WO2013038560A1 - 表示装置、表示装置のむら補正方法 - Google Patents

表示装置、表示装置のむら補正方法 Download PDF

Info

Publication number
WO2013038560A1
WO2013038560A1 PCT/JP2011/071253 JP2011071253W WO2013038560A1 WO 2013038560 A1 WO2013038560 A1 WO 2013038560A1 JP 2011071253 W JP2011071253 W JP 2011071253W WO 2013038560 A1 WO2013038560 A1 WO 2013038560A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal panel
sensor
chromaticity
light
Prior art date
Application number
PCT/JP2011/071253
Other languages
English (en)
French (fr)
Inventor
恒雄 宮本
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to PCT/JP2011/071253 priority Critical patent/WO2013038560A1/ja
Publication of WO2013038560A1 publication Critical patent/WO2013038560A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources

Definitions

  • the present invention relates to a display device having an unevenness correction function and an unevenness correction method for the display device.
  • the unevenness distribution of the brightness and chromaticity is measured in advance at a factory or the like. Then, the data or correction data is stored as storage data in a storage device in the display device, and is read and used during unevenness correction, thereby correcting unevenness in luminance and chromaticity. In this case, for example, when unevenness changes due to changes over time, the correction data is collected again using a device similar to the factory, and the storage data stored in the display device is rewritten. Work was necessary.
  • liquid crystal monitor device that does not have a built-in sensor and a liquid crystal monitor device that has a built-in sensor as liquid crystal monitor devices that perform unevenness correction.
  • Liquid crystal monitor devices that do not have a built-in sensor had to acquire correction data using an external measuring instrument.
  • FIG. 3 is a diagram illustrating a configuration of a liquid crystal monitor device including a built-in sensor on the back surface of the liquid crystal panel.
  • a CCFL 13 On the back surface of the liquid crystal panel 16, a CCFL 13, a reflecting plate 14, and built-in sensors 11-1 to 11-n are provided.
  • the CPU 17 performs dimming of the CCFL 13 by the inverter 18 using the luminance and chromaticity detection results obtained from the built-in sensors 11-1 to 11-n, and performs the gradation operation of the liquid crystal panel 16 by the RGB control unit 19. .
  • this liquid crystal monitor device it is necessary to measure the luminance chromaticity from the front side, and even if a plurality of sensors are installed on the backlight, it is impossible to measure the correct front side unevenness.
  • the shift of the transmittance and chromaticity of the liquid crystal panel can only be obtained by estimation. For this reason, when the unevenness of the panel changes due to changes over time or the like, the transmittance and chromaticity shift of the liquid crystal panel cannot be known without using an external sensor or measuring instrument.
  • FIG. 4 is a diagram illustrating a configuration of a liquid crystal monitor device including a built-in sensor on the front surface of the liquid crystal panel.
  • built-in sensors 11-1 to 11-n are provided on the front surface of the liquid crystal panel 16, and the CCFL 13 and the reflecting plate 14 are provided on the back surface.
  • the CPU 17 performs dimming of the CCFL 13 by the inverter 18 using the luminance and chromaticity detection results obtained from the built-in sensors 11-1 to 11-n, and performs the gradation operation of the liquid crystal panel 16 by the RGB control unit 19. .
  • a plurality of sensors are provided on the front surface of the liquid crystal panel, which may hinder display on the screen. In addition, it is difficult to physically arrange.
  • the cited document 1 describes a configuration for ensuring luminance uniformity.
  • the problem to be solved is that if a sensor is placed on the front of the screen for correction, the display screen will be hindered, and if the sensor is placed on the back of the screen or if there is no built-in sensor, the brightness of the screen -An expensive measuring instrument must be used to obtain chromaticity.
  • the present invention is a display device that displays an image by illuminating a liquid crystal panel from the back with a backlight, and has a luminance and chromaticity provided at a plurality of positions on the back of the liquid crystal panel.
  • the detection result of the first sensor is based on the detection result of the light transmitted through the liquid crystal panel in the state detected by the first sensor and the detection result of the light emitted from the light source detected by the second sensor.
  • a control unit that calculates the corresponding luminance and chromaticity and corrects the luminance and color unevenness of the liquid crystal panel based on the calculation result.
  • the present invention also provides a method for correcting unevenness of a display device that displays an image by illuminating a liquid crystal panel from a back surface with a backlight, and includes a plurality of methods for detecting luminance and chromaticity provided at a plurality of locations on the back surface of the liquid crystal panel.
  • a detection result is acquired from a first sensor
  • a detection result is acquired from a second sensor that detects light emitted from a front surface of the liquid crystal panel
  • the light source is turned on and the backlight is turned off.
  • a detection result of detecting light transmitted through the liquid crystal panel by one sensor, a detection result of detecting light not transmitted through the liquid crystal panel by the second sensor, and turning on the backlight in a state where light from the light source is not irradiated The brightness obtained by measuring the light from the backlight transmitted through the liquid crystal panel on the front side of the liquid crystal panel with a measuring instrument.
  • a storage unit that stores a detection result detected by the first sensor in accordance with the luminance and chromaticity measured by the measuring device, which is determined based on the chromaticity and the light source.
  • the first sensor based on a detection result obtained by detecting the light transmitted through the liquid crystal panel with the light turned off by the first sensor and a detection result obtained by detecting the light emitted from the light source by the second sensor.
  • the luminance and chromaticity corresponding to the detection result are calculated, and the luminance and color unevenness of the liquid crystal panel are corrected based on the calculation result.
  • a plurality of backlight sensors are provided on the back of the backlight, and the transmittance of the liquid crystal panel of each part can be detected by irradiating each backlight sensor with light from a light source disposed on the front.
  • the brightness and chromaticity of each part measured from the front surface can be equivalently obtained by combining with the detected amount of each part of the light from the backlight, and unevenness of the front brightness and chromaticity occurred due to changes over time after shipment from the factory. Sometimes it has the function of correcting evenly without using expensive equipment.
  • the luminance and chromaticity unevenness of the screen can be corrected as long as there is an arbitrary light source that can irradiate the screen uniformly without using an expensive external sensor or measuring instrument. Further, after the shipment from the factory, halftone brightness and chromaticity unevenness can be corrected with an arbitrary light source that can irradiate the screen uniformly without using an expensive external sensor or measuring instrument.
  • FIG. 1 is a diagram showing a configuration of a display device according to the present invention.
  • the liquid crystal module includes a backlight system and a liquid crystal panel 6.
  • the backlight system is composed of a plurality of CCFLs 3 and a reflecting plate 4.
  • a liquid crystal panel 6, a CCFL 3, and a reflection plate 4 are arranged in order from the front side to the back side.
  • the CCFL 3 is a backlight light source that illuminates the liquid crystal panel 6, and a plurality of CCFLs are arranged in the horizontal direction.
  • the sensors A1 to An are disposed on the back side of the reflector.
  • nine holes for allowing light to directly reach the sensors A1 to An are provided at nine positions on the reflecting plate 4 corresponding to the positions where the sensors A1 to An are arranged.
  • the sensors A1 to An are arranged in a gap where the CCFL 3 is not arranged, and are arranged so that light irradiated from the front surface can reach.
  • Each of the sensors A1 to An is a color sensor, and a general method for obtaining chromaticity from the output and obtaining luminance from the output is used.
  • Sensor B is disposed in the vicinity of the liquid crystal panel 6 so as to face the front surface, and detects light emitted from the light source 5.
  • the light detected by the sensor B is light that has not passed through the liquid crystal panel 6 and is directly irradiated from the light source 5.
  • each sensor B is a color sensor, and a general method for obtaining chromaticity from the output and obtaining the luminance from the output is used.
  • the sensors A1 to An and the sensor B all have the same characteristics. Here, the characteristics of these sensors are made the same at the factory or design.
  • the CPU (central processing unit) 7 controls the gradation of the liquid crystal panel 6 by controlling the CCFL 3 by controlling the inverter 8 and the RGB controller 9. Further, the CPU 7 inputs the detection results of the sensors A1 to An and the sensor B, and controls the gradation operation of the liquid crystal panel 6 based on the detection results. Further, when the backlight light source is an LED (light emitting diode) in which R (red), G (green), and B (blue) are combined as one set, the CPU 7 independently sets each of R, G, and B. Light control.
  • LED light emitting diode
  • the CPU 7 detects the detection result of detecting the light transmitted through the liquid crystal panel 6 by the sensors A1 to An and the light detected by the sensor B not transmitting the liquid crystal panel 6 with the light source 5 turned on and the backlight light source turned off.
  • the result is obtained by measuring the light from the backlight light source that has passed through the liquid crystal panel 6 on the front side of the liquid crystal panel 6 by the reference colorimetric luminance meter 10 while the light source 5 is not irradiated with light.
  • the light detected by the sensors A1 to An is detected by the light transmitted through the liquid crystal panel 6 with the light source 5 turned on and the backlight light source turned off. Based on the result and the detection result obtained by detecting the light emitted from the light source 5 by the sensor B, the luminance and chromaticity corresponding to the detection result of the sensors A1 to An are calculated. Correct brightness and color unevenness.
  • the light source 5 is provided outside the liquid crystal monitor device main body, and uniformly irradiates the entire screen (liquid crystal panel 6) of the liquid crystal monitor device.
  • the light source 5 is a reference light source for calibration. Used in a factory before shipment of a liquid crystal monitor device.
  • the inverter 8 performs dimming of the CCFL 3 according to a control signal from the CPU 7.
  • the RGB control unit 9 performs gradation control of the liquid crystal panel 6 according to a control signal from the CPU 7.
  • measurement values Lv (A1) to Lv (An) are obtained as luminance measurement values from the sensors A1 to An, and x (A1) to L (chromaticity measurement values) are obtained from the sensors A1 to An. x (An), y (A1) to y (An) are obtained.
  • the CPU 7 simultaneously performs the measurement by the sensor B, and obtains the luminance measurement value Lv (B) and the chromaticity measurement values x (B) and y (B) as detection results.
  • the sensors A1-1 to 1-n and the sensor B2 are calibrated in advance so as to have the same value for irradiation with the same luminance and chromaticity.
  • liquid crystal panel transmittances T1 to Tn can be expressed as follows.
  • Liquid crystal panel transmittance T1 Lv (A1) / Lv (B)
  • Liquid crystal panel transmittance Tn Lv (An) / Lv (Bn)
  • the liquid crystal panel transmittance T1 represents the transmittance of light irradiated from the front surface of the liquid crystal panel at the position where the sensor A1 is provided
  • the liquid crystal panel transmittance Tn is the position at which the sensor An is provided. It represents the transmittance of light emitted from the front surface of the liquid crystal panel.
  • the liquid crystal panel transmittances T1 to Tn corresponding to the respective positions where the sensors A1 to An are provided are obtained.
  • the chromaticity shift amounts x ⁇ 1 and y ⁇ 1 of the liquid crystal panel represent the chromaticity shift amounts of the liquid crystal panel at the position where the sensor A1 is provided, and the chromaticity shift amounts x ⁇ n and y ⁇ n of the liquid crystal panel are determined by the sensor An.
  • the chromaticity shift amount of the liquid crystal panel at the provided position is shown.
  • the chromaticity shift amounts x ⁇ 1 to x ⁇ n and y ⁇ 1 to y ⁇ n of the liquid crystal panel corresponding to the respective positions where the sensors A1 to An are provided are obtained.
  • the reference colorimetric luminance meter 10 is arranged on the front side of the liquid crystal panel 6 and measures the absolute luminance and the absolute chromaticity of the screen of the liquid crystal panel 6.
  • the reference colorimetric luminance meter 10 is configured by combining a plurality of reference colorimetric luminance meters.
  • the reference colorimetric luminance meter 10 for example, CS2000 manufactured by Konica Minolta Co., which can measure luminance chromaticity distribution may be used.
  • the reference colorimetric luminance meter 10 may measure each measurement location (location corresponding to the sensors A1 to An) using one colorimetric luminance meter.
  • the measurement results of the reference colorimetric luminance meter 10 are absolute luminance measurement values Lv (C1) to Lv (Cn), absolute chromaticity measurement values x (C1) to x (Cn), y (C1) to y (Cn) is obtained.
  • Each measurement value is obtained as described above.
  • various values are calculated using the obtained measurement values.
  • the calculation method is as follows. That is, the absolute luminance and the absolute chromaticity can be grasped by performing measurement 1 and 2 in the factory described above, and therefore the user does not use the reference colorimetric luminance meter 10 after shipping the liquid crystal monitor device from the factory. However, data for obtaining a value equal to the measurement value obtained by the reference colorimetric luminance meter 10 is calculated.
  • the transmittance T1 of the liquid crystal panel is obtained.
  • the transmittance T1 of the liquid crystal panel is expressed by the following formula.
  • T1 Lv (A1) / Lv (B) It is.
  • the transmittance T1 of the liquid crystal panel is obtained as 1/10 times (Lv (A1) / Lv (B)) (here, it is not necessarily an absolute value).
  • the brightness Lv (C1) of the panel surface is the brightness of the panel surface at the position of the sensor A1, and is a measured value obtained by the reference colorimetric luminance meter 10.
  • the brightness Lv (C1) of the panel surface is 300 [candela].
  • the absolute luminance Lv (D1) of the backlight is the luminance at the position of the sensor A1.
  • the measurement can be calibrated so that the measured value of the sensor A1 becomes an absolute value.
  • the relationship between the sensor A1 and the absolute luminance is obtained.
  • the same procedure is used to obtain the relationship between the sensors A2 to An and the absolute luminance so that the measured values of the sensors A1 to An become absolute values. I do.
  • the linearity of the sensors A1 to An can be corrected by replacing the light source 5 with a light source having a different luminance and measuring a different luminance of 100 [candela].
  • the chromaticity x (C1) of the panel surface is the chromaticity on the panel surface at the position of the sensor A1, and is a measured value obtained by the reference colorimetric luminance meter 10.
  • the chromaticity x (C1) of the panel surface is 0.313.
  • the chromaticity x (D1) of the backlight is the absolute chromaticity of the backlight at the position of the sensor A1.
  • the chromaticity of the sensor A1 is x (A1)
  • the relationship that the chromaticity of the backlight at the position of the sensor A1 is 0.316 is obtained. That is, the sensor A1 can be calibrated so that the measured value becomes an absolute value.
  • the CPU 7 stores the relationship between the sensors A1 to An and the absolute luminance and the relationship between the sensors A1 to An and the absolute chromaticity obtained by the factory by writing them in a predetermined memory area inside the CPU 7. .
  • a computer provided outside the liquid crystal monitor device stores the data by writing it in a predetermined memory area inside the CPU 7. Then, the liquid crystal monitor device is shipped from the factory.
  • the user adjusts the luminance and chromaticity at a necessary timing.
  • the light source 5 is turned on.
  • the CPU 7 brings the liquid crystal panel 6 into a state of displaying the maximum gradation (for example, a white screen of 255/255) and turns off the CCFL 3.
  • the CPU 7 performs measurement using the sensors A1 to An, B, and obtains a detection result.
  • the CPU 7 measures the measurement values obtained by the sensor sensors A1 to An and B (in this case, luminance Lv (A1 ′) to Lv (An ′), Lv (B ′), chromaticity x (A1) to x ( An) and y (A1) to y (An)) are once stored in a predetermined memory area inside the CPU 7.
  • the CPU 7 calculates the backlight luminance.
  • the calculation is performed as follows.
  • the CPU 7 first obtains the liquid crystal panel transmittance T1 ′.
  • the liquid crystal panel transmittance T1 ′ is the transmittance of light irradiated from the front surface of the liquid crystal panel at the position of the sensor A1 after shipment from the factory.
  • the liquid crystal panel transmittance T1 ′ can be calculated from the following equation.
  • T1 ′ Lv (A1 ′) / (Lv (B ′))
  • the liquid crystal panel transmittance T1 ′ can be obtained as 0.09 based on the above formula.
  • the absolute luminance of the backlight is obtained using the measured value of the sensor A1.
  • D1 ′ Lv (D) ⁇ (Lv (A1 ′) / Lv (A1))
  • Lv (D) 3000 [candela]
  • Lv (A1) 3000 [Candela] ⁇ (Lv (A1 ′) / Lv (A1))
  • the absolute luminance D1 ′ of the backlight after shipment is obtained as 2500 [candela].
  • the measured values Lv (A2 ′) to Lv (An ′) at each point and the measured values Lv (B ′) of the sensor B are used to obtain a panel at each point.
  • the surface brightness L ′ (C2) to L ′ (Cn) is calculated.
  • the CPU 7 uses, for example, the location of the lowest panel surface luminance as a reference, and the gradation level of the liquid crystal panel at other locations. Is controlled so as to reduce the brightness difference at each part of the liquid crystal panel 6 by reducing the brightness to the reference position. Thereby, unevenness in luminance can be reduced.
  • ⁇ Measurement by the user # 2 the user performs measurement with the light source 5 removed.
  • the CPU 7 sets the liquid crystal panel 6 in a non-transmissive state (0/255 gradation black is displayed) by the RGB control unit 9 according to an instruction from the user, and sets the CCFL 3 Turn on the light.
  • the CPU 7 obtains backlight chromaticities x (A1) to x (An) and y (A1) to y (An) as measured values by the sensors A1 to An and B.
  • the CPU 7 obtains the chromaticity shift amount x ⁇ 1 ′ of the liquid crystal panel after shipment and at the position of the sensor A1, using the obtained measurement value.
  • the CPU 7 obtains the absolute chromaticity x (C1 ′) of the backlight after shipment using the measured value obtained from the sensor A1.
  • the CPU 7 calculates the absolute chromaticity x (C1 ′) of the backlight as 0.307, for example.
  • the CPU 7 uses the obtained panel surface chromaticity values.
  • the RGB control unit 9 controls the RGB gradation of the liquid crystal panel 6 to correct the color unevenness.
  • a known technique such as converting xyLv to tristimulus values XYZ, further converting to RGB, and manipulating the RGB gradation of the panel is used. it can.
  • the relationship between the backlight absolute luminance, the backlight absolute chromaticity, and the measured values of the sensors A1 to An is obtained and stored in the liquid crystal monitor device before shipment at the factory. Therefore, if the user corrects unevenness after shipment from the factory, if the light source 5 is present, the front sensor or measuring device is used in each part even if there is no measuring device such as a front sensor or reference colorimetric luminance meter in each part of the screen. A value equivalent to the measured brightness and chromaticity can be obtained. By using this value, the CPU 7 controls each unit so that the screen is uniform, and a uniform screen with unevenness correction is obtained.
  • liquid crystal panel transmittance T1 and the chromaticity shift amounts x ⁇ 1 and y ⁇ 1 at 255/255 which is the maximum gradation in factory adjustment but also the liquid crystal panel transmittance Tm at an arbitrary gradation. Further, by obtaining the chromaticity shift amounts x ⁇ m and y ⁇ m and storing them in the liquid crystal monitor device, it is possible to correct the unevenness of the halftone, which was not possible with the backlight sensor.
  • the program for realizing the function of the display device 1 in FIG. 1 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system and executed, thereby executing chromaticity correction. May be performed.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” includes a medium that holds a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the program may be stored in a predetermined server, and the program may be distributed (downloaded or the like) via a communication line in response to a request from another device.
  • the present invention can be applied to any display device having a backlight and a transmissive panel. As long as a light source capable of uniformly illuminating the screen can be prepared, it can be applied regardless of size from a small monitor such as a mobile phone to a large monitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

 液晶パネル(6)の背面の複数箇所に設けられ輝度及び色度を検出する複数の第1センサー(A1~An)と、液晶パネル(6)の前面から光源(5)によって照射される光を検出する第2センサー(B)と、測定器によって測定された輝度及び色度に応じた第1のセンサーによって検出された検出結果を記憶する記憶領域を参照し、光源(5)を点灯しバックライト(3)を消灯した状態で液晶パネル(6)を透過する光を第1センサー(A1~An)によって検出した検出結果と光源(5)から照射される光を第2センサー(B)によって検出した検出結果とに基づいて、第1センサー(A1~An)の検出結果に対応する輝度及び色度を算出し、算出結果に基づいて、液晶パネル(6)の輝度及び色むらを補正する制御部(7)を有する。

Description

表示装置、表示装置のむら補正方法
 本発明は、むら補正機能を有する表示装置、表示装置のむら補正方法に関する。
 液晶ディスプレイ装置等の表示装置における画面の輝度や色度のむらを補正するには、例えば、まず、予め工場等で輝度や色度のむら分布を測定する。そして、そのデータまたは補正データを表示装置内の記憶装置に記憶データとして記憶しておき、むら補正時に読み出して用いることにより、輝度や色度のむら補正を行っている。
 この場合、例えば経時変化等でむらが変化した場合、工場と同じような装置を用いて補正データを採取し直し、表示装置内部に記憶された記憶データを書き換える等、高価な装置を用い煩雑な作業が必要であった。
 また、むら補正を行う液晶モニター装置として、内蔵センサーを有しない液晶モニター装置と内蔵センサーを有する液晶モニター装置とがある。内蔵センサーを有しない液晶モニター装置は、外部測定器を使って補正データを取得しなければならなかった。
 また、内蔵センサーを有する液晶モニター装置として、液晶パネルの背面に内蔵センサーを配置するものと、液晶パネルの前面に内蔵センサーを配置するものとが考えられる。
 図3は、液晶パネルの背面に内蔵センサーを備えた液晶モニター装置の構成を表す図である。この図において、液晶パネル16の背面には、CCFL13、反射板14、内蔵センサー11-1~11-nが設けられる。CPU17は、内蔵センサー11-1~11-nから得られる輝度や色度の検出結果を用いて、インバータ18によってCCFL13の調光を行い、RGB制御部19によって液晶パネル16の階調操作を行う。
 この液晶モニター装置においては、前面からの輝度色度を測定する必要があり、バックライトに複数個のセンサーを設置しても、正しい前面のむらを測定することはできなかった。すなわち、この液晶モニター装置では、バックライトの輝度・色度しか測定していないため、液晶パネルの透過率や色度のシフトを推測でしか求められなかった。そのため、経時変化等でパネルのむらが変化したときは、外部センサーや測定器を用いなければ、液晶パネルの透過率や色度のシフトを知ることができない。
 図4は、液晶パネルの前面に内蔵センサーを備えた液晶モニター装置の構成を表す図である。
 この図において、液晶パネル16の前面には内蔵センサー11-1~11-nが設けられ、背面には、CCFL13、反射板14が設けられる。CPU17は、内蔵センサー11-1~11-nから得られる輝度や色度の検出結果を用いて、インバータ18によってCCFL13の調光を行い、RGB制御部19によって液晶パネル16の階調操作を行う。
 この構成の液晶モニター装置では、液晶パネルの前面に複数個のセンサーが設けられるため、画面表示する際の妨げとなることが考えられる。また、物理的に配置が困難である。
 なお、引用文献1には、輝度均一性を確保する構成が記載されている。
特開2010-204161号公報
 解決しようとする問題点は、補正を行うにあたり、画面の前面にセンサーを配置すると表示画面の妨げになり、画面の背面にセンサーを配置するあるいは、内蔵センサーを有しない場合には、画面の輝度・色度を得るために高価な測定器を用いなければならないという点である。
 本発明は、上述の問題を解決するために、液晶パネルをバックライトによって背面から照明して画像を表示する表示装置であって、前記液晶パネルの背面の複数箇所に設けられ輝度及び色度を検出する複数の第1センサーと、前記液晶パネルの前面から光源によって照射される光を検出する第2センサーと、前記光源を点灯し前記バックライトを消灯した状態で前記第1センサーによって前記液晶パネルを透過する光を検出した検出結果と前記第2センサーによって前記液晶パネルを透過しない光を検出した検出結果と、前記光源からの光が照射されない状態で前記バックライトを点灯させ前記液晶パネルの前面側で前記液晶パネルを透過した前記バックライトからの光を測定器によって測定して得られる輝度及び色度とに基づいて決まる、前記測定器によって測定された輝度及び色度に応じた前記第1のセンサーによって検出された検出結果を記憶する記憶部と、前記記憶部を参照し、前記光源を点灯し前記バックライトを消灯した状態で前記液晶パネルを透過する光を前記第1センサーによって検出した検出結果と前記光源から照射される光を前記第2センサーによって検出した検出結果とに基づいて、前記第1センサーの検出結果に対応する輝度及び色度を算出し、算出結果に基づいて、前記液晶パネルの輝度及び色むらを補正する制御部と、を有する。
 また、本発明は、液晶パネルをバックライトによって背面から照明して画像を表示する表示装置のむら補正方法であって、前記液晶パネルの背面の複数箇所に設けられ輝度及び色度を検出する複数の第1センサーから検出結果を取得し、前記液晶パネルの前面から光源によって照射される光を検出する第2センサーから検出結果を取得し、前記光源を点灯し前記バックライトを消灯した状態で前記第1センサーによって前記液晶パネルを透過する光を検出した検出結果と前記第2センサーによって前記液晶パネルを透過しない光を検出した検出結果と、前記光源からの光が照射されない状態で前記バックライトを点灯させ前記液晶パネルの前面側で前記液晶パネルを透過した前記バックライトからの光を測定器によって測定して得られる輝度及び色度とに基づいて決まる、前記測定器によって測定された輝度及び色度に応じた前記第1のセンサーによって検出された検出結果を記憶する記憶部を参照し、前記光源を点灯し前記バックライトを消灯した状態で前記液晶パネルを透過する光を前記第1センサーによって検出した検出結果と前記光源から照射される光を前記第2センサーによって検出した検出結果とに基づいて、前記第1センサーの検出結果に対応する輝度及び色度を算出し、算出結果に基づいて、前記液晶パネルの輝度及び色むらを補正することを特徴とする。
 この構成によれば、画面の前面にセンサーを配置せずとも、あたかも画面の前面に配置しているのと同等の効果を内蔵センサーと外部光源を用いて実現できるようにしたものであり、工場出荷後において、高価な測定器を使わずに簡単にむらの補正ができる。
 また、この構成によれば、バックライト背面に複数のバックライトセンサーを設け、前面に配置する光源からの光をそれぞれのバックライトセンサーに照射させることにより各部の液晶パネルの透過率を検出でき、バックライトからの光の各部の検出量と合わせることにより等価的に前面からの測定した各部の輝度や色度を得られ、工場出荷後に、経時変化等で前面の輝度や色度のむらが生じたときも高価な装置を使わずとも均一に補正できる機能を持つ。
 この発明によれば、工場出荷後において、高価な外部センサーや測定器を使うことなく、画面に一様に照射できる任意の光源さえあれば画面の輝度と色度のむらが補正できる。
 また、工場出荷後において、高価な外部センサーや測定器を使うことなく、画面に一様に照射できる任意の光源さえあれば画面の中間調の輝度と色度のむら補正も行うことができる。
本発明の表示装置における構成を表す図である。 本発明の表示装置における構成を表す図である。 液晶パネルの背面に内蔵センサーを備えた液晶モニター装置の構成を表す図である。 液晶パネルの前面に内蔵センサーを備えた液晶モニター装置の構成を表す図である。
 以下、本発明における表示装置について、図面を用いて説明する。図1は、本発明の表示装置における構成を表す図である。この図においては、特に、直下型CCFL(冷陰極蛍光ランプ)のバックライトシステムを持つ液晶モニター装置の構成を表す図である。
 この図において、液晶モジュールは、バックライトシステムと液晶パネル6とで構成される。バックライトシステムは、複数のCCFL3と反射板4とで構成されている。この液晶モジュールは、液晶パネル6、CCFL3、反射板4が、正面側から裏面側へ順に配置される。
 CCFL3は、液晶パネル6を照明するバックライト光源であり、水平方向に複数本のCCFLが配列され構成される。
 センサーA1~Anは、反射板の裏面側に配置される。例えば、センサーA1~Anは、3行3列の9カ所(n=9)であって、それぞれの間隔が等間隔になるように配置される。ここでは、光をセンサーA1~Anに直接到達させるための穴が、このセンサーA1~Anの配置された位置に応じた反射板4の位置に、それぞれ9カ所設けられている。また、ここでは、センサーA1~Anは、CCFL3が配置されていない隙間に配置され、前面から照射された光が到達するように配置される。
 このセンサーA1~Anは、それぞれが、カラーセンサーであり、その出力から色度を得るとともに、その出力から輝度を求める一般的な方式が用いられる。
 センサーBは、液晶パネル6の近傍に前面を向いて配置され、光源5から照射される光を検出する。センサーBによって検出される光は、液晶パネル6を透過していない光であり、光源5から直接照射される光である。このセンサーBも、センサーA1~Anと同様に、それぞれが、カラーセンサーであり、その出力から色度を得るとともに、その出力から輝度を求める一般的な方式が用いられる。また、このセンサーA1~Anと、センサーBとは、いずれも同じ特性である。ここでは、工場または設計でこれらセンサーの特性が同じになるようにしておく。
 CPU(中央処理装置)7は、インバータ8を制御することでCCFL3の調光を行う機能と、RGB制御部9を制御することで、液晶パネル6の階調度を制御する。また、CPU7は、センサーA1~AnとセンサーBの検出結果を入力し、この検出結果に基づいて、液晶パネル6の階調操作の制御を行う。また、CPU7は、バックライト光源が、R(赤)、G(緑)、B(青)が1組として組み合わされたLED(発光ダイオード)の場合は、R、G、Bのそれぞれを独立に調光する。
 また、CPU7は、光源5を点灯しバックライト光源を消灯した状態でセンサーA1~Anによって液晶パネル6を透過する光を検出した検出結果とセンサーBによって液晶パネル6を透過しない光を検出した検出結果と、光源5からの光が照射されない状態でバックライト光源を点灯させ液晶パネル6の前面側で液晶パネル6を透過したバックライト光源からの光を基準測色輝度計10によって測定して得られる輝度及び色度とに基づいて決まる、基準測色輝度計10によって測定された輝度及び色度に応じたセンサーA1~Anによって検出された検出結果を記憶する記憶部を有しており、この記憶領域を参照し、光源5を点灯しバックライト光源を消灯した状態で液晶パネル6を透過する光をセンサーA1~Anによって検出した検出結果と光源5から照射される光をセンサーBによって検出した検出結果とに基づいて、センサーA1~Anの検出結果に対応する輝度及び色度を算出し、算出結果に基づいて、液晶パネル6の輝度及び色むらを補正する。
 光源5は、液晶モニター装置本体の外部に設けられ、液晶モニター装置の画面(液晶パネル6)全体に一様に光を照射する。この光源5は、校正用の基準光源である。工場内において、液晶モニター装置の出荷前に用いられる。
 インバータ8は、CPU7からの制御信号により、CCFL3の調光を行う。RGB制御部9は、CPU7からの制御信号により、液晶パネル6の階調制御を行う。
 次に、図1の液晶モニター装置の動作について説明する。
《工場における測定その1》
 工場における出荷前の段階において、図1に示すように、光源5を点灯し、液晶モニター画面全体に一様な光が照射されるように配置する。このとき、CPU7は、液晶パネル6を最大階調(例えば255/255の白画面)を表示する状態にするとともに、CCFL3を非点灯の状態にする。そしてCPU7は、センサーA1~Anによって測定を行い、検出結果を得る。ここでは、センサーA1~Anのそれぞれから輝度の測定値として、測定値Lv(A1)~Lv(An)を得るとともに、センサーA1~Anのそれぞれから色度の測定値として、x(A1)~x(An)、y(A1)~y(An)を得る。
 また、CPU7は、このとき同時にセンサーBによって測定を行い、検出結果である輝度の測定値Lv(B)、色度の測定値x(B)、y(B)を得る。ここでは、センサーA1-1~1-nとセンサーB2は、あらかじめ同じ輝度・色度の照射に対して同じ値になるように校正しておく。
 ここで、センサーA1~AnとセンサーBの輝度の測定値を用いると、液晶パネル透過率T1~Tnを以下に示すように表すことができる。
 液晶パネル透過率T1=Lv(A1)/Lv(B)
     ~
 液晶パネル透過率Tn=Lv(An)/Lv(Bn)
 ここでは、液晶パネル透過率T1は、センサーA1が設けられた位置における液晶パネルの前面から照射される光の透過率を表しており、液晶パネル透過率Tnは、センサーAnが設けられた位置における液晶パネルの前面から照射される光の透過率を表している。このように、センサーA1~Anが設けられたそれぞれの位置に対応する液晶パネル透過率T1~Tnが得られる。
 また、センサーA1~AnとセンサーBの色度の測定値を用いると、液晶パネルの色度シフト量を以下に示すことができる。
 液晶パネルの色度シフト量xδ1=x(A1)―x(B)
             yδ1=y(A1)―y(B)
    ~
 液晶パネルの色度シフト量xδn=x(An)―x(B)
             yδn=y(An)―y(B)
 ここでは、液晶パネルの色度シフト量xδ1、yδ1は、センサーA1が設けられた位置における液晶パネルの色度シフト量を表しており、液晶パネルの色度シフト量xδn、yδnは、センサーAnが設けられた位置における液晶パネルの色度シフト量を表している。このように、センサーA1~Anが設けられたそれぞれの位置に対応する液晶パネルの色度シフト量xδ1~xδn、yδ1~yδnが得られる。
《工場における測定その2》
 次に、工場において、以下の測定を行う。すなわち、図2に示すように、光源5を取り除く。このとき、CPU7は、液晶パネル6を最大階調(例えば255/255の白画面)の表示状態にするとともに、CCFL3を点灯させる。そして、画面の輝度と色度を基準測色輝度計10によって測定する。
 ここで、基準測色輝度計10は、液晶パネル6の前面側に配置され、液晶パネル6の画面の絶対輝度と絶対色度とを測定する。基準測色輝度計10は、例えば、複数台の基準測色輝度計が組み合わされて構成されている。この基準測色輝度計10として例えば、輝度色度分布を測定できるコニカミノルタ社製CS2000等を用いてもよい。また、この基準測色輝度計10は、1台の測色輝度計を使用して各測定箇所(センサーA1~Anに対応する箇所)をそれぞれ測定するようにしてもよい。
 このとき、基準測色輝度計10の測定結果として、絶対輝度の測定値Lv(C1)~Lv(Cn)、絶対色度の測定値x(C1)~x(Cn)、y(C1)~y(Cn)が得られる。
 以上のようにして、各測定値を得る。以下、これらの得られた測定値を用いて、各種の値を算出する。その算出方法は、以下の通りである。
 すなわち、上述した工場における測定その1及びその2を行うことで、絶対輝度、絶対色度が把握できたので、液晶モニター装置を工場から出荷した後、ユーザが基準測色輝度計10を用いなくても、基準測色輝度計10によって得られる測定値に等しい値を得るためのデータを算出する。
〈センサーA1~Anと絶対輝度との関係を求める〉
 ここでは、まず、液晶パネルの透過率T1を求める。液晶パネルの透過率T1は、次の式で表される。
 T1=Lv(A1)/Lv(B)
である。
 たとえば、液晶パネルの透過率T1は、1/10倍(Lv(A1)/Lv(B))として得られたとする(ここでは、絶対値である必要はない)。
 次に、パネル表面の輝度Lv(C1)は、センサーA1の位置におけるパネル表面の輝度であり、基準測色輝度計10で得られた測定値である。ここでは、例えば、パネル表面の輝度Lv(C1)が300〔カンデラ〕であったとする。
 そして、求めたいものは、バックライトの絶対輝度Lv(D1)である。バックライトの絶対輝度Lv(D1)は、センサーA1の位置における輝度である。このバックライトの絶対輝度Lv(D1)は、次の式で表される。
 Lv(D1)=Lv(C1)/T1
 ここで、液晶パネルの透過率T1が1/10倍であり、パネル表面の輝度Lv(C1)が300[カンデラ]であるので、バックライトの絶対輝度Lv(D1)は、
 Lv(D1)=Lv(C1)/T1
       =300/0.1
       =3000[カンデラ]
 として得られる。
 これで、センサーA1の値がLv(A1)である場合に、センサーA1の位置におけるバックライトの輝度が、3000[カンデラ]であるという関係が得られる。すなわち、センサーA1の測定値が絶対値となるように校正できたことになる。
 ここでは、センサーA1と絶対輝度との関係を求めたが、同じ手順で、センサーA2~Anと絶対輝度との関係も求めることで、センサーA1~Anの測定値が絶対値となるように校正を行う。
 なお、ここで、例えば、光源5を輝度が異なる光源に置き換え、100[カンデラ]という異なる輝度を測定することにより、センサーA1~Anの直線性を補正することもできる。
〈センサーA1~Anと絶対色度との関係を求める〉
 ここでは、まず、液晶パネルの色度シフト量δ1(xδ1、yδ1)を求める。液晶パネルの色度シフト量xδ1は、次の式で表される。
 xδ1=x(A1)-x(B)
である。
 たとえば、液晶パネルの色度シフト量xδ1は、x(A1)-x(B)=-0.003として得られたとする(ここでは、絶対値である必要はない)。
 次に、パネル表面の色度x(C1)は、センサーA1の位置におけるパネル表面における色度であり、基準測色輝度計10によって得られた測定値である。ここでは、例えば、パネル表面の色度x(C1)が、0.313であったとする。
 そして、求めたいものは、バックライト色度x(D1)である。バックライトの色度x(D1)は、センサーA1の位置におけるバックライトの絶対色度である。このバックライトの絶対色度x(D1)は、次の式で表される。
 x(D1)=x(C1)-xδ1
 ここで、
 パネル表面の色度x(C1)が、0.313であり、xδ1が-0.003であった場合には、
 x(D1)=x(C1)-xδ1
      =0.313-(-0.003)
      =0.316
 として得られる。これで、これでセンサーA1の色度がx(A1)である場合に、センサーA1の位置におけるバックライトの色度が、0.316であるという関係が得られる。すなわち、センサーA1の測定値が絶対値となるよう校正できたことになる。
 ここでは、センサーA1のx(A1)と絶対色度との関係を求めたが、同じ手順で、センサーA1のx(A2)~x(An)、y(A1)~y(An)と絶対色度との関係も求めることで、センサーA1~Anの測定値が絶対値となるように校正を行う。
 そして、工場内で求めた、センサーA1~Anと絶対輝度との関係と、センサーA1~Anと絶対色度との関係とについて、CPU7が、CPU7内部の所定のメモリ領域に書き込むことで記憶する。あるいは、液晶モニター装置の外部に設けられるコンピュータが、CPU7内部の所定のメモリ領域に書き込むことで記憶させる。そして、液晶モニター装置が工場から出荷される。
《ユーザにおける測定その1》
 液晶モニター装置が工場から出荷され、ユーザのもとへ納入された後、ユーザは、必要なタイミングで、輝度や色度の調整を行う。
 ここでは、まず、図1に示すように、光源5を点灯させる。ここでは、液晶モニター画面全体に一様な光が照射されるようにできれば、光源5と同一の光源を用いる必要はない。このとき、CPU7は、液晶パネル6を最大階調(例えば255/255の白画面)を表示する状態にするとともに、CCFL3を非点灯の状態にする。そしてCPU7は、センサーA1~An、Bによって測定を行い、検出結果を得る。そして、CPU7は、センサーセンサーA1~An、Bによって得られた測定値(ここでは、輝度Lv(A1’)~Lv(An’)、Lv(B’)、色度x(A1)~x(An)、y(A1)~y(An)とする)を、CPU7の内部の所定のメモリ領域に一度記憶する。
〈バックライト輝度の算出〉
 上記の測定が終了すると、CPU7は、バックライト輝度を算出する。ここでは、以下のようにして算出する。CPU7は、まず、液晶パネル透過率T1’を求める。液晶パネル透過率T1’は、工場出荷後であって、センサーA1の位置における液晶パネルの前面から照射される光の透過率である。この液晶パネル透過率T1’は、次の式から算出できる。
 T1’=Lv(A1’)/(Lv(B’))
 ここで、上記の測定において得られたLv(A1’)、(Lv(B’)から、上述の式に基づいて、例えば、液晶パネル透過率T1’が0.09として得ることができる。
 次に、センサーA1の測定値を用いて、バックライトの絶対輝度を求める。ここでは、出荷後のバックライト絶対輝度D1’は、
 D1’=Lv(D)×(Lv(A1’)/Lv(A1))
 なる式で求めることができる。
 ここでは、工場出荷前において測定したLv(D)(3000[カンデラ])とLv(A1)とから、算出する。ここでは、
 D1’=3000[カンデラ]×(Lv(A1’)/Lv(A1))
 なる式に基づいて算出でき、例えば、出荷後におけるバックライトの絶対輝度D1’が、2500[カンデラ]であるとして得られる。
 これにより、センサーA1が設けられた位置におけるパネル表面輝度は、
 L’(C1)=L’(D1)×T1’
 なる式で求めることができるため、CPU7は、
 L’(C1)=2500×0.09=225[カンデラ]
 として算出する。
 ここでは、センサーA1以外のセンサーA2~センサーAnについても、各点における測定値Lv(A2’)~Lv(An’)と、センサーBの測定値Lv(B’)とから、各点におけるパネル表面輝度L’(C2)~L’(Cn)について算出する。
 このようにしてパネル表面輝度L’(C1)~L’(Cn)が得られると、CPU7は、例えば、一番低いパネル表面輝度の箇所を基準とし、その他の箇所について、液晶パネルの階調度を操作することにより、基準の箇所の輝度まで下げて、液晶パネル6の各部における輝度差を低減するように、制御する。これにより、輝度のむらを低減することができる。
《ユーザにおける測定その2》
 次に、ユーザは、光源5を除去した状態で測定を行う。ここでは、CPU7は、光源5が取り除かれた後、ユーザからの指示に応じて、液晶パネル6をRGB制御部9によって非透過状態(0/255階調の黒を表示状態)にし、CCFL3を点灯状態にする。そしてCPU7は、センサーA1~An、Bによって、バックライトの色度x(A1)~x(An)、y(A1)~y(An)を測定値として得る。
 次に、CPU7は、この得られた測定値を用いて、出荷後であってセンサーA1の位置における液晶パネルの色度シフト量xδ1’を求める。液晶パネルの色度シフト量xδ1’は、次の式で求められる。
 xδ1’=x(A1’)-x(B1’)
 ここで、x(A1’)とx(B1’)とについて、上記の測定によって得られた値を用いることで、液晶パネルの色度シフト量xδ1’を算出することができる。たとえば、液晶パネルの色度シフト量xδ1’は、x(A1’)-x(B1’)=-0.006として得られたとする。
 次に、CPU7は、センサーA1から得られた測定値を用いて、出荷後におけるバックライトの絶対色度x(C1’)を求める。ここでは、バックライトの絶対色度x(C1’)は、
 x(C1’)=x(C1)×(x(D1’)/x(C1))+xδ1’
 なる式で求めることができる。
 そして、CPU7は、例えば、バックライトの絶対色度x(C1’)を0.307として算出する。
 これにより、センサーA1の位置に対応するパネル表面色度は、
 x(C1’)=x(D1’)+xδ1’
 なる式で算出することができる。ここでは、CPU7は、例えば、
 x(C1’)=0.307+(-0.006)=0.301
 として算出する。
 ここでは、センサーA1の測定値y(A1’)や、センサーA1以外のセンサーA2~センサーAnから得られた色度の測定値(x(A2)~x(An)、y(A2)~y(An))を用いることで、センサーA1~Anの各点におけるパネル表面色度x(C1’)~x(Cn’)、y(C1’)~y(Cn’)について算出する。
 このようにしてパネル表面色度x(C1’)~x(Cn’)、y(C1’)~y(Cn’)が得られると、CPU7は、得られたパネル表面色度の値を用いて、RGB制御部9によって、液晶パネル6のRGB階調度を制御することで、色むらが低減するように補正を行う。CPU7が行う色むら補正の具体的な方法としては、例えば、xyLvを3刺激値XYZに変換し、さらにRGBに変換してパネルのRGB階調を操作するような、公知の技術を用いることができる。
 以上説明した実施形態によれば、工場での出荷前に、バックライト絶対輝度とバックライト絶対色度と、センサーA1~Anの測定値との関係を求め、液晶モニター装置に記憶しておくようにしたので、工場出荷後にユーザがむら補正を行う場合、光源5があれば、画面各部でフロントセンサーや基準測色輝度計等の測定器がなくても、各部でフロントセンサーや測定器を使って測定された輝度や色度に等価な値を得ることができる。そして、この値を用いることで、CPU7が、画面が均一になるように各部を制御し、むら補正された均一な画面が得られる。
 なお、上述した実施形態において、工場での調整において最大階調である255/255時の液晶パネル透過率T1及び色度シフト量xδ1、yδ1だけではなく、任意の階調における液晶パネル透過率Tm及び色度シフト量xδm、yδmを求め、液晶モニター装置に記憶しておくことにより、バックライトセンサーではできなかった、中間調のむら補正も可能となる。
 また、図1における表示装置1の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより色度補正を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、サーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものを含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。また、上記のプログラムを所定のサーバに記憶させておき、他の装置からの要求に応じて、当該プログラムを通信回線を介して配信(ダウンロード等)させるようにしてもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、バックライトと透過型パネルを持つあらゆる表示装置に適用できる。そして、画面に一様に照射できる光源さえ用意できれば、携帯電話のような小型のモニターから大型のモニターまで、サイズにかかわらず適用することができる。
 A1~An、B センサー
 3 CCFL(冷陰極蛍光ランプ)
 4 反射板
 5 光源
 6 液晶パネル
 7 CPU
 8 インバータ
 9 RGB制御部

Claims (3)

  1.  液晶パネルをバックライトによって背面から照明して画像を表示する表示装置であって、
     前記液晶パネルの背面の複数箇所に設けられ輝度及び色度を検出する複数の第1センサーと、
     前記液晶パネルの前面から光源によって照射される光を検出する第2センサーと、
     前記光源を点灯し前記バックライトを消灯した状態で前記第1センサーによって前記液晶パネルを透過する光を検出した検出結果と前記第2センサーによって前記液晶パネルを透過しない光を検出した検出結果と、前記光源からの光が照射されない状態で前記バックライトを点灯させ前記液晶パネルの前面側で前記液晶パネルを透過した前記バックライトからの光を測定器によって測定して得られる輝度及び色度とに基づいて決まる、前記測定器によって測定された輝度及び色度に応じた前記第1のセンサーによって検出された検出結果を記憶する記憶部と、
     前記記憶部を参照し、前記光源を点灯し前記バックライトを消灯した状態で前記液晶パネルを透過する光を前記第1センサーによって検出した検出結果と前記光源から照射される光を前記第2センサーによって検出した検出結果とに基づいて、前記第1センサーの検出結果に対応する輝度及び色度を算出し、算出結果に基づいて、前記液晶パネルの輝度及び色むらを補正する制御部と、
     を有することを特徴とする表示装置。
  2.  前記記憶部は、前記液晶パネルの異なる階調のそれぞれについて前記測定器による測定結果を得て、階調毎に当該測定結果を記憶し、
     前記制御部は、階調毎の測定結果を用いて前記液晶パネルの中間調のむらを補正する
     ことを特徴とする請求項1記載の表示装置。
  3.  液晶パネルをバックライトによって背面から照明して画像を表示する表示装置のむら補正方法であって、
     前記液晶パネルの背面の複数箇所に設けられ輝度及び色度を検出する複数の第1センサーから検出結果を取得し、
     前記液晶パネルの前面から光源によって照射される光を検出する第2センサーから検出結果を取得し、
     前記光源を点灯し前記バックライトを消灯した状態で前記第1センサーによって前記液晶パネルを透過する光を検出した検出結果と前記第2センサーによって前記液晶パネルを透過しない光を検出した検出結果と、前記光源からの光が照射されない状態で前記バックライトを点灯させ前記液晶パネルの前面側で前記液晶パネルを透過した前記バックライトからの光を測定器によって測定して得られる輝度及び色度とに基づいて決まる、前記測定器によって測定された輝度及び色度に応じた前記第1のセンサーによって検出された検出結果を記憶する記憶部を参照し、前記光源を点灯し前記バックライトを消灯した状態で前記液晶パネルを透過する光を前記第1センサーによって検出した検出結果と前記光源から照射される光を前記第2センサーによって検出した検出結果とに基づいて、前記第1センサーの検出結果に対応する輝度及び色度を算出し、算出結果に基づいて、前記液晶パネルの輝度及び色むらを補正する
     ことを特徴とする表示装置のむら補正方法。
PCT/JP2011/071253 2011-09-16 2011-09-16 表示装置、表示装置のむら補正方法 WO2013038560A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071253 WO2013038560A1 (ja) 2011-09-16 2011-09-16 表示装置、表示装置のむら補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071253 WO2013038560A1 (ja) 2011-09-16 2011-09-16 表示装置、表示装置のむら補正方法

Publications (1)

Publication Number Publication Date
WO2013038560A1 true WO2013038560A1 (ja) 2013-03-21

Family

ID=47882818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071253 WO2013038560A1 (ja) 2011-09-16 2011-09-16 表示装置、表示装置のむら補正方法

Country Status (1)

Country Link
WO (1) WO2013038560A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017152491A1 (zh) * 2016-03-07 2017-09-14 京东方科技集团股份有限公司 背光源监测装置及点灯机
CN111982477A (zh) * 2020-08-31 2020-11-24 合肥维信诺科技有限公司 显示面板的测试方法、测试装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116850A (ja) * 2006-11-07 2008-05-22 Necディスプレイソリューションズ株式会社 液晶表示装置及び液晶表示装置制御方法
JP2009069468A (ja) * 2007-09-13 2009-04-02 Seiko Epson Corp 画像表示装置および画像表示方法
JP2010145773A (ja) * 2008-12-19 2010-07-01 Sony Corp 表示装置および表示装置の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116850A (ja) * 2006-11-07 2008-05-22 Necディスプレイソリューションズ株式会社 液晶表示装置及び液晶表示装置制御方法
JP2009069468A (ja) * 2007-09-13 2009-04-02 Seiko Epson Corp 画像表示装置および画像表示方法
JP2010145773A (ja) * 2008-12-19 2010-07-01 Sony Corp 表示装置および表示装置の制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017152491A1 (zh) * 2016-03-07 2017-09-14 京东方科技集团股份有限公司 背光源监测装置及点灯机
US10578484B2 (en) 2016-03-07 2020-03-03 Boe Technology Group Co., Ltd. Backlight source testing device and light-on testing apparatus
CN111982477A (zh) * 2020-08-31 2020-11-24 合肥维信诺科技有限公司 显示面板的测试方法、测试装置

Similar Documents

Publication Publication Date Title
TWI376659B (en) Device and method for driving light-emitting diodes
US6559826B1 (en) Method for modeling and updating a colorimetric reference profile for a flat panel display
US8791932B2 (en) Display device and display control method
US9576538B2 (en) Display apparatus and liquid crystal display apparatus
WO2010146885A1 (ja) 画像表示装置およびその制御方法
JP2005309338A (ja) 画像表示装置および画像表示方法
JPWO2008068920A1 (ja) 階調電圧補正システム、及びこれを用いた表示装置
US20110063341A1 (en) Method and system for correction, measurement and display of images
WO2008056669A1 (fr) Dispositif d'affichage à cristaux liquides et procédé de commande de dispositif d'affichage à cristaux liquides
US20130016306A1 (en) Backlight apparatus, method for controlling the same, and image display apparatus
JP2006323311A (ja) 表示装置
CN103575670A (zh) 光学检测系统
KR20130007778A (ko) 균일성 조정기능이 있는 디스플레이장치 및 그 제어방법
US8850714B2 (en) Chromaticity correction device, chromaticity correction method, and display device
JP4278696B2 (ja) 表示制御装置、および、表示装置
US8803928B2 (en) Image display device, control method therefor, and image display system
JP2014238570A (ja) 画像表示装置及びその制御方法
KR20120135657A (ko) 평판 디스플레이 패널의 휘도 조정 장치 및 방법
WO2013038560A1 (ja) 表示装置、表示装置のむら補正方法
JP2005331644A (ja) 画像表示装置および画像表示方法
TWI387734B (zh) 標準階調特性光源提供裝置及方法
WO2013108646A1 (ja) 表示装置
KR20090094694A (ko) 액정표시장치의 검사장치 및 방법
JPWO2013038560A1 (ja) 表示装置、表示装置のむら補正方法
US11393411B2 (en) Multi-display system and method for adjusting multi-display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872222

Country of ref document: EP

Kind code of ref document: A1