WO2013039123A1 - 加熱装置 - Google Patents

加熱装置 Download PDF

Info

Publication number
WO2013039123A1
WO2013039123A1 PCT/JP2012/073381 JP2012073381W WO2013039123A1 WO 2013039123 A1 WO2013039123 A1 WO 2013039123A1 JP 2012073381 W JP2012073381 W JP 2012073381W WO 2013039123 A1 WO2013039123 A1 WO 2013039123A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcoil
catalyst
heating device
electromagnetic wave
heated
Prior art date
Application number
PCT/JP2012/073381
Other languages
English (en)
French (fr)
Inventor
池田 裕二
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to US14/345,551 priority Critical patent/US9199194B2/en
Priority to JP2013533696A priority patent/JP6142144B2/ja
Priority to EP12831665.0A priority patent/EP2767691A4/en
Publication of WO2013039123A1 publication Critical patent/WO2013039123A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/028Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/202Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6491Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/802Apparatus for specific applications for heating fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a heating device that heats an object to be heated by causing an electromagnetic wave absorber to generate heat using electromagnetic waves.
  • Japanese Patent Application Laid-Open No. 2009-036199 discloses a technique for heating a filter for collecting exhaust gas particulates by generating heat from a microwave absorber material using microwaves.
  • the microwave absorber material is added to the particulate collection filter.
  • As the microwave absorber material a carbon microcoil in which carbon fibers are coiled is described.
  • the microcoil in a heating device that uses a microcoil whose main component is a carbon atom or a molecule containing carbon for heating an object to be heated provided in a space in which a high-temperature gas flows, the microcoil is integrally provided on the object to be heated. . Therefore, when heating an object that is exposed to a high-temperature gas such as a particulate collection filter, the microcoil is also exposed to the high-temperature gas.
  • a microcoil whose main component is a carbon atom or a molecule containing carbon may ignite at the temperature level of the exhaust gas. Therefore, there is a possibility that the microcoil is burned out and the object to be heated can hardly be heated.
  • the present invention has been made in view of such a point, and an object thereof is to provide a microcoil mainly composed of carbon atoms or molecules containing carbon for heating an object to be heated provided in a space through which a high-temperature gas flows.
  • a heating device to be used it is intended to suppress functional degradation due to burning of the microcoil.
  • 1st invention has a micro coil which has a carbon atom or a molecule containing carbon as a main component, a exothermic layer provided integrally with a to-be-heated object provided in an object space through which high-temperature gas flows, and the object space
  • a heating device that heats the object to be heated by radiating electromagnetic waves from the electromagnetic wave radiation device to the target space and generating heat by causing the microcoil to generate heat.
  • a covering layer covering the entire area of the layer is provided.
  • the coating layer covering the entire region of the heat generating layer is provided, oxygen hardly reaches the heat generating layer. Further, since the heat generating layer is not directly exposed to the high temperature gas, an increase in the temperature of the heat generating layer when the high temperature gas flows is suppressed.
  • the object to be heated is a catalyst that purifies the high temperature gas in the previous period, and the catalyst is provided in the coating layer.
  • the catalyst and the microcoil are kept in a non-contact state at the boundary surface between the covering layer and the heat generating layer.
  • the catalyst and the microcoil are kept in a non-contact state, the catalyst is prevented from promoting oxidation of the microcoil.
  • the emission of the electromagnetic wave by the electromagnetic wave emission device is controlled so that the microcoil does not reach an ignition temperature of the microcoil.
  • the microcoil can be prevented from exceeding its ignition temperature.
  • the 5th invention has the micro coil which has a carbon atom or the molecule
  • a heating device that heats the object to be heated by radiating electromagnetic waves from the electromagnetic wave radiation device to the target space to generate heat in the microcoil of the heat generation layer.
  • the microcoil contains silicon carbide as a main component.
  • a microcoil mainly composed of silicon carbide, which has high heat resistance and is chemically stable is used for heating an object to be heated. Even if the microcoil is integrated with an object to be heated provided in a space through which high-temperature gas flows, it is difficult to burn out.
  • the coating layer covers the entire region of the heat generating layer, oxygen hardly reaches the heat generating layer. Further, since the heat generating layer is not directly exposed to the high temperature gas, an increase in the temperature of the heat generating layer when the high temperature gas flows is suppressed. The microcoil of the heat generating layer hardly contacts oxygen and hardly reaches its ignition temperature. Therefore, the microcoil of the heat generating layer is extremely difficult to burn out, and the function deterioration of the heating device due to the burnout can be suppressed.
  • the catalyst and the microcoil are kept in a non-contact state, the catalyst is prevented from promoting oxidation of the microcoil. Therefore, since the microcoil is not damaged by the contact with the catalyst, the life of the heating device can be extended.
  • the emission of electromagnetic waves is controlled so that the microcoil does not exceed its ignition temperature. Therefore, not only during the period in which the object to be heated is exposed to the high-temperature gas, but also during the period in which the microcoil is heated by the electromagnetic wave, the microcoil in the heat generating layer is extremely difficult to burn out, and the deterioration of the function of the heating device due to the burning can be suppressed.
  • a microcoil mainly composed of silicon carbide, which has high heat resistance and is chemically stable is used for heating an object to be heated. Therefore, even if it is integrated with an object to be heated provided in a space through which a high-temperature gas flows, the microcoil is hardly burned out, and the function deterioration of the heating device can be suppressed.
  • FIG. 10 is a longitudinal sectional view of a main part of a catalyst carrier according to Modification 2.
  • FIG. 10 is a longitudinal sectional view of a main part of a catalyst carrier according to Modification 3.
  • FIG. 10 is a longitudinal sectional view of a main part of a catalyst carrier according to Modification 3.
  • the heating device 10 of the present embodiment is a device that heats a catalyst 32 (an object to be heated) of an exhaust gas purification device 30 that purifies exhaust gas discharged from an automobile engine.
  • the catalyst 32 is an active metal (platinum, palladium, rhodium) which is a main component of the three-way catalyst system.
  • the three-way catalyst system purifies hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) contained in the exhaust gas of automobiles that use gasoline as fuel.
  • Three-way catalysts oxidize hydrocarbons to water and carbon dioxide, carbon monoxide to carbon dioxide, and reduce nitrogen oxides to nitrogen.
  • the three-way catalyst system has a low reducing ability at room temperature, and almost no reducing ability immediately after the engine is started in a cold state. Therefore, in order to properly operate the three-way catalyst system when the engine is started, it is necessary to heat the catalyst 32 to an appropriate temperature at which the catalyst 32 is activated. In the present embodiment, the heating device 10 quickly heats the catalyst 32 to activate the catalyst 32.
  • the exhaust gas purification device 30 includes a catalyst carrier 11 provided with a catalyst 32, a casing 31 that houses the catalyst carrier 11, and a heating device 10 for the catalyst 32.
  • the catalyst carrier 11 is set to have an outer diameter substantially the same as the inner diameter of the casing 31, and is fixed to the inside of the casing 31 by a fixing member (not shown).
  • the catalyst carrier 11 includes an outer cylinder 12, a honeycomb structure 13, and a catalyst support layer 35.
  • the outer cylinder 12 is a cylindrical member made of an insulating material capable of transmitting microwaves.
  • the outer cylinder 12 is made of a ceramic material.
  • the outer cylinder 12 accommodates a honeycomb structure 13 described below.
  • the honeycomb structure 13 is a member whose outer shape is made of an insulating material capable of transmitting microwaves, like the outer cylinder 12.
  • the honeycomb structure 13 is made of the same ceramic material as that of the outer cylinder 12.
  • the honeycomb structure 13 includes a cylindrical tube portion 13a and a lattice portion 13b having a cross-sectional lattice shape formed integrally with the tube portion 13a.
  • the honeycomb structure 13 is configured such that the exhaust gas can flow in the direction indicated by the arrow in FIG. 3 through the gaps between the lattice portions 13b.
  • the catalyst support layer 35 is laminated on the cylindrical portion 13 a and the lattice portion 13 b of the honeycomb structure 13.
  • a catalyst 32 is supported on the catalyst support layer 35.
  • the portion of the catalyst support layer 35 excluding the catalyst 32 is also a part of the heating device 10.
  • the catalyst 32 is supported on the coating layer 15 described later in the catalyst support layer 35.
  • the casing 31 is a generally cylindrical metal member provided to accommodate the catalyst carrier 11.
  • the casing 31 constitutes a part of the exhaust pipe of an automobile engine, and the exhaust gas flows in the direction indicated by the arrow in the drawing of FIG. That is, the inside of the casing 31 constitutes an exhaust gas passage 33 (target space) through which exhaust gas flows.
  • an opening 34 Near the lower center of the casing 31 is formed an opening 34 through which the antenna 17 described later is inserted. Microwaves are radiated from the antenna 17 to the exhaust gas passage 33 inside the casing 31.
  • the heating device 10 is a device for heating the catalyst 32 (object to be heated) carried on the catalyst carrying layer 35 of the exhaust gas purification device 30 described above.
  • the heating device 10 includes a heat generating layer 14, a coating layer 15, and an electromagnetic wave radiation device 40.
  • the exothermic layer 14 is a layer constituting the lower layer side of the catalyst support layer 35. As shown in FIGS. 2 and 3, the heat generating layer 14 is laminated on the cylindrical portion 13 a and the lattice portion 13 b of the honeycomb structure 13. As shown in detail in FIG. 4, the heat generating layer 14 includes a large number of microcoils 21 mixed in a ceramic binder 14 a. The heat generating layer 14 is formed by applying a slurry solution obtained by mixing the ceramic binder 14 a and the microcoil 21 to the surface of the honeycomb structure 13 and firing it together with the honeycomb structure 13.
  • the microcoil 21 is composed of a so-called carbon microcoil (CMC) mainly composed of carbon atoms.
  • the carbon microcoil is a fine carbon fiber having a shape wound in a coil shape at a pitch of about 0.01 to 1 ⁇ m.
  • a microcoil mainly composed of silicon carbide may be used for the heat generating layer 14.
  • Carbon microcoil has the property of generating heat by absorbing electromagnetic waves.
  • this characteristic is utilized to cause the microcoil 21 to absorb microwaves (electromagnetic waves) from an electromagnetic wave generator 16 described later to cause the microcoil 21 to generate heat. Then, the heat generated in the microcoil 21 heats the heat generating layer 14 and a coating layer 15 described later provided on the heat generating layer 14. As a result, the catalyst 32 supported on the coating layer 15 is heated.
  • the coating layer 15 is a layer constituting the upper layer side of the catalyst support layer 35.
  • the covering layer 15 is a non-breathable heat-resistant layer made of a ceramic binder material.
  • the covering layer 15 covers the entire region of the heat generating layer 14 to prevent oxygen from reaching the heat generating layer 14 and to increase the temperature of the heat generating layer 14 when high-temperature gas flows through the voids of the honeycomb structure 13. Suppress.
  • the coating layer 15 is formed by applying a ceramic binder material carrying the catalyst 32 on the heat generating layer 14 and baking it.
  • the catalyst 32 which is a to-be-heated material is provided on the surface of the coating layer 15.
  • the carbon microcoil may spontaneously ignite in air at 500 to 600 ° C. or higher.
  • the exhaust gas temperature of an automobile engine reaches 700 ° C. to 800 ° C. during full load operation, and may reach 1000 ° C. or more during uphill or acceleration.
  • the coating layer 15 covers the entire region of the heat generating layer 14 where the microcoil 21 exists.
  • the electromagnetic wave radiation device 40 is a device that radiates microwaves (electromagnetic waves) absorbed by the microcoil 21 of the heat generating layer 14 in order to heat the catalyst 32.
  • the electromagnetic wave emission device 40 includes an electromagnetic wave generation device 16, an antenna 17, a power supply unit 18, and a control device 19.
  • a microwave is generated by a semiconductor oscillator (not shown).
  • the electromagnetic wave generator 16 When receiving the supply of power from the power supply unit 18 through the power supply path 18a, the electromagnetic wave generator 16 generates a microwave and sends the generated microwave to the antenna 17 through the microwave transmission path 16a.
  • the antenna 17 is for radiating the microwave output from the electromagnetic wave generator 16 to the exhaust gas passage 33 inside the casing 31.
  • the antenna 17 is inserted into an opening 34 provided in the casing 31 and exposed to the exhaust gas passage 33 inside the casing 31.
  • the control device 19 includes a so-called electronic control device including a CPU, a storage device, and an input / output device.
  • the control device 19 controls the heating device 10 as described below. -Operation of plasma processing equipment-
  • the operation of the heating device 10 including the control operation of the control device 19 will be described.
  • the control device 19 outputs an electromagnetic wave drive signal to the power supply unit 18 simultaneously with the start of the automobile engine.
  • the power supply unit 18 supplies power to the electromagnetic wave generator 16. Then, the electromagnetic wave generated by the electromagnetic wave generator 16 is radiated from the antenna 17 to the exhaust gas passage 33 inside the casing 31.
  • the microcoil 21 of the heat generating layer 14 absorbs the energy of the microwave and instantly generates heat, resulting in a high temperature state.
  • the heat generating layer 14 and the coating layer 15 are immediately heated by the micro coil 21 in a high temperature state, and the catalyst 32 supported on the coating layer 15 is heated. As a result, the catalyst 32 reaches the activation temperature in a short time.
  • the heating device 10 is configured to heat the catalyst 32 to, for example, 300 to 400 degrees Celsius as the temperature at which the catalyst is activated. Then, the catalyst 32 that has reached the activation temperature decomposes hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) contained in the exhaust gas. The cleaned exhaust gas flows through an exhaust passage (not shown) arranged on the downstream side and is released to the atmosphere.
  • the coating layer 15 covers the entire region of the heat generating layer 14, oxygen hardly reaches the heat generating layer 14. Further, since the heat generating layer 14 is not directly exposed to the high temperature exhaust gas, the temperature increase of the heat generating layer 14 during the circulation of the high temperature exhaust gas is suppressed. The microcoil 21 of the heat generating layer 14 hardly contacts oxygen and hardly reaches its own ignition temperature. Therefore, the microcoil 21 of the heat generating layer 14 is extremely difficult to be burned out, and the function deterioration of the heating device 10 due to the burnout can be suppressed.
  • the microcoil 21 of the heat generating layer 14 a microcoil mainly composed of silicon carbide having high heat resistance and being chemically stable is used. Therefore, the microcoil 21 is not easily burned out, and the function deterioration of the heating device 10 is suppressed.
  • an insulating layer of the insulator 25 is provided between the catalyst 32 and the microcoil 21 in order to avoid a chemical reaction between the catalyst 32 and the microcoil 21.
  • the insulator 25 is deposited on the heat generating layer 14, whereby the catalyst 32 and the microcoil 21 are kept in a non-contact state.
  • the coating layer 15 is omitted and both the microcoil 21 and the catalyst 32 are provided in the heat generating layer 14 as shown in FIG. be able to.
  • a microcoil 21 mainly composed of silicon carbide having high heat resistance and being chemically stable is used for heating the catalyst 32. Therefore, even if it is integrated with the catalyst 32 provided in the space through which the high-temperature exhaust gas flows, the microcoil 21 is not easily burned out, and the function deterioration of the heating device 10 can be suppressed. Moreover, since the microcoil 21 is close to the catalyst 32 as compared with the embodiment, the temperature of the catalyst 32 can be raised in a short time. —Modification 4 of Embodiment—
  • microwave radiation control is performed in the electromagnetic wave radiation device 40 so that the microcoil 21 does not exceed the ignition temperature of the microcoil 21.
  • the control device 19 when the electromagnetic wave radiation device 40 continues to emit microwaves, the time required for the microcoil 21 to reach the upper limit temperature lower than its ignition temperature is set as the end set time.
  • the upper limit temperature is, for example, 50 ° C. lower than the ignition temperature.
  • the control device 19 outputs a stop command to stop the power supply to the power supply unit 18 at the time when the end set time has elapsed from the time when the microwave emission is started simultaneously with the start of the engine. If it does so, the electric power supply part 18 will stop supply of the electric power to the electromagnetic wave generator 16, and the radiation
  • FIG. 1 A stop command to stop the power supply to the power supply unit 18 at the time when the end set time has elapsed from the time when the microwave emission is started simultaneously with the start of the engine. If it does so, the electric power supply part 18 will stop supply of the electric power to the electromagnetic wave generator 16, and the radiation
  • the microwave radiation is controlled so that the microcoil 21 does not reach the ignition temperature or higher, not only the period in which the catalyst 32 is exposed to the high temperature exhaust gas but also the microcoil by the microwave. Also during the period in which the heat is generated, the microcoil 21 is extremely difficult to be burned, and the function deterioration of the heating device 10 due to the burnout can be suppressed.
  • a temperature sensor that detects the temperature of the heat generating layer 14 may be provided, and the control device 19 may output a stop command to the power supply unit 18 based on the output value of the temperature sensor.
  • the embodiment may be configured as follows.
  • the heating device 10 of the present embodiment is not limited to the one that heats the catalyst 32 that purifies the exhaust gas of the automobile.
  • the present invention can be used for various catalysts provided in a space through which high-temperature gas flows, such as one that heats a catalyst that purifies exhaust gas from a combustion furnace.
  • the shape of the casing 31 and the position of the opening 34 for receiving the microwave are not necessarily limited to the shape and position of the present embodiment.
  • the casing 31 may have a rectangular tube shape.
  • various design changes are possible such that the position of the opening 34 may be provided above the casing 31.
  • the catalyst 32 is not limited to the catalyst used for the three-way catalyst.
  • the present invention can be applied to an SCR catalyst that requires a temperature increase for activation.
  • the binder 14a of the heat generating layer 14 is not limited to a ceramic type. Various binders can be used as long as they have heat resistance and can fix the microcoil 21 to the honeycomb structure 13.
  • the binder used for the coating layer 15 is not limited to a ceramic type. As long as the catalyst 32 can be fixed to the heat generating layer 14 and the entire region of the heat generating layer 14 can be covered, various types can be adopted.
  • the electromagnetic wave generator 16 may use a magnetron instead of a semiconductor oscillator in generating microwaves.
  • the control device 19 may be configured to control the power supply unit 18 and radiate microwaves to the microcoil 21 before the automobile engine is started, for example, in cold weather. By doing so, the exhaust gas can be made clean from the start of the engine.
  • the object to be heated may be something other than the catalyst 32 (a sensor provided in the exhaust passage).
  • the present invention is useful for a heating apparatus that heats an object to be heated by radiating an electromagnetic wave to a target space in which a high-temperature gas flows to cause the microcoil to generate heat.

Abstract

 本発明は、高温ガスが流通する空間に設けられる被加熱物の加熱に、炭素原子又は炭素を含む分子を主成分とするマイクロコイルを利用する加熱装置において、マイクロコイルの焼損による機能低下を抑制することを目的とする。本発明は、炭素原子又は炭素を含む分子を主成分とするマイクロコイルを有するとともに、高温ガスが流通する対象空間に設けられる被加熱物と一体に設けられた発熱層と、前記対象空間に電磁波を放射する電磁波放射装置とを備え、前記電磁波放射装置から前記対象空間へ電磁波を放射して前記マイクロコイルを発熱させることにより、前記被加熱物を加熱する加熱装置であって、前記発熱層の全領域を被覆する被覆層を備えていることを特徴とする加熱装置である。

Description

加熱装置
 本発明は、電磁波を利用して電磁波吸収体を発熱させることにより被加熱物を加熱する加熱装置に関するものである。
 従来から、電磁波を利用して電磁波吸収体を発熱させることにより、被加熱物を加熱する技術が知られている。
 例えば特開2009-036199号公報には、マイクロ波によりマイクロ波吸収体材料を発熱させて排ガスの微粒子捕集用フィルタを加熱する技術が開示されている。マイクロ波吸収体材料は、微粒子捕集用フィルタに添加されている。マイクロ波吸収体材料としては、炭素繊維をコイル状にしたカーボンマイクロコイルが記載されている。
特開2009-036199号公報
 ところで、高温ガスが流通する空間に設けられる被加熱物の加熱に、炭素原子又は炭素を含む分子を主成分とするマイクロコイルを利用する加熱装置では、マイクロコイルが被加熱物に一体に設けられる。そのため、微粒子捕集用フィルタのように高温ガスに晒される物を加熱する場合は、マイクロコイルも高温ガスに晒される。炭素原子又は炭素を含む分子を主成分とするマイクロコイルは、排気ガスの温度レベルで発火するおそれがある。従って、マイクロコイルが焼損し、被加熱物をほとんど加熱できなくなるおそれがある。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、高温ガスが流通する空間に設けられる被加熱物の加熱に、炭素原子又は炭素を含む分子を主成分とするマイクロコイルを利用する加熱装置において、マイクロコイルの焼損による機能低下を抑制することにある。
 第1の発明は、炭素原子又は炭素を含む分子を主成分とするマイクロコイルを有するとともに、高温ガスが流通する対象空間に設けられる被加熱物と一体に設けられた発熱層と、前記対象空間に電磁波を放射する電磁波放射装置とを備え、前記電磁波放射装置から前記対象空間へ電磁波を放射して前記マイクロコイルを発熱させることにより、前記被加熱物を加熱する加熱装置であって、前記発熱層の全領域を被覆する被覆層を備えている。
 第1の発明では、発熱層の全領域を被覆する被覆層を備えているので、発熱層に酸素がほとんど到達しない。また、発熱層が高温ガスに直接晒されないため、高温ガス流通時の発熱層の温度上昇が抑制される。
 第2の発明は、第1の発明において、前記被加熱物は、前期高温ガスを浄化する触媒であり、前記触媒は、前記被覆層に設けられている。
 第3の発明は、第2の発明において、前記被覆層と前記発熱層の境界面で、前記触媒と、前記マイクロコイルが非接触の状態に保たれている
 第3の発明では、触媒とマイクロコイルとが非接触の状態に保たれるので、触媒によりマイクロコイルの酸化が促進されることが防止される。
 第4の発明は、第1から第3の何れか1つの発明において、前記マイクロコイルが該マイクロコイルの発火温度以上にならないように、前記電磁波放射装置による電磁波の放射が制御される。
 第4の発明では、マイクロコイルがその発火温度以上にならないようにすることができる。
 第5の発明は、炭素原子又は炭素を含む分子を主成分とするマイクロコイルを有するとともに、高温ガスが流通する対象空間に設けられる被加熱物と一体に設けられた発熱層と、前記対象空間に電磁波を放射する電磁波放射装置とを備え、前記電磁波放射装置から前記対象空間へ電磁波を放射して前記発熱層のマイクロコイルを発熱させることにより、前記被加熱物を加熱する加熱装置であって、前記マイクロコイルは、炭化珪素を主成分とする。
 第5の発明では、被加熱物の加熱に、耐熱性が高く化学的に安定な炭化珪素を主成分とするマイクロコイルが用いられている。このマイクロコイルは、高温ガスが流通する空間に設けられる被加熱物と一体化されても焼損しにくい。
 本発明では、被覆層が発熱層の全領域を被覆するので、発熱層に酸素がほとんど到達しない。また、発熱層が高温ガスに直接晒されないため、高温ガス流通時の発熱層の温度上昇が抑制される。発熱層のマイクロコイルは、ほとんど酸素に接触しない上に、自身の発火温度に到達しにくい。従って、発熱層のマイクロコイルが極めて焼損しにくく、その焼損による加熱装置の機能低下を抑制できる。
 第3の発明では、触媒とマイクロコイルとが非接触の状態に保たれるので、触媒によりマイクロコイルの酸化が促進されることが防止される。そのため、触媒との接触によりマイクロコイルが損傷しないため加熱装置の寿命を延ばすことができる。
 第4の発明では、マイクロコイルがその発火温度以上にならないように、電磁波の放射が制御される。そのため、被加熱物が高温ガスに晒される期間だけでなく、電磁波によりマイクロコイルを発熱させる期間も、発熱層のマイクロコイルが極めて焼損しにくく、その焼損による加熱装置の機能低下を抑制できる。
 第5の発明では、被加熱物の加熱に、耐熱性が高く化学的に安定な炭化珪素を主成分とするマイクロコイルが用いられている。そのため、高温ガスが流通する空間に設けられる被加熱物と一体化されてもマイクロコイルが焼損しにくく、加熱装置の機能低下を抑制できる。
実施形態に係る排ガス浄化装置の概略構成図である。 実施形態に係る触媒担体の横断面図である。 実施形態に係る触媒担体の縦断面図である。 実施形態に係る触媒担体の要部の縦断面図である。 変形例2に係る触媒担体の要部の縦断面図である。 変形例3に係る触媒担体の要部の縦断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 本実施形態の加熱装置10は、自動車のエンジンから排出される排ガスを浄化する排ガス浄化装置30の触媒32(被加熱物)を加熱する装置である。
 触媒32は、本実施形態においては、三元触媒システムの主成分となる活性金属(プラチナ、パラジウム、ロジウム)である。三元触媒システムは、ガソリンを燃料とする自動車の排ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化する。三元触媒は、炭化水素を水と二酸化炭素に、一酸化炭素を二酸化炭素に酸化し、窒素酸化物を窒素に還元する。
 三元触媒システムは、常温では還元能力が低く、エンジンが冷えた状態で始動した直後では還元能力がほとんどない。そのため、エンジンの始動時に三元触媒システムを適切に作動させるためには、触媒32が活性化する適切な温度にまで加熱する必要がある。本実施形態においては、加熱装置10が、触媒32をすみやかに加熱して触媒32を活性化させる。
 排ガス浄化装置30は、図1に示すように、触媒32が設けられた触媒担体11と、その触媒担体11を収容するケーシング31と、触媒32の加熱装置10とを備えている。
 触媒担体11は、図2、図3に示すように、外径がケーシング31の内径とほぼ同じに設定され、固定用の部材(図示省略)でケーシング31の内部に固定される。触媒担体11は、外筒12と、ハニカム構造体13と、触媒担持層35とを備えている。
 外筒12は、マイクロ波を透過可能な絶縁性の材料からなる円筒形状の部材である。本実施形態では、外筒12は、セラミック材料で構成されている。外筒12は、次に述べるハニカム構造体13を内部に収容している。
 ハニカム構造体13は、外筒12と同様、マイクロ波を透過可能な絶縁性の材料からなる外形が円柱状の部材である。本実施形態では、ハニカム構造体13が、外筒12と同じセラミック材料で構成されている。ハニカム構造体13は、円筒形状の筒部13aと、筒部13aと一体に成形された断面格子状の格子部13bとを備えている。ハニカム構造体13は、格子部13bの間の空隙を通して、図3の図中の矢印で示す方向に排ガスが流通可能に構成されている。
 触媒担持層35は、図2、図3に示すように、ハニカム構造体13の筒部13aと格子部13bにそれぞれ積層されている。触媒担持層35には、触媒32が担持されている。なお、触媒担持層35のうち触媒32を除く部分は、加熱装置10の一部にもなっている。触媒32は、触媒担持層35のうち後述する被覆層15に担持されている。
 ケーシング31は、触媒担体11を収納するために設けられた、概ね筒状の金属製の部材である。ケーシング31は、自動車のエンジンの排気管の一部を構成しており、図1の図中の矢印で示す方向に、排ガスが流通する。つまり、ケーシング31の内部は、排ガスが流通する排ガス通路33(対象空間)を構成している。
 ケーシング31の下方中央付近には、後述するアンテナ17を挿通させる開口部34が形成されている。ケーシング31の内部の排ガス通路33には、アンテナ17からマイクロ波が放射される。
 加熱装置10は、前述の排ガス浄化装置30の触媒担持層35に担持された触媒32(被加熱物)を加熱する装置である。加熱装置10は、発熱層14と、被覆層15と、電磁波放射装置40とを備えている。
 発熱層14は、触媒担持層35の下層側を構成する層である。発熱層14は、図2、図3に示すようにハニカム構造体13の筒部13aと格子部13bとにそれぞれ積層されている。発熱層14は、図4に詳しく示すように、セラミック系のバインダー14aの中に、マイクロコイル21が多数、混入されている。発熱層14は、セラミック系のバインダー14aと、マイクロコイル21とを混合したスラリー溶液をハニカム構造体13の表面に塗布し、ハニカム構造体13とともに焼成することによって形成される。
 ここで、マイクロコイル21は、炭素原子を主成分とするいわゆるカーボンマイクロコイル(CMC)で構成されている。カーボンマイクロコイルは、約0.01~1μmのピッチでコイル型に巻かれた形状を持つ微細な炭素繊維である。なお、発熱層14に、炭化珪素を主成分とするマイクロコイルを使用してもよい。
 カーボンマイクロコイルは、電磁波を吸収して発熱する特性を持つ。本実施形態では、この特性を利用して後述の電磁波発生装置16からマイクロコイル21にマイクロ波(電磁波)を吸収させて、マイクロコイル21を発熱させる。そして、マイクロコイル21で発生した熱により、発熱層14と、発熱層14の上に設けられた後述する被覆層15とを加熱する。その結果、被覆層15に担持された触媒32が加熱される。
 被覆層15は、触媒担持層35の上層側を構成する層である。被覆層15は、セラミック系のバインダー材で構成された非通気性の耐熱層である。被覆層15は、発熱層14の全領域を被覆して、発熱層14に酸素が到達することを防止すると共に、ハニカム構造体13の空隙を高温ガスが流通する時の発熱層14の温度上昇を抑制する。
 被覆層15は、発熱層14の上に、触媒32を担持させたセラミック系バインダー材を塗布して、焼成することによって形成される。このようにして被覆層15の表面に、被加熱物である触媒32が設けられている。
 ここで、カーボンマイクロコイルは、空気中で500~600℃以上で自然発火するおそれがある。一方、自動車エンジンの排ガス温度は、全負荷運転時には700℃から800℃に達し、上り坂や加速時には1000℃以上に達することもある。
 そのため、カーボンマイクロコイルの自然発火温度以上の排ガスにカーボンマイクロコイルが直接晒された場合、カーボンマイクロコイルが、発火温度以上になって、発火する恐れがある。そこで、発熱層14に酸素が到達することを防止すると共に、発熱層14の温度上昇を抑制するために、被覆層15により、マイクロコイル21がある発熱層14の全領域を被覆している。
 電磁波放射装置40は、触媒32を加熱するために、発熱層14のマイクロコイル21が吸収するマイクロ波(電磁波)を放射する装置である。電磁波放射装置40は、電磁波発生装置16と、アンテナ17と、電力供給部18と、制御装置19とを備えている。
 電磁波発生装置16では、半導体発振器(図示省略)によりマイクロ波を生成する。電磁波発生装置16は、電力供給部18から電力供給路18aを介して電力の供給を受けると、マイクロ波を生成し、生成したマイクロ波を、マイクロ波伝送路16aを介してアンテナ17に送る。
 アンテナ17は、電磁波発生装置16から出力されたマイクロ波を、ケーシング31の内部の排ガス通路33に放射するためのものである。アンテナ17は、ケーシング31に設けられた開口部34に挿通され、ケーシング31の内部の排ガス通路33に露出している。
 制御装置19は、CPU、記憶装置、入出力装置を備えた、いわゆる電子制御装置で構成されている。制御装置19は、次に述べるように、加熱装置10を制御する。
 -プラズマ処理装置の動作-
 制御装置19の制御動作を含めて、加熱装置10の動作について説明する。
 制御装置19は、自動車のエンジンの始動と同時に電磁波駆動信号を電力供給部18に出力する。電力供給部18は、電磁波駆動信号を受けると、電力を電磁波発生装置16へ供給する。そうすると、電磁波発生装置16で生成された電磁波が、アンテナ17からケーシング31の内部の排ガス通路33に放射される。
 アンテナ17から排ガス通路33にマイクロ波が放射されると、発熱層14のマイクロコイル21が、マイクロ波のエネルギーを吸収して瞬時に発熱し、高温状態となる。
 高温状態のマイクロコイル21により、発熱層14と被覆層15とがすみやかに加熱され、被覆層15に担持された触媒32が加熱される。その結果、触媒32が短時間で活性温度に到達する。
 本実施形態においては、加熱装置10により、触媒が活性化する温度として、例えば、摂氏300-400度まで触媒32を加熱するように構成されている。そして、活性温度に到達した触媒32により、排ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)が分解される。クリーンとなった排ガスは、下流側に配置した排気通路(図示省略)を流通して大気へと放出される。
  -実施形態の効果-
 本実施形態では、被覆層15が発熱層14の全領域を被覆するので、発熱層14に酸素がほとんど到達しない。また、発熱層14が高温の排ガスガスに直接晒されないため、高温の排ガスの流通時の発熱層14の温度上昇が抑制される。発熱層14のマイクロコイル21は、ほとんど酸素に接触しない上に、自身の発火温度に到達しにくい。従って、発熱層14のマイクロコイル21が極めて焼損しにくく、その焼損による加熱装置10の機能低下を抑制できる。
 触媒32とマイクロコイル21とが非接触の状態に保たれるので、触媒32によりマイクロコイル21の酸化が促進されることが防止される。そのため、触媒32との接触によりマイクロコイル21が損傷しないため加熱装置10の寿命を延ばすことができる。
  -実施形態の変形例1-
 変形例1では、発熱層14のマイクロコイル21として、耐熱性が高く化学的に安定な炭化珪素を主成分とするマイクロコイルが用いられている。従って、マイクロコイル21が焼損しにくく、加熱装置10の機能低下が抑制される。
  -実施形態の変形例2-
 変形例2では、触媒32とマイクロコイル21との化学反応を避けるために、触媒32とマイクロコイル21との間に、絶縁体25の絶縁層が設けられている。例えば、図5においては、発熱層14に絶縁体25が蒸着されることにより、触媒32とマイクロコイル21とが、非接触の状態に保たれている。
 このように、変形例2においては、触媒32とマイクロコイル21とが絶縁体25により非接触の状態に保たれるので、触媒32によりマイクロコイル21の酸化が促進されることが防止される。そのため、触媒32との接触によりマイクロコイルが損傷しないため、加熱装置10の寿命を延ばすことができる。
  -実施形態の変形例3-
 カーボンマイクロコイルの代わりに例えば、炭化珪素を主成分とするマイクロコイル21を用いる場合、図6のように、被覆層15を省略して、マイクロコイル21と触媒32とを共に発熱層14に設けることができる。
 触媒32の加熱に、耐熱性が高く化学的に安定な炭化珪素を主成分とするマイクロコイル21が用いられている。そのため、高温の排ガスが流通する空間に設けられる触媒32と一体化されてもマイクロコイル21が焼損しにくく、加熱装置10の機能低下を抑制できる。また、実施形態に比べて、マイクロコイル21が触媒32に近接しているため、触媒32を短時間で昇温することができる。
  -実施形態の変形例4-
 変形例4では、マイクロコイル21が該マイクロコイル21の発火温度以上にならないように、電磁波放射装置40においてマイクロ波の放射制御が実行される。制御装置19には、電磁波放射装置40がマイクロ波の放射を継続した場合に、マイクロコイル21がその発火温度より低い上限温度に到達するまでに要する時間が、終了設定時間として設定されている。上限温度は、発火温度よりも例えば50℃低い温度である。
 制御装置19は、エンジンの始動と同時にマイクロ波の放射を開始した時点から終了設定時間が経過した時点で、電力供給の停止を指示する停止指令を電力供給部18に出力する。そうすると、電力供給部18が電磁波発生装置16への電力の供給を停止し、電磁波放射装置40によりマイクロ波の放射が停止される。
 このように、変形例4では、マイクロコイル21がその発火温度以上にならないようにマイクロ波の放射が制御されるため、触媒32が高温の排ガスに晒される期間だけでなく、マイクロ波によりマイクロコイル21を発熱させる期間も、マイクロコイル21が極めて焼損しにくく、その焼損による加熱装置10の機能低下を抑制できる。
 なお、発熱層14の温度を検出する温度センサを設けて、その温度センサの出力値に基づいて、制御装置19が停止指令を電力供給部18に出力するようにしてもよい。
 -その他の実施形態-
 前記実施形態は、以下のように構成してもよい。
 本実施形態の加熱装置10は、自動車の排ガスを浄化する触媒32を加熱するものに限定されない。例えば、燃焼炉の排ガスを浄化する触媒を加熱するものなど、高温ガスが流通する空間に設けられる種々の触媒に採用可能である。
 ケーシング31の形状や、マイクロ波を受け入れるための開口部34の位置などは、必ずしも本実施形態の形状、位置に限定されない。例えばケーシング31の形状は、角筒状でもよい。また、開口部34の位置も、ケーシング31の上方に設けてもよいなど、種々の設計変更が可能である。
 触媒32も、三元触媒に用いられる触媒に限定されない。例えば、活性化するのに昇温が必要となるSCR触媒などにも適用可能である。
 発熱層14のバインダー14aもセラミック系のものに限らない。耐熱性を有し、マイクロコイル21をハニカム構造体13に定着させることができるものであれば、種々のバインダーが採用可能である。
 また、被覆層15に用いられるバインダーも、セラミック系のものに限らない。触媒32を発熱層14に定着させるとともに、発熱層14の全領域を被覆することができるものであれば、種々のものが採用可能である。
 電磁波発生装置16は、マイクロ波の生成に当って半導体発振器の代わりに、マグネトロンを使用してもよい。
 制御装置19は、例えば寒冷時などの場合は、自動車のエンジンが始動する前から、電力供給部18を制御して、マイクロコイル21にマイクロ波を放射するように構成してもよい。そうすれば、エンジンの始動時から排ガスをクリーンなものにすることができる。
 また、被加熱物は、触媒32以外のもの(排気通路に設けられるセンサ)であってもよい。
 以上説明したように、本発明は、高温ガスが流通する対象空間へ電磁波を放射してマイクロコイルを発熱させることにより、被加熱物を加熱する加熱装置について有用である。
10 加熱装置
14 発熱層
15 被覆層
21 マイクロコイル
25 絶縁体
32 触媒(被加熱物)
33 排ガス通路(対象空間)
40 電磁波放射装置

Claims (5)

  1.  炭素原子又は炭素を含む分子を主成分とするマイクロコイルを有するとともに、高温ガスが流通する対象空間に設けられる被加熱物と一体に設けられた発熱層と、
     前記対象空間に電磁波を放射する電磁波放射装置とを備え、
     前記電磁波放射装置から前記対象空間へ電磁波を放射して前記マイクロコイルを発熱させることにより、前記被加熱物を加熱する加熱装置であって、
     前記発熱層の全領域を被覆する被覆層を備えていることを特徴とする加熱装置。
  2.  請求項1において、
     前記被加熱物は、前記高温ガスを浄化する触媒であり、
    前記触媒は、前記被覆層に設けられていることを特徴とする加熱装置。
  3.  請求項2において、
     前記被覆層と前記発熱層の境界面で、前記触媒と、前記マイクロコイルが非接触の状態に保たれていることを特徴とする加熱装置。
  4.  請求項1、請求項2又は請求項3において、
     前記マイクロコイルが該マイクロコイルの発火温度以上にならないように、前記電磁波放射装置による電磁波の放射が制御されることを特徴とする加熱装置。
  5.  炭素原子又は炭素を含む分子を主成分とするマイクロコイルを有するとともに、高温ガスが流通する対象空間に設けられる被加熱物と一体に設けられた発熱層と、
     前記対象空間に電磁波を放射する電磁波放射装置とを備え、
     前記電磁波放射装置から前記対象空間へ電磁波を放射して前記発熱層のマイクロコイルを発熱させることにより、前記被加熱物を加熱する加熱装置であって、
     前記マイクロコイルは、炭化珪素を主成分とすることを特徴とする加熱装置。
PCT/JP2012/073381 2011-09-15 2012-09-12 加熱装置 WO2013039123A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/345,551 US9199194B2 (en) 2011-09-15 2012-09-12 Heating device
JP2013533696A JP6142144B2 (ja) 2011-09-15 2012-09-12 加熱装置
EP12831665.0A EP2767691A4 (en) 2011-09-15 2012-09-12 HEATING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011202187 2011-09-15
JP2011-202187 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013039123A1 true WO2013039123A1 (ja) 2013-03-21

Family

ID=47883348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073381 WO2013039123A1 (ja) 2011-09-15 2012-09-12 加熱装置

Country Status (4)

Country Link
US (1) US9199194B2 (ja)
EP (1) EP2767691A4 (ja)
JP (1) JP6142144B2 (ja)
WO (1) WO2013039123A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882423A (zh) * 2017-05-16 2018-11-23 丰田自动车株式会社 微型线圈

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2987975B1 (en) * 2014-08-23 2017-09-20 Advanced Technology Emission Solutions Inc. Catalytic converter system and corresponding control method
JP2018140100A (ja) * 2017-02-28 2018-09-13 宮坂ゴム株式会社 血行改善用の健康装具
CN107288716A (zh) * 2017-07-10 2017-10-24 浙江交通职业技术学院 电涡流均匀加热的壁流式陶瓷颗粒捕集器装置
KR102042184B1 (ko) * 2017-07-28 2019-11-07 한국에너지기술연구원 마이크로파 이용 촉매 가열 수단이 구비된 저에너지 소비형 NOx 제거 반응장치
JP7052637B2 (ja) * 2018-08-22 2022-04-12 トヨタ自動車株式会社 内燃機関の制御装置
DE102020106740A1 (de) * 2020-03-12 2021-09-16 Infinite Flex GmbH Heizsystem

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036199A (ja) 2007-07-12 2009-02-19 Imagineering Kk 排ガスの物質浄化装置
JP2010169015A (ja) * 2009-01-23 2010-08-05 Takeuchi Seisakusho:Kk 排気ガス浄化装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286468A (ja) * 1997-04-15 1998-10-27 Zexel Corp 高周波加熱触媒及び高周波吸収体
JP2000104538A (ja) * 1998-09-24 2000-04-11 Zexel Corp 排気ガス浄化装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036199A (ja) 2007-07-12 2009-02-19 Imagineering Kk 排ガスの物質浄化装置
JP2010169015A (ja) * 2009-01-23 2010-08-05 Takeuchi Seisakusho:Kk 排気ガス浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2767691A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882423A (zh) * 2017-05-16 2018-11-23 丰田自动车株式会社 微型线圈

Also Published As

Publication number Publication date
JP6142144B2 (ja) 2017-06-07
EP2767691A4 (en) 2015-10-21
US20150064073A1 (en) 2015-03-05
JPWO2013039123A1 (ja) 2015-03-26
EP2767691A1 (en) 2014-08-20
US9199194B2 (en) 2015-12-01

Similar Documents

Publication Publication Date Title
JP6142144B2 (ja) 加熱装置
JP6980676B2 (ja) 流体流システムに使用されるサセプタ
JP5311105B2 (ja) 排ガスの物質浄化装置
US6513324B2 (en) Device with heating element for exhaust gas cleaning
JP2009036199A5 (ja)
JPH07189661A (ja) 固体触媒の加熱を促進させる方法
US7691339B2 (en) Catalyst temperature control via microwave-induced particle oxidation
JP2018009561A (ja) 選択触媒還元装置
JP2010019079A (ja) 排ガス浄化装置
JP2017141803A (ja) 内燃機関の排気浄化装置
JP2910373B2 (ja) 内燃機関用排気ガス浄化装置
JP2000104538A (ja) 排気ガス浄化装置
JP2850645B2 (ja) 内燃機関用排気ガス浄化装置
JP2020148140A (ja) 排気ガス浄化装置
JP2010133332A (ja) 触媒装置
JP2010036083A (ja) 排ガス浄化装置
JP2900758B2 (ja) 触媒機能を有する高周波発熱体
JP2870376B2 (ja) 触媒機能を有する高周波発熱体
JP2010019229A (ja) 排ガス浄化装置
JPH06123222A (ja) 内燃機関用排気ガス浄化装置
JP2830562B2 (ja) 高周波発熱体
JP4333439B2 (ja) 排気浄化装置及びその制御方法
JP2848242B2 (ja) 触媒機能を有する高周波発熱体
JP2000104539A (ja) 排気ガス浄化装置
JP2010019230A (ja) 排ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012831665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14345551

Country of ref document: US