WO2013039100A1 - Film exposure device - Google Patents

Film exposure device Download PDF

Info

Publication number
WO2013039100A1
WO2013039100A1 PCT/JP2012/073318 JP2012073318W WO2013039100A1 WO 2013039100 A1 WO2013039100 A1 WO 2013039100A1 JP 2012073318 W JP2012073318 W JP 2012073318W WO 2013039100 A1 WO2013039100 A1 WO 2013039100A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
film
alignment
mask
light
Prior art date
Application number
PCT/JP2012/073318
Other languages
French (fr)
Japanese (ja)
Inventor
敏成 新井
和重 橋本
敬行 佐藤
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011224387A external-priority patent/JP5884120B2/en
Priority claimed from JP2011230195A external-priority patent/JP2013088679A/en
Priority claimed from JP2011241687A external-priority patent/JP2013097277A/en
Priority claimed from JP2012019170A external-priority patent/JP5817564B2/en
Priority claimed from JP2012146733A external-priority patent/JP2014010296A/en
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2013039100A1 publication Critical patent/WO2013039100A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7035Proximity or contact printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels

Definitions

  • the present invention relates to a photo-alignment film or an optical film for a wide viewing angle of a polarizing film used in an FPR (Film Patterned Retarder) system, that is, a three-dimensional (3D) image display device of a film polarization system.
  • the present invention relates to a film exposure apparatus used for the formation of the like.
  • a polarizing film that changes the direction of the light beam for each scanning line is placed on the screen of a display device such as a liquid crystal display device, and the display device is for the right eye and the left eye for each scanning line.
  • the polarizing film stretched on the polarizing glasses allows only the light for the right eye to pass through the light that should be incident on the right eye, and the polarizing film for the left eye allows only light that should enter the left eye to pass through, A parallax is generated in an image incident on the right eye and the left eye, thereby enabling stereoscopic display.
  • FIG. 50 is a schematic diagram showing an FPR type polarizing film 1.
  • the polarizing film 1 includes a band-shaped left-eye polarizing unit 1a having a width corresponding to one horizontal scanning line of the display device, and a band-shaped right-eye having a width corresponding to one horizontal scanning line of the display device.
  • the polarizing parts 1b are applied on a transparent substrate so as to be alternately arranged in the vertical direction.
  • the polarizing unit 1a for the left eye has -45 ° linearly polarized light or CW (clockwise) circularly polarized light that is polarized clockwise.
  • the polarizing unit 1b for the right eye has + 45 ° linearly polarized light or CCW (counter clockwise) circularly polarized light that is polarized counterclockwise.
  • the polarizing film 1 has its polarizing portion 1a and polarizing portion 1b corresponding to the scanning lines of the liquid crystal display device, and the left-eye polarizing portion 1a coincides with the scanning line of the left-eye signal of the liquid crystal display device.
  • the polarizing part 1b is pasted on the screen of the liquid crystal display device so that it matches the scanning line of the signal for the right eye of the liquid crystal display device.
  • emitted from the scanning line for left eyes of the screen of a liquid crystal display device will permeate
  • the display light incident on the left eye and emitted from the right-eye scanning line on the screen of the liquid crystal display device is transmitted through the right-eye polarizing portion 1b of the polarizing film 1 and is passed through the right-eye polarizing film stretched on the right-eye lens of the polarizing glasses. Transmits and enters the right eye. Thereby, the right eye and the left eye can see an image having parallax, and a three-dimensional image can be visually recognized.
  • FIG. 51 is a schematic diagram showing an exposure apparatus for this conventional polarizing film 1.
  • An alignment film 10 in which an alignment material film is coated on the surface of a transparent film base is unwound from a roll 100, and its movement trajectory is regulated via the rolls 102 and 103 so that the exposure light sources 104 and 105 are disposed. Is wound around the roll 101.
  • the alignment film 10 travels horizontally between the rolls 102 and 103, and slit masks 106 and 107 are arranged along the moving direction above the horizontal movement area of the alignment film 10.
  • Exposure light sources 104 and 105 are disposed above 107, and exposure light from the exposure light sources 104 and 105 is applied to the alignment material film on the surface of the alignment film 10 through the slit masks 106 and 107.
  • Cameras 108 and 109 for observing the alignment marks are installed above one end of the slit masks 106 and 107, that is, on the sides of the exposure light sources 104 and 105.
  • a laser marker 110 for forming an alignment mark on the side of the alignment film 10 is provided on the upstream side of the slit mask 106 in the moving direction of the alignment film 10.
  • an alignment mark 111 is formed on the side of the alignment film 10 by a laser marker 110 with respect to the alignment film 10 moving between the rolls 102 and 103.
  • the camera 108 observes the mark 111 from the opening 106 b provided at one end of the slit mask 106, and adjusts the position in the direction perpendicular to the moving direction of the alignment film 10 of the slit mask 106 with respect to the mark 111.
  • the camera 109 observes the mark 111 from the opening 107 b provided at one end of the slit mask 107 and adjusts the position of the slit mask 107 in the direction perpendicular to the moving direction of the alignment film 10.
  • the exposure light from the exposure light source 104 passes through the slit 106a of the slit mask 106 and is applied to the alignment material film on the surface of the alignment film 10, and the alignment film 10 is continuously in the direction indicated by the white arrow. Since it is conveyed, the strip-shaped exposure part 10a oriented in the same direction is formed in the alignment material film. Further, the exposure light from the exposure light source 105 passes through the slit 107a of the slit mask 107 and is irradiated onto the alignment material film on the surface of the alignment film 10, so that an exposure portion 10b is formed between the exposure portions 10a.
  • the strip-shaped exposure portions 10a and 10b are spaced apart from each other with an interval corresponding to one scanning line, and, for example, by applying liquid crystal on the alignment exposure film 11 after exposure,
  • the polarizing portions 1a and 1b in which liquid crystal molecules are arranged in different directions are formed. Thereby, as shown in FIG. 50, the polarizing film 1 from which a polarization direction differs between adjacent strip
  • Patent Documents 1 and 2 are related to a method for producing an optical film or the like used in these liquid crystal display devices.
  • the alignment film 10 coated with the alignment material film is easily deformed due to a temperature change or the like, for example, easily deformed with respect to a temperature change during exposure. End up.
  • the alignment film 10 easily expands due to heating during exposure, and easily contracts due to cooling during conveyance.
  • the width of the formed strip-shaped exposure portions 10a and 10b cannot correspond to the width of the pixels or picture elements of the display device, A display defect occurs due to a difference in width between the two.
  • Patent Document 3 in a manufacturing method of a display device in which a reflective material that diffuses and reflects external light is formed on a film to be attached to a glass substrate of the display device, the film is washed or dried.
  • a technique for preventing warping of a film accompanying expansion and contraction of a film and curing of a reflective material is disclosed, and a reflective material is provided on a glass substrate, and the film is bonded thereon via an adhesive layer.
  • the inspection of the exposure quality at the time of film production is performed after the film is completed.
  • the exposure line widths of the strip-shaped exposure portions 10a and 10b and the polarization direction are confirmed by exposing the entire length of the alignment film 10.
  • the exposure line width and the polarization direction are inspected as inspections for the product.
  • the slit mask 106 for forming the exposure portion 10a is configured by connecting two small slit masks 106-1 and 106-2, the slit mask It is also necessary to confirm the joint between 106-1 and 106-2, which is also performed as an inspection for the product.
  • the alignment material film on the alignment film 10 is exposed in a state where the alignment film 10 is stretched between the rolls 102 and 103, the vertical vibration of the alignment film 10 when the alignment film 10 is conveyed is exposed. As a result, the distance between the slit masks 106 and 107 and the alignment film 10 fluctuates, and it is difficult to form the exposed portions 10a and 10b with high accuracy. Further, the alignment film 10 stretched between the rolls 102 and 103 is likely to be wrinkled, and this also makes it difficult to form the exposed portions 10a and 10b with high accuracy.
  • the exposure line width, the polarization direction and the mask joint are confirmed in the product inspection, so a problem is found in their quality.
  • the entire product lot becomes a defective product, and the entire product lot has to be discarded, resulting in a problem of poor yield.
  • illumination light is emitted from the inspection illumination light source 123 disposed below the alignment exposure film 11 that is stretched between the rolls 102 and 103 and moves in the direction of the arrow.
  • the illumination light is irradiated onto the alignment exposure film 11 via the linearly polarizing plate 122a in the first direction (for example, p-polarized light), and the illumination light transmitted through the alignment exposure film 11 is irradiated with the ⁇ / 4 plate 121 and the first light.
  • the light is incident on the inspection camera 120 through the linear polarizing plate 122b in two directions (for example, s-polarized light). Thereby, the inspection camera 120 can capture the exposure portions 10a and 10b, and the width (line width) and position (joint position) of the exposure portions 10a and 10b and the orientation direction can be confirmed.
  • the alignment exposure film 11 is inspected by illumination light having a polarization direction while being stretched between the rolls 102 and 103, the alignment exposure film 11 has a vertical direction. Therefore, it is difficult to detect the width and position (joint position) of the exposure units 10a and 10b and the orientation direction thereof with high accuracy.
  • Patent Document 4 is a technique for preventing thermal deformation of the film itself, and does not perform high-precision exposure in response to the deformed film.
  • the alignment film 10 When the alignment film 10 is deformed in the width direction orthogonal to the moving direction of the alignment film 10 due to thermal deformation or the like, it is conceivable to replace the mask in accordance with the width of the alignment film 10 after deformation. That is, as shown in FIG. 55, the alignment film 10 expands in a direction orthogonal to the moving direction of the alignment film 10, for example, by heating during exposure, and contracts to a width before expansion by cooling during conveyance. . Therefore, it is conceivable to perform exposure by replacing the masks 106 and 107 with masks 150 and 160 provided with slits in consideration of the expansion coefficient in the width direction of the alignment film 10, respectively. However, in this case, it is necessary to prepare a plurality of types of masks in accordance with the expansion coefficient of the alignment film 10, and there is a problem that the manufacturing cost of the polarizing film increases.
  • a film patterned retarder (FPR) in which the polarization direction is changed for each scanning line is used.
  • FPR film patterned retarder
  • two (FIG. 52) or three slits having a scanning line width formed on the alignment film in which an alignment material film is coated on a film substrate are formed at a pitch of the scanning line width.
  • each mask is irradiated with exposure light having two different polarization directions.
  • An object of the present invention is to obtain a polarizing film in which the formation accuracy of an exposed portion due to vertical vibration of a thin alignment film is prevented and the occurrence of wrinkles can be prevented, and the exposed portion is formed with high accuracy.
  • An object of the present invention is to provide a film exposure apparatus that can perform the above process.
  • Another object of the present invention is to provide a highly accurate alignment film without changing the mask even when the alignment film to be exposed is deformed or biased in the width direction due to thermal expansion and contraction of the alignment film and meandering. It is an object of the present invention to provide an exposure apparatus capable of exposing at a predetermined position.
  • Still another object of the present invention is to provide an exposure apparatus and an FPR manufacturing device capable of aligning each exposure unit with high accuracy when exposing the strip-shaped exposure unit at different positions of the first exposure unit and the second exposure unit. It is to provide a method.
  • the film exposure apparatus comprises: An alignment film in which an alignment material film is applied on one surface of a transparent film substrate is wound with the alignment material film outside, and the alignment film is supported along the peripheral surface while supporting the alignment film on the peripheral surface. And back roll to move A first slit mask disposed so as to face the alignment film wound around the back roll and formed with a plurality of first slits parallel to a moving direction of the alignment film; A first exposure unit comprising: a first exposure light source that exposes the alignment material film of the alignment film through a slit mask; On the downstream side of the first slit mask in the moving direction of the alignment film, a plurality of second films are arranged so as to face the alignment film wound around the back roll and parallel to the moving direction of the alignment film.
  • a second exposure unit comprising: a second slit mask in which two slits are formed; and a second exposure light source that exposes the alignment material film of the alignment film through the second slit mask.
  • the second slits of the second slit mask are arranged at the same pitch as the arrangement pitch of the first slits of the first slit mask,
  • the first slit and the second slit are biased in the width direction of the alignment film by a half pitch of the arrangement pitch of the first and second slits in the width direction of the alignment film. Further, the first slit mask and the second slit mask are arranged.
  • Another film exposure apparatus is: An alignment film in which an alignment material film is applied on one surface of a transparent film substrate is wound with the alignment material film outside, and the alignment film is supported along the peripheral surface while supporting the alignment film on the peripheral surface. And back roll to move A first slit mask disposed so as to face the alignment film wound around the back roll and formed with a plurality of first slits parallel to a moving direction of the alignment film; A first exposure unit comprising: a first exposure light source that exposes the alignment material film of the alignment film through a slit mask; An opening extending in the width direction of the alignment film is formed on the downstream side of the first slit mask in the moving direction of the alignment film so as to face the alignment film wound on the back roll.
  • a second exposure unit comprising: a third mask; and a third exposure light source that exposes the alignment material film of the alignment film through the third mask; It is characterized by having.
  • Still another film exposure apparatus is: An alignment film in which an alignment material film is applied on one surface of a transparent film substrate is wound with the alignment material film outside, and the alignment film is supported along the peripheral surface while supporting the alignment film on the peripheral surface. And back roll to move A first slit mask disposed so as to face the alignment film wound around the back roll and formed with a plurality of first slits parallel to a moving direction of the alignment film; A first exposure unit comprising: a first exposure light source that exposes the alignment material film of the alignment film through a slit mask; An opening extending in the width direction of the alignment film is formed on the upstream side of the first slit mask in the moving direction of the alignment film so as to face the alignment film wound on the back roll.
  • a second exposure unit comprising: a fourth mask; and a fourth exposure light source that exposes the alignment material film of the alignment film through the fourth mask; It is characterized by having.
  • the exposure light source may be configured such that one is for irradiating the alignment film with CW circularly polarized exposure light, and the other is for irradiating the alignment film with CCW circularly polarized exposure light, In addition, the exposure light source irradiates the alignment film with exposure light that is incident on the alignment film so that the alignment film is inclined by 40 ° in the moving direction of the alignment film.
  • the alignment film may be configured to irradiate the alignment film with exposure light incident so as to be inclined by ⁇ 40 ° in the moving direction of the alignment film.
  • the exposure apparatus includes, for example, a cooling member that is provided on the upstream side of the back roll in the traveling direction of the alignment film and cools the alignment film.
  • the exposure apparatus is disposed downstream of the second exposure unit in the moving direction of the alignment film, and includes an exposure unit irradiated with exposure light in the alignment exposure film after irradiation of exposure light to the alignment film.
  • An inspection unit that inspects, and the inspection unit winds the alignment exposure film and rotates with the alignment exposure film, and is installed on the peripheral surface of the inspection roll or inside the roll for inspection.
  • a light source that emits the illumination light, and a light receiving unit that is installed to face the roll and detects the illumination light after passing through the alignment exposure film. Exposes the alignment material film to alternately form strip-shaped first exposure portions and strip-shaped second exposure portions in the width direction of the alignment material film, thereby forming the alignment exposure film.
  • the inspection unit is installed on the roll, and is installed so as to face the roll with a first polarizing plate that imparts polarized light in a first direction to the illumination light from the light source.
  • a second polarizing plate that provides polarized light in a direction perpendicular to the first direction with respect to incident light; and a ⁇ / 4 plate provided on the optical axis of the illumination light. Also good.
  • the exposure unit forms the first exposure unit by an exposure light source that irradiates the alignment film with CW circularly polarized exposure light, and the exposure light source that irradiates the alignment film with CCW circularly polarized exposure light.
  • the exposure unit may be configured to form a second exposure part, and the exposure unit exposes the alignment material film on the alignment film to thereby form a band-shaped first exposure part, Are formed alternately in the width direction of the alignment material film to form the alignment exposure film, and the light receiving unit of the inspection unit transmits the alignment exposure film.
  • a first light receiving portion provided in the first alignment direction by the first exposure portion of the illumination light, and a second alignment direction by the second exposure portion of the illumination light transmitted through the alignment exposure film. You may be comprised from the 2nd light-receiving part.
  • the exposure unit forms the first exposure portion by an exposure light source that makes exposure light incident on the alignment film so as to be inclined by 40 ° in the moving direction of the alignment film.
  • the second exposure portion may be formed by an exposure light source that receives exposure light so as to be inclined by ⁇ 40 ° in the moving direction of the alignment film.
  • a transparent scale member disposed on the axis, extending in a width direction of the alignment exposure film, and having a scale formed in the width direction of the first exposure portion or the second exposure portion on the alignment exposure film; You may comprise.
  • the film exposure apparatus has a second inspection unit arranged in the transport area of the alignment exposure film before or after the inspection by the inspection unit,
  • the second inspection unit includes A second light source that emits inspection light, a third polarizing plate that imparts linearly polarized light in a first direction to the inspection light from the second light source, and the third polarizing plate that passes through the third polarizing plate.
  • a second ⁇ / 4 plate that changes inspection light transmitted through the alignment exposure film and provided with circularly polarized light in the first direction to linearly polarized light in the second direction, and inspection of linearly polarized light in the second direction
  • a fourth polarizing plate that transmits light
  • a second light receiving unit that detects inspection light transmitted through the fourth polarizing plate
  • a third light source for emitting inspection light
  • a fifth polarizing plate for imparting linearly polarized light in the first or second direction to the inspection light from the third light source, and the third polarizing plate.
  • a third ⁇ / 4 plate that changes the inspection light transmitted through the alignment exposure film and provided with the circularly polarized light in the second direction to the linearly polarized light in the second or first direction; and the second or A sixth polarizing plate that transmits the linearly polarized inspection light in the first direction; a third light receiving unit that detects the inspection light transmitted through the sixth polarizing plate; You may comprise so that it may have.
  • An exposure apparatus includes a transport device that moves an alignment film to be exposed in a first direction; A pair of alignment markers that form a film alignment mark on both sides of the alignment film as an index of the amount of expansion and contraction of the alignment film; A light source that emits exposure light; A mask having a plurality of slits arranged in a second direction orthogonal to the first direction and spaced apart from each other, and mask alignment marks formed at both ends in the second direction.
  • a detection unit for detecting the film alignment mark together with the mask alignment mark A detection unit for detecting the film alignment mark together with the mask alignment mark; A control unit that controls a relative position of the light shielding member and the mask in the first direction; The width of the slit changes linearly with respect to the first direction, and the interval between the slits is the same as the width of the slit when viewed in the second direction; The controller controls the relative position in the first direction between the mask and the light shielding member so that the positional relationship between the mask alignment mark and the film alignment mark detected by the detector is a predetermined relationship. It is characterized by controlling.
  • the pair of mask alignment marks may be arranged at one side edge in the width direction of the closest slit among slits provided at both ends in the second direction or in the width direction of the slit.
  • the control unit is provided in parallel with the center line so that the distance between the film alignment mark and the mask alignment mark in the second direction is constant at the position of the opening of the light shielding member.
  • the relative position in the first direction between the mask and the light shielding member may be controlled, and the film alignment mark is observed on the mask outside the slit in the second direction.
  • a pair of observation windows is provided, the mask alignment mark is provided on the observation window, and the detection unit With Rye placement marks, it may be configured to detect the film alignment mark through the pair of the observation window.
  • the control unit may be configured such that a central position in the second direction between the pair of mask alignment marks detected by the detection unit coincides with a central position in the second direction between the pair of film alignment marks.
  • the mask may be configured to adjust the position of the mask in the second direction, and the light source, the light shielding member, and the mask are arranged in two sets at positions separated in the first direction,
  • the slits of one mask may be arranged so as to be deviated by the arrangement pitch of the slits in the second direction with respect to the slits of the other mask. You may comprise so that the strip
  • a transport device for moving the alignment film to be exposed in the first direction A pair of alignment markers that form film alignment marks that serve as indicators of the amount of expansion and contraction of the alignment film on both sides of the alignment film;
  • a light source that emits exposure light;
  • a plurality of slits arranged in the second direction perpendicular to the first direction with a space between each other is formed, and a pair of observation windows for observing the pair of film alignment marks is provided,
  • An opening extending in the second direction and intersecting all the slits is formed, and a light shielding member that transmits the exposure light at a portion where the opening and the slit intersect,
  • a detection unit for detecting the mask alignment mark and the film alignment mark in each observation window;
  • a control unit that adjusts a relative positional relationship in the first direction between the light shielding member and the mask based on a detection result of the detection unit;
  • the slit has a first slit at one end in
  • the control unit sets a reference value A of a distance between the first mask alignment mark and the corresponding first film alignment mark, and a second corresponding to the second mask alignment mark.
  • the reference value B of the distance between the two film alignment marks was set, and the distance between the first mask alignment mark and the first film alignment mark varied from the reference value A during the exposure of the alignment film.
  • the mask is moved in the second direction so that the distance between the first mask alignment mark and the first film alignment mark is adjusted to a reference value A, and then the second mask alignment is performed.
  • the mask is moved to the first film alignment mark. Is moved in the direction, it may be configured to adjust the distance between the second film alignment mark and the second alignment mark to the reference value B.
  • Still another exposure apparatus provides: A moving device for moving the alignment film in which the alignment material film is formed on the film substrate in one direction; A plurality of strip-shaped exposure portions provided in a moving region of the alignment film, extending in the one direction and spaced from each other in a direction perpendicular to the one direction, on the alignment material film on the alignment film; A first exposure unit for forming a first exposure pattern comprising: The first exposure pattern is disposed downstream of the first exposure unit in the moving direction of the alignment film, extends in the one direction on the alignment material film on the alignment film, and extends in the direction orthogonal to the one direction.
  • a second exposure unit for forming a second exposure pattern composed of a plurality of strip-shaped exposure portions in a region between the exposure portions;
  • An inspection unit provided in a moving region of the alignment film between the first exposure unit and the second exposure unit, and detecting an exposure unit of the first exposure pattern;
  • a control unit for controlling the exposure position of the second exposure pattern in the second exposure unit based on the position of the exposure unit of the first exposure pattern detected by the inspection unit; It is characterized by having.
  • the first exposure unit includes a first exposure light source and a first mask provided with a band-shaped slit corresponding to the first exposure pattern.
  • the exposure light is shaped by the slit of the first mask and irradiated to the alignment material film.
  • the second exposure unit has a second exposure light source and a belt-like shape corresponding to the second exposure pattern.
  • a second mask provided with a slit the exposure light from the second exposure light source is shaped by the slit of the second mask and irradiated to the alignment material film, the control unit, The position of the second exposure unit in the direction orthogonal to the one direction may be adjusted based on the position of the exposure portion of the first exposure pattern, and the moving device , And wound around the alignment layer on the back roll is moved,
  • the first exposure unit, the inspection unit, and the second exposure unit may be configured to be installed at a position facing the alignment film on the back roll.
  • the inspection unit is installed so as to face the back roll, irradiates inspection light toward the alignment film on the back roll, and a camera that detects reflected light reflected by the back roll; And a polarizer that filters the inspection light incident on the alignment film or the reflected light incident on the camera with a polarization direction filter, and the inspection unit includes the back roll.
  • An inspection light source that is embedded in the peripheral surface and irradiates inspection light toward the alignment film on the back roll, and a camera that is installed to face the inspection light light source and detects transmitted light that has passed through the alignment film
  • a polarizer that filters the inspection light incident on the alignment film or the transmitted light incident on the camera with a polarization direction filter.
  • the moving device defines a moving area of the alignment film by spanning the alignment film on a plurality of transport rolls, and the first exposure unit, the inspection unit, and the second exposure unit include the transport rolls. It may be configured to be installed at a position facing the alignment film in between, and the inspection unit is installed on one surface side of the alignment film between the transport rolls to inspect the inspection light.
  • An inspection light source that irradiates the film, a reflection unit that is installed on the other surface side of the alignment film and reflects the light transmitted through the alignment film, a camera that detects the reflected light reflected by the reflection unit, You may comprise so that it may have a polarizer which filters each of the inspection light which injects into the alignment film, and the reflected light which injects into the camera in a polarization direction.
  • the inspection unit is installed on one surface side of the alignment film between the transport rolls and irradiates inspection light toward the alignment film, and the alignment light is installed on the other surface side of the alignment film.
  • a camera that detects transmitted light that has passed through the film, and a polarizer that filters each of the inspection light incident on the alignment film and the transmitted light incident on the camera in a polarization direction.
  • the second mask is formed such that the plurality of slits are linearly increased in the first direction with respect to the slits adjacent to each other in the direction orthogonal to the first direction.
  • the second exposure unit includes a light shielding member formed with an opening extending in a direction perpendicular to the first direction so as to intersect all the slits of the second mask, and the control unit includes a light shielding member of the light shielding member. Pair with the second mask It may be configured to adjust the position of said first direction that.
  • the FPR manufacturing method moves the alignment film in which the alignment material film is formed on the film substrate in one direction
  • the first exposure unit provided in the moving region of the alignment film allows the alignment material film on the alignment film to extend in the one direction and be spaced apart from each other in a direction perpendicular to the one direction.
  • a first exposure step of forming a first exposure pattern comprising a strip-shaped exposure portion of A direction extending in the one direction and perpendicular to the one direction on the alignment material film on the alignment film by a second exposure unit installed on the downstream side of the first exposure unit in the moving direction of the alignment film.
  • a second exposure step of forming a second exposure pattern comprising a plurality of strip-shaped exposure portions in a region between the exposure portions of the first exposure pattern in An inspection step of detecting an exposed portion of the first exposure pattern between the first exposure step and the second exposure step;
  • Have The exposure position of the second exposure pattern by the second exposure unit in the second exposure step is controlled based on the position of the exposure portion of the first exposure pattern detected in the inspection step.
  • an alignment film formed by applying an alignment material film on a film substrate is used as an alignment exposure film, and an alignment exposure film is formed by exposing the alignment film.
  • the coated one is called a polarizing film.
  • the alignment film having the alignment material film formed on the surface is wound around the back roll, and the exposure light is emitted from the first and second exposure light sources in a state where the back surface is supported by the back roll.
  • the alignment material film is irradiated through the first and second slit masks. Therefore, the alignment film is supported by the back roll, and wrinkles during conveyance are extended, and exposure is performed in a state where the distance between the first and second slit masks and the alignment film is set with high accuracy. Therefore, the accuracy of formation of the exposed portion becomes extremely high. Therefore, according to the present invention, it is possible to form a strip-shaped exposed portion with high accuracy.
  • FIG. 1 It is a figure which expands and shows alignment film near the back roll and slit mask.
  • FIG. 1 It is a schematic diagram which shows the film exposure apparatus of 5th Embodiment of this invention. Similarly, it is a figure which expands and shows alignment film near the back roll and slit mask. It is a figure which shows the manufacturing method of the polarizing film of a FPR system which uses a back roll. It is a typical perspective view which shows an air turn bar. It is a figure which shows the film exposure apparatus which uses a back roll. Similarly, it is a figure which expands and shows alignment film near the back roll and slit mask. It is a top view which shows the test
  • (A) is a side view showing the entire configuration of an exposure apparatus according to the tenth embodiment of the present invention
  • (b) is a plan view showing a mask
  • (c) is a plan view showing the aperture.
  • (A), (b) is a figure which shows the relative positional relationship of an aperture and a mask with an alignment film, when exposing the alignment film from which the width
  • (A), (b) is a figure which shows adjustment of the mask position by a film alignment mark and a mask alignment mark as an example. It is a figure which shows the exposure aspect when the alignment film is thermally deformed in the exposure apparatus which concerns on 10th Embodiment of this invention.
  • FIG. 1 It is a top view which shows the modification of a mask in the exposure apparatus which concerns on 10th Embodiment of this invention.
  • (A), (b) is a figure which shows the exposure process by the exposure apparatus which concerns on 11th Embodiment of this invention. It is a top view which shows the mask and aperture of the exposure apparatus which concern on 12th Embodiment of this invention.
  • (a) is a figure which shows the relative positional relationship of a mask and an aperture when expansion
  • In the conventional exposure apparatus it is a figure which shows the exposure aspect when an alignment film is thermally deformed as an example.
  • FIG. 1 is a schematic diagram showing a film exposure apparatus according to an embodiment of the present invention
  • FIG. 2 is a diagram showing an expanded alignment film 10 in the vicinity of a back roll.
  • an alignment material film is applied by an appropriate application device, and the alignment film 10 to which this alignment material film is applied is fed as it is to the position where the back roll 5 is disposed, or FIG.
  • the roll 100 is unwound and fed to the back roll 5.
  • the alignment film 10 is wound on approximately half (lower half) of the peripheral surface, the back surface of the alignment film 10 contacts the back roll 5, and the surface of the alignment film 10, that is, the alignment material film. Facing outward.
  • the masks 7 and 17 are placed facing the alignment material film with a slight distance (about 200 ⁇ m) from the alignment film 10 so as to face each other with the back roll 5 interposed therebetween.
  • Exposure light sources 6 and 16 are installed behind the masks 7 and 17.
  • the alignment film 10 having the alignment material film coated on the surface is in contact with the peripheral surface of the back roll 5, and the wrinkles are stretched by a slight tension when the alignment film 10 is conveyed. Supported.
  • the alignment film 10 is continuously conveyed in the direction of the white arrow, and the exposure light is continuously irradiated from the exposure light sources 6 and 16, whereby the exposure light is transmitted through the openings 7a and the slits 17a of the masks 7 and 17. Then, the alignment film 10 is irradiated. Thereby, the alignment exposure film 11 after the exposure is wound around the winding roller 101 (see FIG. 51) or the like.
  • the back roll 5 is a water-cooled roll whose inside is water-cooled, and is rotatable around its central axis. And this back roll 5 can rotate freely, and it rotates so that the peripheral speed becomes the same as the movement speed of the alignment film 10 with the movement of the alignment film 10. Thereby, the alignment film 10 is supported in a state where there is no relative speed difference on the peripheral surface of the back roll 5. Therefore, wrinkles are prevented from being generated on the peripheral surface of the back roll 5 in the alignment film 10 that is conveyed by applying an appropriate tension.
  • a mask 7 is disposed in the vicinity of the start end of the portion around which the alignment film 10 is wound on the peripheral surface of the back roll 5 so as to face the back roll 5.
  • a light source 6 of exposure light for exposing the alignment film 10 through the mask 7 is disposed.
  • a slit mask 17 is disposed in the vicinity of the rear end portion of the peripheral surface of the back roll 5 where the alignment film 10 is wound so as to face the back roll 5. Behind 17, a light source 16 of exposure light for exposing the alignment film 10 through the slit mask 17 is disposed.
  • the mask 7 has openings 7 a extending in the width direction of the alignment film 10 and opening in almost the entire width direction of the alignment film 10, and the slit mask 17 has a plurality of rectangular shapes slightly longer in the moving direction of the alignment film 10.
  • the slits 17 a are arranged in the width direction of the alignment film 10.
  • the arrangement pitch of the slits 17a corresponds to two scanning lines corresponding to the FPR type 3D liquid crystal display device.
  • the exposure light from the exposure light source 6 is clockwise polarized light (CW (clockwise) circularly polarized light), and the exposure light from the exposure light source 16 is circularly polarized light counterclockwise. (CCW (counter clockwise) circularly polarized light).
  • CW clockwise polarized light
  • CCW counter clockwise circularly polarized light
  • the alignment film 10 is irradiated with the exposure light of the exposure light source 6 from the opening 7a of the mask 7 to the alignment film 10 moving in one direction. Except for the portion of the portion, the entire surface is irradiated with exposure light.
  • the portion on the alignment film 10 corresponding to the slit 17a is overwritten by the exposure light from the exposure light source 16. Is done.
  • a reversible alignment material film is formed on the surface of the alignment film 10.
  • the entire area of the alignment material film on the surface of the alignment film 10 is exposed by CW circularly polarized exposure light through the opening 7 a of the mask 7. Is done.
  • a strip-shaped region corresponding to the slit 17 a is exposed by CCW circularly polarized exposure light from the slit 17 a of the slit mask 17.
  • the strip-shaped exposed portion (CCW circularly polarized light) corresponding to the slit 17a becomes the exposed portion 10b
  • the strip-shaped portion (CW circularly polarized light) corresponding to the portion between the slits 17a becomes the exposed portion 10a.
  • the alignment film 10 is coated with an alignment material film on its surface.
  • the width is 1500 mm
  • the thickness is 100 ⁇ m
  • the film length of one roll 100 is 2 km, for example, usually at a speed of 2 to 10 m / min. Be transported.
  • the material of this base material is a COP (cycloolefin polymer) or TAC (triacetyl cellulose) film.
  • This alignment film 10 is fed to the position where the back roll 5 is disposed, and is wound around and supported by the back roll 5.
  • the alignment material film of the alignment film 10 is irradiated with CW circularly polarized exposure light from the exposure light source 6 through the opening 7 a of the mask 7 over almost the entire area of the alignment film 10.
  • CCW circularly polarized exposure light is irradiated in a band shape through the slit 17a of the mask 17, and the portion of the alignment film 10 corresponding to the slit 17a overwrites the CCW circularly polarized exposed portion from the CW circularly polarized exposed portion.
  • the alignment material film of the alignment film 10 is a reversible material, and substantially the entire surface of the alignment film 10 is aligned by irradiation of the entire alignment film 10 with exposure light of CW circularly polarized light.
  • the band-shaped portion of the alignment film 10 is aligned by the band-shaped irradiation of the exposure light.
  • the exposure part 10b (refer FIG. 50) by CCW circularly polarized light is formed in the part corresponding to the slit 17a of the alignment film 10.
  • an exposed portion 10a by CW circularly polarized light is formed in the band-like portion between the exposed portions 10b. In this way, it is possible to manufacture an FPR type polarizing film in which the exposing portions 10a and 10b are alternately formed and the polarizing portions 1a and 1b are formed corresponding to one scanning line.
  • the thin alignment film 10 is supported by the back roll 5 and is exposed through the slits 17a of the slit mask 17 in a state where the wrinkles are stretched, wrinkles and vibrations of the alignment film 10 are prevented.
  • the exposed portions 10a and 10b can be formed with high accuracy.
  • the exposure through the mask 7 is performed on the entire area of the alignment film 10 in the width direction, the alignment between the mask 7 and the slit mask 17 is unnecessary, and there is an alignment defect.
  • the exposed portions 10a and 10b can be formed with high accuracy.
  • the alignment film 10 is first irradiated with CW circularly polarized exposure light from the exposure light source 6 via the slit mask 17 having the slits 17a, and then exposed to the exposure light source via the mask 7 having the openings 7a.
  • 16 is different from the first embodiment in that it receives CCW circularly polarized exposure light from 16, and the other components are the same as those in the first embodiment. Detailed description is omitted.
  • the strip-shaped exposed portion 10a is formed by exposing CW circularly polarized exposure light from the exposure light source 6 to the alignment material film on the alignment film 10 through the slits 17a.
  • the alignment material film on the alignment film 10 is an irreversible material, and the alignment material film in this portion is aligned by irradiation of the CW circularly polarized exposure light.
  • CCW circularly polarized exposure light from the exposure light source 16 is exposed to the alignment material film on the alignment film 10 through the opening 7a, so that the entire surface of the alignment film 10 is irradiated with CCW circularly polarized exposure light. .
  • the exposure unit 10a is oriented by CW circularly polarized light using an irreversible material, the orientation does not change even when irradiated with CCW circularly polarized exposure light.
  • the unexposed portion of the exposure light source 6 between the exposure portions 10a receives the exposure light of CCW circularly polarized light from the exposure light source 16, and this portion becomes the exposure portion 10b corresponding to the CCW circularly polarized light.
  • the polarizing film 1 in which the polarizing portions 1a and the polarizing portions 1b are alternately positioned corresponding to one line of the scanning lines can be manufactured.
  • the exposure part 10b is formed between the exposure parts 10a by the entire exposure of the CCW circularly polarized exposure light.
  • the alignment film 10 is prevented from being vibrated and wrinkled, and the exposed portions 10a and 10b can be formed with high accuracy.
  • the FPR polarizing film 1 which has the polarization
  • the alignment film 10 contacts the back roll 5 and moves along with the driven rotation of the back roll 5, that is, the start end of the moving region of the alignment film 10, that is, the back roll 5.
  • a mask 7 having an opening 7a is disposed in the vicinity of the start end portion of the peripheral surface where the alignment film 10 is wound, and a mask 17 having a slit 17a is disposed at the rear end portion of the moving area.
  • This embodiment is different from the first embodiment in that the exposure light from the exposure light source 6 is incident on the mask 7 at an inclination angle of 40 °, for example, and the exposure light from the exposure light source 16 is the slit mask.
  • the incident angle is 17 ° with an inclination angle of ⁇ 40 °.
  • the alignment film 10 on which the reversible alignment material film is formed is irradiated with exposure light inclined at 40 ° in the transport direction of the alignment film 10 over almost the entire area of the alignment film 10, and then the alignment film 10 is aligned.
  • Exposure light inclined at ⁇ 40 ° in the transport direction of the film 10 is applied to the band-shaped region (exposure portion 10d) corresponding to the slit 17a, and this region is overwritten by exposure at ⁇ 40 °.
  • the exposure portions 10c and 10d are formed by two exposures. In the exposure portion 10d, the exposure at ⁇ 40 ° oblique incidence by the second exposure is performed.
  • the alignment direction is determined by light, and in the exposure unit 10c, the alignment direction is determined by exposure light incident at an angle of 40 ° by the first exposure.
  • membrane which has the exposure parts 10c and 10d from which a photo-alignment direction differs alternately can be obtained, and it can be used in order to expand a viewing angle as a photo-alignment film of a liquid crystal display device.
  • there is no vibration and wrinkles of the alignment film 10 can be formed with high accuracy.
  • alignment between the mask 7 and the slit mask 17 is unnecessary.
  • This embodiment relates to the formation of the photo-alignment film, as in the third embodiment, but the difference from the third embodiment is that the alignment material film on the alignment film 10 is an irreversible material,
  • the first exposure of the alignment film 10 is performed by irradiating the alignment film 10 with exposure light having an incident angle of 40 ° from the exposure light source 6 using the slit mask 17 having the slits 17a.
  • the alignment film 10 is irradiated with exposure light having an incident angle of ⁇ 40 ° from the exposure light source 16 using the mask 7 having 7a.
  • exposure light inclined at 40 ° with respect to the traveling direction of the alignment film 10 is made incident on the alignment film 10 through the slits 17 a, and the strip-shaped exposure unit 10 c with respect to the alignment film 10.
  • the strip-shaped exposed portion 10c is oriented so that its orientation direction is tilted by 40 °.
  • exposure light inclined at ⁇ 40 ° with respect to the traveling direction of the alignment film 10 is incident on the alignment film 10 through the opening 7a, and the entire surface is irradiated with exposure light inclined at ⁇ 40 °.
  • the exposure unit 10c is oriented using an irreversible material, the orientation direction does not change even when irradiated with -40 ° tilted exposure light, and exposure from the exposure light source 6 is performed.
  • An unexposed portion of light is irradiated with ⁇ 40 ° tilt exposure light, and the alignment direction is aligned with this direction.
  • the exposed portions 10c inclined by 40 ° and the exposed portions 10d inclined by ⁇ 40 ° are alternately formed.
  • there are no vibrations and wrinkles of the alignment film 10 can be formed with high accuracy.
  • alignment between the mask 7 and the slit mask 17 is unnecessary.
  • the present invention is not limited to the above embodiments, and various modifications can be made.
  • the slit mask 17 having the slits 17a and the mask 7 having the openings 7a are used, and the alignment between the mask 7 and the slit mask 17 is not required.
  • the laser marker 110 is used to form the mark 111 on the alignment film 10, and the mark 111 is observed with a camera or the like at the position where the mask 7 and the slit mask 17 are disposed, and the position is detected. If the mask 7 and the slit mask 17 are aligned using the mark 111 as an index, a slit mask having a slit can be used for both as shown in FIG.
  • the exposure portions 10a and 10b or the exposure portions 10c and 10d can be formed by two slit masks.
  • the slits of one slit mask are formed at the same pitch as the slit arrangement pitch of the other slit mask, and one slit mask is 1 / of the slit arrangement pitch with respect to the other slit mask.
  • the pitch of 2 is arranged in a biased manner in the width direction of the alignment film 10.
  • the incident light incident inclination angles are 40 ° and ⁇ 40 °.
  • the exposure light incident inclination angle is not limited to this, and various angles are adopted. can do.
  • FIG. 11 is a schematic view showing a method for producing an FPR type polarizing film 1 using this back roll.
  • the transparent film substrate 12 is coated with an alignment material film on the surface (the lower surface in the drawing) in the coating apparatus 2.
  • the alignment film 10 to which the alignment material film is applied has its travel locus defined by the air turn bars 3 and 4, is fed to the winding roll 100 (see FIG. 51), and is wound. Thereafter, the film is fed to the back roll 5 and once wound around the surface of the back roll 5, then the polarizing film 1 is obtained through an exposure process, a liquid crystal coating process, and a post-baking process.
  • the alignment film 10 has its surface coated with the alignment material film, and its travel trajectory is regulated by the air turn bars 3 and 4, and the surface side of the alignment film 10 coated with the alignment material film is the air turn bar 3. , 4 side, the air turn bars 3 and 4 are provided with a large number of air discharge holes 31 on the surface thereof, as shown in FIG. 12, and by discharging air from the discharge holes 31,
  • the alignment film 10 does not come into contact with the air turn bars 3 and 4. That is, the alignment trajectory of the alignment film 10 is regulated while being floated from the air turn bars 3 and 4.
  • the alignment film 10 is wound, the back surface of the alignment film 10 contacts the back roll 5, and the surface of the alignment film 10, that is, the alignment material film faces the outer surface.
  • Slit masks 7b and 17 are placed at a slight distance (about 200 ⁇ m) from the alignment film 10 so as to face each other with the back roll 5 interposed therebetween. Behind the slit masks 7b and 17, exposure light sources 6 and 16 are installed.
  • FIG. 13 the alignment film 10 with the alignment material film applied to the surface is in contact with the peripheral surface of the back roll 5, and the wrinkles are stretched by a slight tension during the conveyance of the alignment film 10. In the state, it is supported by the back roll 5. Then, as shown in FIG.
  • the alignment film 10 is continuously conveyed in the direction of the white arrow, and the exposure light is continuously irradiated from the exposure apparatuses 6 and 16, so that the exposure light is transmitted to the slit masks 7 b and 17. Then, the alignment film 10 is irradiated through the slits 7c and 17a to form the strip-shaped exposed portions 10a and 10b aligned in the same direction on the alignment material film.
  • the strip-shaped exposure portions 10a and 10b are spaced apart from each other with an interval corresponding to one scanning line, and are oriented in different directions.
  • the alignment film 10 is formed on the surface of the air turn bars 3 and 4 so as not to contact the air turn bars 3 and 4 because the alignment material film is applied on the surface. Air is discharged from the discharged discharge holes 31. For this reason, the alignment film 10 is heated by the discharge air, and the slit masks 7b and 17 and the back roll 5 are shown in FIG. , The alignment film 10 expands in the width direction. Further, the expansion of the alignment film 10 also occurs due to pre-baking before exposure.
  • the base material is a COP (cycloolefin polymer) or TAC (triacetyl cellulose) film
  • the both widthwise end edges of the alignment film 10 is expanded by each [Delta] D, the alignment layer 10 that the inflated
  • the alignment exposure film 11 is cooled and then returned to room temperature, so that the elongation margin 2 ⁇ D becomes 0.
  • the pitches 10a and 10b are reduced accordingly, and the band-shaped polarizing portions 1a and 1b having a desired pitch cannot be obtained.
  • the arrangement pitch of the slits of the slit masks 7b and 17 is set to a value obtained by adding an expansion amount including thermal expansion to the interval of one scanning line, and cooling the alignment exposure film 11 to room temperature.
  • a predetermined pitch is set later.
  • the amount of thermal expansion of the alignment film 10 differs depending on the material of the alignment film 10 and the conveyance speed, and it is complicated to prepare the slit masks 7b and 17 in consideration of the amount of thermal expansion in advance. It was not easy to form 1b with high accuracy.
  • the alignment film 10 is also heated during exposure by the exposure light source 6. For this reason, the interior of the back roll 5 is hollow, and this interior is filled with cooling water and is cooled with water. Therefore, although the alignment film 10 is cooled in contact with the back roll 5, the alignment film 10 is in contact with the peripheral surface of the back roll 5 and receives a certain frictional force, and remains constrained in the width direction. Even if the alignment film 10 is cooled in contact with the back roll 5, the alignment film 10 does not shrink rapidly in the width direction, and the alignment film 10 remains expanded in the width direction during exposure as shown in FIG. Then, after leaving the back roll 5, the temperature is lowered by being cooled by the back roll 5, and the width at the normal temperature is restored. Therefore, even if the back roll 5 is cooled, the obtained polarizing film 1 still has a shift in the line width of the polarizing portions 1a and 1b.
  • FIG. 9 is a schematic view showing a film exposure apparatus according to the fifth embodiment.
  • the alignment material film is applied to the surface of the alignment film 10 by the coating device 2, it is conveyed to the back roll 5 via the air turn bars 3 and 4 (see FIG. 11). Then, the alignment film 10 is wound around the back roll 5 by approximately half (lower half) of the peripheral surface thereof, and is conveyed to a winding device for the alignment exposure film 11.
  • the back roll 5 is a water-cooled roll whose inside is water-cooled, and is rotatable around its central axis. And this back roll 5 can rotate freely, and it rotates so that the peripheral speed becomes the same as the movement speed of the alignment film 10 with the movement of the alignment film 10. Thereby, the alignment film 10 is supported in a state where there is no relative speed difference on the peripheral surface of the back roll 5. Therefore, wrinkles are prevented from being generated on the peripheral surface of the back roll 5 in the alignment film 10 that is conveyed by applying an appropriate tension.
  • a slit mask 7b is arranged in the vicinity of the start end portion of the peripheral surface of the back roll 5 where the alignment film 10 is wound, so as to face the back roll 5, and behind the slit mask 7b. Is provided with a light source 6 of exposure light for exposing the alignment film 10 through a slit mask 7b.
  • a slit mask 17 is disposed in the vicinity of the rear end portion of the peripheral surface of the back roll 5 where the alignment film 10 is wound so as to face the back roll 5. Behind 17, a light source 16 of exposure light for exposing the alignment film 10 through the slit mask 17 is disposed.
  • the light source 6 and the light source 16 depend on the material of the alignment material film, for example, the polarization directions of the exposure light to be irradiated are different from each other or the alignment film 10 is irradiated with the exposure light from different directions. By doing so, as shown in FIGS. 2, 4, 6, and 8, the exposed portions 10a, 10b or the exposed portions 10c, 10d oriented in different directions can be alternately formed.
  • a cooling roll 8 is disposed on the upstream side of the back roll 5 in the traveling direction of the alignment film 10 so as to be rotatable around its central axis.
  • the cooling roll 8 is a water-cooled roll whose inside is cooled with water. In the moving region of the alignment film 10, the cooling roll 8 rolls and rotates to the alignment film 10 to cool the alignment film 10. .
  • FIG. 10 is a schematic diagram showing the alignment film 10 developed in the vicinity of the back roll 5 and the slit masks 7 b and 17.
  • a plurality of slits 7c and 17a are formed in the slit masks 7b and 17, respectively, and the arrangement pitch of the slits 7c and 17a corresponds to two scanning lines corresponding to the FPR type 3D liquid crystal display device. Equivalent to.
  • the slit masks 7b and 17 are arranged by one scanning line so that the unexposed portion between the strip-shaped exposed portions by the slit 7c of the slit mask 7b is exposed by the slit 17a of the slit mask 17.
  • the film 10 is shifted in the width direction.
  • the slits 17a of the slit mask 17 are arranged at the same pitch as the arrangement pitch of the slits 7c of the slit mask 7b, and the slit mask 17 is oriented by a half of the arrangement pitch of the slits 7c and 17a.
  • the film 10 is arranged so as to be biased in the width direction.
  • An alignment material film is applied to the surface of the alignment film 10, and the movement trajectory is regulated in a state where air is blown from the air turn bars 3 and 4 to float and the film is conveyed to the back roll 5.
  • the blown air is heated to a temperature, for example, 0 to 3 ° C. higher than the normal temperature in the process of discharging from the air turn bars 3 and 4, and the temperature also varies. Therefore, the alignment film 10 extends in width by 2 ⁇ D (for example, 15 to 20 ⁇ m) rather than the width D 0 (for example, 1500 mm) at normal temperature, and arrives at the position where the cooling roll 8 is disposed.
  • the cooling roll 8 rolls to the back surface of the alignment film 10 to cool the alignment film 10, and the alignment film 10 gradually cools and contracts in the middle from the cooling roll 8 to the slit mask 7 b. , Its width gradually decreases.
  • the width of the alignment film 10 returns to the width at room temperature before heating by the air turn bars 3, 4 or the like. Exposure light from the exposure light source 6 is received through the slit mask 7b at the position where the mask 7b is disposed.
  • the alignment film 10 with the alignment material film coated on the surface is in contact with the lower half of the peripheral surface of the back roll 5, and wrinkles are stretched on the peripheral surface of the back roll 5 due to the tension during conveyance of the alignment film 10. It is supported in the state. Then, the alignment film 10 is continuously conveyed in the direction of the white arrow, and the exposure light is continuously irradiated from the exposure light source 6 at the start end portion of the portion supported by the back roll 5, so that the exposure light is slit mask.
  • the alignment film 10 is irradiated through the slit 7c of 7b, and a strip-shaped exposed portion 10a aligned in the same direction is formed on the alignment material film.
  • the strip-shaped exposure portions 10a are spaced apart from each other with an interval corresponding to one scanning line, and are formed at a pitch of two scanning lines.
  • the alignment film 10 moves to the position where the slit mask 17 is disposed at the rear end portion of the support portion by the back roll 5, the alignment film 10 is irradiated with exposure light from the exposure light source 16 through the slit mask 17. . Then, the unexposed portion by the slit 7c is exposed to the exposure light from the exposure light source 16 via the slit 17a of another slit mask 17 shifted in the width direction of the alignment film 10 by one scanning line with respect to the slit mask 7b. Receive irradiation. Thereby, the strip-shaped exposure parts 10b oriented in the same direction are formed between the exposure parts 10a, and the strip-shaped exposure parts 10a, 10b are alternately formed.
  • the exposure unit 10a is ⁇ 45 ° linearly polarized light
  • the exposure unit 10b is + 45 ° linearly polarized light
  • the exposure unit 10a is CW circularly polarized light
  • the exposure unit 10b is a CCW circularly polarized film.
  • the alignment film 10 is heated by exposure light exposure at the time of exposure, but the alignment film 10 is not heated by being cooled by the water-cooled back roll 5. Therefore, the alignment layer 10, while being supported in contact with the back roller 5, always has a constant temperature, it is not that the width D 0 is varied by heat. Therefore, the exposure portions 10a and 10b corresponding to the respective lines of the scanning line can be formed on the alignment film 10 with high accuracy and the positions of the respective lines of the scanning line.
  • the alignment film 10 is cooled by the cooling member before reaching the back roll. Therefore, when the alignment film 10 is wound around the back roll, for example, it is at normal temperature and is effective at normal temperature. By using a simple slit mask, it is possible to form a strip-shaped exposed portion with high accuracy.
  • the cooling member is not limited to the cooling roll 8, and a low-temperature object may be used in non-contact with the alignment film 10. That is, by passing the alignment film 10 in the vicinity of a low-temperature object, the alignment film 10 can be cooled by radiant heat transfer.
  • the present invention is not limited to the manufacture of FPR type polarizing films, and can be applied to the formation of alignment films for expanding the viewing angle, for example.
  • an inspection unit is arranged on the downstream side of the exposure unit in the moving direction of the alignment exposure film that is exposed to the alignment film, and the exposure unit irradiated with the exposure light in the alignment exposure film is inspected. is there.
  • the inspection unit winds the alignment exposure film and rotates with the alignment exposure film, and a light source that emits illumination light for inspection installed on a peripheral surface of the inspection roll or inside the roll, And a light receiving unit that is disposed so as to face the roll and detects illumination light transmitted through the alignment exposure film.
  • FIG. 15 is a plan view showing an inspection unit of the film exposure apparatus according to the embodiment of the present invention
  • FIG. 16 is a front sectional view of the same. Since the configuration of the exposure unit of the present embodiment is the same as that shown in FIGS. 1 and 2 of the first embodiment, a detailed description thereof will be omitted.
  • an alignment material film is applied on the surface of the film substrate by an appropriate application apparatus, and the alignment film 10 to which the alignment material film is applied is left as it is. 51, or once wound up as a roll 100 as shown in FIG. 51, then unwound from the roll 100 and fed to the back roll 5.
  • the alignment exposure film 11 on which the exposure part is formed is sent to an inspection part to be described later.
  • the alignment exposure film 11 is fed as it is to the roll 20 of the inspection section, wound around the roll 20, and then wound around the winding roller 101 (see FIG. 51).
  • a groove 20a extending in the roll axis direction is formed on the peripheral surface of the roll 20 of the inspection unit, and a rod-shaped inspection illumination light source 21 extending in the roll axis direction is disposed in the groove 20a.
  • a linearly polarizing plate 22 in a first direction (for example, p-polarized light) extending in the roll axis direction is disposed above the light source 21 in the groove 20a.
  • the alignment exposure film 11 is wound around the roll 20 so as to move at least in contact with the upper portion thereof, and an inspection camera 25 that detects illumination light is directly above the roll axis of the roll 20.
  • the inspection camera 25 is a line sensor that extends in the axial direction of the roll 20, or an area sensor that detects light in a horizontally-long rectangular two-dimensional region in the axial direction of the roll 20.
  • a lower ⁇ / 4 plate 23 and an upper linear polarizing plate 24 in the second direction (for example, s-polarized light) are disposed between the inspection camera and the roll axis.
  • the roll 20 is freely rotatable around its axis.
  • the roll 20 When the alignment exposure film 11 is wound around the roll 20 and moved, the roll 20 is moved by the frictional force between the alignment exposure film 11 and the roll 20.
  • the peripheral speed rotates in the same state as the moving speed of the alignment exposure film 11.
  • the groove 20a of the roll 20 is rotated to the upper end of the roll, the light source 21 and the camera 25 face each other on the vertical optical axis.
  • FIG. 17 is a schematic diagram showing the polarization state of light by the linear polarizing plate 61, the film portions 62a and 62b corresponding to the exposure portions 10a and 10b, and the ⁇ / 4 plate 63.
  • the ⁇ / 4 plate that converts linearly polarized light incident at 45 ° to the optical axis into CW circularly polarized light is a CW circularly polarizing plate, and linearly polarized light incident at 45 ° to the optical axis is converted to CCW circularly polarized light.
  • the ⁇ / 4 plate to be used is a CCW circularly polarizing plate.
  • a polarization component that is converted into CW circular polarization by the CW circular polarization plate is p polarization
  • a polarization component perpendicular to the p polarization is s polarization
  • a linear polarization plate that transmits only p polarization is a p polarization plate.
  • a linearly polarizing plate that transmits only s-polarized light is referred to as an s-polarizing plate.
  • the illumination light emitted from the light source 60 is converted into p-polarized light by the p-polarizing plate 61.
  • This p-polarized light is transmitted through the film portion 62a corresponding to the CW circularly polarized first exposure portion 10a and converted to CW circularly polarized light.
  • this CW circularly polarized light passes through the CW circularly polarizing plate 63, it is converted into s-polarized light.
  • the illumination light emitted from the light source 60 is converted into p-polarized light by the p-polarizing plate 61, and then the film portion corresponding to the CCW circularly-polarized second exposure unit 10b.
  • the light passes through 62b, it is converted into CCW circularly polarized light.
  • this CCW circularly polarized light passes through the CW circularly polarizing plate 63, it is converted into p-polarized light.
  • the light transmitted through the first exposure portion 10a (CW circular polarization portion) of the alignment exposure film 11 exits the CW circular polarization plate as s-polarized light, and the second exposure portion 10b (
  • the light transmitted through the CCW circularly polarized light portion is emitted from the CW circularly polarizing plate as p-polarized light.
  • an s polarizing plate is installed between the CW circularly polarizing plate and the camera
  • light transmitted through the CW circularly polarizing part of the alignment exposure film 11 enters the camera and is detected as a bright part, and the alignment exposure film 11 is detected.
  • the light that has passed through the CCW circularly polarized light portion is not incident on the camera and is detected as a dark portion.
  • the light transmitted through the CCW circularly polarizing portion of the alignment exposure film 11 enters the camera and is detected as a bright portion.
  • the light transmitted through the CW circularly polarized light does not enter the camera and is detected as a dark part. Therefore, by combining the linearly polarizing plate and the ⁇ / 4 plate, the strip-shaped exposed portion on the alignment exposure film 11 can be detected.
  • the alignment film 10 is coated with an alignment material film on its surface.
  • the width is 1500 mm
  • the thickness is 100 ⁇ m
  • the film length of one roll 100 is 2 km, for example, usually at a speed of 2 to 10 m / min. Be transported.
  • the material of this base material is a COP (cycloolefin polymer) or TAC (triacetyl cellulose) film.
  • This alignment film 10 is fed to the position where the back roll 5 is disposed, and is wound around and supported by the back roll 5.
  • the alignment material film of the alignment film 10 is irradiated with CW circularly polarized exposure light from the exposure light source 6 through the opening 7 a of the mask 7 over almost the entire area of the alignment film 10.
  • CCW circularly polarized exposure light is irradiated in a band shape through the slit 17a of the mask 17, and the portion of the alignment film 10 corresponding to the slit 17a overwrites the CCW circularly polarized exposed portion from the CW circularly polarized exposed portion.
  • the alignment material film of the alignment film 10 is a reversible alignment material film, and substantially the entire surface of the alignment film 10 is aligned by irradiation of the entire alignment film 10 with CW circularly polarized exposure light.
  • the band-shaped portion in the alignment film 10 is aligned by irradiation with the band-shaped irradiation light of circularly polarized light.
  • the exposure part 10b (refer FIG. 2) by CCW circularly polarized light is formed in the part corresponding to the slit 17a of the alignment film 10.
  • an exposed portion 10a by CW circularly polarized light is formed in the band-like portion between the exposed portions 10b. In this way, it is possible to manufacture an FPR type polarizing film in which the exposing portions 10a and 10b are alternately formed and the polarizing portions 1a and 1b are formed corresponding to one scanning line.
  • the thin alignment film 10 is supported by the back roll 5 and is exposed through the slits 17a of the slit mask 17 in a state where the wrinkles are stretched, wrinkles and vibrations of the alignment film 10 are prevented.
  • the exposed portions 10a and 10b can be formed with high accuracy.
  • the exposure through the mask 7 is performed on the entire area in the width direction of the alignment film 10, the alignment between the mask 7 and the slit mask 17 is unnecessary, and there is no alignment defect. Even in this respect, the exposed portions 10a and 10b can be formed with high accuracy.
  • the exposed alignment exposure film 11 is conveyed as it is to the roll 20 of the inspection section, wound around the roll 20, and then wound around the winding roll 101 (see FIG. 51).
  • the alignment exposure film 11 moves at the same moving speed as the peripheral speed of the roll 20 as the roll 20 rotates.
  • the light source 21 in the groove 20 a of the roll 20 rotates upward
  • the light source 21 and the camera 25 face each other, and illumination light from the light source 21 enters the camera 25.
  • the optical axes of the light source 21 and the camera 25 coincide with each other, and the p polarizing plate 22, the ⁇ / 4 plate 23, and the s polarizing plate 24 are positioned on the optical axis.
  • the illumination light from the light source 21 is given a p-polarization polarization axis by the p-polarizing plate 22, and this illumination light passes through the alignment exposure film 11 and becomes CW circularly polarized light or CCW circularly polarized light ⁇ . / 4 plate 23, and this ⁇ / 4 plate 23 converts the circularly polarized light transmitted through the alignment exposure film 11 into linearly polarized light, and thereafter, only the light having the s-polarized polarization axis is inspected by the s polarizing plate 24. Incident on the camera 25.
  • the exposure part 10a on the alignment exposure film 11 has CW circular polarization and the exposure part 10b on the alignment exposure film 11 has CCW circular polarization, it is converted into linearly polarized light by the ⁇ / 4 plate 23.
  • the transmitted light only the transmitted light having the s-polarized polarization axis is incident on the camera 25, and the transmitted light having the p-polarized polarization axis is not incident on the camera 25.
  • the camera 25 only the light transmitted through either the exposure unit 10a or the exposure unit 10b is brightly detected, and the width (line width) of the exposure unit 10a or the exposure unit 10b can be detected.
  • the contrast of transmitted light detected by the camera 25 is small, and the alignment direction can be detected. If there is an orientation abnormality in the joint portion when a small mask is used, it can be detected as an abnormality in the width of the exposed portion or an incorrect orientation direction.
  • the line width, the alignment direction, the state of the joint portion, etc. of the alignment exposure film 11 can be inspected. That is, the exposed portion can be inspected with respect to the alignment exposure film 11 for each peripheral length of the roll 20. Therefore, when an abnormality is found by the inspection of the exposed portion, the exposure can be stopped and the subsequent useless film exposure can be avoided, thereby improving the yield.
  • the alignment exposure film 11 since the alignment exposure film 11 is supported on the peripheral surface of the roll 20, the alignment exposure film 11 is thin and hollow, and the alignment exposure film 11 does not vibrate, and the alignment exposure film 11 is inspected with high accuracy. be able to.
  • the alignment exposure film 11 is bent horizontally at the edge of the groove 20a of the roll 20, but if the edge of the groove 20a is processed smoothly, the edge is scratched on the alignment exposure film 11. I won't be confused.
  • the roll 26 of the inspection unit is formed of a transparent material such as transparent glass, and the light source 21 and the p polarizing plate 22 are embedded in the roll 26. That is, the groove 26a is formed on the peripheral surface of the transparent roll 26, and after the light source 21 and the p-polarizing plate 22 are installed in the groove 26a, the upper portion of the groove 26a is closed with the transparent lid 26b.
  • the upper surface of the lid 26b is curved with the same curvature as the circumferential surface of the roll 26, and the roll 26 has a smooth cylindrical circumferential surface with the lid 26b installed. Therefore, in the present embodiment, the alignment exposure film 11 is not bent at the groove 26a.
  • the illumination light is emitted to the outside of the roll, passes through the alignment exposure film 11, and finally enters the camera 25.
  • the number of grooves is not limited to one as in the above embodiments, and a plurality of grooves may be provided.
  • membrane 11 can be shortened, and it can test
  • the ⁇ / 4 plate 23 may be a CW circularly polarizing plate or a CCW circularly polarizing plate.
  • the ⁇ / 4 plate 23 is not limited to being installed above the roll, but can also be installed inside the grooves 20a and 26a of the rolls 20 and 26.
  • the p polarizing plate 22 and the s polarizing plate 24 may be disposed upside down.
  • the present invention also applies to the exposure apparatus of the second embodiment shown in FIGS. 3 and 4, the exposure apparatus of the third embodiment shown in FIGS. 5 and 6, and the exposure apparatus of the fourth embodiment shown in FIGS. Can be applied.
  • the first embodiment of FIGS. 1 and 2 and the second embodiment of FIGS. 3 and 4 relate to the formation of the FPR polarizing film, but the third embodiment of FIGS. 5 and 6 and FIGS.
  • the fourth embodiment of FIG. 8 relates to the formation of a photo-alignment film.
  • the exposure unit of the eighth embodiment is different from the exposure unit of the sixth embodiment shown in FIGS. 15 and 16 in the vicinity of the roll 20 between the ⁇ / 4 plate 23 and the roll 20 and the width of the alignment exposure film 11.
  • the difference is that a scale member 30 extending in the direction is provided.
  • the scale member 30 is provided with a scale as a scale in the longitudinal direction (the width direction of the alignment exposure film 11), and the camera 25 is provided with the first exposure unit 10a or the second exposure unit 10b on the alignment exposure film 11.
  • the scale (scale) of the scale member 30 is detected.
  • the first polarizing plate 22, the second polarizing plate 24, and the ⁇ / 4 plate 23 make the image of the first exposure unit 10a incident on the camera 25 and the image of the second exposure unit 10b. Overlapping and the scale image of the scale member 30 also enters the camera 25, unlike the sixth embodiment, the line widths of the first exposure unit 10a and the second exposure unit 10b can be directly measured by the scale.
  • a second inspection unit may be disposed in the transport area of the alignment exposure film before or after the inspection by the inspection unit.
  • the second inspection unit includes: a second light source that emits inspection light; a third polarizing plate that imparts linearly polarized light in a first direction to the inspection light from the second light source; and A second ⁇ / 4 plate that changes the inspection light transmitted through the polarizing plate 3 and further through the alignment exposure film and provided with the circularly polarized light in the first direction into linearly polarized light in the second direction; A fourth polarizing plate that transmits the linearly polarized inspection light in the direction 2, a second light receiving unit that detects the inspection light transmitted through the fourth polarizing plate, and a third light source that emits the inspection light.
  • a fifth polarizing plate that imparts linearly polarized light in the first or second direction to the inspection light from the third light source, and the third polarizing plate that passes through the alignment exposure film.
  • a third ⁇ / 4 plate for converting the inspection light given the circularly polarized light in the second direction into the linearly polarized light in the second or first direction, and the second or first direction A sixth polarizing plate that transmits linearly polarized inspection light; and a third light receiving unit that detects the inspection light transmitted through the sixth polarizing plate.
  • FIGS. 19 and 20 foreign matters or scratches on the surface of the alignment exposure film 11 are inspected.
  • the alignment exposure film 11 wound around the roll 20 is further wound around the roll 40 and wound around a winding roll (not shown).
  • the alignment exposure film 11 moves, for example, horizontally between the roll 20 and the roll 40, and in the moving area of the alignment exposure film 11 between the rolls 20 and 40, a light source 31a, a third polarizing plate 32a, The second ⁇ / 4 plate 33a, the fourth polarizing plate 34a, and the camera 35a are arranged with the alignment exposure film 11 sandwiched between the third polarizing plate 32a and the second ⁇ / 4 plate 33a. Furthermore, the light source 31b, the fifth polarizing plate 32b, the third ⁇ / 4 plate 33b, the sixth polarizing plate 34b, and the camera 35b are provided with the fifth polarizing plate 32b and the third ⁇ / 4 plate 33b. The alignment exposure film 11 is interposed therebetween.
  • the alignment exposure film 11 is formed between the camera 35a and the camera 35b.
  • the installation position is reached.
  • the inspection light from the light source 31a becomes p-polarized light by the third polarizing plate 32a which is a p-polarizing plate, and the CW circularly polarized light (first circularly polarized light) of the alignment exposure film 11 is obtained.
  • the camera 35a detects this portion as a bright portion.
  • this part is not converted into CW circularly polarized light, and thus is detected as a bright part in the band of the dark part.
  • the portion of the foreign matter 52 does not transmit light, and therefore, in the band portion of the second exposure unit 10b detected as a bright portion by the camera 35a, It is detected as a dark part.
  • the inspection light transmitted through the second exposure unit 10b of CCW circularly polarized light is a CCW circularly polarizing plate, contrary to the above.
  • the third ⁇ / 4 plate 33b is converted into s-polarized light, does not pass through the sixth polarizing plate 34b, which is a p-polarizing plate, and does not enter the camera 35b. Therefore, this portion is detected by the camera 35b as a dark part.
  • the inspection light transmitted through the portion of the first exposure unit 10a of CW circularly polarized light (first circularly polarized light) is converted into CW circularly polarized light, and then the third ⁇ / 4 plate 33b, which is a CCW circularly polarizing plate, Since it is converted into p-polarized light, passes through the sixth polarizing plate 34b, which is a p-polarizing plate, and enters the camera 35b, the camera 35b detects this portion as a bright portion. Therefore, in the camera 35b, the eyelid 51 (or peeling) on the second exposure unit 10b is detected as a bright part in the dark part band, and the foreign matter 52 on the first exposure part 10a is in the bright part band. It is detected as a dark part.
  • defects such as the foreign matter 52 or the ridge 51 on the alignment exposure film 11 are detected by either the camera 35a or 35b. That is, the eyelid 51 on the first exposure unit 10a is detected by the camera 35a, and the foreign matter 52 is detected by the camera 35b. The eyelids 51 on the second exposure unit 10b are detected by the camera 35b, and the foreign matter 52 is detected by the camera 35a.
  • the alignment film 10 is exposed while the exposure film 10 is moving, and the alignment exposure film 11 is wound around a roll during the movement of the exposed alignment exposure film 11. Then, the illumination light for inspection is emitted from the light source arranged inside the roll, and the alignment exposure film 11 is irradiated with the illumination light while being wound around the roll. And the illumination light which permeate
  • the light source rotates to the light receiving unit along with the rotation of the roll
  • the exposure quality is inspected at the same interval as the circumference of the roll.
  • film exposure can be stopped immediately after the problem has been detected, and the mask exposure can be adjusted and then restarted, so unnecessary exposure can be avoided.
  • the yield can be improved.
  • the alignment exposure film 11 wound around the roll is inspected, the inspection accuracy does not decrease due to the vibration of the alignment exposure film 11 in the hollow state, and the high accuracy. Can be inspected.
  • the exposure apparatus of this embodiment is a pair of a transport device that moves an alignment film to be exposed in a first direction and a film alignment mark that forms an index of the amount of expansion / contraction of the alignment film on both sides of the alignment film.
  • the alignment marker, a light source that emits exposure light, and a plurality of slits arranged at intervals in a second direction orthogonal to the first direction are formed in the second direction.
  • a mask having mask alignment marks formed at both ends thereof, and an opening extending in the second direction and intersecting all the slits, and the exposure light is formed at a portion where the opening and the slit intersect.
  • a control unit that controls a relative position, and the slit has a width that linearly changes with respect to the first direction, and an interval between the slits when viewed in the second direction. It is the same as the width of the slit, and the control unit is arranged between the mask and the light shielding member so that the positional relationship between the mask alignment mark and the film alignment mark detected by the detection unit is a predetermined relationship.
  • the relative position in the first direction is controlled.
  • FIG. 24A is a side view showing the overall configuration of the exposure apparatus according to the embodiment of the present invention
  • FIG. 24B is a plan view showing a mask
  • FIG. 24C shows an aperture as a light shielding member. It is a top view.
  • the exposure apparatus according to the present embodiment is continuously supplied with the alignment film 201 to be exposed from, for example, a roll-shaped supply reel 241 and wound on the take-up reel 244.
  • an alignment material film is applied, exposed, and dried.
  • FIG. 24A only the exposure process for the alignment film 201 is shown.
  • the supply reel 241 and the take-up reel 244 are rotationally driven by a driving device such as a motor so that the alignment film 201 is continuously supplied into the exposure apparatus and is provided on the front surface side or the back surface side of the alignment film 201.
  • the alignment film 201 is supported in a tension state by the transport rollers 242, 243 and the like.
  • the alignment film 201 is moved in one direction by the rotational driving force of the supply reel 241 and the take-up reel 244.
  • two sets of a light source, a mask, and an aperture are provided above the alignment film 201 between the two transport rollers 242 and 243.
  • the exposure light beams having different polarization directions are emitted from the light sources 205A and 205B, respectively, and the alignment material film formed on the surface of the alignment film 201 is irradiated with the exposure light transmitted through the apertures 203A and 203B and the masks 202A and 202B.
  • an exposed portion having a different orientation direction for each exposure light is formed in a strip shape. That is, for example, exposure light a emitted from the light source 205A forms an exposure part a that transmits linearly polarized display light having a polarization direction of ⁇ 45 ° or circularly polarized light having a polarization direction of CW (Clock Wise), and the light source 205B.
  • the exposure portion b that transmits linearly polarized light having a polarization direction of + 45 ° or circularly polarized light having a polarization direction of CCW (Counter Clock Wise) is formed by the exposure light emitted from.
  • linear film alignment marks 201a are formed on both sides of the alignment film 201 at positions where the alignment film 201 is not thermally deformed by heating during exposure or cooling during conveyance.
  • An alignment marker 206 to be formed is provided.
  • the film alignment mark 201 a may be formed on the film base material of the alignment film 201 or may be formed on the alignment material film of the alignment film 201.
  • the mask 202 has a plurality of slits 202b in a direction (second direction) orthogonal to the moving direction (first direction) of the alignment film 201, on a base portion 202a made of a light-shielding material.
  • the slits 202b are arranged so that the width thereof changes linearly with respect to the longitudinal direction, and the interval between the slits is the width of the slit with respect to the direction orthogonal to the moving direction of the alignment film 201. Is the same. That is, in the mask shown in FIG. 24B, the width of each slit 202b is narrowest at the top, and is widened as it goes downward along the longitudinal direction of the slit.
  • Each slit 202b extends in an inclined manner in the moving direction of the alignment film 201.
  • the inclination of the slit 202b is larger on the side side than the center of the mask 202 in the direction orthogonal to the moving direction of the alignment film 201.
  • the length of each slit 202b in the moving direction of the alignment film 201 is 300 mm.
  • the edge of the slit on the most side of the mask 202 is provided such that the end portion in the moving direction of the alignment film 201 is offset by about 500 ⁇ m in the direction orthogonal to the moving direction of the alignment film 201.
  • an observation window 202d for detecting the film alignment mark 201a formed on the side of the alignment film 201 by the alignment marker 206 has the same length as the slit in the moving direction of the alignment film 201, for example.
  • the mask alignment mark 202e is provided in the observation window 202d so as to be inclined with respect to the moving direction of the alignment film 201.
  • the mask alignment mark 202e is a linear mark parallel to the side edges of the slits 202b located at both ends in a direction orthogonal to the moving direction of the alignment film 201, for example.
  • a camera 207 reference numerals 207A and 207B in FIG. 24
  • the film alignment mark 201a can be detected through the window 202d.
  • the aperture 203 is a light-shielding plate material made of, for example, SUS, and as shown in FIG. 24C, an opening 203b having a width of, for example, 20 to 30 mm so as to extend in one direction is formed at the center of the base portion 203a. Is provided. And it arrange
  • control unit controls the relative position between the mask 202 and the light shielding member 203 in the moving direction of the alignment film 201, so that the irradiation position of the exposure light on the mask 202 moves in the moving direction of the alignment film 201,
  • the irradiation position of the exposure light that passes through the slit 202b of the mask 202 and is irradiated onto the alignment film 201 moves in the moving direction of the alignment film 201, and the width of the exposure light irradiation area changes.
  • the mask 202 is configured to be movable in the moving direction of the alignment film 201 relative to the aperture 203 by an actuator or the like (not shown), for example.
  • a relative position in the moving direction of the alignment film 201 with respect to 202 is controlled by a control unit (not shown).
  • the relative position between the mask 202 and the light shielding member 203 in the moving direction of the alignment film 201 is, for example, as follows so that the positional relationship between the mask alignment mark 202e and the film alignment mark 201a becomes a predetermined relationship by the control unit. Controlled.
  • the plurality of slits 202b provided in the mask 202 extend while being inclined in the moving direction of the alignment film 201, and the width of each slit 202b is the moving direction of the alignment film 201.
  • the distance between the slits is the same as the width of the slits when viewed from the direction orthogonal to the moving direction of the alignment film 201. Therefore, as shown in FIGS. 25A and 25B, when the mask 202 is moved in the moving direction of the alignment film 201 relative to the aperture 203, the aperture 203 opens accordingly.
  • the irradiation position of the exposure light irradiated to the mask 202 through 203b is moved in the moving direction of the alignment film 201, and the width of the irradiation area of the exposure light transmitted to the alignment film 201 through the slit 202b is changed. To do. Thereby, for example, even when the alignment film 201 expands due to a high temperature at the time of exposure, the width of the strip-shaped exposed portion formed on the alignment film 201 is adjusted in accordance with the width of the alignment film 201 after deformation. can do.
  • the control unit separates the mask alignment mark 202e detected by the camera and the film alignment mark 201a from each other by a certain distance (for example, 10 mm) in a direction orthogonal to the moving direction of the alignment film 201.
  • the mask 202 is moved in the moving direction of the alignment film 201.
  • the width of the exposed portion on the alignment film 201 can be adjusted based on the amount of elongation of the alignment film 201 in the width direction.
  • FIG. 26 is a diagram illustrating adjustment of the mask position by the film alignment mark and the mask alignment mark as an example.
  • FIG. 26A is a diagram illustrating a state in which the alignment film is not deformed in the width direction
  • FIG. ) Is a view showing a state in which the alignment film is expanded in the width direction.
  • reference numeral 271 indicates a detection area by the camera 207.
  • the width of the detection area 271 in the moving direction of the alignment film 201 is the same as the opening 203b of the aperture 203.
  • the alignment mark 201a and the mask alignment mark 202e are detected at positions aligned in the movement direction of the opening 203b and the alignment film 201.
  • the distance between the film alignment mark 201a and the mask alignment mark 202e in the detection region 271 is, for example, 10 mm.
  • the position of the film alignment mark 201a is outside (see FIG. 26) in the observation window 202d.
  • the distance to the mask alignment mark 202e increases. Therefore, when the exposure is continued with the position of the aperture 203 shown in FIG.
  • the alignment film 201 is cooled and contracted by subsequent conveyance, for example, and returned to the original width that has not expanded.
  • the width of the exposed portion is reduced. Accordingly, the widths of the exposure part a and the exposure part b formed on the alignment exposure film 201c after exposure are smaller than, for example, the width of pixels or picture elements of the display device, and the exposure part a, the exposure part b, and the display device. A deviation of the width occurs between the pixel or the picture element and causes a display defect.
  • the control unit controls the position of the mask 202 in the moving direction of the alignment film 201, for example, so as to maintain a certain distance between the film alignment mark 201a and the mask alignment mark 202e. That is, as shown in FIG. 26B, the control unit places the mask 202 in the aperture 203 so that the distance between the film alignment mark 201a and the mask alignment mark 202e is 10 mm in the detection area 271 by the camera 207. On the other hand, the alignment film 201 is moved in the moving direction so that the opening 203b of the aperture 203 corresponds to the wide area of the slit 202b of the mask 202.
  • the width of the exposed portion on the alignment exposure film 201c can be widely adjusted based on the amount of elongation in the width direction of the alignment film 201.
  • the exposed portion formed on the alignment exposure film 201c even when the alignment exposure film 201c is cooled and contracted by subsequent conveyance, for example, and returns to the original width that has not expanded, the exposed portion formed on the alignment exposure film 201c.
  • the width of a and the exposure part b can be made to correspond with the width of the pixel or picture element of the display device with high accuracy, and display defects can be prevented.
  • the mask slit 202b and the film alignment mark 201a are actually separated by, for example, about 30 mm, but the mask alignment mark 202e is perpendicular to the moving direction of the alignment film 201 as in this embodiment.
  • the mask alignment mark 202e can be regarded as the side edge of the slit 202b provided at the end in the direction orthogonal to the moving direction of the alignment film 201. For example, alignment can be performed within a narrow range of about 10 mm, and the width of the exposed portion can be adjusted.
  • FIG. 26 for convenience of illustration, only one side of the alignment film 201 and the mask 202 is shown.
  • the mask position is controlled by the film alignment marks 201a on both sides of the alignment film 201. This is performed between the mask alignment marks 202e on both sides of the mask 202. That is, the distance between the film alignment mark 201a on one side of the alignment film 201 and the mask alignment mark 202e and the distance between the film alignment mark 201a on the other side of the alignment film 201 and the mask alignment mark 202e are: , Both are, for example, 10 mm.
  • the control unit determines that the center position of the pair of mask alignment marks detected by the camera 207 is a pair of film alignments in a direction orthogonal to the moving direction of the alignment film 201.
  • the position of the mask 202 in the direction perpendicular to the moving direction of the alignment film 201 is adjusted so as to coincide with the center position of the mark 201a, and thereby the center position of the mask 202 and the center position of the alignment film 201 can be aligned. It is configured as follows. That is, even if meandering occurs, the distance between the film alignment mark 201a on one side of the alignment film 201 and the mask alignment mark 202e, the film alignment mark 201a on the other side of the alignment film 201, and the mask alignment mark 202e Is controlled to be 10 mm, for example.
  • the alignment film 201 to be exposed is continuously supplied from, for example, a roll-shaped supply reel 241 and is wound on the take-up reel 244.
  • the alignment material film is applied, exposed, dried, and the like. Is given. That is, the alignment material is applied in the form of a film on the surface of the alignment film 201 supplied into the exposure apparatus.
  • a linear film alignment mark 201a is formed continuously or intermittently on the side of the alignment film 201 supplied into the exposure apparatus by the alignment marker 206. To do. At the time of forming the film alignment mark 201a, the alignment film 201 is not thermally deformed.
  • the alignment film 201 on which the film alignment mark 201a is formed is continuously supplied into the exposure apparatus by the rotational driving force of the supply reel 241 and the reel 244, for example, and in the exposure apparatus, by the transport rollers 242, 243, etc. It is supported and moved in one direction in the exposure apparatus. At this time, for example, the alignment film 201 expands due to a high temperature during exposure.
  • the alignment film 201 While the alignment film 201 is being transported by the transport rollers 242, 243, etc., in particular, the alignment film 201 is easily deformed in the width direction orthogonal to the moving direction thereof, and the width of the alignment film 201 is increased by expansion due to heating. Become.
  • the alignment film 201 that has been thermally expanded before the exposure is transported to the exposure light irradiation position by transport by the transport rollers 242, 243 and the like.
  • the film alignment mark 201 a is not extended in the width direction.
  • the film alignment mark 201 a is outside (left side in FIG. 26) in the observation window 202 d.
  • the camera 207 detects the film alignment mark 201a through the observation window 202d together with the mask alignment mark 202e, and the detection result is transmitted to a control unit (not shown).
  • control unit moves the mask 202 with respect to the aperture 203 by, for example, an actuator or the like so that the distance between the film alignment mark 201a and the mask alignment mark 202e is 10 mm in the detection region 271 by the camera 207.
  • the aperture 203b of the aperture 203 is made to correspond to the wide area of the slit 202b of the mask 202.
  • the slit 202 b provided in the mask 202 has a length of 300 mm in the moving direction of the alignment film 201, and the edge of the slit 202 b on the most side of the mask 202 moves the alignment film 201.
  • the distance between the end portions in the direction is set to be displaced by about 500 ⁇ m (1000 ⁇ m on both sides of the mask 2) in the direction orthogonal to the moving direction of the alignment film 201. Therefore, for example, when the film alignment mark 201a moves to the side by 50 ⁇ m along with the elongation of the alignment film 201, the control unit corresponds to the state where the alignment film 201 is not expanded.
  • Control is performed so as to move 30 mm in the moving direction of the alignment film 201 from the position, and the width of the exposure light irradiation region on the alignment film 201 is widened. That is, the exposure light emitted from the light sources 205A and 205B passes through the opening 203b of the aperture 203 and is irradiated onto the mask 202, but the relative position of the mask 202 with respect to the aperture 203 moves in the moving direction of the alignment film 201. As a result, the irradiation position of the exposure light that passes through the opening 203 b of the aperture 203 and is irradiated on the mask 202 moves in the moving direction of the alignment film 201.
  • the plurality of slits 202b provided in the mask 202 extend while being inclined in the moving direction of the alignment film 201, and the width of each slit 202b is linear along the moving direction of the alignment film 201. It is provided to change. Therefore, when the irradiation position of the exposure light on the mask 202 moves in the movement direction of the alignment film 201 with the movement of the mask 202, the width of the exposure light irradiation region that is transmitted through the slit 202b and irradiated onto the alignment film 201 is increased. Change.
  • the alignment film 201 is formed on the alignment exposure film 201c after exposure so as to correspond to the width of the alignment film 201 after deformation.
  • the width of the strip-shaped exposed portion can be adjusted. Therefore, in the present embodiment, exposure can be performed without replacing the mask 202 even when the alignment film 201 is deformed in the width direction orthogonal to the moving direction thereof.
  • the alignment material film applied on the alignment film 201 by the exposure light irradiation is photo-aligned in accordance with the polarization direction of the irradiation light to form the alignment exposure film 201c.
  • the exposure light a emitted from the light source 205A forms an exposure part a that transmits linearly polarized display light having a polarization direction of ⁇ 45 ° or circularly polarized light having a polarization direction of CW (Clock Wise).
  • CW Lock Wise
  • the unexposed portion between the exposed portions a has the same width as the exposed portion a.
  • this unexposed portion is exposed by the light source 205B, the mask 202B, and the aperture 203B provided on the downstream side in the moving direction of the alignment film 201.
  • the camera 207 detects the positions of the film alignment mark 201a and the mask alignment mark 202e, and the detection result is transmitted to a control unit (not shown). Then, similarly to the formation process of the exposure part a, the control part makes the mask 202 and the light shielding member 203 in the moving direction of the alignment film 201 so that the positional relation between the film alignment mark 201a and the mask alignment mark 202e becomes a predetermined relation. Control the relative position with For example, the mask 202 is controlled to move in the moving direction of the alignment film 201 relative to the aperture 203.
  • the width of the strip-shaped exposed portion formed on the alignment exposure film 201c can be adjusted in accordance with the width of the alignment film 201. Even in the case of deformation in the width direction orthogonal to the moving direction, exposure can be performed without replacing the mask 202.
  • linearly polarized light having a polarization direction of + 45 ° or a polarization direction of CCW (Counter Clock Wise) so that an unexposed portion between the exposed portions a is adjacent to the exposed portion a.
  • CCW Counter Clock Wise
  • the alignment film 201 may meander in a direction orthogonal to the moving direction thereof as it is conveyed.
  • the alignment material film is photo-aligned 2
  • the relative alignment of the irradiation positions of the types of exposure light is important. For example, if the irradiation position of the exposure light is shifted in the width direction of the alignment film 201, an unexposed region remains or an overexposed region is generated, resulting in an exposure failure.
  • the film alignment marks 201a are formed on both sides of the alignment film 201, and the control unit detects a pair of mask alignments detected by the camera 207 in the direction orthogonal to the moving direction of the alignment film 201.
  • the position of the mask 202 in the direction orthogonal to the moving direction of the alignment film 201 is controlled so that the center position of the mark 202e coincides with the center position of the pair of film alignment marks 201a. That is, even if meandering occurs, the distance between the film alignment mark 201a on one side of the alignment film 201 and the mask alignment mark 202e, the film alignment mark 201a on the other side of the alignment film 201, and the mask alignment mark 202e Is controlled to be 10 mm, for example. Therefore, even when the alignment film 201 meanders with movement, the exposure failure can be prevented by adjusting the position of the mask 202 in the direction orthogonal to the movement direction of the alignment film 201.
  • the alignment exposure film 201c in which the exposure part a and the exposure part b are formed by irradiation with exposure light is cooled by conveyance and eventually shrinks to a width before expansion. Therefore, the exposure part a and the exposure part b formed wide have a predetermined width as the alignment exposure film 201c contracts, and a polarizing film as shown in FIG. 50 is manufactured.
  • the mask is replaced by the slit shape provided in the mask 202, the configuration of the aperture 203, and control by the control unit. Can be exposed without any problem.
  • the controller aligns the mask alignment mark 202e.
  • the controller aligns the mask alignment mark 202e.
  • two sets of the light source 205, the mask 202, and the aperture 203 are arranged along the moving direction of the alignment film 201, and the light sources 205A and 205B each emit exposure light having different polarization directions, and the exposure unit
  • the exposure apparatuses that form the exposure part a and the exposure part b may use different exposure apparatuses.
  • the alignment exposure film 201c having a different alignment direction can be formed by one exposure apparatus by polarizing the irradiation direction of the exposure light to the alignment film 201.
  • the aperture 203 is disposed between the light source 205 and the mask 202 .
  • the irradiation region of the exposure light with respect to the alignment film 201 is defined as the slit 202b of the mask 202.
  • the aperture 203 may be disposed between the mask 202 and the alignment film 201, for example, as long as it can be regulated by the opening 203b of the aperture 203.
  • the detection unit such as the camera 207 may be provided below the alignment film 201.
  • the observation window 202d may not be provided, and the mask alignment mark 202e is provided on the lower surface of the mask 202, for example, and the film alignment mark 201a and the mask alignment mark 202e are moved from below the alignment film 201 by the camera 207 You may comprise so that it can detect.
  • a mask 202C having a slit 202b as shown in FIG. 28 can be used as the mask 202. Also in this mask 202C, the width of the plurality of slits 202b changes linearly with respect to the moving direction of the alignment film 201, and the interval between the slits is as viewed from the direction orthogonal to the moving direction of the alignment film 201. Further, it is the same as the width of the slit 202b. In the mask 202C shown in FIG. 28, among the slits provided at both ends of the mask 202C, the slit 202b provided at one end has a side edge provided in parallel with the moving direction of the alignment film 201.
  • the other plurality of slits 202b extend while being inclined in the movement direction of the alignment film 201, and the inclination of the slit 202b is from one end side to the other end side in the direction orthogonal to the movement direction of the alignment film 201. It is provided to gradually increase.
  • the position of the mask 202 can be controlled with reference to the slit 202b at one end having a side edge parallel to the moving direction of the alignment film 201.
  • the slit 202b at the other end having the largest inclination with respect to the moving direction of the alignment film 201 has a length in the moving direction of the alignment film 201 of 300 mm, and its side edge is orthogonal to the moving direction of the alignment film 201
  • the control unit moves the mask 202 to the alignment film 201. Control is performed to move 100 ⁇ m outward in a direction orthogonal to the movement direction, and control is performed to move 30 mm in the movement direction of the alignment film 201.
  • the positional relationship between the mask alignment mark 202e and the film alignment mark 201a is the same as when the alignment film 201 is not stretched, and the alignment film can be replaced without replacing the mask 202C as in the first embodiment.
  • the width of the exposure light irradiation region with respect to 201 can be adjusted.
  • a reversible alignment material film or a non-reversible alignment material film may be formed on the alignment film 201.
  • FIG. 29 is a diagram showing an exposure process by the exposure apparatus according to the eleventh embodiment of the present invention.
  • a reversible alignment material film is formed on the alignment film 201.
  • a mask 202D is provided instead of the mask 202A in the tenth embodiment.
  • the mask 202D is provided with an opening 202f whose width changes in the moving direction of the alignment film 201, not the slit 202b.
  • the exposure light can be irradiated to the entire exposure target region of the alignment film 201 through the opening 203b of the aperture 203 and the opening of the mask 202D.
  • Other configurations are the same as those of the first embodiment.
  • the alignment film 201 has a reversible alignment material film formed on the surface thereof.
  • the alignment material film is irradiated with the exposure light emitted from the light source 205B so as to correspond to the opening of the aperture 203B and the slit of the mask 202B.
  • the alignment direction of the portion irradiated by the second exposure is changed from the alignment direction of the portion irradiated by the first exposure. Therefore, also in this embodiment, an alignment exposure film similar to that in the tenth embodiment is formed.
  • the relative position between the mask 202 and the aperture 203 in the moving direction of the alignment film 201 is controlled by the control unit.
  • the width of the strip-shaped exposure portion formed on the alignment film 201 can be adjusted, and exposure can be performed without replacing the mask 202.
  • the present mask is used instead of the mask 202B on the downstream side in the moving direction of the alignment film 201.
  • the mask 202D as in the eleventh embodiment is arranged, and the alignment material film is aligned corresponding to the opening of the aperture 203A and the slit of the predetermined width of the mask 202A by exposure with the exposure light emitted from the upstream light source 205A. Even when the entire surface of the exposure target region is exposed by exposure with the exposure light emitted from the light source 205B on the downstream side, an alignment film similar to that in the tenth and eleventh embodiments can be formed. it can.
  • the width of the strip-shaped exposed portion formed on the alignment film 201 is adjusted by controlling the relative position between the mask 202 and the aperture 203 in the moving direction of the alignment film 201 by the control unit. And exposure can be performed without replacing the mask 202.
  • An exposure apparatus forms a transport apparatus that moves an alignment film to be exposed in a first direction, and film alignment marks that serve as indicators of the amount of expansion and contraction of the alignment film on both sides of the alignment film.
  • a pair of observation windows for observing the alignment mark is provided, and a mask in which a mask alignment mark is formed in each observation window, and an opening extending in the second direction and intersecting all the slits are formed.
  • a light-shielding member that transmits the exposure light at a portion where the opening and the slit intersect, the mask alignment mark in each observation window, and the film alignment
  • a control unit for adjusting a relative positional relationship in the first direction between the light shielding member and the mask based on a detection result of the detection unit,
  • a first slit at one end in the second direction is parallel to the first direction
  • a second slit at the other end is inclined at a maximum inclination with respect to the first direction.
  • a slit between one slit and the second slit is inclined so that an inclination angle gradually increases from the first slit toward the second slit, and the width of the slit is related to the first direction.
  • the distance between the slits is linearly the same as the width of the slits in the second direction, and the first mask alignment mark on the first slit side extends in the first direction, 2nd slit side Mask alignment marks are those which extends parallel to the center line of one side edge or the width direction of the width direction of the second slit.
  • FIG. 30A is a plan view showing a mask 220 of this embodiment
  • FIG. 30B is a plan view showing an aperture 230 of this embodiment.
  • a plurality of slits 220b are arranged on a base 220a made of a light-shielding material in a direction (second direction) orthogonal to the moving direction of the alignment film 210 (first direction: indicated by a hollow arrow).
  • Each slit 220b is provided such that the width thereof linearly changes in the longitudinal direction, and the interval between the slits is the same as the width of the slit 220b in the direction orthogonal to the moving direction of the alignment film 210. It is. That is, in the mask 220 shown in FIG. 30A, the width of each slit 220b is the narrowest at the top, and is widened as it goes downward along the longitudinal direction of the slit. And among each slit 220b, the slit 220b arrange
  • the slit 220b disposed at the other end in the width direction of the alignment film 210 extends while being inclined in the moving direction of the alignment film 210, and a distance y is set in the moving direction of the alignment film 210.
  • the alignment film 210 is inclined so as to be biased by x in the width direction.
  • the slit 220b between the non-inclined slit 220b (parallel slit) at one end of the alignment film 210 and the slit 220b (maximum inclined slit) at the other end is directed from the parallel slit to the maximum inclined slit.
  • the inclination angle is gradually increased.
  • y is 300 mm and x is 1 mm.
  • FIGS. 31A and 31B are diagrams showing a laser marker 250 for forming an alignment mark on the alignment film 210.
  • the laser marker 250 irradiates the alignment film 210 fed from the film unwinding roll 245 with laser light on both sides of the alignment film 210 to form alignment marks 210a and 210b. Note that when the alignment film 210 is irradiated with laser light from the laser marker 250, the lower surface of the alignment film 210 is supported by the roll 246, and the surface of the alignment film 210 is made constant.
  • observation windows 220d for detecting the film alignment marks 210a and 210b are provided, for example, with the same length as the slits 220b in the moving direction of the alignment film 210.
  • Mask alignment marks 220e and 220f are provided on the window 220d.
  • the mask alignment mark 220f extends in parallel to the moving direction of the alignment film 210, and is provided in the observation window 220d on one end side where a slit 220b (parallel slit) parallel to the moving direction of the alignment film 210 in the mask 220 is formed.
  • the mask alignment mark 220e is provided in the observation window 220d on the other end side in the width direction of the alignment film 210, and extends in parallel with the side edge of the maximum inclined slit 220b provided on the other end side.
  • the aperture 230 is a light-shielding plate made of, for example, SUS, and as shown in FIG. 30B, an opening 230b having a width of, for example, 20 to 30 mm so as to extend in one direction is formed at the center of the base 230a. Is provided.
  • the opening 230b has a length extending over the entire region where the slit 220b of the mask 220 is provided. Then, the opening 230 b is disposed above the mask 220 so that the longitudinal direction of the opening 230 b is orthogonal to the moving direction of the alignment film 210. That is, as shown in FIG.
  • a mask 220 is installed in the middle of the moving area of the alignment film 210, and the aperture 230 is arranged above the mask 220.
  • An exposure light source 270 is disposed above the aperture 230, and the exposure light emitted from the exposure light source 270 irradiates the aperture 230, a part of which is shielded by the aperture 230, and passes through the opening 230b in the exposure light.
  • the exposed portion is irradiated onto the mask 220, and the exposure light transmitted through the slit 220 b of the mask 220 is irradiated onto the alignment film 210.
  • the control unit controls the relative position of the mask 220 and the light shielding member 230 in the moving direction of the alignment film 210. That is, as shown in FIGS. 33 to 36, for example, the control unit moves the relative position of the mask 220 with respect to the aperture 230 in a state where the position of the aperture 230 is fixed. The irradiation position on the alignment film 210 of the exposure light that passes through the overlapping region is adjusted.
  • a bifocal line camera 260 is disposed above the observation window 220d in the mask 220, and the bifocal line camera 260 has film alignment marks 210a, 210b and mask alignment marks 220f and 220e are observed in the detection region 271.
  • a mask alignment mark 220f extending in the moving direction (first direction) of the alignment film 210 is used as a first mask alignment mark 220f, and the observation is performed in the observation window 220d together with the first mask alignment mark 220f.
  • the film alignment mark 210b to be used is a first film alignment mark 210b.
  • a mask alignment mark 220e extending obliquely in the moving direction (first direction) of the alignment film 210 is used as a second mask alignment mark 220e, and the film alignment mark observed in the observation window 220d together with the second mask alignment mark 220e.
  • the aperture 230 does not move.
  • the control unit uses this distance A as a reference for the distance between the first film alignment mark 210b and the first mask alignment mark 220f.
  • the distance B is set as a reference value for the distance between the second film alignment mark 210a and the second mask alignment mark 220e.
  • the control unit adjusts and moves the mask 220 in the second direction (indicated by a white arrow), so that the first film alignment mark 210b and the first mask alignment mark 220f are moved. The distance between them is made to coincide with the reference value A.
  • the distance between the second film alignment mark 210a and the second mask alignment mark 220e also matches the reference value B. Accordingly, as shown in FIG. 32B, the exposure light is transmitted through a region where the opening 230b of the aperture 230 and the slit 220b of the mask 220 overlap, and the alignment film 210 that moves in the first direction has many parallels. A linear exposure part is formed. Since the exposure unit adjusts and moves the mask 220 in the second direction in accordance with the meandering of the alignment film 210, the exposure unit starts from the position on the alignment film 210 at the beginning of exposure (the position on the alignment film 210 when there is no meandering). Does not fluctuate.
  • the control unit adjusts and moves the mask 220 relative to the aperture 230 in the direction indicated by the white arrow in FIG. 35B (the moving direction of the alignment film 210 in the embodiment shown in FIG. 32). .
  • the exposure light transmitted through the overlapping portion of the aperture 230b of the aperture 230 and the slit 220b of the mask 220 is adjusted so that the aperture 230 does not move and the mask 220 is opposite to the direction of the white arrow shown in FIG. Since it moves, the slit 220b is transmitted through a portion having a wider width and a larger interval, and the linear exposed portion in the alignment exposure film 210c after the exposure has a wider width and a larger interval.
  • the alignment exposure film 210c is thermally expanded to increase the width, the exposed portion on the alignment exposure film 210c expands in the width direction of the alignment exposure film 210c.
  • the linear exposure portion exposed in the exposure process in FIG. 35 has the width and interval of the exposure portion at the start of exposure. It becomes the state which corresponded and the influence of the thermal expansion of the alignment film 210 can be eliminated.
  • FIG. 36 shows an example in which meandering and thermal expansion occur in the alignment film 210.
  • the distance between the first film alignment mark 210b and the first mask alignment mark 220f in the detection region 271 observed by the camera 260 varies from the reference value A, and further, the second film alignment.
  • the interval between the mark 210a and the second mask alignment mark 220e varies from the reference value B.
  • the controller first adjusts and moves the mask 220 in the second direction as shown in FIG. 36 (b), and sets the distance between the first film alignment mark 210b and the first mask alignment mark 220f. Match with the reference value A.
  • the control unit As shown in (c), the mask 220 is adjusted and moved in the first direction.
  • the exposure light transmitted through the overlapping portion of the opening 230b and the slit 220b is wider than the slit 220b and is more spaced apart as in the case of FIG. 35 (b). Since the light passes through a wide portion, the exposed portion on the alignment exposure film 210c after exposure becomes wider and wider than the initial exposure in accordance with the thermal expansion of the alignment film 210. .
  • the alignment exposure film 210c cools down and returns to room temperature, it becomes the same as the width and interval of the exposed portion at the beginning of exposure.
  • the exposed portion on the alignment exposure film 210c coincides with the start of exposure (or set as a reference value). It is possible to form a highly accurate exposure portion.
  • the mask alignment mark is formed so that the side edge on the mask alignment mark side of the slit closest to the mask alignment mark is parallel to the mask alignment mark.
  • the invention is not limited to this, and the mask alignment mark may be formed so that the side edge opposite to the mask alignment mark of the slit closest to the mask alignment mark is parallel to the mask alignment mark, Further, the mask alignment mark may be formed so that the center line in the width direction of the slit closest to the mask alignment mark is parallel to the mask alignment mark.
  • the mask alignment mark is formed when the mask alignment mark is formed using the side edge on the mask alignment mark side of the slit closest thereto, the side edge on the opposite side, or the width center line of the slit as a reference line.
  • the distance from the reference line may be set by taking into account the amount of change in which the width of the closest slit linearly changes in the first direction. That is, the mask alignment mark and the slit closest thereto can be determined so that they are not parallel and the distance between them changes linearly in the first direction in consideration of the expansion and contraction of the alignment film. As the linear change amount of the distance between the mask alignment mark and the slit closest thereto, the linear change amount in the first direction of the width of the closest slit can be used.
  • the mask has a plurality of slits arranged in a second direction perpendicular to the first direction of the alignment film movement with a space between each other. It changes linearly in one direction, and the interval between the slits is the same as the width of the slits when viewed in the second direction.
  • a light shielding member extending in the second direction and having openings that intersect all the slits is provided so as to overlap the mask.
  • a detection part detects a film alignment mark with the mask alignment mark provided in the mask
  • a control part makes the positional relationship of the mask alignment mark and film alignment mark which the detection part detected become a predetermined relation,
  • the relative position of the mask and the light shielding member in the first direction is controlled.
  • the first slit at one end in the second direction is parallel to the first direction, and a first mask alignment mark is formed in parallel to the first slit.
  • the exposure apparatus of this embodiment includes a moving device that moves an alignment film in which an alignment material film is formed on a film substrate in one direction, and the alignment material on the alignment film that is provided in a moving area of the alignment film.
  • a first exposure unit that forms a first exposure pattern that includes a plurality of strip-shaped exposure portions extending in the one direction and spaced apart from each other in a direction orthogonal to the one direction;
  • the exposure part of the first exposure pattern in the direction perpendicular to the one direction and extending in the one direction on the alignment material film on the alignment film is installed on the downstream side of the first exposure unit in the moving direction of
  • a second exposure unit for forming a second exposure pattern composed of a plurality of strip-shaped exposure portions in a region between the first exposure unit and the movement region of the alignment film between the first exposure unit and the second exposure unit Provided in The exposure position of the second exposure pattern in the second exposure unit is determined based on the position of the inspection unit that detects the exposure unit of the first exposure pattern and the position of the exposure unit of the first exposure pattern detected by the inspection unit. And a control unit for controlling.
  • the FPR manufacturing method moves the alignment film in which an alignment material film is formed on a film base material in one direction while moving the alignment film.
  • the first exposure unit provided in the moving area of the plurality of strips extending in the one direction and spaced apart from each other in the direction orthogonal to the one direction on the alignment material film on the alignment film.
  • the alignment on the alignment film by a first exposure process for forming a first exposure pattern comprising an exposure unit and a second exposure unit installed downstream of the first exposure unit in the moving direction of the alignment film.
  • a second exposure pattern comprising a plurality of strip-shaped exposure portions is formed on the material film in a region between the exposure portions of the first exposure pattern in a direction orthogonal to the one direction while extending in the one direction.
  • a second exposure step, and an inspection step for detecting an exposed portion of the first exposure pattern between the first exposure step and the second exposure step, the first detected in the inspection step Based on the position of the exposure part of the exposure pattern, the exposure position of the second exposure pattern by the second exposure unit in the second exposure step is controlled.
  • FIG. 37 is a view showing an exposure apparatus according to the thirteenth embodiment of the present invention
  • FIG. 38 is a view showing an exposure portion formed on the alignment exposure film 310a.
  • the alignment film 310 having the alignment material film deposited on the surface is conveyed to the back roll 315 by a moving device (not shown), wound around the back roll 315, and then unloaded from the back roll 315. It has become.
  • the first exposure unit 320 is arranged on the most upstream side in the moving region of the alignment film 310 in which the alignment film 310 contacts the back roll 315 and the back surface thereof is supported by the back roll 315, and the most downstream side thereof.
  • a second exposure unit 321 is disposed on the side, and an inspection unit 330 is disposed at a position between the first exposure unit 320 and the second exposure unit 321.
  • the first exposure unit 320 includes, for example, an exposure light source 322 that irradiates CW circularly polarized exposure light toward the mask 323, and the exposure light from the exposure light source 322 passes through the mask 323 on the alignment film 310. Irradiate the alignment material film.
  • the second exposure unit 321 includes, for example, an exposure light source 324 that irradiates CCW circularly polarized exposure light toward the mask 325, and the exposure light from the exposure light source 324 is on the alignment film 310 via the mask 325.
  • the alignment material film is irradiated. As shown in FIG.
  • the masks 323 and 325 are formed with elongated rectangular slits 323a and 325a extending in the moving direction 309 of the alignment film 310, respectively.
  • the widths of these slits 323a and 325a are the width of one scanning line, and the interval between the slits 323a and 325a is also the width of one scanning line.
  • the slits 323a of the mask 325 and the slits 325a of the mask 325 correspond to scanning lines adjacent to each other, and the slits 323a and 325a are alternately arranged in a direction perpendicular to the moving direction 309 of the alignment film 310.
  • Masks 323 and 325 are arranged so as to be. Therefore, the arrangement pitch of the slits 323a and 325a corresponds to two scanning lines corresponding to the FPR 3D liquid crystal display device.
  • the alignment film 310 is wound around approximately half (lower half) of the peripheral surface, the back surface of the alignment film 310 contacts the back roll 315, and the surface of the alignment film 310, that is, the alignment material film. Facing outward.
  • the masks 323 and 325 face the alignment material film with a slight distance (about 200 ⁇ m) from the alignment film 310 so as to face each other with the back roll 315 interposed therebetween.
  • Exposure light sources 322 and 324 are installed behind 323 and 325.
  • the alignment film 310 is continuously conveyed in the moving direction 309, and exposure light is continuously irradiated from the exposure light sources 322 and 324, whereby the exposure light passes through the slits 323a and 325a of the masks 323 and 325.
  • the alignment film 310 is irradiated.
  • the back roll 315 is a water-cooled roll whose inside is water-cooled, and is rotatable around its central axis.
  • the back roll 315 can rotate freely, and rotates with the movement of the alignment film 310 so that its peripheral speed is the same as the movement speed of the alignment film 310.
  • the alignment film 310 is supported in a state where there is no relative speed difference on the peripheral surface of the back roll 315. Accordingly, wrinkles are prevented from being generated on the peripheral surface of the back roll 315 in the alignment film 310 that is conveyed by applying an appropriate tension.
  • the exposure light from the exposure light source 322 is CW circularly polarized light
  • the exposure light from the exposure light source 324 is CCW circularly polarized light.
  • each exposure light passes through the slits 323a and 325a of the masks 323 and 325 to form an alignment material film on the alignment film 310.
  • the exposed exposure unit corresponding to the slit 323a is, for example, the left-eye CW circular polarization exposure unit 301a
  • the exposure unit corresponding to the slit 325a is, for example, the right-eye CCW circular polarization exposure unit 301b.
  • the inspection unit 330 is installed above the back roll 315 with the camera 331 installed with the detection direction directly below, the half mirror 334 installed below the camera 331, and further installed below the half mirror 334.
  • a linear polarizing plate 332 and an inspection light source 333 that irradiates the half mirror 334 with inspection light are provided. Thereby, the inspection light from the inspection light source 333 is reflected by the half mirror 334, passes through the linear polarizing plate 332, is irradiated on the alignment film 310 on the back roll 315, and is reflected light reflected on the back roll 315. Passes through the linearly polarizing plate 332 and enters the camera 331 through the half mirror 334.
  • 45 (a) and 45 (b) are diagrams for explaining the principle of the present invention, and are schematic diagrams showing the polarization state of light by a combination of a linearly polarizing plate and a ⁇ / 4 plate.
  • the illumination light emitted from the light source 360 is converted into p-polarized light by the p-polarizing plate 361.
  • the p-polarized light is converted into CW circularly-polarized light by the CW circularly polarizing plate 362.
  • the CW circularly polarized light is converted into s-polarized light by the CW circularly polarizing plate 363.
  • the illumination light emitted from the light source 360 is converted to p-polarized light by the p-polarizing plate 361 and then converted to CW-polarized light by the CW circularly polarizing plate 362. Thereafter, the light is converted into p-polarized light by the CCW circularly polarizing plate 364.
  • the first exposure portion 301a of the alignment exposure film 310a after exposing the alignment film 310 has a function of converting linearly polarized light in a specific direction into CW circularly polarized light. That is, an optical axis equivalent to that of the CW circularly polarizing plate can be defined.
  • the inspection light emitted from the light source 333 is The light is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment exposure film 310a.
  • the light that has passed through the first exposure portion 301a (CW circular polarization portion) of the alignment exposure film 310a is converted into s-polarized light by the CW circularly polarizing plate 336, and non-exposure between the first exposure portions 301a of the alignment exposure film 310a.
  • the light transmitted through the portion (non-polarized portion) is converted into CW circularly polarized light by the CW circularly polarizing plate 336.
  • the light transmitted through the CW circularly polarized portion of the alignment exposure film 310a is transmitted through the s polarizing plate 337, is incident on the camera 331, and is detected as a bright portion, while it is transmitted through the non-exposure portion of the alignment exposure film 310a. Since light cannot pass through the s polarizing plate 337 and does not enter the camera 331, it is detected as a dark part.
  • the first alignment exposure film 310a has a first structure.
  • the light transmitted through the exposure unit 301a (CW circular polarization unit) is converted into p-polarized light by the CCW circularly polarizing plate 338, and the non-exposure unit (non-polarization unit) between the first exposure units 301a of the alignment exposure film 310a.
  • the transmitted light is converted into CCW circularly polarized light by the CCW circularly polarizing plate 338.
  • the light transmitted through the CW circularly polarized portion of the alignment exposure film 310a is transmitted through the p-polarizing plate 332, is incident on the camera 331, and is detected as a bright portion, while it is transmitted through the non-exposure portion of the alignment exposure film 310a.
  • Light cannot be transmitted through the p-polarizing plate 332 and does not enter the camera 331, so that it is detected as a dark part. Therefore, by combining the linearly polarizing plate and the ⁇ / 4 plate, the strip-shaped exposed portion on the alignment exposure film 310a can be detected.
  • the first CW circularly polarized light formed by the first exposure unit 320 can be used without using such an optical system in which a plurality of linearly polarizing plates and ⁇ / 4 plates are combined.
  • the exposure unit 301a can be detected. That is, the inspection light emitted from the light source 333 is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment exposure film 310a. Of the light incident on the alignment exposure film 310a, the light incident on the first exposure portion 301a is converted into CW circularly polarized light.
  • the CW circularly polarized light is reflected by the back roll 315, is incident on the first exposure unit 301a again, and is converted into s-polarized light as in the case of transmitting through the CW circularly polarizing plate. Thereafter, the s-polarized light enters the p-polarizing plate 332 again, but cannot pass through the p-polarizing plate 332 and is detected by the camera 331 as a dark part.
  • the light incident on the alignment exposure film 310a the light incident on the non-exposure portion (non-polarization portion) between the first exposure portions 301a passes through the non-exposure portion as p-polarized light and is back-rolled.
  • the light is reflected at 315, passes through the non-exposed portion as p-polarized light again, passes through the p-polarizing plate 332, and enters the camera 331.
  • the camera 331 detects this as a bright portion. Therefore, the inspection light transmitted through the first exposure unit 301a (CW circular polarization unit) is detected as a dark part by the camera 331, and the inspection light transmitted through the non-exposure part between the first exposure units 301a is detected by the camera 331. It is detected as a bright part.
  • the control unit controls the exposure in the second exposure unit 321 based on the detection result of the position (width and interval) of the first exposure unit 301a.
  • the second exposure unit 301b to be formed by the second exposure unit 321 at a position perpendicular to the transport direction of the alignment film 310 of the second mask 325 in the second exposure unit 321 is the first exposure unit. Adjustment is made so as not to overlap with the boundary of 301a and so as not to cause a gap between the first exposure unit 301a and the second exposure unit 301b.
  • the first mask 325 is adjusted only by adjusting the position of the second mask 325. Since the exposure unit 301a and the second exposure unit 301b do not overlap and a gap cannot be formed, the second exposure unit 301b needs to be enlarged or reduced as described later.
  • a first exposure unit 301a (CW circular polarization unit) of CW circular polarization for the left eye is formed.
  • the alignment film 310 on which the first exposure unit 301 a is formed arrives at the inspection unit 330 along with the rotation of the back roll 315, and the position (width and interval) of the first exposure unit 301 a is detected by the camera 331.
  • the control unit determines whether or not the first exposure unit 301a is formed at a predetermined design position based on the detection result, and the position of the first exposure unit 301a is shifted from the predetermined design position.
  • the position of the second mask 325 of the second exposure unit 321 is adjusted accordingly, the formation position of the second exposure unit 301b is changed from the initial setting value, and the first exposure unit 301a and the second exposure unit The second exposure unit 321 is controlled so that the portion 301b does not overlap and a non-exposed portion is not formed.
  • the first exposure actually formed by the first exposure unit 320 is used in the second exposure unit 321. Exposure can be controlled in accordance with the state of the part 301a, and the second exposure part 301b can be formed.
  • the optical axis of the inspection light emitted from the light source 333 and the optical axis of the reflected light detected by the camera 3331 intersect at the surface of the back roll 315, and the inspection light passes through the alignment film 310. After being transmitted, the light is reflected by the surface of the back roll 315, and the reflected light is detected by the camera 331.
  • the inspection light emitted from the light source 333 is converted to p-polarized light by the p-polarizing plate 332, and the reflected light from the back roll 315 is incident on the camera 331 as the light transmitted through the s-polarizing plate 337.
  • the inspection light emitted from the light source 333 is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment film 310.
  • the light incident on the alignment film 310 the light incident on the first exposure unit 301 a is converted into CW circularly polarized light, reflected by the back roll 315, and again on the first exposure unit 301 a of the alignment film 310.
  • Incident light is converted into s-polarized light, passes through the s-polarizing plate, and is detected by the camera 331 as a bright portion.
  • the light incident on the alignment film 310 the light incident on the non-exposure part (non-polarization part) between the first exposure parts 301a is transmitted through the non-exposure part as p-polarized light, and the back roll.
  • the light is reflected at 315, passes through the non-exposed portion as p-polarized light again, and cannot pass through the s polarizing plate 37, and the camera 331 detects the non-exposed portion as a dark portion. Therefore, the inspection light transmitted through the first exposure unit 301a (CW circular polarization unit) is detected as a bright part by the camera 331, and the inspection light transmitted through the non-exposure part between the first exposure units 301a is detected by the camera 331. Since it is detected as a dark part, the position (width and interval) of the first exposure part 301a can be detected.
  • the inspection light source 333 of the inspection unit 330 is incorporated in the back roll 315.
  • a groove 317 extending in the roll axis direction is formed on the peripheral surface of the back roll 315, and a rod-shaped inspection illumination light source 333 extending in the roll axis direction is disposed in the groove 317.
  • a p-polarizing plate 332 extending in the roll axis direction is disposed in the groove 317 above the light source 333.
  • the alignment film 310 is wound around the back roll 315 and moves with the rotation thereof. The inspection film detects inspection light in the region directly above the roll axis of the back roll 315.
  • a camera 331 is disposed.
  • the inspection camera 331 is a line sensor that extends in the axial direction of the back roll 315 or is an area sensor that detects light in a horizontally-long rectangular two-dimensional region of the back roll 315 in the axial direction.
  • a CW circularly polarizing plate 336 and an s polarizing plate 337 thereabove are disposed between the inspection camera 331 and the alignment film 310.
  • the back roll 315 is freely rotatable around its axis. When the alignment film 310 is wound around the back roll 315 and moved, the back roll 315 is rotated around its circumference. The rotation speed is the same as the moving speed of the alignment film 310.
  • the groove 317 of the back roll 315 rotates to the upper end of the roll, the light source 333 and the camera 331 face each other on the vertical optical axis.
  • the inspection light emitted from the light source 333 is p-polarized light.
  • the light passes through the plate 332, further passes through the alignment film 310, further passes through the CW circularly polarizing plate 336, passes through the s polarizing plate 337, and then enters the camera 331.
  • the inspection light from the light source 333 is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment film 310.
  • the light incident on the alignment film 310 is converted into CW circularly polarized light, converted into s polarized light by the CW circularly polarizing plate 336, and then the s polarizing plate 337 is used.
  • the light passes through and is detected by the camera 331 as a bright portion.
  • the light incident on the alignment film 310 the light incident on the non-exposure part (non-polarization part) between the first exposure parts 301a passes through the non-exposure part as p-polarized light, and is CW circularly polarized light.
  • the light is converted into CW circularly polarized light by the plate 336, cannot pass through the s polarizing plate 337, and is detected as a dark part by the camera 331. Therefore, the inspection light transmitted through the first exposure unit 301a (CW circular polarization unit) is detected as a bright part by the camera 331, and the inspection light transmitted through the non-exposure part between the first exposure units 301a is detected by the camera 331. Since it is detected as a dark part, the position (width and interval) of the first exposure part 301a can be detected. Therefore, this embodiment has the same effect as the first embodiment.
  • the inspection light transmitted through the first exposure unit 301a and the CCW circularly polarizing plate 338 is converted into p-polarized light, and the s polarizing plate 337 cannot be transmitted. Therefore, the camera 331 detects the first exposure unit 301a as a dark part. If it does so, since the light which permeate
  • the camera 331 detects the 1st exposure part 301a as a bright part.
  • the alignment film 310 moves across the groove 317. For this reason, in order to make the position of the alignment film 310 in the optical axis direction of the camera 331 constant with high accuracy, a glass lid whose upper surface is curved with the same radius of curvature as the back roll 315 is provided above the groove 317.
  • the entire circumference of the back roll 315 may be a uniform circumferential surface.
  • the back roll 340 includes a core portion 342 having a substantially columnar shape, and a cylindrical surface portion 341 into which the core portion 342 is fitted. Although the core part 342 does not rotate, the surface part 341 is provided coaxially with the core part 342, and can rotate with this axis as a rotation axis. Similar to the back roll 315, the surface portion 341 is driven and rotated by rolling of the alignment film 310.
  • the surface portion 341 is formed of a transparent material such as glass or acrylic, for example.
  • a groove 343 extending in the axial direction of the core part 342 is formed at the upper end of the core part 342, and a light source 333 and a p-polarizing plate 332 are installed in the groove 343.
  • the exposure operation of this modification is the same as the exposure operation of the fourteenth embodiment shown in FIG. 40.
  • the light source 332 and the p-polarizing plate 332 do not move. There is an advantage that the exposure state of the alignment film 310 across the optical axis to be connected can be always inspected and monitored.
  • the alignment film 310 is conveyed in one direction by a roll 311, and the first exposure unit 320, the inspection unit 330, and the second exposure unit 321 are arranged in this order in the moving area of the alignment film 310. It is.
  • the inspection unit 330 includes a camera 331 provided to face the alignment film 310 moving in the horizontal direction, and an s polarizing plate provided on the optical axis of the camera 331 between the camera 331 and the alignment film 310.
  • a light source 333 for irradiating the alignment film 310 with inspection light and a p-polarizing plate 332 provided between the light source 333 and the half mirror 334 are provided.
  • the alignment film 310 on which the CW circularly polarized first exposure part 301a is formed moves to the inspection part 330.
  • the inspection light from the light source 333 is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment film 310 via the half mirror 334.
  • the light incident on the alignment film 310 the light incident on the first exposure unit 301a is converted into CW circularly polarized light, reflected by the reflector 341, and then incident on the first exposure unit 301a again.
  • the light is converted into s-polarized light, passes through the half mirror 334, passes through the s polarizing plate 337, and is detected as a bright portion by the camera 331.
  • this embodiment also has the same effect as the thirteenth embodiment and the fourteenth embodiment.
  • the inspection light source 333 is installed below the alignment film 310.
  • a CW circularly polarizing plate 336 and an s polarizing plate 337 are installed between the camera 331 and the alignment film 310.
  • a p-polarizing plate 332 is installed between the light source 333 and the alignment film 310, and the inspection light emitted from the light source 333 is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment film 310. To do.
  • the light transmitted through the first exposure unit 301 a is converted into CW circularly polarized light, and is converted into s polarized light by the CW circularly polarizing plate 336.
  • the light is transmitted and detected by the camera 331 as a bright portion.
  • the light incident on the non-exposure part between the first exposure parts 301a is transmitted through the non-exposure part as p-polarized light, converted into CW circularly-polarized light by the CW circularly polarizing plate 336, and s-polarized light. Since it is incident on the plate 337, it is detected by the camera 331 as a dark part. Therefore, this embodiment also has the same effect as the thirteenth to fifteenth embodiments.
  • the alignment film 310 expands or contracts or the alignment film 310 meanders, and the position (width and interval) and size of the first exposure unit 1a formed by the first exposure unit 320 deviate from predetermined design values. In this case, it is preferable that the formation of the second exposure unit 301b in the second exposure unit 321 also takes into account variations such as the size of the first exposure unit 301a.
  • FIG. 46 is a view showing the mask 325 of the second exposure unit 321 when such factors as the expansion of the alignment film 310 are taken into consideration.
  • FIG. 46A is a plan view showing the mask 325
  • FIG. 46B is a plan view showing the aperture 326.
  • the mask 325 includes, for example, a plurality of slits in a direction perpendicular to the moving direction 309 of the alignment film 310 in a base portion 302a made of a light-shielding material provided on a transparent plate.
  • 302b is arranged, and each slit 302b is provided so that the width thereof linearly changes in the longitudinal direction, and the interval between the slits is the same as the width of the slit in the direction orthogonal to the moving direction 309. It is. That is, in the mask 325 shown in FIG. 46 (a), the width of each slit 302b is the narrowest at the top, and is widened downward along the longitudinal direction of the slit.
  • Each slit 302b extends in a slanting direction in the moving direction 309.
  • the inclination of the slit 302b is larger on the side than the center of the mask 325 in the direction orthogonal to the moving direction 309.
  • the mask 325 is inclined.
  • the edge portion of the slit on the most side is provided with a gap of about 500 ⁇ m between the end portions in the moving direction 309 in a direction orthogonal to the moving direction 309.
  • an observation window 302d for detecting a film alignment mark 301c (see FIG. 48) formed on the side of the alignment film 310 by an alignment marker (not shown), for example, a moving direction 309
  • the slit 302b is approximately the same length as the slit 302b.
  • the film alignment mark 301c shown in FIG. 48 indicates a state of being observed through the observation window 302d.
  • a mask alignment mark 302e is provided in the observation window 302d so as to be inclined with respect to the moving direction 309.
  • the mask alignment mark 302e is a linear mark parallel to the side edge of the slit 302b located at both ends in a direction orthogonal to the moving direction 309, for example.
  • a camera (not shown) is provided above the mask 325 so that the camera can detect the film alignment mark 301c on the alignment film 310 through the observation window 302d together with the mask alignment mark 302e. It is configured.
  • the aperture 326 is a light-shielding plate made of, for example, SUS. As shown in FIG. 46B, an opening 303b having a width of, for example, 20 to 30 mm is provided at the center of the base portion 303a so as to extend in one direction. Is provided.
  • the opening 303 b is disposed between the light source 324 and the mask 325 so that the longitudinal direction of the opening 303 b is orthogonal to the moving direction 309. Therefore, a part of the exposure light emitted from the light source 324 is shielded by the aperture 326, and only the exposure light transmitted through the opening 303b of the aperture 326 is irradiated to the mask 325.
  • the relative position between the mask 325 and the aperture 326 in the movement direction 309 is controlled by a control unit (not shown), so that the strip-shaped irradiation position of the exposure light with respect to the mask 325 moves along the movement direction 309. Then, the irradiation position of the exposure light that passes through the slit 302b of the mask 325 and is irradiated on the alignment film 310 moves in the movement direction 309, and the width of the exposure light irradiation area changes.
  • the mask 325 is configured to be movable in the moving direction 309 relative to the aperture 326 by, for example, an actuator or the like (not shown), and the movement between the aperture 326 and the mask 325 is performed.
  • the relative position in the direction 309 is controlled by a control unit (not shown).
  • the relative position between the mask 325 and the aperture 326 in the moving direction 309 is controlled by this control unit so that the positional relationship between the mask alignment mark 302e and the film alignment mark 301c becomes a predetermined relationship, for example, as follows.
  • the plurality of slits 302 b provided in the mask 325 extend while being inclined in the movement direction 309, and the width of each slit 302 b is linear along the movement direction 309.
  • the distance between the slits is the same as the width of the slits when viewed from the direction orthogonal to the moving direction 309. Therefore, as shown in FIGS. 47A and 47B, when the mask 325 is moved relative to the aperture 326 in the moving direction 309, the aperture 303b of the aperture 326 is transmitted along with this movement.
  • the irradiation position of the exposure light irradiated on the mask 325 moves in the moving direction 309, and the width of the irradiation area of the exposure light irradiated on the alignment film 310 through the slit 302b changes.
  • Width can be adjusted.
  • the control unit for example, has a constant distance (for example, in the direction in which the mask alignment mark 302e and the film alignment mark 301c detected by the camera are orthogonal to the moving direction 309). 10 mm), the mask 325 is moved along the moving direction 309 so as to be separated from each other. Thereby, even when the alignment film 310 expands in the width direction, the width of the exposed portion on the alignment exposure film 310a can be adjusted based on the amount of elongation of the alignment film 310 in the width direction.
  • FIG. 48A shows a state where the alignment film 310 is not deformed in the width direction
  • FIG. 48B shows a state where the alignment film 310 has expanded in the width direction
  • reference numeral 371 denotes a detection area by the camera.
  • the width of the detection area 371 in the moving direction 309 is the same as that of the opening 303b of the aperture 326, and the camera has a film alignment mark 301c and a mask.
  • the alignment mark 302e is detected at a position aligned with the opening 303b and the movement direction 309. As shown in FIG.
  • the distance between the film alignment mark 301c and the mask alignment mark 302e in the detection region 371 is, for example, 10 mm.
  • the position of the film alignment mark 301c is outside (see FIG. 48) in the observation window 302d. To the left side) and the distance to the mask alignment mark 302e increases.
  • the alignment film 310 is formed in the second exposure unit 321 as described above.
  • the second exposure unit 301b tries to expose the second exposure unit 301b according to a predetermined design value, it is between the first exposure unit 301a and the second exposure unit 301b. Shifts and causes display defects. That is, when the alignment film 310 reaches the second exposure unit 321, the width and interval of the strip-shaped first exposure part 301 a are increased by the expansion of the alignment film 310. If the second exposed portion 301b is formed in the same manner, the first exposed portion 301a and the second exposed portion 301b overlap with each other, or a gap is generated, and an unexposed portion is generated.
  • the relative position of the mask 325 with respect to the aperture 326 in the moving direction 309 is adjusted so as to maintain a constant distance between the film alignment mark 301c and the mask alignment mark 302e. That is, as shown in FIG. 48B, in the detection area 371 by the camera, the mask 325 moves in the moving direction 309 with respect to the aperture 326 so that the distance between the film alignment mark 301c and the mask alignment mark 302e is 10 mm.
  • the aperture 303b of the aperture 326 is made to correspond to the wide region of the slit 302b of the mask 325.
  • the width of the exposed portion on the alignment exposure film 310a can be widely adjusted based on the amount of elongation in the width direction of the alignment film 310.
  • the strip-shaped film formed on the alignment exposure film 310a even when the alignment film 310 is cooled and contracted by subsequent conveyance, for example, and returns to the original width that has not expanded, the strip-shaped film formed on the alignment exposure film 310a.
  • the width and interval of the second exposure unit 301b can be accurately matched to the width and interval of pixels or picture elements of the display device, and display defects can be prevented.
  • the slit 302b of the mask 325 and the film alignment mark 301c are actually separated by, for example, about 30 mm.
  • the mask alignment mark 302e can be regarded as the side edge of the slit 302b provided at the end in the direction orthogonal to the moving direction 309, for example, about 10 mm. Alignment can be performed within a narrow range, and the width of the exposed portion can be adjusted.
  • the mask position is controlled by the film alignment marks 301c on both sides of the alignment film 310. This is performed between the mask alignment marks 302e on both sides of the mask 325. That is, the distance between the film alignment mark 301c on one side of the alignment film 310 and the mask alignment mark 302e and the distance between the film alignment mark 301c on the other side of the alignment film 310 and the mask alignment mark 302e are: , Both are, for example, 10 mm.
  • the center position of the mask 325 and the center position of the alignment film 310 in the direction orthogonal to the moving direction 309 are shifted, and the alignment film 310 is moved on one side of the alignment film 310.
  • the distance between the film alignment mark 301c and the mask alignment mark 302e is different from the distance between the film alignment mark 301c and the mask alignment mark 302e on the other side.
  • the center position of the pair of mask alignment marks 302e detected by the camera in the direction orthogonal to the moving direction 309 is the same as the center position of the pair of film alignment marks 301c.
  • the position of the mask 325 in the direction orthogonal to the moving direction 309 is adjusted so as to match, and thereby the center position of the mask 325 and the center position of the alignment film 310 may be aligned. That is, even if the alignment film 310 meanders, the distance between the film alignment mark 301c on one side of the alignment film 310 and the mask alignment mark 302e, and the film alignment mark 301c on the other side of the alignment film 310 and the mask
  • the distance between the alignment mark 302e and the alignment mark 302e may be controlled to be, for example, 10 mm.
  • a mask 325A having a slit 302b as shown in FIG. 49 can be used as a mask for the second exposure unit 321. Also in this mask 325A, the width of the plurality of slits 302b linearly changes with respect to the moving direction 309, and the interval between the slits is the width of the slit 302b when viewed from the direction orthogonal to the moving direction 309. Is the same. In the mask 325A shown in FIG.
  • the slit 302b provided at one end has a side edge provided in parallel with the moving direction 309, and other plural
  • the slit 302b is inclined and extends in the movement direction 309, and the inclination of the slit 302b is provided so as to gradually increase from one end side to the other end side in the direction orthogonal to the movement direction 309. Yes.
  • the position of the mask 302 can be controlled with reference to the slit 302b at one end having a side edge parallel to the moving direction 309.
  • the slit 302b at the other end having the greatest inclination with respect to the moving direction 309 has a length of 300 mm in the moving direction 309 and is provided so that its side edge is deviated by about 1000 ⁇ m in a direction perpendicular to the moving direction 309.
  • the control unit moves the mask 302 outward by 100 ⁇ m in the direction orthogonal to the moving direction 309. And control to move 30 mm in the moving direction 309.
  • the positional relationship between the mask alignment mark 302e and the film alignment mark 301c is the same as when the alignment film 310 is not stretched, and the width of the exposure light irradiation region with respect to the alignment film 310 can be changed without replacing the mask 325A. Can be adjusted.
  • the first mask 323 of the first exposure unit 320 also has an inclined slit and an aperture, like the second mask 325.
  • a mask having an inclined slit 302b and an aperture 326 having an opening 303b extending in the width direction of the alignment film 310 are used.
  • the exposure position and width can be adjusted in accordance with the reduction amount of the alignment film 310.
  • the inspection part exposes the first exposure pattern.
  • the controller adjusts the position of the exposure part of the second exposure pattern exposed by the second exposure unit based on the position of the exposure part of the first exposure pattern.
  • the control unit adjusts the position of the second mask of the second exposure unit in the direction orthogonal to the moving direction of the alignment film based on the position of the exposure unit of the first exposure pattern.
  • the present invention can manufacture an FPR type polarizing film, a photo-alignment film, and the like with high accuracy, and contributes to high definition of a 3D or 2D type liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Liquid Crystal (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An alignment film having alignment material film applied to a film substrate is fed into a winding device for alignment exposure film after being wound around a back roll. The alignment film is held by the back roll, thereby smoothing out any wrinkles, and a mask and slit mask are disposed in the area of movement of the alignment film. An exposure light of clockwise circular polarized light from an exposure light source illuminates almost the entire surface of the alignment film through an opening in the mask, and an exposure light of counter-clockwise circular polarized light from the exposure light source illuminates strips of the alignment film through a plurality of slits on the slit mask. Lowered formation precision from an exposure unit due to vertical vibration of the thin alignment film is thereby prevented, as well as wrinkle generation, and it is possible to obtain polarizing film formed with high precision by the exposure unit.

Description

フィルム露光装置Film exposure equipment
 本発明は、FPR(Film Patterned Retarder(フィルム・パターンド・リターダー))方式、即ちフィルム偏光方式の3次元(3D)映像表示装置に使用される偏光フィルムの光配向膜又は広視野角用光学フィルム等の形成に使用されるフィルム露光装置に関する。 The present invention relates to a photo-alignment film or an optical film for a wide viewing angle of a polarizing film used in an FPR (Film Patterned Retarder) system, that is, a three-dimensional (3D) image display device of a film polarization system. The present invention relates to a film exposure apparatus used for the formation of the like.
 FPR方式の3D技術においては、液晶表示装置等の表示装置の画面に、走査線1ライン毎に光線の方向を変える偏光フィルムを張り、表示装置が、走査線1ライン毎に右目用と左目用の画像を表示すると共に、偏光メガネに張られた偏光フィルムが右目用のものが右目に入射させるべき光のみを通過させ、左目用のものが左目に入射させるべき光のみを通過させることにより、右目及び左目に入射した画像に視差を生じさせて、立体表示を可能とする。 In FPR 3D technology, a polarizing film that changes the direction of the light beam for each scanning line is placed on the screen of a display device such as a liquid crystal display device, and the display device is for the right eye and the left eye for each scanning line. The polarizing film stretched on the polarizing glasses allows only the light for the right eye to pass through the light that should be incident on the right eye, and the polarizing film for the left eye allows only light that should enter the left eye to pass through, A parallax is generated in an image incident on the right eye and the left eye, thereby enabling stereoscopic display.
 図50は、FPR方式の偏光フィルム1を示す模式図である。この偏光フィルム1は、表示装置の水平の1走査線に対応する幅を持つ帯状の左目用の偏光部1aと、同じく表示装置の水平の1走査線に対応する幅を持つ帯状の右目用の偏光部1bとが、垂直方向に交互に配置されるようにして、透明の基材上に塗布されている。左目用の偏光部1aは-45°の直線偏光を有するか、又は時計方向に偏光するCW(clockwise)円方向偏光を有する。一方、右目用の偏光部1bは+45°の直線偏光を有するか、又は反時計方向に偏光するCCW(counter clockwise)円方向偏光を有するものである。そして、この偏光フィルム1を、その偏光部1a及び偏光部1bを夫々液晶表示装置の走査線に対応させ、左目用偏光部1aが液晶表示装置の左目用信号の走査線に一致し、右目用偏光部1bが液晶表示装置の右目用信号の走査線に一致するようにして、液晶表示装置の画面に貼り付ける。そうすると、液晶表示装置の画面の左目用走査線から出射した表示光は、偏光フィルム1の左目用偏光部1aを透過し、偏光メガネの左目用レンズに張られた左目用偏光フィルムを透過して左目に入射し、液晶表示装置の画面の右目用走査線から出射した表示光は、偏光フィルム1の右目用偏光部1bを透過し、偏光メガネの右目用レンズに張られた右目用偏光フィルムを透過して右目に入射する。これにより、右目と左目とは、視差をもつ画像を見ることができ、立体的な画像を視認することができる。 FIG. 50 is a schematic diagram showing an FPR type polarizing film 1. The polarizing film 1 includes a band-shaped left-eye polarizing unit 1a having a width corresponding to one horizontal scanning line of the display device, and a band-shaped right-eye having a width corresponding to one horizontal scanning line of the display device. The polarizing parts 1b are applied on a transparent substrate so as to be alternately arranged in the vertical direction. The polarizing unit 1a for the left eye has -45 ° linearly polarized light or CW (clockwise) circularly polarized light that is polarized clockwise. On the other hand, the polarizing unit 1b for the right eye has + 45 ° linearly polarized light or CCW (counter clockwise) circularly polarized light that is polarized counterclockwise. The polarizing film 1 has its polarizing portion 1a and polarizing portion 1b corresponding to the scanning lines of the liquid crystal display device, and the left-eye polarizing portion 1a coincides with the scanning line of the left-eye signal of the liquid crystal display device. The polarizing part 1b is pasted on the screen of the liquid crystal display device so that it matches the scanning line of the signal for the right eye of the liquid crystal display device. If it does so, the display light radiate | emitted from the scanning line for left eyes of the screen of a liquid crystal display device will permeate | transmit the polarizing part 1a for left eyes of the polarizing film 1, and permeate | transmit the polarizing film for left eyes stretched on the lens for left eyes of polarizing glasses. The display light incident on the left eye and emitted from the right-eye scanning line on the screen of the liquid crystal display device is transmitted through the right-eye polarizing portion 1b of the polarizing film 1 and is passed through the right-eye polarizing film stretched on the right-eye lens of the polarizing glasses. Transmits and enters the right eye. Thereby, the right eye and the left eye can see an image having parallax, and a three-dimensional image can be visually recognized.
 図51は、この従来の偏光フィルム1の露光装置を示す模式図である。透明のフィルム基材の表面に配向材料膜が塗布された配向膜10が、ロール100から巻き解かれ、ロール102,103を介してその移動軌跡が規制されて露光光源104,105の配設位置の近傍を通過し、ロール101に巻き取られる。このロール102,103間において、配向膜10は水平に進行し、この配向膜10の水平移動域の上方に、この移動方向に沿ってスリットマスク106,107が配置され、これらのスリットマスク106,107の上方に露光光源104,105が配置されていて、露光光源104,105からの露光光がスリットマスク106,107を介して配向膜10の表面の配向材料膜に照射される。スリットマスク106,107の一端部の上方、即ち、露光光源104,105の側方には、アライメントマークを観察するためのカメラ108,109が設置されている。配向膜10の移動方向におけるスリットマスク106の上流側には、配向膜10の側部にアライメントマークを形成するためのレーザマーカ110が設置されている。 FIG. 51 is a schematic diagram showing an exposure apparatus for this conventional polarizing film 1. An alignment film 10 in which an alignment material film is coated on the surface of a transparent film base is unwound from a roll 100, and its movement trajectory is regulated via the rolls 102 and 103 so that the exposure light sources 104 and 105 are disposed. Is wound around the roll 101. The alignment film 10 travels horizontally between the rolls 102 and 103, and slit masks 106 and 107 are arranged along the moving direction above the horizontal movement area of the alignment film 10. Exposure light sources 104 and 105 are disposed above 107, and exposure light from the exposure light sources 104 and 105 is applied to the alignment material film on the surface of the alignment film 10 through the slit masks 106 and 107. Cameras 108 and 109 for observing the alignment marks are installed above one end of the slit masks 106 and 107, that is, on the sides of the exposure light sources 104 and 105. On the upstream side of the slit mask 106 in the moving direction of the alignment film 10, a laser marker 110 for forming an alignment mark on the side of the alignment film 10 is provided.
 この従来の露光装置においては、図52に示すように、ロール102,103間を移動する配向膜10に対して、レーザマーカ110により、配向膜10の側部にアライメント用のマーク111を形成し、カメラ108がスリットマスク106の一端部に設けられた開口106bからマーク111を観察し、このマーク111に対するスリットマスク106の配向膜10の移動方向に垂直方向の位置を調整する。また、スリットマスク107においても、カメラ109がスリットマスク107の一端部に設けられた開口107bからマーク111を観察し、スリットマスク107の配向膜10の移動方向に垂直方向の位置を調整する。その上で、露光光源104からの露光光がスリットマスク106のスリット106aを透過して配向膜10の表面の配向材料膜に照射され、配向膜10は白抜き矢印にて示す方向に連続的に搬送されているので、配向材料膜に同一の方向に配向した帯状の露光部10aが形成される。また、露光光源105からの露光光がスリットマスク107のスリット107aを透過して配向膜10の表面の配向材料膜に照射され、露光部10a間に露光部10bが形成される。この帯状の露光部10a、10bは、走査線1ライン分に相当する間隔を有して相互に離隔しており、露光後の配向露光膜11上に、例えば、液晶を塗布することで、相互に異なる方向に液晶分子が配列した偏光部1a、1bを形成している。これにより、図50に示すように、隣接する帯状の偏光部間で偏光方向が異なる偏光フィルム1を製造することができる。 In this conventional exposure apparatus, as shown in FIG. 52, an alignment mark 111 is formed on the side of the alignment film 10 by a laser marker 110 with respect to the alignment film 10 moving between the rolls 102 and 103. The camera 108 observes the mark 111 from the opening 106 b provided at one end of the slit mask 106, and adjusts the position in the direction perpendicular to the moving direction of the alignment film 10 of the slit mask 106 with respect to the mark 111. Also in the slit mask 107, the camera 109 observes the mark 111 from the opening 107 b provided at one end of the slit mask 107 and adjusts the position of the slit mask 107 in the direction perpendicular to the moving direction of the alignment film 10. Then, the exposure light from the exposure light source 104 passes through the slit 106a of the slit mask 106 and is applied to the alignment material film on the surface of the alignment film 10, and the alignment film 10 is continuously in the direction indicated by the white arrow. Since it is conveyed, the strip-shaped exposure part 10a oriented in the same direction is formed in the alignment material film. Further, the exposure light from the exposure light source 105 passes through the slit 107a of the slit mask 107 and is irradiated onto the alignment material film on the surface of the alignment film 10, so that an exposure portion 10b is formed between the exposure portions 10a. The strip- shaped exposure portions 10a and 10b are spaced apart from each other with an interval corresponding to one scanning line, and, for example, by applying liquid crystal on the alignment exposure film 11 after exposure, The polarizing portions 1a and 1b in which liquid crystal molecules are arranged in different directions are formed. Thereby, as shown in FIG. 50, the polarizing film 1 from which a polarization direction differs between adjacent strip | belt-shaped polarizing parts can be manufactured.
 これらの液晶表示装置に使用される光学フィルム等の製造方法に関し、特許文献1及び2がある。 Patent Documents 1 and 2 are related to a method for producing an optical film or the like used in these liquid crystal display devices.
 液晶表示装置等に使用される偏光フィルム1の製造過程で、配向材料膜が塗布された配向膜10は、温度変化等により変形しやすく、例えば露光時の温度変化に対して容易に変形してしまう。例えば、配向膜10は、露光時の加熱により、膨張しやすく、また、搬送時における冷却により、収縮しやすい。そして、特に、配向膜10の移動方向に直交する幅方向に配向膜10が変形すると、形成される帯状の露光部10a,10bの幅が表示装置の画素又は絵素の幅に対応できず、相互間の幅のずれにより表示不良が発生してしまう。 In the manufacturing process of the polarizing film 1 used for a liquid crystal display device or the like, the alignment film 10 coated with the alignment material film is easily deformed due to a temperature change or the like, for example, easily deformed with respect to a temperature change during exposure. End up. For example, the alignment film 10 easily expands due to heating during exposure, and easily contracts due to cooling during conveyance. In particular, when the alignment film 10 is deformed in the width direction orthogonal to the moving direction of the alignment film 10, the width of the formed strip- shaped exposure portions 10a and 10b cannot correspond to the width of the pixels or picture elements of the display device, A display defect occurs due to a difference in width between the two.
 このようなフィルムの変形により発生する表示装置の表示不良を防止する技術が提案されている。例えば、特許文献3には、表示装置のガラス基板に貼り付けるフィルムに、外光を拡散反射させる反射材を形成する表示装置の製造方法において、フィルムに水洗処理又は乾燥処理を施す場合に発生するフィルムの伸縮及び反射材の硬化に伴うフィルムの反りを防止する技術が開示されており、反射材をガラス基板上に設け、その上に接着層を介してフィルムを接着している。 A technique for preventing a display defect of a display device caused by such deformation of the film has been proposed. For example, in Patent Document 3, in a manufacturing method of a display device in which a reflective material that diffuses and reflects external light is formed on a film to be attached to a glass substrate of the display device, the film is washed or dried. A technique for preventing warping of a film accompanying expansion and contraction of a film and curing of a reflective material is disclosed, and a reflective material is provided on a glass substrate, and the film is bonded thereon via an adhesive layer.
 また、特許文献4においては、フィルム基材上にカラーフィルタ用感光性樹脂組成物を塗布し、これを露光、現像及び熱硬化処理して画素を形成するカラーフィルタの製造方法において、フィルム基材としてノルボルネン系化合物付加重合体からなるものを使用し、熱硬化処理における酸素濃度を10000ppm以下とすることにより、フィルムの熱変形そのものを防止している。 Moreover, in patent document 4, in the manufacturing method of the color filter which apply | coats the photosensitive resin composition for color filters on a film base material, and this exposes, develops, and thermosets, and forms a pixel, As described above, a film composed of a norbornene compound addition polymer is used, and the oxygen concentration in the thermosetting treatment is set to 10000 ppm or less to prevent thermal deformation of the film itself.
 なお、上述のようにして、フィルムに露光して、配向膜の配向方向を決定するフィルム露光装置において、従来、フィルム製造時の露光品質の検査は、フィルム完成後に行われている。図52に示すように、2個のスリットマスク106,107を使用したフィルム露光においては、帯状の露光部10a、10bの露光線幅と、偏光方向との確認は、配向膜10の全長に対する露光処理が終了して、一連のフィルム露光工程が終了した後、製品に対する検査として、露光線幅及び偏光方向を検査している。 In the film exposure apparatus that determines the alignment direction of the alignment film by exposing the film as described above, conventionally, the inspection of the exposure quality at the time of film production is performed after the film is completed. As shown in FIG. 52, in the film exposure using the two slit masks 106 and 107, the exposure line widths of the strip- shaped exposure portions 10a and 10b and the polarization direction are confirmed by exposing the entire length of the alignment film 10. After the process is completed and a series of film exposure steps are completed, the exposure line width and the polarization direction are inspected as inspections for the product.
 また、図53に示すように、例えば、露光部10aを形成するためのスリットマスク106が2個の小型のスリットマスク106-1,106-2をつなぎ合わせることにより構成されている場合、スリットマスク106-1,106-2間の継ぎ部の確認も必要であるが、これも、製品に対する検査として実施している。 As shown in FIG. 53, for example, when the slit mask 106 for forming the exposure portion 10a is configured by connecting two small slit masks 106-1 and 106-2, the slit mask It is also necessary to confirm the joint between 106-1 and 106-2, which is also performed as an inspection for the product.
特開2010-250172号公報JP 2010-250172 A 特開2007-114563号公報JP 2007-114563 A 特開2002-189219号公報JP 2002-189219 A 特開2009-157006号公報JP 2009-157006 A
 しかしながら、上述の従来技術においては、ロール102,103間に配向膜10を張った状態で、配向膜10上の配向材料膜を露光するので、配向膜10の搬送時の配向膜10の上下振動によりスリットマスク106,107と配向膜10との間の間隔が変動し、高精度で露光部10a、10bを形成することが困難であった。また、ロール102,103間に張架された配向膜10には、シワが発生しやすく、これによっても、露光部10a、10bを高精度で形成することが困難であった。 However, in the above-described prior art, since the alignment material film on the alignment film 10 is exposed in a state where the alignment film 10 is stretched between the rolls 102 and 103, the vertical vibration of the alignment film 10 when the alignment film 10 is conveyed is exposed. As a result, the distance between the slit masks 106 and 107 and the alignment film 10 fluctuates, and it is difficult to form the exposed portions 10a and 10b with high accuracy. Further, the alignment film 10 stretched between the rolls 102 and 103 is likely to be wrinkled, and this also makes it difficult to form the exposed portions 10a and 10b with high accuracy.
 また、上述の従来技術においては、偏光フィルム1の完成後に、製品検査で、露光線幅、偏光方向の確認及びマスク継ぎ部の確認を行っているので、仮に、それらの品質に問題が発見された場合には、その製品ロット全体が不良品となり、製品ロット全体を廃棄せざるを得ず、歩留が悪いという問題点がある。 Moreover, in the above-mentioned conventional technology, after the polarizing film 1 is completed, the exposure line width, the polarization direction and the mask joint are confirmed in the product inspection, so a problem is found in their quality. In such a case, the entire product lot becomes a defective product, and the entire product lot has to be discarded, resulting in a problem of poor yield.
 従来の図51に示すフィルム露光装置において、露光光源104からのCW円偏光及び露光光源105からのCCW円偏光により露光された配向露光膜11に対し露光線幅等の検査を実施しようとすると、図54に示すように、ロール102,103間に掛け渡され、矢印方向に移動する配向露光膜11に対し、例えば、その下方に配置された検査用照明光源123から照明光を出射し、この照明光を、例えば、第1の方向(例えば、p偏光)の直線偏光板122aを介して配向露光膜11に照射し、配向露光膜11を透過した照明光を、λ/4板121及び第2の方向(例えば、s偏光)の直線偏光板122bを介して検査用カメラ120に入射させる。これにより、検査用カメラ120が露光部10a、10bを撮像し、露光部10a、10bの幅(線幅)及び位置(継ぎ位置)と、配向方向とを確認することができる。 In the conventional film exposure apparatus shown in FIG. 51, when it is attempted to inspect the exposure line width and the like on the alignment exposure film 11 exposed by the CW circularly polarized light from the exposure light source 104 and the CCW circularly polarized light from the exposure light source 105, As shown in FIG. 54, for example, illumination light is emitted from the inspection illumination light source 123 disposed below the alignment exposure film 11 that is stretched between the rolls 102 and 103 and moves in the direction of the arrow. For example, the illumination light is irradiated onto the alignment exposure film 11 via the linearly polarizing plate 122a in the first direction (for example, p-polarized light), and the illumination light transmitted through the alignment exposure film 11 is irradiated with the λ / 4 plate 121 and the first light. The light is incident on the inspection camera 120 through the linear polarizing plate 122b in two directions (for example, s-polarized light). Thereby, the inspection camera 120 can capture the exposure portions 10a and 10b, and the width (line width) and position (joint position) of the exposure portions 10a and 10b and the orientation direction can be confirmed.
 しかし、この場合は、配向露光膜11は、ロール102,103間に掛け渡されて移動している間に、偏光方向を持つ照明光により検査されるので、配向露光膜11には上下方向の振動があり、このため、露光部10a、10bの幅及び位置(継ぎ位置)と、その配向方向を高精度で検知することは困難である。 However, in this case, since the alignment exposure film 11 is inspected by illumination light having a polarization direction while being stretched between the rolls 102 and 103, the alignment exposure film 11 has a vertical direction. Therefore, it is difficult to detect the width and position (joint position) of the exposure units 10a and 10b and the orientation direction thereof with high accuracy.
 また、特許文献3の技術は、フィルムが変形する原因の反射材をガラス基板上に移動させたものであり、フィルム上に上述したような配向材料膜を形成する必要がある場合には使用できない。また、特許文献4は、フィルムの熱変形そのものを防止する技術であり、変形したフィルムに対応させて高精度の露光を行うものではない。 Moreover, the technique of patent document 3 moves the reflecting material which causes a film deformation | transformation on a glass substrate, and cannot be used when it is necessary to form the above-mentioned orientation material film on a film. . Patent Document 4 is a technique for preventing thermal deformation of the film itself, and does not perform high-precision exposure in response to the deformed film.
 配向膜10が、熱変形等により、配向膜10の移動方向に直交する幅方向に変形した場合においては、変形後の配向膜10の幅に対応させて、マスクを取り替えることが考えられる。即ち、図55に示すように、配向膜10は、例えば露光時の加熱により、特に、配向膜10の移動方向に直交する方向に膨張し、搬送時の冷却により、膨張前の幅に収縮する。そこで、マスク106、107を、夫々、配向膜10の幅方向の膨張率を考慮したスリットが設けられたマスク150、160に取り替えて露光することが考えられる。しかし、この場合においては、配向膜10の膨張率に合わせて、複数種類のマスクを用意する必要があり、偏光フィルムの製造コストが増大するという問題点がある。 When the alignment film 10 is deformed in the width direction orthogonal to the moving direction of the alignment film 10 due to thermal deformation or the like, it is conceivable to replace the mask in accordance with the width of the alignment film 10 after deformation. That is, as shown in FIG. 55, the alignment film 10 expands in a direction orthogonal to the moving direction of the alignment film 10, for example, by heating during exposure, and contracts to a width before expansion by cooling during conveyance. . Therefore, it is conceivable to perform exposure by replacing the masks 106 and 107 with masks 150 and 160 provided with slits in consideration of the expansion coefficient in the width direction of the alignment film 10, respectively. However, in this case, it is necessary to prepare a plurality of types of masks in accordance with the expansion coefficient of the alignment film 10, and there is a problem that the manufacturing cost of the polarizing film increases.
 更に、従来の露光装置においては、フィルムの蛇行とフィルムの熱膨張及び熱収縮の双方を高精度で補正して露光することができないという問題点がある。 Furthermore, in the conventional exposure apparatus, there is a problem in that exposure cannot be performed by correcting both the meandering of the film and the thermal expansion and contraction of the film with high accuracy.
 更にまた、上述のごとく、偏光メガネ(FPR方式)による3次元(3D)映像表示装置を製造する場合に、走査線1ライン毎に偏光方向を変えたフィルム・パターンド・リターダー(FPR)を使用する。このFPRを製造する際には、フィルム基材上に配向材料膜が塗布された配向膜に、走査線幅をもつスリットが走査線幅のピッチで形成された2個(図52)又は3個(図53)のマスクを使用して、各マスクに、2種類の偏光方向が異なる露光光を照射する。この露光の際、2個又は3個のマスクの露光位置の位置合わせが必要であり、露光位置の精度が低いと、配向膜の移動方向の上流側に配置された1個又は2個のマスクによる帯状の露光部と、配向膜の移動方向の下流側に配置されたマスクによる帯状の露光部とが一部で重なったり、走査線の位置と露光部とがずれたりしてしまうことになる。 Furthermore, as described above, when manufacturing a three-dimensional (3D) image display device using polarized glasses (FPR method), a film patterned retarder (FPR) in which the polarization direction is changed for each scanning line is used. To do. When manufacturing this FPR, two (FIG. 52) or three slits having a scanning line width formed on the alignment film in which an alignment material film is coated on a film substrate are formed at a pitch of the scanning line width. Using the mask of FIG. 53, each mask is irradiated with exposure light having two different polarization directions. In this exposure, alignment of the exposure position of two or three masks is necessary, and if the accuracy of the exposure position is low, one or two masks arranged on the upstream side in the moving direction of the alignment film The band-shaped exposed part due to the mask and the band-shaped exposed part by the mask arranged on the downstream side in the moving direction of the alignment film partially overlap, or the position of the scanning line and the exposed part are shifted. .
 本発明の目的は、薄い配向膜の上下振動による露光部の形成精度の低下を防止し、また、シワの発生を防止することができ、露光部が高精度で形成された偏光フィルムを得ることができるフィルム露光装置を提供することにある。 An object of the present invention is to obtain a polarizing film in which the formation accuracy of an exposed portion due to vertical vibration of a thin alignment film is prevented and the occurrence of wrinkles can be prevented, and the exposed portion is formed with high accuracy. An object of the present invention is to provide a film exposure apparatus that can perform the above process.
 本発明の他の目的は、配向膜の熱膨張及び熱収縮並びに蛇行等により、露光対象の配向膜が幅方向に変形又は偏倚した場合においても、マスクを取り替えることなく、配向膜に対し高精度で所定位置に露光できる露光装置を提供することにある。 Another object of the present invention is to provide a highly accurate alignment film without changing the mask even when the alignment film to be exposed is deformed or biased in the width direction due to thermal expansion and contraction of the alignment film and meandering. It is an object of the present invention to provide an exposure apparatus capable of exposing at a predetermined position.
 本発明の更に他の目的は、帯状の露光部を第1露光ユニット及び第2露光ユニットの異なる位置で露光する際に、各露光部を高精度で位置合わせすることができる露光装置及びFPR製造方法を提供することにある。 Still another object of the present invention is to provide an exposure apparatus and an FPR manufacturing device capable of aligning each exposure unit with high accuracy when exposing the strip-shaped exposure unit at different positions of the first exposure unit and the second exposure unit. It is to provide a method.
 本発明に係るフィルム露光装置は、
透明のフィルム基材の一面に配向材料膜が塗布された配向膜が前記配向材料膜を外側にして巻き架けられ、前記配向膜をその周面で支持しつつ前記配向膜をその周面に沿って移動させるバックロールと、
前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の移動方向に平行の複数個の第1のスリットが形成された第1のスリットマスクと、前記第1のスリットマスクを介して前記配向膜の前記配向材料膜を露光する第1の露光光源と、を備えた第1の露光ユニットと、
前記配向膜の移動方向における前記第1のスリットマスクの下流側において、前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の移動方向に平行の複数個の第2のスリットが形成された第2のスリットマスクと、前記第2のスリットマスクを介して前記配向膜の前記配向材料膜を露光する第2の露光光源と、を備えた第2の露光ユニットと、
を有し、
前記第2のスリットマスクの前記第2のスリットは、前記第1のスリットマスクの前記第1のスリットの配列ピッチと同一のピッチで配置されており、
前記第1のスリットと前記第2のスリットは、前記配向膜の幅方向について、前記第1及び第2のスリットの配列ピッチの1/2のピッチだけ、前記配向膜の幅方向に偏倚するように、前記第1のスリットマスクと前記第2のスリットマスクとが配置されていることを特徴とする。
The film exposure apparatus according to the present invention comprises:
An alignment film in which an alignment material film is applied on one surface of a transparent film substrate is wound with the alignment material film outside, and the alignment film is supported along the peripheral surface while supporting the alignment film on the peripheral surface. And back roll to move
A first slit mask disposed so as to face the alignment film wound around the back roll and formed with a plurality of first slits parallel to a moving direction of the alignment film; A first exposure unit comprising: a first exposure light source that exposes the alignment material film of the alignment film through a slit mask;
On the downstream side of the first slit mask in the moving direction of the alignment film, a plurality of second films are arranged so as to face the alignment film wound around the back roll and parallel to the moving direction of the alignment film. A second exposure unit comprising: a second slit mask in which two slits are formed; and a second exposure light source that exposes the alignment material film of the alignment film through the second slit mask. ,
Have
The second slits of the second slit mask are arranged at the same pitch as the arrangement pitch of the first slits of the first slit mask,
The first slit and the second slit are biased in the width direction of the alignment film by a half pitch of the arrangement pitch of the first and second slits in the width direction of the alignment film. Further, the first slit mask and the second slit mask are arranged.
 本発明に係る他のフィルム露光装置は、
透明のフィルム基材の一面に配向材料膜が塗布された配向膜が前記配向材料膜を外側にして巻き架けられ、前記配向膜をその周面で支持しつつ前記配向膜をその周面に沿って移動させるバックロールと、
前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の移動方向に平行の複数個の第1のスリットが形成された第1のスリットマスクと、前記第1のスリットマスクを介して前記配向膜の前記配向材料膜を露光する第1の露光光源と、を備えた第1の露光ユニットと、
前記配向膜の移動方向における前記第1のスリットマスクの下流側において、前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の幅方向に延びる開口が形成された第3のマスクと、前記第3のマスクを介して前記配向膜の前記配向材料膜を露光する第3の露光光源と、を備えた第2の露光ユニットと、
を有することを特徴とする。
Another film exposure apparatus according to the present invention is:
An alignment film in which an alignment material film is applied on one surface of a transparent film substrate is wound with the alignment material film outside, and the alignment film is supported along the peripheral surface while supporting the alignment film on the peripheral surface. And back roll to move
A first slit mask disposed so as to face the alignment film wound around the back roll and formed with a plurality of first slits parallel to a moving direction of the alignment film; A first exposure unit comprising: a first exposure light source that exposes the alignment material film of the alignment film through a slit mask;
An opening extending in the width direction of the alignment film is formed on the downstream side of the first slit mask in the moving direction of the alignment film so as to face the alignment film wound on the back roll. A second exposure unit comprising: a third mask; and a third exposure light source that exposes the alignment material film of the alignment film through the third mask;
It is characterized by having.
 本発明に係る更に他のフィルム露光装置は、
透明のフィルム基材の一面に配向材料膜が塗布された配向膜が前記配向材料膜を外側にして巻き架けられ、前記配向膜をその周面で支持しつつ前記配向膜をその周面に沿って移動させるバックロールと、
前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の移動方向に平行の複数個の第1のスリットが形成された第1のスリットマスクと、前記第1のスリットマスクを介して前記配向膜の前記配向材料膜を露光する第1の露光光源と、を備えた第1の露光ユニットと、
前記配向膜の移動方向における前記第1のスリットマスクの上流側において、前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の幅方向に延びる開口が形成された第4のマスクと、前記第4のマスクを介して前記配向膜の前記配向材料膜を露光する第4の露光光源と、を備えた第2の露光ユニットと、
を有することを特徴とする。
Still another film exposure apparatus according to the present invention is:
An alignment film in which an alignment material film is applied on one surface of a transparent film substrate is wound with the alignment material film outside, and the alignment film is supported along the peripheral surface while supporting the alignment film on the peripheral surface. And back roll to move
A first slit mask disposed so as to face the alignment film wound around the back roll and formed with a plurality of first slits parallel to a moving direction of the alignment film; A first exposure unit comprising: a first exposure light source that exposes the alignment material film of the alignment film through a slit mask;
An opening extending in the width direction of the alignment film is formed on the upstream side of the first slit mask in the moving direction of the alignment film so as to face the alignment film wound on the back roll. A second exposure unit comprising: a fourth mask; and a fourth exposure light source that exposes the alignment material film of the alignment film through the fourth mask;
It is characterized by having.
 前記露光光源は、一方がCW円偏光の露光光を前記配向膜に照射するものであり、他方がCCW円偏光の露光光を前記配向膜に照射するものであるように構成してもよく、また、前記露光光源は、一方が前記配向膜に対して前記配向膜の移動方向に40°傾斜するように入射する露光光を前記配向膜に照射するものであり、他方が前記配向膜に対して前記配向膜の移動方向に-40°傾斜するように入射する露光光を前記配向膜に照射するものであるように構成してもよい。 The exposure light source may be configured such that one is for irradiating the alignment film with CW circularly polarized exposure light, and the other is for irradiating the alignment film with CCW circularly polarized exposure light, In addition, the exposure light source irradiates the alignment film with exposure light that is incident on the alignment film so that the alignment film is inclined by 40 ° in the moving direction of the alignment film. The alignment film may be configured to irradiate the alignment film with exposure light incident so as to be inclined by −40 ° in the moving direction of the alignment film.
 上記露光装置は、例えば、前記配向膜の進行方向における前記バックロールの上流側に設けられ、前記配向膜を冷却する冷却部材を有する。 The exposure apparatus includes, for example, a cooling member that is provided on the upstream side of the back roll in the traveling direction of the alignment film and cools the alignment film.
 また、上記露光装置は、前記配向膜の移動方向における前記第2の露光ユニットの下流側に配置され、前記配向膜に対する露光光の照射後の配向露光膜における露光光が照射された露光部を検査する検査部と、を有し、前記検査部は、前記配向露光膜を巻きかけると共に前記配向露光膜と共に回転する検査ロールと、前記検査ロールの周面又は前記ロールの内部に設置され検査用の照明光を出射する光源と、前記ロールに対向するように設置され前記配向露光膜を透過後の照明光を検出する受光部と、を有するように構成してもよく、また、前記露光ユニットは、前記配向材料膜に露光することにより、帯状の第1の露光部と、帯状の第2の露光部とを、前記配向材料膜の幅方向に交互に形成して、前記配向露光膜を形成するものであり、前記検査部は、前記ロールに設置され、前記光源からの照明光に対して第1の方向に偏光を付与する第1の偏光板と、前記ロールに対向するように設置され、前記受光部に入射する光に対して前記第1の方向に直交する方向に偏光を付与する第2の偏光板と、前記照明光の光軸に設けられたλ/4板と、を有するように構成してもよい。 The exposure apparatus is disposed downstream of the second exposure unit in the moving direction of the alignment film, and includes an exposure unit irradiated with exposure light in the alignment exposure film after irradiation of exposure light to the alignment film. An inspection unit that inspects, and the inspection unit winds the alignment exposure film and rotates with the alignment exposure film, and is installed on the peripheral surface of the inspection roll or inside the roll for inspection. A light source that emits the illumination light, and a light receiving unit that is installed to face the roll and detects the illumination light after passing through the alignment exposure film. Exposes the alignment material film to alternately form strip-shaped first exposure portions and strip-shaped second exposure portions in the width direction of the alignment material film, thereby forming the alignment exposure film. To form, The inspection unit is installed on the roll, and is installed so as to face the roll with a first polarizing plate that imparts polarized light in a first direction to the illumination light from the light source. A second polarizing plate that provides polarized light in a direction perpendicular to the first direction with respect to incident light; and a λ / 4 plate provided on the optical axis of the illumination light. Also good.
 更に、前記露光ユニットは、CW円偏光の露光光を前記配向膜に照射する露光光源により前記第1の露光部を形成し、CCW円偏光の露光光を前記配向膜に照射する露光光源により前記第2の露光部を形成するものであるように構成してもよく、また、前記露光ユニットは、前記配向膜上の配向材料膜に露光することにより、帯状の第1の露光部と、帯状の第2の露光部とを、前記配向材料膜の幅方向に交互に形成して、前記配向露光膜を形成するものであり、前記検査部の前記受光部は、前記配向露光膜を透過した照明光の第1の露光部による第1の配向方向に設けられた第1の受光部と、前記配向露光膜を透過した照明光の第2の露光部による第2の配向方向に設けられた第2の受光部とから構成されていてもよい。 Furthermore, the exposure unit forms the first exposure unit by an exposure light source that irradiates the alignment film with CW circularly polarized exposure light, and the exposure light source that irradiates the alignment film with CCW circularly polarized exposure light. The exposure unit may be configured to form a second exposure part, and the exposure unit exposes the alignment material film on the alignment film to thereby form a band-shaped first exposure part, Are formed alternately in the width direction of the alignment material film to form the alignment exposure film, and the light receiving unit of the inspection unit transmits the alignment exposure film. A first light receiving portion provided in the first alignment direction by the first exposure portion of the illumination light, and a second alignment direction by the second exposure portion of the illumination light transmitted through the alignment exposure film. You may be comprised from the 2nd light-receiving part.
 更にまた、前記露光ユニットは、前記配向膜に対して前記配向膜の移動方向に40°傾斜するように露光光を入射する露光光源により前記第1の露光部を形成し、前記配向膜に対して前記配向膜の移動方向に-40°傾斜するように露光光を入射する露光光源により前記第2の露光部を形成するものであるように構成してもよく、また、前記受光部の光軸上に配置され、前記配向露光膜の幅方向に延び、前記配向露光膜上の前記第1の露光部又は第2の露光部の幅方向にスケールが形成された透明のスケール部材を有するように構成してもよい。 Furthermore, the exposure unit forms the first exposure portion by an exposure light source that makes exposure light incident on the alignment film so as to be inclined by 40 ° in the moving direction of the alignment film. The second exposure portion may be formed by an exposure light source that receives exposure light so as to be inclined by −40 ° in the moving direction of the alignment film. A transparent scale member disposed on the axis, extending in a width direction of the alignment exposure film, and having a scale formed in the width direction of the first exposure portion or the second exposure portion on the alignment exposure film; You may comprise.
 また、上記フィルム露光装置は、前記検査部による検査前又は検査後の前記配向露光膜の搬送域に配置された第2の検査部を有し、
前記第2の検査部は、
検査光を出射する第2の光源と、前記第2の光源からの検査光に対して第1の方向の直線偏光を付与する第3の偏光板と、前記第3の偏光板を透過し更に前記配向露光膜を透過して第1の方向の円偏光を付与された検査光を第2の方向の直線偏光に変える第2のλ/4板と、前記第2の方向の直線偏光の検査光を透過する第4の偏光板と、前記第4の偏光板を透過した検査光を検出する第2の受光部と、
検査光を出射する第3の光源と、前記第3の光源からの検査光に対して第1又は第2の方向の直線偏光を付与する第5の偏光板と、前記第3の偏光板を透過し更に前記配向露光膜を透過して第2の方向の円偏光を付与された検査光を第2又は第1の方向の直線偏光に変える第3のλ/4板と、前記第2又は第1の方向の直線偏光の検査光を透過する第6の偏光板と、前記第6の偏光板を透過した検査光を検出する第3の受光部と、
を有するように構成してもよい。
In addition, the film exposure apparatus has a second inspection unit arranged in the transport area of the alignment exposure film before or after the inspection by the inspection unit,
The second inspection unit includes
A second light source that emits inspection light, a third polarizing plate that imparts linearly polarized light in a first direction to the inspection light from the second light source, and the third polarizing plate that passes through the third polarizing plate. A second λ / 4 plate that changes inspection light transmitted through the alignment exposure film and provided with circularly polarized light in the first direction to linearly polarized light in the second direction, and inspection of linearly polarized light in the second direction A fourth polarizing plate that transmits light, a second light receiving unit that detects inspection light transmitted through the fourth polarizing plate,
A third light source for emitting inspection light, a fifth polarizing plate for imparting linearly polarized light in the first or second direction to the inspection light from the third light source, and the third polarizing plate. A third λ / 4 plate that changes the inspection light transmitted through the alignment exposure film and provided with the circularly polarized light in the second direction to the linearly polarized light in the second or first direction; and the second or A sixth polarizing plate that transmits the linearly polarized inspection light in the first direction; a third light receiving unit that detects the inspection light transmitted through the sixth polarizing plate;
You may comprise so that it may have.
 本発明に係る露光装置は、露光対象の配向膜を第1方向に移動させる搬送装置と、
前記配向膜の両側部に、この配向膜の伸縮量の指標となるフィルムアライメントマークを形成する1対のアライメントマーカと、
露光光を出射する光源と、
前記第1方向に直交する第2方向に相互間に間隔をおいて配列された複数本のスリットが形成されていると共に、その前記第2方向の両端部に夫々マスクアライメントマークが形成されたマスクと、
前記第2方向に延びて全ての前記スリットと交差する開口が形成されており、前記開口と前記スリットとが交差する部分で前記露光光を透過させる遮光部材と、
前記マスクアライメントマークと共に前記フィルムアライメントマークを検出する検出部と、
前記遮光部材と前記マスクとの前記第1方向における相対的な位置を制御する制御部と、を有し、
前記スリットは、その幅が前記第1方向に関して線形的に変化しており、前記スリット間の間隔は前記第2方向にみたときに前記スリットの幅と同一であり、
前記制御部は、前記検出部が検出した前記マスクアライメントマークと前記フィルムアライメントマークとの位置関係が所定関係になるように、前記マスクと前記遮光部材との間の第1方向における相対的な位置を制御することを特徴とする。
An exposure apparatus according to the present invention includes a transport device that moves an alignment film to be exposed in a first direction;
A pair of alignment markers that form a film alignment mark on both sides of the alignment film as an index of the amount of expansion and contraction of the alignment film;
A light source that emits exposure light;
A mask having a plurality of slits arranged in a second direction orthogonal to the first direction and spaced apart from each other, and mask alignment marks formed at both ends in the second direction. When,
An opening extending in the second direction and intersecting all the slits is formed, and a light shielding member that transmits the exposure light at a portion where the opening and the slit intersect,
A detection unit for detecting the film alignment mark together with the mask alignment mark;
A control unit that controls a relative position of the light shielding member and the mask in the first direction;
The width of the slit changes linearly with respect to the first direction, and the interval between the slits is the same as the width of the slit when viewed in the second direction;
The controller controls the relative position in the first direction between the mask and the light shielding member so that the positional relationship between the mask alignment mark and the film alignment mark detected by the detector is a predetermined relationship. It is characterized by controlling.
 上記露光装置において、例えば、1対の前記マスクアライメントマークは、夫々前記第2方向の両端部に設けられたスリットのうちの最も近いスリットの幅方向の一方の側縁又はこのスリットの幅方向の中心線と夫々平行に設けられており、前記制御部は、前記遮光部材の前記開口の位置にて、前記フィルムアライメントマークと前記マスクアライメントマークとの前記第2方向における間隔が一定になるように前記マスクと前記遮光部材との第1方向における相対的な位置を制御するように構成してもよく、また、前記マスクには、前記第2方向における前記スリットの外方に前記フィルムアライメントマーク観察用の1対の観察窓が設けられ、この観察窓に前記マスクアライメントマークが設けられており、前記検出部は、前記マスクアライメントマークと共に、前記1対の観察窓を介して前記フィルムアライメントマークを検出するように構成してもよい。 In the above-described exposure apparatus, for example, the pair of mask alignment marks may be arranged at one side edge in the width direction of the closest slit among slits provided at both ends in the second direction or in the width direction of the slit. The control unit is provided in parallel with the center line so that the distance between the film alignment mark and the mask alignment mark in the second direction is constant at the position of the opening of the light shielding member. The relative position in the first direction between the mask and the light shielding member may be controlled, and the film alignment mark is observed on the mask outside the slit in the second direction. A pair of observation windows is provided, the mask alignment mark is provided on the observation window, and the detection unit With Rye placement marks, it may be configured to detect the film alignment mark through the pair of the observation window.
 また、前記制御部は、前記検出部が検出した1対の前記マスクアライメントマーク間の前記第2方向における中央位置が、1対の前記フィルムアライメントマーク間の前記第2方向における中央位置と一致するように、前記マスクの前記第2方向における位置を調節するように構成してもよく、また、前記光源、前記遮光部材及び前記マスクは、前記第1方向に離隔する位置に2組配置され、一方のマスクのスリットは、他方のマスクのスリットに対し、前記第2方向に前記スリットの配列ピッチだけ偏倚しているように配置されているように構成してもよく、また、前記2個の光源による露光により、相互に配向方向が異なる帯状の露光部を第2方向に交互に形成するように構成してもよい。 The control unit may be configured such that a central position in the second direction between the pair of mask alignment marks detected by the detection unit coincides with a central position in the second direction between the pair of film alignment marks. As described above, the mask may be configured to adjust the position of the mask in the second direction, and the light source, the light shielding member, and the mask are arranged in two sets at positions separated in the first direction, The slits of one mask may be arranged so as to be deviated by the arrangement pitch of the slits in the second direction with respect to the slits of the other mask. You may comprise so that the strip | belt-shaped exposure part from which an orientation direction mutually differs may be alternately formed in a 2nd direction by the exposure by a light source.
 本発明に係る他の露光装置は、
露光対象の配向膜を第1方向に移動させる搬送装置と、
前記配向膜の両側部にこの配向膜の伸縮量の指標となるフィルムアライメントマークを形成する1対のアライメントマーカと、
露光光を出射する光源と、
前記第1方向に直交する第2方向に相互間に間隔をおいて配列された複数本のスリットが形成され、前記1対のフィルムアライメントマークを観察するための1対の観察窓が設けられ、前記各観察窓内にマスクアライメントマークが形成されたマスクと、
前記第2方向に延びて全ての前記スリットと交差する開口が形成されており、前記開口と前記スリットとが交差する部分で前記露光光を透過させる遮光部材と、
前記各観察窓内の前記マスクアライメントマークと前記フィルムアライメントマークを検出する検出部と、
この検出部の検出結果に基づいて、前記遮光部材と前記マスクとの間の前記第1方向における相対的な位置関係を調節する制御部と、を有し、
前記スリットは、その第2方向の一端部の第1スリットが前記第1方向に平行であり、他端部の第2スリットが前記第1方向に対して最大傾度で傾斜しており、前記第1スリットと前記第2スリットとの間のスリットは、第1スリットから第2スリットに向けて徐々に傾斜角度が大きくなるように傾斜しており、
前記スリットは、その幅が前記第1方向に関して線形的に変化しており、前記スリット間の間隔は前記第2方向に関して前記スリットの幅と同一であり、
前記第1スリット側の第1マスクアライメントマークは、前記第1方向に延び、前記第2スリット側の第2マスクアライメントマークは、前記第2スリットの幅方向の一方の側縁又は幅方向の中心線と平行に延びていることを特徴とする。
Another exposure apparatus according to the present invention is:
A transport device for moving the alignment film to be exposed in the first direction;
A pair of alignment markers that form film alignment marks that serve as indicators of the amount of expansion and contraction of the alignment film on both sides of the alignment film;
A light source that emits exposure light;
A plurality of slits arranged in the second direction perpendicular to the first direction with a space between each other is formed, and a pair of observation windows for observing the pair of film alignment marks is provided, A mask having a mask alignment mark formed in each observation window;
An opening extending in the second direction and intersecting all the slits is formed, and a light shielding member that transmits the exposure light at a portion where the opening and the slit intersect,
A detection unit for detecting the mask alignment mark and the film alignment mark in each observation window;
A control unit that adjusts a relative positional relationship in the first direction between the light shielding member and the mask based on a detection result of the detection unit;
The slit has a first slit at one end in the second direction parallel to the first direction, and a second slit at the other end inclined at a maximum inclination with respect to the first direction, The slit between one slit and the second slit is inclined so that the inclination angle gradually increases from the first slit toward the second slit,
The slits vary linearly with respect to the first direction, and the spacing between the slits is the same as the width of the slits with respect to the second direction;
The first mask alignment mark on the first slit side extends in the first direction, and the second mask alignment mark on the second slit side is one side edge in the width direction of the second slit or the center in the width direction. It is characterized by extending parallel to the line.
 本発明に係る露光装置において、前記制御部は、前記第1マスクアライメントマークと対応する第1フィルムアライメントマークとの間の距離の基準値Aを設定し、前記第2マスクアライメントマークと対応する第2フィルムアライメントマークとの間の距離の基準値Bを設定し、前記配向膜の露光中に、前記第1マスクアライメントマークと前記第1フィルムアライメントマークとの間の距離が基準値Aから変動した場合に、前記マスクを前記第2方向に移動させて、前記第1マスクアライメントマークと前記第1フィルムアライメントマークとの間の距離を基準値Aに調節し、その上で、前記第2マスクアライメントマークと前記第2フィルムアライメントマークとの間の距離が基準値Bから変動している場合に、前記マスクを前記第1方向に移動させて、前記第2アライメントマークと前記第2フィルムアライメントマークとの間の距離を基準値Bに調節するように構成してもよい。 In the exposure apparatus according to the present invention, the control unit sets a reference value A of a distance between the first mask alignment mark and the corresponding first film alignment mark, and a second corresponding to the second mask alignment mark. The reference value B of the distance between the two film alignment marks was set, and the distance between the first mask alignment mark and the first film alignment mark varied from the reference value A during the exposure of the alignment film. In this case, the mask is moved in the second direction so that the distance between the first mask alignment mark and the first film alignment mark is adjusted to a reference value A, and then the second mask alignment is performed. When the distance between the mark and the second film alignment mark varies from the reference value B, the mask is moved to the first film alignment mark. Is moved in the direction, it may be configured to adjust the distance between the second film alignment mark and the second alignment mark to the reference value B.
 本発明に係る更に他の露光装置は、
フィルム基材上に配向材料膜が形成された配向膜を一方向に移動させる移動装置と、
前記配向膜の移動域に設けられ、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向に相互に間隔をおいた複数個の帯状の露光部からなる第1の露光パターンを形成する第1露光ユニットと、
前記配向膜の移動方向における前記第1露光ユニットの下流側に設置され、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向における前記第1露光パターンの露光部の相互間の領域に複数個の帯状の露光部からなる第2の露光パターンを形成する第2露光ユニットと、
前記第1露光ユニットと前記第2露光ユニットとの間の前記配向膜の移動域に設けられ、前記第1露光パターンの露光部を検出する検査部と、
前記検査部が検出した第1露光パターンの露光部の位置に基づいて、前記第2露光ユニットにおける前記第2の露光パターンの露光位置を制御する制御部と、
を有することを特徴とする。
Still another exposure apparatus according to the present invention provides:
A moving device for moving the alignment film in which the alignment material film is formed on the film substrate in one direction;
A plurality of strip-shaped exposure portions provided in a moving region of the alignment film, extending in the one direction and spaced from each other in a direction perpendicular to the one direction, on the alignment material film on the alignment film; A first exposure unit for forming a first exposure pattern comprising:
The first exposure pattern is disposed downstream of the first exposure unit in the moving direction of the alignment film, extends in the one direction on the alignment material film on the alignment film, and extends in the direction orthogonal to the one direction. A second exposure unit for forming a second exposure pattern composed of a plurality of strip-shaped exposure portions in a region between the exposure portions;
An inspection unit provided in a moving region of the alignment film between the first exposure unit and the second exposure unit, and detecting an exposure unit of the first exposure pattern;
A control unit for controlling the exposure position of the second exposure pattern in the second exposure unit based on the position of the exposure unit of the first exposure pattern detected by the inspection unit;
It is characterized by having.
 上記露光装置において、例えば、前記第1露光ユニットは、第1露光光源と、前記第1の露光パターンに対応する帯状のスリットが設けられた第1マスクとを有し、前記第1露光光源からの露光光を前記第1マスクの前記スリットにより整形して前記配向材料膜に照射するものであり、前記第2露光ユニットは、第2露光光源と、前記第2の露光パターンに対応する帯状のスリットが設けられた第2マスクとを有し、前記第2露光光源からの露光光を前記第2マスクの前記スリットにより整形して前記配向材料膜に照射するものであり、前記制御部は、前記第1露光パターンの露光部の位置に基づいて、前記第2露光ユニットにおける前記第2マスクの前記一方向に直交する方向の位置を調整するように構成してもよく、また、前記移動装置は、前記配向膜をバックロールに巻き架けて、移動させ、
前記第1露光ユニット、前記検査部及び前記第2露光ユニットは、前記バックロール上の前記配向膜に対向する位置に設置されているように構成してもよい。
In the exposure apparatus, for example, the first exposure unit includes a first exposure light source and a first mask provided with a band-shaped slit corresponding to the first exposure pattern. The exposure light is shaped by the slit of the first mask and irradiated to the alignment material film. The second exposure unit has a second exposure light source and a belt-like shape corresponding to the second exposure pattern. A second mask provided with a slit, the exposure light from the second exposure light source is shaped by the slit of the second mask and irradiated to the alignment material film, the control unit, The position of the second exposure unit in the direction orthogonal to the one direction may be adjusted based on the position of the exposure portion of the first exposure pattern, and the moving device , And wound around the alignment layer on the back roll is moved,
The first exposure unit, the inspection unit, and the second exposure unit may be configured to be installed at a position facing the alignment film on the back roll.
 前記検査部は、前記バックロールに対向するように設置され検査光を前記バックロール上の前記配向膜に向けて照射する検査光光源と、前記バックロールにて反射した反射光を検出するカメラと、前記配向膜に入射する検査光又は前記カメラに入射する反射光に対し偏光方向のフィルタをかける偏光子と、を有するように構成してもよく、また、前記検査部は、前記バックロールの周面に埋め込まれ検査光を前記バックロール上の前記配向膜に向けて照射する検査光光源と、前記検査光光源に対向するように設置され前記配向膜を透過してきた透過光を検出するカメラと、前記配向膜に入射する検査光又は前記カメラに入射する透過光に対し偏光方向のフィルタをかける偏光子と、を有するように構成してもよい。 The inspection unit is installed so as to face the back roll, irradiates inspection light toward the alignment film on the back roll, and a camera that detects reflected light reflected by the back roll; And a polarizer that filters the inspection light incident on the alignment film or the reflected light incident on the camera with a polarization direction filter, and the inspection unit includes the back roll. An inspection light source that is embedded in the peripheral surface and irradiates inspection light toward the alignment film on the back roll, and a camera that is installed to face the inspection light light source and detects transmitted light that has passed through the alignment film And a polarizer that filters the inspection light incident on the alignment film or the transmitted light incident on the camera with a polarization direction filter.
 前記移動装置は、前記配向膜の移動域を複数個の搬送ロール上に前記配向膜を掛け渡すことにより規定し、前記第1露光ユニット、前記検査部及び前記第2露光ユニットは、前記搬送ロール間の前記配向膜に対向する位置に設置されているように構成してもよく、また、前記検査部は、前記搬送ロール間の前記配向膜の一方の面側に設置され検査光を前記配向膜に向けて照射する検査光光源と、前記配向膜の他方の面側に設置され前記配向膜を透過した光を反射させる反射手段と、この反射手段で反射した反射光を検出するカメラと、前記配向膜に入射する検査光及び前記カメラに入射する反射光に対し夫々偏光方向のフィルタをかける偏光子と、を有するように構成してもよい。 The moving device defines a moving area of the alignment film by spanning the alignment film on a plurality of transport rolls, and the first exposure unit, the inspection unit, and the second exposure unit include the transport rolls. It may be configured to be installed at a position facing the alignment film in between, and the inspection unit is installed on one surface side of the alignment film between the transport rolls to inspect the inspection light. An inspection light source that irradiates the film, a reflection unit that is installed on the other surface side of the alignment film and reflects the light transmitted through the alignment film, a camera that detects the reflected light reflected by the reflection unit, You may comprise so that it may have a polarizer which filters each of the inspection light which injects into the alignment film, and the reflected light which injects into the camera in a polarization direction.
 前記検査部は、前記搬送ロール間の前記配向膜の一方の面側に設置され検査光を前記配向膜に向けて照射する検査光光源と、前記配向膜の他方の面側に設置され前記配向膜を透過してきた透過光を検出するカメラと、前記配向膜に入射する検査光及び前記カメラに入射する透過光に対し夫々偏光方向のフィルタをかける偏光子と、を有するように構成してもよく、また、前記第2マスクは、その複数個のスリットが、前記第1方向に直交する方向に隣接するスリットの相互間隔が前記第1方向に線形的に増加するように形成されており、前記第2露光ユニットは、前記第2マスクの全てのスリットに交差するように前記第1方向に直交する方向に延びる開口が形成された遮光部材を有し、前記制御部は、前記遮光部材の前記第2マスクに対する前記第1方向の位置を調整するように構成してもよい。 The inspection unit is installed on one surface side of the alignment film between the transport rolls and irradiates inspection light toward the alignment film, and the alignment light is installed on the other surface side of the alignment film. A camera that detects transmitted light that has passed through the film, and a polarizer that filters each of the inspection light incident on the alignment film and the transmitted light incident on the camera in a polarization direction. Well, the second mask is formed such that the plurality of slits are linearly increased in the first direction with respect to the slits adjacent to each other in the direction orthogonal to the first direction. The second exposure unit includes a light shielding member formed with an opening extending in a direction perpendicular to the first direction so as to intersect all the slits of the second mask, and the control unit includes a light shielding member of the light shielding member. Pair with the second mask It may be configured to adjust the position of said first direction that.
 更に、本発明に係るFPR製造方法は、フィルム基材上に配向材料膜が形成された配向膜を一方向に移動させながら、
前記配向膜の移動域に設けられた第1露光ユニットによって、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向に相互に間隔をおいた複数個の帯状の露光部からなる第1の露光パターンを形成する第1露光工程と、
前記配向膜の移動方向における前記第1露光ユニットの下流側に設置された第2露光ユニットによって、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向における前記第1露光パターンの露光部の相互間の領域に複数個の帯状の露光部からなる第2の露光パターンを形成する第2露光工程と、
前記第1露光工程と前記第2露光工程との間に前記第1露光パターンの露光部を検出する検査工程と、
を有し、
前記検査工程で検出された第1露光パターンの露光部の位置に基づいて、前記第2露光工程における前記第2露光ユニットによる前記第2の露光パターンの露光位置を制御することを特徴とする。
Furthermore, the FPR manufacturing method according to the present invention moves the alignment film in which the alignment material film is formed on the film substrate in one direction,
The first exposure unit provided in the moving region of the alignment film allows the alignment material film on the alignment film to extend in the one direction and be spaced apart from each other in a direction perpendicular to the one direction. A first exposure step of forming a first exposure pattern comprising a strip-shaped exposure portion of
A direction extending in the one direction and perpendicular to the one direction on the alignment material film on the alignment film by a second exposure unit installed on the downstream side of the first exposure unit in the moving direction of the alignment film. A second exposure step of forming a second exposure pattern comprising a plurality of strip-shaped exposure portions in a region between the exposure portions of the first exposure pattern in
An inspection step of detecting an exposed portion of the first exposure pattern between the first exposure step and the second exposure step;
Have
The exposure position of the second exposure pattern by the second exposure unit in the second exposure step is controlled based on the position of the exposure portion of the first exposure pattern detected in the inspection step.
 なお、本発明においては、フィルム基材上に配向材料膜を塗布したものを配向膜とし、この配向膜に対し露光を行ったものを配向露光膜とし、この配向露光膜の上に例えば液晶を塗布したものを偏光フィルムという。 In the present invention, an alignment film formed by applying an alignment material film on a film substrate is used as an alignment exposure film, and an alignment exposure film is formed by exposing the alignment film. The coated one is called a polarizing film.
 本発明によれば、表面に配向材料膜が形成された配向膜は、バックロールに巻き架けられ、その裏面をバックロールに支持された状態で、第1及び第2の露光光源から露光光が、第1及び第2のスリットマスクを介して、配向材料膜に照射される。従って、配向膜は、バックロールに支持されて、搬送中のシワが伸ばされ、第1及び第2のスリットマスクと配向膜との間の距離が高精度で設定された状態で、露光が行われるので、露光部の形成の精度が極めて高くなる。よって、本発明によれば、高精度で帯状の露光部を形成することができる。 According to the present invention, the alignment film having the alignment material film formed on the surface is wound around the back roll, and the exposure light is emitted from the first and second exposure light sources in a state where the back surface is supported by the back roll. The alignment material film is irradiated through the first and second slit masks. Therefore, the alignment film is supported by the back roll, and wrinkles during conveyance are extended, and exposure is performed in a state where the distance between the first and second slit masks and the alignment film is set with high accuracy. Therefore, the accuracy of formation of the exposed portion becomes extremely high. Therefore, according to the present invention, it is possible to form a strip-shaped exposed portion with high accuracy.
本発明の第1実施形態のフィルム露光装置を示す模式図である。It is a schematic diagram which shows the film exposure apparatus of 1st Embodiment of this invention. 同じく、そのバックロール及びスリットマスクの近傍で配向膜を展開して示す図である。Similarly, it is a figure which expands and shows alignment film near the back roll and slit mask. 本発明の第2実施形態のフィルム露光装置を示す模式図である。It is a schematic diagram which shows the film exposure apparatus of 2nd Embodiment of this invention. 同じく、そのバックロール及びスリットマスクの近傍で配向膜を展開して示す図である。Similarly, it is a figure which expands and shows alignment film near the back roll and slit mask. 本発明の第3実施形態のフィルム露光装置を示す模式図である。It is a schematic diagram which shows the film exposure apparatus of 3rd Embodiment of this invention. 同じく、そのバックロール及びスリットマスクの近傍で配向膜を展開して示す図である。Similarly, it is a figure which expands and shows alignment film near the back roll and slit mask. 本発明の第4実施形態のフィルム露光装置を示す模式図である。It is a schematic diagram which shows the film exposure apparatus of 4th Embodiment of this invention. 同じく、そのバックロール及びスリットマスクの近傍で配向膜を展開して示す図である。Similarly, it is a figure which expands and shows alignment film near the back roll and slit mask. 本発明の第5実施形態のフィルム露光装置を示す模式図である。It is a schematic diagram which shows the film exposure apparatus of 5th Embodiment of this invention. 同じく、そのバックロール及びスリットマスクの近傍で配向膜を展開して示す図である。Similarly, it is a figure which expands and shows alignment film near the back roll and slit mask. バックロールを使用したFPR方式の偏光フィルムの製造方法を示す図である。It is a figure which shows the manufacturing method of the polarizing film of a FPR system which uses a back roll. エアターンバーを示す模式的斜視図である。It is a typical perspective view which shows an air turn bar. バックロールを使用したフィルム露光装置を示す図である。It is a figure which shows the film exposure apparatus which uses a back roll. 同じく、そのバックロール及びスリットマスクの近傍で配向膜を展開して示す図である。Similarly, it is a figure which expands and shows alignment film near the back roll and slit mask. 本発明の第6実施形態のフィルム露光装置の検査部を示す平面図である。It is a top view which shows the test | inspection part of the film exposure apparatus of 6th Embodiment of this invention. 同じくその正面断面図である。It is the front sectional drawing similarly. 偏光方向を示す模式図である。It is a schematic diagram which shows a polarization direction. 本発明の第7実施形態のフィルム露光装置の検査部を示す正面断面図である。It is front sectional drawing which shows the test | inspection part of the film exposure apparatus of 7th Embodiment of this invention. 本発明の第8実施形態のフィルム露光装置の検査部を示す平面図である。It is a top view which shows the test | inspection part of the film exposure apparatus of 8th Embodiment of this invention. 同じく、その正面断面図である。Similarly, it is the front sectional view. 本発明の第9実施形態のフィルム露光装置の検査部を示す平面図である。It is a top view which shows the test | inspection part of the film exposure apparatus of 9th Embodiment of this invention. 同じく、その正面断面図である。Similarly, it is the front sectional view. 同じく、その動作説明図である。Similarly, it is the operation explanatory view. (a)は本発明の第10実施形態に係る露光装置の全体の構成を示す側面図、(b)はマスクを示す平面図、(c)は同じくアパーチャを示す平面図である。(A) is a side view showing the entire configuration of an exposure apparatus according to the tenth embodiment of the present invention, (b) is a plan view showing a mask, and (c) is a plan view showing the aperture. (a),(b)は、露光すべき幅が異なる配向膜を露光する場合に、アパーチャ及びマスクの相対的位置関係を配向膜と共に示す図である。(A), (b) is a figure which shows the relative positional relationship of an aperture and a mask with an alignment film, when exposing the alignment film from which the width | variety which should be exposed differs. (a),(b)は、フィルムアライメントマーク及びマスクアライメントマークによるマスク位置の調節を一例として示す図である。(A), (b) is a figure which shows adjustment of the mask position by a film alignment mark and a mask alignment mark as an example. 本発明の第10実施形態に係る露光装置において、配向膜が熱変形した場合における露光態様を示す図である。It is a figure which shows the exposure aspect when the alignment film is thermally deformed in the exposure apparatus which concerns on 10th Embodiment of this invention. 本発明の第10実施形態に係る露光装置において、マスクの変形例を示す平面図である。It is a top view which shows the modification of a mask in the exposure apparatus which concerns on 10th Embodiment of this invention. (a),(b)は、本発明の第11実施形態に係る露光装置による露光工程を示す図である。(A), (b) is a figure which shows the exposure process by the exposure apparatus which concerns on 11th Embodiment of this invention. 本発明の第12実施形態に係る露光装置のマスク及びアパーチャを示す平面図である。It is a top view which shows the mask and aperture of the exposure apparatus which concern on 12th Embodiment of this invention. 配向膜にアライメントマークを形成するレーザマーカを示す図である。It is a figure which shows the laser marker which forms an alignment mark in alignment film. アライメントマークを検出する2焦点カメラを示す図である。It is a figure which shows the bifocal camera which detects an alignment mark. 本発明の第12実施形態の動作を示す図である。It is a figure which shows operation | movement of 12th Embodiment of this invention. 本発明の第12実施形態の動作を示す図である。It is a figure which shows operation | movement of 12th Embodiment of this invention. 本発明の第12実施形態の動作を示す図である。It is a figure which shows operation | movement of 12th Embodiment of this invention. 本発明の第12実施形態の動作を示す図である。It is a figure which shows operation | movement of 12th Embodiment of this invention. 本発明の第13実施形態の露光装置を示す図である。It is a figure which shows the exposure apparatus of 13th Embodiment of this invention. 第1露光ユニット及び第2露光ユニットで形成される第1露光部及び第2露光部を示す図である。It is a figure which shows the 1st exposure part and 2nd exposure part which are formed with the 1st exposure unit and the 2nd exposure unit. 本発明の第13実施形態の露光装置の変形例を示す図である。It is a figure which shows the modification of the exposure apparatus of 13th Embodiment of this invention. 本発明の第14実施形態の露光装置を示す図である。It is a figure which shows the exposure apparatus of 14th Embodiment of this invention. 本発明の第14実施形態の露光装置の変形例を示す図である。It is a figure which shows the modification of the exposure apparatus of 14th Embodiment of this invention. 本発明の第15実施形態の露光装置を示す図である。It is a figure which shows the exposure apparatus of 15th Embodiment of this invention. 本発明の第16実施形態の露光装置を示す図である。It is a figure which shows the exposure apparatus of 16th Embodiment of this invention. 第1露光部を検知する方法を示す図である。It is a figure which shows the method of detecting a 1st exposure part. 偏光板による検査光の偏光態様を示す図である。It is a figure which shows the polarization aspect of the inspection light by a polarizing plate. 第2の露光ユニットにおける露光位置の調整に関し、(a)はマスクの変形例を示す図、(b)はアパーチャを示す図である。Regarding the adjustment of the exposure position in the second exposure unit, (a) is a diagram showing a modification of the mask, and (b) is a diagram showing an aperture. この露光位置の調整方法を示す図であり、(a)は配向膜に膨張がないとき、(b)は配向膜に膨張が発生したときのマスクとアパーチャとの相対的位置関係を示す図である。It is a figure which shows this adjustment method of an exposure position, (a) is a figure which shows the relative positional relationship of a mask and an aperture when expansion | swelling has generate | occur | produced in alignment film, (a) when there is no expansion | swelling in alignment film. is there. 同じく、露光位置の調整方法を示す図であり、(a)は配向膜に膨張がないとき、(b)は配向膜に膨張が発生したときのマスクとアパーチャとの相対的位置関係を示す図である。Similarly, it is a figure which shows the adjustment method of an exposure position, (a) is a figure which shows the relative positional relationship of a mask and an aperture when expansion | swelling generate | occur | produces in an alignment film, when (a) has no expansion | swelling in an alignment film. It is. マスクの変形例を示す図である。It is a figure which shows the modification of a mask. FPR方式の偏光フィルムを示す模式図である。It is a schematic diagram which shows the polarizing film of a FPR system. 従来の偏光フィルムの露光方法を示す模式図である。It is a schematic diagram which shows the exposure method of the conventional polarizing film. 同じく、そのスリットマスクによる露光方法を示す平面図である。Similarly, it is a top view which shows the exposure method by the slit mask. 同じく小型のスリットマスクを継ぎ合わせたフィルム露光方法を示す平面図である。It is a top view which shows the film exposure method which similarly joined the small slit mask. 露光検査部を示す模式図である。It is a schematic diagram which shows an exposure test | inspection part. 従来の露光装置において、配向膜が熱変形した場合における露光態様を一例として示す図である。In the conventional exposure apparatus, it is a figure which shows the exposure aspect when an alignment film is thermally deformed as an example.
 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1は本発明の実施形態に係るフィルム露光装置を示す模式図、図2はバックロール近傍の配向膜10を展開して示す図である。フィルム基材の表面上に、適宜の塗布装置において配向材料膜が塗布され、この配向材料膜が塗布された配向膜10は、そのまま、バックロール5の配設位置に送給され、又は、図51に示すように一旦ロール100として巻回された後、このロール100から巻き解かれて、バックロール5まで送給される。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing a film exposure apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing an expanded alignment film 10 in the vicinity of a back roll. On the surface of the film substrate, an alignment material film is applied by an appropriate application device, and the alignment film 10 to which this alignment material film is applied is fed as it is to the position where the back roll 5 is disposed, or FIG. After being wound once as a roll 100 as shown at 51, the roll 100 is unwound and fed to the back roll 5.
 バックロール5においては、その周面の略半分(下半分)だけ配向膜10が巻き架けられ、配向膜10の裏面がバックロール5に接触すると共に、配向膜10の表面、即ち、配向材料膜が外方を向く。このバックロール5を間に挟んで対向するようにして、マスク7、17が配向材料膜に面して配向膜10から若干の距離(200μm程度)をおいて設置されており、更に、このスリットマスク7、17の背後には、露光光源6、16が設置されている。これにより、表面に配向材料膜が塗布された配向膜10は、バックロール5の周面に接触し、配向膜10の搬送時の若干の張力によりシワが伸ばされた状態で、バックロール5により支持される。そして、配向膜10を白抜き矢印方向に連続的に搬送し、露光光源6、16から露光光を連続的に照射することにより、この露光光はマスク7、17の開口7a及びスリット17aを透過して配向膜10に照射される。これにより、露光後の配向露光膜11は、巻取ローラ101(図51参照)等に巻き取られる。 In the back roll 5, the alignment film 10 is wound on approximately half (lower half) of the peripheral surface, the back surface of the alignment film 10 contacts the back roll 5, and the surface of the alignment film 10, that is, the alignment material film. Facing outward. The masks 7 and 17 are placed facing the alignment material film with a slight distance (about 200 μm) from the alignment film 10 so as to face each other with the back roll 5 interposed therebetween. Exposure light sources 6 and 16 are installed behind the masks 7 and 17. As a result, the alignment film 10 having the alignment material film coated on the surface is in contact with the peripheral surface of the back roll 5, and the wrinkles are stretched by a slight tension when the alignment film 10 is conveyed. Supported. Then, the alignment film 10 is continuously conveyed in the direction of the white arrow, and the exposure light is continuously irradiated from the exposure light sources 6 and 16, whereby the exposure light is transmitted through the openings 7a and the slits 17a of the masks 7 and 17. Then, the alignment film 10 is irradiated. Thereby, the alignment exposure film 11 after the exposure is wound around the winding roller 101 (see FIG. 51) or the like.
 バックロール5は内部を水冷された水冷ロールであり、その中心軸の周りに回転可能になっている。そして、このバックロール5は、自由に回転することができ、配向膜10の移動とともに、その周速度が配向膜10の移動速度と同一になるように回転する。これにより、配向膜10はバックロール5の周面に相対的速度差が存在しない状態で支持される。従って、適宜の張力を印加されて搬送される配向膜10は、バックロール5の周面上で、シワが発生することが防止される。 The back roll 5 is a water-cooled roll whose inside is water-cooled, and is rotatable around its central axis. And this back roll 5 can rotate freely, and it rotates so that the peripheral speed becomes the same as the movement speed of the alignment film 10 with the movement of the alignment film 10. Thereby, the alignment film 10 is supported in a state where there is no relative speed difference on the peripheral surface of the back roll 5. Therefore, wrinkles are prevented from being generated on the peripheral surface of the back roll 5 in the alignment film 10 that is conveyed by applying an appropriate tension.
 バックロール5の周面における配向膜10が巻き架けられた部分の始端部の近傍には、このバックロール5に対向するようにして、マスク7が配置されており、このマスク7の背後には、マスク7を介して配向膜10を露光する露光光の光源6が配置されている。また、バックロール5の周面における配向膜10が巻き架けられた部分の後端部の近傍には、このバックロール5に対向するようにして、スリットマスク17が配置されており、このスリットマスク17の背後には、スリットマスク17を介して配向膜10を露光する露光光の光源16が配置されている。マスク7は、配向膜10の幅方向に延びてこの配向膜10の幅方向のほぼ全域で開口する開口7aを有し、スリットマスク17には、配向膜10の移動方向に若干長い矩形の複数個のスリット17aが、配向膜10の幅方向に配列されている。このスリット17aの配列ピッチは、FPR方式の3D液晶表示装置に対応して、走査線2ライン分に相当する。 A mask 7 is disposed in the vicinity of the start end of the portion around which the alignment film 10 is wound on the peripheral surface of the back roll 5 so as to face the back roll 5. A light source 6 of exposure light for exposing the alignment film 10 through the mask 7 is disposed. In addition, a slit mask 17 is disposed in the vicinity of the rear end portion of the peripheral surface of the back roll 5 where the alignment film 10 is wound so as to face the back roll 5. Behind 17, a light source 16 of exposure light for exposing the alignment film 10 through the slit mask 17 is disposed. The mask 7 has openings 7 a extending in the width direction of the alignment film 10 and opening in almost the entire width direction of the alignment film 10, and the slit mask 17 has a plurality of rectangular shapes slightly longer in the moving direction of the alignment film 10. The slits 17 a are arranged in the width direction of the alignment film 10. The arrangement pitch of the slits 17a corresponds to two scanning lines corresponding to the FPR type 3D liquid crystal display device.
 そして、例えば、露光光源6からの露光光は、時計方向に偏光する円偏光(CW(clockwise)円偏光)の光であり、露光光源16からの露光光は、反時計方向に偏光する円偏光(CCW(counter clockwise)円偏光)の光である。白抜き矢印にて示すように、一方向に移動する配向膜10に対して、マスク7の開口7aから露光光源6の露光光を配向膜10に照射することにより、配向膜10にはその両側部の部分を除いて、一面に露光光が照射される。また、スリットマスク17のスリット17aから露光光源16の露光光を配向膜10に照射することにより、このスリット17aに対応する配向膜10上の部分が、露光光源16からの露光光により、上書き露光される。 For example, the exposure light from the exposure light source 6 is clockwise polarized light (CW (clockwise) circularly polarized light), and the exposure light from the exposure light source 16 is circularly polarized light counterclockwise. (CCW (counter clockwise) circularly polarized light). As shown by the white arrow, the alignment film 10 is irradiated with the exposure light of the exposure light source 6 from the opening 7a of the mask 7 to the alignment film 10 moving in one direction. Except for the portion of the portion, the entire surface is irradiated with exposure light. Further, by irradiating the alignment film 10 with the exposure light of the exposure light source 16 from the slit 17a of the slit mask 17, the portion on the alignment film 10 corresponding to the slit 17a is overwritten by the exposure light from the exposure light source 16. Is done.
 配向膜10の表面上に、可逆性の配向材料膜が形成されており、先ず、マスク7の開口7aを介するCW円偏光の露光光により、配向膜10の表面の配向材料膜の全域が露光される。次いで、スリットマスク17のスリット17aからのCCW円偏光の露光光により、スリット17aに対応する帯状の領域が露光される。そうすると、スリット17aに対応する帯状の露光部分(CCW円偏光)は、露光部10bとなり、スリット17a間の部分に対応する帯状の部分(CW円偏光)は、露光部10aとなる。 A reversible alignment material film is formed on the surface of the alignment film 10. First, the entire area of the alignment material film on the surface of the alignment film 10 is exposed by CW circularly polarized exposure light through the opening 7 a of the mask 7. Is done. Next, a strip-shaped region corresponding to the slit 17 a is exposed by CCW circularly polarized exposure light from the slit 17 a of the slit mask 17. Then, the strip-shaped exposed portion (CCW circularly polarized light) corresponding to the slit 17a becomes the exposed portion 10b, and the strip-shaped portion (CW circularly polarized light) corresponding to the portion between the slits 17a becomes the exposed portion 10a.
 次に、上述のごとく構成された本実施形態のフィルム露光装置の動作について説明する。配向膜10は、その表面に配向材料膜が塗布され、例えば、幅が1500mm、厚さが100μm、1個のロール100のフィルム長は例えば2kmであり、通常、2~10m/分の速度で搬送される。また、例えば、この基材の材質は、COP(シクロオレフィンポリマー)又はTAC(トリアセチルセルロース)フィルムである。この配向膜10は、バックロール5の配設位置まで送給され、バックロール5に巻き架けられて支持される。そして、配向膜10の配向材料膜は、露光光源6から、マスク7の開口7aを介して、CW円偏光の露光光を配向膜10のほぼ全域に照射され、その後、露光光源16から、スリットマスク17のスリット17aを介して、CCW円偏光の露光光を帯状に照射され、このスリット17aに対応する配向膜10の部分が、CW円偏光の露光部から、CCW円偏光の露光部に上書き露光される。このとき、配向膜10の配向材料膜は、可逆性の材料であり、CW円偏光の露光光のほぼ配向膜10全面の照射により、配向膜10のほぼ全面が配向され、更に、CCW円偏光の露光光の帯状の照射により、この配向膜10における帯状の部分が配向される。これにより、配向膜10のスリット17aに対応する部分は、CCW円偏光による露光部10b(図50参照)が形成される。一方、この露光部10b間の帯状の部分はCW円偏光による露光部10aが形成される。このようにして、露光部10a、10bが交互に形成され、偏光部1a、1bが走査線1ラインに対応して形成されたFPR方式の偏光フィルムを製造することができる。 Next, the operation of the film exposure apparatus of this embodiment configured as described above will be described. The alignment film 10 is coated with an alignment material film on its surface. For example, the width is 1500 mm, the thickness is 100 μm, and the film length of one roll 100 is 2 km, for example, usually at a speed of 2 to 10 m / min. Be transported. For example, the material of this base material is a COP (cycloolefin polymer) or TAC (triacetyl cellulose) film. This alignment film 10 is fed to the position where the back roll 5 is disposed, and is wound around and supported by the back roll 5. The alignment material film of the alignment film 10 is irradiated with CW circularly polarized exposure light from the exposure light source 6 through the opening 7 a of the mask 7 over almost the entire area of the alignment film 10. CCW circularly polarized exposure light is irradiated in a band shape through the slit 17a of the mask 17, and the portion of the alignment film 10 corresponding to the slit 17a overwrites the CCW circularly polarized exposed portion from the CW circularly polarized exposed portion. Exposed. At this time, the alignment material film of the alignment film 10 is a reversible material, and substantially the entire surface of the alignment film 10 is aligned by irradiation of the entire alignment film 10 with exposure light of CW circularly polarized light. The band-shaped portion of the alignment film 10 is aligned by the band-shaped irradiation of the exposure light. Thereby, the exposure part 10b (refer FIG. 50) by CCW circularly polarized light is formed in the part corresponding to the slit 17a of the alignment film 10. FIG. On the other hand, an exposed portion 10a by CW circularly polarized light is formed in the band-like portion between the exposed portions 10b. In this way, it is possible to manufacture an FPR type polarizing film in which the exposing portions 10a and 10b are alternately formed and the polarizing portions 1a and 1b are formed corresponding to one scanning line.
 この場合に、薄い配向膜10は、バックロール5に支持され、またシワが伸ばされた状態で、スリットマスク17のスリット17aを介して露光がなされるので、配向膜10のシワ及び振動が防止されて、高精度で、露光部10a、10bを形成することができる。また、マスク7を介しての露光は、配向膜10の幅方向の全域に対してなされるので、マスク7と、スリットマスク17との間の位置合わせが不要であり、位置合わせの不良が存在せず、この点でも、露光部10a、10bを高精度で形成することができる。そして、本発明においては、1個のバックロール5に対して、2回の露光を行うので、各露光毎に高価なバックロールを使用する必要がなく、FPR偏光フィルムの製造コストを低減できる。 In this case, since the thin alignment film 10 is supported by the back roll 5 and is exposed through the slits 17a of the slit mask 17 in a state where the wrinkles are stretched, wrinkles and vibrations of the alignment film 10 are prevented. Thus, the exposed portions 10a and 10b can be formed with high accuracy. In addition, since the exposure through the mask 7 is performed on the entire area of the alignment film 10 in the width direction, the alignment between the mask 7 and the slit mask 17 is unnecessary, and there is an alignment defect. In this respect, the exposed portions 10a and 10b can be formed with high accuracy. And in this invention, since it exposes twice with respect to one back roll 5, it is not necessary to use an expensive back roll for every exposure, and can reduce the manufacturing cost of a FPR polarizing film.
 次に、図3及び図4を参照して、本発明の第2実施形態について説明する。本実施形態は、配向膜10が先ずスリット17aを有するスリットマスク17を介して、露光光源6からCW円偏光の露光光の照射を受け、次いで、開口7aを有するマスク7を介して、露光光源16からCCW円偏光の露光光の照射を受ける点が、第1実施形態と異なり、その他の構成は、第1実施形態と同様であるので、同一構成物には同一符号を付して、その詳細な説明は省略する。図4に示すように、露光光源6からのCW円偏光の露光光を、スリット17aを介して配向膜10上の配向材料膜に露光することにより、帯状の露光部10aを形成する。このとき、配向膜10上の配向材料膜は、非可逆性の材料であり、このCW円偏光の露光光の照射により、この部分の配向材料膜が配向される。次いで、露光光源16からのCCW円偏光の露光光を、開口7aを介して配向膜10上の配向材料膜に露光することにより、配向膜10のほぼ全面にCCW円偏光の露光光を照射する。このとき、露光部10aは、非可逆性の材料を用いて、CW円偏光により配向されているので、CCW円偏光の露光光の照射を受けても、配向は変化しない。そして、露光部10a間の露光光源6の未露光部が、露光光源16からのCCW円偏光の露光光の照射を受けて、この部分がCCW円偏光に対応する露光部10bとなる。これにより、図50に示すように、偏光部1aと偏光部1bとが走査線の1ラインに対応して交互に位置する偏光フィルム1を製造することができる。 Next, a second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the alignment film 10 is first irradiated with CW circularly polarized exposure light from the exposure light source 6 via the slit mask 17 having the slits 17a, and then exposed to the exposure light source via the mask 7 having the openings 7a. 16 is different from the first embodiment in that it receives CCW circularly polarized exposure light from 16, and the other components are the same as those in the first embodiment. Detailed description is omitted. As shown in FIG. 4, the strip-shaped exposed portion 10a is formed by exposing CW circularly polarized exposure light from the exposure light source 6 to the alignment material film on the alignment film 10 through the slits 17a. At this time, the alignment material film on the alignment film 10 is an irreversible material, and the alignment material film in this portion is aligned by irradiation of the CW circularly polarized exposure light. Next, CCW circularly polarized exposure light from the exposure light source 16 is exposed to the alignment material film on the alignment film 10 through the opening 7a, so that the entire surface of the alignment film 10 is irradiated with CCW circularly polarized exposure light. . At this time, since the exposure unit 10a is oriented by CW circularly polarized light using an irreversible material, the orientation does not change even when irradiated with CCW circularly polarized exposure light. Then, the unexposed portion of the exposure light source 6 between the exposure portions 10a receives the exposure light of CCW circularly polarized light from the exposure light source 16, and this portion becomes the exposure portion 10b corresponding to the CCW circularly polarized light. Thereby, as shown in FIG. 50, the polarizing film 1 in which the polarizing portions 1a and the polarizing portions 1b are alternately positioned corresponding to one line of the scanning lines can be manufactured.
 このようにして、本実施形態は、CW円偏光により帯状の露光部10aを形成した後、CCW円偏光の露光光の全面露光により、露光部10a間に露光部10bを形成するので、第1実施形態と同様に、マスク7とスリットマスク17との位置合わせは不要である。また、本実施形態も第1実施形態と同様に、配向膜10の振動及びシワが防止され、高精度で露光部10a、10bを形成することができる。これにより、走査線1ラインに高精度で整合した偏光部1a、1bを有するFPR偏光フィルム1を製造することができる。 In this way, in the present embodiment, after the strip-shaped exposure part 10a is formed by the CW circularly polarized light, the exposure part 10b is formed between the exposure parts 10a by the entire exposure of the CCW circularly polarized exposure light. As in the embodiment, alignment between the mask 7 and the slit mask 17 is not necessary. Further, in the present embodiment, similarly to the first embodiment, the alignment film 10 is prevented from being vibrated and wrinkled, and the exposed portions 10a and 10b can be formed with high accuracy. Thereby, the FPR polarizing film 1 which has the polarization | polarized-light parts 1a and 1b matched to the scanning line 1 line with high precision can be manufactured.
 次に、図5及び図6(a)、(b)を参照して本発明の第3実施形態について説明する。前述の第1及び第2実施形態は、FPR偏光フィルムの形成に関するものであるが、本実施形態は、光配向膜の形成に関するものである。本実施形態においては、第1実施形態と同様に、配向膜10がバックロール5に接触してバックロール5の従動回転とともに移動する配向膜10の移動域の始端部、即ち、バックロール5の周面における配向膜10が巻き架けられた部分の始端部の近傍に、開口7aを有するマスク7が配置され、前記移動域の後端部にスリット17aを有するマスク17が配置されている。本実施形態が第1実施形態と異なる点は、露光光源6からの露光光が、マスク7に対して、例えば、40°の傾斜角度で入射し、露光光源16からの露光光が、スリットマスク17に対して、例えば、-40°の傾斜角度で入射することである。 Next, a third embodiment of the present invention will be described with reference to FIGS. 5 and 6 (a) and 6 (b). The first and second embodiments described above relate to the formation of an FPR polarizing film, but the present embodiment relates to the formation of a photo-alignment film. In the present embodiment, as in the first embodiment, the alignment film 10 contacts the back roll 5 and moves along with the driven rotation of the back roll 5, that is, the start end of the moving region of the alignment film 10, that is, the back roll 5. A mask 7 having an opening 7a is disposed in the vicinity of the start end portion of the peripheral surface where the alignment film 10 is wound, and a mask 17 having a slit 17a is disposed at the rear end portion of the moving area. This embodiment is different from the first embodiment in that the exposure light from the exposure light source 6 is incident on the mask 7 at an inclination angle of 40 °, for example, and the exposure light from the exposure light source 16 is the slit mask. For example, the incident angle is 17 ° with an inclination angle of −40 °.
 本実施形態においては、可逆性の配向材料膜が形成された配向膜10に対して、配向膜10の搬送方向に40°傾斜する露光光を配向膜10のほぼ全域に照射し、その後、配向膜10の搬送方向に-40°傾斜する露光光をスリット17aに対応する帯状の領域(露光部10d)に照射して、この領域については、-40°傾斜露光光により上書き露光する。本実施形態においても、第1実施形態と同様に、2回の露光により、露光部10c、10dを形成するものであり、露光部10dにおいては、2回目の露光による-40°傾斜入射の露光光により配向方向が決まり、露光部10cにおいては、1回目の露光による40°傾斜入射の露光光により配向方向が決まる。これにより、光配向方向が交互に異なる露光部10c、10dを有する光配向膜を得ることができ、液晶表示装置の光配向膜として、視野角を拡大するために使用することができる。また、本実施形態においても、配向膜10の振動及びシワがなく、高精度で露光部10c、10dを形成することができる。しかも、マスク7とスリットマスク17との間の位置合わせが不要である。 In this embodiment, the alignment film 10 on which the reversible alignment material film is formed is irradiated with exposure light inclined at 40 ° in the transport direction of the alignment film 10 over almost the entire area of the alignment film 10, and then the alignment film 10 is aligned. Exposure light inclined at −40 ° in the transport direction of the film 10 is applied to the band-shaped region (exposure portion 10d) corresponding to the slit 17a, and this region is overwritten by exposure at −40 °. In the present embodiment as well, as in the first embodiment, the exposure portions 10c and 10d are formed by two exposures. In the exposure portion 10d, the exposure at −40 ° oblique incidence by the second exposure is performed. The alignment direction is determined by light, and in the exposure unit 10c, the alignment direction is determined by exposure light incident at an angle of 40 ° by the first exposure. Thereby, the photo-alignment film | membrane which has the exposure parts 10c and 10d from which a photo-alignment direction differs alternately can be obtained, and it can be used in order to expand a viewing angle as a photo-alignment film of a liquid crystal display device. Also in the present embodiment, there is no vibration and wrinkles of the alignment film 10, and the exposed portions 10c and 10d can be formed with high accuracy. In addition, alignment between the mask 7 and the slit mask 17 is unnecessary.
 次に、図7及び図8を参照して、本発明の第4実施形態について説明する。本実施形態は、第3実施形態と同様に、光配向膜の形成に関するものであるが、第3実施形態と異なる点は、配向膜10上の配向材料膜は非可逆性の材料であり、配向膜10に対する最初の露光は、スリット17aを有するスリットマスク17を使用して、露光光源6から40°傾斜の入射角度を有する露光光により配向膜10を照射し、次順の露光は、開口7aを有するマスク7を使用して、露光光源16から-40°傾斜の入射角度を有する露光光により配向膜10を照射することである。 Next, a fourth embodiment of the present invention will be described with reference to FIGS. This embodiment relates to the formation of the photo-alignment film, as in the third embodiment, but the difference from the third embodiment is that the alignment material film on the alignment film 10 is an irreversible material, The first exposure of the alignment film 10 is performed by irradiating the alignment film 10 with exposure light having an incident angle of 40 ° from the exposure light source 6 using the slit mask 17 having the slits 17a. The alignment film 10 is irradiated with exposure light having an incident angle of −40 ° from the exposure light source 16 using the mask 7 having 7a.
 本実施形態においては、先ず、スリット17aを介して、配向膜10の進行方向に対して40°で傾斜する露光光を配向膜10に入射させ、配向膜10に対して、帯状の露光部10cを形成する。この40°傾斜入射の露光光により、帯状の露光部10cを、その配向方向が40°傾斜になるように配向される。次に、開口7aを介して、配向膜10の進行方向に対して-40°で傾斜する露光光を配向膜10に入射させ、全面を-40°傾斜入射の露光光で照射する。このとき、露光部10cは、非可逆性の材料を用いて、配向されているので、-40°傾斜露光光の照射を受けても、その配向方向は変化せず、露光光源6からの露光光の未露光部が、-40°傾斜露光光の照射を受けて、この方向に配向方向が揃う。これにより、40°傾斜の露光部10cと-40°傾斜の露光部10dとが交互に形成された光配向膜を得ることができる。本実施形態においても、配向膜10の振動及びシワがなく、高精度で露光部10c、10dを形成することができる。しかも、マスク7とスリットマスク17との間の位置合わせが不要である。 In the present embodiment, first, exposure light inclined at 40 ° with respect to the traveling direction of the alignment film 10 is made incident on the alignment film 10 through the slits 17 a, and the strip-shaped exposure unit 10 c with respect to the alignment film 10. Form. With this 40 ° tilted incident light, the strip-shaped exposed portion 10c is oriented so that its orientation direction is tilted by 40 °. Next, exposure light inclined at −40 ° with respect to the traveling direction of the alignment film 10 is incident on the alignment film 10 through the opening 7a, and the entire surface is irradiated with exposure light inclined at −40 °. At this time, since the exposure unit 10c is oriented using an irreversible material, the orientation direction does not change even when irradiated with -40 ° tilted exposure light, and exposure from the exposure light source 6 is performed. An unexposed portion of light is irradiated with −40 ° tilt exposure light, and the alignment direction is aligned with this direction. As a result, it is possible to obtain a photo-alignment film in which the exposed portions 10c inclined by 40 ° and the exposed portions 10d inclined by −40 ° are alternately formed. Also in the present embodiment, there are no vibrations and wrinkles of the alignment film 10, and the exposed portions 10c and 10d can be formed with high accuracy. In addition, alignment between the mask 7 and the slit mask 17 is unnecessary.
 なお、本発明は、上記各実施形態に限らず、種々の変形が可能である。例えば、上記各実施形態においては、スリット17aを有するスリットマスク17と、開口7aを有するマスク7とを使用して、マスク7とスリットマスク17との位置合わせを不要としたが、図52に示すように、レーザマーカ110を使用して、配向膜10にマーク111を形成し、マスク7とスリットマスク17との配設位置で、このマーク111をカメラ等により観察してその位置を検出し、このマーク111を指標として、マスク7とスリットマスク17とを位置合わせすれば、図52に示すように、双方とも、スリットを有するスリットマスクを使用することができる。即ち、露光部10a、10b又は露光部10c、10dを夫々2個のスリットマスクにより形成することができる。この場合に、一方のスリットマスクのスリットは、他方のスリットマスクのスリットの配列ピッチと同一のピッチで形成され、一方のスリットマスクは、他方のスリットマスクに対して、スリットの配列ピッチの1/2のピッチだけ、配向膜10の幅方向に偏倚して配置される。また、上記第3実施形態及び第4実施形態において、露光光の入射傾斜角度が40°及び-40°であったが、この露光光の入射傾斜角度はこれに限らず、種々の角度を採用することができる。 It should be noted that the present invention is not limited to the above embodiments, and various modifications can be made. For example, in each of the embodiments described above, the slit mask 17 having the slits 17a and the mask 7 having the openings 7a are used, and the alignment between the mask 7 and the slit mask 17 is not required. As described above, the laser marker 110 is used to form the mark 111 on the alignment film 10, and the mark 111 is observed with a camera or the like at the position where the mask 7 and the slit mask 17 are disposed, and the position is detected. If the mask 7 and the slit mask 17 are aligned using the mark 111 as an index, a slit mask having a slit can be used for both as shown in FIG. That is, the exposure portions 10a and 10b or the exposure portions 10c and 10d can be formed by two slit masks. In this case, the slits of one slit mask are formed at the same pitch as the slit arrangement pitch of the other slit mask, and one slit mask is 1 / of the slit arrangement pitch with respect to the other slit mask. The pitch of 2 is arranged in a biased manner in the width direction of the alignment film 10. In the third embodiment and the fourth embodiment, the incident light incident inclination angles are 40 ° and −40 °. However, the exposure light incident inclination angle is not limited to this, and various angles are adopted. can do.
 次に、本発明の第5実施形態について説明する。本実施形態は、配向膜の進行方向におけるバックロールの上流側に、配向膜を冷却する冷却部材を設けたものである。以下、本発明の第5実施形態について、図9及び図10を参照して具体的に説明する。上述の第1乃至第4実施例により、配向膜10の上下振動による露光部の形成精度の低下は防止できるが、一般的に、偏光フィルムの製造方法においては、更に別の問題点がある。図11はこのバックロールを使用したFPR方式の偏光フィルム1の製造方法を示す模式図である。透明のフィルム基材12は、塗布装置2において、その表面(図示は下面)に配向材料膜が塗布される。この配向材料膜が塗布された配向膜10は、エアターンバー3,4によりその進行軌跡を規定されて、巻取ロール100(図51参照)に送給されて、巻き取られる。その後、バックロール5に送給され、バックロール5の表面に一旦巻き架けられた後、露光工程、液晶塗布工程及びポストベーク工程を経て、偏光フィルム1となり、その後、偏光フィルム1の巻取装置に送給される。この場合に、配向膜10はその表面に配向材料膜が塗布された状態で、その進行軌跡をエアターンバー3,4により規制され、配向膜10の配向材料膜が塗布された表面側がエアターンバー3,4側になるので、このエアターンバー3,4には、図12に示すように、その表面に空気の吐出孔31が多数設けられており、この吐出孔31から空気を吐出することにより、配向膜10がエアターンバー3,4に接触しないようになっている。つまり、配向膜10はエアターンバー3,4から浮いた状態で、その進行軌跡が規制される。 Next, a fifth embodiment of the present invention will be described. In the present embodiment, a cooling member for cooling the alignment film is provided on the upstream side of the back roll in the traveling direction of the alignment film. Hereinafter, a fifth embodiment of the present invention will be specifically described with reference to FIGS. 9 and 10. Although the first to fourth embodiments described above can prevent the formation accuracy of the exposed portion from being lowered due to the vertical vibration of the alignment film 10, there is generally still another problem in the method for manufacturing a polarizing film. FIG. 11 is a schematic view showing a method for producing an FPR type polarizing film 1 using this back roll. The transparent film substrate 12 is coated with an alignment material film on the surface (the lower surface in the drawing) in the coating apparatus 2. The alignment film 10 to which the alignment material film is applied has its travel locus defined by the air turn bars 3 and 4, is fed to the winding roll 100 (see FIG. 51), and is wound. Thereafter, the film is fed to the back roll 5 and once wound around the surface of the back roll 5, then the polarizing film 1 is obtained through an exposure process, a liquid crystal coating process, and a post-baking process. To be sent to. In this case, the alignment film 10 has its surface coated with the alignment material film, and its travel trajectory is regulated by the air turn bars 3 and 4, and the surface side of the alignment film 10 coated with the alignment material film is the air turn bar 3. , 4 side, the air turn bars 3 and 4 are provided with a large number of air discharge holes 31 on the surface thereof, as shown in FIG. 12, and by discharging air from the discharge holes 31, The alignment film 10 does not come into contact with the air turn bars 3 and 4. That is, the alignment trajectory of the alignment film 10 is regulated while being floated from the air turn bars 3 and 4.
 バックロール5においては、配向膜10が巻き架けられ、配向膜10の裏面がバックロール5に接触すると共に、配向膜10の表面、即ち、配向材料膜が外面を向く。このバックロール5を間に挟んで対向するようにして、スリットマスク7b、17が配向材料膜に面して配向膜10から若干の距離(200μm程度)をおいて設置されており、更に、このスリットマスク7b、17の背後には、露光光源6、16が設置されている。これにより、図13に示すように、表面に配向材料膜が塗布された配向膜10は、バックロール5の周面に接触し、配向膜10の搬送時の若干の張力によりシワが伸ばされた状態で、バックロール5により支持される。そして、図14に示すように、配向膜10を白抜き矢印方向に連続的に搬送し、露光装置6、16から露光光を連続的に照射することにより、この露光光はスリットマスク7b、17のスリット7c、17aを透過して配向膜10に照射され、配向材料膜に同一の方向に配向した帯状の露光部10a、10bが形成される。この帯状の露光部10a、10bは、走査線1ライン分に相当する間隔を有して相互に離隔しており、相互に異なる方向に配向されている。 In the back roll 5, the alignment film 10 is wound, the back surface of the alignment film 10 contacts the back roll 5, and the surface of the alignment film 10, that is, the alignment material film faces the outer surface. Slit masks 7b and 17 are placed at a slight distance (about 200 μm) from the alignment film 10 so as to face each other with the back roll 5 interposed therebetween. Behind the slit masks 7b and 17, exposure light sources 6 and 16 are installed. As a result, as shown in FIG. 13, the alignment film 10 with the alignment material film applied to the surface is in contact with the peripheral surface of the back roll 5, and the wrinkles are stretched by a slight tension during the conveyance of the alignment film 10. In the state, it is supported by the back roll 5. Then, as shown in FIG. 14, the alignment film 10 is continuously conveyed in the direction of the white arrow, and the exposure light is continuously irradiated from the exposure apparatuses 6 and 16, so that the exposure light is transmitted to the slit masks 7 b and 17. Then, the alignment film 10 is irradiated through the slits 7c and 17a to form the strip-shaped exposed portions 10a and 10b aligned in the same direction on the alignment material film. The strip-shaped exposure portions 10a and 10b are spaced apart from each other with an interval corresponding to one scanning line, and are oriented in different directions.
 しかしながら、図11に示すように、配向膜10は、表面に配向材料膜が塗布されているので、エアターンバー3,4に接触しないようにするために、このエアターンバー3,4の表面に形成された吐出孔31から、空気が吐出されている。このため、この配向膜10は吐出空気により加熱されてしまい、図14にバックロール5及びスリットマスク7b、17の近傍を平面的に展開して示すように、スリットマスク7b、17及びバックロール5に到達したときに、配向膜10はその幅方向に膨張している。また、この配向膜10の膨張は、露光前のプリベークによっても発生する。例えば、この基材の材質は、COP(シクロオレフィンポリマー)又はTAC(トリアセチルセルロース)フィルムであり、配向膜10の幅は1500mm、厚さは100μm、長さは2kmであり、通常、2~10m/分の速度で搬送されるが、例えば、この配向膜10の熱膨張により、幅Dが15~20μm(=2ΔD)程度伸びてしまうことがある。このように、配向膜10の常温時の幅Dに対し、スリットマスク7bに到達したときに、配向膜10の幅方向両端縁が夫々ΔDだけ膨張していると、この膨張した配向膜10に所定ピッチのスリットマスク7b、17のスリット7c、17aを介して露光すると、配向露光膜11が、その後、冷却されて常温に戻ったときに、伸び代2ΔDが0になるために、露光部10a、10bのピッチがその分小さくなり、所望のピッチの帯状偏光部1a、1bを得ることができない。このため、従来、スリットマスク7b、17のスリットの配列ピッチを、走査線1ラインの間隔に対し、熱膨張を加味した膨張分を上乗せしたものに設定し、配向露光膜11の常温への冷却後に所定ピッチになるようにしている。しかし、配向膜10の材質及び搬送速度等により、配向膜10の熱膨張量が異なり、この熱膨張量を予め見込んでスリットマスク7b、17を作成しておくことは煩雑であり、偏光部1a、1bを高精度で形成することは容易ではなかった。 However, as shown in FIG. 11, the alignment film 10 is formed on the surface of the air turn bars 3 and 4 so as not to contact the air turn bars 3 and 4 because the alignment material film is applied on the surface. Air is discharged from the discharged discharge holes 31. For this reason, the alignment film 10 is heated by the discharge air, and the slit masks 7b and 17 and the back roll 5 are shown in FIG. , The alignment film 10 expands in the width direction. Further, the expansion of the alignment film 10 also occurs due to pre-baking before exposure. For example, the base material is a COP (cycloolefin polymer) or TAC (triacetyl cellulose) film, the alignment film 10 has a width of 1500 mm, a thickness of 100 μm, and a length of 2 km. carried in 10 m / min. for example, the thermal expansion of the alignment film 10, the width D 0 is sometimes stretched 15 ~ 20μm (= 2ΔD) degree. Thus, with respect to the width D 0 at the normal temperature of the alignment layer 10, when it reaches the slit mask 7b, the both widthwise end edges of the alignment film 10 is expanded by each [Delta] D, the alignment layer 10 that the inflated When the exposure is performed through the slit masks 7b and 17a of the predetermined pitch, the alignment exposure film 11 is cooled and then returned to room temperature, so that the elongation margin 2ΔD becomes 0. The pitches 10a and 10b are reduced accordingly, and the band-shaped polarizing portions 1a and 1b having a desired pitch cannot be obtained. For this reason, conventionally, the arrangement pitch of the slits of the slit masks 7b and 17 is set to a value obtained by adding an expansion amount including thermal expansion to the interval of one scanning line, and cooling the alignment exposure film 11 to room temperature. A predetermined pitch is set later. However, the amount of thermal expansion of the alignment film 10 differs depending on the material of the alignment film 10 and the conveyance speed, and it is complicated to prepare the slit masks 7b and 17 in consideration of the amount of thermal expansion in advance. It was not easy to form 1b with high accuracy.
 また、露光光源6による露光時にも、配向膜10は加熱される。このため、バックロール5は内部が空洞になっていて、この内部が冷却水で充填されており、水冷されている。従って、配向膜10はバックロール5に接触して冷却されるものの、配向膜10はバックロール5の周面に接触して一定の摩擦力を受けており、幅方向に拘束されたままであるため、このバックロール5に接触して冷却されても、配向膜10はその幅方向に急速に縮むことはなく、図14に示すように、配向膜10は露光時には幅方向に膨張したままであり、その後、バックロール5から離れた後、バックロール5により冷却されていたことにより降温して常温時の幅に戻る。よって、バックロール5を冷却しても、得られた偏光フィルム1は、偏光部1a、1bの線幅のずれが生じたままである。 The alignment film 10 is also heated during exposure by the exposure light source 6. For this reason, the interior of the back roll 5 is hollow, and this interior is filled with cooling water and is cooled with water. Therefore, although the alignment film 10 is cooled in contact with the back roll 5, the alignment film 10 is in contact with the peripheral surface of the back roll 5 and receives a certain frictional force, and remains constrained in the width direction. Even if the alignment film 10 is cooled in contact with the back roll 5, the alignment film 10 does not shrink rapidly in the width direction, and the alignment film 10 remains expanded in the width direction during exposure as shown in FIG. Then, after leaving the back roll 5, the temperature is lowered by being cooled by the back roll 5, and the width at the normal temperature is restored. Therefore, even if the back roll 5 is cooled, the obtained polarizing film 1 still has a shift in the line width of the polarizing portions 1a and 1b.
 このため、本第5実施形態は、配向膜10の熱膨張に拘わらず、所定の間隔で露光部を形成することができ、偏光部が高精度で形成された偏光フィルムを得ることを目的とする。図9は本第5実施形態に係るフィルム露光装置を示す模式図である。従来同様に、配向膜10は塗布装置2によりその表面に配向材料膜が塗布された後、エアターンバー3,4を経由してバックロール5まで搬送されてくる(図11参照)。そして、配向膜10はバックロール5にその周面の略半分(下半分)だけ巻き架けられ、配向露光膜11の巻取装置に搬送される。バックロール5は内部を水冷された水冷ロールであり、その中心軸の周りに回転可能になっている。そして、このバックロール5は、自由に回転することができ、配向膜10の移動とともに、その周速度が配向膜10の移動速度と同一になるように回転する。これにより、配向膜10はバックロール5の周面に相対的速度差が存在しない状態で支持される。従って、適宜の張力を印加されて搬送される配向膜10は、バックロール5の周面上で、シワが発生することが防止される。 For this reason, the fifth embodiment is intended to obtain a polarizing film in which the exposed portions can be formed at predetermined intervals regardless of the thermal expansion of the alignment film 10 and the polarizing portions are formed with high accuracy. To do. FIG. 9 is a schematic view showing a film exposure apparatus according to the fifth embodiment. As in the past, after the alignment material film is applied to the surface of the alignment film 10 by the coating device 2, it is conveyed to the back roll 5 via the air turn bars 3 and 4 (see FIG. 11). Then, the alignment film 10 is wound around the back roll 5 by approximately half (lower half) of the peripheral surface thereof, and is conveyed to a winding device for the alignment exposure film 11. The back roll 5 is a water-cooled roll whose inside is water-cooled, and is rotatable around its central axis. And this back roll 5 can rotate freely, and it rotates so that the peripheral speed becomes the same as the movement speed of the alignment film 10 with the movement of the alignment film 10. Thereby, the alignment film 10 is supported in a state where there is no relative speed difference on the peripheral surface of the back roll 5. Therefore, wrinkles are prevented from being generated on the peripheral surface of the back roll 5 in the alignment film 10 that is conveyed by applying an appropriate tension.
 バックロール5の周面における配向膜10が巻き架けられた部分の始端部の近傍には、このバックロール5に対向するようにして、スリットマスク7bが配置されており、このスリットマスク7bの背後には、スリットマスク7bを介して配向膜10を露光する露光光の光源6が配置されている。また、バックロール5の周面における配向膜10が巻き架けられた部分の後端部の近傍には、このバックロール5に対向するようにして、スリットマスク17が配置されており、このスリットマスク17の背後には、スリットマスク17を介して配向膜10を露光する露光光の光源16が配置されている。この光源6及び光源16は、配向材料膜の材質にも依存するが、例えば、照射する露光光の偏光方向が相互に異なるか、又は配向膜10に対して相互に異なる方向から露光光を照射することにより、図2,図4,図6,図8に示すように、相互に異なる方向に配向した露光部10a、10b又は露光部10c、10dを交互に形成することができるものである。 A slit mask 7b is arranged in the vicinity of the start end portion of the peripheral surface of the back roll 5 where the alignment film 10 is wound, so as to face the back roll 5, and behind the slit mask 7b. Is provided with a light source 6 of exposure light for exposing the alignment film 10 through a slit mask 7b. In addition, a slit mask 17 is disposed in the vicinity of the rear end portion of the peripheral surface of the back roll 5 where the alignment film 10 is wound so as to face the back roll 5. Behind 17, a light source 16 of exposure light for exposing the alignment film 10 through the slit mask 17 is disposed. Although the light source 6 and the light source 16 depend on the material of the alignment material film, for example, the polarization directions of the exposure light to be irradiated are different from each other or the alignment film 10 is irradiated with the exposure light from different directions. By doing so, as shown in FIGS. 2, 4, 6, and 8, the exposed portions 10a, 10b or the exposed portions 10c, 10d oriented in different directions can be alternately formed.
 そして、配向膜10の進行方向におけるバックロール5の上流側には、冷却ロール8がその中心軸の周りに回転可能に配置されている。この冷却ロール8は、内部を水冷された水冷ロールであり、配向膜10の移動域において、冷却ロール8が配向膜10に転動して回転し、配向膜10を冷却するようになっている。 A cooling roll 8 is disposed on the upstream side of the back roll 5 in the traveling direction of the alignment film 10 so as to be rotatable around its central axis. The cooling roll 8 is a water-cooled roll whose inside is cooled with water. In the moving region of the alignment film 10, the cooling roll 8 rolls and rotates to the alignment film 10 to cool the alignment film 10. .
 図10はバックロール5及びスリットマスク7b、17の近傍で配向膜10を展開して示す模式図である。スリットマスク7b、17には、夫々複数個のスリット7c、17aが形成されており、そのスリット7c、17aの配列ピッチは、FPR方式の3D液晶表示装置に対応して、走査線2ライン分に相当する。そして、スリットマスク7b,17の配置は、スリットマスク7bのスリット7cによる帯状の露光部分の間の未露光部が、スリットマスク17のスリット17aにより露光されるように、走査線1ライン分だけ配向膜10の幅方向にシフトしている。即ち、スリットマスク17のスリット17aは、スリットマスク7bのスリット7cの配列ピッチと同一のピッチで配置されており、スリットマスク17は、スリット7c、17aの配列ピッチの1/2のピッチだけ、配向膜10の幅方向に偏倚して配置されている。 FIG. 10 is a schematic diagram showing the alignment film 10 developed in the vicinity of the back roll 5 and the slit masks 7 b and 17. A plurality of slits 7c and 17a are formed in the slit masks 7b and 17, respectively, and the arrangement pitch of the slits 7c and 17a corresponds to two scanning lines corresponding to the FPR type 3D liquid crystal display device. Equivalent to. The slit masks 7b and 17 are arranged by one scanning line so that the unexposed portion between the strip-shaped exposed portions by the slit 7c of the slit mask 7b is exposed by the slit 17a of the slit mask 17. The film 10 is shifted in the width direction. In other words, the slits 17a of the slit mask 17 are arranged at the same pitch as the arrangement pitch of the slits 7c of the slit mask 7b, and the slit mask 17 is oriented by a half of the arrangement pitch of the slits 7c and 17a. The film 10 is arranged so as to be biased in the width direction.
 次に、上述のごとく構成された本実施形態のフィルム露光装置の動作について説明する。配向膜10は、その表面に配向材料膜が塗布され、エアターンバー3,4から空気を吹き付けられて浮遊した状態でその移動軌跡を規制されて、バックロール5に搬送される。この際、吹き付けられる空気は、エアターンバー3,4からの排出の過程で、常温よりも例えば0~3℃高い温度に昇温してしまっており、その温度もばらついている。よって、配向膜10は、常温での幅D(例えば、1500mm)よりも、2ΔD(例えば、15~20μm)だけ、幅が伸張して、冷却ロール8の配設位置に到来する。そして、この冷却ロール8がこの配向膜10の裏面に転動することにより、配向膜10が冷却され、冷却ロール8からスリットマスク7bに至る途中で、配向膜10が徐々に降温して収縮し、その幅が徐々に減少していく。そして、配向膜10の幅は、配向膜10がスリットマスク7bの配設位置に到達したときには、エアターンバー3,4等による加熱前の常温時の幅に戻っており、配向膜10は、スリットマスク7bの配設位置において、スリットマスク7bを介して、露光光源6からの露光光の照射を受ける。 Next, the operation of the film exposure apparatus of the present embodiment configured as described above will be described. An alignment material film is applied to the surface of the alignment film 10, and the movement trajectory is regulated in a state where air is blown from the air turn bars 3 and 4 to float and the film is conveyed to the back roll 5. At this time, the blown air is heated to a temperature, for example, 0 to 3 ° C. higher than the normal temperature in the process of discharging from the air turn bars 3 and 4, and the temperature also varies. Therefore, the alignment film 10 extends in width by 2ΔD (for example, 15 to 20 μm) rather than the width D 0 (for example, 1500 mm) at normal temperature, and arrives at the position where the cooling roll 8 is disposed. The cooling roll 8 rolls to the back surface of the alignment film 10 to cool the alignment film 10, and the alignment film 10 gradually cools and contracts in the middle from the cooling roll 8 to the slit mask 7 b. , Its width gradually decreases. When the alignment film 10 reaches the position where the slit mask 7b is disposed, the width of the alignment film 10 returns to the width at room temperature before heating by the air turn bars 3, 4 or the like. Exposure light from the exposure light source 6 is received through the slit mask 7b at the position where the mask 7b is disposed.
 即ち、表面に配向材料膜が塗布された配向膜10は、バックロール5の周面の下半部に接触し、配向膜10の搬送時の張力によりバックロール5の周面上でシワが伸ばされた状態で支持される。そして、配向膜10を白抜き矢印方向に連続的に搬送し、バックロール5により支持した部分の始端部で、露光光源6から露光光を連続的に照射することにより、この露光光はスリットマスク7bのスリット7cを透過して配向膜10に照射され、配向材料膜に同一の方向に配向した帯状の露光部10aが形成される。この帯状の露光部10aは、走査線1ライン分に相当する間隔を有して相互に離隔しており、走査線2ライン分のピッチで形成される。 That is, the alignment film 10 with the alignment material film coated on the surface is in contact with the lower half of the peripheral surface of the back roll 5, and wrinkles are stretched on the peripheral surface of the back roll 5 due to the tension during conveyance of the alignment film 10. It is supported in the state. Then, the alignment film 10 is continuously conveyed in the direction of the white arrow, and the exposure light is continuously irradiated from the exposure light source 6 at the start end portion of the portion supported by the back roll 5, so that the exposure light is slit mask. The alignment film 10 is irradiated through the slit 7c of 7b, and a strip-shaped exposed portion 10a aligned in the same direction is formed on the alignment material film. The strip-shaped exposure portions 10a are spaced apart from each other with an interval corresponding to one scanning line, and are formed at a pitch of two scanning lines.
 次いで、配向膜10はバックロール5による支持部の後端部におけるスリットマスク17の配設位置に移動してくるので、露光光源16からスリットマスク17を介して露光光を配向膜10に照射する。そうすると、スリット7cによる未露光部は、スリットマスク7bに対して走査線1ライン分だけ配向膜10の幅方向にシフトした別のスリットマスク17のスリット17aを介して、露光光源16からの露光光の照射を受ける。これにより、同一の方向に配向した帯状の露光部10bが露光部10a間に形成され、帯状の露光部10a、10bが交互に形成される。露光部10aは-45°の直線偏光、露光部10bは+45°の直線偏光であるか、又は露光部10aはCW円偏光であり、露光部10bはCCW円偏光の膜である。これにより、FPR方式の偏光フィルムを製造することができる。 Next, since the alignment film 10 moves to the position where the slit mask 17 is disposed at the rear end portion of the support portion by the back roll 5, the alignment film 10 is irradiated with exposure light from the exposure light source 16 through the slit mask 17. . Then, the unexposed portion by the slit 7c is exposed to the exposure light from the exposure light source 16 via the slit 17a of another slit mask 17 shifted in the width direction of the alignment film 10 by one scanning line with respect to the slit mask 7b. Receive irradiation. Thereby, the strip-shaped exposure parts 10b oriented in the same direction are formed between the exposure parts 10a, and the strip-shaped exposure parts 10a, 10b are alternately formed. The exposure unit 10a is −45 ° linearly polarized light, the exposure unit 10b is + 45 ° linearly polarized light, or the exposure unit 10a is CW circularly polarized light, and the exposure unit 10b is a CCW circularly polarized film. Thereby, an FPR type polarizing film can be manufactured.
 この場合に、露光時に露光光の照射により配向膜10は加熱されるが、水冷のバックロール5により冷却されて配向膜10が昇温することはない。よって、配向膜10は、バックロール5に接触して支持されている間、常に一定の温度を有し、その幅Dが熱により変動することはない。従って、配向膜10に対し、走査線の各ラインに対応する露光部10a、10bを走査線の各ラインの位置に高精度で一致させて形成することができる。 In this case, the alignment film 10 is heated by exposure light exposure at the time of exposure, but the alignment film 10 is not heated by being cooled by the water-cooled back roll 5. Therefore, the alignment layer 10, while being supported in contact with the back roller 5, always has a constant temperature, it is not that the width D 0 is varied by heat. Therefore, the exposure portions 10a and 10b corresponding to the respective lines of the scanning line can be formed on the alignment film 10 with high accuracy and the positions of the respective lines of the scanning line.
 このように、本実施形態によれば、配向膜10は、バックロールに至る前に、冷却部材により冷却されるので、バックロールに巻き架けられるときには、例えば、常温になっており、常温で有効なスリットマスクを使用して、高精度で帯状の露光部を形成することができる。 As described above, according to the present embodiment, the alignment film 10 is cooled by the cooling member before reaching the back roll. Therefore, when the alignment film 10 is wound around the back roll, for example, it is at normal temperature and is effective at normal temperature. By using a simple slit mask, it is possible to form a strip-shaped exposed portion with high accuracy.
 また、本発明は上記実施形態に限らず、種々の変形が可能である。冷却部材としては、冷却ロール8に限らず、低温の物体を配向膜10に非接触で使用しても良い。即ち、配向膜10を低温の物体の近傍に通過させることにより、輻射伝熱で、配向膜10を冷却することができる。 Further, the present invention is not limited to the above embodiment, and various modifications can be made. The cooling member is not limited to the cooling roll 8, and a low-temperature object may be used in non-contact with the alignment film 10. That is, by passing the alignment film 10 in the vicinity of a low-temperature object, the alignment film 10 can be cooled by radiant heat transfer.
 また、本発明は、FPR方式の偏光フィルムの製造に限らず、例えば、視野角を拡大するための配向膜の形成にも適用することができる。 Further, the present invention is not limited to the manufacture of FPR type polarizing films, and can be applied to the formation of alignment films for expanding the viewing angle, for example.
 次に、本発明の第6実施形態について説明する。本実施形態は、配向膜に対し露光を行った配向露光膜の移動方向における露光ユニットの下流側に検査部を配置し、前記配向露光膜における露光光が照射された露光部を検査するものである。この検査部は、前記配向露光膜を巻きかけると共に前記前記配向露光膜と共に回転する検査ロールと、前記検査ロールの周面又は前記ロールの内部に設置され検査用の照明光を出射する光源と、前記ロールに対向するように設置され前記前記配向露光膜を透過後の照明光を検出する受光部と、を有する。 Next, a sixth embodiment of the present invention will be described. In this embodiment, an inspection unit is arranged on the downstream side of the exposure unit in the moving direction of the alignment exposure film that is exposed to the alignment film, and the exposure unit irradiated with the exposure light in the alignment exposure film is inspected. is there. The inspection unit winds the alignment exposure film and rotates with the alignment exposure film, and a light source that emits illumination light for inspection installed on a peripheral surface of the inspection roll or inside the roll, And a light receiving unit that is disposed so as to face the roll and detects illumination light transmitted through the alignment exposure film.
 図15は本発明の実施形態に係るフィルム露光装置の検査部を示す平面図、図16は同じくその正面断面図である。本実施形態の露光ユニットの構成は、第1実施形態の図1及び図2に示すものと同一であるので、その詳細な説明は省略する。図1及び図2に示すように、フィルム基材の表面上に、適宜の塗布装置において配向材料膜が塗布され、この配向材料膜が塗布された配向膜10は、そのまま、バックロール5の配設位置に送給され、又は、図51に示すように一旦ロール100として巻き取られた後、このロール100から巻き解かれて、バックロール5まで送給される。配向膜10は、バックロール5にて露光されて露光部が形成された後、この露光部が形成された配向露光膜11は、後述する検査部に送られる。 FIG. 15 is a plan view showing an inspection unit of the film exposure apparatus according to the embodiment of the present invention, and FIG. 16 is a front sectional view of the same. Since the configuration of the exposure unit of the present embodiment is the same as that shown in FIGS. 1 and 2 of the first embodiment, a detailed description thereof will be omitted. As shown in FIGS. 1 and 2, an alignment material film is applied on the surface of the film substrate by an appropriate application apparatus, and the alignment film 10 to which the alignment material film is applied is left as it is. 51, or once wound up as a roll 100 as shown in FIG. 51, then unwound from the roll 100 and fed to the back roll 5. After the alignment film 10 is exposed by the back roll 5 to form an exposure part, the alignment exposure film 11 on which the exposure part is formed is sent to an inspection part to be described later.
 次に、検査部について、図15及び図16を参照して説明する。配向露光膜11は、そのまま、検査部のロール20に送給され、このロール20に巻き架けられた後、巻取ローラ101(図51参照)等に巻き取られる。検査部のロール20には、その周面に、ロール軸方向に延びる溝20aが形成されており、この溝20a内に、ロール軸方向に延びる棒状の検査用照明光源21が配置されている。更に、この溝20a内には、この光源21の上方に、ロール軸方向に延びる第1の方向(例えば、p偏光)の直線偏光板22が配置されている。配向露光膜11は、ロール20に対し、少なくともその上部に接触して移動するように巻き架けられており、このロール20のロール軸の直上域には、照明光を検知する検査用カメラ25が配置されている。この検査用カメラ25は、ロール20の軸方向に延びるラインセンサであるか、又は同じくロール20の軸方向の横長の矩形の2次元領域にて光を検出するエリアセンサである。そして、この検査用カメラと、ロール軸との間には、下方のλ/4板23と上方の第2の方向(例えば、s偏光)の直線偏光板24とが配置されている。ロール20は、その軸の周りに自由に回転可能になっており、配向露光膜11がロール20に巻き架けられて移動することにより、配向露光膜11との間の摩擦力により、ロール20はその周速度が配向露光膜11の移動速度と同一の状態で回転する。そして、ロール20の溝20aがロール上端に回動してきたときに、光源21とカメラ25とが鉛直の光軸上にて正対する。 Next, the inspection unit will be described with reference to FIGS. 15 and 16. The alignment exposure film 11 is fed as it is to the roll 20 of the inspection section, wound around the roll 20, and then wound around the winding roller 101 (see FIG. 51). A groove 20a extending in the roll axis direction is formed on the peripheral surface of the roll 20 of the inspection unit, and a rod-shaped inspection illumination light source 21 extending in the roll axis direction is disposed in the groove 20a. Further, a linearly polarizing plate 22 in a first direction (for example, p-polarized light) extending in the roll axis direction is disposed above the light source 21 in the groove 20a. The alignment exposure film 11 is wound around the roll 20 so as to move at least in contact with the upper portion thereof, and an inspection camera 25 that detects illumination light is directly above the roll axis of the roll 20. Has been placed. The inspection camera 25 is a line sensor that extends in the axial direction of the roll 20, or an area sensor that detects light in a horizontally-long rectangular two-dimensional region in the axial direction of the roll 20. A lower λ / 4 plate 23 and an upper linear polarizing plate 24 in the second direction (for example, s-polarized light) are disposed between the inspection camera and the roll axis. The roll 20 is freely rotatable around its axis. When the alignment exposure film 11 is wound around the roll 20 and moved, the roll 20 is moved by the frictional force between the alignment exposure film 11 and the roll 20. The peripheral speed rotates in the same state as the moving speed of the alignment exposure film 11. When the groove 20a of the roll 20 is rotated to the upper end of the roll, the light source 21 and the camera 25 face each other on the vertical optical axis.
 図17は、直線偏光板61と露光部10a、10bに対応するフィルム部分62a,62bとλ/4板63とによる光の偏光状態を示す模式図である。なお、光学軸に対して45°で入射した直線偏光をCW円偏光に変換するλ/4板をCW円偏光板とし、光学軸に対して45°で入射した直線偏光をCCW円偏光に変換するλ/4板をCCW円偏光板とする。また、入射光のうち、CW円偏光板によりCW円偏光に変換される偏光成分をp偏光、p偏光に垂直な偏光成分をs偏光とし、p偏光のみを透過させる直線偏光板をp偏光板、s偏光のみを透過させる直線偏光板をs偏光板とする。図17の上図に示すように、光源60から出射された照明光は、p偏光板61によりp偏光の光に変換される。このp偏光の光は、CW円偏光の第1露光部10aに相当するフィルム部分62aを透過して、CW円偏光に変換される。このCW円偏光光はCW円偏光板63を透過すると、s偏光の光に変換される。一方、図17の下図に示すように、光源60から出射された照明光が、p偏光板61によりp偏光の光に変換された後、CCW円偏光の第2露光部10bに相当するフィルム部分62bを透過すると、CCW円偏光に変換される。このCCW円偏光光は、CW円偏光板63を透過すると、p偏光の光に変換される。 FIG. 17 is a schematic diagram showing the polarization state of light by the linear polarizing plate 61, the film portions 62a and 62b corresponding to the exposure portions 10a and 10b, and the λ / 4 plate 63. The λ / 4 plate that converts linearly polarized light incident at 45 ° to the optical axis into CW circularly polarized light is a CW circularly polarizing plate, and linearly polarized light incident at 45 ° to the optical axis is converted to CCW circularly polarized light. The λ / 4 plate to be used is a CCW circularly polarizing plate. In addition, among the incident light, a polarization component that is converted into CW circular polarization by the CW circular polarization plate is p polarization, a polarization component perpendicular to the p polarization is s polarization, and a linear polarization plate that transmits only p polarization is a p polarization plate. A linearly polarizing plate that transmits only s-polarized light is referred to as an s-polarizing plate. As shown in the upper diagram of FIG. 17, the illumination light emitted from the light source 60 is converted into p-polarized light by the p-polarizing plate 61. This p-polarized light is transmitted through the film portion 62a corresponding to the CW circularly polarized first exposure portion 10a and converted to CW circularly polarized light. When this CW circularly polarized light passes through the CW circularly polarizing plate 63, it is converted into s-polarized light. On the other hand, as shown in the lower diagram of FIG. 17, the illumination light emitted from the light source 60 is converted into p-polarized light by the p-polarizing plate 61, and then the film portion corresponding to the CCW circularly-polarized second exposure unit 10b. When the light passes through 62b, it is converted into CCW circularly polarized light. When this CCW circularly polarized light passes through the CW circularly polarizing plate 63, it is converted into p-polarized light.
 このようにして、配向露光膜11の第1露光部10a(CW円偏光部)を透過した光は、s偏光光としてCW円偏光板を出射し、配向露光膜11の第2露光部10b(CCW円偏光部)を透過した光は、p偏光光としてCW円偏光板を出射する。このため、CW円偏光板とカメラとの間に、s偏光板を設置すると、配向露光膜11のCW円偏光部を透過した光がカメラに入射して明部として検出され、配向露光膜11のCCW円偏光部を透過した光がカメラに入射せず、暗部として検出される。一方、CW円偏光板とカメラとの間に、p偏光板を設置すると、配向露光膜11のCCW円偏光部を透過した光がカメラに入射して明部として検出され、配向露光膜11のCW円偏光部を透過した光がカメラに入射せず、暗部として検出される。よって、直線偏光板とλ/4板とを組み合わせることにより、配向露光膜11上の帯状の露光部を検出することができる。 In this way, the light transmitted through the first exposure portion 10a (CW circular polarization portion) of the alignment exposure film 11 exits the CW circular polarization plate as s-polarized light, and the second exposure portion 10b ( The light transmitted through the CCW circularly polarized light portion is emitted from the CW circularly polarizing plate as p-polarized light. For this reason, when an s polarizing plate is installed between the CW circularly polarizing plate and the camera, light transmitted through the CW circularly polarizing part of the alignment exposure film 11 enters the camera and is detected as a bright part, and the alignment exposure film 11 is detected. The light that has passed through the CCW circularly polarized light portion is not incident on the camera and is detected as a dark portion. On the other hand, when a p-polarizing plate is installed between the CW circularly polarizing plate and the camera, the light transmitted through the CCW circularly polarizing portion of the alignment exposure film 11 enters the camera and is detected as a bright portion. The light transmitted through the CW circularly polarized light does not enter the camera and is detected as a dark part. Therefore, by combining the linearly polarizing plate and the λ / 4 plate, the strip-shaped exposed portion on the alignment exposure film 11 can be detected.
 次に、上述のごとく構成された本実施形態のフィルム露光装置の動作について説明する。配向膜10は、その表面に配向材料膜が塗布され、例えば、幅が1500mm、厚さが100μm、1個のロール100のフィルム長は例えば2kmであり、通常、2~10m/分の速度で搬送される。また、例えば、この基材の材質は、COP(シクロオレフィンポリマー)又はTAC(トリアセチルセルロース)フィルムである。この配向膜10は、バックロール5の配設位置まで送給され、バックロール5に巻き架けられて支持される。そして、配向膜10の配向材料膜は、露光光源6から、マスク7の開口7aを介して、CW円偏光の露光光を配向膜10のほぼ全域に照射され、その後、露光光源16から、スリットマスク17のスリット17aを介して、CCW円偏光の露光光を帯状に照射され、このスリット17aに対応する配向膜10の部分が、CW円偏光の露光部から、CCW円偏光の露光部に上書き露光される。このとき、配向膜10の配向材料膜は、可逆性の配向材料膜であり、CW円偏光の露光光のほぼ配向膜10全面の照射により、配向膜10のほぼ全面が配向され、更に、CCW円偏光の露光光の帯状の照射により、この配向膜10における帯状の部分が配向される。これにより、配向膜10のスリット17aに対応する部分は、CCW円偏光による露光部10b(図2参照)が形成される。一方、この露光部10b間の帯状の部分はCW円偏光による露光部10aが形成される。このようにして、露光部10a、10bが交互に形成され、偏光部1a、1bが走査線1ラインに対応して形成されたFPR方式の偏光フィルムを製造することができる。 Next, the operation of the film exposure apparatus of this embodiment configured as described above will be described. The alignment film 10 is coated with an alignment material film on its surface. For example, the width is 1500 mm, the thickness is 100 μm, and the film length of one roll 100 is 2 km, for example, usually at a speed of 2 to 10 m / min. Be transported. For example, the material of this base material is a COP (cycloolefin polymer) or TAC (triacetyl cellulose) film. This alignment film 10 is fed to the position where the back roll 5 is disposed, and is wound around and supported by the back roll 5. The alignment material film of the alignment film 10 is irradiated with CW circularly polarized exposure light from the exposure light source 6 through the opening 7 a of the mask 7 over almost the entire area of the alignment film 10. CCW circularly polarized exposure light is irradiated in a band shape through the slit 17a of the mask 17, and the portion of the alignment film 10 corresponding to the slit 17a overwrites the CCW circularly polarized exposed portion from the CW circularly polarized exposed portion. Exposed. At this time, the alignment material film of the alignment film 10 is a reversible alignment material film, and substantially the entire surface of the alignment film 10 is aligned by irradiation of the entire alignment film 10 with CW circularly polarized exposure light. The band-shaped portion in the alignment film 10 is aligned by irradiation with the band-shaped irradiation light of circularly polarized light. Thereby, the exposure part 10b (refer FIG. 2) by CCW circularly polarized light is formed in the part corresponding to the slit 17a of the alignment film 10. FIG. On the other hand, an exposed portion 10a by CW circularly polarized light is formed in the band-like portion between the exposed portions 10b. In this way, it is possible to manufacture an FPR type polarizing film in which the exposing portions 10a and 10b are alternately formed and the polarizing portions 1a and 1b are formed corresponding to one scanning line.
 この場合に、薄い配向膜10は、バックロール5に支持され、またシワが伸ばされた状態で、スリットマスク17のスリット17aを介して露光がなされるので、配向膜10のシワ及び振動が防止されて、高精度で、露光部10a、10bを形成することができる。また、マスク7を介しての露光は、配向膜10幅方向の全域に対してなされるので、マスク7と、スリットマスク17との間の位置合わせが不要であり、位置合わせの不良が存在せず、この点でも、露光部10a、10bを高精度で形成することができる。そして、本発明においては、1個のバックロール5に対して、2回の露光を行うので、各露光毎に高価なバックロールを使用する必要がなく、FPR偏光フィルムの製造コストを低減できる。 In this case, since the thin alignment film 10 is supported by the back roll 5 and is exposed through the slits 17a of the slit mask 17 in a state where the wrinkles are stretched, wrinkles and vibrations of the alignment film 10 are prevented. Thus, the exposed portions 10a and 10b can be formed with high accuracy. Further, since the exposure through the mask 7 is performed on the entire area in the width direction of the alignment film 10, the alignment between the mask 7 and the slit mask 17 is unnecessary, and there is no alignment defect. Even in this respect, the exposed portions 10a and 10b can be formed with high accuracy. And in this invention, since it exposes twice with respect to one back roll 5, it is not necessary to use an expensive back roll for every exposure, and can reduce the manufacturing cost of a FPR polarizing film.
 そして、露光後の配向露光膜11は、そのまま、検査部のロール20に搬送され、このロール20に巻き架けられた後、巻取ロール101(図51参照)等に巻き取られる。そして、この検査部において、配向露光膜11は、ロール20の回転と共に、ロール20の周速度と同一の移動速度で移動する。そして、ロール20の溝20a内の光源21が上方に回動してきたときに、光源21と、カメラ25とが正対し、光源21からの照明光が、カメラ25に入射する。このとき、光源21とカメラ25との光軸が一致し、この光軸上に、p偏光板22,λ/4板23及びs偏光板24が位置する。そして、光源21からの照明光は、p偏光板22によりp偏光の偏光軸を付与され、この照明光が、配向露光膜11を透過してCW円偏光又はCCW円偏光の光となってλ/4板23に入射し、このλ/4板23により、配向露光膜11を透過した円偏光が直線偏光に変換され、その後、s偏光板24によりs偏光の偏光軸を持つ光のみが検査用カメラ25に入射する。この場合に、配向露光膜11上の露光部10aがCW円偏光を有し、配向露光膜11上の露光部10bがCCW円偏光を有する場合、λ/4板23により直線偏光に変換された透過光は、s偏光の偏光軸を有する透過光のみがカメラ25に入射し、p偏光の偏光軸を有する透過光はカメラ25に入射しない。これにより、カメラ25においては、露光部10a又は露光部10bのいずれかを透過した光のみが明るく検出され、露光部10a又は露光部10bの幅(線幅)を検出することができる。そして、露光部10a又は露光部10bの配向方向が不正である場合は、カメラ25に検出される透過光のコントラストが小さいものとなり、配向方向の不正を検出することができる。小型のマスクを使用した場合の継ぎの部分における配向の異常が存在する場合は、露光部の幅の異常又は配向方向の不正として、検知することができる。 Then, the exposed alignment exposure film 11 is conveyed as it is to the roll 20 of the inspection section, wound around the roll 20, and then wound around the winding roll 101 (see FIG. 51). In this inspection section, the alignment exposure film 11 moves at the same moving speed as the peripheral speed of the roll 20 as the roll 20 rotates. Then, when the light source 21 in the groove 20 a of the roll 20 rotates upward, the light source 21 and the camera 25 face each other, and illumination light from the light source 21 enters the camera 25. At this time, the optical axes of the light source 21 and the camera 25 coincide with each other, and the p polarizing plate 22, the λ / 4 plate 23, and the s polarizing plate 24 are positioned on the optical axis. The illumination light from the light source 21 is given a p-polarization polarization axis by the p-polarizing plate 22, and this illumination light passes through the alignment exposure film 11 and becomes CW circularly polarized light or CCW circularly polarized light λ. / 4 plate 23, and this λ / 4 plate 23 converts the circularly polarized light transmitted through the alignment exposure film 11 into linearly polarized light, and thereafter, only the light having the s-polarized polarization axis is inspected by the s polarizing plate 24. Incident on the camera 25. In this case, when the exposure part 10a on the alignment exposure film 11 has CW circular polarization and the exposure part 10b on the alignment exposure film 11 has CCW circular polarization, it is converted into linearly polarized light by the λ / 4 plate 23. As for the transmitted light, only the transmitted light having the s-polarized polarization axis is incident on the camera 25, and the transmitted light having the p-polarized polarization axis is not incident on the camera 25. Thereby, in the camera 25, only the light transmitted through either the exposure unit 10a or the exposure unit 10b is brightly detected, and the width (line width) of the exposure unit 10a or the exposure unit 10b can be detected. When the alignment direction of the exposure unit 10a or the exposure unit 10b is incorrect, the contrast of transmitted light detected by the camera 25 is small, and the alignment direction can be detected. If there is an orientation abnormality in the joint portion when a small mask is used, it can be detected as an abnormality in the width of the exposed portion or an incorrect orientation direction.
 このようにして、本実施形態においては、ロール20が1回転する都度、配向露光膜11の線幅、配向方向、継ぎの部分の状態等を検査することができる。つまり、配向露光膜11に対し、ロール20の周長毎に、露光部の検査を実施することができる。よって、この露光部の検査により異常が発見された場合には、露光を中止し、以後の無駄なフィルム露光を回避することができ、歩留が向上する。この場合に、配向露光膜11はロール20の周面に支持されているので、中空状態で薄い、配向露光膜11が振動することはなく、高精度で、配向露光膜11の検査を実施することができる。なお、配向露光膜11はロール20の溝20aの縁部で、水平姿勢に屈曲するが、この溝20aの縁部をなめらかに加工しておけば、この縁部で、配向露光膜11にキズがつくことはない。 Thus, in this embodiment, every time the roll 20 makes one rotation, the line width, the alignment direction, the state of the joint portion, etc. of the alignment exposure film 11 can be inspected. That is, the exposed portion can be inspected with respect to the alignment exposure film 11 for each peripheral length of the roll 20. Therefore, when an abnormality is found by the inspection of the exposed portion, the exposure can be stopped and the subsequent useless film exposure can be avoided, thereby improving the yield. In this case, since the alignment exposure film 11 is supported on the peripheral surface of the roll 20, the alignment exposure film 11 is thin and hollow, and the alignment exposure film 11 does not vibrate, and the alignment exposure film 11 is inspected with high accuracy. be able to. The alignment exposure film 11 is bent horizontally at the edge of the groove 20a of the roll 20, but if the edge of the groove 20a is processed smoothly, the edge is scratched on the alignment exposure film 11. I won't be confused.
 次に、図18を参照して、本発明の第7実施形態について説明する。本実施形態においては、検査部のロール26が透明ガラス等の透明材料で形成されており、光源21及びp偏光板22がこのロール26内に埋設されているものである。即ち、透明のロール26の周面に溝26aを形成し、光源21及びp偏光板22をこの溝26a内に設置した後、溝26aの上部を透明の蓋26bで閉塞する。この蓋26bの上面は、ロール26の周面と同一曲率で湾曲しており、蓋26bが設置された状態で、ロール26はなめらかな円柱の周面を有するものとなる。よって、本実施形態においては、この溝26aの部分で、配向露光膜11が屈曲することはない。本実施形態においては、ロール26及び蓋26bが透明材料で形成されているので、照明光はロール外部に出射され、配向露光膜11を透過した後、最終的にカメラ25に入射する。 Next, a seventh embodiment of the present invention will be described with reference to FIG. In the present embodiment, the roll 26 of the inspection unit is formed of a transparent material such as transparent glass, and the light source 21 and the p polarizing plate 22 are embedded in the roll 26. That is, the groove 26a is formed on the peripheral surface of the transparent roll 26, and after the light source 21 and the p-polarizing plate 22 are installed in the groove 26a, the upper portion of the groove 26a is closed with the transparent lid 26b. The upper surface of the lid 26b is curved with the same curvature as the circumferential surface of the roll 26, and the roll 26 has a smooth cylindrical circumferential surface with the lid 26b installed. Therefore, in the present embodiment, the alignment exposure film 11 is not bent at the groove 26a. In this embodiment, since the roll 26 and the lid 26b are made of a transparent material, the illumination light is emitted to the outside of the roll, passes through the alignment exposure film 11, and finally enters the camera 25.
 更に、溝の数は上記各実施形態のように、1個に限らず、複数個設けることもできる。これにより、配向露光膜11における検査箇所のピッチを短くし、頻繁に検査することができる。なお、本発明において、λ/4板23は、CW円偏光板としてもよく、CCW円偏光板としてもよい。また、このλ/4板23は、ロール上方に設置する場合に限らず、ロール20、26の溝20a、26aの内部に設置することもできる。更に、p偏光板22とs偏光板24とは、上下逆に配置してもよい。 Furthermore, the number of grooves is not limited to one as in the above embodiments, and a plurality of grooves may be provided. Thereby, the pitch of the test | inspection location in the orientation exposure film | membrane 11 can be shortened, and it can test | inspect frequently. In the present invention, the λ / 4 plate 23 may be a CW circularly polarizing plate or a CCW circularly polarizing plate. In addition, the λ / 4 plate 23 is not limited to being installed above the roll, but can also be installed inside the grooves 20a and 26a of the rolls 20 and 26. Furthermore, the p polarizing plate 22 and the s polarizing plate 24 may be disposed upside down.
 本発明は、図3及び図4に示す第2実施形態の露光装置、図5及び図6に示す第3実施形態の露光装置、図7及び図8に示す第4実施形態の露光装置にも適用することができる。なお、図1及び図2の第1実施形態並びに図3及び図4の第2実施形態は、FPR偏光フィルムの形成に関するものであるが、図5及び図6の第3実施形態並びに図7及び図8の第4実施形態は、光配向膜の形成に関するものである。 The present invention also applies to the exposure apparatus of the second embodiment shown in FIGS. 3 and 4, the exposure apparatus of the third embodiment shown in FIGS. 5 and 6, and the exposure apparatus of the fourth embodiment shown in FIGS. Can be applied. The first embodiment of FIGS. 1 and 2 and the second embodiment of FIGS. 3 and 4 relate to the formation of the FPR polarizing film, but the third embodiment of FIGS. 5 and 6 and FIGS. The fourth embodiment of FIG. 8 relates to the formation of a photo-alignment film.
 次に、図19及び図20を参照して、本発明の第8実施形態について説明する。第8実施形態の露光ユニットは、図15及び図16に示す第6実施形態の露光ユニットに対し、λ/4板23とロール20との間のロール20の近傍に、配向露光膜11の幅方向に延びるスケール部材30が設けられている点が異なる。このスケール部材30は、その長手方向(配向露光膜11の幅方向)に目盛りとしてのスケールが設けられており、カメラ25は、配向露光膜11上の第1露光部10a又は第2露光部10bと共に、このスケール部材30のスケール(目盛り)を検出する。 Next, an eighth embodiment of the present invention will be described with reference to FIGS. The exposure unit of the eighth embodiment is different from the exposure unit of the sixth embodiment shown in FIGS. 15 and 16 in the vicinity of the roll 20 between the λ / 4 plate 23 and the roll 20 and the width of the alignment exposure film 11. The difference is that a scale member 30 extending in the direction is provided. The scale member 30 is provided with a scale as a scale in the longitudinal direction (the width direction of the alignment exposure film 11), and the camera 25 is provided with the first exposure unit 10a or the second exposure unit 10b on the alignment exposure film 11. At the same time, the scale (scale) of the scale member 30 is detected.
 本実施形態においては、第1の偏光板22、第2の偏光板24及びλ/4板23により、カメラ25に入射した第1露光部10aの像と、第2露光部10bの像とに重なって、スケール部材30のスケールの像もカメラ25に入射するので、第6実施形態と異なり、第1露光部10a及び第2露光部10bの線幅をスケールにより直接測定することができる。 In the present embodiment, the first polarizing plate 22, the second polarizing plate 24, and the λ / 4 plate 23 make the image of the first exposure unit 10a incident on the camera 25 and the image of the second exposure unit 10b. Overlapping and the scale image of the scale member 30 also enters the camera 25, unlike the sixth embodiment, the line widths of the first exposure unit 10a and the second exposure unit 10b can be directly measured by the scale.
 本発明においては、上記実施形態の検査部の他に、前記検査部による検査前又は検査後の前記配向露光膜の搬送域に第2の検査部を配置してもよい。この第2の検査部は、検査光を出射する第2の光源と、前記第2の光源からの検査光に対して第1の方向の直線偏光を付与する第3の偏光板と、前記第3の偏光板を透過し更に前記配向露光膜を透過して第1の方向の円偏光を付与された検査光を第2の方向の直線偏光に変える第2のλ/4板と、前記第2の方向の直線偏光の検査光を透過する第4の偏光板と、前記第4の偏光板を透過した検査光を検出する第2の受光部と、検査光を出射する第3の光源と、前記第3の光源からの検査光に対して第1又は第2の方向の直線偏光を付与する第5の偏光板と、前記第3の偏光板を透過し更に前記配向露光膜を透過して第2の方向の円偏光を付与された検査光を第2又は第1の方向の直線偏光に変える第3のλ/4板と、前記第2又は第1の方向の直線偏光の検査光を透過する第6の偏光板と、前記第6の偏光板を透過した検査光を検出する第3の受光部と、を有する。 In the present invention, in addition to the inspection unit of the above embodiment, a second inspection unit may be disposed in the transport area of the alignment exposure film before or after the inspection by the inspection unit. The second inspection unit includes: a second light source that emits inspection light; a third polarizing plate that imparts linearly polarized light in a first direction to the inspection light from the second light source; and A second λ / 4 plate that changes the inspection light transmitted through the polarizing plate 3 and further through the alignment exposure film and provided with the circularly polarized light in the first direction into linearly polarized light in the second direction; A fourth polarizing plate that transmits the linearly polarized inspection light in the direction 2, a second light receiving unit that detects the inspection light transmitted through the fourth polarizing plate, and a third light source that emits the inspection light. , A fifth polarizing plate that imparts linearly polarized light in the first or second direction to the inspection light from the third light source, and the third polarizing plate that passes through the alignment exposure film. A third λ / 4 plate for converting the inspection light given the circularly polarized light in the second direction into the linearly polarized light in the second or first direction, and the second or first direction A sixth polarizing plate that transmits linearly polarized inspection light; and a third light receiving unit that detects the inspection light transmitted through the sixth polarizing plate.
 次に、図21乃至図23を参照して、本発明の第9実施形態について説明する。本実施形態は、図19及び図20に示す第8実施形態に加えて、配向露光膜11の表面上の異物又は傷を検査するものである。本実施形態においては、ロール20に巻き架けられた配向露光膜11は、更に、ロール40に巻き架けられて巻き取りロール(図示せず)に巻き取られる。配向露光膜11はロール20とロール40との間を、例えば、水平に移動するが、このロール20,40間の配向露光膜11の移動域に、光源31a、第3の偏光板32a、第2のλ/4板33a、第4の偏光板34a、及びカメラ35aが、第3の偏光板32aと第2のλ/4板33aとの間に配向露光膜11を挟んで配置されており、更に、光源31b、第5の偏光板32b、第3のλ/4板33b、第6の偏光板34b、及びカメラ35bが、第5の偏光板32bと第3のλ/4板33bとの間に配向露光膜11を挟んで配置されている。 Next, a ninth embodiment of the present invention will be described with reference to FIGS. In the present embodiment, in addition to the eighth embodiment shown in FIGS. 19 and 20, foreign matters or scratches on the surface of the alignment exposure film 11 are inspected. In the present embodiment, the alignment exposure film 11 wound around the roll 20 is further wound around the roll 40 and wound around a winding roll (not shown). The alignment exposure film 11 moves, for example, horizontally between the roll 20 and the roll 40, and in the moving area of the alignment exposure film 11 between the rolls 20 and 40, a light source 31a, a third polarizing plate 32a, The second λ / 4 plate 33a, the fourth polarizing plate 34a, and the camera 35a are arranged with the alignment exposure film 11 sandwiched between the third polarizing plate 32a and the second λ / 4 plate 33a. Furthermore, the light source 31b, the fifth polarizing plate 32b, the third λ / 4 plate 33b, the sixth polarizing plate 34b, and the camera 35b are provided with the fifth polarizing plate 32b and the third λ / 4 plate 33b. The alignment exposure film 11 is interposed therebetween.
 本実施形態においては、第8実施形態と同様に、スケール部材30により第1露光部10a、第2露光部10bの線幅を直接測定した後、配向露光膜11は、カメラ35aとカメラ35bの配設位置に到達する。そうすると、図23に示すように、光源31aからの検査光は、p偏光板である第3偏光板32aによりp偏光光となり、配向露光膜11のCW円偏光(第1の円偏光)の第1露光部10aを透過して、CW円偏光光に変換された後、CW円偏光板である第2のλ/4板33aにより、s偏光に変換され(図17の上図参照)、p偏光板である第4偏光板34aを透過せず、カメラ35aに入射しない。よって、第1露光部10aの部分がカメラ35aに暗部として検出される。一方、CCW円偏光の第2露光部10bを透過した光は、CW円偏光板である第2のλ/4板33aによりp偏光に変換され(図17の下図参照)、p偏光板である第4偏光板34aを透過して、カメラ35aに入射するため、カメラ35aはこの部分を明部として検出する。この場合に、第1露光部10a上に、疵51(又は剥がれ)が存在する場合、この部分はCW円偏光光に変換されないため、暗部の帯の中に明部として検出される。また、第2露光部10b上に、異物52が存在する場合、この異物52の部分は光を透過させないため、カメラ35aに明部として検出されている第2露光部10bの帯の部分に、暗部として検出される。 In the present embodiment, as in the eighth embodiment, after the line widths of the first exposure unit 10a and the second exposure unit 10b are directly measured by the scale member 30, the alignment exposure film 11 is formed between the camera 35a and the camera 35b. The installation position is reached. Then, as shown in FIG. 23, the inspection light from the light source 31a becomes p-polarized light by the third polarizing plate 32a which is a p-polarizing plate, and the CW circularly polarized light (first circularly polarized light) of the alignment exposure film 11 is obtained. 1 is transmitted through the exposure unit 10a and converted into CW circularly polarized light, and then converted into s-polarized light by the second λ / 4 plate 33a which is a CW circularly polarizing plate (see the upper diagram of FIG. 17), p It does not pass through the fourth polarizing plate 34a, which is a polarizing plate, and does not enter the camera 35a. Therefore, the part of the first exposure unit 10a is detected by the camera 35a as a dark part. On the other hand, the light that has passed through the second exposure unit 10b that is CCW circularly polarized light is converted to p-polarized light by the second λ / 4 plate 33a that is a CW circularly polarizing plate (see the lower diagram in FIG. 17), and is a p polarizing plate. Since the light passes through the fourth polarizing plate 34a and enters the camera 35a, the camera 35a detects this portion as a bright portion. In this case, when the ridge 51 (or peeling) is present on the first exposure part 10a, this part is not converted into CW circularly polarized light, and thus is detected as a bright part in the band of the dark part. In addition, when the foreign matter 52 is present on the second exposure unit 10b, the portion of the foreign matter 52 does not transmit light, and therefore, in the band portion of the second exposure unit 10b detected as a bright portion by the camera 35a, It is detected as a dark part.
 光源31b及びカメラ35bが配置された検査部においては、上述と逆に、CCW円偏光(第2の円偏光)の第2露光部10bの部分を透過した検査光は、CCW円偏光板である第3のλ/4板33bにより、s偏光に変換され、p偏光板である第6偏光板34bを透過せず、カメラ35bに入射しないため、この部分はカメラ35bに暗部として検出される。CW円偏光(第1の円偏光)の第1露光部10aの部分を透過した検査光は、CW円偏光に変換された後、CCW円偏光板である第3のλ/4板33bにより、p偏光に変換され、p偏光板である第6偏光板34bを透過して、カメラ35bに入射するため、カメラ35bはこの部分を明部として検出する。従って、カメラ35bには、第2露光部10b上の疵51(又は剥がれ)が暗部の帯の中に明部として検出され、第1露光部10a上の異物52は明部の帯の中に暗部として検出される。このようにして、配向露光膜11上の異物52又は疵51等の欠陥は、カメラ35a、35bのいずれかに検出される。即ち、第1露光部10a上の疵51はカメラ35aにより検出され、異物52はカメラ35bにより検出される。第2露光部10b上の疵51はカメラ35bにより検出され、異物52はカメラ35aにより検出される。 In the inspection unit in which the light source 31b and the camera 35b are arranged, the inspection light transmitted through the second exposure unit 10b of CCW circularly polarized light (second circularly polarized light) is a CCW circularly polarizing plate, contrary to the above. The third λ / 4 plate 33b is converted into s-polarized light, does not pass through the sixth polarizing plate 34b, which is a p-polarizing plate, and does not enter the camera 35b. Therefore, this portion is detected by the camera 35b as a dark part. The inspection light transmitted through the portion of the first exposure unit 10a of CW circularly polarized light (first circularly polarized light) is converted into CW circularly polarized light, and then the third λ / 4 plate 33b, which is a CCW circularly polarizing plate, Since it is converted into p-polarized light, passes through the sixth polarizing plate 34b, which is a p-polarizing plate, and enters the camera 35b, the camera 35b detects this portion as a bright portion. Therefore, in the camera 35b, the eyelid 51 (or peeling) on the second exposure unit 10b is detected as a bright part in the dark part band, and the foreign matter 52 on the first exposure part 10a is in the bright part band. It is detected as a dark part. In this way, defects such as the foreign matter 52 or the ridge 51 on the alignment exposure film 11 are detected by either the camera 35a or 35b. That is, the eyelid 51 on the first exposure unit 10a is detected by the camera 35a, and the foreign matter 52 is detected by the camera 35b. The eyelids 51 on the second exposure unit 10b are detected by the camera 35b, and the foreign matter 52 is detected by the camera 35a.
 本発明によれば、露光膜10が移動している間に、この配向膜10に露光がされると共に、この露光された配向露光膜11の移動の間に配向露光膜11がロールに巻きかけられ、ロールの内部に配置された光源から、検査用の照明光が出射され、配向露光膜11はロールに巻きかけられた状態で照明光の照射を受ける。そして、配向露光膜11を透過した照明光は、ロール外部に配置された受光部に受光され、配向露光膜11が検査される。これにより、ロールの回転と共に、光源が受光部に回動してきたときに、配向露光膜11を透過した照明光が受光部に検知されて、露光品質が検査され、配向露光膜11は、移動している間に、ロールの周長と同一の間隔で、露光品質が検査される。その結果、露光品質上、問題があれば、問題検出後、直ちに、フィルム露光を中止し、マスク位置の調整等を行った後、フィルム露光を再開することができるので、無駄な露光を回避でき、偏光フィルムを形成する上で、その歩留まりを向上させることができる。しかも、本発明においては、ロールに巻きかけられた配向露光膜11に対して、検査を行うので、中空状態の配向露光膜11の振動に起因して検査精度が低下することがなく、高精度で検査することができる。 According to the present invention, the alignment film 10 is exposed while the exposure film 10 is moving, and the alignment exposure film 11 is wound around a roll during the movement of the exposed alignment exposure film 11. Then, the illumination light for inspection is emitted from the light source arranged inside the roll, and the alignment exposure film 11 is irradiated with the illumination light while being wound around the roll. And the illumination light which permeate | transmitted the alignment exposure film 11 is received by the light-receiving part arrange | positioned outside the roll, and the alignment exposure film 11 is test | inspected. As a result, when the light source rotates to the light receiving unit along with the rotation of the roll, the illumination light transmitted through the alignment exposure film 11 is detected by the light receiving unit, the exposure quality is inspected, and the alignment exposure film 11 moves. In the meantime, the exposure quality is inspected at the same interval as the circumference of the roll. As a result, if there is a problem in exposure quality, film exposure can be stopped immediately after the problem has been detected, and the mask exposure can be adjusted and then restarted, so unnecessary exposure can be avoided. In forming a polarizing film, the yield can be improved. Moreover, in the present invention, since the alignment exposure film 11 wound around the roll is inspected, the inspection accuracy does not decrease due to the vibration of the alignment exposure film 11 in the hollow state, and the high accuracy. Can be inspected.
 次に、本発明の第10実施形態について説明する。本実施形態の露光装置は、露光対象の配向膜を第1方向に移動させる搬送装置と、前記配向膜の両側部に、この配向膜の伸縮量の指標となるフィルムアライメントマークを形成する1対のアライメントマーカと、露光光を出射する光源と、前記第1方向に直交する第2方向に相互間に間隔をおいて配列された複数本のスリットが形成されていると共に、その前記第2方向の両端部に夫々マスクアライメントマークが形成されたマスクと、前記第2方向に延びて全ての前記スリットと交差する開口が形成されており、前記開口と前記スリットとが交差する部分で前記露光光を透過させる遮光部材と、前記マスクアライメントマークと共に前記フィルムアライメントマークを検出する検出部と、前記遮光部材と前記マスクとの前記第1方向における相対的な位置を制御する制御部と、を有し、前記スリットは、その幅が前記第1方向に関して線形的に変化しており、前記スリット間の間隔は前記第2方向にみたときに前記スリットの幅と同一であり、前記制御部は、前記検出部が検出した前記マスクアライメントマークと前記フィルムアライメントマークとの位置関係が所定関係になるように、前記マスクと前記遮光部材との間の第1方向における相対的な位置を制御するものである。 Next, a tenth embodiment of the present invention will be described. The exposure apparatus of this embodiment is a pair of a transport device that moves an alignment film to be exposed in a first direction and a film alignment mark that forms an index of the amount of expansion / contraction of the alignment film on both sides of the alignment film. The alignment marker, a light source that emits exposure light, and a plurality of slits arranged at intervals in a second direction orthogonal to the first direction are formed in the second direction. A mask having mask alignment marks formed at both ends thereof, and an opening extending in the second direction and intersecting all the slits, and the exposure light is formed at a portion where the opening and the slit intersect. A light shielding member that transmits light, a detection unit that detects the film alignment mark together with the mask alignment mark, and the light shielding member and the mask in the first direction. A control unit that controls a relative position, and the slit has a width that linearly changes with respect to the first direction, and an interval between the slits when viewed in the second direction. It is the same as the width of the slit, and the control unit is arranged between the mask and the light shielding member so that the positional relationship between the mask alignment mark and the film alignment mark detected by the detection unit is a predetermined relationship. The relative position in the first direction is controlled.
 図24(a)は本発明の実施形態に係る露光装置の全体の構成を示す側面図、図24(b)はマスクを示す平面図、図24(c)は同じく遮光部材としてのアパーチャを示す平面図である。図24(a)に示すように、本実施形態に係る露光装置には、例えばロール状の供給リール241から露光対象の配向膜201が連続的に供給され、巻き取り側のリール244に巻き取られるまでの間に、例えば、配向材料膜の塗布、露光、乾燥処理等が施される。なお、図24(a)においては、配向膜201に対する露光工程のみを図示している。例えば供給リール241及び巻取リール244は、モータ等の駆動装置により回転駆動されることにより、露光装置内に配向膜201が連続的に供給され、配向膜201の表面側又は裏面側に設けられた搬送ローラ242,243等により、配向膜201は緊張状態で支持されている。そして、露光装置内においては、配向膜201は、供給リール241及び巻取リール244の回転駆動力により、1方向に移動される。本実施形態においては、2個の搬送ローラ242,243間における配向膜201の上方に、光源、マスク及びアパーチャが2組設けられている。そして、光源205A,205Bから、夫々、偏光方向が異なる露光光を出射させ、アパーチャ203A,203B及びマスク202A,202Bを透過した露光光を配向膜201の表面に形成された配向材料膜に照射することにより、露光光ごとに配向方向が異なる露光部を帯状に形成する。即ち、例えば、光源205Aから出射された露光光により、偏光方向が-45°の直線偏光又は偏光方向がCW(Clock Wise)の円偏光の表示光を透過させる露光部aを形成し、光源205Bから出射された露光光により、偏光方向が+45°の直線偏光又は偏光方向がCCW(Counter Clock Wise)の円偏光の表示光を透過させる露光部bを形成する。 24A is a side view showing the overall configuration of the exposure apparatus according to the embodiment of the present invention, FIG. 24B is a plan view showing a mask, and FIG. 24C shows an aperture as a light shielding member. It is a top view. As shown in FIG. 24A, the exposure apparatus according to the present embodiment is continuously supplied with the alignment film 201 to be exposed from, for example, a roll-shaped supply reel 241 and wound on the take-up reel 244. In the meantime, for example, an alignment material film is applied, exposed, and dried. In FIG. 24A, only the exposure process for the alignment film 201 is shown. For example, the supply reel 241 and the take-up reel 244 are rotationally driven by a driving device such as a motor so that the alignment film 201 is continuously supplied into the exposure apparatus and is provided on the front surface side or the back surface side of the alignment film 201. The alignment film 201 is supported in a tension state by the transport rollers 242, 243 and the like. In the exposure apparatus, the alignment film 201 is moved in one direction by the rotational driving force of the supply reel 241 and the take-up reel 244. In the present embodiment, two sets of a light source, a mask, and an aperture are provided above the alignment film 201 between the two transport rollers 242 and 243. Then, the exposure light beams having different polarization directions are emitted from the light sources 205A and 205B, respectively, and the alignment material film formed on the surface of the alignment film 201 is irradiated with the exposure light transmitted through the apertures 203A and 203B and the masks 202A and 202B. Thus, an exposed portion having a different orientation direction for each exposure light is formed in a strip shape. That is, for example, exposure light a emitted from the light source 205A forms an exposure part a that transmits linearly polarized display light having a polarization direction of −45 ° or circularly polarized light having a polarization direction of CW (Clock Wise), and the light source 205B. The exposure portion b that transmits linearly polarized light having a polarization direction of + 45 ° or circularly polarized light having a polarization direction of CCW (Counter Clock Wise) is formed by the exposure light emitted from.
 配向膜201の移動方向の上流側には、配向膜201が露光時の加熱又は搬送時の冷却等により熱変形していない位置において、配向膜201の両側部に線状のフィルムアライメントマーク201aを形成するアライメントマーカ206が設けられている。なお、このフィルムアライメントマーク201aは、配向膜201のフィルム基材に形成してもよく、また配向膜201の配向材料膜に形成してもよい。 On the upstream side in the moving direction of the alignment film 201, linear film alignment marks 201a are formed on both sides of the alignment film 201 at positions where the alignment film 201 is not thermally deformed by heating during exposure or cooling during conveyance. An alignment marker 206 to be formed is provided. The film alignment mark 201 a may be formed on the film base material of the alignment film 201 or may be formed on the alignment material film of the alignment film 201.
 図24(b)に示すように、マスク202は、遮光性の材料からなる基部202aに、配向膜201の移動方向(第1方向)に直交する方向(第2方向)に複数本のスリット202bが配列されたものであり、各スリット202bは、その幅が長手方向に関して線形的に変化するように設けられており、スリット間の間隔は配向膜201の移動方向に直交する方向に関してスリットの幅と同一である。即ち、図24(b)に示すマスクにおいて、各スリット202bの幅は、最上部が最も狭く、スリットの長手方向に沿って下方へ行くほど、広くなるように設けられている。そして、各スリット202bは、配向膜201の移動方向に傾斜して延びている。このスリット202bの傾斜は、配向膜201の移動方向に直交する方向に関して、マスク202の中央よりも側部側の方が大きく、例えば配向膜201の移動方向における各スリット202bの長さを300mmとしたときに、マスク202の最も側部側のスリットの縁部は、配向膜201の移動方向における端部間が配向膜201の移動方向に直交する方向に500μm程度偏倚して設けられている。 As shown in FIG. 24B, the mask 202 has a plurality of slits 202b in a direction (second direction) orthogonal to the moving direction (first direction) of the alignment film 201, on a base portion 202a made of a light-shielding material. The slits 202b are arranged so that the width thereof changes linearly with respect to the longitudinal direction, and the interval between the slits is the width of the slit with respect to the direction orthogonal to the moving direction of the alignment film 201. Is the same. That is, in the mask shown in FIG. 24B, the width of each slit 202b is narrowest at the top, and is widened as it goes downward along the longitudinal direction of the slit. Each slit 202b extends in an inclined manner in the moving direction of the alignment film 201. The inclination of the slit 202b is larger on the side side than the center of the mask 202 in the direction orthogonal to the moving direction of the alignment film 201. For example, the length of each slit 202b in the moving direction of the alignment film 201 is 300 mm. In this case, the edge of the slit on the most side of the mask 202 is provided such that the end portion in the moving direction of the alignment film 201 is offset by about 500 μm in the direction orthogonal to the moving direction of the alignment film 201.
 マスク202の側部には、例えばアライメントマーカ206により配向膜201の側部に形成されたフィルムアライメントマーク201aを検出するための観察窓202dが、例えば配向膜201の移動方向におけるスリットの長さと同程度の長さで設けられており、観察窓202dには、配向膜201の移動方向に対して傾斜するようにマスクアライメントマーク202eが設けられている。このマスクアライメントマーク202eは、例えば配向膜201の移動方向に直交する方向における両端部に位置するスリット202bの側縁と平行な線状のマークである。図24(a)に示すように、マスク202の上方には、カメラ207(図24における符号207A,207B)が設けられており、カメラ207(207A,207B)により、マスクアライメントマーク202eと共に、観察窓202dを介してフィルムアライメントマーク201aを検出できるように構成されている。 On the side of the mask 202, for example, an observation window 202d for detecting the film alignment mark 201a formed on the side of the alignment film 201 by the alignment marker 206 has the same length as the slit in the moving direction of the alignment film 201, for example. The mask alignment mark 202e is provided in the observation window 202d so as to be inclined with respect to the moving direction of the alignment film 201. The mask alignment mark 202e is a linear mark parallel to the side edges of the slits 202b located at both ends in a direction orthogonal to the moving direction of the alignment film 201, for example. As shown in FIG. 24A, a camera 207 (reference numerals 207A and 207B in FIG. 24) is provided above the mask 202, and is observed together with the mask alignment mark 202e by the camera 207 (207A and 207B). The film alignment mark 201a can be detected through the window 202d.
 アパーチャ203は、例えばSUS製の遮光性の板材であり、図24(c)に示すように、その基部203aの中央には、1方向に延びるように、幅が例えば20乃至30mmの開口203bが設けられている。そして、この開口203bの長手方向が配向膜201の移動方向に直交するように光源205とマスク202との間に配置されている。よって、光源205から出射された露光光は、アパーチャ203によりその一部が遮光され、アパーチャ203の開口203bを透過した露光光のみがマスク202に照射される。よって、制御部により、配向膜201の移動方向におけるマスク202と遮光部材203との相対的位置が制御されることにより、マスク202に対する露光光の照射位置が配向膜201の移動方向に移動し、マスク202のスリット202bを透過して配向膜201上に照射される露光光の照射位置が配向膜201の移動方向に移動すると共に、露光光照射領域の幅が変化する。 The aperture 203 is a light-shielding plate material made of, for example, SUS, and as shown in FIG. 24C, an opening 203b having a width of, for example, 20 to 30 mm so as to extend in one direction is formed at the center of the base portion 203a. Is provided. And it arrange | positions between the light source 205 and the mask 202 so that the longitudinal direction of this opening 203b may be orthogonal to the moving direction of the alignment film 201. FIG. Therefore, a part of the exposure light emitted from the light source 205 is shielded by the aperture 203, and only the exposure light transmitted through the opening 203 b of the aperture 203 is irradiated to the mask 202. Therefore, the control unit controls the relative position between the mask 202 and the light shielding member 203 in the moving direction of the alignment film 201, so that the irradiation position of the exposure light on the mask 202 moves in the moving direction of the alignment film 201, The irradiation position of the exposure light that passes through the slit 202b of the mask 202 and is irradiated onto the alignment film 201 moves in the moving direction of the alignment film 201, and the width of the exposure light irradiation area changes.
 前記マスク202は、図25に示すように、例えばアクチュエータ等(図示せず)により、アパーチャ203に対して、相対的に配向膜201の移動方向に移動可能に構成されており、アパーチャ203とマスク202との配向膜201の移動方向における相対的位置は、図示しない制御部により制御されている。そして、制御部により、マスクアライメントマーク202eとフィルムアライメントマーク201aとの位置関係が所定関係になるように、配向膜201の移動方向におけるマスク202と遮光部材203との相対的位置が例えば以下のように制御される。 As shown in FIG. 25, the mask 202 is configured to be movable in the moving direction of the alignment film 201 relative to the aperture 203 by an actuator or the like (not shown), for example. A relative position in the moving direction of the alignment film 201 with respect to 202 is controlled by a control unit (not shown). Then, the relative position between the mask 202 and the light shielding member 203 in the moving direction of the alignment film 201 is, for example, as follows so that the positional relationship between the mask alignment mark 202e and the film alignment mark 201a becomes a predetermined relationship by the control unit. Controlled.
 上述の如く、本実施形態においては、マスク202に設けられた複数本のスリット202bは、配向膜201の移動方向に傾斜して延び、また、各スリット202bの幅は、配向膜201の移動方向に沿って線形的に変化するように設けられており、スリット間の間隔は配向膜201の移動方向に直交する方向からみたときにスリットの幅と同一である。よって、図25(a)及び図25(b)に示すように、アパーチャ203に対してマスク202が相対的に配向膜201の移動方向に移動されると、これに伴って、アパーチャ203の開口203bを透過してマスク202に照射される露光光の照射位置が配向膜201の移動方向に移動し、スリット202bに透過されて配向膜201上に照射される露光光の照射領域の幅が変化する。これにより、例えば露光時の高温等により、配向膜201が膨張した場合においても、変形後の配向膜201の幅に対応させて、配向膜201上に形成される帯状の露光部の幅を調節することができる。本実施形態においては、制御部は、例えば、カメラにより検出されるマスクアライメントマーク202eとフィルムアライメントマーク201aとが、配向膜201の移動方向に直交する方向において、一定の距離(例えば10mm)離隔するように、マスク202を配向膜201の移動方向に移動させる。これにより、配向膜201がその幅方向に膨張した場合においても、配向膜201の幅方向の伸び量に基づいて、配向膜201上の露光部の幅を調節することができる。 As described above, in the present embodiment, the plurality of slits 202b provided in the mask 202 extend while being inclined in the moving direction of the alignment film 201, and the width of each slit 202b is the moving direction of the alignment film 201. The distance between the slits is the same as the width of the slits when viewed from the direction orthogonal to the moving direction of the alignment film 201. Therefore, as shown in FIGS. 25A and 25B, when the mask 202 is moved in the moving direction of the alignment film 201 relative to the aperture 203, the aperture 203 opens accordingly. The irradiation position of the exposure light irradiated to the mask 202 through 203b is moved in the moving direction of the alignment film 201, and the width of the irradiation area of the exposure light transmitted to the alignment film 201 through the slit 202b is changed. To do. Thereby, for example, even when the alignment film 201 expands due to a high temperature at the time of exposure, the width of the strip-shaped exposed portion formed on the alignment film 201 is adjusted in accordance with the width of the alignment film 201 after deformation. can do. In the present embodiment, for example, the control unit separates the mask alignment mark 202e detected by the camera and the film alignment mark 201a from each other by a certain distance (for example, 10 mm) in a direction orthogonal to the moving direction of the alignment film 201. As described above, the mask 202 is moved in the moving direction of the alignment film 201. Thus, even when the alignment film 201 expands in the width direction, the width of the exposed portion on the alignment film 201 can be adjusted based on the amount of elongation of the alignment film 201 in the width direction.
 この制御部による、露光部の幅の制御方法について、図26を参照して詳細に説明する。図26は、フィルムアライメントマーク及びマスクアライメントマークによるマスク位置の調節を一例として示す図であり、図26(a)は、配向膜が幅方向に変形していない状態を示す図、図26(b)は、配向膜が幅方向に膨張した状態を示す図である。この図26において、符号271は、カメラ207による検出領域を示し、例えばこの検出領域271の配向膜201の移動方向における幅は、アパーチャ203の開口203bと同一の幅であり、カメラ207は、フィルムアライメントマーク201a及びマスクアライメントマーク202eを、開口203bと配向膜201の移動方向に並ぶ位置にて検出する。図26(a)に示すように、配向膜201がその幅方向に変形していない場合において、検出領域271におけるフィルムアライメントマーク201aとマスクアライメントマーク202eとの距離は、例えば10mmである。ここで、配向膜201が例えば露光時の加熱により、その幅方向に膨張した場合、図26(b)に示すように、フィルムアライメントマーク201aの位置は、観察窓202d内において、外側(図26における左側)に移動し、マスクアライメントマーク202eに対する距離が大きくなる。よって、アパーチャ203の位置を図26(a)に示す状態として露光を継続した場合、配向膜201は、その後の例えば搬送により冷却されて収縮し、膨張していない元の幅に戻ることにより、露光部の幅が狭くなる。従って、露光後の配向露光膜201cに形成された露光部a及び露光部bの幅は、例えば表示装置の画素又は絵素の幅に対して小さくなり、露光部a及び露光部bと表示装置の画素又は絵素との間に幅のずれが生じ、表示不良の原因となる。 The method for controlling the width of the exposure portion by this control portion will be described in detail with reference to FIG. FIG. 26 is a diagram illustrating adjustment of the mask position by the film alignment mark and the mask alignment mark as an example. FIG. 26A is a diagram illustrating a state in which the alignment film is not deformed in the width direction, and FIG. ) Is a view showing a state in which the alignment film is expanded in the width direction. In FIG. 26, reference numeral 271 indicates a detection area by the camera 207. For example, the width of the detection area 271 in the moving direction of the alignment film 201 is the same as the opening 203b of the aperture 203. The alignment mark 201a and the mask alignment mark 202e are detected at positions aligned in the movement direction of the opening 203b and the alignment film 201. As shown in FIG. 26A, when the alignment film 201 is not deformed in the width direction, the distance between the film alignment mark 201a and the mask alignment mark 202e in the detection region 271 is, for example, 10 mm. Here, when the alignment film 201 expands in the width direction due to, for example, heating during exposure, as shown in FIG. 26B, the position of the film alignment mark 201a is outside (see FIG. 26) in the observation window 202d. The distance to the mask alignment mark 202e increases. Therefore, when the exposure is continued with the position of the aperture 203 shown in FIG. 26A, the alignment film 201 is cooled and contracted by subsequent conveyance, for example, and returned to the original width that has not expanded. The width of the exposed portion is reduced. Accordingly, the widths of the exposure part a and the exposure part b formed on the alignment exposure film 201c after exposure are smaller than, for example, the width of pixels or picture elements of the display device, and the exposure part a, the exposure part b, and the display device. A deviation of the width occurs between the pixel or the picture element and causes a display defect.
 本実施形態においては、このフィルムアライメントマーク201aとマスクアライメントマーク202eとの間で一定の距離を維持するように、制御部は、例えば配向膜201の移動方向におけるマスク202の位置を制御する。即ち、図26(b)に示すように、制御部は、カメラ207による検出領域271内において、フィルムアライメントマーク201aとマスクアライメントマーク202eとの距離が10mmとなるように、マスク202をアパーチャ203に対して配向膜201の移動方向に相対的に移動させ、アパーチャ203の開口203bを、マスク202のスリット202bの幅広の領域に対応させる。よって、本実施形態においては、配向膜201の幅方向の伸び量に基づいて、配向露光膜201c上の露光部の幅を広く調節することができる。これにより、本実施形態においては、配向露光膜201cが、その後の例えば搬送により冷却されて収縮し、膨張していない元の幅に戻った場合においても、配向露光膜201cに形成された露光部a及び露光部bの幅を、例えば表示装置の画素又は絵素の幅に精度よく対応させることができ、表示不良を防止できる。 In this embodiment, the control unit controls the position of the mask 202 in the moving direction of the alignment film 201, for example, so as to maintain a certain distance between the film alignment mark 201a and the mask alignment mark 202e. That is, as shown in FIG. 26B, the control unit places the mask 202 in the aperture 203 so that the distance between the film alignment mark 201a and the mask alignment mark 202e is 10 mm in the detection area 271 by the camera 207. On the other hand, the alignment film 201 is moved in the moving direction so that the opening 203b of the aperture 203 corresponds to the wide area of the slit 202b of the mask 202. Therefore, in the present embodiment, the width of the exposed portion on the alignment exposure film 201c can be widely adjusted based on the amount of elongation in the width direction of the alignment film 201. Thereby, in this embodiment, even when the alignment exposure film 201c is cooled and contracted by subsequent conveyance, for example, and returns to the original width that has not expanded, the exposed portion formed on the alignment exposure film 201c. The width of a and the exposure part b can be made to correspond with the width of the pixel or picture element of the display device with high accuracy, and display defects can be prevented.
 また、マスクのスリット202bとフィルムアライメントマーク201aとは、実際には、例えば30mm程度離隔しているが、本実施形態のように、マスクアライメントマーク202eを配向膜201の移動方向に直交する方向の両端部に位置するスリット202bの側縁と平行に構成することにより、マスクアライメントマーク202eを配向膜201の移動方向に直交する方向の端部に設けられたスリット202bの側縁に見立てることができ、例えば10mm程度と狭い範囲内でアライメントを行い、露光部の幅を調節することができる。 In addition, the mask slit 202b and the film alignment mark 201a are actually separated by, for example, about 30 mm, but the mask alignment mark 202e is perpendicular to the moving direction of the alignment film 201 as in this embodiment. By configuring parallel to the side edges of the slit 202b located at both ends, the mask alignment mark 202e can be regarded as the side edge of the slit 202b provided at the end in the direction orthogonal to the moving direction of the alignment film 201. For example, alignment can be performed within a narrow range of about 10 mm, and the width of the exposed portion can be adjusted.
 なお、図26においては、図示の都合上、配向膜201及びマスク202の一方の側部のみを図示しているが、上記マスク位置の制御は、配向膜201の両側部のフィルムアライメントマーク201aとマスク202の両側部のマスクアライメントマーク202eとの間で行われる。つまり、配向膜201の一方の側のフィルムアライメントマーク201aとマスクアライメントマーク202eとの間の距離と、配向膜201の他方の側のフィルムアライメントマーク201aとマスクアライメントマーク202eとの間の距離とは、いずれも例えば10mmである。 In FIG. 26, for convenience of illustration, only one side of the alignment film 201 and the mask 202 is shown. However, the mask position is controlled by the film alignment marks 201a on both sides of the alignment film 201. This is performed between the mask alignment marks 202e on both sides of the mask 202. That is, the distance between the film alignment mark 201a on one side of the alignment film 201 and the mask alignment mark 202e and the distance between the film alignment mark 201a on the other side of the alignment film 201 and the mask alignment mark 202e are: , Both are, for example, 10 mm.
 しかし、搬送ローラ242,243間を移動する間に配向膜201が蛇行すると、配向膜201の移動方向に直交する方向におけるマスク202の中央位置と配向膜201の中央位置がずれ、配向膜201の一方の側部におけるフィルムアライメントマーク201aとマスクアライメントマーク202eとの間の距離が他方の側部におけるフィルムアライメントマーク201aとマスクアライメントマーク202eとの間の距離と異なってしまう。これを解消するために、本実施形態においては、制御部は、配向膜201の移動方向に直交する方向において、カメラ207が検出した1対のマスクアライメントマークの中央位置が、1対のフィルムアライメントマーク201aの中央位置と一致するように、マスク202の配向膜201の移動方向に直交する方向における位置を調節し、これにより、マスク202の中央位置と配向膜201の中央位置とを位置合わせできるように構成されている。つまり、蛇行が生じても、配向膜201の一方の側のフィルムアライメントマーク201aとマスクアライメントマーク202eとの間の距離と、配向膜201の他方の側のフィルムアライメントマーク201aとマスクアライメントマーク202eとの間の距離とは、いずれも例えば10mmであるように制御される。 However, if the alignment film 201 meanders while moving between the transport rollers 242, 243, the center position of the mask 202 and the center position of the alignment film 201 in the direction orthogonal to the moving direction of the alignment film 201 are shifted, and the alignment film 201 The distance between the film alignment mark 201a and the mask alignment mark 202e on one side is different from the distance between the film alignment mark 201a and the mask alignment mark 202e on the other side. In order to solve this problem, in the present embodiment, the control unit determines that the center position of the pair of mask alignment marks detected by the camera 207 is a pair of film alignments in a direction orthogonal to the moving direction of the alignment film 201. The position of the mask 202 in the direction perpendicular to the moving direction of the alignment film 201 is adjusted so as to coincide with the center position of the mark 201a, and thereby the center position of the mask 202 and the center position of the alignment film 201 can be aligned. It is configured as follows. That is, even if meandering occurs, the distance between the film alignment mark 201a on one side of the alignment film 201 and the mask alignment mark 202e, the film alignment mark 201a on the other side of the alignment film 201, and the mask alignment mark 202e Is controlled to be 10 mm, for example.
 次に、上述の如く構成された本実施形態の露光装置の動作について説明する。露光対象の配向膜201は、例えばロール状の供給リール241から連続的に供給され、巻き取り側のリール244に巻き取られるまでの間に、例えば、配向材料膜の塗布、露光、乾燥処理等が施される。即ち、露光装置内に供給される配向膜201の表面には、配向材料が膜状に塗布されている。 Next, the operation of the exposure apparatus of the present embodiment configured as described above will be described. The alignment film 201 to be exposed is continuously supplied from, for example, a roll-shaped supply reel 241 and is wound on the take-up reel 244. For example, the alignment material film is applied, exposed, dried, and the like. Is given. That is, the alignment material is applied in the form of a film on the surface of the alignment film 201 supplied into the exposure apparatus.
 図27に示すように、本実施形態においては、先ず、アライメントマーカ206により、露光装置内に供給された配向膜201の側部に、線状のフィルムアライメントマーク201aを連続的又は断続的に形成する。このフィルムアライメントマーク201aを形成する時点においては、配向膜201は熱変形していない。フィルムアライメントマーク201aが形成された配向膜201は、例えば供給リール241及びリール244等の回転駆動力により、露光装置内に連続的に供給され、露光装置内においては、搬送ローラ242,243等により支持されて、露光装置内を1方向に移動される。このとき、例えば、露光時の高温等により、配向膜201が膨張する。搬送ローラ242,243等により配向膜201が搬送されている間においては、特に、配向膜201はその移動方向に直交する幅方向に変形しやすく、加熱による膨張により、配向膜201の幅が大きくなる。 As shown in FIG. 27, in this embodiment, first, a linear film alignment mark 201a is formed continuously or intermittently on the side of the alignment film 201 supplied into the exposure apparatus by the alignment marker 206. To do. At the time of forming the film alignment mark 201a, the alignment film 201 is not thermally deformed. The alignment film 201 on which the film alignment mark 201a is formed is continuously supplied into the exposure apparatus by the rotational driving force of the supply reel 241 and the reel 244, for example, and in the exposure apparatus, by the transport rollers 242, 243, etc. It is supported and moved in one direction in the exposure apparatus. At this time, for example, the alignment film 201 expands due to a high temperature during exposure. While the alignment film 201 is being transported by the transport rollers 242, 243, etc., in particular, the alignment film 201 is easily deformed in the width direction orthogonal to the moving direction thereof, and the width of the alignment film 201 is increased by expansion due to heating. Become.
 露光前に熱膨張した配向膜201は、搬送ローラ242,243等による搬送により、露光光の照射位置に搬送される。この膨張後の配向膜201において、フィルムアライメントマーク201aは、幅方向に伸びが生じていない場合から、図26(b)に示すように、観察窓202d内において、外側(図26における左側)に移動している。カメラ207は、マスクアライメントマーク202eと共に、観察窓202dを介してフィルムアライメントマーク201aを検出し、検出結果は、図示しない制御部に送信される。そして、制御部は、カメラ207による検出領域271内において、フィルムアライメントマーク201aとマスクアライメントマーク202eとの距離が10mmとなるように、例えばアクチュエータ等により、マスク202をアパーチャ203に対して配向膜201の移動方向に相対的に移動させ、アパーチャ203の開口203bを、マスク202のスリット202bの幅広の領域に対応させる。 The alignment film 201 that has been thermally expanded before the exposure is transported to the exposure light irradiation position by transport by the transport rollers 242, 243 and the like. In the expanded alignment film 201, the film alignment mark 201 a is not extended in the width direction. As shown in FIG. 26B, the film alignment mark 201 a is outside (left side in FIG. 26) in the observation window 202 d. Has moved. The camera 207 detects the film alignment mark 201a through the observation window 202d together with the mask alignment mark 202e, and the detection result is transmitted to a control unit (not shown). Then, the control unit moves the mask 202 with respect to the aperture 203 by, for example, an actuator or the like so that the distance between the film alignment mark 201a and the mask alignment mark 202e is 10 mm in the detection region 271 by the camera 207. The aperture 203b of the aperture 203 is made to correspond to the wide area of the slit 202b of the mask 202.
 本実施形態においては、マスク202に設けられたスリット202bは、配向膜201の移動方向における長さが300mmであり、マスク202の最も側部側におけるスリット202bの縁部は、配向膜201の移動方向における端部間が配向膜201の移動方向に直交する方向に500μm(マスク2の両側部で1000μm)程度変位するように設けられている。よって、例えば、配向膜201の伸びに伴って、フィルムアライメントマーク201aが側方に50μm移動した場合には、制御部は、マスク202の位置を、配向膜201が膨張していない状態に対応する位置から配向膜201の移動方向に30mm移動するように制御し、配向膜201に対する露光光の照射領域の幅を広げる。即ち、光源205A,205Bから出射された露光光は、アパーチャ203の開口203bを透過し、マスク202上に照射されるが、アパーチャ203に対するマスク202の相対的位置が配向膜201の移動方向に移動されることにより、アパーチャ203の開口203bを透過してマスク202に照射される露光光の照射位置が配向膜201の移動方向に移動する。本発明においては、マスク202に設けられた複数本のスリット202bは、配向膜201の移動方向に傾斜して延び、また、各スリット202bの幅は、配向膜201の移動方向に沿って線形的に変化するように設けられている。よって、マスク202の移動に伴って、マスク202に対する露光光の照射位置が配向膜201の移動方向に移動すると、スリット202bに透過されて配向膜201上に照射される露光光照射領域の幅が変化する。このように、本実施形態においては、配向膜201が膨張してその幅方向に伸びた場合においても、変形後の配向膜201の幅に対応させて、露光後の配向露光膜201c上に形成される帯状の露光部の幅を調節することができる。よって、本実施形態においては、配向膜201がその移動方向に直交する幅方向に変形した場合においても、マスク202を取り替えることなく露光できる。 In the present embodiment, the slit 202 b provided in the mask 202 has a length of 300 mm in the moving direction of the alignment film 201, and the edge of the slit 202 b on the most side of the mask 202 moves the alignment film 201. The distance between the end portions in the direction is set to be displaced by about 500 μm (1000 μm on both sides of the mask 2) in the direction orthogonal to the moving direction of the alignment film 201. Therefore, for example, when the film alignment mark 201a moves to the side by 50 μm along with the elongation of the alignment film 201, the control unit corresponds to the state where the alignment film 201 is not expanded. Control is performed so as to move 30 mm in the moving direction of the alignment film 201 from the position, and the width of the exposure light irradiation region on the alignment film 201 is widened. That is, the exposure light emitted from the light sources 205A and 205B passes through the opening 203b of the aperture 203 and is irradiated onto the mask 202, but the relative position of the mask 202 with respect to the aperture 203 moves in the moving direction of the alignment film 201. As a result, the irradiation position of the exposure light that passes through the opening 203 b of the aperture 203 and is irradiated on the mask 202 moves in the moving direction of the alignment film 201. In the present invention, the plurality of slits 202b provided in the mask 202 extend while being inclined in the moving direction of the alignment film 201, and the width of each slit 202b is linear along the moving direction of the alignment film 201. It is provided to change. Therefore, when the irradiation position of the exposure light on the mask 202 moves in the movement direction of the alignment film 201 with the movement of the mask 202, the width of the exposure light irradiation region that is transmitted through the slit 202b and irradiated onto the alignment film 201 is increased. Change. As described above, in the present embodiment, even when the alignment film 201 expands and extends in the width direction, the alignment film 201 is formed on the alignment exposure film 201c after exposure so as to correspond to the width of the alignment film 201 after deformation. The width of the strip-shaped exposed portion can be adjusted. Therefore, in the present embodiment, exposure can be performed without replacing the mask 202 even when the alignment film 201 is deformed in the width direction orthogonal to the moving direction thereof.
 露光光の照射により、配向膜201上に塗布された配向材料膜は、照射光の偏光方向に応じて光配向し、配向露光膜201cが形成される。例えば、光源205Aから出射された露光光により、偏光方向が―45°の直線偏光又は偏光方向がCW(Clock Wise)の円偏光の表示光を透過させる露光部aが形成される。一方、マスク202Aのスリット202b間の領域には、露光光は透過されないため、露光部a間には未露光部が残される。このマスク202Aのスリット202b間の間隔は、スリット202bの幅と同一であるため、露光部a間の未露光部は、露光部aと幅が等しい。本実施形態においては、配向膜201の移動方向の下流側に設けられた光源205B、マスク202B、及びアパーチャ203Bにより、この未露光部が露光される。 The alignment material film applied on the alignment film 201 by the exposure light irradiation is photo-aligned in accordance with the polarization direction of the irradiation light to form the alignment exposure film 201c. For example, the exposure light a emitted from the light source 205A forms an exposure part a that transmits linearly polarized display light having a polarization direction of −45 ° or circularly polarized light having a polarization direction of CW (Clock Wise). On the other hand, since the exposure light is not transmitted between the slits 202b of the mask 202A, an unexposed part remains between the exposed parts a. Since the interval between the slits 202b of the mask 202A is the same as the width of the slit 202b, the unexposed portion between the exposed portions a has the same width as the exposed portion a. In the present embodiment, this unexposed portion is exposed by the light source 205B, the mask 202B, and the aperture 203B provided on the downstream side in the moving direction of the alignment film 201.
 この場合においても、例えばカメラ207により、フィルムアライメントマーク201a及びマスクアライメントマーク202eの位置が検出され、検出結果は、図示しない制御部に送信される。そして、露光部aの形成工程と同様に、制御部は、フィルムアライメントマーク201a及びマスクアライメントマーク202eとの位置関係が所定関係になるように、配向膜201の移動方向におけるマスク202と遮光部材203との相対的位置を制御する。例えばマスク202をアパーチャ203に対して相対的に配向膜201の移動方向に移動させるように制御する。よって、配向膜201の移動方向下流側においても、配向膜201の幅に対応させて、配向露光膜201c上に形成される帯状の露光部の幅を調節することができ、配向膜201がその移動方向に直交する幅方向に変形した場合においても、マスク202を取り替えることなく露光できる。 Also in this case, for example, the camera 207 detects the positions of the film alignment mark 201a and the mask alignment mark 202e, and the detection result is transmitted to a control unit (not shown). Then, similarly to the formation process of the exposure part a, the control part makes the mask 202 and the light shielding member 203 in the moving direction of the alignment film 201 so that the positional relation between the film alignment mark 201a and the mask alignment mark 202e becomes a predetermined relation. Control the relative position with For example, the mask 202 is controlled to move in the moving direction of the alignment film 201 relative to the aperture 203. Therefore, also on the downstream side of the alignment film 201 in the moving direction, the width of the strip-shaped exposed portion formed on the alignment exposure film 201c can be adjusted in accordance with the width of the alignment film 201. Even in the case of deformation in the width direction orthogonal to the moving direction, exposure can be performed without replacing the mask 202.
 そして、光源205Bから出射された露光光の照射により、露光部a間の未露光部に露光部aと隣接するように、偏光方向が+45°の直線偏光又は偏光方向がCCW(Counter Clock Wise)の円偏光の表示光を透過させる露光部bが形成される。 Then, by irradiation with exposure light emitted from the light source 205B, linearly polarized light having a polarization direction of + 45 ° or a polarization direction of CCW (Counter Clock Wise) so that an unexposed portion between the exposed portions a is adjacent to the exposed portion a. The exposure portion b that transmits the circularly polarized display light is formed.
 配向膜201は、搬送に伴い、その移動方向に直交する方向に蛇行する場合がある。しかし、本実施形態のように、光源205、マスク202及びアパーチャ203が2組設けられ、偏光方向が異なる2種類の露光光を照射する形式の露光装置においては、配向材料膜を光配向させる2種類の露光光は、その照射位置の相対的な位置合わせが重要となる。例えば、露光光の照射位置が配向膜201の幅方向にずれてしまうと、未露光の領域が残ったり、重ね露光される領域が生じて、露光不良となる。しかし、本実施形態においては、フィルムアライメントマーク201aは、配向膜201の両側部に形成され、制御部は、配向膜201の移動方向に直交する方向において、カメラ207が検出した1対のマスクアライメントマーク202eの中央位置が、1対のフィルムアライメントマーク201aの中央位置と一致するように、マスク202の配向膜201の移動方向に直交する方向における位置を制御する。つまり、蛇行が生じても、配向膜201の一方の側のフィルムアライメントマーク201aとマスクアライメントマーク202eとの間の距離と、配向膜201の他方の側のフィルムアライメントマーク201aとマスクアライメントマーク202eとの間の距離とは、いずれも例えば10mmであるように制御される。よって、配向膜201が、移動に伴って蛇行した場合においても、配向膜201の移動方向に直交する方向におけるマスク202の位置が調節されることにより、上記露光不良を防止できる。 The alignment film 201 may meander in a direction orthogonal to the moving direction thereof as it is conveyed. However, as in the present embodiment, in an exposure apparatus in which two sets of light sources 205, masks 202, and apertures 203 are provided and irradiates two types of exposure light having different polarization directions, the alignment material film is photo-aligned 2 The relative alignment of the irradiation positions of the types of exposure light is important. For example, if the irradiation position of the exposure light is shifted in the width direction of the alignment film 201, an unexposed region remains or an overexposed region is generated, resulting in an exposure failure. However, in this embodiment, the film alignment marks 201a are formed on both sides of the alignment film 201, and the control unit detects a pair of mask alignments detected by the camera 207 in the direction orthogonal to the moving direction of the alignment film 201. The position of the mask 202 in the direction orthogonal to the moving direction of the alignment film 201 is controlled so that the center position of the mark 202e coincides with the center position of the pair of film alignment marks 201a. That is, even if meandering occurs, the distance between the film alignment mark 201a on one side of the alignment film 201 and the mask alignment mark 202e, the film alignment mark 201a on the other side of the alignment film 201, and the mask alignment mark 202e Is controlled to be 10 mm, for example. Therefore, even when the alignment film 201 meanders with movement, the exposure failure can be prevented by adjusting the position of the mask 202 in the direction orthogonal to the movement direction of the alignment film 201.
 露光光の照射により、露光部a,露光部bが形成された配向露光膜201cは、搬送により、冷却され、やがて、膨張前の幅に収縮する。よって、幅広に形成された露光部a,露光部bは、配向露光膜201cの収縮に伴い、所定の幅となり、図50に示すような偏光フィルムが製造される。 The alignment exposure film 201c in which the exposure part a and the exposure part b are formed by irradiation with exposure light is cooled by conveyance and eventually shrinks to a width before expansion. Therefore, the exposure part a and the exposure part b formed wide have a predetermined width as the alignment exposure film 201c contracts, and a polarizing film as shown in FIG. 50 is manufactured.
 以上のように、本実施形態においては、配向膜201が加熱によりその幅方向に膨張した場合においても、マスク202に設けられたスリット形状、アパーチャ203の構成及び制御部による制御により、マスクを取り替えることなく露光できる。 As described above, in this embodiment, even when the alignment film 201 expands in the width direction due to heating, the mask is replaced by the slit shape provided in the mask 202, the configuration of the aperture 203, and control by the control unit. Can be exposed without any problem.
 なお、本実施形態においては、配向膜201が加熱により膨張した場合について述べたが、配向膜201が露光前に例えば冷却されて収縮している場合においても、制御部により、マスクアライメントマーク202eとフィルムアライメントマーク201aとの位置関係が所定関係になるように、マスク202とアパーチャ203との配向膜201の移動方向における相対的位置を制御することにより、マスクを取り替えることなく、偏光フィルム1を精度よく製造することができる。 In the present embodiment, the case where the alignment film 201 expands due to heating has been described. However, even when the alignment film 201 is cooled and contracted, for example, before exposure, the controller aligns the mask alignment mark 202e. By controlling the relative position in the movement direction of the alignment film 201 between the mask 202 and the aperture 203 so that the positional relationship with the film alignment mark 201a becomes a predetermined relationship, the polarizing film 1 can be accurately adjusted without replacing the mask. Can be manufactured well.
 また、本実施形態においては、光源205、マスク202及びアパーチャ203が配向膜201の移動方向に沿って2組配置され、光源205A,205Bが夫々、偏光方向が異なる露光光を出射し、露光部a及び露光部bを一連の工程で形成する場合について説明したが、露光部a及び露光部bを形成する露光装置は、夫々、別の露光装置を使用してもよい。又は、配向膜201に対する露光光の照射方向を偏光することにより、1台の露光装置により、配向方向が異なる配向露光膜201cを形成することもできる。 Further, in this embodiment, two sets of the light source 205, the mask 202, and the aperture 203 are arranged along the moving direction of the alignment film 201, and the light sources 205A and 205B each emit exposure light having different polarization directions, and the exposure unit Although the case where a and the exposure part b are formed in a series of steps has been described, the exposure apparatuses that form the exposure part a and the exposure part b may use different exposure apparatuses. Alternatively, the alignment exposure film 201c having a different alignment direction can be formed by one exposure apparatus by polarizing the irradiation direction of the exposure light to the alignment film 201.
 更に、本実施形態においては、アパーチャ203が光源205とマスク202との間に配置されている場合について説明したが、本発明においては、配向膜201に対する露光光の照射領域をマスク202のスリット202b及びアパーチャ203の開口203bにより規制できればよく、アパーチャ203は、例えばマスク202と配向膜201との間に配置されていてもよい。 Further, in the present embodiment, the case where the aperture 203 is disposed between the light source 205 and the mask 202 has been described. However, in the present invention, the irradiation region of the exposure light with respect to the alignment film 201 is defined as the slit 202b of the mask 202. The aperture 203 may be disposed between the mask 202 and the alignment film 201, for example, as long as it can be regulated by the opening 203b of the aperture 203.
 更にまた、本実施形態においては、カメラ207がマスク202の上方に設けられ、マスク202の側部に、フィルムアライメントマーク201aを検出するための観察窓202dが設けられている場合について述べたが、本発明においては、例えばカメラ207等の検出部は、配向膜201の下方に設けられていてもよい。この場合においては、観察窓202dは設けられていなくてもよく、マスクアライメントマーク202eが例えばマスク202の下面に設けられ、カメラ207によりフィルムアライメントマーク201a及びマスクアライメントマーク202eを配向膜201の下方から検出できるように構成してもよい。 Furthermore, in this embodiment, the case where the camera 207 is provided above the mask 202 and the observation window 202d for detecting the film alignment mark 201a is provided on the side of the mask 202 has been described. In the present invention, for example, the detection unit such as the camera 207 may be provided below the alignment film 201. In this case, the observation window 202d may not be provided, and the mask alignment mark 202e is provided on the lower surface of the mask 202, for example, and the film alignment mark 201a and the mask alignment mark 202e are moved from below the alignment film 201 by the camera 207 You may comprise so that it can detect.
 更にまた、マスク202としては、図28に示すようなスリット202bを有するマスク202Cを使用することができる。このマスク202Cにおいても、複数本のスリット202bは、その幅が配向膜201の移動方向に関して線形的に変化しており、スリット間の間隔は、配向膜201の移動方向に直交する方向からみたときに、スリット202bの幅と同一である。図28に示すマスク202Cにおいては、マスク202Cの両端部に設けられたスリットのうち、一端部に設けられたスリット202bは、その側縁が配向膜201の移動方向と平行に設けられており、その他の複数本のスリット202bは、配向膜201の移動方向に傾斜して延び、スリット202bの傾斜は、配向膜201の移動方向に直交する方向に関して、一端部側から他端部側へと、徐々に大きくなるように設けられている。このようなマスク202Cを使用した場合においては、配向膜201の移動方向に平行な側縁を有する一端部のスリット202bを基準として、マスク202の位置を制御することができる。例えば配向膜201の移動方向に対して傾斜が最も大きい他端部のスリット202bについて、配向膜201の移動方向における長さが300mmであり、その側縁が配向膜201の移動方向に直交する方向に1000μm程度偏倚するように設けられている場合において、配向膜201の伸びに伴って、フィルムアライメントマーク201a間の距離が100μm大きくなった場合には、制御部は、マスク202を配向膜201の移動方向に直交する方向に外方に100μm移動するように制御すると共に、配向膜201の移動方向に30mm移動するように制御する。これにより、マスクアライメントマーク202eとフィルムアライメントマーク201aとの位置関係は、配向膜201に伸びが生じていない場合と同一になり、第1実施形態と同様に、マスク202Cを取り替えることなく、配向膜201に対する露光光照射領域の幅を調節することができる。 Furthermore, as the mask 202, a mask 202C having a slit 202b as shown in FIG. 28 can be used. Also in this mask 202C, the width of the plurality of slits 202b changes linearly with respect to the moving direction of the alignment film 201, and the interval between the slits is as viewed from the direction orthogonal to the moving direction of the alignment film 201. Further, it is the same as the width of the slit 202b. In the mask 202C shown in FIG. 28, among the slits provided at both ends of the mask 202C, the slit 202b provided at one end has a side edge provided in parallel with the moving direction of the alignment film 201. The other plurality of slits 202b extend while being inclined in the movement direction of the alignment film 201, and the inclination of the slit 202b is from one end side to the other end side in the direction orthogonal to the movement direction of the alignment film 201. It is provided to gradually increase. When such a mask 202C is used, the position of the mask 202 can be controlled with reference to the slit 202b at one end having a side edge parallel to the moving direction of the alignment film 201. For example, the slit 202b at the other end having the largest inclination with respect to the moving direction of the alignment film 201 has a length in the moving direction of the alignment film 201 of 300 mm, and its side edge is orthogonal to the moving direction of the alignment film 201 When the distance between the film alignment marks 201a is increased by 100 μm as the alignment film 201 is stretched, the control unit moves the mask 202 to the alignment film 201. Control is performed to move 100 μm outward in a direction orthogonal to the movement direction, and control is performed to move 30 mm in the movement direction of the alignment film 201. As a result, the positional relationship between the mask alignment mark 202e and the film alignment mark 201a is the same as when the alignment film 201 is not stretched, and the alignment film can be replaced without replacing the mask 202C as in the first embodiment. The width of the exposure light irradiation region with respect to 201 can be adjusted.
 更にまた、本実施形態においては、配向膜201上には、可逆性の配向材料膜が形成されていても、非可逆性の配向材料膜が形成されていてもよい。 Furthermore, in this embodiment, a reversible alignment material film or a non-reversible alignment material film may be formed on the alignment film 201.
 次に、本発明の第11実施形態について説明する。図29は、本発明の第11実施形態に係る露光装置による露光工程を示す図である。本実施形態においては、配向膜201には、可逆性の配向材料膜が形成されている。また、第10実施形態におけるマスク202Aに代えて、マスク202Dが設けられている。このマスク202Dには、スリット202bではなく、配向膜201の移動方向に幅が変化する開口202fが設けられている。そして、アパーチャ203の開口203b及びマスク202Dの開口を介して、露光光を配向膜201の露光対象領域の全域に照射できるように構成されている。その他の構成は、第1実施形態と同様である。 Next, an eleventh embodiment of the present invention will be described. FIG. 29 is a diagram showing an exposure process by the exposure apparatus according to the eleventh embodiment of the present invention. In the present embodiment, a reversible alignment material film is formed on the alignment film 201. A mask 202D is provided instead of the mask 202A in the tenth embodiment. The mask 202D is provided with an opening 202f whose width changes in the moving direction of the alignment film 201, not the slit 202b. The exposure light can be irradiated to the entire exposure target region of the alignment film 201 through the opening 203b of the aperture 203 and the opening of the mask 202D. Other configurations are the same as those of the first embodiment.
 本実施形態においては、配向膜201には、その表面上に、可逆性の配向材料膜が形成されている。本実施形態においては、先ず、図29(a)に示すように、光源205Aから出射された露光光により、配向膜201の表面に形成された配向材料膜の全域を露光する。そして、その後、図29(b)に示すように、光源205Bから出射された露光光により、アパーチャ203Bの開口及びマスク202Bのスリットに対応させて配向材料膜に照射する。本実施形態では、可逆性の配向材料膜を使用しているため、2回目の露光によって照射された部分の配向方向は、1回目の露光によって照射された部分の配向方向から変更される。従って、本実施形態においても、第10実施形態と同様の配向露光膜を形成する。 In this embodiment, the alignment film 201 has a reversible alignment material film formed on the surface thereof. In the present embodiment, first, as shown in FIG. 29A, the entire area of the alignment material film formed on the surface of the alignment film 201 is exposed by the exposure light emitted from the light source 205A. Then, as shown in FIG. 29B, the alignment material film is irradiated with the exposure light emitted from the light source 205B so as to correspond to the opening of the aperture 203B and the slit of the mask 202B. In this embodiment, since a reversible alignment material film is used, the alignment direction of the portion irradiated by the second exposure is changed from the alignment direction of the portion irradiated by the first exposure. Therefore, also in this embodiment, an alignment exposure film similar to that in the tenth embodiment is formed.
 本実施形態においても、露光による加熱により、配向膜201が膨張してその幅方向に伸びた場合においても、制御部により、配向膜201の移動方向におけるマスク202とアパーチャ203との相対的な位置を制御することにより、配向膜201上に形成される帯状の露光部の幅を調節することができ、マスク202を取り替えることなく露光できる。 Also in this embodiment, even when the alignment film 201 expands in the width direction due to heating by exposure and extends in the width direction, the relative position between the mask 202 and the aperture 203 in the moving direction of the alignment film 201 is controlled by the control unit. By controlling the width, the width of the strip-shaped exposure portion formed on the alignment film 201 can be adjusted, and exposure can be performed without replacing the mask 202.
 なお、第10実施形態の露光装置において、配向膜201表面上に非可逆性の配向材料膜が形成されている場合は、配向膜201の移動方向における下流側のマスク202Bに代えて、本第11実施形態のようなマスク202Dを配置し、上流側の光源205Aから出射された露光光による露光により、配向材料膜をアパーチャ203Aの開口及びマスク202Aの所定幅のスリットに対応させて配向させ、下流側の光源205Bから出射された露光光による露光により、露光対象領域の全面を露光するように構成した場合においても、第10実施形態及び第11実施形態と同様の配向膜を形成することができる。この場合においても、制御部により、配向膜201の移動方向におけるマスク202とアパーチャ203との相対的な位置を制御することにより、配向膜201上に形成される帯状の露光部の幅を調節することができ、マスク202を取り替えることなく露光できる。 In the exposure apparatus according to the tenth embodiment, when an irreversible alignment material film is formed on the surface of the alignment film 201, the present mask is used instead of the mask 202B on the downstream side in the moving direction of the alignment film 201. The mask 202D as in the eleventh embodiment is arranged, and the alignment material film is aligned corresponding to the opening of the aperture 203A and the slit of the predetermined width of the mask 202A by exposure with the exposure light emitted from the upstream light source 205A. Even when the entire surface of the exposure target region is exposed by exposure with the exposure light emitted from the light source 205B on the downstream side, an alignment film similar to that in the tenth and eleventh embodiments can be formed. it can. Even in this case, the width of the strip-shaped exposed portion formed on the alignment film 201 is adjusted by controlling the relative position between the mask 202 and the aperture 203 in the moving direction of the alignment film 201 by the control unit. And exposure can be performed without replacing the mask 202.
 次に、本発明の第12実施形態について説明する。本発明の第12実施形態の露光装置は、露光対象の配向膜を第1方向に移動させる搬送装置と、前記配向膜の両側部にこの配向膜の伸縮量の指標となるフィルムアライメントマークを形成する1対のアライメントマーカと、露光光を出射する光源と、前記第1方向に直交する第2方向に相互間に間隔をおいて配列された複数本のスリットが形成され、前記1対のフィルムアライメントマークを観察するための1対の観察窓が設けられ、前記各観察窓内にマスクアライメントマークが形成されたマスクと、前記第2方向に延びて全ての前記スリットと交差する開口が形成されており、前記開口と前記スリットとが交差する部分で前記露光光を透過させる遮光部材と、前記各観察窓内の前記マスクアライメントマークと前記フィルムアライメントマークを検出する検出部と、この検出部の検出結果に基づいて、前記遮光部材と前記マスクとの間の前記第1方向における相対的な位置関係を調節する制御部と、を有し、前記スリットは、その第2方向の一端部の第1スリットが前記第1方向に平行であり、他端部の第2スリットが前記第1方向に対して最大傾度で傾斜しており、前記第1スリットと前記第2スリットとの間のスリットは、第1スリットから第2スリットに向けて徐々に傾斜角度が大きくなるように傾斜しており、前記スリットは、その幅が前記第1方向に関して線形的に変化しており、前記スリット間の間隔は前記第2方向に関して前記スリットの幅と同一であり、前記第1スリット側の第1マスクアライメントマークは、前記第1方向に延び、前記第2スリット側の第2マスクアライメントマークは、前記第2スリットの幅方向の一方の側縁又は幅方向の中心線と平行に延びているものである。 Next, a twelfth embodiment of the present invention will be described. An exposure apparatus according to a twelfth embodiment of the present invention forms a transport apparatus that moves an alignment film to be exposed in a first direction, and film alignment marks that serve as indicators of the amount of expansion and contraction of the alignment film on both sides of the alignment film. A pair of alignment markers, a light source that emits exposure light, and a plurality of slits arranged at intervals in a second direction orthogonal to the first direction. A pair of observation windows for observing the alignment mark is provided, and a mask in which a mask alignment mark is formed in each observation window, and an opening extending in the second direction and intersecting all the slits are formed. A light-shielding member that transmits the exposure light at a portion where the opening and the slit intersect, the mask alignment mark in each observation window, and the film alignment And a control unit for adjusting a relative positional relationship in the first direction between the light shielding member and the mask based on a detection result of the detection unit, In the slit, a first slit at one end in the second direction is parallel to the first direction, and a second slit at the other end is inclined at a maximum inclination with respect to the first direction. A slit between one slit and the second slit is inclined so that an inclination angle gradually increases from the first slit toward the second slit, and the width of the slit is related to the first direction. The distance between the slits is linearly the same as the width of the slits in the second direction, and the first mask alignment mark on the first slit side extends in the first direction, 2nd slit side Mask alignment marks are those which extends parallel to the center line of one side edge or the width direction of the width direction of the second slit.
 次に、本発明の第12実施形態について、図30乃至図36を参照して説明する。本実施形態は、配向膜の蛇行及び配向膜の熱膨張及び熱収縮による変形の双方に対応して、高精度の露光を行うものである。図30(a)は本実施形態のマスク220を示す平面図、図30(b)は本実施形態のアパーチャ230を示す平面図である。マスク220は、遮光性の材料からなる基部220aに、配向膜210の移動方向(第1方向:白抜き矢印にて示す)に直交する方向(第2方向)に複数本のスリット220bが配列されたものであり、各スリット220bは、その幅が長手方向に関して線形的に変化するように設けられており、スリット間の間隔は配向膜210の移動方向に直交する方向に関してスリット220bの幅と同一である。即ち、図30(a)に示すマスク220において、各スリット220bの幅は、最上部が最も狭く、スリットの長手方向に沿って下方へ行くほど、広くなるように設けられている。そして、各スリット220bのうち、配向膜210の幅方向の一端部に配置されたスリット220bは、配向膜210の移動方向に平行に延びており、その長さはyである。また、スリット220bのうち、配向膜210の幅方向の他端部に配置されたスリット220bは、配向膜210の移動方向に傾斜して延びており、配向膜210の移動方向にyの距離を、配向膜210の幅方向にxだけ偏倚するように傾斜している。この配向膜210の一端部の傾斜していないスリット220b(平行スリット)と傾斜している他端部のスリット220b(最大傾斜スリット)との間のスリット220bは、平行スリットから最大傾斜スリットに向けて、徐々に傾斜角度が大きくなるように、傾斜している。なお、例えば、yは300mm、xは1mmである。 Next, a twelfth embodiment of the present invention will be described with reference to FIGS. In this embodiment, high-precision exposure is performed in response to both meandering of the alignment film and deformation due to thermal expansion and contraction of the alignment film. FIG. 30A is a plan view showing a mask 220 of this embodiment, and FIG. 30B is a plan view showing an aperture 230 of this embodiment. In the mask 220, a plurality of slits 220b are arranged on a base 220a made of a light-shielding material in a direction (second direction) orthogonal to the moving direction of the alignment film 210 (first direction: indicated by a hollow arrow). Each slit 220b is provided such that the width thereof linearly changes in the longitudinal direction, and the interval between the slits is the same as the width of the slit 220b in the direction orthogonal to the moving direction of the alignment film 210. It is. That is, in the mask 220 shown in FIG. 30A, the width of each slit 220b is the narrowest at the top, and is widened as it goes downward along the longitudinal direction of the slit. And among each slit 220b, the slit 220b arrange | positioned at the one end part of the width direction of the alignment film 210 is extended in parallel with the moving direction of the alignment film 210, and the length is y. In addition, among the slits 220b, the slit 220b disposed at the other end in the width direction of the alignment film 210 extends while being inclined in the moving direction of the alignment film 210, and a distance y is set in the moving direction of the alignment film 210. The alignment film 210 is inclined so as to be biased by x in the width direction. The slit 220b between the non-inclined slit 220b (parallel slit) at one end of the alignment film 210 and the slit 220b (maximum inclined slit) at the other end is directed from the parallel slit to the maximum inclined slit. Thus, the inclination angle is gradually increased. For example, y is 300 mm and x is 1 mm.
 図31(a)、(b)は配向膜210にアライメントマークを形成するレーザマーカ250を示す図である。このレーザマーカ250は、フィルム巻き出しロール245から繰り出された配向膜210に対し、この配向膜210の両側部にレーザ光を照射して、アライメントマーク210a、210bを形成する。なお、レーザマーカ250からレーザ光を配向膜210に照射するときは、ロール246により配向膜210の下面を支持し、配向膜210の面を一定にする。 FIGS. 31A and 31B are diagrams showing a laser marker 250 for forming an alignment mark on the alignment film 210. FIG. The laser marker 250 irradiates the alignment film 210 fed from the film unwinding roll 245 with laser light on both sides of the alignment film 210 to form alignment marks 210a and 210b. Note that when the alignment film 210 is irradiated with laser light from the laser marker 250, the lower surface of the alignment film 210 is supported by the roll 246, and the surface of the alignment film 210 is made constant.
 マスク220の両側部には、フィルムアライメントマーク210a、210bを検出するための観察窓220dが、例えば配向膜210の移動方向におけるスリット220bの長さと同程度の長さで設けられており、各観察窓220dには、マスクアライメントマーク220e、220fが設けられている。マスクアライメントマーク220fは配向膜210の移動方向に平行に延び、マスク220における配向膜210の移動方向に平行のスリット220b(平行スリット)が形成された一端部側の観察窓220dに設けられている。一方、マスクアライメントマーク220eは、配向膜210の幅方向の他端部側の観察窓220dに設けられており、この他端部側に設けられた最大傾斜スリット220bの側縁と平行に延びる。 On both sides of the mask 220, observation windows 220d for detecting the film alignment marks 210a and 210b are provided, for example, with the same length as the slits 220b in the moving direction of the alignment film 210. Mask alignment marks 220e and 220f are provided on the window 220d. The mask alignment mark 220f extends in parallel to the moving direction of the alignment film 210, and is provided in the observation window 220d on one end side where a slit 220b (parallel slit) parallel to the moving direction of the alignment film 210 in the mask 220 is formed. . On the other hand, the mask alignment mark 220e is provided in the observation window 220d on the other end side in the width direction of the alignment film 210, and extends in parallel with the side edge of the maximum inclined slit 220b provided on the other end side.
 アパーチャ230は、例えばSUS製の遮光性の板材であり、図30(b)に示すように、その基部230aの中央には、1方向に延びるように、幅が例えば20乃至30mmの開口230bが設けられている。開口230bは、マスク220のスリット220bの配設領域の全域に延びる長さを有している。そして、この開口230bの長手方向が配向膜210の移動方向に直交するようにして、マスク220の上方に配置される。即ち、図32(a)に示すように、配向膜210の移動域の途中に、マスク220が設置されており、このマスク220の上方にアパーチャ230が配置されている。このアパーチャ230の上方には、露光光源270が配置されており、露光光源270から照射された露光光がアパーチャ230を照射し、その一部がアパーチャ230により遮光され、露光光における開口230bを透過した部分がマスク220に照射され、マスク220のスリット220bを透過した露光光が、配向膜210に照射される。 The aperture 230 is a light-shielding plate made of, for example, SUS, and as shown in FIG. 30B, an opening 230b having a width of, for example, 20 to 30 mm so as to extend in one direction is formed at the center of the base 230a. Is provided. The opening 230b has a length extending over the entire region where the slit 220b of the mask 220 is provided. Then, the opening 230 b is disposed above the mask 220 so that the longitudinal direction of the opening 230 b is orthogonal to the moving direction of the alignment film 210. That is, as shown in FIG. 32A, a mask 220 is installed in the middle of the moving area of the alignment film 210, and the aperture 230 is arranged above the mask 220. An exposure light source 270 is disposed above the aperture 230, and the exposure light emitted from the exposure light source 270 irradiates the aperture 230, a part of which is shielded by the aperture 230, and passes through the opening 230b in the exposure light. The exposed portion is irradiated onto the mask 220, and the exposure light transmitted through the slit 220 b of the mask 220 is irradiated onto the alignment film 210.
 制御部は、配向膜210の移動方向におけるマスク220と遮光部材230との相対的位置を制御する。即ち、制御部は、図33乃至図36に示すように、例えば、アパーチャ230の位置を固定した状態で、マスク220のアパーチャ230に対する相対的位置を移動させ、平面視で開口230bとスリット220bが重なる領域を透過する露光光の配向膜210上の照射位置を調節する。 The control unit controls the relative position of the mask 220 and the light shielding member 230 in the moving direction of the alignment film 210. That is, as shown in FIGS. 33 to 36, for example, the control unit moves the relative position of the mask 220 with respect to the aperture 230 in a state where the position of the aperture 230 is fixed. The irradiation position on the alignment film 210 of the exposure light that passes through the overlapping region is adjusted.
 図32(a)に示すように、マスク220における観察窓220dの上方には、2焦点ラインカメラ260が配置されており、この2焦点ラインカメラ260は観察窓220d内に見えるフィルムアライメントマーク210a、210bとマスクアライメントマーク220f、220eを、検出領域271で観察する。 As shown in FIG. 32 (a), a bifocal line camera 260 is disposed above the observation window 220d in the mask 220, and the bifocal line camera 260 has film alignment marks 210a, 210b and mask alignment marks 220f and 220e are observed in the detection region 271.
 次に、制御部の制御態様と共に、本実施形態の露光装置の動作について説明する。図32(b)に示すように、配向膜210の移動方向(第1方向)に延びるマスクアライメントマーク220fを第1マスクアライメントマーク220fとし、この第1マスクアライメントマーク220fと共に観察窓220d内で観察されるフィルムアライメントマーク210bを第1フィルムアライメントマーク210bとする。また、配向膜210の移動方向(第1方向)に傾斜して延びるマスクアライメントマーク220eを第2マスクアライメントマーク220eとし、この第2マスクアライメントマーク220eと共に観察窓220d内で観察されるフィルムアライメントマーク210aを第2フィルムアライメントマーク210aとする。更に、以下の動作において、アパーチャ230は不動である。 Next, the operation of the exposure apparatus of this embodiment will be described together with the control mode of the control unit. As shown in FIG. 32B, a mask alignment mark 220f extending in the moving direction (first direction) of the alignment film 210 is used as a first mask alignment mark 220f, and the observation is performed in the observation window 220d together with the first mask alignment mark 220f. The film alignment mark 210b to be used is a first film alignment mark 210b. Further, a mask alignment mark 220e extending obliquely in the moving direction (first direction) of the alignment film 210 is used as a second mask alignment mark 220e, and the film alignment mark observed in the observation window 220d together with the second mask alignment mark 220e. Let 210a be the second film alignment mark 210a. Further, in the following operation, the aperture 230 does not move.
 露光開始時においては、図33に示すように、カメラ260により観察された検出領域271における第1フィルムアライメントマーク210bと、第1マスクアライメントマーク220fとの間の距離がA、第2フィルムアライメントマーク210aと、第2マスクアライメントマーク220eとの間の距離がBであるとすると、制御部は、この距離Aを第1フィルムアライメントマーク210bと、第1マスクアライメントマーク220fとの間の距離の基準値として設定し、距離Bを第2フィルムアライメントマーク210aと、第2マスクアライメントマーク220eとの間の距離の基準値として設定する。 At the start of exposure, as shown in FIG. 33, the distance between the first film alignment mark 210b and the first mask alignment mark 220f in the detection area 271 observed by the camera 260 is A, and the second film alignment mark Assuming that the distance between 210a and the second mask alignment mark 220e is B, the control unit uses this distance A as a reference for the distance between the first film alignment mark 210b and the first mask alignment mark 220f. The distance B is set as a reference value for the distance between the second film alignment mark 210a and the second mask alignment mark 220e.
 そして、図34(a)に示すように、配向膜210が蛇行し、露光当初のマスク220の位置に対して、配向膜210が第2方向(配向膜210の幅方向)に偏倚した場合、検出領域271において、第1フィルムアライメントマーク210bと第1マスクアライメントマーク220fとの間の距離が基準値Aから変動する。そこで、制御部は、図34(b)に示すように、マスク220を第2方向(白抜き矢印にて示す)に調節移動させ、第1フィルムアライメントマーク210bと第1マスクアライメントマーク220fとの間の距離を基準値Aに一致させる。配向膜210に熱膨張又は熱収縮が生じていない場合は、これにより、第2フィルムアライメントマーク210aと第2マスクアライメントマーク220eとの間の距離も基準値Bに一致する。これにより、図32(b)に示すように、アパーチャ230の開口230bと、マスク220のスリット220bとが重なる領域にて露光光が透過し、第1方向に移動する配向膜210に多数の平行線状の露光部が形成される。この露光部は、配向膜210の蛇行に合わせてマスク220を第2方向に調節移動させているので、露光当初の配向膜210上の位置(蛇行がない場合の配向膜210上の位置)から変動しない。 Then, as shown in FIG. 34A, when the alignment film 210 meanders and the alignment film 210 deviates in the second direction (the width direction of the alignment film 210) with respect to the position of the mask 220 at the beginning of exposure, In the detection region 271, the distance between the first film alignment mark 210 b and the first mask alignment mark 220 f varies from the reference value A. Therefore, as shown in FIG. 34 (b), the control unit adjusts and moves the mask 220 in the second direction (indicated by a white arrow), so that the first film alignment mark 210b and the first mask alignment mark 220f are moved. The distance between them is made to coincide with the reference value A. When the alignment film 210 is not thermally expanded or contracted, the distance between the second film alignment mark 210a and the second mask alignment mark 220e also matches the reference value B. Accordingly, as shown in FIG. 32B, the exposure light is transmitted through a region where the opening 230b of the aperture 230 and the slit 220b of the mask 220 overlap, and the alignment film 210 that moves in the first direction has many parallels. A linear exposure part is formed. Since the exposure unit adjusts and moves the mask 220 in the second direction in accordance with the meandering of the alignment film 210, the exposure unit starts from the position on the alignment film 210 at the beginning of exposure (the position on the alignment film 210 when there is no meandering). Does not fluctuate.
 次に、図35(a)に示すように、配向膜210が熱膨張した場合、カメラ260の検出領域71における観察結果により、例えば、第1フィルムアライメントマーク210bと第1マスクアライメントマーク220fとの間の距離は基準値Aに一致しているが、第2フィルムアライメントマーク210aと第2マスクアライメントマーク220eとの間の距離が基準値Bからずれて小さくなっていることが検出される。そうすると、制御部は、アパーチャ230に対して、マスク220を相対的に、図35(b)に白抜き矢印にて示す方向(図32に示す態様では配向膜210の移動方向)に調節移動させる。そうすると、アパーチャ230の開口230bとマスク220のスリット220bとの重なり部を透過する露光光は、アパーチャ230が移動せず、マスク220が図30(a)に示す白抜き矢印方向の反対方向に調節移動するので、スリット220bのより幅が広く間隔が広い部分を透過することになり、露光後の配向露光膜210cにおける線状の露光部は、より幅が広く、より間隔が大きくなる。これにより、配向露光膜210cが熱膨張して、幅が大きくなっても、それに追随して、配向露光膜210c上の露光部は配向露光膜210cの幅方向に広がる。このため、この図35における露光工程で露光された線状の露光部は、配向露光膜210cが降温して露光開始時の温度に戻ったときは、露光開始時の露光部の幅及び間隔と一致した状態になり、配向膜210の熱膨張の影響を解消できる。 Next, as shown in FIG. 35A, when the alignment film 210 is thermally expanded, for example, the first film alignment mark 210b and the first mask alignment mark 220f are detected based on the observation result in the detection region 71 of the camera 260. Although the distance between the two coincides with the reference value A, it is detected that the distance between the second film alignment mark 210a and the second mask alignment mark 220e is smaller than the reference value B. Then, the control unit adjusts and moves the mask 220 relative to the aperture 230 in the direction indicated by the white arrow in FIG. 35B (the moving direction of the alignment film 210 in the embodiment shown in FIG. 32). . Then, the exposure light transmitted through the overlapping portion of the aperture 230b of the aperture 230 and the slit 220b of the mask 220 is adjusted so that the aperture 230 does not move and the mask 220 is opposite to the direction of the white arrow shown in FIG. Since it moves, the slit 220b is transmitted through a portion having a wider width and a larger interval, and the linear exposed portion in the alignment exposure film 210c after the exposure has a wider width and a larger interval. As a result, even if the alignment exposure film 210c is thermally expanded to increase the width, the exposed portion on the alignment exposure film 210c expands in the width direction of the alignment exposure film 210c. Therefore, when the alignment exposure film 210c cools down and returns to the temperature at the start of exposure, the linear exposure portion exposed in the exposure process in FIG. 35 has the width and interval of the exposure portion at the start of exposure. It becomes the state which corresponded and the influence of the thermal expansion of the alignment film 210 can be eliminated.
 次に、図36は配向膜210に蛇行と熱膨張が生じた場合の例である。図36(a)に示すように、カメラ260により観察された検出領域271における第1フィルムアライメントマーク210bと第1マスクアライメントマーク220fとの間隔が基準値Aから変動し、更に、第2フィルムアライメントマーク210aと第2マスクアライメントマーク220eとの間隔が基準値Bから変動する。そうすると、制御部は、先ず、図36(b)に示すように、マスク220を第2方向に調節移動させて、第1フィルムアライメントマーク210bと第1マスクアライメントマーク220fとの間の距離を、基準値Aに一致させる。その後、カメラ260の検出領域271において、第2フィルムアライメントマーク210aと第2マスクアライメントマーク220eとの間の距離を検出し、これが基準値Bに一致していない場合は、制御部は、図36(c)に示すように、マスク220を第1方向に調節移動させる。この図36(c)に示す例の場合は、図35(b)の場合と同様に、開口230bとスリット220bとの重なり部を透過する露光光は、スリット220bにおけるより幅が広く、より間隔が広い部分を透過するので、配向膜210の熱膨張に合わせて、露光後の配向露光膜210c上の露光部は、露光当初に比して、より幅が広く、より間隔が広いものとなる。よって、配向露光膜210cが降温して常温に戻ったときには、露光当初の露光部の幅及び間隔と同一になる。このようにして、配向膜210の蛇行と配向膜210の熱膨張の双方が生じたときにも、配向露光膜210c上の露光部を露光開始時(又は、基準値として定めたもの)に一致させることができ、高精度の露光部を形成することができる。 Next, FIG. 36 shows an example in which meandering and thermal expansion occur in the alignment film 210. As shown in FIG. 36 (a), the distance between the first film alignment mark 210b and the first mask alignment mark 220f in the detection region 271 observed by the camera 260 varies from the reference value A, and further, the second film alignment. The interval between the mark 210a and the second mask alignment mark 220e varies from the reference value B. Then, the controller first adjusts and moves the mask 220 in the second direction as shown in FIG. 36 (b), and sets the distance between the first film alignment mark 210b and the first mask alignment mark 220f. Match with the reference value A. Thereafter, in the detection region 271 of the camera 260, the distance between the second film alignment mark 210a and the second mask alignment mark 220e is detected, and when this does not match the reference value B, the control unit As shown in (c), the mask 220 is adjusted and moved in the first direction. In the case of the example shown in FIG. 36 (c), the exposure light transmitted through the overlapping portion of the opening 230b and the slit 220b is wider than the slit 220b and is more spaced apart as in the case of FIG. 35 (b). Since the light passes through a wide portion, the exposed portion on the alignment exposure film 210c after exposure becomes wider and wider than the initial exposure in accordance with the thermal expansion of the alignment film 210. . Therefore, when the alignment exposure film 210c cools down and returns to room temperature, it becomes the same as the width and interval of the exposed portion at the beginning of exposure. Thus, even when both the meandering of the alignment film 210 and the thermal expansion of the alignment film 210 occur, the exposed portion on the alignment exposure film 210c coincides with the start of exposure (or set as a reference value). It is possible to form a highly accurate exposure portion.
 なお、上記各実施形態においては、マスクアライメントマークに最も近いスリットのこのマスクアライメントマーク側の側縁と、そのマスクアライメントマークとが平行になるように、マスクアライメントマークを形成しているが、本発明は、これに限らず、マスクアライメントマークに最も近いスリットのこのマスクアライメントマークの反対側の側縁と、そのマスクアライメントマークとが平行になるように、マスクアライメントマークを形成しても良く、また、マスクアライメントマークに最も近いスリットの幅方向の中心線と、このマスクアライメントマークとが平行になるように、マスクアライメントマークを形成しても良い。更に、本発明においては、マスクアライメントマークを、それに最も近いスリットのマスクアライメントマーク側の側縁、反対側の側縁、又はスリットの幅中心線を基準線として、形成する際に、前記マスクアライメントマークを、前記最も近いスリットの幅が前記第1方向に線形的に変化する変化量を加味して前記基準線からの距離を設定しても良い。つまり、マスクアライメントマークとそれに最も近いスリットとを、平行ではなく、両者間の間隔が配向膜の伸縮を加味して前記第1方向に線形的に変化するように、定めることができる。このマスクアライメントマークとそれに最も近いスリットとの間の間隔の線形的な変化量は、前記最も近いスリットの幅の第1方向における線形的な変化量を使用することができる。 In each of the above embodiments, the mask alignment mark is formed so that the side edge on the mask alignment mark side of the slit closest to the mask alignment mark is parallel to the mask alignment mark. The invention is not limited to this, and the mask alignment mark may be formed so that the side edge opposite to the mask alignment mark of the slit closest to the mask alignment mark is parallel to the mask alignment mark, Further, the mask alignment mark may be formed so that the center line in the width direction of the slit closest to the mask alignment mark is parallel to the mask alignment mark. Furthermore, in the present invention, the mask alignment mark is formed when the mask alignment mark is formed using the side edge on the mask alignment mark side of the slit closest thereto, the side edge on the opposite side, or the width center line of the slit as a reference line. The distance from the reference line may be set by taking into account the amount of change in which the width of the closest slit linearly changes in the first direction. That is, the mask alignment mark and the slit closest thereto can be determined so that they are not parallel and the distance between them changes linearly in the first direction in consideration of the expansion and contraction of the alignment film. As the linear change amount of the distance between the mask alignment mark and the slit closest thereto, the linear change amount in the first direction of the width of the closest slit can be used.
 本発明においては、マスクには、複数個のスリットが、配向膜の移動方向の第1方向に直交する第2方向に相互間に間隔をおいて配列されており、このスリットの幅は、第1方向に関して線形的に変化しており、スリット間の間隔は、第2方向にみたときにスリットの幅と同一である。そして、第2方向に延びて全てのスリットと交差する開口が形成された遮光部材がマスクに重ね合わされて設けられている。これにより、本発明においては、第2方向に延びる遮光部材の開口及びマスクのスリットを透過した露光光が配向膜に照射される。そして、検出部は、マスクに設けられたマスクアライメントマークと共にフィルムアライメントマークを検出し、制御部は、検出部が検出したマスクアライメントマークとフィルムアライメントマークとの位置関係が所定関係になるように、マスクと遮光部材との第1方向における相対的な位置を制御する。これにより、本発明においては、マスクのスリットと遮光部材の開口との相対的位置が調節され、配向膜に対する露光光の照射領域の幅を、変形後の幅に基づいて、精度良く調節することができる。よって、露光対象の配向膜が幅方向に変形した場合においても、マスクを取り替えることなく露光できる。 In the present invention, the mask has a plurality of slits arranged in a second direction perpendicular to the first direction of the alignment film movement with a space between each other. It changes linearly in one direction, and the interval between the slits is the same as the width of the slits when viewed in the second direction. A light shielding member extending in the second direction and having openings that intersect all the slits is provided so as to overlap the mask. Thereby, in this invention, the exposure light which permeate | transmitted the slit of the mask and the opening of the light shielding member extended in a 2nd direction is irradiated to an alignment film. And a detection part detects a film alignment mark with the mask alignment mark provided in the mask, and a control part makes the positional relationship of the mask alignment mark and film alignment mark which the detection part detected become a predetermined relation, The relative position of the mask and the light shielding member in the first direction is controlled. Thereby, in the present invention, the relative position between the slit of the mask and the opening of the light shielding member is adjusted, and the width of the irradiation region of the exposure light with respect to the alignment film is accurately adjusted based on the width after deformation. Can do. Therefore, even when the alignment film to be exposed is deformed in the width direction, exposure can be performed without replacing the mask.
 また、本発明の他の露光装置においては、第2方向の一端部の第1スリットが第1方向に平行であり、この第1スリットと平行に第1マスクアライメントマークが形成されていて、この第1マスクアライメントマークとフィルムアライメントマークとの間の距離が所定の基準値Aになるように、マスクを第2方向に調節移動させることにより、配向膜の蛇行による露光位置の変動を防止することができる。また、第2方向の他端部の第2スリットと第2マスクアライメントマークとの間の距離が所定の基準値Bになるように、マスクを第1方向に調節移動させることにより、配向膜の熱膨張又は熱収縮による露光位置の変動を防止することができる。 In another exposure apparatus of the present invention, the first slit at one end in the second direction is parallel to the first direction, and a first mask alignment mark is formed in parallel to the first slit. By adjusting and moving the mask in the second direction so that the distance between the first mask alignment mark and the film alignment mark becomes a predetermined reference value A, fluctuations in the exposure position due to the meandering of the alignment film can be prevented. Can do. In addition, the mask is adjusted and moved in the first direction so that the distance between the second slit at the other end in the second direction and the second mask alignment mark becomes a predetermined reference value B. Variations in the exposure position due to thermal expansion or contraction can be prevented.
 次に、本発明の第13実施形態について説明する。本実施形態の露光装置は、フィルム基材上に配向材料膜が形成された配向膜を一方向に移動させる移動装置と、前記配向膜の移動域に設けられ、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向に相互に間隔をおいた複数個の帯状の露光部からなる第1の露光パターンを形成する第1露光ユニットと、前記配向膜の移動方向における前記第1露光ユニットの下流側に設置され、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向における前記第1露光パターンの露光部の相互間の領域に複数個の帯状の露光部からなる第2の露光パターンを形成する第2露光ユニットと、前記第1露光ユニットと前記第2露光ユニットとの間の前記配向膜の移動域に設けられ、前記第1露光パターンの露光部を検出する検査部と、前記検査部が検出した第1露光パターンの露光部の位置に基づいて、前記第2露光ユニットにおける前記第2の露光パターンの露光位置を制御する制御部と、を有するものである。 Next, a thirteenth embodiment of the present invention will be described. The exposure apparatus of this embodiment includes a moving device that moves an alignment film in which an alignment material film is formed on a film substrate in one direction, and the alignment material on the alignment film that is provided in a moving area of the alignment film. A first exposure unit that forms a first exposure pattern that includes a plurality of strip-shaped exposure portions extending in the one direction and spaced apart from each other in a direction orthogonal to the one direction; The exposure part of the first exposure pattern in the direction perpendicular to the one direction and extending in the one direction on the alignment material film on the alignment film is installed on the downstream side of the first exposure unit in the moving direction of A second exposure unit for forming a second exposure pattern composed of a plurality of strip-shaped exposure portions in a region between the first exposure unit and the movement region of the alignment film between the first exposure unit and the second exposure unit Provided in The exposure position of the second exposure pattern in the second exposure unit is determined based on the position of the inspection unit that detects the exposure unit of the first exposure pattern and the position of the exposure unit of the first exposure pattern detected by the inspection unit. And a control unit for controlling.
 この場合に、本発明の露光装置をFPRの製造方法に適用すると、このFPRの製造方法は、フィルム基材上に配向材料膜が形成された配向膜を一方向に移動させながら、前記配向膜の移動域に設けられた第1露光ユニットによって、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向に相互に間隔をおいた複数個の帯状の露光部からなる第1の露光パターンを形成する第1露光工程と、前記配向膜の移動方向における前記第1露光ユニットの下流側に設置された第2露光ユニットによって、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向における前記第1露光パターンの露光部の相互間の領域に複数個の帯状の露光部からなる第2の露光パターンを形成する第2露光工程と、前記第1露光工程と前記第2露光工程との間に前記第1露光パターンの露光部を検出する検査工程と、を有し、前記検査工程で検出された第1露光パターンの露光部の位置に基づいて、前記第2露光工程における前記第2露光ユニットによる前記第2の露光パターンの露光位置を制御するものである。 In this case, when the exposure apparatus of the present invention is applied to an FPR manufacturing method, the FPR manufacturing method moves the alignment film in which an alignment material film is formed on a film base material in one direction while moving the alignment film. The first exposure unit provided in the moving area of the plurality of strips extending in the one direction and spaced apart from each other in the direction orthogonal to the one direction on the alignment material film on the alignment film. The alignment on the alignment film by a first exposure process for forming a first exposure pattern comprising an exposure unit and a second exposure unit installed downstream of the first exposure unit in the moving direction of the alignment film. A second exposure pattern comprising a plurality of strip-shaped exposure portions is formed on the material film in a region between the exposure portions of the first exposure pattern in a direction orthogonal to the one direction while extending in the one direction. A second exposure step, and an inspection step for detecting an exposed portion of the first exposure pattern between the first exposure step and the second exposure step, the first detected in the inspection step Based on the position of the exposure part of the exposure pattern, the exposure position of the second exposure pattern by the second exposure unit in the second exposure step is controlled.
 図37は本発明の第13実施形態に係る露光装置を示す図、図38は配向露光膜310a上に形成された露光部を示す図である。配向材料膜が表面に被着された配向膜310が移動装置(図示せず)によりバックロール315に搬送されてきて、このバックロール315に巻き架けられた後、バックロール315から搬出されるようになっている。そして、配向膜310がバックロール315に接触してその裏面をバックロール315に支持されている配向膜310の移動域において、その最も上流側に、第1露光ユニット320が配置され、その最も下流側に、第2露光ユニット321が配置され、この第1露光ユニット320と第2露光ユニット321との間の位置に、検査部330が配置されている。 FIG. 37 is a view showing an exposure apparatus according to the thirteenth embodiment of the present invention, and FIG. 38 is a view showing an exposure portion formed on the alignment exposure film 310a. The alignment film 310 having the alignment material film deposited on the surface is conveyed to the back roll 315 by a moving device (not shown), wound around the back roll 315, and then unloaded from the back roll 315. It has become. The first exposure unit 320 is arranged on the most upstream side in the moving region of the alignment film 310 in which the alignment film 310 contacts the back roll 315 and the back surface thereof is supported by the back roll 315, and the most downstream side thereof. A second exposure unit 321 is disposed on the side, and an inspection unit 330 is disposed at a position between the first exposure unit 320 and the second exposure unit 321.
 第1露光ユニット320は、例えば、CW円偏光の露光光をマスク323に向けて照射する露光光源322を有し、この露光光源322からの露光光は、マスク323を介して配向膜310上の配向材料膜に照射する。第2露光ユニット321は、例えば、CCW円偏光の露光光をマスク325に向けて照射する露光光源324を有し、この露光光源324からの露光光は、マスク325を介して配向膜310上の配向材料膜に照射される。マスク323,325は、図38に示すように、夫々、配向膜310の移動方向309に延びる細長い矩形のスリット323a、325aが形成されたものである。これらのスリット323a,325aの幅は、走査線1ライン分の幅であり、スリット323a,325aの相互間隔も、走査線1ライン分の幅を有する。そして、マスク325のスリット323aと、マスク325のスリット325aとは、相互に隣接する走査線に対応するものであり、配向膜310の移動方向309に垂直の方向に関して、スリット323a、325aが交互になるように、マスク323,325が配置されている。従って、スリット323a、325aの配列ピッチは、FPR方式の3D液晶表示装置に対応して、走査線2ライン分に相当する。 The first exposure unit 320 includes, for example, an exposure light source 322 that irradiates CW circularly polarized exposure light toward the mask 323, and the exposure light from the exposure light source 322 passes through the mask 323 on the alignment film 310. Irradiate the alignment material film. The second exposure unit 321 includes, for example, an exposure light source 324 that irradiates CCW circularly polarized exposure light toward the mask 325, and the exposure light from the exposure light source 324 is on the alignment film 310 via the mask 325. The alignment material film is irradiated. As shown in FIG. 38, the masks 323 and 325 are formed with elongated rectangular slits 323a and 325a extending in the moving direction 309 of the alignment film 310, respectively. The widths of these slits 323a and 325a are the width of one scanning line, and the interval between the slits 323a and 325a is also the width of one scanning line. The slits 323a of the mask 325 and the slits 325a of the mask 325 correspond to scanning lines adjacent to each other, and the slits 323a and 325a are alternately arranged in a direction perpendicular to the moving direction 309 of the alignment film 310. Masks 323 and 325 are arranged so as to be. Therefore, the arrangement pitch of the slits 323a and 325a corresponds to two scanning lines corresponding to the FPR 3D liquid crystal display device.
 バックロール315においては、その周面の略半分(下半分)だけ配向膜310が巻き架けられ、配向膜310の裏面がバックロール315に接触すると共に、配向膜310の表面、即ち、配向材料膜が外方を向く。このバックロール315を間に挟んで対向するようにして、マスク323、325が配向材料膜に面して配向膜310から若干の距離(200μm程度)をおいて設置されており、更に、このマスク323、325の背後には、露光光源322、324が設置されている。これにより、表面に配向材料膜が塗布された配向膜310は、バックロール315の周面に接触し、配向膜310の搬送時の若干の張力によりシワが伸ばされた状態で、バックロール315により支持される。そして、配向膜310を移動方向309に連続的に搬送し、露光光源322、324から露光光を連続的に照射することにより、この露光光はマスク323、325のスリット323a、325aを透過して配向膜310に照射される。 In the back roll 315, the alignment film 310 is wound around approximately half (lower half) of the peripheral surface, the back surface of the alignment film 310 contacts the back roll 315, and the surface of the alignment film 310, that is, the alignment material film. Facing outward. The masks 323 and 325 face the alignment material film with a slight distance (about 200 μm) from the alignment film 310 so as to face each other with the back roll 315 interposed therebetween. Exposure light sources 322 and 324 are installed behind 323 and 325. As a result, the alignment film 310 with the alignment material film applied to the surface is in contact with the peripheral surface of the back roll 315, and the wrinkles are stretched by a slight tension during the conveyance of the alignment film 310. Supported. Then, the alignment film 310 is continuously conveyed in the moving direction 309, and exposure light is continuously irradiated from the exposure light sources 322 and 324, whereby the exposure light passes through the slits 323a and 325a of the masks 323 and 325. The alignment film 310 is irradiated.
 バックロール315は内部を水冷された水冷ロールであり、その中心軸の周りに回転可能になっている。そして、このバックロール315は、自由に回転することができ、配向膜310の移動とともに、その周速度が配向膜310の移動速度と同一になるように回転する。これにより、配向膜310はバックロール315の周面に相対的速度差が存在しない状態で支持される。従って、適宜の張力を印加されて搬送される配向膜310は、バックロール315の周面上で、シワが発生することが防止される。 The back roll 315 is a water-cooled roll whose inside is water-cooled, and is rotatable around its central axis. The back roll 315 can rotate freely, and rotates with the movement of the alignment film 310 so that its peripheral speed is the same as the movement speed of the alignment film 310. Thereby, the alignment film 310 is supported in a state where there is no relative speed difference on the peripheral surface of the back roll 315. Accordingly, wrinkles are prevented from being generated on the peripheral surface of the back roll 315 in the alignment film 310 that is conveyed by applying an appropriate tension.
 露光光源322からの露光光は、CW円偏光であり、露光光源324からの露光光は、CCW円偏光である。そして、図38に示すように、配向膜310が移動方向309に移動する間に、各露光光が、マスク323,325のスリット323a、325aを透過して、配向膜310上の配向材料膜に照射され、スリット323aに対応する露光部が、例えば、左目用のCW円偏光の露光部301aとなり、スリット325aに対応する露光部が、例えば、右目用のCCW円偏光の露光部301bとなる。 The exposure light from the exposure light source 322 is CW circularly polarized light, and the exposure light from the exposure light source 324 is CCW circularly polarized light. Then, as shown in FIG. 38, while the alignment film 310 moves in the movement direction 309, each exposure light passes through the slits 323a and 325a of the masks 323 and 325 to form an alignment material film on the alignment film 310. The exposed exposure unit corresponding to the slit 323a is, for example, the left-eye CW circular polarization exposure unit 301a, and the exposure unit corresponding to the slit 325a is, for example, the right-eye CCW circular polarization exposure unit 301b.
 検査部330は、バックロール315の上方に、その検出方向を直下に向けて設置されたカメラ331と、カメラ331の下方に設置されたハーフミラー334と、更にハーフミラー334の下方に設置された直線偏光板332と、ハーフミラー334に対して検査用光を照射する検査光源333とを有する。これにより、検査光源333からの検査光は、ハーフミラー334にて反射して、直線偏光板332を透過してバックロール315上の配向膜310に照射され、バックロール315上で反射した反射光は、直線偏光板332を透過し、ハーフミラー334を経てカメラ331に入射する。 The inspection unit 330 is installed above the back roll 315 with the camera 331 installed with the detection direction directly below, the half mirror 334 installed below the camera 331, and further installed below the half mirror 334. A linear polarizing plate 332 and an inspection light source 333 that irradiates the half mirror 334 with inspection light are provided. Thereby, the inspection light from the inspection light source 333 is reflected by the half mirror 334, passes through the linear polarizing plate 332, is irradiated on the alignment film 310 on the back roll 315, and is reflected light reflected on the back roll 315. Passes through the linearly polarizing plate 332 and enters the camera 331 through the half mirror 334.
 図45(a)、(b)は、本発明の原理を説明する図であり、直線偏光板とλ/4板との組み合わせによる光の偏光状態を示す模式図である。図45の上図に示すように、光源360から出射された照明光は、p偏光板361によりp偏光の光に変換される。このp偏光の光は、CW円偏光板362により、CW円偏光の光に変換される。このCW円偏光の光は、CW円偏光板363により、s偏光の光に変換される。一方、図45の下図に示すように、光源360から出射された照明光が、p偏光板361によりp偏光の光に変換された後、CW円偏光板362によりCW円偏光の光に変換され、その後、CCW円偏光板364により、p偏光の光に変換される。なお、配向膜310を露光した後の配向露光膜310aの第1露光部301aは特定方向の直線偏光をCW円偏光に変換する機能を持つ。即ち、CW円偏光板と同等の光学軸を定義することができる。 45 (a) and 45 (b) are diagrams for explaining the principle of the present invention, and are schematic diagrams showing the polarization state of light by a combination of a linearly polarizing plate and a λ / 4 plate. As shown in the upper diagram of FIG. 45, the illumination light emitted from the light source 360 is converted into p-polarized light by the p-polarizing plate 361. The p-polarized light is converted into CW circularly-polarized light by the CW circularly polarizing plate 362. The CW circularly polarized light is converted into s-polarized light by the CW circularly polarizing plate 363. On the other hand, as shown in the lower diagram of FIG. 45, the illumination light emitted from the light source 360 is converted to p-polarized light by the p-polarizing plate 361 and then converted to CW-polarized light by the CW circularly polarizing plate 362. Thereafter, the light is converted into p-polarized light by the CCW circularly polarizing plate 364. The first exposure portion 301a of the alignment exposure film 310a after exposing the alignment film 310 has a function of converting linearly polarized light in a specific direction into CW circularly polarized light. That is, an optical axis equivalent to that of the CW circularly polarizing plate can be defined.
 即ち、図44(a)に示すように、カメラ331と配向露光膜310aの間に、CW円偏光板336と、この上方にs偏光板337を配置した場合、光源333から出射した検査光は、p偏光板332によりp偏光の光に変換され、配向露光膜310aに入射する。配向露光膜310aの第1露光部301a(CW円偏光部)を透過した光は、CW円偏光板336によりs偏光の光に変換され、配向露光膜310aの第1露光部301a間の非露光部(非偏光部)を透過した光は、CW円偏光板336によりCW円偏光の光に変換される。このため、配向露光膜310aのCW円偏光部を透過した光はs偏光板337を透過し、カメラ331に入射して明部として検出され、一方、配向露光膜310aの非露光部を透過した光は、s偏光板337を透過できず、カメラ331に入射しないため、暗部として検出される。また、図44(b)に示すように、カメラ331と配向露光膜310aとの間に、CCW円偏光板338と、この上方にp偏光板332を配置した場合、配向露光膜310aの第1露光部301a(CW円偏光部)を透過した光は、CCW円偏光板338によりp偏光の光に変換され、配向露光膜310aの第1露光部301a間の非露光部(非偏光部)を透過した光は、CCW円偏光板338によりCCW円偏光の光に変換される。このため、配向露光膜310aのCW円偏光部を透過した光はp偏光板332を透過し、カメラ331に入射して明部として検出され、一方、配向露光膜310aの非露光部を透過した光は、p偏光板332を透過できず、カメラ331に入射しないため、暗部として検出される。よって、直線偏光板とλ/4板とを組み合わせることにより、配向露光膜310a上の帯状の露光部を検出することができる。 That is, as shown in FIG. 44A, when the CW circularly polarizing plate 336 and the s polarizing plate 337 are disposed between the camera 331 and the alignment exposure film 310a, the inspection light emitted from the light source 333 is The light is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment exposure film 310a. The light that has passed through the first exposure portion 301a (CW circular polarization portion) of the alignment exposure film 310a is converted into s-polarized light by the CW circularly polarizing plate 336, and non-exposure between the first exposure portions 301a of the alignment exposure film 310a. The light transmitted through the portion (non-polarized portion) is converted into CW circularly polarized light by the CW circularly polarizing plate 336. For this reason, the light transmitted through the CW circularly polarized portion of the alignment exposure film 310a is transmitted through the s polarizing plate 337, is incident on the camera 331, and is detected as a bright portion, while it is transmitted through the non-exposure portion of the alignment exposure film 310a. Since light cannot pass through the s polarizing plate 337 and does not enter the camera 331, it is detected as a dark part. In addition, as shown in FIG. 44B, when a CCW circularly polarizing plate 338 and a p-polarizing plate 332 are disposed between the camera 331 and the alignment exposure film 310a, the first alignment exposure film 310a has a first structure. The light transmitted through the exposure unit 301a (CW circular polarization unit) is converted into p-polarized light by the CCW circularly polarizing plate 338, and the non-exposure unit (non-polarization unit) between the first exposure units 301a of the alignment exposure film 310a. The transmitted light is converted into CCW circularly polarized light by the CCW circularly polarizing plate 338. Therefore, the light transmitted through the CW circularly polarized portion of the alignment exposure film 310a is transmitted through the p-polarizing plate 332, is incident on the camera 331, and is detected as a bright portion, while it is transmitted through the non-exposure portion of the alignment exposure film 310a. Light cannot be transmitted through the p-polarizing plate 332 and does not enter the camera 331, so that it is detected as a dark part. Therefore, by combining the linearly polarizing plate and the λ / 4 plate, the strip-shaped exposed portion on the alignment exposure film 310a can be detected.
 しかしながら、本発明においては、このような複数個の直線偏光板とλ/4板とを組み合わせた光学系を使用しなくても、第1露光ユニット320にて形成されたCW円偏光の第1露光部301aを検出することができる。即ち、光源333から出射された検査光は、p偏光板332によりp偏光の光に変換され、配向露光膜310aに入射する。この配向露光膜310aに入射した光のうち、第1露光部301aに入射した光は、CW円偏光の光に変換される。このCW円偏光の光は、バックロール315にて反射し、再び第1露光部301aに入射し、CW円偏光板を透過する場合と同様に、s偏光の光に変換される。その後、このs偏光の光は、p偏光板332に再度入射するが、p偏光板332を透過できず、カメラ331にて暗部として検出される。一方、配向露光膜310aに入射した光のうち、第1露光部301a間の非露光部(非偏光部)に入射した光は、この非露光部をp偏光の光のまま透過してバックロール315にて反射し、再度非露光部をp偏光の光のまま透過してp偏光板332を透過し、カメラ331に入射するので、カメラ331はこれを明部として検出する。よって、第1露光部301a(CW円偏光部)を透過した検査光は、カメラ331にて暗部として検出され、第1露光部301a間の非露光部を透過した検査光は、カメラ331にて明部として検出される。 However, in the present invention, the first CW circularly polarized light formed by the first exposure unit 320 can be used without using such an optical system in which a plurality of linearly polarizing plates and λ / 4 plates are combined. The exposure unit 301a can be detected. That is, the inspection light emitted from the light source 333 is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment exposure film 310a. Of the light incident on the alignment exposure film 310a, the light incident on the first exposure portion 301a is converted into CW circularly polarized light. The CW circularly polarized light is reflected by the back roll 315, is incident on the first exposure unit 301a again, and is converted into s-polarized light as in the case of transmitting through the CW circularly polarizing plate. Thereafter, the s-polarized light enters the p-polarizing plate 332 again, but cannot pass through the p-polarizing plate 332 and is detected by the camera 331 as a dark part. On the other hand, of the light incident on the alignment exposure film 310a, the light incident on the non-exposure portion (non-polarization portion) between the first exposure portions 301a passes through the non-exposure portion as p-polarized light and is back-rolled. The light is reflected at 315, passes through the non-exposed portion as p-polarized light again, passes through the p-polarizing plate 332, and enters the camera 331. The camera 331 detects this as a bright portion. Therefore, the inspection light transmitted through the first exposure unit 301a (CW circular polarization unit) is detected as a dark part by the camera 331, and the inspection light transmitted through the non-exposure part between the first exposure units 301a is detected by the camera 331. It is detected as a bright part.
 このようにして、検査部330にて、第1露光ユニット320にて形成された第1露光部301a(CW円偏光部)の位置(幅及び間隔)が検出される。そこで、制御部(図示せず)は、この第1露光部301aの位置(幅及び間隔)の検出結果に基づいて、第2露光ユニット321における露光を製御する。具体的には、第2露光ユニット321における第2マスク325の配向膜310の搬送方向に垂直方向の位置を、第2露光ユニット321で形成されるべき第2露光部301bが、第1露光部301aの境界と重ならないように、また第1露光部301aと第2露光部301bとの間に隙間が生じないように、調節する。 Thus, the position (width and interval) of the first exposure unit 301a (CW circular polarization unit) formed by the first exposure unit 320 is detected by the inspection unit 330. Therefore, the control unit (not shown) controls the exposure in the second exposure unit 321 based on the detection result of the position (width and interval) of the first exposure unit 301a. Specifically, the second exposure unit 301b to be formed by the second exposure unit 321 at a position perpendicular to the transport direction of the alignment film 310 of the second mask 325 in the second exposure unit 321 is the first exposure unit. Adjustment is made so as not to overlap with the boundary of 301a and so as not to cause a gap between the first exposure unit 301a and the second exposure unit 301b.
 なお、配向膜310の膨張又は縮小等により、第1露光部301aの幅の大きさが、規定値よりも拡大又は縮小されていた場合は、第2マスク325の位置の調節だけでは、第1露光部301aと第2露光部301bとが重ならず、隙間が生じないようにすることができないので、後述するようにして、第2露光部301bを拡大又は縮小する必要がある。 If the width of the first exposure portion 301a is enlarged or reduced more than a specified value due to expansion or reduction of the alignment film 310, the first mask 325 is adjusted only by adjusting the position of the second mask 325. Since the exposure unit 301a and the second exposure unit 301b do not overlap and a gap cannot be formed, the second exposure unit 301b needs to be enlarged or reduced as described later.
 次に、上述の本発明の第13実施形態の動作について説明する。第1露光ユニット320で、例えば、左目用のCW円偏光の第1露光部301a(CW円偏光部)を形成する。この第1露光部301aが形成された配向膜310は、バックロール315の回転と共に検査部330に到来し、第1露光部301aの位置(幅及び間隔)がカメラ331に検出される。そうすると、制御部は、この検出結果を基に、第1露光部301aが所定の設計位置に形成されているか否かを判断し、第1露光部301aの位置が、所定の設計位置からずれている場合は、それに合わせて、第2露光ユニット321の第2マスク325の位置を調整し、第2露光部301bの形成位置を初期設定値から変更して、第1露光部301aと第2露光部301bとが重ならないと共に、非露光部が形成されないように、第2露光ユニット321を制御する。 Next, the operation of the thirteenth embodiment of the present invention will be described. In the first exposure unit 320, for example, a first exposure unit 301a (CW circular polarization unit) of CW circular polarization for the left eye is formed. The alignment film 310 on which the first exposure unit 301 a is formed arrives at the inspection unit 330 along with the rotation of the back roll 315, and the position (width and interval) of the first exposure unit 301 a is detected by the camera 331. Then, the control unit determines whether or not the first exposure unit 301a is formed at a predetermined design position based on the detection result, and the position of the first exposure unit 301a is shifted from the predetermined design position. If so, the position of the second mask 325 of the second exposure unit 321 is adjusted accordingly, the formation position of the second exposure unit 301b is changed from the initial setting value, and the first exposure unit 301a and the second exposure unit The second exposure unit 321 is controlled so that the portion 301b does not overlap and a non-exposed portion is not formed.
 以上のようにして、検査部330にて、第1露光部301aの位置(幅及び間隔)を検出するので、第2露光ユニット321では、第1露光ユニット320で実際に形成された第1露光部301aの状態に合わせて露光を制御し、第2露光部301bを形成することができる。 As described above, since the position (width and interval) of the first exposure unit 301 a is detected by the inspection unit 330, the first exposure actually formed by the first exposure unit 320 is used in the second exposure unit 321. Exposure can be controlled in accordance with the state of the part 301a, and the second exposure part 301b can be formed.
 次に、本実施形態の変形例について、図39を参照して、説明する。本変形例においては、光源333から出射される検査光の光軸と、カメラ3331にて検出する反射光との光軸が、バックロール315の表面にて交差し、検査光が配向膜310を透過した後、バックロール315の表面で反射して、反射光がカメラ331に検出されるようになっている。光源333から出射された検査光はp偏光板332によりp偏光の光となり、バックロール315からの反射光は、s偏光板337を透過した光がカメラ331に入射する。 Next, a modification of the present embodiment will be described with reference to FIG. In this modification, the optical axis of the inspection light emitted from the light source 333 and the optical axis of the reflected light detected by the camera 3331 intersect at the surface of the back roll 315, and the inspection light passes through the alignment film 310. After being transmitted, the light is reflected by the surface of the back roll 315, and the reflected light is detected by the camera 331. The inspection light emitted from the light source 333 is converted to p-polarized light by the p-polarizing plate 332, and the reflected light from the back roll 315 is incident on the camera 331 as the light transmitted through the s-polarizing plate 337.
 このように構成された露光装置においては、光源333から出射した検査光は、p偏光板332によりp偏光の光に変換され、配向膜310に入射する。この配向膜310に入射した光のうち、第1露光部301aに入射した光はCW円偏光の光に変換され、バックロール315にて反射し、再度、配向膜310の第1露光部301aに入射し、s偏光の光に変換され、s偏光板を透過してカメラ331に明部として検出される。一方、配向膜310に入射した光のうち、第1露光部301a間の非露光部(非偏光部)に入射した光は、この非露光部をp偏光の光のまま透過して、バックロール315にて反射し、再度、非露光部をp偏光の光のまま透過して、s偏光板37を透過できず、カメラ331は非露光部を暗部として検出する。よって、第1露光部301a(CW円偏光部)を透過した検査光は、カメラ331に明部として検出され、第1露光部301a間の非露光部を透過した検査光は、カメラ331にて暗部として検出されるため、第1露光部301aの位置(幅及び間隔)を検知することができる。 In the exposure apparatus configured as described above, the inspection light emitted from the light source 333 is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment film 310. Of the light incident on the alignment film 310, the light incident on the first exposure unit 301 a is converted into CW circularly polarized light, reflected by the back roll 315, and again on the first exposure unit 301 a of the alignment film 310. Incident light is converted into s-polarized light, passes through the s-polarizing plate, and is detected by the camera 331 as a bright portion. On the other hand, of the light incident on the alignment film 310, the light incident on the non-exposure part (non-polarization part) between the first exposure parts 301a is transmitted through the non-exposure part as p-polarized light, and the back roll. The light is reflected at 315, passes through the non-exposed portion as p-polarized light again, and cannot pass through the s polarizing plate 37, and the camera 331 detects the non-exposed portion as a dark portion. Therefore, the inspection light transmitted through the first exposure unit 301a (CW circular polarization unit) is detected as a bright part by the camera 331, and the inspection light transmitted through the non-exposure part between the first exposure units 301a is detected by the camera 331. Since it is detected as a dark part, the position (width and interval) of the first exposure part 301a can be detected.
 次に、本発明の第14実施形態について、図40を参照して、具体的に説明する。本実施形態は、バックロール315内に、検査部330の検査光源333を組み込んだものである。バックロール315には、その周面に、ロール軸方向に延びる溝317が形成されており、この溝317内に、ロール軸方向に延びる棒状の検査用照明光源333が配置されている。更に、この溝317内には、この光源333の上方に、ロール軸方向に延びるp偏光板332が配置されている。配向膜310は、第1実施形態と同等に、バックロール315に巻き架けられて、その回転と共に移動しており、このバックロール315のロール軸の直上域には、検査光を検知する検査用カメラ331が配置されている。この検査用カメラ331は、バックロール315の軸方向に延びるラインセンサであるか、又は同じくバックロール315の軸方向の横長の矩形の2次元領域にて光を検出するエリアセンサである。そして、この検査用カメラ331と、配向膜310との間には、CW円偏光板336と、その上方のs偏光板337とが配置されている。バックロール315は、第1実施形態と同様に、その軸の周りに自由に回転可能になっており、配向膜310がバックロール315に巻き架けられて移動することにより、バックロール315はその周速度と配向膜310の移動速度とが同一の状態で回転する。そして、バックロール315の溝317がロール上端に回動してきたときに、光源333とカメラ331とが鉛直の光軸上にて対向する。 Next, a fourteenth embodiment of the present invention will be specifically described with reference to FIG. In the present embodiment, the inspection light source 333 of the inspection unit 330 is incorporated in the back roll 315. A groove 317 extending in the roll axis direction is formed on the peripheral surface of the back roll 315, and a rod-shaped inspection illumination light source 333 extending in the roll axis direction is disposed in the groove 317. Further, a p-polarizing plate 332 extending in the roll axis direction is disposed in the groove 317 above the light source 333. Similar to the first embodiment, the alignment film 310 is wound around the back roll 315 and moves with the rotation thereof. The inspection film detects inspection light in the region directly above the roll axis of the back roll 315. A camera 331 is disposed. The inspection camera 331 is a line sensor that extends in the axial direction of the back roll 315 or is an area sensor that detects light in a horizontally-long rectangular two-dimensional region of the back roll 315 in the axial direction. A CW circularly polarizing plate 336 and an s polarizing plate 337 thereabove are disposed between the inspection camera 331 and the alignment film 310. As in the first embodiment, the back roll 315 is freely rotatable around its axis. When the alignment film 310 is wound around the back roll 315 and moved, the back roll 315 is rotated around its circumference. The rotation speed is the same as the moving speed of the alignment film 310. When the groove 317 of the back roll 315 rotates to the upper end of the roll, the light source 333 and the camera 331 face each other on the vertical optical axis.
 本実施形態の検査部330においては、溝317が最上端に回動してきたとき、即ち、溝317内の光源333がカメラ331に対向したとき、光源333から出射された検査光が、p偏光板332を透過し、更に配向膜310を透過し、更に、CW円偏光板336を透過し、s偏光板337を透過した後、カメラ331に入射するようになっている。そして、光源333からの検査光は、p偏光板332によりp偏光の光に変換され、配向膜310に入射する。この配向膜310に入射した光のうち、第1露光部301aに入射した光はCW円偏光の光に変換され、CW円偏光板336により、s偏光に変換され、その後、s偏光板337を透過してカメラ331に明部として検出される。一方、配向膜310に入射した光のうち、第1露光部301a間の非露光部(非偏光部)に入射した光は、この非露光部をp偏光の光のまま透過し、CW円偏光板336によりCW円偏光の光に変換され、s偏光板337を透過できず、カメラ331に暗部として検出される。よって、第1露光部301a(CW円偏光部)を透過した検査光は、カメラ331に明部として検出され、第1露光部301a間の非露光部を透過した検査光は、カメラ331にて暗部として検出されるため、第1露光部301aの位置(幅及び間隔)を検出することができる。従って、本実施形態は第1実施形態と同様の効果を奏する。 In the inspection unit 330 of this embodiment, when the groove 317 is rotated to the uppermost end, that is, when the light source 333 in the groove 317 faces the camera 331, the inspection light emitted from the light source 333 is p-polarized light. The light passes through the plate 332, further passes through the alignment film 310, further passes through the CW circularly polarizing plate 336, passes through the s polarizing plate 337, and then enters the camera 331. The inspection light from the light source 333 is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment film 310. Of the light incident on the alignment film 310, the light incident on the first exposure unit 301 a is converted into CW circularly polarized light, converted into s polarized light by the CW circularly polarizing plate 336, and then the s polarizing plate 337 is used. The light passes through and is detected by the camera 331 as a bright portion. On the other hand, of the light incident on the alignment film 310, the light incident on the non-exposure part (non-polarization part) between the first exposure parts 301a passes through the non-exposure part as p-polarized light, and is CW circularly polarized light. The light is converted into CW circularly polarized light by the plate 336, cannot pass through the s polarizing plate 337, and is detected as a dark part by the camera 331. Therefore, the inspection light transmitted through the first exposure unit 301a (CW circular polarization unit) is detected as a bright part by the camera 331, and the inspection light transmitted through the non-exposure part between the first exposure units 301a is detected by the camera 331. Since it is detected as a dark part, the position (width and interval) of the first exposure part 301a can be detected. Therefore, this embodiment has the same effect as the first embodiment.
 なお、CW円偏光板336の位置にCCW円偏光板338を配置した場合は、第1露光部301a及びCCW円偏光板338を透過した検査光は、p偏光の光に変換され、s偏光板337を透過できない。よって、カメラ331は第1露光部301aを暗部として検出する。そうすると、第1露光部301a間の非露光部(非偏光部)を透過した光は、カメラ331にて暗部として検出されるので、第1露光部301aと非露光部とを区別できない。このため、CCW円偏光板338の場合は、図44(b)に示すように、s偏光板337の代わりに、p偏光板332を使用する必要がある。これにより、カメラ331は第1露光部301aを明部として検出する。 When the CCW circularly polarizing plate 338 is disposed at the position of the CW circularly polarizing plate 336, the inspection light transmitted through the first exposure unit 301a and the CCW circularly polarizing plate 338 is converted into p-polarized light, and the s polarizing plate 337 cannot be transmitted. Therefore, the camera 331 detects the first exposure unit 301a as a dark part. If it does so, since the light which permeate | transmitted the non-exposure part (non-polarization part) between the 1st exposure parts 301a will be detected as a dark part with the camera 331, the 1st exposure part 301a and a non-exposure part cannot be distinguished. Therefore, in the case of the CCW circularly polarizing plate 338, it is necessary to use the p polarizing plate 332 instead of the s polarizing plate 337 as shown in FIG. Thereby, the camera 331 detects the 1st exposure part 301a as a bright part.
 なお、本実施形態のバックロール315は、溝317が存在するので、配向膜310はこの溝317をまたいで移動する。このため、配向膜310のカメラ331の光軸方向の位置を高精度で一定にするためには、溝317の上部に、上面がバックロール315と同一曲率半径で湾曲するガラス製の蓋を設け、バックロール315の全周を均一な円周面とすればよい。 In addition, since the back roll 315 of this embodiment has the groove 317, the alignment film 310 moves across the groove 317. For this reason, in order to make the position of the alignment film 310 in the optical axis direction of the camera 331 constant with high accuracy, a glass lid whose upper surface is curved with the same radius of curvature as the back roll 315 is provided above the groove 317. The entire circumference of the back roll 315 may be a uniform circumferential surface.
 次に、図41(a)、(b)を参照して、図40の第14実施形態の変形例について説明する。本変形例は、バックロール340の構造が図40のバックロール315と異なる。本変形例のバックロール340は、ほぼ円柱状をなす芯部342と、この芯部342を嵌合する円筒状の表面部341とから構成されている。芯部342は回転しないが、表面部341は、芯部342と同軸的に設けられており、この軸を回転軸として、回転することができる。表面部341は、バックロール315と同様に、配向膜310の転動により駆動されて回転するようになっている。この表面部341は、例えば、ガラス又はアクリルのような透明材料で成形されている。芯部342には、その上端部に芯部342の軸方向に延びる溝343が形成されており、この溝343内に光源333と、p偏光板332とが設置されている。本変形例の露光動作は、図40に示す第14実施形態の露光動作と同一であるが、本変形例においては、光源332及びp偏光板332は移動しないので、光源333とカメラ331とを結ぶ光軸上を横切る配向膜310の露光状態を常時検査し、監視することができるという利点がある。 Next, a modified example of the fourteenth embodiment of FIG. 40 will be described with reference to FIGS. In this modification, the structure of the back roll 340 is different from the back roll 315 of FIG. The back roll 340 according to the present modification includes a core portion 342 having a substantially columnar shape, and a cylindrical surface portion 341 into which the core portion 342 is fitted. Although the core part 342 does not rotate, the surface part 341 is provided coaxially with the core part 342, and can rotate with this axis as a rotation axis. Similar to the back roll 315, the surface portion 341 is driven and rotated by rolling of the alignment film 310. The surface portion 341 is formed of a transparent material such as glass or acrylic, for example. A groove 343 extending in the axial direction of the core part 342 is formed at the upper end of the core part 342, and a light source 333 and a p-polarizing plate 332 are installed in the groove 343. The exposure operation of this modification is the same as the exposure operation of the fourteenth embodiment shown in FIG. 40. However, in this modification, the light source 332 and the p-polarizing plate 332 do not move. There is an advantage that the exposure state of the alignment film 310 across the optical axis to be connected can be always inspected and monitored.
 次に、図42を参照して、本発明の第15実施形態について説明する。本実施形態は、配向膜310をロール311により一方向に搬送し、この配向膜310の移動域にて、第1露光ユニット320、検査部330及び第2露光ユニット321を、この順に配置したものである。また、検査部330は、水平方向に移動する配向膜310に対向して設けられたカメラ331と、このカメラ331と配向膜310との間にカメラ331の光軸上に設けられたs偏光板337と、s偏光板337の下方に設けられたハーフミラー334と、カメラ331の光軸上で配向膜310の下方に反射板341と、ハーフミラー334を介してカメラ331の光軸と同軸に検査光を配向膜310に照射するための光源333と、光源333とハーフミラー334の間に設けられたp偏光板332とを有している。 Next, a fifteenth embodiment of the present invention is described with reference to FIG. In the present embodiment, the alignment film 310 is conveyed in one direction by a roll 311, and the first exposure unit 320, the inspection unit 330, and the second exposure unit 321 are arranged in this order in the moving area of the alignment film 310. It is. The inspection unit 330 includes a camera 331 provided to face the alignment film 310 moving in the horizontal direction, and an s polarizing plate provided on the optical axis of the camera 331 between the camera 331 and the alignment film 310. 337, a half mirror 334 provided below the s polarizing plate 337, a reflection plate 341 below the alignment film 310 on the optical axis of the camera 331, and coaxial with the optical axis of the camera 331 via the half mirror 334. A light source 333 for irradiating the alignment film 310 with inspection light and a p-polarizing plate 332 provided between the light source 333 and the half mirror 334 are provided.
 これにより、第1露光ユニット320にて、CW円偏光の第1露光部301aが形成された配向膜310は、検査部330に移動してくる。そして、光源333からの検査光は、p偏光板332により、p偏光の光に変換され、ハーフミラー334を介して、配向膜310に入射する。この配向膜310に入射した光のうち、第1露光部301aに入射した光は、CW円偏光の光に変換され、反射板341で反射された後、再度第1露光部301aに入射し、s偏光の光に変換され、ハーフミラー334を透過し、s偏光板337を透過し、カメラ331に明部として検出される。一方、配向膜310に入射した光のうち、第1露光部301a間の非露光部(非偏光部)に入射した光は、この非露光部をp偏光の光のまま透過し、反射板341で反射されてs偏光板336に入射するため、s偏光板336を透過できず、カメラ331に暗部として検出される。よって、本実施形態も、第13実施形態及び第14実施形態と同様の効果を奏する。 Thereby, in the first exposure unit 320, the alignment film 310 on which the CW circularly polarized first exposure part 301a is formed moves to the inspection part 330. The inspection light from the light source 333 is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment film 310 via the half mirror 334. Of the light incident on the alignment film 310, the light incident on the first exposure unit 301a is converted into CW circularly polarized light, reflected by the reflector 341, and then incident on the first exposure unit 301a again. The light is converted into s-polarized light, passes through the half mirror 334, passes through the s polarizing plate 337, and is detected as a bright portion by the camera 331. On the other hand, of the light incident on the alignment film 310, the light incident on the non-exposed portion (non-polarized portion) between the first exposure portions 301 a is transmitted through the non-exposed portion as p-polarized light and is reflected by the reflector 341. And is incident on the s-polarizing plate 336, cannot pass through the s-polarizing plate 336 and is detected by the camera 331 as a dark part. Therefore, this embodiment also has the same effect as the thirteenth embodiment and the fourteenth embodiment.
 次に、図43を参照して本発明の第16実施形態について説明する。本実施形態は、検査用光源333を配向膜310の下方に設置する。本実施形態においては、カメラ331と、配向膜310との間にCW円偏光板336とs偏光板337が設置されている。そして、光源333と配向膜310の間にはp偏光板332が設置されており、光源333から出射された検査光はp偏光板332によってp偏光の光に変換されて、配向膜310に入射する。配向膜310に入射した光のうち、第1露光部301aを透過した光は、CW円偏光の光に変換され、CW円偏光板336により、s偏光の光に変換され、s偏光板337を透過し、カメラ331に明部として検出される。一方、第1露光部301a間の非露光部に入射した光は、この非露光部をp偏光の光のまま透過し、CW円偏光板336により、CW円偏光の光に変換され、s偏光板337に入射するため、カメラ331に暗部として検出される。よって、本実施形態も、第13乃至第15実施形態と同様の効果を奏する。 Next, a sixteenth embodiment of the present invention will be described with reference to FIG. In this embodiment, the inspection light source 333 is installed below the alignment film 310. In the present embodiment, a CW circularly polarizing plate 336 and an s polarizing plate 337 are installed between the camera 331 and the alignment film 310. A p-polarizing plate 332 is installed between the light source 333 and the alignment film 310, and the inspection light emitted from the light source 333 is converted into p-polarized light by the p-polarizing plate 332 and enters the alignment film 310. To do. Of the light incident on the alignment film 310, the light transmitted through the first exposure unit 301 a is converted into CW circularly polarized light, and is converted into s polarized light by the CW circularly polarizing plate 336. The light is transmitted and detected by the camera 331 as a bright portion. On the other hand, the light incident on the non-exposure part between the first exposure parts 301a is transmitted through the non-exposure part as p-polarized light, converted into CW circularly-polarized light by the CW circularly polarizing plate 336, and s-polarized light. Since it is incident on the plate 337, it is detected by the camera 331 as a dark part. Therefore, this embodiment also has the same effect as the thirteenth to fifteenth embodiments.
 なお、配向膜310の膨張若しくは収縮又は配向膜310の蛇行が生じ、第1露光ユニット320で形成された第1露光部1aの位置(幅及び間隔)並びに大きさが、所定の設計値から外れた場合は、第2露光ユニット321における第2露光部301bの形成も、これらの第1露光部301aの大きさ等の変動を考慮したものとすることが好ましい。 The alignment film 310 expands or contracts or the alignment film 310 meanders, and the position (width and interval) and size of the first exposure unit 1a formed by the first exposure unit 320 deviate from predetermined design values. In this case, it is preferable that the formation of the second exposure unit 301b in the second exposure unit 321 also takes into account variations such as the size of the first exposure unit 301a.
 図46はこのような配向膜310の膨張等の要因を考慮したときの第2露光ユニット321のマスク325を示す図である。図46(a)はこのマスク325を示す平面図、図46(b)はアパーチャ326を示す平面図である。 FIG. 46 is a view showing the mask 325 of the second exposure unit 321 when such factors as the expansion of the alignment film 310 are taken into consideration. FIG. 46A is a plan view showing the mask 325, and FIG. 46B is a plan view showing the aperture 326.
 図46(a)に示すように、マスク325は、例えば、透明板の上に設けられた遮光性の材料からなる基部302aに、配向膜310の移動方向309に直交する方向に複数本のスリット302bが配列されたものであり、各スリット302bは、その幅が長手方向に関して線形的に変化するように設けられており、スリット間の間隔は移動方向309に直交する方向に関してスリットの幅と同一である。即ち、図46(a)に示すマスク325において、各スリット302bの幅は、最上部が最も狭く、スリットの長手方向に沿って下方へ行くほど、広くなるように設けられている。そして、各スリット302bは、移動方向309に傾斜して延びている。このスリット302bの傾斜は、移動方向309に直交する方向に関して、マスク325の中央よりも側部側の方が大きく、例えば移動方向309における各スリット302bの長さを300mmとしたときに、マスク325の最も側部側のスリットの縁部は、移動方向309における端部間が移動方向309に直交する方向に500μm程度偏倚して設けられている。 As shown in FIG. 46A, the mask 325 includes, for example, a plurality of slits in a direction perpendicular to the moving direction 309 of the alignment film 310 in a base portion 302a made of a light-shielding material provided on a transparent plate. 302b is arranged, and each slit 302b is provided so that the width thereof linearly changes in the longitudinal direction, and the interval between the slits is the same as the width of the slit in the direction orthogonal to the moving direction 309. It is. That is, in the mask 325 shown in FIG. 46 (a), the width of each slit 302b is the narrowest at the top, and is widened downward along the longitudinal direction of the slit. Each slit 302b extends in a slanting direction in the moving direction 309. The inclination of the slit 302b is larger on the side than the center of the mask 325 in the direction orthogonal to the moving direction 309. For example, when the length of each slit 302b in the moving direction 309 is 300 mm, the mask 325 is inclined. The edge portion of the slit on the most side is provided with a gap of about 500 μm between the end portions in the moving direction 309 in a direction orthogonal to the moving direction 309.
 マスク325の側部には、例えばアライメントマーカ(図示せず)により配向膜310の側部に形成されたフィルムアライメントマーク301c(図48参照)を検出するための観察窓302dが、例えば移動方向309におけるスリット302bの長さと同程度の長さで設けられている。なお、図48に示したフィルムアライメントマーク301cは観察窓302dを通して観察されている状態を示すものである。そして、観察窓302dには、移動方向309に対して傾斜するようにマスクアライメントマーク302eが設けられている。このマスクアライメントマーク302eは、例えば移動方向309に直交する方向における両端部に位置するスリット302bの側縁と平行な線状のマークである。マスク325の上方には、カメラ(図示せず)が設けられており、このカメラにより、マスクアライメントマーク302eと共に、観察窓302dを介して、配向膜310上のフィルムアライメントマーク301cを検出できるように構成されている。 On the side of the mask 325, for example, an observation window 302d for detecting a film alignment mark 301c (see FIG. 48) formed on the side of the alignment film 310 by an alignment marker (not shown), for example, a moving direction 309 The slit 302b is approximately the same length as the slit 302b. Note that the film alignment mark 301c shown in FIG. 48 indicates a state of being observed through the observation window 302d. A mask alignment mark 302e is provided in the observation window 302d so as to be inclined with respect to the moving direction 309. The mask alignment mark 302e is a linear mark parallel to the side edge of the slit 302b located at both ends in a direction orthogonal to the moving direction 309, for example. A camera (not shown) is provided above the mask 325 so that the camera can detect the film alignment mark 301c on the alignment film 310 through the observation window 302d together with the mask alignment mark 302e. It is configured.
 アパーチャ326は、例えばSUS製の遮光性の板材であり、図46(b)に示すように、その基部303aの中央には、1方向に延びるように、幅が例えば20乃至30mmの開口303bが設けられている。そして、この開口303bの長手方向が移動方向309に直交するように光源324とマスク325との間に配置されている。よって、光源324から出射された露光光は、アパーチャ326によりその一部が遮光され、アパーチャ326の開口303bを透過した露光光のみがマスク325に照射される。よって、制御部(図示せず)により、移動方向309におけるマスク325とアパーチャ326との相対的位置が制御されることにより、マスク325に対する露光光の帯状の照射位置が移動方向309に沿って移動し、マスク325のスリット302bを透過して配向膜310上に照射される露光光の照射位置が移動方向309に移動すると共に、露光光照射領域の幅が変化する。 The aperture 326 is a light-shielding plate made of, for example, SUS. As shown in FIG. 46B, an opening 303b having a width of, for example, 20 to 30 mm is provided at the center of the base portion 303a so as to extend in one direction. Is provided. The opening 303 b is disposed between the light source 324 and the mask 325 so that the longitudinal direction of the opening 303 b is orthogonal to the moving direction 309. Therefore, a part of the exposure light emitted from the light source 324 is shielded by the aperture 326, and only the exposure light transmitted through the opening 303b of the aperture 326 is irradiated to the mask 325. Accordingly, the relative position between the mask 325 and the aperture 326 in the movement direction 309 is controlled by a control unit (not shown), so that the strip-shaped irradiation position of the exposure light with respect to the mask 325 moves along the movement direction 309. Then, the irradiation position of the exposure light that passes through the slit 302b of the mask 325 and is irradiated on the alignment film 310 moves in the movement direction 309, and the width of the exposure light irradiation area changes.
 マスク325は、図47に示すように、例えばアクチュエータ等(図示せず)により、アパーチャ326に対して、相対的に移動方向309に移動可能に構成されており、アパーチャ326とマスク325との移動方向309における相対的位置は、図示しない制御部により制御されている。そして、この制御部により、マスクアライメントマーク302eとフィルムアライメントマーク301cとの位置関係が所定関係になるように、移動方向309におけるマスク325とアパーチャ326との相対的位置が例えば以下のように制御される。 As shown in FIG. 47, the mask 325 is configured to be movable in the moving direction 309 relative to the aperture 326 by, for example, an actuator or the like (not shown), and the movement between the aperture 326 and the mask 325 is performed. The relative position in the direction 309 is controlled by a control unit (not shown). Then, the relative position between the mask 325 and the aperture 326 in the moving direction 309 is controlled by this control unit so that the positional relationship between the mask alignment mark 302e and the film alignment mark 301c becomes a predetermined relationship, for example, as follows. The
 即ち、上述の如く、本実施形態においては、マスク325に設けられた複数本のスリット302bは、移動方向309に傾斜して延び、また、各スリット302bの幅は、移動方向309に沿って線形的に変化するように設けられており、スリット間の間隔は移動方向309に直交する方向からみたときにスリットの幅と同一である。よって、図47(a)及び図47(b)に示すように、アパーチャ326に対してマスク325が相対的に移動方向309に移動されると、これに伴って、アパーチャ326の開口303bを透過してマスク325に照射される露光光の照射位置が移動方向309に移動し、スリット302bに透過されて配向膜310上に照射される露光光の照射領域の幅が変化する。これにより、例えば露光時の高温等により、配向膜310が膨張した場合においても、変形後の配向膜310の幅に対応させて、配向露光膜310a上に形成される帯状の露光部(偏光部)の幅を調節することができる。 In other words, as described above, in the present embodiment, the plurality of slits 302 b provided in the mask 325 extend while being inclined in the movement direction 309, and the width of each slit 302 b is linear along the movement direction 309. The distance between the slits is the same as the width of the slits when viewed from the direction orthogonal to the moving direction 309. Therefore, as shown in FIGS. 47A and 47B, when the mask 325 is moved relative to the aperture 326 in the moving direction 309, the aperture 303b of the aperture 326 is transmitted along with this movement. Then, the irradiation position of the exposure light irradiated on the mask 325 moves in the moving direction 309, and the width of the irradiation area of the exposure light irradiated on the alignment film 310 through the slit 302b changes. Thereby, for example, even when the alignment film 310 expands due to a high temperature at the time of exposure, for example, a strip-shaped exposure part (polarizing part) formed on the alignment exposure film 310a corresponding to the width of the alignment film 310 after deformation. ) Width can be adjusted.
 本実施形態においては、図48に示すように、制御部は、例えば、カメラにより検出されるマスクアライメントマーク302eとフィルムアライメントマーク301cとが、移動方向309に直交する方向において、一定の距離(例えば10mm)離隔するように、マスク325を移動方向309に沿って移動させる。これにより、配向膜310がその幅方向に膨張した場合においても、配向膜310の幅方向の伸び量に基づいて、配向露光膜310a上の露光部の幅を調節することができる。 In the present embodiment, as shown in FIG. 48, the control unit, for example, has a constant distance (for example, in the direction in which the mask alignment mark 302e and the film alignment mark 301c detected by the camera are orthogonal to the moving direction 309). 10 mm), the mask 325 is moved along the moving direction 309 so as to be separated from each other. Thereby, even when the alignment film 310 expands in the width direction, the width of the exposed portion on the alignment exposure film 310a can be adjusted based on the amount of elongation of the alignment film 310 in the width direction.
 図48(a)は、配向膜310が幅方向に変形していない状態を示す図、図48(b)は、配向膜310が幅方向に膨張した状態を示す図である。この図12において、符号371は、カメラによる検出領域を示し、例えばこの検出領域371の移動方向309における幅は、アパーチャ326の開口303bと同一の幅であり、カメラは、フィルムアライメントマーク301c及びマスクアライメントマーク302eを、開口303bと移動方向309に並ぶ位置にて検出する。図48(a)に示すように、配向膜310がその幅方向に変形していない場合において、検出領域371におけるフィルムアライメントマーク301cとマスクアライメントマーク302eとの距離は、例えば10mmである。ここで、配向膜310が例えば露光時の加熱により、その幅方向に膨張した場合、図48(b)に示すように、フィルムアライメントマーク301cの位置は、観察窓302d内において、外側(図48における左側)に移動し、マスクアライメントマーク302eに対する距離が大きくなる。 48A shows a state where the alignment film 310 is not deformed in the width direction, and FIG. 48B shows a state where the alignment film 310 has expanded in the width direction. In FIG. 12, reference numeral 371 denotes a detection area by the camera. For example, the width of the detection area 371 in the moving direction 309 is the same as that of the opening 303b of the aperture 326, and the camera has a film alignment mark 301c and a mask. The alignment mark 302e is detected at a position aligned with the opening 303b and the movement direction 309. As shown in FIG. 48A, when the alignment film 310 is not deformed in the width direction, the distance between the film alignment mark 301c and the mask alignment mark 302e in the detection region 371 is, for example, 10 mm. Here, when the alignment film 310 expands in the width direction due to, for example, heating during exposure, as shown in FIG. 48B, the position of the film alignment mark 301c is outside (see FIG. 48) in the observation window 302d. To the left side) and the distance to the mask alignment mark 302e increases.
 第1露光ユニット320にて、配向膜310に膨張がなく、所定の設計値どおりに第1露光部301aが形成された後、第2露光ユニット321にて、上述のように、配向膜310に膨張が生じた場合は、この状態で、第2露光ユニット321にて、所定の設計値どおりに第2露光部301bを露光しようとすると、第1露光部301aと第2露光部301bとの間にずれが生じ、表示不良の原因となる。つまり、配向膜310が第2露光ユニット321に到達したときには、帯状の第1露光部301aの幅及び間隔が、配向膜310の膨張により大きくなっているので、第2露光ユニット321にて設計値どおりに第2露光部301bを形成しようとすると、第1露光部301aと第2露光部301bとが重なり、又は隙間が生じて未露光部が発生してしまう。 After the alignment film 310 is not expanded in the first exposure unit 320 and the first exposure portion 301a is formed according to a predetermined design value, the alignment film 310 is formed in the second exposure unit 321 as described above. When the expansion occurs, in this state, when the second exposure unit 301b tries to expose the second exposure unit 301b according to a predetermined design value, it is between the first exposure unit 301a and the second exposure unit 301b. Shifts and causes display defects. That is, when the alignment film 310 reaches the second exposure unit 321, the width and interval of the strip-shaped first exposure part 301 a are increased by the expansion of the alignment film 310. If the second exposed portion 301b is formed in the same manner, the first exposed portion 301a and the second exposed portion 301b overlap with each other, or a gap is generated, and an unexposed portion is generated.
 そこで、本実施形態においては、このフィルムアライメントマーク301cとマスクアライメントマーク302eとの間で一定の距離を維持するように、例えば移動方向309におけるマスク325のアパーチャ326に対する相対的位置を調節する。即ち、図48(b)に示すように、カメラによる検出領域371内において、フィルムアライメントマーク301cとマスクアライメントマーク302eとの距離が10mmとなるように、マスク325をアパーチャ326に対して移動方向309に相対的に移動させ、アパーチャ326の開口303bを、マスク325のスリット302bの幅広の領域に対応させる。よって、本実施形態においては、配向膜310の幅方向の伸び量に基づいて、配向露光膜310a上の露光部の幅を広く調節することができる。これにより、本実施形態においては、配向膜310が、その後の例えば搬送により冷却されて収縮し、膨張していない元の幅に戻った場合においても、配向露光膜310a上に形成される帯状の第2露光部301bの幅及び間隔を、例えば表示装置の画素又は絵素の幅及び間隔に精度よく対応させることができ、表示不良を防止できる。 Therefore, in this embodiment, for example, the relative position of the mask 325 with respect to the aperture 326 in the moving direction 309 is adjusted so as to maintain a constant distance between the film alignment mark 301c and the mask alignment mark 302e. That is, as shown in FIG. 48B, in the detection area 371 by the camera, the mask 325 moves in the moving direction 309 with respect to the aperture 326 so that the distance between the film alignment mark 301c and the mask alignment mark 302e is 10 mm. The aperture 303b of the aperture 326 is made to correspond to the wide region of the slit 302b of the mask 325. Therefore, in the present embodiment, the width of the exposed portion on the alignment exposure film 310a can be widely adjusted based on the amount of elongation in the width direction of the alignment film 310. Thereby, in the present embodiment, even when the alignment film 310 is cooled and contracted by subsequent conveyance, for example, and returns to the original width that has not expanded, the strip-shaped film formed on the alignment exposure film 310a. For example, the width and interval of the second exposure unit 301b can be accurately matched to the width and interval of pixels or picture elements of the display device, and display defects can be prevented.
 また、マスク325のスリット302bとフィルムアライメントマーク301cとは、実際には、例えば30mm程度離隔しているが、本実施形態のように、マスクアライメントマーク302eを移動方向309に直交する方向の両端部に位置するスリット302bの側縁と平行に構成することにより、マスクアライメントマーク302eを移動方向309に直交する方向の端部に設けられたスリット302bの側縁に見立てることができ、例えば10mm程度と狭い範囲内でアライメントを行い、露光部の幅を調節することができる。 In addition, the slit 302b of the mask 325 and the film alignment mark 301c are actually separated by, for example, about 30 mm. The mask alignment mark 302e can be regarded as the side edge of the slit 302b provided at the end in the direction orthogonal to the moving direction 309, for example, about 10 mm. Alignment can be performed within a narrow range, and the width of the exposed portion can be adjusted.
 なお、図48においては、図示の都合上、配向膜310及びマスク325の一方の側部のみを図示しているが、上記マスク位置の制御は、配向膜310の両側部のフィルムアライメントマーク301cとマスク325の両側部のマスクアライメントマーク302eとの間で行われる。つまり、配向膜310の一方の側のフィルムアライメントマーク301cとマスクアライメントマーク302eとの間の距離と、配向膜310の他方の側のフィルムアライメントマーク301cとマスクアライメントマーク302eとの間の距離とは、いずれも例えば10mmである。 48, for convenience of illustration, only one side of the alignment film 310 and the mask 325 is shown. However, the mask position is controlled by the film alignment marks 301c on both sides of the alignment film 310. This is performed between the mask alignment marks 302e on both sides of the mask 325. That is, the distance between the film alignment mark 301c on one side of the alignment film 310 and the mask alignment mark 302e and the distance between the film alignment mark 301c on the other side of the alignment film 310 and the mask alignment mark 302e are: , Both are, for example, 10 mm.
 しかし、搬送ローラ311間を移動する間に配向膜310が蛇行すると、移動方向309に直交する方向におけるマスク325の中央位置と配向膜310の中央位置がずれ、配向膜310の一方の側部におけるフィルムアライメントマーク301cとマスクアライメントマーク302eとの間の距離が他方の側部におけるフィルムアライメントマーク301cとマスクアライメントマーク302eとの間の距離と異なってしまう。これを解消するためには、本実施形態においては、移動方向309に直交する方向において、カメラが検出した1対のマスクアライメントマーク302eの中央位置が、1対のフィルムアライメントマーク301cの中央位置と一致するように、マスク325の移動方向309に直交する方向における位置を調節し、これにより、マスク325の中央位置と配向膜310の中央位置とを位置合わせすれば良い。つまり、配向膜310の蛇行が生じても、配向膜310の一方の側のフィルムアライメントマーク301cとマスクアライメントマーク302eとの間の距離と、配向膜310の他方の側のフィルムアライメントマーク301cとマスクアライメントマーク302eとの間の距離とは、いずれも例えば10mmであるように制御すれば良い。 However, if the alignment film 310 meanders while moving between the transport rollers 311, the center position of the mask 325 and the center position of the alignment film 310 in the direction orthogonal to the moving direction 309 are shifted, and the alignment film 310 is moved on one side of the alignment film 310. The distance between the film alignment mark 301c and the mask alignment mark 302e is different from the distance between the film alignment mark 301c and the mask alignment mark 302e on the other side. In order to solve this problem, in the present embodiment, the center position of the pair of mask alignment marks 302e detected by the camera in the direction orthogonal to the moving direction 309 is the same as the center position of the pair of film alignment marks 301c. The position of the mask 325 in the direction orthogonal to the moving direction 309 is adjusted so as to match, and thereby the center position of the mask 325 and the center position of the alignment film 310 may be aligned. That is, even if the alignment film 310 meanders, the distance between the film alignment mark 301c on one side of the alignment film 310 and the mask alignment mark 302e, and the film alignment mark 301c on the other side of the alignment film 310 and the mask The distance between the alignment mark 302e and the alignment mark 302e may be controlled to be, for example, 10 mm.
 なお、第2露光ユニット321のマスクとしては、図49に示すようなスリット302bを有するマスク325Aを使用することもできる。このマスク325Aにおいても、複数本のスリット302bは、その幅が移動方向309に関して線形的に変化しており、スリット間の間隔は、移動方向309に直交する方向からみたときに、スリット302bの幅と同一である。図49に示すマスク325Aにおいては、マスク325Aの両端部に設けられたスリットのうち、一端部に設けられたスリット302bは、その側縁が移動方向309と平行に設けられており、その他の複数本のスリット302bは、移動方向309に傾斜して延び、スリット302bの傾斜は、移動方向309に直交する方向に関して、一端部側から他端部側へと、徐々に大きくなるように設けられている。このようなマスク325Aを使用した場合においては、移動方向309に平行な側縁を有する一端部のスリット302bを基準として、マスク302の位置を制御することができる。例えば移動方向309に対して傾斜が最も大きい他端部のスリット302bについて、移動方向309における長さが300mmであり、その側縁が移動方向309に直交する方向に1000μm程度偏倚するように設けられている場合において、配向膜310の伸びに伴って、フィルムアライメントマーク301c間の距離が100μm大きくなった場合には、制御部は、マスク302を移動方向309に直交する方向に外方に100μm移動するように制御すると共に、移動方向309に30mm移動するように制御する。これにより、マスクアライメントマーク302eとフィルムアライメントマーク301cとの位置関係は、配向膜310に伸びが生じていない場合と同一になり、マスク325Aを取り替えることなく、配向膜310に対する露光光照射領域の幅を調節することができる。 As a mask for the second exposure unit 321, a mask 325A having a slit 302b as shown in FIG. 49 can be used. Also in this mask 325A, the width of the plurality of slits 302b linearly changes with respect to the moving direction 309, and the interval between the slits is the width of the slit 302b when viewed from the direction orthogonal to the moving direction 309. Is the same. In the mask 325A shown in FIG. 49, among the slits provided at both ends of the mask 325A, the slit 302b provided at one end has a side edge provided in parallel with the moving direction 309, and other plural The slit 302b is inclined and extends in the movement direction 309, and the inclination of the slit 302b is provided so as to gradually increase from one end side to the other end side in the direction orthogonal to the movement direction 309. Yes. When such a mask 325A is used, the position of the mask 302 can be controlled with reference to the slit 302b at one end having a side edge parallel to the moving direction 309. For example, the slit 302b at the other end having the greatest inclination with respect to the moving direction 309 has a length of 300 mm in the moving direction 309 and is provided so that its side edge is deviated by about 1000 μm in a direction perpendicular to the moving direction 309. In the case where the distance between the film alignment marks 301c is increased by 100 μm along with the elongation of the alignment film 310, the control unit moves the mask 302 outward by 100 μm in the direction orthogonal to the moving direction 309. And control to move 30 mm in the moving direction 309. As a result, the positional relationship between the mask alignment mark 302e and the film alignment mark 301c is the same as when the alignment film 310 is not stretched, and the width of the exposure light irradiation region with respect to the alignment film 310 can be changed without replacing the mask 325A. Can be adjusted.
 なお、第1露光ユニット320において、配向膜310に既に膨張が発生している場合については、第1露光ユニット320の第1マスク323も、第2マスク325と同様に、傾斜したスリットと、アパーチャとを使用して、同様に、形成すべき第1露光部の帯状の露光部の幅及び間隔を、配向膜310の膨張量に応じて、大きくすることが好ましい。これにより、露光ユニットを過ぎて、配向露光膜310aが自然冷却された場合に、第1露光部301a及び第2露光部301bを、表示装置の各走査線に高精度で一致させることができる。 In the case where the alignment film 310 has already expanded in the first exposure unit 320, the first mask 323 of the first exposure unit 320 also has an inclined slit and an aperture, like the second mask 325. Similarly, it is preferable to increase the width and interval of the strip-shaped exposed portion of the first exposed portion to be formed according to the amount of expansion of the alignment film 310. Accordingly, when the alignment exposure film 310a is naturally cooled past the exposure unit, the first exposure unit 301a and the second exposure unit 301b can be made to coincide with each scanning line of the display device with high accuracy.
 また、配向膜310の膨張に限らず、配向膜310に縮小が生じた場合も、同様に傾斜したスリット302bを有するマスクと、配向膜310の幅方向に延びる開口303bを有するアパーチャ326を使用して、配向膜310の縮小量に応じて露光位置及び幅を調整することができる。 Further, not only the expansion of the alignment film 310 but also when the alignment film 310 is reduced, a mask having an inclined slit 302b and an aperture 326 having an opening 303b extending in the width direction of the alignment film 310 are used. Thus, the exposure position and width can be adjusted in accordance with the reduction amount of the alignment film 310.
 本発明に係る露光装置及びFPR製造方法は、第1の露光ユニットで露光された複数個の帯状の露光部からなる第1の露光パターンを形成した後、検査部で、第1露光パターンの露光部を検出し、制御部が、第2の露光ユニットにて露光される第2露光パターンの露光部の位置を、第1露光パターンの露光部の位置に基づいて調整する。例えば、制御部は、第1露光パターンの露光部の位置に基づいて、第2露光ユニットの第2マスクの位置を配向膜の移動方向に直交する方向について調整する。これにより、第1露光ユニットによる第1露光パターンと、第2露光ユニットによる第2露光パターンとの露光位置は、配向膜上の所定の位置に高精度で制御される。従って、第1露光パターンと第2露光パターンとがその境界で重なったり、未露光部が形成されたりすることがなく、3D表示画像が劣化することはない。 In the exposure apparatus and the FPR manufacturing method according to the present invention, after forming a first exposure pattern composed of a plurality of strip-shaped exposure parts exposed by the first exposure unit, the inspection part exposes the first exposure pattern. And the controller adjusts the position of the exposure part of the second exposure pattern exposed by the second exposure unit based on the position of the exposure part of the first exposure pattern. For example, the control unit adjusts the position of the second mask of the second exposure unit in the direction orthogonal to the moving direction of the alignment film based on the position of the exposure unit of the first exposure pattern. Thereby, the exposure positions of the first exposure pattern by the first exposure unit and the second exposure pattern by the second exposure unit are controlled to a predetermined position on the alignment film with high accuracy. Therefore, the first exposure pattern and the second exposure pattern do not overlap at the boundary or unexposed portions are not formed, and the 3D display image does not deteriorate.
 本発明は、FPR方式の偏光フィルム及び光配向膜等を高精度で製造することができ、3D方式又は2D方式の液晶表示装置の高精細化に寄与する。 The present invention can manufacture an FPR type polarizing film, a photo-alignment film, and the like with high accuracy, and contributes to high definition of a 3D or 2D type liquid crystal display device.
1:偏光フィルム
1a、1b:偏光部
5:バックロール
6,16:露光光源
7:マスク
7a:開口
10:配向膜
10a,10b,10c,10d:露光部
11:配向露光膜
12:フィルム基材
17:スリットマスク
17a:スリット
201、210:配向膜
201c、210c:配向露光膜
201a、210a、210b:アライメントマーク
202,220,221,150,160,202A,202B,202C,202D:マスク、202a:基部
202b、220b:スリット、202c:開口
202d、220d:観察窓
202e、220e、220f:マスクアライメントマーク
202f:開口
203,203A,203B、230:アパーチャ
203a:基部
203b、230b:開口
241:供給リール
242,243:搬送ロール
244:(巻き取り側の)リール
205:光源
206、250:アライメントマーカ
207、270:カメラ
271:検出領域
301a、301b:露光部
301c:フィルムアライメントマーク
315:バックロール
322,324:露光光源
323,325:マスク
310:配向膜
310a:配向露光膜
1: Polarizing film 1a, 1b: Polarizing part 5: Back roll 6, 16: Exposure light source 7: Mask 7a: Opening 10: Alignment film 10a, 10b, 10c, 10d: Exposure part 11: Alignment exposure film 12: Film substrate 17: Slit mask 17a: Slit 201, 210: Alignment film 201c, 210c: Alignment exposure films 201a, 210a, 210b: Alignment marks 202, 220, 221, 150, 160, 202A, 202B, 202C, 202D: Mask, 202a: Base 202b, 220b: slit, 202c: opening 202d, 220d: observation window 202e, 220e, 220f: mask alignment mark 202f: opening 203, 203A, 203B, 230: aperture 203a: base 203b, 230b: opening 241: supply reel 242 , 243: Feed roll 244: Reel 205 (winding side): Light source 206, 250: Alignment marker 207, 270: Camera 271: Detection area 301a, 301b: Exposure unit 301c: Film alignment mark 315: Back rolls 322, 324: Exposure light source 323, 325: Mask 310: Alignment film 310a: Alignment exposure film

Claims (31)

  1. 透明のフィルム基材の一面に配向材料膜が塗布された配向膜が前記配向材料膜を外側にして巻き架けられ、前記配向膜をその周面で支持しつつ前記配向膜をその周面に沿って移動させるバックロールと、
    前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の移動方向に平行の複数個の第1のスリットが形成された第1のスリットマスクと、前記第1のスリットマスクを介して前記配向膜の前記配向材料膜を露光する第1の露光光源と、を備えた第1の露光ユニットと、
    前記配向膜の移動方向における前記第1のスリットマスクの下流側において、前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の移動方向に平行の複数個の第2のスリットが形成された第2のスリットマスクと、前記第2のスリットマスクを介して前記配向膜の前記配向材料膜を露光する第2の露光光源と、を備えた第2の露光ユニットと、
    を有し、
    前記第2のスリットマスクの前記第2のスリットは、前記第1のスリットマスクの前記第1のスリットの配列ピッチと同一のピッチで配置されており、
    前記第1のスリットと前記第2のスリットは、前記配向膜の幅方向について、前記第1及び第2のスリットの配列ピッチの1/2のピッチだけ、前記配向膜の幅方向に偏倚するように、前記第1のスリットマスクと前記第2のスリットマスクとが配置されていることを特徴とするフィルム露光装置。
    An alignment film in which an alignment material film is applied on one surface of a transparent film substrate is wound with the alignment material film outside, and the alignment film is supported along the peripheral surface while supporting the alignment film on the peripheral surface. And back roll to move
    A first slit mask disposed so as to face the alignment film wound around the back roll and formed with a plurality of first slits parallel to a moving direction of the alignment film; A first exposure unit comprising: a first exposure light source that exposes the alignment material film of the alignment film through a slit mask;
    On the downstream side of the first slit mask in the moving direction of the alignment film, a plurality of second films are arranged so as to face the alignment film wound around the back roll and parallel to the moving direction of the alignment film. A second exposure unit comprising: a second slit mask in which two slits are formed; and a second exposure light source that exposes the alignment material film of the alignment film through the second slit mask. ,
    Have
    The second slits of the second slit mask are arranged at the same pitch as the arrangement pitch of the first slits of the first slit mask,
    The first slit and the second slit are biased in the width direction of the alignment film by a half pitch of the arrangement pitch of the first and second slits in the width direction of the alignment film. Further, the film exposure apparatus is characterized in that the first slit mask and the second slit mask are arranged.
  2. 透明のフィルム基材の一面に配向材料膜が塗布された配向膜が前記配向材料膜を外側にして巻き架けられ、前記配向膜をその周面で支持しつつ前記配向膜をその周面に沿って移動させるバックロールと、
    前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の移動方向に平行の複数個の第1のスリットが形成された第1のスリットマスクと、前記第1のスリットマスクを介して前記配向膜の前記配向材料膜を露光する第1の露光光源と、を備えた第1の露光ユニットと、
    前記配向膜の移動方向における前記第1のスリットマスクの下流側において、前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の幅方向に延びる開口が形成された第3のマスクと、前記第3のマスクを介して前記配向膜の前記配向材料膜を露光する第3の露光光源と、を備えた第2の露光ユニットと、
    を有することを特徴とするフィルム露光装置。
    An alignment film in which an alignment material film is applied on one surface of a transparent film substrate is wound with the alignment material film outside, and the alignment film is supported along the peripheral surface while supporting the alignment film on the peripheral surface. And back roll to move
    A first slit mask disposed so as to face the alignment film wound around the back roll and formed with a plurality of first slits parallel to a moving direction of the alignment film; A first exposure unit comprising: a first exposure light source that exposes the alignment material film of the alignment film through a slit mask;
    An opening extending in the width direction of the alignment film is formed on the downstream side of the first slit mask in the moving direction of the alignment film so as to face the alignment film wound on the back roll. A second exposure unit comprising: a third mask; and a third exposure light source that exposes the alignment material film of the alignment film through the third mask;
    A film exposure apparatus comprising:
  3. 透明のフィルム基材の一面に配向材料膜が塗布された配向膜が前記配向材料膜を外側にして巻き架けられ、前記配向膜をその周面で支持しつつ前記配向膜をその周面に沿って移動させるバックロールと、
    前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の移動方向に平行の複数個の第1のスリットが形成された第1のスリットマスクと、前記第1のスリットマスクを介して前記配向膜の前記配向材料膜を露光する第1の露光光源と、を備えた第1の露光ユニットと、
    前記配向膜の移動方向における前記第1のスリットマスクの上流側において、前記バックロールに巻き架けられた前記配向膜に対向するように配置され、前記配向膜の幅方向に延びる開口が形成された第4のマスクと、前記第4のマスクを介して前記配向膜の前記配向材料膜を露光する第4の露光光源と、を備えた第2の露光ユニットと、
    を有することを特徴とするフィルム露光装置。
    An alignment film in which an alignment material film is applied on one surface of a transparent film substrate is wound with the alignment material film outside, and the alignment film is supported along the peripheral surface while supporting the alignment film on the peripheral surface. And back roll to move
    A first slit mask disposed so as to face the alignment film wound around the back roll and formed with a plurality of first slits parallel to a moving direction of the alignment film; A first exposure unit comprising: a first exposure light source that exposes the alignment material film of the alignment film through a slit mask;
    An opening extending in the width direction of the alignment film is formed on the upstream side of the first slit mask in the moving direction of the alignment film so as to face the alignment film wound on the back roll. A second exposure unit comprising: a fourth mask; and a fourth exposure light source that exposes the alignment material film of the alignment film through the fourth mask;
    A film exposure apparatus comprising:
  4. 前記露光光源は、一方がCW円偏光の露光光を前記配向膜に照射するものであり、他方がCCW円偏光の露光光を前記配向膜に照射するものであることを特徴とする請求項1乃至3のいずれか1項に記載のフィルム露光装置。 2. The exposure light source, one of which irradiates the alignment film with CW circularly polarized exposure light and the other of which irradiates the alignment film with CCW circularly polarized exposure light. 4. The film exposure apparatus according to any one of items 1 to 3.
  5. 前記露光光源は、一方が前記配向膜に対して前記配向膜の移動方向に40°傾斜するように入射する露光光を前記配向膜に照射するものであり、他方が前記配向膜に対して前記配向膜の移動方向に-40°傾斜するように入射する露光光を前記配向膜に照射するものであることを特徴とする請求項1乃至3のいずれか1項に記載のフィルム露光装置。 The exposure light source irradiates the alignment film with one of the exposure light incident so that one of the alignment film is inclined by 40 ° in the moving direction of the alignment film with respect to the alignment film, and the other is applied to the alignment film. 4. The film exposure apparatus according to claim 1, wherein the alignment film is irradiated with exposure light incident so as to be inclined by −40 ° in the moving direction of the alignment film.
  6. 前記配向膜の進行方向における前記バックロールの上流側に設けられ、前記配向膜を冷却する冷却部材を有することを特徴とする請求項1乃至5のいずれか1項に記載のフィルム露光装置。 6. The film exposure apparatus according to claim 1, further comprising a cooling member provided on an upstream side of the back roll in a traveling direction of the alignment film and cooling the alignment film.
  7. 前記配向膜の移動方向における前記第2の露光ユニットの下流側に配置され、前記配向膜に対する露光光の照射後の配向露光膜における露光光が照射された露光部を検査する検査部と、を有し、
    前記検査部は、前記配向露光膜を巻きかけると共に前記配向露光膜と共に回転する検査ロールと、前記検査ロールの周面又は前記ロールの内部に設置され検査用の照明光を出射する光源と、前記ロールに対向するように設置され前記配向露光膜を透過後の照明光を検出する受光部と、を有することを特徴とする請求項1乃至6のいずれか1項に記載のフィルム露光装置。
    An inspection unit that is disposed downstream of the second exposure unit in the moving direction of the alignment film and inspects an exposed portion irradiated with the exposure light in the alignment exposure film after irradiation of the exposure light to the alignment film; Have
    The inspection unit winds the alignment exposure film and rotates together with the alignment exposure film, a light source that emits inspection illumination light installed on a peripheral surface of the inspection roll or inside the roll, and The film exposure apparatus according to claim 1, further comprising: a light receiving unit that is installed so as to face the roll and detects illumination light after passing through the alignment exposure film.
  8. 前記露光ユニットは、前記配向膜上の配向材料膜に露光することにより、帯状の第1の露光部と、帯状の第2の露光部とを、前記配向膜の幅方向に交互に形成して、前記配向露光膜を形成するものであり、
    前記検査部は、前記ロールに設置され、前記光源からの照明光に対して第1の方向に偏光を付与する第1の偏光板と、前記ロールに対向するように設置され、前記受光部に入射する光に対して前記第1の方向に直交する方向に偏光を付与する第2の偏光板と、前記照明光の光軸に設けられたλ/4板と、を有することを特徴とする請求項7に記載のフィルム露光装置。
    The exposure unit exposes the alignment material film on the alignment film to alternately form a strip-shaped first exposure portion and a strip-shaped second exposure portion in the width direction of the alignment film. , Which forms the alignment exposure film,
    The inspection unit is installed on the roll, and is installed so as to face the roll with a first polarizing plate that imparts polarized light in a first direction to illumination light from the light source, and on the light receiving unit. A second polarizing plate that imparts polarized light in a direction orthogonal to the first direction with respect to incident light, and a λ / 4 plate provided on the optical axis of the illumination light. The film exposure apparatus according to claim 7.
  9. 前記露光ユニットは、CW円偏光の露光光を前記配向膜に照射する露光光源により前記第1の露光部を形成し、CCW円偏光の露光光を前記配向膜に照射する露光光源により前記第2の露光部を形成するものであることを特徴とする請求項8に記載のフィルム露光装置。 The exposure unit forms the first exposure unit by an exposure light source that irradiates the alignment film with CW circularly polarized exposure light, and the exposure light source that irradiates the alignment film with CCW circularly polarized exposure light. The film exposure apparatus according to claim 8, wherein the exposure part is formed.
  10. 前記露光ユニットは、前記配向膜上の配向材料膜に露光することにより、帯状の第1の露光部と、帯状の第2の露光部とを、前記配向膜の幅方向に交互に形成して、前記配向露光膜を形成するものであり、
    前記検査部の前記受光部は、前記配向露光膜を透過した照明光の第1の露光部による第1の配向方向に設けられた第1の受光部と、前記配向露光膜を透過した照明光の第2の露光部による第2の配向方向に設けられた第2の受光部とから構成されていることを特徴とする請求項7に記載のフィルム露光装置。
    The exposure unit exposes the alignment material film on the alignment film to alternately form a strip-shaped first exposure portion and a strip-shaped second exposure portion in the width direction of the alignment film. , Which forms the alignment exposure film,
    The light receiving unit of the inspection unit includes a first light receiving unit provided in a first alignment direction by a first exposure unit of illumination light transmitted through the alignment exposure film, and illumination light transmitted through the alignment exposure film. The film exposure apparatus according to claim 7, further comprising: a second light receiving portion provided in a second alignment direction by the second exposure portion.
  11. 前記露光ユニットは、前記配向膜に対して前記配向膜の移動方向に40°傾斜するように露光光を入射する露光光源により前記第1の露光部を形成し、前記配向膜に対して前記配向膜の移動方向に-40°傾斜するように露光光を入射する露光光源により前記第2の露光部を形成するものであることを特徴とする請求項10に記載のフィルム露光装置。 The exposure unit forms the first exposure portion with an exposure light source that exposes exposure light so that the alignment film is inclined by 40 ° in the moving direction of the alignment film, and the alignment film is aligned with the alignment film. 11. The film exposure apparatus according to claim 10, wherein the second exposure part is formed by an exposure light source that receives exposure light so as to be inclined by −40 ° in the moving direction of the film.
  12. 前記受光部の光軸上に配置され、前記配向露光膜の幅方向に延び、前記配向露光膜上の前記第1の露光部又は第2の露光部の幅方向にスケールが形成された透明のスケール部材を有することを特徴とする請求項8又は10に記載のフィルム露光装置。 A transparent film disposed on the optical axis of the light receiving portion, extending in the width direction of the alignment exposure film, and having a scale formed in the width direction of the first exposure portion or the second exposure portion on the alignment exposure film. The film exposure apparatus according to claim 8, further comprising a scale member.
  13. 前記検査部による検査前又は検査後の前記配向露光膜の搬送域に配置された第2の検査部を有し、
    前記第2の検査部は、
    検査光を出射する第2の光源と、前記第2の光源からの検査光に対して第1の方向の直線偏光を付与する第3の偏光板と、前記第3の偏光板を透過し更に前記配向露光膜を透過して第1の方向の円偏光を付与された検査光を第2の方向の直線偏光に変える第2のλ/4板と、前記第2の方向の直線偏光の検査光を透過する第4の偏光板と、前記第4の偏光板を透過した検査光を検出する第2の受光部と、
    検査光を出射する第3の光源と、前記第3の光源からの検査光に対して第1又は第2の方向の直線偏光を付与する第5の偏光板と、前記第3の偏光板を透過し更に前記配向露光膜を透過して第2の方向の円偏光を付与された検査光を第2又は第1の方向の直線偏光に変える第3のλ/4板と、前記第2又は第1の方向の直線偏光の検査光を透過する第6の偏光板と、前記第6の偏光板を透過した検査光を検出する第3の受光部と、
    を有することを特徴とする請求項7乃至12のいずれか1項に記載のフィルム露光装置。
    Having a second inspection unit arranged in the transport area of the alignment exposure film before or after inspection by the inspection unit;
    The second inspection unit includes
    A second light source that emits inspection light, a third polarizing plate that imparts linearly polarized light in a first direction to the inspection light from the second light source, and the third polarizing plate that passes through the third polarizing plate. A second λ / 4 plate that changes inspection light transmitted through the alignment exposure film and provided with circularly polarized light in the first direction to linearly polarized light in the second direction, and inspection of linearly polarized light in the second direction A fourth polarizing plate that transmits light, a second light receiving unit that detects inspection light transmitted through the fourth polarizing plate,
    A third light source for emitting inspection light, a fifth polarizing plate for imparting linearly polarized light in the first or second direction to the inspection light from the third light source, and the third polarizing plate. A third λ / 4 plate that changes the inspection light transmitted through the alignment exposure film and provided with the circularly polarized light in the second direction to the linearly polarized light in the second or first direction; and the second or A sixth polarizing plate that transmits the linearly polarized inspection light in the first direction; a third light receiving unit that detects the inspection light transmitted through the sixth polarizing plate;
    The film exposure apparatus according to claim 7, wherein the film exposure apparatus includes:
  14. 露光対象の配向膜を第1方向に移動させる搬送装置と、
    前記配向膜の両側部に、この配向膜の伸縮量の指標となるフィルムアライメントマークを形成する1対のアライメントマーカと、
    露光光を出射する光源と、
    前記第1方向に直交する第2方向に相互間に間隔をおいて配列された複数本のスリットが形成されていると共に、その前記第2方向の両端部に夫々マスクアライメントマークが形成されたマスクと、
    前記第2方向に延びて全ての前記スリットと交差する開口が形成されており、前記開口と前記スリットとが交差する部分で前記露光光を透過させる遮光部材と、
    前記マスクアライメントマークと共に前記フィルムアライメントマークを検出する検出部と、
    前記遮光部材と前記マスクとの前記第1方向における相対的な位置を制御する制御部と、を有し、
    前記スリットは、その幅が前記第1方向に関して線形的に変化しており、前記スリット間の間隔は前記第2方向にみたときに前記スリットの幅と同一であり、
    前記制御部は、前記検出部が検出した前記マスクアライメントマークと前記フィルムアライメントマークとの位置関係が所定関係になるように、前記マスクと前記遮光部材との間の第1方向における相対的な位置を制御することを特徴とする露光装置。
    A transport device for moving the alignment film to be exposed in the first direction;
    A pair of alignment markers that form a film alignment mark on both sides of the alignment film as an index of the amount of expansion and contraction of the alignment film;
    A light source that emits exposure light;
    A mask having a plurality of slits arranged in a second direction orthogonal to the first direction and spaced apart from each other, and mask alignment marks formed at both ends in the second direction. When,
    An opening extending in the second direction and intersecting all the slits is formed, and a light shielding member that transmits the exposure light at a portion where the opening and the slit intersect,
    A detection unit for detecting the film alignment mark together with the mask alignment mark;
    A control unit that controls a relative position of the light shielding member and the mask in the first direction;
    The width of the slit changes linearly with respect to the first direction, and the interval between the slits is the same as the width of the slit when viewed in the second direction;
    The controller controls the relative position in the first direction between the mask and the light shielding member so that the positional relationship between the mask alignment mark and the film alignment mark detected by the detector is a predetermined relationship. An exposure apparatus that controls the exposure.
  15. 1対の前記マスクアライメントマークは、夫々前記第2方向の両端部に設けられたスリットのうちの最も近いスリットの幅方向の一方の側縁又はこのスリットの幅方向の中心線と夫々平行に設けられており、
    前記制御部は、前記遮光部材の前記開口の位置にて、前記フィルムアライメントマークと前記マスクアライメントマークとの前記第2方向における間隔が一定になるように前記マスクと前記遮光部材との第1方向における相対的な位置を制御することを特徴とする請求項14に記載の露光装置。
    The pair of mask alignment marks is provided in parallel with one side edge in the width direction of the closest slit among the slits provided at both ends in the second direction or the center line in the width direction of the slit. And
    The controller controls the first direction between the mask and the light shielding member so that the distance between the film alignment mark and the mask alignment mark in the second direction is constant at the position of the opening of the light shielding member. The exposure apparatus according to claim 14, wherein the relative position of the exposure apparatus is controlled.
  16. 前記マスクには、前記第2方向における前記スリットの外方に前記フィルムアライメントマーク観察用の1対の観察窓が設けられ、この観察窓に前記マスクアライメントマークが設けられており、
    前記検出部は、前記マスクアライメントマークと共に、前記1対の観察窓を介して前記フィルムアライメントマークを検出することを特徴とする請求項14又は15に記載の露光装置。
    The mask is provided with a pair of observation windows for observing the film alignment mark outside the slit in the second direction, and the mask alignment mark is provided in the observation window,
    The exposure apparatus according to claim 14, wherein the detection unit detects the film alignment mark together with the mask alignment mark through the pair of observation windows.
  17. 前記制御部は、前記検出部が検出した1対の前記マスクアライメントマーク間の前記第2方向における中央位置が、1対の前記フィルムアライメントマーク間の前記第2方向における中央位置と一致するように、前記マスクの前記第2方向における位置を調節することを特徴とする請求項14乃至16のいずれか1項に記載の露光装置。 The control unit is configured such that a center position in the second direction between the pair of mask alignment marks detected by the detection unit coincides with a center position in the second direction between the pair of film alignment marks. The exposure apparatus according to claim 14, wherein the position of the mask in the second direction is adjusted.
  18. 前記光源、前記遮光部材及び前記マスクは、前記第1方向に離隔する位置に2組配置され、一方のマスクのスリットは、他方のマスクのスリットに対し、前記第2方向に前記スリットの配列ピッチだけ偏倚しているように配置されていることを特徴とする請求項14乃至17のいずれか1項に記載の露光装置。 Two sets of the light source, the light shielding member, and the mask are arranged at positions separated from each other in the first direction, and the slit of one mask is arranged in the second direction with respect to the slit of the other mask. 18. The exposure apparatus according to claim 14, wherein the exposure apparatus is arranged so as to be deviated only by the amount.
  19. 前記2個の光源による露光により、相互に配向方向が異なる帯状の露光部を第2方向に交互に形成することを特徴とする請求項18に記載の露光装置。 19. The exposure apparatus according to claim 18, wherein the strip-shaped exposure portions having different orientation directions are alternately formed in the second direction by the exposure by the two light sources.
  20. 露光対象の配向膜を第1方向に移動させる搬送装置と、
    前記配向膜の両側部にこの配向膜の伸縮量の指標となるフィルムアライメントマークを形成する1対のアライメントマーカと、
    露光光を出射する光源と、
    前記第1方向に直交する第2方向に相互間に間隔をおいて配列された複数本のスリットが形成され、前記1対のフィルムアライメントマークを観察するための1対の観察窓が設けられ、前記各観察窓内にマスクアライメントマークが形成されたマスクと、
    前記第2方向に延びて全ての前記スリットと交差する開口が形成されており、前記開口と前記スリットとが交差する部分で前記露光光を透過させる遮光部材と、
    前記各観察窓内の前記マスクアライメントマークと前記フィルムアライメントマークを検出する検出部と、
    この検出部の検出結果に基づいて、前記遮光部材と前記マスクとの間の前記第1方向における相対的な位置関係を調節する制御部と、を有し、
    前記スリットは、その第2方向の一端部の第1スリットが前記第1方向に平行であり、他端部の第2スリットが前記第1方向に対して最大傾度で傾斜しており、前記第1スリットと前記第2スリットとの間のスリットは、第1スリットから第2スリットに向けて徐々に傾斜角度が大きくなるように傾斜しており、
    前記スリットは、その幅が前記第1方向に関して線形的に変化しており、前記スリット間の間隔は前記第2方向に関して前記スリットの幅と同一であり、
    前記第1スリット側の第1マスクアライメントマークは、前記第1方向に延び、前記第2スリット側の第2マスクアライメントマークは、前記第2スリットの幅方向の一方の側縁又は幅方向の中心線と平行に延びていることを特徴とする露光装置。
    A transport device for moving the alignment film to be exposed in the first direction;
    A pair of alignment markers that form film alignment marks that serve as indicators of the amount of expansion and contraction of the alignment film on both sides of the alignment film;
    A light source that emits exposure light;
    A plurality of slits arranged in the second direction perpendicular to the first direction with a space between each other is formed, and a pair of observation windows for observing the pair of film alignment marks is provided, A mask having a mask alignment mark formed in each observation window;
    An opening extending in the second direction and intersecting all the slits is formed, and a light shielding member that transmits the exposure light at a portion where the opening and the slit intersect,
    A detection unit for detecting the mask alignment mark and the film alignment mark in each observation window;
    A control unit that adjusts a relative positional relationship in the first direction between the light shielding member and the mask based on a detection result of the detection unit;
    The slit has a first slit at one end in the second direction parallel to the first direction, and a second slit at the other end inclined at a maximum inclination with respect to the first direction, The slit between one slit and the second slit is inclined so that the inclination angle gradually increases from the first slit toward the second slit,
    The slits vary linearly with respect to the first direction, and the spacing between the slits is the same as the width of the slits with respect to the second direction;
    The first mask alignment mark on the first slit side extends in the first direction, and the second mask alignment mark on the second slit side is one side edge in the width direction of the second slit or the center in the width direction. An exposure apparatus characterized by extending in parallel with a line.
  21. 前記制御部は、前記第1マスクアライメントマークと対応する第1フィルムアライメントマークとの間の距離の基準値Aを設定し、前記第2マスクアライメントマークと対応する第2フィルムアライメントマークとの間の距離の基準値Bを設定し、前記配向膜の露光中に、前記第1マスクアライメントマークと前記第1フィルムアライメントマークとの間の距離が基準値Aから変動した場合に、前記マスクを前記第2方向に移動させて、前記第1マスクアライメントマークと前記第1フィルムアライメントマークとの間の距離を基準値Aに調節し、その上で、前記第2マスクアライメントマークと前記第2フィルムアライメントマークとの間の距離が基準値Bから変動している場合に、前記マスクを前記第1方向に移動させて、前記第2アライメントマークと前記第2フィルムアライメントマークとの間の距離を基準値Bに調節することを特徴とする請求項20に記載の露光装置。 The controller sets a reference value A for the distance between the first mask alignment mark and the corresponding first film alignment mark, and between the second mask alignment mark and the corresponding second film alignment mark. A distance reference value B is set, and when the distance between the first mask alignment mark and the first film alignment mark varies from the reference value A during exposure of the alignment film, the mask is The distance between the first mask alignment mark and the first film alignment mark is adjusted to a reference value A by moving in two directions, and then the second mask alignment mark and the second film alignment mark When the distance from the reference value B fluctuates from the reference value B, the mask is moved in the first direction, and the second alarm is moved. An apparatus according to claim 20, characterized in that adjusting the distance between the the instrument mark second film alignment mark to the reference value B.
  22. フィルム基材上に配向材料膜が形成された配向膜を一方向に移動させる移動装置と、
    前記配向膜の移動域に設けられ、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向に相互に間隔をおいた複数個の帯状の露光部からなる第1の露光パターンを形成する第1露光ユニットと、
    前記配向膜の移動方向における前記第1露光ユニットの下流側に設置され、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向における前記第1露光パターンの露光部の相互間の領域に複数個の帯状の露光部からなる第2の露光パターンを形成する第2露光ユニットと、
    前記第1露光ユニットと前記第2露光ユニットとの間の前記配向膜の移動域に設けられ、前記第1露光パターンの露光部を検出する検査部と、
    前記検査部が検出した第1露光パターンの露光部の位置に基づいて、前記第2露光ユニットにおける前記第2の露光パターンの露光位置を制御する制御部と、
    を有することを特徴とする露光装置。
    A moving device for moving the alignment film in which the alignment material film is formed on the film substrate in one direction;
    A plurality of strip-shaped exposure portions provided in a moving region of the alignment film, extending in the one direction and spaced from each other in a direction perpendicular to the one direction, on the alignment material film on the alignment film; A first exposure unit for forming a first exposure pattern comprising:
    The first exposure pattern is disposed downstream of the first exposure unit in the moving direction of the alignment film, extends in the one direction on the alignment material film on the alignment film, and extends in the direction orthogonal to the one direction. A second exposure unit for forming a second exposure pattern composed of a plurality of strip-shaped exposure portions in a region between the exposure portions;
    An inspection unit provided in a moving region of the alignment film between the first exposure unit and the second exposure unit, and detecting an exposure unit of the first exposure pattern;
    A control unit for controlling the exposure position of the second exposure pattern in the second exposure unit based on the position of the exposure unit of the first exposure pattern detected by the inspection unit;
    An exposure apparatus comprising:
  23. 前記第1露光ユニットは、第1露光光源と、前記第1の露光パターンに対応する帯状のスリットが設けられた第1マスクとを有し、前記第1露光光源からの露光光を前記第1マスクの前記スリットにより整形して前記配向材料膜に照射するものであり、
    前記第2露光ユニットは、第2露光光源と、前記第2の露光パターンに対応する帯状のスリットが設けられた第2マスクとを有し、前記第2露光光源からの露光光を前記第2マスクの前記スリットにより整形して前記配向材料膜に照射するものであり、
    前記制御部は、前記第1露光パターンの露光部の位置に基づいて、前記第2露光ユニットにおける前記第2マスクの前記一方向に直交する方向の位置を調整することを特徴とする請求項22に記載の露光装置。
    The first exposure unit includes a first exposure light source and a first mask provided with a band-shaped slit corresponding to the first exposure pattern, and the exposure light from the first exposure light source is the first exposure light. It is shaped by the slit of the mask and irradiated to the alignment material film,
    The second exposure unit includes a second exposure light source and a second mask provided with a strip-shaped slit corresponding to the second exposure pattern, and the exposure light from the second exposure light source is the second exposure light. It is shaped by the slit of the mask and irradiated to the alignment material film,
    The control unit adjusts the position of the second exposure unit in a direction orthogonal to the one direction based on the position of the exposure unit of the first exposure pattern. The exposure apparatus described in 1.
  24. 前記移動装置は、前記配向膜をバックロールに巻き架けて、移動させ、
    前記第1露光ユニット、前記検査部及び前記第2露光ユニットは、前記バックロール上の前記配向膜に対向する位置に設置されていることを特徴とする請求項22又は23に記載の露光装置。
    The moving device winds the alignment film around a back roll, moves the alignment film,
    24. The exposure apparatus according to claim 22 or 23, wherein the first exposure unit, the inspection unit, and the second exposure unit are installed at positions facing the alignment film on the back roll.
  25. 前記検査部は、前記バックロールに対向するように設置され検査光を前記バックロール上の前記配向膜に向けて照射する検査光光源と、前記バックロールにて反射した反射光を検出するカメラと、前記配向膜に入射する検査光又は前記カメラに入射する反射光に対し偏光方向のフィルタをかける偏光子と、を有することを特徴とする請求項24に記載の露光装置。 The inspection unit is installed so as to face the back roll, irradiates inspection light toward the alignment film on the back roll, and a camera that detects reflected light reflected by the back roll; 25. The exposure apparatus according to claim 24, further comprising: a polarizer that filters the inspection light incident on the alignment film or the reflected light incident on the camera with a polarization direction filter.
  26. 前記検査部は、前記バックロールの周面に埋め込まれ検査光を前記バックロール上の前記配向膜に向けて照射する検査光光源と、前記検査光光源に対向するように設置され前記配向膜を透過してきた透過光を検出するカメラと、前記配向膜に入射する検査光又は前記カメラに入射する透過光に対し偏光方向のフィルタをかける偏光子と、を有することを特徴とする請求項24に記載の露光装置。 The inspection section is embedded in the peripheral surface of the back roll and irradiates inspection light toward the alignment film on the back roll, and the inspection section is disposed so as to face the inspection light source. 25. The camera according to claim 24, further comprising: a camera that detects transmitted light that has been transmitted; and a polarizer that filters inspection light incident on the alignment film or transmitted light incident on the camera. The exposure apparatus described.
  27. 前記移動装置は、前記配向膜の移動域を複数個の搬送ロール上に前記配向膜を掛け渡すことにより規定し、
    前記第1露光ユニット、前記検査部及び前記第2露光ユニットは、前記搬送ロール間の前記配向膜に対向する位置に設置されていることを特徴とする請求項22又は23に記載の露光装置。
    The moving device defines the moving area of the alignment film by spanning the alignment film on a plurality of transport rolls,
    24. The exposure apparatus according to claim 22 or 23, wherein the first exposure unit, the inspection unit, and the second exposure unit are installed at positions facing the alignment film between the transport rolls.
  28. 前記検査部は、前記搬送ロール間の前記配向膜の一方の面側に設置され検査光を前記配向膜に向けて照射する検査光光源と、前記配向膜の他方の面側に設置され前記配向膜を透過した光を反射させる反射手段と、この反射手段で反射した反射光を検出するカメラと、前記配向膜に入射する検査光及び前記カメラに入射する反射光に対し夫々偏光方向のフィルタをかける偏光子と、を有することを特徴とする請求項27に記載の露光装置。 The inspection unit is installed on one surface side of the alignment film between the transport rolls and irradiates inspection light toward the alignment film, and the alignment light is installed on the other surface side of the alignment film. Reflecting means for reflecting the light transmitted through the film, a camera for detecting the reflected light reflected by the reflecting means, and a filter in the polarization direction for the inspection light incident on the alignment film and the reflected light incident on the camera, respectively. An exposure apparatus according to claim 27, further comprising a polarizer.
  29. 前記検査部は、前記搬送ロール間の前記配向膜の一方の面側に設置され検査光を前記配向膜に向けて照射する検査光光源と、前記配向膜の他方の面側に設置され前記配向膜を透過してきた透過光を検出するカメラと、前記配向膜に入射する検査光及び前記カメラに入射する透過光に対し夫々偏光方向のフィルタをかける偏光子と、を有することを特徴とする請求項27に記載の露光装置。 The inspection unit is installed on one surface side of the alignment film between the transport rolls and irradiates inspection light toward the alignment film, and the alignment light is installed on the other surface side of the alignment film. A camera that detects transmitted light that has passed through the film, and a polarizer that filters each of the inspection light incident on the alignment film and the transmitted light incident on the camera in a polarization direction. Item 28. The exposure apparatus according to Item 27.
  30. 前記第2マスクは、その複数個のスリットが、前記第1方向に直交する方向に隣接するスリットの相互間隔が前記第1方向に線形的に増加するように形成されており、
    前記第2露光ユニットは、前記第2マスクの全てのスリットに交差するように前記第1方向に直交する方向に延びる開口が形成された遮光部材を有し、
    前記制御部は、前記遮光部材の前記第2マスクに対する前記第1方向の位置を調整することを特徴とする請求項22乃至29のいずれか1項に記載の露光装置。
    The second mask is formed such that the plurality of slits are linearly increased in the first direction between the slits adjacent to each other in a direction orthogonal to the first direction.
    The second exposure unit includes a light shielding member having an opening extending in a direction orthogonal to the first direction so as to intersect all the slits of the second mask.
    30. The exposure apparatus according to claim 22, wherein the control unit adjusts a position of the light shielding member in the first direction with respect to the second mask.
  31. フィルム基材上に配向材料膜が形成された配向膜を一方向に移動させながら、
    前記配向膜の移動域に設けられた第1露光ユニットによって、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向に相互に間隔をおいた複数個の帯状の露光部からなる第1の露光パターンを形成する第1露光工程と、
    前記配向膜の移動方向における前記第1露光ユニットの下流側に設置された第2露光ユニットによって、前記配向膜上の前記配向材料膜に、前記一方向に延びると共に、前記一方向に直交する方向における前記第1露光パターンの露光部の相互間の領域に複数個の帯状の露光部からなる第2の露光パターンを形成する第2露光工程と、
    前記第1露光工程と前記第2露光工程との間に前記第1露光パターンの露光部を検出する検査工程と、
    を有し、
    前記検査工程で検出された第1露光パターンの露光部の位置に基づいて、前記第2露光工程における前記第2露光ユニットによる前記第2の露光パターンの露光位置を制御することを特徴とするFPR製造方法。
    While moving the alignment film in which the alignment material film is formed on the film substrate in one direction,
    The first exposure unit provided in the moving region of the alignment film allows the alignment material film on the alignment film to extend in the one direction and be spaced apart from each other in a direction perpendicular to the one direction. A first exposure step of forming a first exposure pattern comprising a strip-shaped exposure portion of
    A direction extending in the one direction and perpendicular to the one direction on the alignment material film on the alignment film by a second exposure unit installed on the downstream side of the first exposure unit in the moving direction of the alignment film. A second exposure step of forming a second exposure pattern comprising a plurality of strip-shaped exposure portions in a region between the exposure portions of the first exposure pattern in
    An inspection step of detecting an exposed portion of the first exposure pattern between the first exposure step and the second exposure step;
    Have
    An FPR that controls the exposure position of the second exposure pattern by the second exposure unit in the second exposure step based on the position of the exposure portion of the first exposure pattern detected in the inspection step. Production method.
PCT/JP2012/073318 2011-09-16 2012-09-12 Film exposure device WO2013039100A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011-203499 2011-09-16
JP2011203499 2011-09-16
JP2011224387A JP5884120B2 (en) 2011-10-11 2011-10-11 Film exposure equipment
JP2011-224387 2011-10-11
JP2011230195A JP2013088679A (en) 2011-10-19 2011-10-19 Film exposing device
JP2011-230195 2011-10-19
JP2011241687A JP2013097277A (en) 2011-11-02 2011-11-02 Film exposure device
JP2011-241687 2011-11-02
JP2012-019170 2012-01-31
JP2012019170A JP5817564B2 (en) 2011-09-16 2012-01-31 Exposure equipment
JP2012-146733 2012-06-29
JP2012146733A JP2014010296A (en) 2012-06-29 2012-06-29 Exposure device and fpr production method

Publications (1)

Publication Number Publication Date
WO2013039100A1 true WO2013039100A1 (en) 2013-03-21

Family

ID=47883325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073318 WO2013039100A1 (en) 2011-09-16 2012-09-12 Film exposure device

Country Status (1)

Country Link
WO (1) WO2013039100A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064872A (en) * 2011-09-16 2013-04-11 V Technology Co Ltd Exposure device
WO2013145550A1 (en) * 2012-03-26 2013-10-03 株式会社有沢製作所 Method for manufacturing phase-shift plate
JP2013543595A (en) * 2010-09-29 2013-12-05 ドンウー ファイン−ケム カンパニー リミテッド Exposure system
JP2014199299A (en) * 2013-03-29 2014-10-23 大日本印刷株式会社 Method for manufacturing patterned retardation film and exposure device for patterned retardation film
US20190204754A1 (en) * 2016-06-07 2019-07-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for exposing transparent substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098719A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Exposure apparatus
JP2007506130A (en) * 2003-09-20 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Image display device
JP2009098664A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Optical compensation film, its forming method, polarizer, and liquid crystal display
JP2009282373A (en) * 2008-05-23 2009-12-03 Konica Minolta Opto Inc Method of manufacturing optical compensating film
JP2010091906A (en) * 2008-10-10 2010-04-22 Seiko Epson Corp Method for manufacturing electro-optical device
WO2010090429A2 (en) * 2009-02-03 2010-08-12 주식회사 엘지화학 Method for manufacturing an optical filter for a stereoscopic image display device
JP2010221541A (en) * 2009-03-24 2010-10-07 Toppan Printing Co Ltd Latent image formation object, genuineness determining method therefor and medium using latent image formation object
JP2012159713A (en) * 2011-02-01 2012-08-23 Arisawa Mfg Co Ltd Manufacturing method of film-like product, manufacturing apparatus of film-like product, and mask

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506130A (en) * 2003-09-20 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Image display device
JP2006098719A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Exposure apparatus
JP2009098664A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Optical compensation film, its forming method, polarizer, and liquid crystal display
JP2009282373A (en) * 2008-05-23 2009-12-03 Konica Minolta Opto Inc Method of manufacturing optical compensating film
JP2010091906A (en) * 2008-10-10 2010-04-22 Seiko Epson Corp Method for manufacturing electro-optical device
WO2010090429A2 (en) * 2009-02-03 2010-08-12 주식회사 엘지화학 Method for manufacturing an optical filter for a stereoscopic image display device
JP2010221541A (en) * 2009-03-24 2010-10-07 Toppan Printing Co Ltd Latent image formation object, genuineness determining method therefor and medium using latent image formation object
JP2012159713A (en) * 2011-02-01 2012-08-23 Arisawa Mfg Co Ltd Manufacturing method of film-like product, manufacturing apparatus of film-like product, and mask

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543595A (en) * 2010-09-29 2013-12-05 ドンウー ファイン−ケム カンパニー リミテッド Exposure system
JP2013064872A (en) * 2011-09-16 2013-04-11 V Technology Co Ltd Exposure device
WO2013145550A1 (en) * 2012-03-26 2013-10-03 株式会社有沢製作所 Method for manufacturing phase-shift plate
JP2013200520A (en) * 2012-03-26 2013-10-03 Arisawa Mfg Co Ltd Method for manufacturing retardation plate
JP2014199299A (en) * 2013-03-29 2014-10-23 大日本印刷株式会社 Method for manufacturing patterned retardation film and exposure device for patterned retardation film
US20190204754A1 (en) * 2016-06-07 2019-07-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for exposing transparent substrate
US10527947B2 (en) * 2016-06-07 2020-01-07 Shenzhen China Star Optoelectronics Technology Co., Ltd Method for exposing transparent substrate

Similar Documents

Publication Publication Date Title
JP6699835B2 (en) Optical film marking system and optical film marking method
WO2013039100A1 (en) Film exposure device
JP2014010296A (en) Exposure device and fpr production method
TW201314384A (en) Film exposure device
JP6004157B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional liquid crystal display device
JP5534549B2 (en) Transfer apparatus, transfer method, and device manufacturing method
JP5884120B2 (en) Film exposure equipment
JP5477862B2 (en) Film exposure apparatus and film exposure method
JP2010217207A5 (en)
JP5817564B2 (en) Exposure equipment
JP6232189B2 (en) Manufacturing method of optical film
JP5762903B2 (en) Exposure equipment
JP2012220608A (en) Manufacturing device for three-dimensional optical filter
KR101659333B1 (en) System for measuring total-pitch of optical film thereof
JP2013097204A (en) Metal mask for scanning exposure and scanning exposure device
JP5481736B2 (en) Film exposure equipment
JP2012083383A (en) Exposure device
JP5895422B2 (en) Exposure equipment
JP2013097277A (en) Film exposure device
KR102029695B1 (en) System for laminating an optical film and Method for manufacturing a display unit using the same
KR101419748B1 (en) System for measuring total-pitch of optical film
WO2015033875A1 (en) Optical film production device
JP2013148635A (en) Manufacturing device of 3d optical filter
JP2014164000A (en) Method for cutting patterned optical film and system for controlling traveling of optical film
JP2012141367A (en) Exposing device, polarization converting member and exposing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832354

Country of ref document: EP

Kind code of ref document: A1