WO2013038538A1 - 光電変換デバイス用電極及びそれを用いた光電変換デバイス - Google Patents

光電変換デバイス用電極及びそれを用いた光電変換デバイス Download PDF

Info

Publication number
WO2013038538A1
WO2013038538A1 PCT/JP2011/071052 JP2011071052W WO2013038538A1 WO 2013038538 A1 WO2013038538 A1 WO 2013038538A1 JP 2011071052 W JP2011071052 W JP 2011071052W WO 2013038538 A1 WO2013038538 A1 WO 2013038538A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
electrode
electrode portion
electrode part
upper electrode
Prior art date
Application number
PCT/JP2011/071052
Other languages
English (en)
French (fr)
Inventor
善孝 長草
洋一 川村
Original Assignee
トヨタ自動車東日本株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車東日本株式会社 filed Critical トヨタ自動車東日本株式会社
Priority to PCT/JP2011/071052 priority Critical patent/WO2013038538A1/ja
Priority to JP2013533650A priority patent/JP6083675B2/ja
Priority to PCT/JP2012/073000 priority patent/WO2013039021A1/ja
Publication of WO2013038538A1 publication Critical patent/WO2013038538A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/83Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an electrode for a photoelectric conversion device used for a photoelectric conversion device and a photoelectric conversion device using the same.
  • a photoelectric conversion device is a device that converts light into electrical energy and a device that converts electrical energy into light.
  • Examples of the former include solar cells, and examples of the latter include light emitting diodes.
  • the Si solar cell will be described by taking a single crystal Si solar cell as an example.
  • a p-type single crystal wafer is converted into a pn junction by changing the surface layer of the wafer to an n-type semiconductor by vapor phase diffusion or implantation of n-type impurity ions.
  • a pin junction is created.
  • a solar cell having a sandwich structure is manufactured by forming a front electrode and a back electrode.
  • a chalcopyrite solar cell will be described as an example. This is a solar cell provided with a CIGS layer made of a chalcopyrite compound (Cu (In + Ga) Se 2 ) containing elements of Group I, Group III and Group VI as constituent components as a p-type light absorption layer (for example, Patent Documents). 1).
  • a CIGS layer made of a chalcopyrite compound (Cu (In + Ga) Se 2 ) containing elements of Group I, Group III and Group VI as constituent components as a p-type light absorption layer (for example, Patent Documents). 1).
  • This solar cell with a CIGS layer generally prevents a back electrode layer, which is a positive electrode made of a Mo metal layer, on a glass substrate such as a soda lime glass (SLG) substrate, and Na unevenness caused by the SLG substrate.
  • a back electrode layer which is a positive electrode made of a Mo metal layer
  • SLG soda lime glass
  • a back electrode layer which is a positive electrode made of a Mo metal layer
  • a glass substrate such as a soda lime glass (SLG) substrate
  • SLG soda lime glass
  • the CIGS light absorbing layer is obtained by the following process. That is, the substrate itself provided with the In layer and the Cu—Ga layer as a precursor is accommodated in the annealing chamber and preheated. Thereafter, the precursor is converted into a CIGS layer by raising the temperature of the chamber to a temperature range of 500 to 520 ° C. while introducing H 2 Se gas through a gas introducing tube inserted into the annealing chamber.
  • organic semiconductor thin film solar cells are attracting attention as solar cells suitable for mass production because they can be formed by a coating method.
  • the organic solar cell has a so-called bulk heterojunction structure in which an organic donor material and an organic acceptor material are mixed.
  • an organic thin-film solar cell capable of forming a cathode on a flexible substrate by coating and a low-temperature process has been developed (for example, Patent Document 2).
  • an organic semiconductor thin film solar cell has a structure in which an anode, a photoelectric conversion layer having a bulk heterojunction structure, and a cathode are sequentially laminated on one surface of a substrate, and a silver oxide and a reducing agent
  • a laminated structure in which an electron transport layer doped with an organic metal is applied in the vicinity of the cathode not only the cathode is formed at a low temperature, but also the bonding between the organic metal doped layer and the cathode is improved. It is said.
  • the conventional structure it was necessary to provide a pair of electrodes across a region that becomes a pn junction. For this reason, the light irradiation side electrode is required to have good light transmittance and low electrical resistance. For this reason, the light irradiation side electrode needs to be formed by vapor deposition or plating of an expensive rare metal. In addition, the process steps are complicated accordingly. Further, the conventional solar cell has no flexibility, and when it is attached to the surface of a curved member, it must be divided and attached.
  • an object of the present invention is to provide an electrode structure for a photoelectric conversion device that does not require light transmittance as an electrode material and a photoelectric conversion device using the same.
  • the electrode for a photoelectric conversion device of the present invention is an electrode provided on both sides of a photoelectric conversion layer for converting light and electric energy, and is provided on the lower surface side of the photoelectric conversion layer.
  • a support portion that supports the electrode portion, and the lower electrode portion and the upper electrode portion each include a plurality of warp yarns and a plurality of weft yarns, and the warp yarns are provided at a distance from each other.
  • the weft is composed of a plurality of insulated wires provided at a distance from each other, and one of the lower electrode portion and the upper electrode portion functions as a p-type electrode, and the lower electrode portion And the other of the upper electrode part is an n-type electrode It is characterized by ability. At least one insulating wire may be provided between the metal wires constituting the upper electrode portion and the lower electrode portion.
  • a p-layer organic semiconductor made of a hole transport material is provided on the P-type electrode with respect to the optoelectronic device electrode, and the n An n-layer organic semiconductor made of an electron transport material is provided on the mold electrode.
  • the electrode provided on the surface of the photoelectric conversion layer on which light is incident is configured to have a plurality of gaps for passing light, it is unnecessary to configure the electrode with a transparent electrode. It is not necessary to use rare metals as materials. Therefore, an inexpensive electrode material such as Cu or Al can be used for the electrode for the photoelectric conversion device. Further, since the photoelectric conversion device is formed of a flexible net, the photoelectric conversion device can be attached to a curved surface after being formed in a flat shape. Furthermore, since light can be taken in from both surfaces of the photoelectric conversion layer, improvement in conversion efficiency can be expected.
  • the photoelectric conversion device will be described assuming that a solar cell converts light into electric energy.
  • the present invention can also be applied to a device that converts electric energy into light energy.
  • FIG. 1 is a cross-sectional view of a photoelectric conversion device 1 according to an embodiment of the present invention
  • FIG. 2 is a perspective view of the photoelectric conversion device 1.
  • the photoelectric conversion device 1 includes an electrode 12 and a photoelectric conversion layer 13. In FIG. 2, the display of the photoelectric conversion layer 13 is omitted.
  • the electrode 12 includes a lower electrode part 120 and an upper electrode part 220 supported by a support part 320 rising from the lower electrode part 120.
  • the lower electrode section 120 includes a plurality of warp threads 120A and a plurality of weft threads 120B.
  • the warp yarn 120A and the weft yarn 120B are woven so as to intersect one by one. That is, the lower electrode portion 120 is formed in a plain weave net shape.
  • first metal wire 121 and the first insulating wire 122 are used. As shown in FIG. 2, the first metal wire 121 and the first insulating wire 122 are alternately arranged. In addition, the 1st metal wire 121 and the 1st insulated wire 122 are arranged in parallel at predetermined intervals so that it may not contact.
  • first metal wire 121 for example, a copper wire, a stainless wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used.
  • One end 121E of each first metal wire 121 is connected to the first bus bar 121A as shown in FIG.
  • the first insulating wire 122 is made of a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • the second insulating wire is used as the weft 12B. Similar to the first insulating wire 122, the second insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • the upper electrode portion 220 includes a plurality of warp yarns 220A and a plurality of weft yarns 220B.
  • the warp yarn 220A and the weft yarn 220B are woven so as to intersect one by one. That is, the upper electrode portion 220 is formed in a plain weave net shape.
  • Two types of wires are used as the warp yarn 220A. Specifically, the second metal wire 221 and the third insulating wire 222 are used. As shown in FIG. 2, the second metal wire 221 and the third insulating wire 222 are arranged alternately. The second metal wire 221 and the third insulating wire 222 are juxtaposed at a predetermined interval so as not to contact each other.
  • each second metal wire 221 for example, a copper wire, a stainless wire, a wire obtained by performing a metal plating process on the surface of a chemical fiber, or the like can be used.
  • One end 221E of each second metal wire 221 is connected to the second bus bar 221A as shown in FIG.
  • the third insulating wire 222 is made of a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • a fourth insulating wire is used as the weft 220B. Similar to the third insulating wire 222, the fourth insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • the support part 320 supports the upper electrode part 220 with respect to the lower electrode part 120 so that the upper electrode part 220 and the lower electrode part 120 are arranged to face each other at a predetermined distance.
  • This support part 320 is comprised by the 5th insulated wire.
  • the support part 320 supports the upper electrode part 220 so that the upper electrode part 220 is located a predetermined distance D away from the lower electrode part 120. Therefore, the fifth insulating wire constituting the support portion 320 is configured to have higher rigidity than the first insulating wire 122 and the fourth insulating wire constituting the lower electrode portion 120 and the upper electrode portion 220. Is done.
  • the fifth insulating wire is made of a resin material that is thicker than the first insulating wire 122 or the like and harder than the resin material that constitutes the first insulating wire 122 or the like.
  • the fifth insulating wire is configured using a wire material having a thickness of about 20 ⁇ mm to 30 ⁇ mm.
  • the fifth insulating wire constituting the support part 320 is knitted and provided on the lower electrode part 120 and the upper electrode part 220 (see FIG. 3 described later).
  • the lower electrode portion 120, the upper electrode portion 220, and the support portion 320 are configured by double raschel knitting.
  • the distance D between the lower electrode part 120 and the upper electrode part 220 is shown wide.
  • the distance between the lower electrode part 120 and the upper electrode part 220 is shown in the illustrated example. D is not limited.
  • the first metal wire 121, the second metal wire 221, the first insulating wire 122, the third insulating wire 222, etc. are set to a thickness of about 20 ⁇ m to 25 ⁇ mm.
  • FIG. 3 is a schematic enlarged view of a circle A region in FIG.
  • the photoelectric conversion layer 13 is provided on one electrode, that is, the lower electrode portion 120, and the p-layer organic semiconductor 13A serving as a hole transport material, and on the other electrode, that is, the upper electrode portion 220, and is transported by electrons.
  • n-layer organic semiconductor 13B as a material.
  • the organic semiconductor 13B is provided on the organic semiconductor 13A. Therefore, the lower electrode part 120 functions as a p-type electrode, and the upper electrode part 220 functions as an n-type electrode.
  • the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B form a pn junction.
  • the p-layer organic semiconductor 13A is formed of a hole transport material.
  • a hole transport material in addition to triphenylamine (TAPC) represented by the chemical formula (1), TPD and other aromatic amines which are dimers of triphenylamine represented by the chemical formula (2), the chemical formula (3) ⁇ -NPD represented by formula (4), (DTP) DPPD represented by formula (4), m-MTDATA represented by formula (5), HTM1 represented by formula (6), 2-TNATA represented by formula (7), TPTE1 represented by the chemical formula (8), TCTA represented by the chemical formula (9), NTPA represented by the chemical formula (10), spiro TAD represented by the chemical formula (11), TFREL represented by the chemical formula (12), and the like are used.
  • TAPC triphenylamine
  • the n-layer organic semiconductor 13B is formed of an electron transport material.
  • the electron transport material include Alq 3 represented by the chemical formula (13), BCP represented by the chemical formula (14), an oxadiazole derivative represented by the chemical formula (15), and an oxadiazole dimer represented by the chemical formula (16).
  • a method for producing the photoelectric conversion device 1 shown in FIG. First, the first metal wire 121, the first insulating wire 122, and the second insulating wire are prepared and plain weave to produce the lower electrode portion 120. Similarly, the upper electrode part 220 is produced. Thereafter, a hole transport material to be the p-layer organic semiconductor 13A is applied to a predetermined portion, for example, one electrode, that is, the lower electrode portion 120. For example, a printing method using an ink jet printer can be applied.
  • an electron transport material to be the n-layer organic semiconductor 13B is applied on the p-layer.
  • the same printing technique by an ink jet printer as in the case of the p-layer organic semiconductor 13A may be used.
  • a pn junction is formed by the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B.
  • the n-layer organic semiconductor 13B may be applied, and then the p-layer organic semiconductor 13A may be applied.
  • the lower electrode portion 120 is overlaid on the n layer. Thereby, the photoelectric conversion device 1 is produced. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 1 is manufactured.
  • the photoelectric conversion device 1 configured as described above, for example, when light is incident on the photoelectric conversion layer 13 from the upper electrode portion 220 side, the light L and the second metal wire 221 constituting the upper electrode portion 220 It passes between the three insulated wires 222 and enters the inner region from the upper surface of the photoelectric conversion layer 13. As shown in FIG. 3, the light L ′ can enter the inner region also from the lower surface of the photoelectric conversion layer 13.
  • the lower electrode portion 120 and the upper electrode portion 220 are made of a material that transmits light through a plurality of gaps S for passing light, that is, the areas of the gaps S.
  • the electrode provided on the surface of the photoelectric conversion layer 13 on which light is incident is configured to have a plurality of gaps S for passing light, so that it is not necessary to configure the electrode with a transparent electrode. Therefore, it is not necessary to use a rare metal for the transparent electrode as a material. Therefore, Cu, Al, etc. can be used for the electrode 12 for photoelectric conversion devices. Moreover, since the electrode 12 is comprised with the net
  • the upper electrode portion 220 is supported by a plurality of support portions 320 rising from the lower electrode portion 120, and therefore the distance D between the upper electrode portion 220 and the lower electrode portion 120. Can be maintained. Thereby, the short circuit with the upper side electrode part 220 and the lower side electrode part 120 can be prevented.
  • the upper electrode part 220 is comprised by the net shape with the wire which functions as an electrode, members, such as a bus bar, contact
  • the present invention can be implemented with appropriate modifications within the scope of the present invention.
  • the configuration in which one first insulating wire 122 and one third insulating wire 222 are provided between the first metal wires 121 and between the second metal wires 221 is described with reference to FIG. A plurality may be provided as shown in A).
  • the photoelectric conversion device may be configured by omitting the first insulating wire 122 and the third insulating wire 222 as shown in FIG.
  • Photoelectric conversion device 12 Electrode 120 for photoelectric conversion device: Lower electrode portion 120A: Warp yarn 120B of lower electrode portion: Weft yarn of lower electrode portion 121: First metal wire 122 of lower electrode portion: Lower side Second insulating wire 220 of electrode part: Upper electrode part 220A: Warp thread 220B of upper electrode part: Weft thread 221 of upper electrode part: Second metal wire 222 of upper electrode part: Second insulating wire 320 of upper electrode part: Support part 13: photoelectric conversion layer 13A: p-layer organic semiconductor 13B: n-layer organic semiconductor 14: protective layer

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 光電変換層(13)の下面側に設けられる下側電極部(120)と、光電変換層の上面側に設けられる上側電極部(220)と、下側電極部と上側電極部が所定の距離を置いて対向するよう下側電極部に対して上側電極部を支持する支持部(320)と、を備え、下側電極部と上側電極部とは複数の縦糸(120A,220A)と、複数の横糸(120B,220B)と、を備え、縦糸は互いに距離を置いて設けられた複数の金属線材(121,221)からなり、横糸は互いに距離を置いて設けられた複数の絶縁線材からなり、下側電極部と上側電極部との一方がp型電極として機能し、下側電極部と上側電極部との他方がn型電極として機能する。

Description

光電変換デバイス用電極及びそれを用いた光電変換デバイス
 本発明は、光電変換デバイスに用いられる光電変換デバイス用電極と、それを用いた光電変換デバイスに関する。
 光電変換デバイスは、光を電気エネルギーに変換するデバイス及び電気エネルギーを光に変換するデバイスである。前者の例としては太陽電池などがあり、後者の例としては発光ダイオードなどがある。
 今日、クリーンエネルギーの一つとして太陽電池による電力供給の必要性が再認識されている。太陽電池にはSi太陽電池、化合物太陽電池のほか有機半導体薄膜太陽電池など各種のものがある。
 Si太陽電池について単結晶Si太陽電池を例にとって説明すると、p型の単結晶ウエハに気相拡散やn型不純物イオンの打ち込み等によってウエハの表面層をn型半導体にするなどしてpn接合やpin接合が作られる。そして表面電極と裏面電極とを形成してサンドイッチ構造の太陽電池が作製される。
 化合物太陽電池の中には各種のものがあるが、エネルギー変換効率が高く、経年変化による光劣化が起こりにくく、耐放射性特性に優れ、光吸収波長領域が広く、光吸収係数が大きいといった利点を有するカルコパイライト型太陽電池を例にとって説明する。これはI族、III族及びVI族の元素を構成成分とするカルコパイライト化合物(Cu(In+Ga)Se2)から成るCIGS層をp型の光吸収層として備えた太陽電池である(例えば特許文献1)。
 このCIGS層を備えた太陽電池は、一般的に、ソーダライムガラス(SLG)基板といったガラス基板上に、Mo金属層からなる正極たる裏面電極層と、SLG基板に由来して生じるNaムラを防止するためのNaディップ層と、CIGS光吸収層と、n型のバッファ層と、負極たる透明電極層による最外表面層と、を備えた多層積層構造で構成される。
 ここで、n型のバッファ層はCdS、ZnO、InSなどで形成され、透明電極層はZnOAlなどが用いられる。
 この多層積層構造にあっては、表面の受光部から照射光が入射すると、多層積層構造のp-n接合付近では、バンドギャップ以上のエネルギーを有する照射光によって励起されて一対の電子及び正孔が生じる。励起された電子と正孔とは拡散によりp-n接合部に達し、接合の内部電界により、電子がn領域に、正孔がp領域に集合して分離される。この結果、n領域が負に帯電し、p領域が正に帯電し、各領域に設けた電極間で電位差が生じる。この電位差を起電力として、各電極間を導線で結線したときに光電流が得られる。
 CIGS光吸収層は次のような工程によって得られる。即ち、In層とCu-Ga層とを積層状態にして前駆体として備える基板自体をアニール処理室内に収容してプレヒートを行う。その後、アニール処理室内に挿入したガス導入管によってH2Seガスを導入しつつ室内を500乃至520℃の温度範囲に昇温することによって、前駆体をCIGS層に変換する。
 これに対し、有機半導体薄膜太陽電池は塗布法によって形成することができるため、大量生産に適した太陽電池として注目されている。有機太陽電池は、有機ドナー材料と有機アクセプター材料を混合した、所謂バルクヘテロジャンクション構造を有している。その中でも、塗布及び低温プロセスでフレキシブル基板への陰極形成を可能とした有機薄膜太陽電池が開発されている(例えば、特許文献2)。
 特許文献2によれば、有機半導体薄膜太陽電池が、基板の一方面上に、陽極、バルクヘテロジャンクション構造を有する光電変換層及び陰極が順に積層された構造を有していて、酸化銀と還元剤からなる陰極と、陰極近傍に有機金属をドープした電子輸送層を塗布した積層構造とすることにより、低温で陰極が形成されるだけでなく、有機金属ドープ層と陰極との接合が改良されるとしている。
特開2006-196771号公報 特開2011-124468号公報
 しかしながら、従来の構造においては、pn接合となる領域を挟んで一対の電極を設ける必要があった。そのため、光照射側の電極は、光透過性がよく、かつ電気抵抗が小さいものが要求されており、そのために、光照射側の電極は高価なレアメタルを蒸着やメッキにより形成する必要がある。またそれに伴いプロセス工程が複雑であった。
 また、従来の太陽電池は屈曲性がなく、曲面形状の部材表面に取り付ける場合には、細分化して取り付ける必要があった。
 そこで、本発明は、電極材料として光透過性を要求しない、光電変換デバイス用電極構造とそれを用いた光電変換デバイスを提供することを目的とする。
 上記目的を達成するために、本発明の光電変換デバイス用電極は、光と電気エネルギーとを変換する光電変換層の両面に設けられる電極であって、上記光電変換層の下面側に設けられる下側電極部と、上記光電変換層の上面側に設けられる上側電極部と、上記下側電極部と上記上側電極部が所定の距離を置いて対向するよう上記下側電極部に対して上記上側電極部を支持する支持部と、を備え、上記下側電極部と上記上側電極部とは、複数の縦糸と、複数の横糸と、を備え、上記縦糸は互いに距離を置いて設けられた複数の金属線材からなり、上記横糸は互いに距離を置いて設けられた複数の絶縁線材からなり、上記下側電極部と上記上側電極部との一方がp型電極として機能し、上記下側電極部と上記上側電極部との他方がn型電極として機能すること特徴としている。
 前記絶縁線材が、上記上側電極部と上記下側電極部とを構成する金属線材同士の間に、少なくとも1本設けられてもよい。
 上記目的を達成するために、本発明の光電変換デバイスは、前記光電子デバイス用電極に対して、前記P型電極上には正孔輸送材料でなるp層の有機半導体が設けられ、かつ前記n型電極上には電子輸送材料でなるn層の有機半導体が設けられている。
 本発明によれば、光が入射する光電変換層の面に設ける電極を複数の光通過用の隙間を有するように構成したことで、電極を透明電極で構成することが不要であり、透明電極のためのレアメタルを材料として使用しなくて済む。そのため、光電変換デバイス用の電極はCuやAlなどの安価に入手可能な材料を使用することができる。
 また、光電変換デバイスは、電極が可撓性を有するネットで構成されているため、平面状に形成した後に、曲面状の表面に取り付けることができる。
 さらに、光電変換層の両面から光を取り込むことができるので、変換効率の向上を期待できる。
本発明の実施形態に係る光電変換デバイスの断面図である。 図1に示す光電変換デバイスにおける電極構造を示す斜視図である。 図1に示す符号Aの領域の拡大図である。 本発明の他の実施形態に係る光電変換デバイスの断面図である。
 以下、図面を参照しながら、本発明の実施形態を詳細に説明する。特に光電変換デバイスが、光を電気エネルギーに変換するものとして太陽電池を想定して説明するが、電気エネルギーを光エネルギーに変換するものであっても同様に適用することができる。
  図1は本発明の実施形態に係る光電変換デバイス1の断面図であり、図2は光電変換デバイス1の斜視図である。
 光電変換デバイス1は、電極12と、光電変換層13と、から構成されている。なお、図2では、光電変換層13の表示を省略している。
 電極12は、図2に示すように、下側電極部120と、下側電極部120から立ち上がった支持部320によって支持される上側電極部220と、から構成されている。
 下側電極部120は、複数の縦糸120Aと、複数の横糸120Bと、を備えている。縦糸120Aと横糸120Bとは1本ごとに交差するように織られている。つまり下側電極部120は平織りのネット状に形成されている。
 縦糸120Aとして、2種の線材を利用する。具体的には、第1金属線材121と第1絶縁線材122とを利用する。
 図2に示すように、第1金属線材121と第1絶縁線材122とは交互に並べられている。なお、第1金属線材121と第1絶縁線材122とは接触しないよう、所定の間隔を置いて並設されている。
 これらの第1金属線材121として、例えば銅線、ステンレス線、化学繊維の表面に金属めっき処理を施した線などを利用することができる。各第1金属線材121の一端部121Eは図2に示すように第1のバスバー121Aに接続されている。
 第1絶縁線材122は、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。
 横糸12Bとして第2絶縁線材を用いる。第2絶縁線材は、第1絶縁線材122と同様に、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。
 上側電極部220は、複数の縦糸220Aと、複数の横糸220Bと、を備えている。縦糸220Aと横糸220Bとは1本ごとに交差するように織られている。つまり上側電極部220は平織りのネット状に形成されている。
 縦糸220Aとして、2種の線材を利用する。具体的には、第2金属線材221と第3絶縁線材222とを利用する。
 図2に示すように、第2金属線材221と第3絶縁線材222とは交互に並べられている。なお、第2金属線材221と第3絶縁線材222とは接触しないよう、所定の間隔を置いて並設されている。
 第2金属線材221として、例えば銅線、ステンレス線、化学繊維の表面に金属めっき処理を施した線などを利用することができる。各第2金属線材221の一端部221Eは図2に示すように第2のバスバー221Aに接続されている。
 第3絶縁線材222は、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。
 横糸220Bとして第4絶縁線材を用いる。第4絶縁線材は、第3絶縁線材222と同様に、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。
 支持部320は、上側電極部220と下側電極部120が所定の距離で対向配置されるよう下側電極部120に対して上側電極部220を支持する。この支持部320は、第5絶縁線材によって構成されている。支持部320は、図2に示すように、下側電極部120に対して上側電極部220が、所定の距離Dだけ離れて位置するように支持する。このため、支持部320を構成する第5絶縁線材は、下側電極部120及び上側電極部220を構成する第1絶縁線材122,第4絶縁線材等の線材よりも高い剛性を有するように構成される。例えば、第5絶縁線材は、第1絶縁線材122などよりも太く、また第1絶縁線材122などを構成する樹脂材料よりも硬い樹脂材料を使用して構成されている。例えば、第5絶縁線材は、20μmm~30μmm程度の太さの線材料を用いて構成される。
 このような支持部320を構成する第5絶縁線材は、下側電極部120と上側電極部220とに編みこまれて、設けられる(後述の図3参照)。例えば、電極12において、下側電極部120と上側電極部220と支持部320とはダブルラッセル編みにより構成される。なお、図2では、説明の便宜上、下側電極部120と上側電極部220との間隔Dを広めに表しているが、図示例の寸法に下側電極部120と上側電極部220との間隔Dが限定されるものではない。
 第1金属線材121、第2金属線材221、第1絶縁線材122及び第3絶縁線材222などは、20μmm~25μmm程度の太さに設定されている。
 次に、光電変換層13について説明する。
 図3は図1の円A領域の模式的拡大図である。
 光電変換層13は、一方の電極、つまり下側電極部120上に設けられて正孔輸送材料となるp層の有機半導体13Aと、他方の電極、つまり上側電極部220上に設けられ電子輸送材料となるn層の有機半導体13Bと、から構成されている。なお、図3に示すように、有機半導体13A上に有機半導体13Bが設けられている。よって、下側電極部120はp型電極として機能し、上側電極部220はn型電極として機能する。p層の有機半導体13Aとn層の有機半導体13Bとはpn接合を形成している。
  次に、p層の有機半導体13Aとn層の有機半導体13Bの材料について説明する。
 p層の有機半導体13Aは、正孔輸送材料によって形成される。正孔輸送材料としては、化学式(1)で示されるトリフェニルアミン(TAPC)、化学式(2)で示されるトリフェニルアミンの二量体であるTPDその他の芳香族アミンのほか、化学式(3)で示されるα-NPD、化学式(4)で示される(DTP)DPPD、化学式(5)で示されるm-MTDATA、化学式(6)で示されるHTM1、化学式(7)で示される2-TNATA、化学式(8)で示されるTPTE1、化学式(9)で示されるTCTA、化学式(10)で示されるNTPA、化学式(11)で示されるスピローTAD、化学式(12)で示されるTFLELなどが用いられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 n層の有機半導体13Bは電子輸送材料によって形成される。電子輸送材料には、化学式(13)で示されるAlq3、化学式(14)で示されるBCP、化学式(15)で示されるオキサジアゾール誘導体、化学式(16)で示されるオキサジアゾール二量体、化学式(17)で示されるスターバストオキサジアゾール、化学式(18)で示されるトリアゾール誘導体、化学式(19)で示されるフェニルキシキサリン誘導体、化学式(20)で示されるシロール誘導体などが挙げられる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 図1に示す光電変換デバイス1の製造方法について概略説明する。まず、第1金属線材121、第1絶縁線材122、第2絶縁線材を用意し、平織りして下側電極部120を作製する。同様に、上側電極部220を作製する。その後、p層の有機半導体13Aとなる正孔輸送材料を所定の箇所、例えば一方の電極、つまり下側電極部120上に塗布する。塗布には例えばインクジェットプリンタによる印刷方法を適用可能である。
 次に、n層の有機半導体13Bとなる電子輸送材料をp層の上に塗布する。塗布にはp層の有機半導体13Aの場合と同様のインクジェットプリンタによる印刷技術を用いてもよい。
 これにより、p層の有機半導体13Aとn層の有機半導体13Bとによってpn接合が形成される。なお、n層の有機半導体13Bから塗布しその後p層の有機半導体13Aを塗布してもよい。
 その後、n層の上に下側電極部120を重ね合わせる。これにより、光電変換デバイス1が作製される。なお、図1に示す光電変換デバイス1が作製される手法であれば上述の方法に限定されない。
 このように構成された光電変換デバイス1では、例えば、上側電極部220側から光電変換層13内へ光が入射される場合、光Lは上側電極部220を構成する第2金属線材221と第3絶縁線材222との間を通って、光電変換層13の上面から内側領域に入り込む。図3に示すように、光L′は、光電変換層13の下面からも内側領域に入り込むができる。下側電極部120と上側電極部220は、複数の光通過用の隙間S、つまり隙間Sの領域を光を透過させる材料で構成している。
 このように本発明によれば、光が入射する光電変換層13の面に設ける電極を複数の光通過用の隙間Sを有するように構成したことで、電極を透明電極で構成することが不要となり、透明電極のためのレアメタルを材料として使用しなくて済む。そのため、光電変換デバイス用の電極12はCuやAlなどを使用することができる。
 また、光電変換デバイス1は、電極12が可撓性を有するネットで構成されているため、平面状に形成した後に、曲面状の表面に取り付けることができる。光電変換デバイス1を曲面に取り付けても、上側電極部220が下側電極部120から立ち上がった複数の支持部320によって支持されているため、上側電極部220と下側電極部120との間隔Dを維持することができる。これにより上側電極部220と下側電極部120との短絡を防止することができる。
 また、上側電極部220は、電極として機能する線材でネット状に構成されているため、ネットの端部にバスバーなどの部材を圧着或いは溶着することで、バスバーなどの部材が線材に接触する。従って、電気を取り出す製造工程が容易になる。
 さらに、光電変換層13の両面から光を取り込むことができるので、変換効率の向上を期待できる。
 以上本発明の実施形態を説明したが、本発明の範囲において適宜変更して実施することができる。
 上記構成では、第1金属線材121同士の間に、第2金属線材221同士の間に、第1絶縁線材122、第3絶縁線材222がそれぞれ1本設けられる構成を説明したが、図4(A)に示すように、複数本設けられてもよい。光電変換デバイスは、図4(B)に示すように第1絶縁線材122、第3絶縁線材222を省略して構成されてもよい。
1   :光電変換デバイス
12  :光電変換デバイス用の電極
120 :下側電極部
120A:下側電極部の縦糸
120B:下側電極部の横糸
121 :下側電極部の第1金属線材
122 :下側電極部の第2絶縁線材
220 :上側電極部
220A:上側電極部の縦糸
220B:上側電極部の横糸
221 :上側電極部の第2金属線材
222 :上側電極部の第2絶縁線材
320 :支持部
13  :光電変換層
13A :p層の有機半導体
13B :n層の有機半導体
14  :保護層

Claims (3)

  1.  光と電気エネルギーとを変換する光電変換層の両面に設けられる光電変換デバイス用電極であって、
     上記光電変換層の下面側に設けられる下側電極部と、上記光電変換層の上面側に設けられる上側電極部と、上記下側電極部と上記上側電極部が所定の距離を置いて対向するよう上記下側電極部に対して上記上側電極部を支持する支持部と、を備え、
     上記下側電極部と上記上側電極部とは、複数の縦糸と、複数の横糸と、を備え、
     上記縦糸は互いに距離を置いて設けられた複数の金属線材からなり、
     上記横糸は互いに距離を置いて設けられた複数の絶縁線材からなり、
     上記下側電極部と上記上側電極部との一方がp型電極として機能し、上記下側電極部と上記上側電極部との他方がn型電極として機能する、光電変換デバイス用電極。
  2.  前記絶縁線材が、上記上側電極部と上記下側電極部とを構成する金属線材同士の間に、少なくとも1本設けられている、請求項1に記載の光電変換デバイス用電極。
  3.  請求項1又は2に記載の光電子デバイス用電極に対して、前記P型電極上には正孔輸送材料でなるp層の有機半導体が設けられ、かつ前記n型電極上には電子輸送材料でなるn層の有機半導体が設けられている、光電変換デバイス。
PCT/JP2011/071052 2011-09-14 2011-09-14 光電変換デバイス用電極及びそれを用いた光電変換デバイス WO2013038538A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/071052 WO2013038538A1 (ja) 2011-09-14 2011-09-14 光電変換デバイス用電極及びそれを用いた光電変換デバイス
JP2013533650A JP6083675B2 (ja) 2011-09-14 2012-09-09 表示装置、光電変換デバイス用電極、光電変換デバイス及び光電変換デバイスの製造方法
PCT/JP2012/073000 WO2013039021A1 (ja) 2011-09-14 2012-09-09 表示装置、光電変換デバイス用電極、光電変換デバイス及び光電変換デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071052 WO2013038538A1 (ja) 2011-09-14 2011-09-14 光電変換デバイス用電極及びそれを用いた光電変換デバイス

Publications (1)

Publication Number Publication Date
WO2013038538A1 true WO2013038538A1 (ja) 2013-03-21

Family

ID=47882797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071052 WO2013038538A1 (ja) 2011-09-14 2011-09-14 光電変換デバイス用電極及びそれを用いた光電変換デバイス

Country Status (1)

Country Link
WO (1) WO2013038538A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305064A (ja) * 1993-04-22 1994-11-01 Unitika Ltd 立体構造成形物
JP2006165149A (ja) * 2004-12-06 2006-06-22 Canon Inc 光起電力素子、光起電力素子集合体、光起電力素子モジュール、及び、それらの製造方法
JP2006310727A (ja) * 2005-03-28 2006-11-09 Dainippon Printing Co Ltd 積層体の製造方法、それを用いた有機デバイスの製造方法および有機薄膜太陽電池の製造方法、ならびに有機デバイスおよび有機薄膜太陽電池
JP2007273491A (ja) * 2006-03-08 2007-10-18 Hokkaido Univ 光電変換素子、繊維状構造体、織物、布地および壁紙材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305064A (ja) * 1993-04-22 1994-11-01 Unitika Ltd 立体構造成形物
JP2006165149A (ja) * 2004-12-06 2006-06-22 Canon Inc 光起電力素子、光起電力素子集合体、光起電力素子モジュール、及び、それらの製造方法
JP2006310727A (ja) * 2005-03-28 2006-11-09 Dainippon Printing Co Ltd 積層体の製造方法、それを用いた有機デバイスの製造方法および有機薄膜太陽電池の製造方法、ならびに有機デバイスおよび有機薄膜太陽電池
JP2007273491A (ja) * 2006-03-08 2007-10-18 Hokkaido Univ 光電変換素子、繊維状構造体、織物、布地および壁紙材料

Similar Documents

Publication Publication Date Title
JP4727607B2 (ja) 太陽電池
US20110132426A1 (en) Solar cell module
US20160276506A1 (en) Solar cell
WO2013039019A1 (ja) 光電変換デバイス用電極及び光電変換デバイス
US11616160B2 (en) Tandem solar cell
US20110155210A1 (en) Solar cell module
US10276737B2 (en) Solar cell and solar cell module
US20110284051A1 (en) Photoelectric Conversion Cell, Photoelectric Conversion Module, and Method for Manufacturing Photoelectric Conversion Cell
KR101395792B1 (ko) 집적 광기전력 모듈
KR20110100725A (ko) 태양전지 및 그 제조방법
US20240032314A1 (en) Solar cell and solar cell module including the same
US20140345668A1 (en) Solar cell module and method of fabricating the same
WO2013038539A1 (ja) 光電変換デバイス用電極及びそれを用いた光電変換デバイス
US20110132425A1 (en) Solar cell module
WO2013038540A1 (ja) 光電変換デバイス用電極及びそれを用いた光電変換デバイス
KR20130086003A (ko) 태양전지 및 그 제조 방법
WO2013038537A1 (ja) 光電変換デバイス用電極及びそれを用いた光電変換デバイス
WO2013038538A1 (ja) 光電変換デバイス用電極及びそれを用いた光電変換デバイス
KR101210034B1 (ko) 태양전지 및 이의 제조방법
WO2013038536A1 (ja) 光電変換デバイス用電極及びそれを用いた光電変換デバイス
JP5881050B2 (ja) 光電変換デバイス
WO2013038535A1 (ja) 光電変換デバイス
JP5957787B2 (ja) 光電変換デバイスの製造方法及び光電変換デバイス
CN115020519B (zh) 一种太阳能叠层电池、电池组件和光伏系统
KR102233873B1 (ko) 태양 전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP