WO2013039950A2 - Hydroprocessing catalysts and methods for making thereof - Google Patents

Hydroprocessing catalysts and methods for making thereof Download PDF

Info

Publication number
WO2013039950A2
WO2013039950A2 PCT/US2012/054723 US2012054723W WO2013039950A2 WO 2013039950 A2 WO2013039950 A2 WO 2013039950A2 US 2012054723 W US2012054723 W US 2012054723W WO 2013039950 A2 WO2013039950 A2 WO 2013039950A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
deoiled spent
spent catalyst
slurry
feed system
Prior art date
Application number
PCT/US2012/054723
Other languages
English (en)
French (fr)
Other versions
WO2013039950A3 (en
Inventor
Shuwu Yang
Julie Chabot
Bruce Edward REYNOLDS
Bo Kou
Original Assignee
Chevron U.S.A. Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/233,455 external-priority patent/US8759242B2/en
Priority claimed from US13/233,491 external-priority patent/US8927448B2/en
Priority claimed from US13/233,477 external-priority patent/US9068132B2/en
Priority to BR112014006174A priority Critical patent/BR112014006174A2/pt
Priority to EP12831213.9A priority patent/EP2756057A4/en
Priority to MX2014003158A priority patent/MX2014003158A/es
Application filed by Chevron U.S.A. Inc. filed Critical Chevron U.S.A. Inc.
Priority to KR1020147009582A priority patent/KR20140064948A/ko
Priority to RU2014114844/04A priority patent/RU2014114844A/ru
Priority to SG11201400662VA priority patent/SG11201400662VA/en
Priority to CN201280051948.9A priority patent/CN103906828A/zh
Priority to CA2848508A priority patent/CA2848508A1/en
Priority to JP2014530742A priority patent/JP2014527116A/ja
Publication of WO2013039950A2 publication Critical patent/WO2013039950A2/en
Publication of WO2013039950A3 publication Critical patent/WO2013039950A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/70Wet oxidation of material submerged in liquid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/14Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles
    • C10G45/16Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/26Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles suspended in the oil, e.g. slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • B01J27/30Regeneration or reactivation of catalysts comprising compounds of sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/701Use of spent catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/802Diluents

Definitions

  • the invention relates generally to catalysts for use in the conversion of heavy oils and residua and methods for making thereof.
  • feedstocks derived from these heavy materials contain more sulfur and nitrogen than feedstocks derived from more conventional crude oils, requiring a considerable amount of upgrading in order to obtain usable products therefrom.
  • feedstocks derived from more conventional crude oils contain more sulfur and nitrogen than feedstocks derived from more conventional crude oils, requiring a considerable amount of upgrading in order to obtain usable products therefrom.
  • These heavier and high sulfur crudes and resides also present problems as they invariably also contain much higher metals contaminant metals such as nickel, vanadium, and iron, which represent operating problems in terms of metal deposit / build-up in the equipment.
  • the upgrading of heavy oil feedstock is accomplished by hydrotreating processes, i.e., treating with hydrogen of various hydrocarbon fractions, or whole heavy feeds, or feedstocks, in the presence of hydrotreating catalysts to effect conversion of at least a portion of the feeds, or feedstocks to lower molecular weight hydrocarbons, or to effect the removal of unwanted components, or compounds, or their conversion to innocuous or less undesirable compounds.
  • hydrotreating processes i.e., treating with hydrogen of various hydrocarbon fractions, or whole heavy feeds, or feedstocks, in the presence of hydrotreating catalysts to effect conversion of at least a portion of the feeds, or feedstocks to lower molecular weight hydrocarbons, or to effect the removal of unwanted components, or compounds, or their conversion to innocuous or less undesirable compounds.
  • Catalysts commonly used for these hydrotreating reactions include materials such as cobalt molybdate on alumina, nickel on alumina, cobalt molybdate promoted with nickel, nickel tungstate, at least a group VIB metal compound with at least a promoter metal compound, etc.
  • High catalyst dosage will improve the conversion rate and reduce solid accumulation in the process equipment.
  • the invention relates to a catalyst feed system for use in the upgrade of heavy oil feedstock.
  • the catalyst feed system comprises: a) a deoiled spent catalyst comprising a plurality of dispersed particles slurried in a hydrocarbon medium as a slurry, the deoiled catalyst retaining less than 80% but more than 10% of its original catalytic activity; and b) a fresh slurry catalyst comprising a plurality of dispersed particles in a hydrocarbon medium as a slurry.
  • the deoiled spent catalyst is present in an amount of at least 10% the catalyst feed system to trap metal contaminants in the system and reduce metal deposits.
  • the invention in another aspect, relates to a method to trap metal contaminants from a heavy oil feedstock in a system to upgrade the heavy oil feedstock.
  • the method comprises providing to the heavy oil upgrade system a catalyst feed, which contains: a) a fresh slurry catalyst comprising a plurality of dispersed particles in a hydrocarbon medium as a slurry; and b) a deoiled spent catalyst comprising a plurality of dispersed particles slurried a hydrocarbon medium as a slurry.
  • the deoiled spent catalyst has less than 80% but more than 10% of original catalytic activity, and the deoiled spent catalyst is present in the catalyst feed in a sufficient amount to trap the metal contaminants for the upgrade system to have a reduction of at least 5% in metal contaminant deposit.
  • the invention relates to a method to prepare a catalyst feed for a heavy oil upgrade system.
  • the method comprises the steps of: providing spent catalyst with a solid content ranging from 5 to 50 wt. % in soluble hydrocarbons and having less than 80% but more than 10% of original catalytic activity; removing at least 50% of the soluble hydrocarbons removed in a deoiling step, generating a deoiled spent catalyst with at least a metal contaminant; treating the deoiled spent catalyst with a treating solution to reduce the concentration of metal contaminants; slurring the treated deoiled spent catalyst in a hydrocarbon medium, generating a treated deoiled spent catalyst slurry; and feeding the treated deoiled spent catalyst slurry to a heavy oil upgrade system with a fresh slurry catalyst.
  • FIG. 1 schematically illustrate embodiments of a hydroconversion process to upgrade heavy oil with a slurry catalyst feed system comprising a deoiled spent catalyst.
  • FIG. 2 shows a scheme with different embodiments of a hydroconversion process to upgrade heavy oil, wherein the deoiled spent catalyst is first treated to remove contaminants.
  • Bin catalyst may be used interchangeably with “slurry catalyst” or "unsupported catalyst,” meaning that the catalyst composition is NOT of the conventional catalyst form with a preformed, shaped catalyst support which is then loaded with metals via impregnation or deposition catalyst.
  • the bulk catalyst is formed through precipitation.
  • the bulk catalyst has a binder incorporated into the catalyst composition.
  • the bulk catalyst is formed from metal compounds and without any binder.
  • the bulk catalyst is a dispersing-type catalyst (“slurry catalyst”) type with dispersed particles in a liquid mixture (e.g., hydrocarbon oil).
  • Frsh catalyst refers to a catalyst that has not been used for hydroprocessing.
  • Spent catalyst refers to a catalyst that has been used in a hydroprocessing operation and whose activity has thereby been diminished. For example, if a reaction rate constant of a fresh catalyst at a specific temperature is assumed to be 100%, the reaction rate constant for a spent catalyst temperature is 80% or less in one embodiment (retaining less than 80% of the original catalytic activity), and 50% or less in another embodiment.
  • Soluble hydrocarbons refer to hydrocarbons that are soluble in physical solvents.
  • An example is heavy oil / unconverted resid, and not coke which is not soluble in physical solvents.
  • Deoiled spent catalyst refers to a spent catalyst after the removal of at least 50 % of soluble hydrocarbons from the spent catalyst.
  • the deoiled spent catalyst contains less than 25 wt. % soluble hydrocarbons in one embodiment; less than 10 wt. % soluble hydrocarbons in another embodiment; less than 5 wt. % soluble hydrocarbons in a third embodiment; and less than 2 wt. % soluble hydrocarbons in a fourth embodiment.
  • Heavy oil feed or feedstock refers to heavy and ultra-heavy crudes, including but not limited to resids, coals, bitumen, tar sands, oils obtained from the thermo- decomposition of waste products, polymers, biomasses, oils deriving from coke and oil shales, etc.
  • Heavy oil feedstock may be liquid, semi-solid, and / or solid. Examples of heavy oil feedstock that might be upgraded as described herein include but are not limited to
  • Properties of heavy oil feedstock may include, but are not limited to: TAN of at least 0.1, at least 0.3, or at least 1; viscosity of at least 10 cSt; API gravity at most 15 in one embodiment, and at most 10 in another embodiment.
  • a gram of heavy oil feedstock typically contains at least 0.0001 grams of Ni/V/Fe; at least 0.005 grams of heteroatoms; at least 0.01 grams of residue; at least 0.04 grams C5 asphaltenes; at least 0.002 grams of micro residue (MCR); per gram of crude; at least 0.00001 grams of alkali metal salts of one or more organic acids; and at least 0.005 grams of sulfur.
  • the heavy oil feedstock has a sulfur content of at least 5 wt. % and an API gravity ranging from -5 to +5.
  • a heavy oil feed such as Athabasca bitumen (Canada) typically has at least 50% by volume vacuum reside.
  • a Boscan (Venezuela) heavy oil feed may contain at least 64 % by volume vacuum residue.
  • a Borealis Canadian bitumen may contain about 5% sulfur, 19% of asphaltenes and insoluble THFi (tetrahydrofuran) of less than 1 kg/ton.
  • “Treatment,” “treated,” “upgrade”, “upgrading” and “upgraded”, when used in conjunction with a heavy oil feedstock describes a heavy oil feedstock that is being or has been subjected to hydroprocessing, or a resulting material or crude product, having a reduction in the molecular weight of the heavy oil feedstock, a reduction in the boiling point range of the heavy oil feedstock, a reduction in the concentration of asphaltenes, a reduction in the concentration of hydrocarbon free radicals, and/or a reduction in the quantity of impurities, such as sulfur, nitrogen, oxygen, halides, and metals.
  • impurities such as sulfur, nitrogen, oxygen, halides, and metals.
  • hydroprocessing The upgrade or treatment of heavy oil feeds is generally referred herein as "hydroprocessing" (hydrocracking, or hydroconversion).
  • Hydroprocessing is meant as any process that is carried out in the presence of hydrogen, including, but not limited to, hydroconversion, hydrocracking, hydrogenation, hydrotreating, hydrodesulfurization, hydrodenitrogenation, hydrodemetallation, hydrodearomatization, hydroisomerization, hydrodewaxing and hydrocracking including selective hydrocracking.
  • the products of hydroprocessing may show improved viscosities, viscosity indices, saturates content, low temperature properties, volatilities and depolarization, etc.
  • Hydrogen refers to hydrogen, and / or a compound or compounds that when in the presence of a heavy oil feed and a catalyst react to provide hydrogen.
  • Catalyst precursor refers to a compound containing one or more catalytically active metals, from which compound the slurry catalyst is eventually formed, and which compound may be catalytically active as a hydroprocessing catalyst.
  • One or more of or "at least one of when used to preface several elements or classes of elements such as X, Y and Z or Xi-X n , Yi-Y n and Zi-Z n is intended to refer to a single element selected from X or Y or Z, a combination of elements selected from the same common class (such as Xi and X 2 ), as well as a combination of elements selected from different classes (such as X ls Y 2 and Z n ).
  • SCF / BBL refers to a unit of standard cubic foot of gas (N 2 , H 2 , etc.) per barrel of hydrocarbon feed, or slurry catalyst, depending on where the unit is used.
  • the Periodic Table referred to herein is the Table approved by IUPAC and the U.S. National Bureau of Standards, an example is the Periodic Table of the Elements by Los Alamos National Laboratory's Chemistry Division of October 2001.
  • Metal refers to reagents in their elemental, compound, or ionic form.
  • Metal precursor refers to the metal compound feed to the process.
  • metal or metal precursor in the singular form is not limited to a single metal or metal precursor, i.e., Group VIB or promoter metals, but also includes the plural references for mixtures of metals. "In the solute state” means that the metal component is in a protic liquid form.
  • Group VIB metal refers to chromium, molybdenum, tungsten, and combinations thereof in their elemental, compound, or ionic form.
  • Promoter metal refers to a metal in its elemental, compound, or ionic form selected from any of Group IVB, Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof. The Promoter metal increases the catalytic activity of the Primary metal, and is present in a smaller amount than the Primary metal.
  • Group VIII metals refers to iron, cobalt, nickel, ruthenium, rhenium, palladium, osmium, iridium, platinum, and combinations thereof.
  • 1000°F+ conversion rate refers to the conversion of a heavy oil feedstock having a boiling point of greater than 1000°F+ to less than 1000° F (538. °C) boiling point materials in a hydroconversion process, computed as: (100% * (wt. % boiling above 1000°F materials in feed - wt. % boiling above 1000°F materials in products) / wt. % boiling above 1000°F materials in feed)).
  • Dispersion also known as “emulsion” in the context of slurry catalyst refers to two immiscible fluids in which one fluid (e.g., catalyst) is suspended or dispersed in the form of droplets in the second fluid phase (e.g., heavy oil feedstock or hydrocarbon diluent) as the continuous phase.
  • the droplets are in the range of 0.1 to 20 microns in size. In another embodiment, from 1 to 10 microns.
  • the droplets can
  • Droplet size can be measured by methods known in the art, including particle video microscope and focused beam reflectance method, as disclosed in Ind. Eng. Chem. Res. 2010, 49, 1412-1418, the disclosure of which is herein incorporated in its entirety by reference.
  • Pore porosity and pore size distribution in one embodiment are measured using mercury intrusion porosimetry, designed as ASTM standard method D 4284. In another embodiment, pore porosity and size distribution are measured via the nitrogen adsorption method. Unless indicated otherwise, pore porosity is measured via the nitrogen adsorption method.
  • the invention relates to a novel slurry catalyst system for use in heavy oil upgrade with improved properties including but not limited to high surface area / large pore volume, wherein the slurry catalyst system comprises in part a deoiled spent catalyst.
  • the invention also relates to a method for the hydroconversion or upgrade of heavy oils, by sending the heavy oil feed to the upgrade process in the presence of the a slurry catalyst containing a deoiled spent catalyst.
  • the spent catalyst originates from a bulk (unsupported) Group VIB metal sulfide catalyst optionally promoted with at least a Promoter Metal selected from a Group VB metal such as V, Nb; a Group VIII metal such as Ni, Co; a Group VIIIB metal such as Fe; a Group IVB metal such as Ti; a Group IIB metal such as Zn, and combinations thereof.
  • Promoter Metals are typically added to a catalyst formulation to improve selected properties, or to modify the catalyst activity and/or selectivity.
  • the spent catalyst originates from a dispersed (bulk or unsupported) Group VIB metal sulfide catalyst promoted with a Group VIII metal for hydrocarbon oil hydroprocessing.
  • the spent catalyst originates from a Group VIII metal sulfide catalyst. In yet another embodiment, the spent catalyst originates from a catalyst consisting essentially of a Group VIB metal sulfide. In one embodiment, the spent catalyst originates from a bulk catalyst in the form of dispersed or slurry catalyst. In another embodiment, the bulk catalyst is a colloidal or molecular catalyst.
  • the bulk catalyst in one embodiment is used for the upgrade of heavy oil products as described in a number of publications, including US Patent Nos. US7901569, US7897036, US7897035, US7708877, US7517446, US7431824, US7431823,
  • the spent catalyst after being used in a hydroprocessing or heavy oil upgrade process, has diminished catalytic activity compared to a fresh catalyst that has not been used in hydroprocessing.
  • the deoiled spent catalyst has less than 75% but more than 10% of its original catalytic activity.
  • the spent catalyst has more than 25% but less than 50% of the original catalytic activity.
  • the spent catalyst in one embodiment first undergoes "deoiling" treatment for the removal of hydrocarbons such as oil, precipitated asphaltenes, other oil residues and the like.
  • the spent catalyst prior to deoiling contains carbon fines, metal fines, and (spent) unsupported slurry catalyst in unconverted resid hydrocarbon oil, with a solid content ranging from 5 to 50 wt. % in soluble hydrocarbons as unconverted heavy oil feedstock (resid). In another embodiment, the solid content is 10-15 wt. % catalyst in soluble hydrocarbons.
  • the treatment is a deoiling process for oil removal.
  • the deoiling process further comprises a subsequent liquid / solid separation step for the recovery of deoiled spent catalyst.
  • the deoiling process in one embodiment employs a filtration process such as cross-flow filtration, dynamic filtration, microfiltration, and combinations thereof, which may or may not include the use of a solvent for the removal of heavy oil from the spent catalyst.
  • the filtration process employs at least a membrane, e.g., filtration equipment from VSEP Technology.
  • sedimentation is used in combination with a filtration process.
  • the deoiling process comprises a number of separate sub- units including solvent wash (solvent extraction), filtration, sedimentation, drying, and solvent recovery sub-units.
  • the spent slurry catalyst is first combined with solvent to form a combined slurry-solvent stream prior to being filtered via membrane filtration.
  • the feedstock stream and the solvent are fed to the filter as separate feed streams wherein they are combined in the filtration process.
  • the ratio of spent catalyst to solvent ranges from 0.10/1 to 100/1 (based on the spent catalyst slurry volume).
  • solvent is added in a volume ratio of 0.50/1 to 50/1.
  • solvent is added in a volume ratio ranging from 1 : 1 to 1 :6 (solvent to heavy oil in the spent slurry catalyst).
  • the spent catalyst treatment further includes a thermal treatment step, e.g., drying, calcination, and / or pyrolizing, for removal of hydrocarbons from the spent catalyst.
  • the thermal treatment is under inert conditions, i.e., under nitrogen.
  • the drying temperature is at a sufficiently high temperature to decompose at least 90% of solvents and other compounds that may be bound to the spent catalyst particles.
  • the deoiling is with the use of a sub-critical dense phase gas, and optionally with surfactants and additives, to clean / remove oil from the spent catalyst.
  • the spent catalyst after deoiling contains less than 25 wt. % soluble hydrocarbons as unconverted resid. In a second embodiment, less than 10 wt. % hydrocarbons (on a solvent free basis). In a third embodiment, the deoiled spent catalyst has less than 1 wt. % soluble hydrocarbons (on a solvent free basis). In one embodiment after deoiling, the spent catalyst has less than 500 ppm soluble hydrocarbons in the form of residual solvents.
  • the deoiled spent catalyst is in the form of a coke-like material.
  • the deoiled spent catalyst is the form of aggregate of particles, or clumps, than can be ground or crushed to the desired particle size, e.g., less than 20 microns, for subsequent incorporation into the slurry catalyst.
  • the grinding or crushing can be done using techniques known in the art, e.g., via wet grinding or dry grinding, and using equipment known in the art including but not limited to hammer mill, roller mill, attrition mill, grinding mill, media agitation mill, etc.
  • the deoiled spent catalyst is characterized as having relatively high surface and pore volume, with the surface and pore volume characteristics varying depending on the residual catalytic activity and the amount of catalytic metal to heavy oil in the upgrade process where it was previously used. For example, a deoiled spent catalyst with 30% of original catalytic activity has lower surface area and pore volume compared to a deoiled spent catalyst with 75% of original catalytic activitiy. In another example, a deoiled spent catalyst with twice the amount of Mo (as wt. %>) as a second deoiled spent catalyst is expected to have better surface area and pore volume.
  • the deoiled spent catalyst has a surface area ranging from 0.5 to 100 m 2 /g. In a second embodiment, from 5 to 40 m 2 /g. In a third embodiment, from 20 to 80 m 2 /g.
  • the total pore volume (TPV) ranges from 0.02 to 0.5 cc/g in one
  • the mean particle size ranges from 1 to 100 ⁇ (volume basis, sonic) in one embodiment; from 5 to 50 ⁇ in a second embodiment. On a number basis, the mean particle size varies from 0.1 to 2 ⁇ in one embodiment and 0.2 to 1 ⁇ in a second embodiment.
  • the amount metals left in the deoiled spent catalyst depends on the compositional make-up of the catalyst for use in hydroprocessing, e.g., a sulfided Group VIB metal catalyst, a bimetallic catalyst with a Group VIB metal and a promoter Group VIII metal, or a multi-metallic catalyst with at least a Group VIB and at least a Promoter metal.
  • the deoiled spent catalyst may comprise contaminants previously present in the heavy oil feedstock being upgraded with the catalyst. Examples of contaminants include but are not limited to Ni, Fe, V, Mg, Ca, etc.
  • the deoiled spent catalyst contains at least 1 wt. % of metal contaminants in the form of vanadium primarily in either oxide or sulfide form.
  • the deoiled spent catalyst contains at least 1 wt. % nickel.
  • the amount of contaminants such as vanadium ranges from 2 to 10 wt. %.
  • the amount of vanadium for removal / pre- treatment of the deoiled spent catalyst is at least 3 wt. %.
  • the deoiled spent catalyst is treated for the removal of contaminants.
  • the concentration of vanadium, a contaminant is reduced by at least 20% in one embodiment; at least 40% in a second embodiment; and at least 50% in a third embodiment.
  • the concentration of vanadium is reduced to less than 500 ppm.
  • the reduced concentration of vanadium is less than 200 ppm.
  • the treatment is with a treating solution, with the volume ratio of treating solution to deoiled spent catalyst ranging from 2:1 to 100: 1, with the deoiled spent catalyst being "washed" upon contact with the treating solution to remove the contaminants.
  • the treatment can be a single wash, or a multi-cycled wash, with the deoiled spent catalyst being treated with the same treating solution multiple times (recycled), a fresh treating solution for every wash cycle, or a different fresh treating solution for each wash cycle.
  • the washing is carried out by soaking in the treatment solution or mixing with the treatment solution in a mixing tank for at least 5 minutes in one embodiment, at least 30 minutes in a second embodiment, at least 1 hour in a third embodiment, and from a period of 2 to 5 hours in a fourth embodiment.
  • the treating or washing can be carried out in a continuously operated, counter-current washing unit.
  • the washing is ambient temperature in one embodiment, 50°F in a second embodiment, and at least 100°F in a third embodiment.
  • the treating (washing) solution is plain water.
  • the treating solution comprises at least an inorganic mineral acid with a relatively high ionization constant such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, etc.
  • the acid has a strength ranging from 0.2 to 12.0 normal.
  • the washing solution comprises at least an oxidizing agent or oxidant in an aqueous form.
  • oxidizing agents include halogens, oxides, peroxides and mixed oxides, including oxyhalites, their acids and salts thereof. Suitable oxidizing agents also include active oxygen-containing compounds, for example ozone.
  • the treating solution comprises hydrogen peroxide in the form of an aqueous solution containing 1% to 60% hydrogen peroxide (which can be subsequently diluted as needed).
  • the treating solution comprises hypochlorite ions (OCl ⁇ such as NaOCl, NaOCl 2 , NaOCl 3 , NaOCl 4 , Ca(OCl) 2 , NaC10 3 NaC10 2 , etc.), and mixtures thereof.
  • OCl ⁇ such as NaOCl, NaOCl 2 , NaOCl 3 , NaOCl 4 , Ca(OCl) 2 , NaC10 3 NaC10 2 , etc.
  • the amount of oxidizing agents / oxidants used is at least equal to the amount of metal contaminants to be removed on a molar basis, if not in an excess amount.
  • the treating solution is selected depending on the source of the spent catalyst.
  • water can be selected as the treating solution to dissolve and remove vanadium oxide.
  • Aqueous acid solution can also be used for removing vanadium contaminants with minimal removal of other metals in the sulfide form.
  • an oxidizing agent can be used as the treating solution to first oxidize the vanadium sulfide for subsequent removal with water or non-oxidizing acid water.
  • the washing is via a multi-step treatment, e.g., the deoiled spent catalyst is first treated with in a reductive wash with an aqueous solution of a reducing agent such as sulfur dioxide, oxalic acid, carbon monoxide or the like.
  • the reductive wash is followed by an oxidative wash with an aqueous solution of the likes of an organic peroxide, hydrogen peroxide, ozone or a perchlorate.
  • the deoiled spent catalyst is first treated with an oxygen-containing gas, then followed by a water wash to remove any oxidized metal contaminants. After treatment, the deoiled catalyst fines cluster or settle by gravity to the bottom portion of the treatment tank, wherein the treating solution can be withdrawn / removed and subsequently separated from the deoiled spent catalyst.
  • Fresh Catalyst Portion In one embodiment, a fresh catalyst is employed in addition to the deoiled spent catalyst, constituting the slurry catalyst feed to the heavy oil upgrade system.
  • the fresh catalyst in one embodiment is an active (sulfided) catalyst in a hydrocarbon oil diluent, in the form of a slurry with dispersed particles or clumps of particles.
  • the fresh catalyst portion comprises a sulfided water-based catalyst precursor, which can be subsequently mixed with a hydrocarbon diluent and the deoiled spent catalyst, forming an oil based slurry catalyst.
  • hydrocarbon oil diluents examples include VGO (vacuum gas oil), naphtha, MCO (medium cycle oil), light cycle oil (LCO), heavy cycle oil (HCO), solvent donor, or other aromatic solvents, etc., in a weight ratio ranging from 1 : 1 to 1 :20 of catalyst to diluent.
  • the fresh slurry catalyst comprises a sulfided catalyst having at least a Group VIB metal, or at least a Group VIII metal, or at least a group IIB metal, e.g., a ferric sulfide catalyst, zinc sulfide, nickel sulfide, molybdenum sulfide, or an iron zinc sulfide catalyst, with a concentration of 200ppm to 2 wt. % metal as a wt. % of heavy oil feedstock. In another embodiment, the concentration of metal ranges from 500 ppm to 3 wt. %.
  • the fresh catalyst portion comprises a multi-metallic catalyst comprising at least a Group VIB metal and at least a Group VIII metal (as a promoter), wherein the metals may be in elemental form or in the form of a compound of the metal.
  • the fresh catalyst portion comprises a MoS 2 catalyst promoted with at least a group VIII metal compound.
  • the fresh slurry catalyst has an average particle size of at least 1 micron. In another embodiment, the fresh slurry catalyst has an average particle size in the range of 1 - 20 microns. In a third embodiment, the fresh slurry catalyst has an average particle size in the range of 2 - 10 microns. In one embodiment, the fresh slurry catalyst particle comprises aggregates of catalyst molecules and/or extremely small particles that are colloidal in size (e.g., less than 100 nm, less than about 10 nm, less than about 5 nm, and less than about 1 nm). In yet another embodiment, the fresh slurry catalyst comprises aggregates of single layer MoS 2 clusters of nanometer sizes, e.g., 5-10 nm on edge.
  • the colloidal / nanometer sized particles aggregate in a hydrocarbon diluent, forming a slurry catalyst with an average particle size in the range of 1-20 microns.
  • at least 30% of the fresh slurry catalyst has pore sizes >100 Angstroms in diameter.
  • at least 50% are in the range of 50 to 5000 Angstrom in diameter.
  • the fresh slurry catalyst has a total pore volume (TPV) of at least 0.1 cc/g.
  • a TPV of at least 0.2 cc/g In one embodiment, the fresh slurry catalyst as a surface area of at least 100 m 2 /g. In one embodiment, the surface area is at least 200 m /g. In another embodiment, the surface area is in the range of 200 to 900 m 2 /g.
  • the deoiled spent catalyst is first slurried or reconstituted in a hydrocarbon diluent, forming a slurry with dispersed particles or clumps of particles, then fed to a heavy oil upgrade system as a separate feed stream from the fresh slurry catalyst.
  • the separate feed system allows for the tailoring or proportioning of fresh slurry catalyst to deoiled spent catalyst.
  • the deoiled spent catalyst in hydrocarbon diluent
  • the deoiled spent catalyst can be mixed with the sulfided water-based catalyst precursor prior to the transformation step, forming a slurry catalyst.
  • the mixing of the deoiled spent catalyst and the sulfided water-based catalyst precursor is after the transformation step.
  • the feed system can be flexible with fresh catalyst being provided as the sole feed source at first, then the deoiled spent catalyst is subsequently introduced as part of the total slurry catalyst feed to the system after the system is in operation for a period of time.
  • the deoiled spent catalyst is provided to some but not all reactors in the system, on a continuous or intermittent basis, at the same or different rates to the different reactors in the system, all depending on the operating conditions of the system and the desired results.
  • the deoiled spent catalyst is first "reconstituted” (or “slurried") with the addition of a diluent such as a hydrocarbon oil feed, e.g., VGO (vacuum gas oil), naphtha, MCO (medium cycle oil), light cycle oil (LCO), heavy cycle oil (HCO), solvent donor, or other aromatic solvents, etc., in a weight ratio ranging from 1 : 1 to 1 :25 of deoiled spent catalyst to diluent, forming a slurry with the mixing of the deoiled spent catalyst with the hydrocarbon diluent.
  • a diluent such as a hydrocarbon oil feed, e.g., VGO (vacuum gas oil), naphtha, MCO (medium cycle oil), light cycle oil (LCO), heavy cycle oil (HCO), solvent donor, or other aromatic solvents, etc.
  • a diluent such as a hydrocarbon oil feed, e.g., VGO (vacuum gas oil), naph
  • the ratio of deoiled spent catalyst to hydrocarbon diluent ranges from 1 :5 to 1 : 10.
  • the reconstituted stream can be added as part of the slurry catalyst feed to a heavy oil upgrade system as a separate feed stream, or combined with a fresh catalyst as a single feed stream.
  • the amount of deoiled spent catalyst to fresh slurry catalyst varies depending on a number of factors, including but not limited to the properties of the heavy oil feedstock amongst other process variables.
  • a sufficient amount of deoiled spent catalyst is employed for a ratio of fresh slurry catalyst to deoiled spent catalyst from 1 :5 to 5 : 1 (on a dry basis based on total solid catalyst weight to the system).
  • the amount of deoiled spent catalyst ranges from 20 to 75 % of total slurry catalyst to the heavy oil upgrade system (on a dry basis).
  • the amount ranges from 30 to 66 %.
  • the amount of deoiled spent catalyst is at least 10% of the total slurry catalyst feed to the system.
  • the total amount of slurry catalyst feed to the heavy oil upgrade system varies from a slurry catalyst concentration of at least 500 wppm to 3 wt.% (based on amount of the Primary catalyst metal in the slurry catalyst, fresh and deoiled, to heavy oil feedstock ratio).
  • the total amount of slurry catalyst is added to the feedstock for a primary catalyst metal to oil rate of 0.01 to 3 wt. %.
  • at a rate of 1000 to 4000 ppm Primary metal e.g., a Group VIB metals such as molybdenum.
  • the catalyst feed is added to the heavy oil feedstock at a sufficient rate for the total amount of Primary metal in the reaction zone reaches 0.05 to 0.5 wt. % (catalyst metal in the slurry catalyst as a percent of the total weight of the feedstock).
  • the slurry catalyst (whether the fresh catalyst itself, the reconstituted spent catalyst, or a mixture of both) comprises a dispersed suspension of particles in a hydrocarbon diluent or medium.
  • the hydrocarbon medium can be a heavy oil feedstock itself; a hydrocarbon transforming agent (diluent) such as VGO, naphtha, MCO, LCO, HCO, solvent donor, or other aromatic solvents, etc., and mixtures thereof; or a mixture of heavy oil feedstock and a hydrocarbon diluent.
  • the mixing with the hydrocarbon medium in one embodiment is under high shear mixing to generate an emulsion catalyst.
  • the slurry catalyst with deoiled spent catalyst and fresh catalyst comprises a plurality of suspended or dispersed droplets in solution (“emulsion catalyst") with the droplets having a mean size of 0.005 to 500 microns.
  • the dispersed particles or droplets have an average droplet size of 0.01 to 100 microns.
  • an average droplet size ranging from 0.10 to 50 microns.
  • the slurry catalyst comprises a plurality of dispersed particles in a hydrocarbon medium, wherein the dispersed particles have a mean particle size ranging from 0.05 to 300 microns. In another embodiment, the particles have a mean particle size ranging from 2 to 200 microns. In yet another embodiment, a mean particle size of less than 40 microns. In a fourth embodiment, the slurry catalyst has an average particle size of 2 to 200 microns. In a fifth embodiment, the slurry catalyst has an average particle size of 5 to 100 microns. In one embodiment, the slurry catalyst has a mean particle size ranging from colloidal (nanometer size) to about 1-2 microns. In another embodiment, the catalyst comprises catalyst molecules and/or extremely small particles, forming a slurry catalyst with "clusters" of colloidal particles having an average particle size in the range of 1 - 20 microns.
  • the slurry catalyst with deoiled spent catalyst and fresh catalyst is characterized as having a polymodal pore distribution with at least a first mode having at least about 80% pore sizes in the range of 5 to 2,000 Angstroms in diameter, a second mode having at least about 70%> of pore sizes greater in the range of 5 to 1 ,000 Angstroms in diameter, and a third mode having at least 20% of pore sizes of at least 100
  • polymodal includes bimodal and higher modal. In one embodiment, at least 20% of pore sizes are >100 Angstroms in diameter. In another embodiment, at least 30%.
  • the slurry catalyst with a total concentration of at least 4000 ppm (as catalyst metals in heavy oil feed) having at least 25% deoiled spent catalyst is characterized as having an increase in pore volume (over 100 Angstroms) of at least 20% over a catalyst without any deoiled spent catalyst and the same concentration of catalyst metals.
  • the increase in PV (> 100 Angstrom) is at least 40% over a comparable catalyst feed without any spent catalyst.
  • the slurry catalyst feed with deoiled spent catalyst can be used in hydroprocessing processes to treat a plurality of heavy oil feedstock under wide-ranging reaction conditions such as temperatures from 200 to 450°C, hydrogen pressures from 5 to 300 bar (72 to 4351 psi or 0.5 to 30 MPa), liquid hourly space velocities from 0.05 to 10 h "1 and hydrogen treat gas rates from 35 to 2670 m 3 / m 3 (200 to 15000 SCF/B), with the fresh slurry catalyst and the deoiled spent catalyst being fed to the process as separate feed streams, or as a single feed stream.
  • reaction conditions such as temperatures from 200 to 450°C, hydrogen pressures from 5 to 300 bar (72 to 4351 psi or 0.5 to 30 MPa), liquid hourly space velocities from 0.05 to 10 h "1 and hydrogen treat gas rates from 35 to 2670 m 3 / m 3 (200 to 15000 SCF/B), with the fresh slurry catalyst and the deoiled spent catalyst being fed to the process as separate feed
  • the hydroprocessing can be practiced in one or more reaction zones and can be practiced in either countercurrent flow or co-current flow mode, where the feed stream flows counter-current to the flow of hydrogen-containing treat gas.
  • the hydroprocessing also includes slurry and ebullated bed hydrotreating processes for the removal of sulfur and nitrogen compounds.
  • the upgrade system includes a plurality of reaction zones (reactors) and at least a separation zone (separator). The deoiled spent catalyst can be supplied to only one reactor such as the first reactor, or it can be fed to different reactors in the system, as a continuous feed, or intermittently depending on the operation.
  • the mixture exiting the reactor is sent to a separator (separation zone), whereby the upgraded products are removed with the hydrogen containing gas as an overhead stream, and the spent slurry catalyst and the unconverted heavy oil feedstock are removed as a non- volatile stream.
  • water (and / steam) is added to at least one of the reactors (or all the reactors) in the system in ratio of 1 to 25 wt. % of the heavy oil feedstock.
  • the water can be added separately or to the catalyst feed system, in combination with the deoiled spent catalyst slurry and / or the fresh catalyst slurry. It is believed that the presence of the water in the process favorably reduces heavy metal deposit.
  • the recycled stream herein comprises at least a portion of the non-volatile stream from at least one of the separation zones in the heavy oil upgrade system, e.g., from an ISF (interstage flash unit) or from a separation zone after the last reactor in the system, and / or an interstage deasphalting unit.
  • the recycled stream is sent one of the reactors in the system as part of the feed to control the heavy metal deposits.
  • the recycled stream ranges between 3 to 50 wt.% of total heavy oil feedstock to the process; 5 to 35 wt.
  • the recycled stream comprises non- volatile materials from the last separation zone in the system, containing unconverted materials, heavier hydrocracked liquid products, slurry catalyst, small amounts of coke, asphaltenes, etc.
  • the recycled stream contains between 3 to 30 wt. % spent slurry catalyst in one embodiment; 5 to 20 wt. % in a second embodiment; and 1 to 15 wt. % in a third embodiment.
  • the deoiled spent catalyst can be added to the upgrade system as an additional or supplemental feed stock, i.e., added to an upgrade system with the regular dosage of fresh catalyst feed at a rate of 0.10X to 3X the fresh catalyst feed to help reduce the build-up of metal contaminants.
  • the deoiled spent catalyst can be added as a replacement feed, allowing the amount of fresh catalyst feed in the regular dosage to be reduced, with the deoiled spent catalyst being supplied at a rate ranging from IX to 5X of the fresh catalyst feed that it replaces, depending on the retained catalytic level of the deoiled spent catalyst.
  • the replacement or supplemental feed can be on a long-term continuous basis, or on a short-term basis to temporarily reduce or relieve deposit build-up in the system.
  • the slurry catalyst feed system with deoiled spent catalyst is characterized as giving excellent conversion rates in heavy oil upgrade, i.e., giving a 1000°F+ conversion of at least 50% in the upgrade of a heavy oil having an API of at most 15, when applied at less than 1 wt. % Primary metal such as a Group VIB (wt. % relative to heavy oil feedstock), a 1000°F+ conversion of at least 75% in a second embodiment, a 1000°F+ conversion of at least 80% in a third embodiment, and at least 90% in a fourth embodiment.
  • Primary metal such as a Group VIB (wt. % relative to heavy oil feedstock)
  • a heavy oil upgrade system with additional deoiled spent catalyst as part of the feed system is characterized as having less contaminants / metal deposit in the reactor system, e.g., build-up of metal contaminants such as vanadium. It is believed that the deoiled spent catalyst provides additional surface area to trap contaminants while still offering left-over catalytic activity. The additional surface area in the deoiled spent catalyst traps at least a contaminant such as vanadium, the trapped vanadium is then removed from the reactor system as spent catalyst, thus reducing the amount of vanadium deposit left in the upgrade system. In addition to the reduction in deposit build-up, the deoiled spent catalyst helps reduce cost with the fresh catalyst being replaced with the less expensive spent catalyst.
  • a heavy oil upgrade system with deoiled spent catalyst as a supplemental feedstock e.g., having an additional 25% of the catalyst feed in the form of deoiled spent catalyst
  • a feed system comprising deoiled spent catalyst to fresh catalyst at a weight ratio of at least 2: 1 with the Primary metal concentration of the fresh slurry catalyst is at least 1000 ppm (wt. % of metal to heavy oil feedstock), the reduction in vanadium build up is at least 10% for a comparable conversion rate, compared to an upgrade system with the same amount of fresh catalyst only.
  • the deoiled spent catalyst is provided at a rate of at least 2X the amount of the fresh catalyst it replaces for a reduction of metal build up of at least 5% at comparable conversion rates.
  • the reduction in metal build up is at least 10%>.
  • FIG. 1 schematically illustrates various embodiments of a hydroconversion process with a slurry catalyst feed including a deoiled spent catalyst.
  • fresh catalyst feed is made in a synthesis unit 10 and supplied directly to the reactor 20 as a separate feed stream 12.
  • the fresh catalyst feed can also be made off-site or commercially purchased and supplied as feed stream 21.
  • heavy oil feedstock is fed as a separate feed stream 25.
  • the heavy oil feed can be combined with the fresh slurry catalyst feed, and / or the deoiled spent catalyst feed, and / or a recycled stream containing spent catalyst and unconverted heavy oil as a single feed stream to the reactor 20.
  • spent catalyst 22 undergoes a deoiling step 30, wherein at least 50% of the soluble hydrocarbons are removed.
  • the deoiled spent catalyst can be incorporated into the slurry catalyst feed system as feed stream 24.
  • the deoiled spent catalyst is first thermally treated in dryer 40 before being sent to the reactor as feed stream 41.
  • the deoiled spent catalyst 42 is calcined in calcination unit 50.
  • deoiled spent catalyst 33 is fed directly to calciner 50, then sent to upgrade reactor as feed stream 51.
  • the deoiled spent catalyst is first slurried in a hydrocarbon diluent prior to being fed to the reactor 20.
  • the slurried deoiled catalyst can be fed to the reactor system as a separate feed stream 24, combined with the fresh slurry catalyst 11 as a single feed stream 23, or combined with the heavy oil feedstock as a single feed stream (not shown).
  • FIG. 2 shows a scheme wherein the deoiled spent catalyst is first treated to remove contaminants.
  • the deoiled spent catalyst is sent to treatment unit 60, wherein undesirable contaminants such as vanadium can be removed with a treating agent, a water wash, a treatment solution containing at least a mineral acid, an oxidizing agent or an oxidant, or combinations of the above treatment methods.
  • the treatment step 60 further comprises a separation step (not shown), wherein the deoiled spent catalyst is separated from the treatment agent.
  • the deoiled spent catalyst can be dried in a dryer or thermally treated in a calciner, before it is slurried in a hydrocarbon diluent.
  • the slurried treated / deoiled spent catalyst can be fed to the upgrade reactor system as a separate feed stream, or combined with the fresh slurry catalyst and / or the heavy oil feedstock as a single feed stream.
  • VR refers to "vacuum resid" or a heavy oil feedstock.
  • the heavy oil feedstock VR1 contains 20.8 wt% microcarbon residue (MCR), 10.7 wt% hot heptane asphaltenes (HHA), 1.86 wt% sulfur, 1.2 wt% nitrogen, 150 ppm vanadium, 146 ppm nickel, and 4.8 degrees of API at 60°F.
  • the heavy oil feedstock VR2 contains 29.9 wt.%
  • MCR microcarbon residue
  • HHA hot heptane asphaltenes
  • 512 wt. % sulfur 0.79 wt% nitrogen
  • 672 ppm vanadium 672 ppm vanadium
  • 142 ppm nickel 2.7 degrees of API at 60°F.
  • Example 1 A Ni-Mo slurry catalyst as described in US Patent Nos. 7737072 and 7737073 was used in a heavy oil upgrade process as described in US Patent No.
  • the catalyst was used at a high concentration of Mo relatively to VR feed (4 wt. % Mo to VR), so it is "lightly-deactivated” with ⁇ 50% of the original catalytic activity (relative to a fresh catalyst).
  • the spent catalyst underwent a deoiling step similar to the procedures described in US Patent Publication No. 20100163499, employing a combination of sedimentation and a cross-filtration system wherein a solvent is added to the filtration feed stream, generating a deoiled solids coke product containing metal sulfides.
  • the deoiled spent catalyst was slurried in VGO or VGO-based fresh slurry catalyst, at a VGO to deoiled spent catalyst weight ratio of 2: 1 to 20: 1 , forming a slurried catalyst ("SCS" or spent catalyst slurry).
  • SCS slurried catalyst
  • Example 2 A second Ni-Mo deoiled spent catalyst was generated as in Example 1, except that the catalyst was employed at a low concentration of Mo relative to heavy oil feed (0.5 wt. % Mo to VR), retaining less than ⁇ 1/3 of the original catalytic activity.
  • Table 1 summarizes the properties and characteristics of the deoiled spent catalyst samples.
  • the deoiled spent catalyst was slurried in VGO or VGO-based fresh slurry catalyst, at a VGO to deoiled spent catalyst weight ratio of 2: 1 to 20: 1 , forming a slurried catalyst ("SCS" or spent catalyst slurry).
  • SCS slurried catalyst
  • Example 3 A third Ni-Mo deoiled spent catalyst was generated as in Example 1, an analysis of the spent catalyst solid shows 24.91 wt. % Mo, 4.42 wt. % Ni, and 6.22 wt. % V (primarily oxide form).
  • Example 4 Another Ni-Mo deoiled spent catalyst was generated as in
  • Example 1 an analysis of the spent catalyst solid shows 20.55 wt. % Mo, 3.52 wt. % Ni, and 9.98 wt.% V (primarily sulfide form).
  • Example 5 The deoiled spent catalyst of Examples 3 and 4 were washed with water at a ratio of 1 :30 spent catalyst to water (by weight). After filtration, analysis showed that 21% vanadium was removed from Example 3 sample and 1% of vanadium was removed from Example 4 sample.
  • Example 6 The deoiled spent catalyst of Example 3 was washed with H 2 S04 solution at 1 :30 weight ratio at a molar ratio H 2 S0 4 to V of 2.0. With the use of acid as the treating solution to increase the solubility of vanadium oxide, 47% of vanadium was removed. The deoiled spent catalyst of Example 4 was also treated H 2 S04 solution under the same condition, only 1%> was removed.
  • Example 7 The deoiled spent catalyst of Example 4 was treated with 1.2wt% hydrogen peroxide solution at 1 :30 wt ratio. After filtration, the analysis showed that 44% of vanadium was removed from the deoiled spent catalyst by hydrogen peroxide (instead of only 1 wt% of removal by water or sulfuric acid solution).
  • Example 8 The spent catalyst of Example 3 was washed with water at a ratio of 1 :30 spent catalyst to 0.9 %> H 2 S0 4 aqueous solution (by weight). After filtration, an analysis of the filtrate showed 10.5 ppm Mo, 121 ppm Ni, and 131 ppm V, indicating that contaminant metals in the spent catalyst can be removed by washing with water with 17% V removal.
  • VGO vacuum gas oil
  • Example 11 Different slurry catalyst samples were made by adding the deoiled spent catalyst from Example 1 ("SCS 1" or spent catalyst slurry) with the fresh slurry catalyst from Example 9 ("FCT” or fresh catalyst”). Table 2 lists the catalyst dosage for fresh catalyst and deoiled catalyst of the slurry catalyst feed mixtures:
  • Example 12 Different slurry catalyst samples were made by adding the deoiled spent catalyst from Example 2 ("SCS 2" or spent catalyst slurry) with the high Ni fresh slurry catalyst from Example 10 ("FCT High Ni"). Table 3 lists the catalyst dosage for fresh catalyst and deoiled catalyst of the slurry catalyst feed mixtures: [0100] Table 3
  • Examples 13 - 16 Catalyst samples from Example 11 were tested in a continuous flow unit with three 1 -gallon continuous stirring tank reactors (CSTRs) in series.
  • VR Liquid Hourly Space Velocity (LHSV) and reaction temperature are listed in Table 4. The VR feed was VR1.
  • Table 4 compares the heavy oil upgrade performance using a fresh slurry catalyst (standard Mo-only of Example 9) vs. slurry catalyst feed systems containing deoiled spent catalyst prepared in Example 11.
  • the slurry catalyst feed examples with deoiled spent catalyst showed excellent metal removal characteristics, as indicated by low V trapping.
  • V trapping is measured as total vanadium not recovered from (coming out of) the system vs. total vanadium fed into the system. A low percentage is more desirable, meaning less contaminant is trapped in the reactor.
  • Example 16 keeping the fresh Mo dosage at 2000 ppm and increasing the spent catalyst dosage to 7500 ppm Mo, the catalytic conversion (HDS, and HDN) increased by 4-6% as compared to Example 15 with a 50 / 50 fresh catalyst to deoiled spent catalyst ratio.
  • Examples 17 - 20 Catalyst samples from Example 12 were tested in a continuous flow unit with three 1 -gallon continuous stirring tank reactors (CSTRs) in series.
  • VR Liquid Hourly Space Velocity (LHSV) and reaction temperature are listed in Table 5. The VR feed was VR2.
  • Table 5 compares the heavy oil upgrade performance using a fresh slurry catalyst (high Ni Mo-Ni of Example 10) vs. slurry catalyst feed systems of Example 12, containing deoiled spent catalyst.
  • the slurry catalyst feed examples with deoiled spent catalyst showed excellent metal removal characteristics as indicated by very low V trapping, even for deoiled spent catalyst with little catalytic activity ( ⁇ 1/3 original catalytic activity for SCS 2). Additionally, it is noted that the use of deoiled spent catalyst still allows for excellent HDS and HDN activity with less fresh catalyst feed requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
PCT/US2012/054723 2011-09-15 2012-09-12 Hydroprocessing catalysts and methods for making thereof WO2013039950A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2014530742A JP2014527116A (ja) 2011-09-15 2012-09-12 水素化処理触媒及びその作製方法
CA2848508A CA2848508A1 (en) 2011-09-15 2012-09-12 Hydroprocessing catalysts and methods for making thereof
CN201280051948.9A CN103906828A (zh) 2011-09-15 2012-09-12 加氢处理催化剂及其制造方法
EP12831213.9A EP2756057A4 (en) 2011-09-15 2012-09-12 HYDROTREATING CATALYSTS AND METHOD FOR THE PRODUCTION THEREOF
MX2014003158A MX2014003158A (es) 2011-09-15 2012-09-12 Catalizadores de hidroprocesamiento y metodos para su fabricacion.
BR112014006174A BR112014006174A2 (pt) 2011-09-15 2012-09-12 catalisadores de hidroprocessamento e métodos para fabricação dos mesmos
KR1020147009582A KR20140064948A (ko) 2011-09-15 2012-09-12 수소화처리 촉매들 및 이의 제조 방법들
RU2014114844/04A RU2014114844A (ru) 2011-09-15 2012-09-12 Катализаторы гидрообработки и способы их изготовления
SG11201400662VA SG11201400662VA (en) 2011-09-15 2012-09-12 Hydroprocessing catalysts and methods for making thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US13/233,491 2011-09-15
US13/233,455 US8759242B2 (en) 2009-07-21 2011-09-15 Hydroprocessing catalysts and methods for making thereof
US13/233,477 US9068132B2 (en) 2009-07-21 2011-09-15 Hydroprocessing catalysts and methods for making thereof
US13/233,477 2011-09-15
US13/233,491 US8927448B2 (en) 2009-07-21 2011-09-15 Hydroprocessing catalysts and methods for making thereof
US13/233,455 2011-09-15

Publications (2)

Publication Number Publication Date
WO2013039950A2 true WO2013039950A2 (en) 2013-03-21
WO2013039950A3 WO2013039950A3 (en) 2013-06-27

Family

ID=47883931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/054723 WO2013039950A2 (en) 2011-09-15 2012-09-12 Hydroprocessing catalysts and methods for making thereof

Country Status (10)

Country Link
EP (1) EP2756057A4 (zh)
JP (1) JP2014527116A (zh)
KR (1) KR20140064948A (zh)
CN (1) CN103906828A (zh)
BR (1) BR112014006174A2 (zh)
CA (1) CA2848508A1 (zh)
MX (1) MX2014003158A (zh)
RU (1) RU2014114844A (zh)
SG (1) SG11201400662VA (zh)
WO (1) WO2013039950A2 (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926778A (en) * 1972-12-19 1975-12-16 Mobil Oil Corp Method and system for controlling the activity of a crystalline zeolite cracking catalyst
US4090948A (en) * 1977-01-17 1978-05-23 Schwarzenbek Eugene F Catalytic cracking process
US5589057A (en) * 1989-07-19 1996-12-31 Chevron U.S.A. Inc. Method for extending the life of hydroprocessing catalyst
JP3110525B2 (ja) * 1991-11-05 2000-11-20 出光興産株式会社 炭化水素油水素化処理触媒の再生方法
US5888919A (en) * 1996-11-25 1999-03-30 Bartholic; David B. Process for zeolitic catalyst reactivation
US7101473B2 (en) * 2002-05-31 2006-09-05 Engelhard Corporation Method of enhancing the activity of FCC catalysts
US7431824B2 (en) * 2004-09-10 2008-10-07 Chevron U.S.A. Inc. Process for recycling an active slurry catalyst composition in heavy oil upgrading
US7485267B2 (en) * 2005-07-29 2009-02-03 Chevron U.S.A. Inc. Process for metals recovery from spent catalyst
US7771584B2 (en) * 2006-12-06 2010-08-10 Chevron U.S.A. Inc. Integrated unsupported slurry catalyst preconditioning process
US8551323B2 (en) * 2009-08-31 2013-10-08 Chevron U.S.A. Inc. Systems and methods for hydroprocessing a heavy oil feedstock

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2756057A4 *

Also Published As

Publication number Publication date
SG11201400662VA (en) 2014-04-28
WO2013039950A3 (en) 2013-06-27
KR20140064948A (ko) 2014-05-28
EP2756057A2 (en) 2014-07-23
RU2014114844A (ru) 2015-10-20
BR112014006174A2 (pt) 2017-04-04
CN103906828A (zh) 2014-07-02
JP2014527116A (ja) 2014-10-09
CA2848508A1 (en) 2013-03-21
EP2756057A4 (en) 2015-06-24
MX2014003158A (es) 2014-04-30

Similar Documents

Publication Publication Date Title
US9068132B2 (en) Hydroprocessing catalysts and methods for making thereof
US10414991B2 (en) Processing of heavy hydrocarbon feeds
JP5764063B2 (ja) 粗生成物を生成するためのシステム及び方法
JP6097224B2 (ja) 水素化処理触媒を作製するための方法
JP5318411B2 (ja) 固定床水素化処理方法およびシステムならびに既存の固定床システムをアップグレードする方法
US8551323B2 (en) Systems and methods for hydroprocessing a heavy oil feedstock
US8372266B2 (en) Systems and methods for producing a crude product
WO2010009082A1 (en) A prerefining process for the hydrodesulfurization of heavy sour crude oils to produce sweeter lighter crudes using moving catalyst system
WO2009058861A2 (en) Hydroprocessing bulk catalyst and uses thereof
US20150329790A1 (en) Systems and methods for producing a crude product
TW201437354A (zh) 殘餘物加氫裂解處理技術
EP3104968A1 (en) Process for hydrocracking heavy oil and oil residue
WO2015121368A1 (en) Process for hydrocracking heavy oil and oil residue with a carbonaceous additive
WO2015121371A1 (en) Process for hydrocracking heavy oil and oil residue with a non-metallised carbonaceous additive
US8927448B2 (en) Hydroprocessing catalysts and methods for making thereof
US8759242B2 (en) Hydroprocessing catalysts and methods for making thereof
US20140238897A1 (en) Reconfiguration of recirculation stream in upgrading heavy oil
WO2013039950A2 (en) Hydroprocessing catalysts and methods for making thereof
RU2675249C1 (ru) Способ получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья
CN117616105A (zh) 包括将重质烃原料与有机添加剂预混合的所述原料的混合沸腾-夹带床加氢转化
CN118871551A (zh) 具有连续加氢处理催化剂再生的综合加氢处理和加氢裂化
RU2608035C1 (ru) Способ гидроконверсии тяжёлого углеводородного сырья (варианты)
WO2015121370A1 (en) Process for hydrocracking heavy oil and oil residue with an additive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831213

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2848508

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014530742

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/003158

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20147009582

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014114844

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014006174

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014006174

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140314