて検出され、A/Dコンバータ7にてデジタル化されて3相のデジタルモータ電流Iu,Iv,Iwとなり、フィードバック信号として、実施例1によるモータ制御装置6aに入力される。
 実施例1によるモータ制御装置6aは、上位装置8が出力するトルク指令Trefと、フィードバック信号であるモータ位置Theta及び3相のデジタルモータ電流Iu,Iv,Iwとに基づき、従前の通りにインバータ回路3への駆動信号pu,nu,pv,nv,pw,nwを演算生成する。
 このとき、この実施例1によるモータ制御装置6aは、上位装置8が出力するトルク指令Trefを、2種類のトルク脈動のうちの1つ(トルクリップル)を発生させる駆動状態を規定する状態量として取り込み、それとモータ位置Thetaとに基づき、周期的に発生するトルクリップルを低減する制御を行い、その制御結果をインバータ回路3に与える駆動信号pu,nu,pv,nv,pw,nwの演算生成に反映させるようになっている。
 以下、この実施例1に関わる部分について具体的に説明する。モータ制御装置6aは、図2に示すように、トルク制御部10aと、電流制御部11と、電圧制御部12とを備えている。
 トルク制御部10aは、例えば後述する図3に示す構成により、従前の動作として、上位装置8からのトルク指令Trefに応じて電流制御部11に与えるd軸及びq軸の電流指令idref,iqrefを演算する。この従前の動作に加えて、この実施例1では、上位装置8からのトルク指令Trefを、トルクリップルを発生させるモータ1の駆動状態を規定する状態量として取り込み、それとモータ位置Thetaとに基づき、周期的に発生するトルクリップルを低減するための制御を行い、そのトルクリップル低減制御の結果を、電流制御部11に与えるd軸及びq軸の電流指令idref,iqrefに反映することを行う。具体的には、後述する。
 電流制御部11は、3相2相変換部13と、減算器14,15と、例えばPID制御部16,17とを備えている。なお、PID制御部16,17に代えて、PI制御部が用いられる場合もある。
 3相2相変換部13は、A/Dコンバータ7にてデジタル化された3相のデジタルモータ電流Iu,Iv,Iwを、モータ位置Thetaにおけるd軸電流id及びq軸電流iqへ変換する。減算器14は、トルク制御部10aが出力するd軸電流指令idrefと3相2相変換部13が変換出力するd軸電流idとの差分(d軸電流偏差)を求めそれをPID制御部16へ出力する。減算器15は、トルク制御部10aが出力するq軸電流指令iqrefと3相2相変換部13が変換出力するq軸電流iqとの差分(q軸電流偏差)を求めそれをPID制御部17へ出力する。PID制御部16,17は、減算器14,15が出力するd軸及びq軸の各電流偏差が小さくなるようにするPID制御を行い、電圧制御部12に与えるd軸電圧指令Vdref及びq軸電圧指令Vqrefを設定する。
 電圧制御部12は、2相3相変換部18とPWM制御部19とを備えている。
 2相3相変換部18は、電流制御部11が出力するd軸電圧指令Vdref及びq軸電圧指令Vqrefを、モータ位置Thetaにおける3相の電圧指令Vudref,Vvdref,Vwdrefへ変換する。PWM制御部19は、2相3相変換部18が変換出力する3相の電圧指令Vudref,Vvdref,VwdrefからPWM信号である駆動信号pu,nu,pv,nv,pw,nwを生成し、インバータ回路3へ出力する。
 さて、トルク制御部10aは、例えば図3に示すように、電流指令生成部22の入力段に、補正波演算部20とトルク指令合成部21とが追加された構成になっている。補正波演算部20は、補正波情報選択部24と、トルク指令正負判定部25と、トルクリップル補正波生成部26とを備えている。補正波情報選択部24は、正用補正波情報を格納する記憶部28と、負用補正波情報を格納する記憶部29と、選択回路30とを備えている。
 上位装置8が出力するトルク指令Trefは、トルク指令合成部21に入力されるとともに、モータ1の駆動状態を規定する状態量として、トルク指令正負判定部25及びトルクリップル補正波生成部26に入力される。トルクリップル補正波生成部26には、選択回路30の出力(補正波情報)と、モータ位置Thetaとが入力される。
 トルク指令正負判定部25は、上位装置8から入力されるトルク指令Trefが正極性であるか負極性であるかの正負を判定し、その判定結果を選択回路30へ出力する。選択回路30は、トルク指令正負判定部25の判定結果に従って、記憶部28と記憶部29とのいずれか一方に格納される補正波情報を選択し、トルクリップル補正波生成部26に出力する。
 トルクリップル補正波生成部26は、上位装置8から入力されるトルク指令Tref(すなわちモータ1の状態量)と、選択回路30が選択した補正波情報とに基づいてモータ位置Thetaにおける正弦波状のトルクリップル補正波Ttrを生成し、トルク指令合成部21に出力する。トルクリップル補正波Ttrの振幅は、トルク指令Trefにより発生するトルクの振幅に依存している。
 トルク指令合成部21は、上位装置8から入力されるトルク指令Trefと、トルクリップル補正波生成部26にて生成されたトルクリップル補正波Ttrとを合成して補正トルク指令Tref2を生成する。
 電流指令生成部22は、トルク指令合成部21にて生成された補正トルク指令Tref2に基づき、d軸電流指令idref及びq軸電流指令iqrefを生成し、電流制御部11へ出力する。これによって、電流制御部11及び電圧制御部12の協働作業により、モータ1の発生トルクにおけるトルクリップルを減少させる補正動作が実施される。
 ここで、記憶部28,29に格納される補正波情報について説明する。トルクリップル補正波Ttrの生成に用いる補正波情報は、高調波次数情報と、高調波(補正波)の振幅のトルク指令Trefに対する比率(振幅比率)と、高調波(補正波)の位相(オフセット位相)とで構成される。記憶部28,29には、高調波次数情報と、それに対する振幅比率及び位相(オフセット位相)とが関連付けて格納されている。
 まず、図4~図6を参照して、モータ1がトルクを発生する場合、その発生トルクが正極性であるか負極性であるかによって、トルク脈動(つまりトルクリップル)の高調波次数成分が異なる点について具体的に説明する。なお、図4は、正トルク及び負トルクの発生時におけるトルク脈動波形を示す図である。図5は、図4に示したトルク脈動波形を次数分解した結果の振幅を示す図である。図6は、図4に示したトルク脈動波形を次数分解した結果の位相オフセットを示す図である。
 図4(a)では正トルク発生時のトルク脈動波形が示され、図4(b)では負トルク発生時のトルク脈動波形が示されている。図4(a)(b)は、モータ1を同一回転方向で回転させつつ一定負荷を印加してトルクを発生させた場合のトルク脈動波形を実験的にトルクメータで取得した結果を示している。実験においては、トルクの時間平均値の絶対値が同一となるようにした。図4の(a)と(b)とでは、トルク脈動波形が明らかに異なることがわかる。
 図5において、図5(a)に示す正トルク発生時には8次と48次が発生しているが、図5(b)に示す負トルク発生時には、8次と48次はほとんど発生していない。このことから、正トルク発生時のトルク脈動を補正する場合は、8次と48次の補正波を生成する方が好ましいが、負トルク発生時のトルク脈動を補正する場合には8次と48次の補正波を生成しない方が、演算時間の効率化のために好ましいことが解る。その結果、補正波情報である高調波次数情報を格納する記憶部の容量を低減できる。
 よって、本実施例1によるモータ制御装置6aでは、モータ1がトルクを発生する場合に、その発生トルクが正極性であるか負極性であるかによって、トルク脈動(つまりトルクリップル)の高調波次数成分が異なる点に着目して正用の記憶部28と負用の記憶部29とを別々に用意し、記憶部28には正用高調波次数情報をメインとする正用補正波情報を格納し、記憶部29には負用高調波次数情報をメインとする負用補正波情報を格納しておき、モータの状態量であるトルク指令Trefの正負に応じて対応する高調波次数情報を選択できるようにし、その選択された高調波次数情報とモータ位置Thetaとに基づいてトルクリップル補正波を生成する構成とした。
 このとき、モータ1の回転機械周波数は回転速度に依存し、インバータ回路3で周波数変換された交流電力により駆動されるモータ1は様々な回転速度で回転することができるから、記憶部28,29に格納する高調波次数情報としては、モータ1の回転機械周波数を1次とし、その倍数n(nは自然数)からなる複数の高調波次数を格納することが好ましい。そうすれば、例えば、50Hzで回転しているモータ1のトルクであって100Hzで振動している成分を補正する場合には、「n=2」を設定することができるため、適切な補正が行える。
 また、従来、電気周波数を1次とする考え方もあったが、この考え方では、モータ1に含まれる永久磁石のばらつきや、その他の工作誤差に起因する電気角周波数の小数倍の次数に対応することが難しくなるため、回転機械周波数を1次とした高調波次数を設定することが好ましい。
 そして、記憶部28,29に格納する補正波情報としては、高調波次数情報の他に、トルク指令Trefに対しトルクリップル補正波生成部26が生成するトルクリップル補正波(つまり高調波成分)の振幅比率An、及び位相オフセット量θnも高調波次数nと関連付けて格納することが好ましい。その方が、図5に示すように、24次の振幅は正トルク時(a)と負トルク時(b)とで大きく異なっており、単純に次数nのみ切り替えるよりも振幅比率Anも同時に切り替えた方が、トルク脈動(トルクリップル)を低減する効果が大きいと考えられる。また、位相オフセット量θnについても同様である。
 図6において、位相オフセット量θnは、正トルク発生時(a)と負トルク発生時(b)とで異なっていることが解る。例えば、24次高調波の位相オフセット量θnは、正トルク発生時(a)の場合は-150°であり、負トルク発生時(b)の場合は+135°であり、異なっている。よって、位相オフセット量θnも高調波次数nと同時に切り替えることが好ましい。
 トルクリップル補正波生成部26が生成する正弦波状のトルクリップル補正波Ttrを上述した倍数(高調波次数)n、高調波(トルクリップル補正波Ttr)の振幅比率An及び位相オフセット量θnを用いて数式表現すると、式(1)のようになる。
Figure JPOXMLDOC01-appb-M000001
 なお、後述する図11の(a)(b)に、記憶部28,29の記憶内容の一例を示してある。そこでは、次数に対し、振幅比率及び位相オフセット量が関連付けて格納されていることが示されている。
 以上のように、本実施例1によれば、2種類のトルク脈動の一つであるトルクリップルを減少補正する構成として、予め補正波情報を記憶部に用意し、トルクリップルを発生させるモータの駆動状態を規定する状態量である、上位装置から入力されるトルク指令を監視し、取り込んだトルク指令が正極性であるか負極性であるかを判断し、その正負に応じた補正波情報を記憶部から選択し、その選択した補正波情報に基づき周期的トルク脈動(トルクリップル)に対する正弦波状の補正波を生成し、上位装置から入力されるトルク指令に代えて、該トルク指令と前記生成された補正波とを合成した補正トルク指令に基づき、電流制御部に与えるd軸及びq軸の電流指令を生成する構成としたので、適切にトルクの脈動(トルクリップル)を減少させる補正が行える。
 このとき、記憶部に格納する補正波情報は、高調波次数情報と、それに対応する振幅比率及び位相とからなるが、高調波次数情報は、トルク指令が正極性であるか負極性であるかによって異なるので、記憶部には、トルク指令の正負に応じて必要な高調波次数情報だけを保持しておけばよい。したがって、高調波次数情報に対応して保存すべき振幅比率や位相などの情報も少なくて済み、記憶部の容量を小さくすることができる。

 図7は、本発明の実施例2によるモータ制御装置の構成を示すブロック図である。図8は、図7に示すトルク制御部の構成例を示すブロック図である。本実施例2では、発生トルクの脈動のうちコギングトルクを減少させる補正方式について説明する。モータ駆動システムの構成要素は、図1と同様であるので図示を省略し、図7(モータ制御装置)と図8(トルク制御部)とを示した。
 図7において、本実施例2によるモータ制御装置6bは、図2(実施例1)に示したモータ制御装置6aにおいて、トルク制御部10aに代えて、トルク制御部10bが設けられている。その他の構成は、図2と同様である。
 トルク制御部10bには、上位装置8からトルク指令Trefが入力される他に、2種類のトルク脈動のうちのもう1つ(コギングトルク)を発生させる駆動状態を規定するモータ1の状態量であるモータ速度が入力される。モータ速度は、検出されたモータ位置Thetaから求めたものである。
 そして、図8に示すように、トルク制御部10bは、図3(実施例1)に示したトルク制御部10aにおいて、補正波演算部20に代えて補正波演算部34が設けられている。補正波演算部34は、補正波演算部20における、補正波情報選択部24に代えた補正波情報選択部35と、トルク指令正負判定部25に代えたモータ速度判定部36と、トルクリップル補正波生成部26に代えたコギングトルク補正波生成部37とを備えている。補正波情報選択部35は、正用補正波情報を格納する記憶部38と、負用補正波情報を格納する記憶部39と、選択回路40とを備えている。記憶部38,39に格納される補正波情報は、コギングトルク補正用の、高調波次数、補正波の振幅及び位相からなる。
 コギングトルクは、発生トルクの大きさに依存せず固定の大きさで発生するが、モータの軸端に接続されるプーリーやギア、ボールねじ等の機構部品の形状ばらつきやバックラッシ等の伝達系の構造に起因して、モータの正転時と逆転時とにおいて異なる高調波次数の脈動を生じ得る。そのため、例えばモータの位置決め運転を行う場合に、正転状態からモータを停止させる場合と、逆転状態からモータを停止させる場合とにおいて、良好な位置決め特性を得るために必要なコギングトルク補正の高調波次数が異なることが起こる。
 そこで、本実施例2では、モータ1の速度を、検出されたモータ位置Thetaから求めて監視し、そのモータ速度の正負をモータ速度正負判定部36にて判定し、その判定結果に基づいて、正用補正波情報記憶部38の格納情報を用いるか、負用補正波記憶部39の格納情報を用いるかを選択回路40によって切り替える構成とした。
 コギングトルク補正波生成部37は、補正波情報記憶部38,39のいずれか一方に格納される補正波情報を用いてモータ位置Thetaにおける正弦波状のコギングトルク補正波Tcoを生成し、トルク指令合成部21に出力する。コギングトルク補正波Tcoの振幅は、トルク指令Trefの振幅に依存せず一定値である。
 トルク指令合成部21は、上位装置8から入力されるトルク指令Trefと、コギングトルク補正波生成部37にて生成されたコギングトルク補正波Tcoとを合成して補正トルク指令Tref2を生成する。
 電流指令生成部22は、トルク指令合成部21にて生成された補正トルク指令Tref2に基づき、d軸電流指令idref及びq軸電流指令iqrefを生成し、電流制御部11へ出力する。これによって、電流制御部11及び電圧制御部12の協働作業により、モータ1の発生トルクにおけるコギングトルクを減少させる補正動作が実施される。
 ここで、記憶部38,39に格納される補正波情報について説明する。コギングトルク補正波Tcoの生成に用いる補正波情報は、高調波次数情報と、高調波(補正波)の振幅と、高調波(補正波)の位相とで構成される。記憶部38,39には、高調波次数情報と、それに対する高調波(補正波)の振幅及び高調波(補正波)の位相とが関連付けて格納されている。
 まず、高調波次数情報としては、複数の高調波次数をモータの回転機械周波数を1次として、その倍数n(nは自然数)を格納することが好ましい。なぜなら、モータ1の回転機械周波数は回転速度に依存し、インバータ回路3で周波数変換された電力により駆動されるモータ1は様々な回転速度で回転することができるからである。そうすれば、例えば、50Hzで回転しているモータ1のトルクであって100Hzで振動している成分を補正する場合には、「n=2」を設定することができるため、適切な補正が行える。
 また、従来、電気周波数を1次とする考え方もあったが、この考え方では、モータ1に含まれる永久磁石のばらつきや、その他の工作誤差に起因する電気角周波数の小数倍の次数に対応することが難しくなるため、回転機械周波数を1次とした高調波次数を設定することが好ましい。
 また、記憶部38,39には、高調波次数nの他に、その次数nの高調波の振幅Bn及び位相オフセット量θnも高調波次数nと関連付けて格納することが好ましい。実施例1では、トルク指令Trefに対する当該高調波次数のトルク脈動成分の振幅比率Anを格納していたのに対し、本実施例2では、トルク脈動の振幅Bnを格納している点が異なる。これは、コギングトルクが発生トルクに依存しないからである。
 以上の説明を数式でまとめると、コギングトルク補正波生成部37が生成する正弦波状のコギングトルク補正波Tcoは、上述した倍数(高調波次数)n、高調波(コギングトルク補正波Tco)の振幅Bn、及び位相オフセット量θnを用いて、式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 なお、後述する図11の(c)(d)に、記憶部38,39の記憶内容の一例を示してある。そこでは、次数に対し、振幅及び位相オフセット量が関連付けられて格納されていることが示されている。
 以上のように、本実施例2によれば、もう1つのトルク脈動であるコギングトルクを減少補正する構成として、予め、補正波情報を記憶部に用意し、コギングトルクを発生させるモータの駆動状態を規定する状態量であるモータ速度を監視し、モータ速度が正極性であるか負極性であるかを判断し、その正負に応じた補正波情報を記憶部から選択し、その選択した補正波情報に基づき周期的トルク脈動(コギングトルク)に対する正弦波状の補正波を生成し、上位装置から入力されるトルク指令に代えて、該トルク指令と前記生成された補正波とを合成した補正トルク指令に基づき、電流制御部に与えるd軸及びq軸の電流指令を生成する構成としたので、適切にトルクの脈動(コギングトルク)を減少させる補正が行える。
 このとき、記憶部に格納する補正波情報は、高調波次数情報と、それに対応する振幅及び位相とからなるが、高調波次数情報は、モータ速度が正極性であるか負極性であるかによって異なるので、記憶部には、モータ速度の正負に応じて必要な高調波次数情報だけを保持しておけばよい。したがって、高調波次数情報に対応して保存すべき振幅や位相などの情報も少なくて済み、記憶部の容量を小さくすることができる。
 図9は、本発明の実施例3によるモータ制御装置の構成を示すブロック図である。図10は、図9に示すトルク制御部の構成例を示すブロック図である。本実施例3では、実施例1にて説明したトルクリップル補正方式と、実施例2にて説明したコギングトルク補正方式とを並行して実施する場合について説明する。モータ駆動システムの構成要素は、図1と同様であるので図示を省略し、図9(モータ制御装置)と図10(トルク制御部)とを示した。
 図9に示すように、本実施例3によるモータ制御装置6cでは、トルク制御部10cに、上位装置8が出力するトルク指令Trefが取り込まれるとともに、該トルク指令Trefが1つの状態量として入力され、モータ速度がもう1つの状態量として入力される。
 図10において、トルク制御部10cにおける補正波演算部41は、例えば、図3に示した補正波演算部20と、図8に示した補正波演算部34と、加算器42とで構成することができる。加算器42は、図3に示した補正波演算部20にて生成されるトルクリップル補正波Ttrと、図8に示した補正波演算部34にて生成されるコギングトルク補正波Tcoとを加算しトルク指令合成部21に出力する。
 トルク指令合成部21は、上位装置8から入力されるトルク指令Trefと、加算器42にて加算されたトルクリップル補正波Ttr及びコギングトルク補正波Tcoとを合成し、それを補正トルク指令Tref2として電流制御部22へ出力する。
 これによって、トルクリップル補正及びコギングトルク補正の効果を、モータの状態量であるトルク指令Tref及びモータ速度に応じて適切に、かつ同時に得ることが可能となる。
 なお、図10に示す補正波演算部41では、加算器42にて、トルクリップル補正波Ttrとコギングトルク補正波Tcoとを加算しトルク指令合成部21に出力する構成を示してあるが、加算器42を省略してトルクリップル補正波Ttrとコギングトルク補正波Tcoとを直接トルク指令合成部21に入力させ、トルク指令合成部21内でトルクリップル補正波Ttrとコギングトルク補正波Tcoとを加算する構成でもよい。
 図11は、図10に示す4つの高調波次数情報記憶部の収納内容の一例を説明する図である。図11(a)は補正波情報記憶部28の収納内容の一例を示し、図11(b)は補正波情報記憶部29の収納内容の一例を示し、図11(c)は補正波情報記憶部38の収納内容の一例を示し、図11(d)は補正波情報記憶部39の収納内容の一例を示している。図11(a)(b)では、次数と、振幅比率と、位相オフセット量とが示され、図11(c)(d)では、次数と、振幅と、位相オフセット量とが示されている。なお、図11では、説明の便宜から、正を「p」で示し、負を「n」で示してある。例えば、振幅比率では、正用が「Ap」と表記され、負用が「An」と表記されている。以下に示す「n」は、実施例1~3にて説明したように、「自然数」である。
 図11では、次数等をすべて異なる符号で表現しているが、一部は同一の次数が設定されてもよく、コギングトルク及びトルクリップルによるトルク脈動が低減できるように決定すればよい。
 また、図11では、すべての組合せにおける高調波次数情報がmセットの次数、振幅比率(コギングトルクにおいては振幅)、位相オフセット量の情報になっているが、そのセット数は同一でなくてもよい。
 さらに、振幅比率Anは固定値でもよいが、トルク指令やモータ速度の関数{An(Tref、Theta)}としてもよい。このように設定すると、より詳細にモータの駆動状態に応じたトルク指令の作り変えが行えるので、トルクの脈動を低減する効果が高くなる。
 加えて、位相オフセット量θnは固定値でもよいが、トルク指令やモータ速度の関数{θn(Tref、Theta)}としても良い。このように設定すると、より詳細にモータの駆動状態に応じたトルク指令の作り変えが行えるので、トルクの脈動を低減する効果が大きくなる。
 次に、図12は、高調波(補正波)の振幅比率Anとトルク指令Trefの絶対値との関係を示す図である。図12では、減磁開始トルクTdemagと減磁境界線Ldemagとが示されている。減磁開始トルクTdemagは、モータ1がこの減磁開始トルクTdemag以上のトルクを発生しようとすると、モータ1内に有する永久磁石が熱と逆磁界とにより複合減磁を起こす境界のトルク値のことである。また、減磁境界線Ldemagは、トルク指令Trefと振幅比率Anとに基づいて生成されたトルクリップル補正波Ttrと元のトルク指令Trefとの合成波(補正トルク指令Tref2)が減磁開始トルクTdemagを超えないための境界線である。
 補正トルク指令Tref2は、減磁開始トルクTdemagを超えないように制限する必要がある。そのためには、次の2つの方法の少なくとも1つを実施するとよい。
 まず第1の方法として、図12に示すように、振幅比率Anは、指令トルクTrefの絶対値が減磁開始トルクTdemag以上の領域において零であることが好ましい。この減磁開始トルクTdemagは、パラメータとしてモータ制御装置内の記憶装置に格納しておくか、予め補正波報報記憶部28,29に格納する高調波次数情報における振幅比率Anの関数に含めておくとよい。
 また、第2の方法として、振幅比率Anは、トルク指令Trefの絶対値が減磁開始トルクTdemagよりも小さい領域において、減磁境界線Ldemagよりも小さい領域(図12のハッチング部分)に設定されることが好ましい。
 ここで、補正トルク指令Tref2が減磁開始トルクTdemagを超えないようにするための、トルク指令Trefと振幅比率Anと減磁開始トルクTdemagとの関係、及び減磁境界線Ldemagを規定する式を示す。
 補正トルク指令Tref2は、
 Tref2=|Tref|+An×|Tref|×sin(n×Theta+θn)
と表せる。この補正トルク指令Tref2の最大値は、sin(n×Theta+θn)=1のときであるから、
    |Tref2|max=|Tref|+An×|Tref|  …(3)
となる。この|Tref2|maxが減磁開始トルクTdemagを超えないようにするには、
    |Tref|+An×|Tref|≦Tdemag  …(4)
が成立する必要がある。式(4)を整理すると、
    |Tref|(1+An)≦Tdemag
    (1+An)≦Tdemag/|Tref|
    An≦(Tdemag/|Tref|)-1  …(5)
となる。この式(5)における等号を採用した次の式(6)が減磁境界線Ldemagを表す式である。
An=(Tdemag/|Tref|)-1 …(6)
 したがって、式(5)から、振幅比率Anをトルク指令Trefの関数として保持する場合、その関数曲線が図12のハッチング部分に存在しなければならないことが理解できる。つまり、振幅比率Anは、トルク指令Trefの絶対値が減磁開始トルクTdemagよりも小さい領域において、式(5)の関係を満たす領域、換言すれば、式(6)に示す減磁境界線Ldemagよりも小さい領域に存在しなければならないのである。
 以上のように、本実施例3によれば、実施例1にて説明したトルクリップル補正方式と、実施例2にて説明したコギングトルク補正方式とを並行して実施することができる。
 また、トルクリップル補正方式の実施では、正用補正波情報記憶部28及び負用補正波情報記憶部29に格納する補正波情報における或る高調波次数に対する振幅比率を予め減磁開始トルクTdemag以上の領域で零にしたり、減磁境界線Ldemagよりも小さい領域にしたりすることにより、モータ1が有する永久磁石の減磁によるモータ1の機能損失を防止できるという効果がある。
 図13は、本発明の実施例4として、図9に示すトルク制御部の他の構成例を示すブロック図である。図13に示すトルク制御部10dでは、図10に示したトルク制御部10cにおいて、補正波演算部41に代えて補正波演算部43が設けられている。補正波演算部43では、トルク指令Trefが入力される「減磁回避のためのトルク指令生成手段44」が、選択回路30の出力端とトルクリップル補正波生成部26の入力端との間に設けられている。
 実施例3にて説明したように、振幅比率Anは、トルク指令Trefの絶対値が減磁開始トルクTdemagよりも小さい領域において、減磁境界線Ldemagよりも小さい領域(図12のハッチング部分)に設定される。すなわち、振幅比率Anは、
0≦An≦{(Tdemag/|Tref|)-1}  …(7)
の領域内に規定される。
 減磁回避のためのトルク指令生成手段44は、選択回路30が、記憶部28,29に保存される振幅比率Anが固定値であるなどのため、記憶部28,29のいずれも選択しない場合に、トルク指令Trefの絶対値に対し式(7)を適用する可変リミッタとして機能し、式(7)に規定される領域部分での振幅比率An(減磁回避のためのトルク指令)を生成し、それをトルクリップル補正波生成部26に出力する。
 すなわち、減磁回避のためのトルク指令生成手段44は、選択回路30が記憶部28,29のいずれも選択しない場合に、式(7)に規定される領域部分での振幅比率Anを、トルク指令Trefの絶対値が、リミッタ上限値側にある場合は式(6)に基づき可変生成し、リミッタ下限値側にある場合はゼロに固定する。
 このように構成することにより、実施例3において、正用補正波情報記憶部28及び負用補正波情報記憶部29に格納する補正波情報について、図12を用いて説明した特別な設定を行うことなく、モータ1が有する永久磁石の減磁によるモータ1の機能損失を防止できるという効果が得られる。
 なお、実施例4では、実施例3への適用例を示したが、実施例1にも同様に適用することができる。
 図14は、本発明の実施例5によるモータ制御装置を含むモータ駆動システムの構成例を示すブロック図である。なお、図14では、図1(実施例1)に示した構成要素と同一または同等である構成要素には同一の符号が付されている。ここでは、本実施例5に関わる部分を中心に説明する。
 図14において、本実施例5によるモータ制御装置6dは、図1(実施例1)に示したモータ制御装置6aにおいて、補正波情報入力手段50を接続できるようにしたものである。補正波情報入力手段50は、キーボードやタッチパネル、押しボタンなどで構成される。
 すなわち、図示を省略したが、図2(モータ制御装置6a)と図3(トルク制御部10a)を参照して説明すると、モータ制御装置6a内、または、トルク制御部10a内に、補正波数情報記憶部28,29に対する書き込み制御回路が設けられていて、該書き込み制御回路が、トルクリップル補正方式において、補正波情報入力手段50を操作して入力された高調波次数情報、振幅比率、及び位相オフセット量を1セットとして補正波情報記憶部28,29に書き込むようになっている。
 このように構成することにより、モータ制御装置6dが駆動するモータ1が変更された場合などにおいて、当該モータ1に適したトルクリップル補正用の正用及び負用の補正波情報を入力して、補正波情報記憶部28,29に設定することができる。
 なお、本実施例5では、実施例1への適用例を示したが、実施例2~4にも同様に適用することができる。つまり、補正波情報入力手段50を操作してコギングトルク補正用の正用及び負用の補正波情報(高調波次数情報、振幅、及び位相のセット)を補正波情報記憶部38,39に設定することができる。
 図15は、本発明の実施例6によるモータ制御装置を含むモータ駆動システムの構成例を示すブロック図である。
 図15において、本実施例6によるモータ制御装置6eは、図14に示した補正波情報入力手段50に加えて、補正波情報表示手段60も接続できるようになっている。補正波情報表示手段60は、LED表示器やパソコン用モニタなどで構成される。
 すなわち、図示を省略したが、図2(モータ制御装置6a)と図3(トルク制御部10a)を参照して説明すると、モータ制御装置6a内、または、トルク制御部10a内に、補正波情報記憶部28,29に対する書き込み制御回路と読み出し制御回路とが設けられていて、補正波情報入力手段50を操作して入力された補正波情報を書き込み制御回路が高調波次数情報記憶部28,29に書き込む。
 また、補正波情報入力手段50を操作して表示出力の指示が入力されると、読み出し制御回路が、補正波情報記憶部28,29のうち指定された記憶部の内容を補正波情報表示手段60に表示する。
 このように構成することにより、モータ制御装置6dが駆動するモータ1が変更された場合などにおいて、当該モータ1に適したトルクリップル補正用の正用及び負用の補正波情報を入力して、補正波情報記憶部28,29に設定することができる。加えて、格納されているトルクリップル補正用の補正波情報を確認できることになるから、適切にトルクの脈動(トルクリップル)を補正することができる。
 なお、本実施例6では、実施例5(つまり実施例1)への適用例を示したが、実施例2~4にも同様に適用することができる。
 実施例1~6にて示したモータ制御装置が駆動するモータ1は、永久磁石式モータであり、その界磁側と電機子側の少なくとも一方において、V字状の斜めスキューもしくはV字状の段スキューが形成されている。本実施例7では、図16~図19を参照して、そのV字状の斜めスキュー或いはV字状の段スキューの構造について説明する。
 図16と図17は、本発明の実施例7として、駆動するモータの構成例を示す概念図である。図18は、図16や図17に示すモータにおいて駆動力を発生する場合の磁束の流れを説明する図である。図19は、図16や図17に示すモータでのあるモータ断面におけるトルクリップル波形を示す図である。
 図16では、V字状の斜めスキューの形成例が示されている。図17では、V字状の段スキューの形成例が示されている。図16(a)及び図17(a)は、駆動するモータ1の輪切り断面図である。例えば、図16(a)及び図17(a)に示すように、モータ1は、電機子71と軸74の外周に固定された界磁72(ロータ)とが、ギャップを介してほぼ同心状に配置され、図示しない支持機構に回転自在に支持されている。
 図16(b)及び図17(b)は、図16(a)及び図17(a)に示すギャップ中心径73を含む電機子71及び界磁72と同心状の平面から電機子71側を見た図であるので、図16(b)及び図17(b)では、電機子71の内周側表面が見えることになる。図16(b)に示すように、V字状の斜めスキューでは、電機子コア75及びスロットオープニング76は、アルファベットのVの字が90°右回りに回転した態様で交互に周方向に多数個並んでいる。Vの字は、電機子71の軸方向の中心77に対して略線対称となっている。また、V字状の段スキューも、図17(b)に示すように、V字状の斜めスキューと同様の構造をしている。
 なお、図16(a)及び図17(a)では、電機子71が界磁72の外側に配置されるいわゆるインナーロータタイプのモータを示しているが、内外が逆のアウターロータタイプでも本発明は適用可能である。
 モータにおけるスキュー技術は、電機子コアを軸方向に角度をつけながらずらすことで様々な高調波問題を解決するための技法であるが、スキューの構造は、図16や図17に示すような構造に限定されるものではない。トルクリップルの高調波次数が正トルク時と負トルク時とで異なるという本発明が着目する現象は、モータの磁気構造に起因して発生するものである。つまり、トルクリップルの高調波次数が正トルク時と負トルク時とで異なる現象は、スキューの構造がV字状でなくとも、また電機子の軸方向の中心77に対して回転対称とならなくとも顕著に起こり得る現象である。
 このトルクリップルの高調波次数が正トルク時と負トルク時とで異なる現象を説明する理論は、トルクリップルについて例えば図16(b)を用いて説明すると、軸方向の中心77に存在する電機子コア75が発生するトルクリップルから軸方向の端78に存在する電機子コア75が発生するトルクリップルまでを積分すると、トルクリップルのうちのある特定の高調波次数の成分がキャンセルされるという理論である。
 しかし、この理論は、図16(a)で示すような2次元断面で考えた場合のトルクリップルがいずれの軸方向位置においても同一であるという仮定に基づいており、実際は3次元的な軸方向の端部での軸方向への磁束漏れ等があり、各断面におけるトルクリップルは同一ではない。また、同一の回転位置で同一のモータ断面においても正トルクを出力する場合と負トルクを出力する場合とで、図18に示すように、磁束の流れ方が異なり、引いてはトルクリップルが異なる。
 図19は、電磁界FEM(有限要素法)によってあるモータ断面のトルク波形を解析した結果を示す。図19(a)は正トルクを出力した場合を示し、図19(b)は負トルクを出力した場合を示している。図19(a)(b)共に、横軸は同一位置(機械角)になっている。図19(a)(b)から、同一の回転位置で同一のモータ断面においても、正トルクを出力する場合と、負トルクを出力する場合とでトルクリップルの位相が異なることがわかる。この現象と3次元的な影響とを組み合わせると、正トルク時のトルクリップルの高調波次数と、負トルク時のトルクリップルの高調波次数とが異なるという現象が生じる場合がある。
 よって、V字状の斜めスキューあるいは段スキューを施してある永久磁石式にモータ1を駆動する場合に、正トルクと負トルクとでトルクリップルに現れる高調波次数が異なるため、実施例1~6に示したモータ制御装置を用いることによって効果的にトルク脈動を低減することができる。
 但し、実施例1~6に示したモータ制御装置が駆動制御するモータ1は、永久磁石式モータではあるが、必ずしもV字状の斜めスキューあるいは段スキューを施してあることが要件ではなく、以下のように構成されている。図16や図17に示した符号を用いて示すと、スロットを有する鋼板を積層した電機子コア75と、該スロットに電機子コイルを配設した電機子71と、相対的な回転方向に互いに磁極が異極となるように配設した永久磁石を有する界磁72とを有し、電機子71と界磁72とが空隙を介して互いに回転自在に支持されていて、該空隙から観測できる電機子コア75の表面及び磁極の表面を観測した場合に、電機子コア75の表面と磁極の表面のうち少なくとも一方の表面が、電機子コア75の積層方向の中心線のある一点を中心として非回転対称となっている永久磁石式モータである。
 本実施例8では、実施例7にて説明した、スロットを有する鋼板を積層した電機子コアと、該スロットに電機子コイルを配設した電機子と、相対的な回転方向に互いに磁極が異極となるように配設した永久磁石を有する界磁とを有し、電機子と界磁とが空隙を介して互いに回転自在に支持されている永久磁石式モータを、界磁側の磁極数をP、電機子側のスロット数をQと表記した場合に、磁極数Pとスロット数Qとの比P/Qが、
2/3<P/Q<4/3
となるように構成してある。
 このような永久磁石式モータ1にあっては、電気角に対するトルク脈動の次数が、小数となりやすいので、例えば、各極を構成する磁石の形状や着磁量にばらつきが多い場合には、P次とその自然数倍次数のトルク脈動が生じやすい。
 しかし、この明細書では、トルク脈動の高調波次数を、回転機械角周波数を1次として定義しているため、電気角周波数に対しては小数となる次数でも、簡単に補正波を生成することができるようになり、トルク脈動を低減できる。
 すなわち、比P/Qが、2/3<P/Q<4/3となっている永久磁石式モータ1は、実施例1~6で示したモータ制御装置により駆動制御すれば、効果的にトルク脈動を低減することができる。
 ここで、工作誤差により発生するP次やQ次は、これらの脈動が小さくなるように生産方法を追求するもコスト等による妥協点があり、一定の水準よりも小さくすることが難しい。
 しかし、比P/Qが、2/3<P/Q<4/3となるような永久磁石式モータ1では、トルクリップルやコギングトルクが一般的に発生する成分である電気角周波数に対する6次や、PとQの最小公倍数の次数の成分は、通常のモータ設計を行えば小さくなる。このことは、高調波次数情報としては、PとQの少なくとも一方を設定すればよいことを示している。
 つまり、本実施例8では、P次とQ次との少なくとも一方を高調波次数情報として設定するだけで、モータ駆動システムとしてトルク脈動の小さいシステムが提供できるという効果を奏する。
 以上のように、本発明にかかるモータ制御装置は、簡単な構成で、モータの発生トルクに脈動を生じさせる駆動状態を規定する状態量の正負に応じて適切に2種類のトルク脈動を減少させる補正が行えるモータ制御装置として有用である。
 1 モータ
 2 位置センサ
 3 インバータ回路
 4 キャパシタ
 5 電流センサ
 6a,6b,6c,6d,6e モータ制御装置
 7 A/Dコンバータ
 8 上位装置
 10a,10b,10c,10d, トルク制御部
 11 電流制御部
 12 電圧制御部
 13 3相2相変換部
 14,15 減算器
 16,17 PID制御部
 18 2相3相変換部
 19 PWM制御部
 20,34,41 補正波演算部
 21 トルク指令合成部
 22 電流指令生成部
 24 補正波情報選択部
 25 トルク指令正負判定部
 26 トルクリップル補正波生成部
 28,38 正用補正波情報を格納する記憶部
 29,39 負用補正波情報を格納する記憶部
 30,40 選択回路
 36 モータ速度正負判定部
 37 コギングトルク補正波生成部
 42 加算器
 50 補正波情報入力手段
 60 補正波情報表示手段
 71 電機子
 72 界磁(ロータ)
 73 ギャップ中心径
 74 軸
 75 電機子コア
 76 スロットオープニング

Claims (16)

  1.  入力されるトルク指令に基づいてモータを駆動制御するモータ制御装置において、
     前記モータの発生トルクに脈動を生じさせる駆動状態を規定する状態量が正極性であるか負極性であるかの正負を判定する正負判定部と、
     補正波情報を格納する記憶部から、前記正負判定部の判定結果が示す正負に応じた補正波情報を選択する補正波情報選択部と、
     前記選択された補正波情報に基づき、周期的トルク脈動に対する正弦波状の補正波を生成する補正波生成部と
     を備え、
     前記入力されるトルク指令に代えて、該トルク指令と前記生成された補正波とを合成した補正トルク指令に基づき前記モータを駆動制御する
     ことを特徴とするモータ制御装置。
  2.  前記モータの状態量は、前記入力されるトルク指令であり、
     前記補正波情報選択部は、前記記憶部に前記補正波情報として格納されている高調波次数情報の中から前記正負判定部の判定結果が示す正負に応じた次数を選択し、
     前記補正波生成部は、前記選択された次数に基づき、振幅が前記トルク指令に依存する補正波を生成する
     ことを特徴とする請求項1に記載のモータ制御装置。
  3.  前記補正波情報選択部は、
     更に前記記憶部に前記補正波情報として前記高調波次数情報と関連付けられて格納されている、補正波の振幅の前記トルク指令に対する振幅比率も選択し、前記補正波生成部に与える
     ことを特徴とする請求項2に記載のモータ制御装置。
  4.  前記振幅比率は、前記トルク指令の絶対値が減磁開始トルクよりも大きな領域においてゼロである
     ことを特徴とする請求項3に記載のモータ制御装置。
  5.  前記振幅比率Anは、前記トルク指令Trefの絶対値が減磁開始トルクTdemagよりも小さな領域において、次式
    An≦(Tdemag/|Tref|)-1
    の関係を満たす領域に設定されている
     ことを特徴とする請求項3または4に記載のモータ制御装置。
  6.  前記補正波情報選択部は、
     更に前記記憶部に前記補正波情報として前記高調波次数情報と関連付けられて格納されている補正波の位相も選択し、前記補正波生成部に与える
     ことを特徴とする請求項2~5のいずれかひとつに記載のモータ制御装置。
  7.  前記記憶部に、前記高調波次数情報、前記振幅比率及び前記位相からなる補正波情報が設定できる入力手段が接続されていることを特徴とする請求項2~6のいずれかひとつに記載のモータ制御装置。
  8.  前記記憶部に格納される前記高調波次数情報、前記振幅比率及び前記位相からなる補正波情報を表示できる表示手段が接続されていることを特徴とする請求項2~7のいずれかひとつに記載のモータ制御装置。
  9.  前記モータの状態量は、モータ速度であり、
     前記補正波情報選択部は、前記記憶部に前記補正波情報として格納される高調波次数情報の中から前記正負判定部の判定結果が示す正負に応じた次数を選択し、
     前記補正波生成部は、前記選択されて次数に基づき、振幅が前記トルク指令に依らず一定値である補正波を生成する
     ことを特徴とする請求項1に記載のモータ制御装置。
  10.  前記補正波情報選択部は、
     更に前記記憶部に前記補正波情報として前記高調波次数情報と関連付けられて格納されている補正波の振幅も選択し、前記補正波生成部に与える
     ことを特徴とする請求項7に記載のモータ制御装置。
  11.  前記補正波情報選択部は、
     更に前記記憶部に前記補正波情報として前記高調波次数情報と関連付けられて格納されている補正波の位相も選択し、前記補正波生成部に与える
     ことを特徴とする請求項7または8に記載のモータ制御装置。
  12.  前記記憶部に、前記高調波次数情報、前記振幅及び前記位相からなる補正波情報が設定できる入力手段が接続されていることを特徴とする請求項9~11のいずれかひとつに記載のモータ制御装置。
  13.  前記記憶部に格納される前記高調波次数情報、前記振幅及び前記位相からなる補正波情報を表示できる表示手段が接続されていることを特徴とする請求項9~12のいずれかひとつに記載のモータ制御装置。
  14.  前記モータは、
     スロットを有する鋼板を積層した電機子コアと、
     前記スロットに電機子コイルを配設した電機子と、
     移動方向に互いに磁極が異極となるように配設した永久磁石を有する界磁とを有し、
     前記電機子と前記界磁とが空隙を介して互いに移動自在に支持されていて、
     前記空隙から観測できる前記電機子コアの表面及び前記磁極の表面を観測した場合に、前記電機子コアの表面と前記磁極の表面のうち少なくとも一方の表面が、前記電機子コアの積層方向の中心線のある一点を中心として非回転対称である
     ことを特徴とする請求項1~13のいずれかひとつに記載のモータ制御装置。
  15.  前記モータが、
     スロットを有する鋼板を積層した電機子コアと、
     前記スロットに電機子コイルを配設した電機子と、
     移動方向に互いに磁極が異極となるように配設した永久磁石を有する界磁とを有し、
     前記電機子と前記界磁とが空隙を介して互いに移動自在に支持され、
     前記スロットの数をQ、前記磁極の数をPとした場合に、比P/Qは、
         2/3<P/Q<4/3
    が成立するように設定されている
     ことを特徴とするとする請求項1~13のいずれかひとつに記載のモータ制御装置。
  16.  前記記憶部に前記補正波情報として格納する高調波次数情報の次数として、少なくとも磁極数Pとスロット数Qのいずれか一方を設定した
     ことを特徴とする請求項15に記載のモータ制御装置。
PCT/JP2011/071592 2011-09-22 2011-09-22 モータ制御装置 WO2013042237A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180073562.3A CN103814517B (zh) 2011-09-22 2011-09-22 电动机控制装置
PCT/JP2011/071592 WO2013042237A1 (ja) 2011-09-22 2011-09-22 モータ制御装置
JP2013534538A JP5755334B2 (ja) 2011-09-22 2011-09-22 モータ制御装置
KR1020147008806A KR101543976B1 (ko) 2011-09-22 2011-09-22 모터 제어 장치
US14/238,620 US20140210388A1 (en) 2011-09-22 2011-09-22 Motor control device
DE112011105652.4T DE112011105652T8 (de) 2011-09-22 2011-09-22 Motorsteuervorrichtung
TW101100278A TWI487267B (zh) 2011-09-22 2012-01-04 馬達控制裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071592 WO2013042237A1 (ja) 2011-09-22 2011-09-22 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2013042237A1 true WO2013042237A1 (ja) 2013-03-28

Family

ID=47914047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071592 WO2013042237A1 (ja) 2011-09-22 2011-09-22 モータ制御装置

Country Status (7)

Country Link
US (1) US20140210388A1 (ja)
JP (1) JP5755334B2 (ja)
KR (1) KR101543976B1 (ja)
CN (1) CN103814517B (ja)
DE (1) DE112011105652T8 (ja)
TW (1) TWI487267B (ja)
WO (1) WO2013042237A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070781A (ja) * 2013-10-01 2015-04-13 富士電機株式会社 風力発電システム
JP2016063649A (ja) * 2014-09-18 2016-04-25 株式会社デンソー モータ制御装置
JP2017131044A (ja) * 2016-01-21 2017-07-27 富士電機株式会社 回転電機の制御装置
US9958837B2 (en) 2014-02-06 2018-05-01 Fanuc Corporation Motor control apparatus for correcting interpolation error of position detector
JP2018098978A (ja) * 2016-12-15 2018-06-21 アイシン精機株式会社 モータ制御装置
WO2021002002A1 (ja) * 2019-07-04 2021-01-07 三菱電機株式会社 電動機駆動装置及び冷凍サイクル適用機器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI589097B (zh) * 2013-07-05 2017-06-21 Aida Eng Ltd Permanent magnet motor
EP3294610B1 (en) * 2015-05-11 2019-07-17 ThyssenKrupp Presta AG Electric power steering system with ripple compensation
US20170077854A1 (en) * 2015-09-15 2017-03-16 GM Global Technology Operations LLC Method and apparatus for controlling an electric machine
US9991837B2 (en) * 2016-05-20 2018-06-05 Continuous Solutions Llc Systems and methods for vibration and noise manipulation in switched reluctance machine drivetrains
US10199976B2 (en) 2016-05-20 2019-02-05 Continuous Solutions Llc Vibration and noise manipulation in switched reluctance machine drivetrains
CN107508503A (zh) * 2017-09-07 2017-12-22 北京车和家信息技术有限公司 电机扭矩修正方法、电机扭矩修正装置、电机及车辆
CN111713009B (zh) * 2018-02-20 2023-10-13 日本电产株式会社 马达控制系统和助力转向系统
KR102325650B1 (ko) * 2021-06-25 2021-11-12 (주)수산인더스트리 유도 전동기 관리 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746878A (ja) * 1993-08-02 1995-02-14 Okuma Mach Works Ltd 電動機の制御装置
JP2010166815A (ja) * 2010-04-28 2010-07-29 Mitsubishi Electric Corp 永久磁石形同期モータ
JP2010166810A (ja) * 2010-03-26 2010-07-29 Mitsubishi Electric Corp 回転電機の固定子
JP2010239681A (ja) * 2009-03-30 2010-10-21 Aisin Aw Co Ltd 回転電機制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808437A (en) * 1994-12-02 1998-09-15 Sulzer Electronics Ag Method for compensation of periodic shaking forces in an electrical rotating field machine
JP2003088159A (ja) * 2001-09-05 2003-03-20 Yaskawa Electric Corp トルクリップル補正方法および装置
JP4285161B2 (ja) * 2003-09-03 2009-06-24 株式会社安川電機 同期型acモータのトルクリップル補正方法および装置
US20080018289A1 (en) * 2006-07-21 2008-01-24 Fumio Tajima Single-phase position sensorless permanent magnet motor control apparatus
JP2008029114A (ja) * 2006-07-21 2008-02-07 Hitachi Industrial Equipment Systems Co Ltd クローポール型単相モータ,クローポール型単相モータシステム、及びクローポール型単相モータを備えた電動ポンプ,電動ファン、及び車両
JP5321449B2 (ja) * 2007-03-07 2013-10-23 株式会社安川電機 モータ制御装置
JP4851473B2 (ja) * 2008-01-18 2012-01-11 三菱電機株式会社 永久磁石形同期モータ
DE102009044528A1 (de) * 2008-11-14 2010-06-02 Denso Corporation, Kariya-City Reluktanzmotor
TWI404322B (zh) * 2009-04-14 2013-08-01 Mitsubishi Electric Corp 馬達控制裝置
JP4676551B1 (ja) * 2009-12-22 2011-04-27 ファナック株式会社 コギングトルク補正量算出機能を有するモータ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746878A (ja) * 1993-08-02 1995-02-14 Okuma Mach Works Ltd 電動機の制御装置
JP2010239681A (ja) * 2009-03-30 2010-10-21 Aisin Aw Co Ltd 回転電機制御装置
JP2010166810A (ja) * 2010-03-26 2010-07-29 Mitsubishi Electric Corp 回転電機の固定子
JP2010166815A (ja) * 2010-04-28 2010-07-29 Mitsubishi Electric Corp 永久磁石形同期モータ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070781A (ja) * 2013-10-01 2015-04-13 富士電機株式会社 風力発電システム
US9958837B2 (en) 2014-02-06 2018-05-01 Fanuc Corporation Motor control apparatus for correcting interpolation error of position detector
DE102015001147B4 (de) 2014-02-06 2023-01-05 Fanuc Corporation Motorsteuervorrichtung zur Korrektur eines Interpolationsfehlers einer Positionserfassungseinrichtung
JP2016063649A (ja) * 2014-09-18 2016-04-25 株式会社デンソー モータ制御装置
JP2017131044A (ja) * 2016-01-21 2017-07-27 富士電機株式会社 回転電機の制御装置
JP2018098978A (ja) * 2016-12-15 2018-06-21 アイシン精機株式会社 モータ制御装置
WO2021002002A1 (ja) * 2019-07-04 2021-01-07 三菱電機株式会社 電動機駆動装置及び冷凍サイクル適用機器
JPWO2021002002A1 (ja) * 2019-07-04 2021-01-07
JP7308949B2 (ja) 2019-07-04 2023-07-14 三菱電機株式会社 電動機駆動装置及び冷凍サイクル適用機器

Also Published As

Publication number Publication date
JPWO2013042237A1 (ja) 2015-03-26
CN103814517A (zh) 2014-05-21
TW201315136A (zh) 2013-04-01
US20140210388A1 (en) 2014-07-31
KR20140066214A (ko) 2014-05-30
KR101543976B1 (ko) 2015-08-11
DE112011105652T8 (de) 2014-12-11
DE112011105652T5 (de) 2014-08-28
TWI487267B (zh) 2015-06-01
CN103814517B (zh) 2016-10-26
JP5755334B2 (ja) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5755334B2 (ja) モータ制御装置
JP5576145B2 (ja) モータ制御装置
JP5916526B2 (ja) 電力変換器制御装置および多重巻線型電動機駆動装置
JP4995518B2 (ja) 交流電動機の制御装置およびその鉄損抑制用重畳電流の演算方法
JP2014241725A (ja) ベアリングレスモータ
JP6239448B2 (ja) インバータおよびこれを用いた駆動システム
JPWO2017064756A1 (ja) 交流回転機の制御装置及びそれを備えた電動パワーステアリング装置
JP2018042324A (ja) インバータ制御装置および電動機駆動システム
JP2012065464A (ja) モーター制御装置
JP5125139B2 (ja) モータインバータ制御装置及びモータ制御方法
JP6113651B2 (ja) 多相電動機駆動装置
JP2014064400A (ja) モーター制御装置
JP5135794B2 (ja) モータ制御方法
JP2012213312A (ja) モータインバータの制御方法、及び制御装置
JP2019115114A (ja) モータの制御方法、およびモータの制御装置
JPH09252588A (ja) 圧縮機駆動制御方法、二重突極リラクタンスモータ駆動制御方法およびこれらの装置
JP2018019544A (ja) 同期モータ制御装置
JP5707028B2 (ja) 電力変換装置
JP2006121855A (ja) 交流モータ制御装置
JP4967375B2 (ja) 同期機の電流制御装置及び電流制御方法
JP2019009968A (ja) 多相電動機駆動装置
JP2022063981A (ja) 車両用モータサウンド制御システム
JP2019140814A (ja) モータ制御装置
JP2012139105A (ja) モーター制御装置
JP2012244650A (ja) モータの駆動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534538

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14238620

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011105652

Country of ref document: DE

Ref document number: 1120111056524

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147008806

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11872873

Country of ref document: EP

Kind code of ref document: A1