WO2013040999A1 - 一种时偏和频偏的联合估计方法 - Google Patents

一种时偏和频偏的联合估计方法 Download PDF

Info

Publication number
WO2013040999A1
WO2013040999A1 PCT/CN2012/081265 CN2012081265W WO2013040999A1 WO 2013040999 A1 WO2013040999 A1 WO 2013040999A1 CN 2012081265 W CN2012081265 W CN 2012081265W WO 2013040999 A1 WO2013040999 A1 WO 2013040999A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
offset
estimation
frequency offset
frequency
Prior art date
Application number
PCT/CN2012/081265
Other languages
English (en)
French (fr)
Inventor
李婷
王俊
李洋
肖海涛
雷春华
Original Assignee
武汉邮电科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉邮电科学研究院 filed Critical 武汉邮电科学研究院
Publication of WO2013040999A1 publication Critical patent/WO2013040999A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a joint estimation method for time offset and frequency offset in a third generation mobile communication long term evolution system (hereinafter referred to as 3G LTE).
  • 3G LTE third generation mobile communication long term evolution system
  • OFDM Orthogonal frequency division multiplexing
  • the frequency offset of the wireless signal occurs during transmission, which destroys the subcarriers in the OFDM system.
  • Intersect; multipath transmission causes a time offset in signal generation, which can cause severe inter-block interference (IBI).
  • IBI inter-block interference
  • Frequency offset estimation as one of the important modules of the receiving end of FDD-LTE system, has a very important impact on the overall system performance. How to quickly and accurately estimate this deviation is a key part of the wireless communication field that directly affects the speed and quality of communication.
  • the joint estimation of the time offset and the frequency offset of the LTE system is inseparable from the characteristics of the frame structure of the LTE standard.
  • the frame structure and the basic point in the LTE standard are first described before the joint estimation of the time offset and the frequency offset of the LTE system. Briefly explain.
  • the TDD and FDD modes are defined in the LTE standard.
  • the duration of a radio frame in these two modes is 10 ms, including 10 subframes.
  • the minimum unit of LTE resource scheduling is TTI (ie, lms), and one ⁇ can be divided into 2 slots.
  • TTI ie, lms
  • CP regular cyclic prefix
  • each slot contains 7 OFDM symbols.
  • a resource block (RB) is a basic unit of LTE resource scheduling.
  • a physical resource having a width of 180 kHz in a frequency domain is a resource block, that is, a subcarrier spacing is M 5 kHz , and each RB includes 12 sub-bands. Carrier.
  • the PUSCH demodulation reference signal (DM RS ) is located at the fourth symbol of each time slot and has the same bandwidth as the allocated uplink data.
  • the existing LTE uplink time-shift and frequency-offset channel estimation methods mainly estimate the time offset and frequency offset based on two DM RSs in the same ⁇ .
  • the specific method is: Assume that the vector H Afl represents the channel response of the DM RS transmission, ⁇ represents the number of receiving antennas, ⁇ 0 corresponds to the DM RS of the first slot in the ⁇ (on the OFDM symbol of / 3), and p 1 corresponds to DM RS of the second time slot in the TTI (on the OFDM symbol of / 10).
  • the instantaneous correlation values are:
  • the parameter M represents the scheduling bandwidth, represented by the number of subcarriers, and ⁇ * represents the conjugate.
  • the estimated value of the frequency offset is calculated based on the phase difference of the reference signals of different sampling points on the same subcarrier'; for different sampling points, the instantaneous correlation value is: ⁇ ⁇ , where N M denotes the number of receiving antennas, (f denotes conjugate transpose.
  • the estimated value of the available frequency offset is: E ⁇ dd,) - ⁇ -angle ⁇ C f ⁇ where represents the number of points of the FFT transform.
  • N s represents Sampling point spacing, for different bandwidths, the value of Ns is different, for 5MHz, 10MHz, 20MHz are 3840, 7680 and 15360 respectively. Obviously, this estimation scheme needs separate algorithm to estimate the system time and frequency offset.
  • the object of the present invention is to overcome the shortcomings of the prior art, and provide a joint estimation method for time offset and frequency offset of an uplink of an LTE system, which can reduce the computational complexity of the estimation algorithm on the basis of ensuring estimation accuracy, thereby ensuring The system receives performance in real time.
  • the technical solution of the present invention is: a joint estimation method of time offset and frequency offset, which is different in that it comprises the following steps: A. Separating the channel gain estimates of the PUSCH demodulation reference signals of the two slots from the received one subframe data
  • the specific step of the step A includes: performing a point-by-point conjugate multiplication of the locally generated PUSCH demodulation reference signal and the PUSCH demodulation reference signal to obtain demodulation reference signals of two time slots respectively. Channel gain estimate.
  • the step B includes the following specific steps: sequentially calculating the first time slot of the one subframe
  • the PUSCH demodulates the channel gain estimate H of the corresponding subcarrier in the reference signal in each physical resource block.
  • the subcarriers on the RS, the subcarriers on the DM RS of the second slot satisfy: s , s > 0 , s is the interval between the subcarriers corresponding to the two demodulation reference signals in the frequency domain, and then superimposing the correlation results to obtain a joint estimation of the time offset and the frequency offset:
  • the resource block includes all resource blocks scheduled when the current PUSCH is transmitted.
  • the step C specifically includes the following steps:
  • the time difference is estimated to be:
  • the frequency offset estimation phase difference is:
  • the time difference is estimated to be:
  • the frequency offset estimation phase difference is:
  • the time difference is estimated to be:
  • the frequency offset estimation phase difference is:
  • the frequency offset estimation algorithm needs to perform cross-correlation operation on all subcarriers (ie, M subcarriers) of two time slots, and the time offset estimation algorithm needs to pass M s of two time slots.
  • the subcarriers are obtained by cross-correlation operation, that is, a total of 2M s cross-correlation operations are required to estimate the system time offset and frequency offset value.
  • the beneficial features of the present invention are as follows:
  • the joint estimation method of time offset and frequency offset only needs M cross-correlation operation to estimate the time offset and frequency offset value of the system, which can guarantee the basis of estimation accuracy.
  • the computational complexity of the estimation algorithm is reduced, that is, by reducing the cross-correlation operation by nearly half, the complexity of the detection algorithm is reduced, and the efficiency is improved, thereby ensuring the real-time reception performance of the system.
  • FIG. 1 is a schematic diagram of steps of a joint estimation method for time offset and frequency offset according to the present invention
  • FIG. 2 is a schematic diagram of an existing method for estimating time offset and frequency offset
  • FIG. 3 is a schematic diagram of a joint estimation method for time offset and frequency offset according to the present invention
  • a schematic diagram of a first embodiment of a joint estimation method for time offset and frequency offset according to the present invention and a conventional estimation method is shown in FIG. 1
  • FIG. 5 is a schematic diagram of a second embodiment of a joint estimation method for time offset and frequency offset according to the present invention.
  • the present invention will be further described in detail below with reference to the accompanying drawings.
  • the basic idea of the present invention is to estimate the time offset and frequency offset by using the joint estimation method of time offset and frequency offset in the uplink of the LTE system, improve the system estimation efficiency, and reduce the algorithm implementation complexity.
  • the method mainly includes: acquiring a reference signal sequence of two time slots from a received subframe data; calculating a correlation value of the subcarriers respectively located in a different reference signal sequence; and obtaining a correlation value according to the obtained correlation value Calculate the frequency deviation and time deviation.
  • the joint estimation of the time offset and the frequency offset of the LTE system of the present invention is inseparable from the characteristics of the frame structure of the LTE standard.
  • the TDD and FDD modes are defined in the LTE standard.
  • the duration of a radio frame in these two modes is 10 ms, including 10 subframes.
  • the minimum unit of LTE resource scheduling is TTI (ie, lms), and one TTI can be divided into 2 slots.
  • TTI ie, lms
  • CP regular cyclic prefix
  • each slot contains 7 OFDM symbols.
  • a resource block (RB) is a basic unit of LTE resource scheduling.
  • a physical resource having a width of 180 kHz in a frequency domain is a resource block, that is, a subcarrier spacing is ⁇ /15W3 ⁇ 4, and each RB includes 12 Subcarriers.
  • the PUSCH demodulation reference signal is located at the fourth symbol of each time slot and has the same bandwidth as the allocated uplink data.
  • the time offset and the frequency offset phase deviation are respectively obtained, and then the system time offset value and the frequency offset value are estimated.
  • the step A includes: performing a point-by-point conjugate multiplication by the locally generated PUSCH demodulation reference signal and the received PUSCH demodulation reference signal to obtain a demodulation reference signal channel gain estimation value.
  • the step B includes: demodulation reference signal subcarriers of two time slots with a frequency domain distance of s, and the time domain up sampling point interval is related to a specific scheduling bandwidth.
  • the step B includes: the two subcarriers that perform joint estimation are subcarriers located on a PUSCH demodulation reference signal of different time slots in one TTI and having a certain distance in a frequency domain.
  • the step B includes the following steps: sequentially calculating, in the first time slot of the one subframe, the corresponding subcarrier and the second time of the PUSCH demodulation reference signal in each physical resource block (RB) a subcarrier on the slot demodulation reference signal with a subcarrier frequency domain distance of s,
  • the cross-correlation value between ( LL s , s > 0 ), and the corresponding joint estimate of time offset and frequency offset is obtained.
  • M denotes the scheduling bandwidth, expressed in number of subcarriers
  • ⁇ * denotes conjugate.
  • the second slot of the one subframe is sequentially calculated.
  • the PUSCH demodulation reference signal is corresponding to the subcarrier and the first slot demodulation reference signal and the subcarrier in each physical resource block (RB). ; ⁇ Subcarriers with frequency domain distance s'
  • R 2 H IK (H 0J([ , where M denotes the scheduling bandwidth, expressed in number of subcarriers, and ()* denotes conjugate. Weighted average of the results of two cross-correlation operations, and the average value as the current schedule.
  • the RB includes all the RBs scheduled when the current PUSCH is transmitted.
  • the step C includes the following process: The gap reference signal channel gain cross-correlation operation result, ?
  • the estimated value of the time offset and the estimated value of the frequency offset are estimated according to the time offset and the frequency offset phase offset value.
  • MJ S f is a specific uplink ⁇ , and its structure is shown in FIG. 3, which respectively represents a specific subcarrier on the demodulation reference signal, and s is the interval in the frequency domain between the subcarriers of the two demodulation reference signals.
  • the unit is a subcarrier.
  • the correlation operation is performed by using different subcarriers with intervals of s. The smaller the value of s is, the higher the accuracy of the calculation is, but the calculation amount is large. In order to effectively reduce the amount of calculation of the algorithm, it is set to s 3 in the present invention.
  • ⁇ 4 is a sub-carrier satisfying the following formula: 0 ⁇ ⁇ ⁇ and i, mod6 ⁇ 3, ⁇ s is the distance of 4 sub-carriers, i.e., d 3 d 2 3. ; to satisfy the subcarriers of the following formula: 0 d 4 M and i 4 mod6 ⁇ 3, is the subcarrier with distance s, ie 4 d 4 3 .
  • the bandwidth scheduled by the user is 10 M, that is, 600 subcarriers.
  • Step 1 Calculate the phase difference of the joint estimation of the time offset/frequency offset of the subcarriers on the DM RS on the received signal; for DMRS, the instantaneous correlation value can be defined as
  • M is the number of subcarriers allocated by the UE
  • represents the number of subcarriers in one RB
  • M Q is a fixed value of 12 in the case of a regular cyclic prefix (CP).
  • CP regular cyclic prefix
  • Step 2 Calculate the phase difference of the time offset/frequency offset joint estimation of the subcarriers on the DM RS on the received signal.
  • the instantaneous correlation value can be defined as a 0 p 0 i 0 i 0
  • the time difference and the frequency offset jointly estimate the phase difference 2 as: ⁇ ⁇ ! Im( r ( )
  • Step 3 determining a phase difference estimation value caused by the time offset and a phase difference estimation value caused by the frequency offset according to the phase difference 17 2 of the joint estimation;
  • the time difference estimation phase difference is:
  • the frequency offset estimation phase difference is:
  • the frequency offset estimation phase difference is: 0 0
  • the frequency offset estimation phase difference is:
  • Step 4 Determine the estimated value of the time offset and the estimated value of the frequency offset based on the two phase differences in step 3.
  • Figure 4 depicts the time-frequency offset estimate of [-1000, 1000] when the time offset is imeoffset 2 167;), where frequencyoffsetl represents the existing method frequency offset estimate.
  • the frequency offset2 represents the combined estimation of the time-biased and ⁇ -biased deviations proposed by the present invention, ⁇ , ⁇ .
  • Figure 5 depicts the time-offset estimate when the time offset is set to [ 1() 16 ⁇ - 10 16 ] for a certain frequency offset (500 Hz).
  • the timeoffsetl represents the existing method time-offset estimation value
  • the timeoffset2 represents the time-offset value estimated by the combined time offset and frequency offset proposed by the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线通信领域,尤其涉及第三代移动通信长期演进系统(以下简称3G LTE)中一种时偏和频偏的联合估计方法,其不同之处在于,包含下列步骤:A. 从接收的一个子帧数据中分离出两个时隙的PUSCH解调参考信号(DM RS)的信道增益估计值;B. 计算分别位于不同PUSCH解调参考信号(DM RS)上其频域距离为s个子载波间隔的两个子载波之间信道增益的互相关值,进而得到时偏和频偏的联合估计相位差;C. 根据时偏和频偏的联合估计相位差,分别得到时偏、频偏相位偏差,进而估计出系统时偏值、频偏值。本发明能在保证估计精度的基础上降低估计算法的运算量,从而保证系统实时接收性能。

Description

一种时偏和频偏的联合估计方法 技术领域
本发明涉及无线通信领域, 尤其涉及第三代移动通信长期演进系统 (以下简称 3G LTE) 中的一种时偏和频偏的联合估计方法。
背景技术
LTE中采用 OFDM技术, 系统中子载波的频谱互相覆盖, 具有严格的正交性。 由于无线 信道的时变性, 发射机和接收机晶振的不稳定性以及终端高速移动引起的多普勒频移, 传输 过程中会出现无线信号的频率偏移, 破坏了 OFDM系统中的子载波正交性; 多径传输导致信 号产生的时间偏移, 会产生严重的块间干扰 (inter-block interference, IBI)。 只有尽量准确的 估计出这个频率偏差以及时间偏差, 才能进行频偏和时偏调整 /补偿, 达到接收机能够接受的 频率和时间偏差, 从而进行数据解调。 频偏和时偏估计的准确性将直接影响到解调性能, 特 别是高阶调制信号的解调。 频偏估计作为 FDD-LTE系统接收端重要模块之一, 对整个系统性 能有着非常重要的影响, 如何快速准确的估计出这个偏差, 是无线通信领域中直接影响到通 信速度和质量的关键部分。
LTE系统的时偏和频偏联合估计与 LTE标准的帧结构的特征密不可分, 为了方便理解, 对 LTE系统的时偏和频偏联合估计描述之前, 首先对 LTE标准中的帧结构以及基本点进行简 要说明。
LTE标准中定义了 TDD、 FDD两种模式, 这两种模式下的一个无线帧时域持续时间是 10ms, 包括 10个子帧。 LTE资源调度的最小单位为 TTI (即 lms), 一个 ΤΉ可以分为 2个 时隙。 使用常规循环前缀 (CP ) 时, 每个时隙包含 7个 OFDM符号。 资源块 (RB ) 是 LTE 资源调度的基本单元, 在一个时隙中, 频域上连续的宽度为 180kHz 的物理资源即为一个资 源块,即子载波间隔为 M 5kHz,每个 RB包含 12个子载波。常规循环前缀情况下, PUSCH 解调参考信号 (DM RS ) 位于每个时隙的第四个符号, 和分配的上行数据有相同的带宽。 现有的 LTE上行链路时偏和频偏信道估计方法,主要是基于同一个 ΤΉ中的 2个 DM RS 来估计时偏和频偏。 具体方法是: 假设矢量 HAfl表示 DM RS传输的信道响应, α表示接收天 线数, ρ 0对应于 ΤΤΙ中第 1个时隙的 DM RS (位于 / 3的 OFDM符号上) , p 1对应于 TTI中第 2个时隙的 DM RS (位于 / 10的 OFDM符号上)。 首先, 根据一个 ΤΉ中同一个 DMRS中间隔 ^个子载波的不同子载波的相位差来计算时 偏 的估计值 '。 对于间隔 的两个子载波, 其瞬时相关值为:
1
其中, 参数 M表示调度带宽, 用子载波个数表示, ◦*表示共轭。 可得时偏 的估计值
1 1 Im(Q
- tan
2^ s%f Re(Q 其次, 基于同一子载波上不同采样点的参考信号相位差来计算频偏 的估计值'; 对于不同采样点, 其瞬时相关值为: η^ 。,。 。 其中, NM表示接收天线个数, (f表示共轭转置。 可得频偏 的估计值 为: E{d d,) -^-angle{Cf} 其中, 表示 FFT变换的点数。 Ns表示采样点间隔, 对不同的带宽, Ns的取值不同, 对 5MHz, 10MHz, 20MHz分别是 3840, 7680和 15360。 显然, 这种估计方案需要分别的通过算法, 估计出系统时偏和频偏, 会带来大量的相关 运算,特别是频偏估计时,需要把整个信道带宽上两个时隙的 DMRS的所有子载波都做互相关, 估计算法大的运算量会影响系统信息传输的实时性。
发明内容
本发明的目的在于克服现有技术的缺点, 提供一种 LTE系统上行链路的时偏和频偏的联 合估计方法, 该方法能在保证估计精度的基础上降低估计算法的运算量, 从而保证系统实时 接收性能。
为解决以上技术问题, 本发明技术方案为: 一种时偏和频偏的联合估计方法, 其不同之 处在于, 包含下列步骤: A. 从接收的一个子帧数据中分离出两个时隙的 PUSCH解调参考信号的信道增益估计值
H;
B. 计算分别位于一个 TTI中不同时隙的 PUSCH解调参考信号上其频域距离为 ^个子载 波间隔的两个子载波之间信道增益的互相关值, 进而得到时偏和频偏的联合估计相位差;
C. 根据时偏和频偏的联合估计相位差, 分别得到时偏、 频偏相位偏差, 进而估计出系统 时偏值、 频偏值。 按以上方案, 所述步骤 A的具体步骤包括: 通过将本地生成的 PUSCH解调参考信号与所述 PUSCH解调参考信号进行逐点共轭相 乘, 分别得到两个时隙的解调参考信号信道增益估计值。 按以上方案, 所述步骤 B包括如下具体步骤: 依次计算所述的一个子帧的第 1个时隙中
PUSCH解调参考信号在每个物理资源块中对应的子载波 的信道增益估计值 H。A和第 2个 时隙解调参考信号上与子载波 频域距离为 s的子载波 的信道增益估计值 H1A进行逐点共 轭相乘运算, 其中, 为位于第 1个时隙的 DM RS上的子载波, 位于第 2个时隙的 DM RS 上的子载波 满足:
Figure imgf000005_0001
s , s > 0 , s为两个解调参考信号对应的子载波间在频域上的 间隔, 然后将各相关结果进行叠加, 从而得到相应的时偏和频偏的联合估计值:
R, H0A (Hlk2 ) 其中 0*表示共轭, M表示调度带宽, 以子载波个数表示, ◦*表示 共轭, 2 kx s , s > 0; 同理, 依次计算所述的一个子帧的第 2个时隙 PUSCH解调参考信号在每个物理资源块 中对应的子载波 的信道增益估计值 Hl i;和第 1个时隙解调参考信号上与子载波 频域距离 为 s的子载波 k;的信道增益估计值 H。,i;进行逐点共轭相乘运算,然后将各相关结果进行叠加, 从而得到相应的时偏和频偏的联合估计值 Hi k, (H^ )', 其中, 为位于第 2个时 隙的 DM RS上的子载波, 位于第 1个时隙的 DM RS上的子载波 满足条件为: k、' k2' S ^为两个解调参考信号对应的子载波间在频域上的间隔, M表示调度带宽, 以子载波个数表 示, ()*表示共轭, k k2' s , s > 0。 按以上方案, 对上述两次互相关运算的结果进行加权平均, 并将平均值作为当前调度子 帧的时偏和频偏的联合估计结果。
按以上方案, 所述的资源块包括当前 PUSCH传输时调度的所有资源块。
按以上方案, 所述歩骤 C具体包括如下歩骤:
Cl)、 根据所述方法得到的两个时隙参考信号信道增益互相关运算结果 , ?2, 估计出由 于时偏和频偏联合引起的两个相位偏移值 , angleiR , 2 angle(R2) .
C2)、 根据联合估计的相位差 1 7 2确定时偏 引起的相位差估计值 ',和频偏 引起的相 位差估计值 ;
①. 当联合估计的相位差 2满足, 2 时,
Figure imgf000006_0001
时偏估计相位差为:
频偏估计相位差为:
0 0
②. 当联合估计的相位差 满足 i [ [ ^ 7]时'
时偏估计相位差为:
频偏估计相位差为:
0 0
2
③. 当联合估计的相位差 2不满足① ②时, 则
时偏估计相位差为: 频偏估计相位差为:
C3) 、 根据所述的时偏和频偏相位偏移值, 估计时偏 的估计值 和频偏 的估计值 。
2^ s%f ' 2^NS 。 现有的时偏 /频偏估计算法, 其频偏估计算法需通过两个时隙的所有子载波 (即 M个子 载波) 进行互相关运算, 时偏估计算法需通过两个时隙的 M s个子载波进行互相关运算得 到, 即一共需要 2M s次互相关运算才能估计出系统时偏、 频偏值。 对比现有技术, 本发明的有益特点如下: 该时偏和频偏的联合估计方法, 仅需 M次互相关运算即可估计出系统的时偏和频偏值, 能在保证估计精度的基础上降低估计算法的运算量, 即通过降低了接近一半的互相关运算, 从而降低了检测的算法复杂度, 提高了效率, 从而保证系统实时接收性能。
附图说明
图 1为本发明时偏和频偏的联合估计方法步骤示意图; 图 2为已有的时偏和频偏估计方法示意图; 图 3为本发明时偏和频偏的联合估计方法示意图; 图 4为本发明时偏和频偏的联合估计方法与已有估计方法对比实施例一示意图; 图 5为本发明时偏和频偏的联合估计方法与已有估计方法对比实施例二示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。 本发明的基本思想是在 LTE系统的上行链路中, 采用时偏和频偏的联合估计方法估计出 时偏和频偏, 提高系统估计效率, 减少算法实现复杂度。 该方法主要包括: 从接收到的一子 帧数据中, 获取两个时隙的参考信号序列; 计算所述分别位于不同参考信号序列中存在一定 距离的子载波的相关值; 根据得到的相关值计算频率偏差和时间偏差。 本发明 LTE系统的时偏和频偏联合估计与 LTE标准的帧结构的特征密不可分, 为了方便 理解, 对 LTE系统的时偏和频偏联合估计描述之前, 首先对 LTE标准中的帧结构以及基本点 进行简要说明。 LTE标准中定义了 TDD、FDD两种模式,这两种模式下的一个无线帧时域持续时间是 10ms, 包括 10个子帧。 LTE资源调度的最小单位为 TTI (即 lms ) , 一个 TTI可以分为 2个时隙。 使用常规循环前缀(CP) 时, 每个时隙包含 7个 OFDM符号。 资源块(RB)是 LTE资源调度的 基本单元, 在一个时隙中, 频域上连续的宽度为 180kHz 的物理资源即为一个资源块, 即子 载波间隔为 λ/ 15W¾, 每个 RB包含 12个子载波。 常规循环前缀情况下, PUSCH解调参考 信号位于每个时隙的第四个符号, 和分配的上行数据有相同的带宽。 请参考图 1, 本发明一种时偏和频偏的联合估计方法, 其不同之处在于, 包含下列步骤:
A. 从接收的一个子帧数据中分离出两个时隙的 PUSCH解调参考信号 (DM RS ) 的信道 增益估计值;
B. 计算分别位于不同 PUSCH解调参考信号 (DM S ) 上其频域距离为 ^个子载波间隔 的两个子载波之间信道增益的互相关值, 进而得到时偏和频偏的联合估计相位差;
C. 根据时偏和频偏的联合估计相位差, 分别得到时偏、 频偏相位偏差, 进而估计出系统 时偏值、 频偏值。
具体的, 所述步骤 A包括: 通过将本地生成的 PUSCH解调参考信号与接收到的 PUSCH解调参考信号进行逐点共轭 相乘, 得到解调参考信号信道增益估计值。
具体的, 所述步骤 B包括: 频域距离为 s的两个时隙的解调参考信号子载波, 其时域上采样点间隔与具体调度带宽 有关。
具体的, 所述步骤 B包括: 进行联合估计的两个子载波是位于一个 TTI中不同时隙的 PUSCH解调参考信号上且频 域上具有一定距离的子载波。 具体的, 所述步骤 B包括如下过程: 依次计算所述的一个子帧的第 1个时隙中 PUSCH解调参考信号在每个物理资源块(RB) 中对应的子载波 和第 2 个时隙解调参考信号上与子载波 ^频域距离为 s的子载波 ,
( L L s , s > 0 ) 之间的互相关值, 得到相应的时偏和频偏的联合估计值 R, H。A (Hlk2) 其中 M表示调度带宽, 以子载波个数表示, ◦*表示共轭。 同理, 依次计算所述的一个子帧的第 2个时隙 PUSCH解调参考信号在每个物理资源块 (RB)中对应的子载波 和第 1个时隙解调参考信号上与子载波; ^频域距离为 s的子载波 '
( k[ k2' s , s>0 ) 之间互相关运算的相关值, 得到时偏和频偏的联合估计值
R2 HIK, (H0J([ , 其中 M表示调度带宽, 以子载波个数表示, ()*表示共轭。 对两次互相关运算的结果进行加权平均, 并将平均值作为当前调度子帧的时偏和频偏的 联合估计结果。 具体的, 所述的 RB包括当前 PUSCH传输时调度的所有 RB。 具体的, 所述步骤 C包括如下过程: 根据所述方法得到的两个时隙参考信号信道增益互相关运算结果 , ?2,估计出由于时偏 和频偏联合引起的两个相位偏移值 , mg!eiR^, 2 angle(R2) ^ 具体的, 根据所述的时偏和频偏联合引起的相位偏移值, 分别估计出时偏和频偏相位偏 移值: 2)
2) 具体的,根据所述的时偏和频偏相位偏移值,估计时偏 的估计值 '和频偏 的估计值'。
~ J 1_ ~
l FFT
MJS f 对于一个特定的上行 ΤΉ, 其结构如图 3所示, 分别表示解调参考信号上的 一个特定的子载波, s为两个解调参考信号子载波间在频域上的间隔, 单位为子载波。 通过 采用间隔为 s的不同子载波进行相关运算, s取值越小算法计算的精度高, 但是计算量很大。 为了能有效的减少算法的计算量, 本发明中设置为 s 3。
4为满足下式的子载波: 0 άΊ Μ且 i,mod6<3, ^是与 4距离为 s的子载波, 即 d3 d2 3。; 为满足下式的子载波: 0 d4 M且 i4mod6<3, 是与 距离为 s的子载 波, 即 4 d4 3。 对于 20M的系统带宽, 用户调度的带宽为 10M, 即 600个子载波时。
实施例具体步骤如下:
步骤 1:计算接收信号上位于 DM RS上的子载波 , 的时偏 /频偏联合估计的相位差 ,; 对于 DMRS, 其瞬时相关值可以定义为
Figure imgf000010_0001
其中, M为 UE分配的子载波数, ^表示一个 RB中子载波的个数,常规循环前缀(CP) 时, MQ为定值 12。 。表示针对某个子载波 , 导频 p以及天线 α的导频信道估计值。 其时偏 /频偏联合估计相位差 1
Figure imgf000010_0002
步骤 2:计算接收信号上位于 DM RS上的子载波 , 的时偏 /频偏联合估计的相位差 对于 DMRS, 其瞬时相关值可以定义为 a 0 p 0 i 0 i 0
其中具体参数的介绍同上步骤。
其时偏和频偏联合估计相位差 2为: π ! im( r ( )
η Ε(α, , a, ) tan :
Re(C2"r(5))
步骤 3: 根据联合估计的相位差 17 2确定时偏 引起的相位差估计值 和频偏 引起的 相位差估计值 ;;
①. 当联合估计的相位差 2满足 , 2 时, 时偏估计相位差为: 频偏估计相位差为:
0 0
②. 当联合估计的相位差 两足 [ , -], 2 [ , 时, 时偏估计相位差为:
频偏估计相位差为: 0 0
2
③. 当联合估计的相位差 2不满足① ②时, 则 时偏估计相位差为:
2
频偏估计相位差为:
步骤 4: 根据步骤 3的两个相位差 确定时偏 的估计值'和频偏 的估计值'。
» J 1_ »
' l FFT
2^NS f 图 4描述的是一定时偏 imeoffset 2 167;) 时, 设置的频偏为 [-1000,1000]间时频偏估 计值, 其中 frequencyoffsetl表示现有的方法频偏估计值, frequencyoffset2表示本发明提出的 时偏和颍偏联合估计 ,屮,的颍偏倌。 图 5 描述的是一定频偏 (500Hz) 时, 时偏设置为 [ 1() 16Γ-10 16 ]时的时偏估计值。 其中 timeoffsetl表示现有的方法时偏估计值, timeoffset2表示本发明提出的时偏和频偏联合 估计出的时偏值。 以上内容是结合具体的实施方式对本发明所作的进一步详细说明, 不能认定本发明的具 体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员来说, 在不脱离本发明 构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权 利 要 求 书
1. 一种时偏和频偏的联合估计方法, 其特征在于, 包含下列步骤:
A. 从接收的一个子帧数据中分离出两个时隙的 PUSCH解调参考信号的信道增益估计 值;
B. 计算分别位于一个 TTI中不同时隙的 PUSCH解调参考信号上其频域距离为 s个子载 波间隔的两个子载波之间信道增益的互相关值, 进而得到时偏和频偏的联合估计相位差;
C. 根据时偏和频偏的联合估计相位差, 分别得到时偏、 频偏相位偏差, 进而估计出系统 时偏值、 频偏值。
2. 如权利要求 1所述的时偏和频偏的联合估计方法, 其特征在于,所述步骤 A的具体步 骤包括:通过将本地生成的 PUSCH解调参考信号与所述 PUSCH解调参考信号进行逐点共轭 相乘, 分别得到两个时隙的解调参考信号信道增益估计值。
3. 如权利要求 1所述的时偏和频偏的联合估计方法, 其特征在于, 所述歩骤 B包括如下 具体歩骤: 依次将所述的一个子帧的第 1个时隙中 PUSCH解调参考信号在每个物理资源块 中对应的子载波 的信道增益估计值 H。A和第 2个时隙解调参考信号上与子载波 频域距离 为 S的子载波 的信道增益估计值 H1A进行逐点共轭相乘运算, 其中, 为位于第 1个时隙 的 DM RS上的子载波, 为位于第 2个时隙的 DM RS上的子载波且满足: kx s ^ s 0 , s为两个解调参考信号对应的子载波间在频域上的间隔, 然后将各相关结果进行叠加, 从而 得到相应的时偏和频偏的联合估计值: H0A (Hl i2 y,其中()'表示共轭运算, M表 示调度带宽, 以子载波个数表示, k2 k、 s , s > 0 ; 同理,依次将所述的一个子帧的第 2个时隙 PUSCH解调参考信号在每个物理资源块中对 应的子载波 的信道增益估计值 H^和第 1个时隙解调参考信号上与子载波 频域距离为 ^ 的子载波 '的信道增益估计值 H^进行逐点共轭相乘运算, 然后将各相关结果进行叠加, 从 而得到相应的时偏和频偏的联合估计值 ― H" (Hn , ) ', 其中, 为位于第 2个时隙 的 DM RS上的子载波, 位于第 1个时隙的 DM RS上的子载波且满足: k2' s, ^ 0 , s为两个解调参考信号对应的子载波间在频域上的间隔, M表示调度带宽, 以子载波个数表 示, 0表示共轭运算。
4. 如权利要求 3所述的时偏和频偏的联合估计方法, 其特征在于, 对上述两次互相关运 算的结果进行加权平均, 并将平均值作为当前调度子帧的时偏和频偏的联合估计结果。
5. 如权利要求 3所述的时偏和频偏的联合估计方法, 其特征在于, 所述的资源块包括当 前 PUSCH传输时调度的所有资源块。
6. 如权利要求 3所述的时偏和频偏的联合估计方法, 其特征在于, 所述步骤 C具体包括 如下步骤:
C l)、 根据所述步骤 B得到的两个时隙参考信号信道增益互相关运算结果 , ?2, 估计出 由于时偏和频偏联合引起的两个相位偏移值 , angleiR , 2 angle{R2);
C2)、 根据联合估计的相位差 1 7 2确定时偏 引起的相位差估计值 ',和频偏 引起的相 位差估计值 ;
①. 当联合估计的相位差 满足 , 时,
Figure imgf000014_0001
时偏估计相位差为:
频偏估计相位差为:
< 0
> 0
②. 当联合估计的相位差 2满足 , [ [ ^ :]时' 时偏估计相位差为:
频偏估计相位差为:
0 0
2
③. 当联合估计的相位差 2不满足① ②时, 则
时偏估计相位差为:
2
频偏估计相位差为: _J 2_
C3) 、 根据所述的时偏和频偏相位偏移值, 估计时偏 的估计值 '和频偏 的估计值
Λ 1 1 Λ N ^
2^ ' MJS f
PCT/CN2012/081265 2011-09-19 2012-09-11 一种时偏和频偏的联合估计方法 WO2013040999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110277472.8A CN102325119B (zh) 2011-09-19 2011-09-19 一种时偏和频偏的联合估计方法
CN201110277472.8 2011-09-19

Publications (1)

Publication Number Publication Date
WO2013040999A1 true WO2013040999A1 (zh) 2013-03-28

Family

ID=45452789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081265 WO2013040999A1 (zh) 2011-09-19 2012-09-11 一种时偏和频偏的联合估计方法

Country Status (2)

Country Link
CN (1) CN102325119B (zh)
WO (1) WO2013040999A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160285667A1 (en) * 2015-03-27 2016-09-29 Yuan Ze University Joint estimation and compensation method of rf imperfections in lte uplink system
TWI756427B (zh) * 2017-06-29 2022-03-01 美商高通公司 為解調參考信號(dmrs)中傳送的資訊提供保護

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325119B (zh) * 2011-09-19 2014-03-19 武汉邮电科学研究院 一种时偏和频偏的联合估计方法
CN102946372B (zh) * 2012-09-10 2016-06-15 北京大学 Ofdm系统中频偏和时偏的联合估计方法
CN103856307B (zh) * 2012-12-05 2017-07-14 上海贝尔股份有限公司 一种用于确定经pucch所接收信号的频偏信息的方法与装置
CN103856308B (zh) * 2012-12-05 2017-09-15 上海贝尔股份有限公司 用于基于上行信道信号的确定时偏信息的方法与设备
CN103873412B (zh) * 2012-12-14 2017-12-19 上海贝尔股份有限公司 用于对ofdm符号中的dmrs符号进行频域平均处理的方法与装置
CN104426821B (zh) * 2013-08-30 2018-01-19 普天信息技术研究院有限公司 一种上行频率补偿的方法
CN106534001B (zh) 2015-09-10 2019-07-05 上海朗帛通信技术有限公司 一种低延迟的无线通信方法和装置
CN106028436B (zh) 2016-04-28 2019-10-25 华为技术有限公司 一种时频偏补偿的方法及用户终端
US10382244B2 (en) * 2017-02-14 2019-08-13 Samsung Electronics Co., Ltd. System and method for providing time offset and frequency offset estimation for vehicle to everything communication system
CN114143885A (zh) * 2017-08-11 2022-03-04 中兴通讯股份有限公司 资源位置的指示、接收方法及装置
TWI664844B (zh) * 2017-11-15 2019-07-01 元智大學 解決射頻不完美因子之聯合估測補償方法
CN109039981B (zh) * 2018-07-19 2021-07-09 深圳市极致汇仪科技有限公司 无线综测仪窄带物理上行共享信道的频偏估计方法及系统
CN112888078B (zh) 2018-08-10 2022-12-06 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及网络设备
CN112235215B (zh) * 2020-09-09 2022-09-13 鹏城实验室 一种无线信道探测方法、存储介质及终端设备
CN112383495B (zh) * 2020-11-03 2021-06-22 上海擎昆信息科技有限公司 一种基于pt-rs的频偏估计方法及系统
CN115714983A (zh) * 2021-08-19 2023-02-24 上海华为技术有限公司 一种通信测试方法和相关设备
CN115051771B (zh) * 2022-05-20 2024-08-16 哲库科技(北京)有限公司 一种小区搜索方法、装置、设备及计算机存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640650A (zh) * 2008-07-31 2010-02-03 三星电子株式会社 整数倍频偏和符号定时的联合估计方法和设备
CN102325119A (zh) * 2011-09-19 2012-01-18 武汉邮电科学研究院 一种时偏和频偏的联合估计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753499B (zh) * 2008-12-05 2015-05-06 三星电子株式会社 整数倍载波频率偏移和符号精定时的联合估计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640650A (zh) * 2008-07-31 2010-02-03 三星电子株式会社 整数倍频偏和符号定时的联合估计方法和设备
CN102325119A (zh) * 2011-09-19 2012-01-18 武汉邮电科学研究院 一种时偏和频偏的联合估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, XIAOLU ET AL.: "A FREQUENCY OFFSET AND TIMING JOINT ESTIMATION ALGORITHM IN THE OFDM SYSTEM", JOURNAL OF GUILIN UNIVERSITY OF ELECTRONIC TECHNOLOGY, vol. 31, no. 2, April 2011 (2011-04-01), pages 93 - 97 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160285667A1 (en) * 2015-03-27 2016-09-29 Yuan Ze University Joint estimation and compensation method of rf imperfections in lte uplink system
US9537701B2 (en) * 2015-03-27 2017-01-03 Yuan Ze University Joint estimation and compensation method of RF imperfections in LTE uplink system
TWI756427B (zh) * 2017-06-29 2022-03-01 美商高通公司 為解調參考信號(dmrs)中傳送的資訊提供保護
US11671222B2 (en) 2017-06-29 2023-06-06 Qualcomm Incorporated Providing protection for information delivered in demodulation reference signals (DMRS)

Also Published As

Publication number Publication date
CN102325119B (zh) 2014-03-19
CN102325119A (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
WO2013040999A1 (zh) 一种时偏和频偏的联合估计方法
CN103081425B (zh) 用于载波频率偏移估计和载波频率偏移校正的方法和设备
US9807718B2 (en) Secondary cell synchronization for carrier aggregation
JP5613233B2 (ja) 直交周波数分割多重化システムの時間オフセット推定装置及び方法
US20120099631A1 (en) Pilot-based time offset estimation apparatus and method
US20130215993A1 (en) Systems and methods for detecting transmissions based on 32-point and 64-point fast fourier transforms
US20130177115A1 (en) Systems and methods for addressing doppler effect in wireless communications systems
KR101398393B1 (ko) Ofdma 시스템에서의 반송파간 간섭 제거 방법
KR101505091B1 (ko) 직교주파수분할 방식 기반의 무선통신 시스템에서 초기 동기화를 위한 장치 및 방법
EP3210329A1 (en) Dynamic uplink/downlink frame structure for enhanced component carriers
WO2015139590A1 (zh) 一种频偏估计和补偿的方法及装置
CN102694763A (zh) 一种用于td-lte系统整数倍频偏估计的方法
US8385276B2 (en) Frequency tracking loop for wireless communications
AU2017219686B2 (en) NB-loT receiver operating at minimum sampling rate
JP2006518135A (ja) 無線データの送信方法、及び対応する信号、システム、送信機及び受信機
JP2012156926A (ja) 送信装置、送信方法、受信装置、及び受信方法
JP5080400B2 (ja) 無線端末、基地局及びチャンネル特性推定方法
Chen et al. Synchronization and Doppler scale estimation with dual PN padding TDS-OFDM for underwater acoustic communication
CN103581100A (zh) Lte-fdd系统抑制多径延时和多普勒效应的粗同步方法
CN101488939B (zh) 宽带无线通信系统中实现符号同步的方法、装置及接收机
CN103428147B (zh) 一种tdd-lte系统中频偏补偿的方法
KR101251558B1 (ko) 다중입출력 직교주파수분할다중화 기반 시스템을 위한 시간 동기 장치 및 그 방법
CN101789926A (zh) 多带ofdm超宽带系统联合载波和采样频偏估计方法
WO2011127759A1 (zh) 一种时偏估计方法和装置
Xiao et al. Time synchronization algorithms for IEEE 802.11 OFDM systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834454

Country of ref document: EP

Kind code of ref document: A1