WO2013035803A1 - Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2013035803A1
WO2013035803A1 PCT/JP2012/072781 JP2012072781W WO2013035803A1 WO 2013035803 A1 WO2013035803 A1 WO 2013035803A1 JP 2012072781 W JP2012072781 W JP 2012072781W WO 2013035803 A1 WO2013035803 A1 WO 2013035803A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
aligning agent
crystal aligning
group
carbon atoms
Prior art date
Application number
PCT/JP2012/072781
Other languages
French (fr)
Japanese (ja)
Inventor
徳俊 三木
雅章 片山
耕平 後藤
保坂 和義
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2013532649A priority Critical patent/JP6011537B2/en
Priority to CN201280043173.0A priority patent/CN103782231B/en
Priority to KR1020187016751A priority patent/KR20180072830A/en
Priority to KR1020197031903A priority patent/KR102224531B1/en
Priority to KR1020147005742A priority patent/KR101951501B1/en
Publication of WO2013035803A1 publication Critical patent/WO2013035803A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent used for producing a liquid crystal alignment film and a liquid crystal display element using the same.
  • a liquid crystal alignment film used for a liquid crystal display element is required to have many characteristics.
  • One of the characteristics is control of the so-called pretilt angle of the liquid crystal, in which the alignment tilt angle of the liquid crystal molecules with respect to the substrate surface is maintained at an arbitrary value.
  • the magnitude of the pretilt angle can be changed by selecting the structure of the polyimide constituting the liquid crystal alignment film.
  • the method using a diamine compound having a side chain as a part of the polyimide raw material can control the pretilt angle according to the use ratio of the diamine compound.
  • the target pretilt angle which is useful as a means for increasing the pretilt angle.
  • a side chain structure of the diamine compound that increases the pretilt angle of the liquid crystal one containing a ring structure such as a long-chain alkyl group or fluoroalkyl group (see, for example, Patent Document 1), a phenyl group, or a cyclohexyl group has been proposed. (For example, refer to Patent Documents 2 and 3).
  • liquid crystal display elements have become widely used in large-screen liquid crystal televisions and high-definition mobile applications (display parts of digital cameras and mobile phones).
  • the unevenness of the step of the substrate is getting larger.
  • a liquid crystal alignment treatment agent also referred to as a coating solution
  • polyamic acid or solvent-soluble polyimide also referred to as a resin
  • the solvent of the coating solution includes N-methyl-2-pyrrolidone, ⁇ -butyrolactone, and the like that are excellent in the solubility of the resin (also referred to as a good solvent), and the uniformity of the liquid crystal alignment film.
  • butyl cellosolve which is a solvent having low resin solubility (also referred to as a poor solvent), or the like is mixed (for example, see Patent Document 4).
  • Japanese Unexamined Patent Publication No. 2-282726 Japanese Unexamined Patent Publication No. 9-278724 International Publication No. 2004/52962 Pamphlet Japanese Unexamined Patent Publication No. 2-37324
  • the liquid crystal alignment film is also used to control the angle of the liquid crystal with respect to the substrate, that is, the pretilt angle of the liquid crystal, but as the liquid crystal display element becomes more sophisticated and its use range is expanding year by year, Not only can a predetermined pretilt angle be obtained, but also the stability of the pretilt angle has become increasingly important.
  • the liquid crystal In the manufacturing process of the liquid crystal display element, in order to improve the alignment uniformity of the liquid crystal, the liquid crystal is encapsulated and then heat-treated to temporarily make the liquid crystal isotropic.
  • the stability of the pretilt angle is low, there arises a problem that a pretilt angle having a target size cannot be obtained after this isotropic processing or the pretilt angle varies.
  • a liquid crystal display element using a backlight that generates a large amount of heat and has a large amount of light to obtain high brightness, such as a car navigation system or a large television is exposed to high temperature and light irradiation for a long time. In some environments, it may be used or left unattended. Under such severe conditions, when the pretilt angle is gradually changed, problems such as inability to obtain initial display characteristics or occurrence of unevenness in display occur.
  • the coating-film uniformity of a liquid crystal aligning film exists in the tendency for the liquid-crystal aligning agent using the polyamic acid obtained by using the diamine compound which has a side chain, or a solvent soluble polyimide to fall.
  • uniform coating properties cannot be obtained, i.e., when repelling or pinholes occur, when the liquid crystal display element is formed, that portion becomes a display defect. Therefore, it is necessary to increase the mixing amount of the poor solvent having high wettability of the coating solution to the substrate, but the poor solvent is inferior in the ability to dissolve the polyamic acid and the solvent-soluble polyimide. There is a problem that precipitation occurs.
  • liquid crystal display elements have been used for mobile applications such as smartphones and mobile phones.
  • a sealant used for bonding the substrates of the liquid crystal display elements is present at a position close to the end of the liquid crystal alignment film. Therefore, when the coating property of the end portion of the liquid crystal alignment film is deteriorated, that is, when the end portion of the liquid crystal alignment film is not straight or the end portion is raised, adhesion between the substrates of the sealing agent is performed. The effect is reduced, and the display characteristics and reliability of the liquid crystal display element are lowered.
  • the present invention has been made in view of the above circumstances. That is, the problem to be solved by the present invention is to provide a liquid crystal alignment film whose pretilt angle does not change even when exposed to high temperature and light irradiation for a long time.
  • a liquid crystal alignment treatment agent using a polyamic acid or a solvent-soluble polyimide obtained by using a diamine compound having a side chain has high wettability of the coating solution on the substrate and a uniform coating property.
  • it is providing the liquid crystal aligning film which is excellent also in the coating property of the edge part of a liquid crystal aligning film.
  • the liquid crystal aligning agent which can provide the liquid crystal display element which has said liquid crystal aligning film, and said liquid crystal aligning film.
  • a liquid crystal aligning agent comprising the following component (A) and component (B).
  • Component (A) N-ethyl-2-pyrrolidone.
  • Component (B) at least one polymer selected from the group consisting of a polyimide precursor having a side chain represented by the following formula [1] and a polyimide obtained by imidizing the polyimide precursor.
  • X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH. —, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—
  • X 2 is a single bond or — (CH 2 ) b— (b is an integer of 1 to 15.
  • X 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —NH—, — N (CH 3) -, - CONH -, - NHCO -, - CH 2 O -, - COO -, - OCO -, - CON (CH 3) - or -N (CH 3) is CO- .
  • X 4 Is
  • the component (B) is selected from the group consisting of a polyimide precursor using a diamine compound having a side chain represented by the formula [1] as a part of the raw material and a polyimide obtained by imidizing the polyimide precursor.
  • the liquid-crystal aligning agent as described in said (1) which is an at least 1 sort (s) of polymer.
  • the liquid-crystal aligning agent as described in said (2) whose diamine compound which has a side chain shown by said Formula [1] is a diamine compound shown by following formula [1a].
  • X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH —, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—
  • X 2 is a single bond or — (CH 2 ) b— (b is an integer of 1 to 15.
  • X 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —NH—, — N (CH 3) -, - CONH -, - NHCO -, - CH 2 O -, - COO -, - OCO -, - CON (CH 3) - or -N (CH 3) a CO- .
  • Y 2 to Y 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Y 6 and Y 7 Are hydrogen atoms or methyl groups, which may be the same or different.
  • component (D) 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, Any one of (1) to (9) above containing at least one selected from the group consisting of diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether and propylene glycol monobutyl ether Liquid crystal aligning agent.
  • a liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • a liquid crystal display element comprising the liquid crystal alignment film according to (18).
  • a liquid crystal alignment film comprising a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • a liquid crystal display element comprising the liquid crystal alignment film according to (21).
  • a liquid crystal alignment film having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • liquid crystal alignment treatment agent of the present invention a liquid crystal alignment film whose pretilt angle does not change even when exposed to a high temperature or light irradiation for a long time is obtained, and further, the wettability of the solution to the substrate is high, A liquid crystal alignment film excellent in coating film uniformity can be obtained for a large substrate or a stepped substrate. By using such a liquid crystal alignment film, it is possible to provide a highly reliable liquid crystal display element having excellent display characteristics.
  • the example of the coating-film image of the optical microscope used in order to evaluate the linearity of the edge part of a liquid crystal aligning film is evaluated.
  • the example of the coating-film image of the optical microscope used in order to evaluate the swelling of the edge part of a liquid crystal aligning film is described in detail below.
  • the liquid crystal aligning agent of the present invention comprises N-ethyl-2-pyrrolidone (also referred to as a specific solvent) as component (A) and a side chain represented by the above formula [1] as component (B) ( It contains at least one polymer (also referred to as a specific polymer) selected from the group consisting of a polyimide precursor having a specific side chain structure) and a polyimide obtained by imidizing the polyimide precursor.
  • the specific solvent in the present invention is a good solvent excellent in solubility of polyamic acid or soluble polyimide. Furthermore, the surface tension as a solvent is lower than that of commonly used N-methyl-2-pyrrolidone and ⁇ -butyrolactone. Therefore, a liquid crystal alignment treatment agent using a specific solvent has a higher wettability of the coating solution applied to the substrate and uses a poor solvent having a low resin solubility than a liquid crystal alignment treatment agent that does not use it. Even if not, a liquid crystal alignment film excellent in coating film uniformity can be obtained. Furthermore, since the wet spreading property of the coating solution is increased, the linearity of the end portion when the liquid crystal alignment film is formed is increased.
  • the specific solvent since the specific solvent has a higher boiling point than the commonly used N-methyl-2-pyrrolidone and ⁇ -butyrolactone, the liquid crystal aligning agent using the specific solvent is obtained when the liquid crystal alignment film is used. Swelling at the end can be suppressed.
  • the specific side chain structure in this invention has a benzene ring, a cyclohexyl ring, or a heterocyclic ring in a side chain part.
  • These benzene ring, cyclohexyl ring or heterocyclic ring show a rigid structure as compared with the long-chain alkyl group of the prior art.
  • the stability of the side chain site to heat and ultraviolet light is improved, and a liquid crystal alignment film having a stable pretilt angle against heat and light can be obtained.
  • the liquid crystal aligning agent having a specific side chain structure of the present invention has higher application uniformity to the substrate than the liquid crystal aligning agent having a cyclic group having a steroid skeleton according to the prior art. From the above points, according to the liquid crystal aligning agent containing the specific solvent and the polymer having a specific side chain structure of the present invention, the pretilt angle does not change even when exposed to high temperature and light irradiation for a long time. A liquid crystal alignment film having excellent coating film uniformity can be obtained, and by using this liquid crystal alignment film, a highly reliable liquid crystal display element having excellent display characteristics can be obtained.
  • the specific solvent of the present invention is N-ethyl-2-pyrrolidone. Since N-ethyl-2-pyrrolidone has an effect of improving the wettability of the coating solution to the substrate, it is preferably 10 to 100% by mass of the whole organic solvent contained in the liquid crystal aligning agent. Of these, 15 to 100% by mass of the whole organic solvent is preferable, more preferably 20 to 100% by mass, and still more preferably 25 to 100% by mass. The greater the amount of the specific solvent of the present invention in the whole organic solvent in the liquid crystal aligning agent, the higher the effect of the present invention, that is, the wet spreading property of the coating solution to the substrate, and the more uniform the coating film. An excellent liquid crystal alignment film can be obtained.
  • the specific polymer of the present invention that is, at least one selected from the group consisting of a polyimide precursor and a polyimide obtained by imidizing the polyimide precursor has a specific side chain structure represented by the following formula [1].
  • X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH— , —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—.
  • a single bond — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CONH—, —CH 2 O—, or —COO— It is preferable because it is easy. More preferably, they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CONH—, —CH 2 O— or —COO—. More preferably, they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • X 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • X 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, — CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—.
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— is preferable because they are easily synthesized.
  • X 4 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring.
  • the optional hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
  • a bivalent cyclic group a benzene ring or a cyclohexyl ring is preferable.
  • X 5 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring.
  • Arbitrary hydrogen atoms on these cyclic groups include an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxyl having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom.
  • a bivalent cyclic group a benzene ring or a cyclohexane ring is preferable.
  • n is an integer of 0 to 4, preferably an integer of 0 to 2.
  • X 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable.
  • it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • Specific side chain diamine compound As a specific polymer of the present invention, that is, a method for introducing a specific side chain structure represented by the formula [1] into at least one selected from the group consisting of a polyimide precursor and a polyimide obtained by imidizing a polyimide precursor, It is preferable to use a diamine compound having a side chain structure as a part of the raw material. In particular, it is preferable to use a diamine compound represented by the following formula [1a] (also referred to as a specific side chain diamine compound).
  • X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH— , —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—.
  • they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CONH—, —CH 2 O— or —COO—. More preferably, they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • X 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • X 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, — CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—.
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— is preferable because they are easily synthesized. More preferably, they are a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or —OCO—.
  • X 4 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring or a heterocyclic ring.
  • the optional hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
  • a bivalent cyclic group a benzene ring or a cyclohexyl ring is preferable.
  • X 5 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring.
  • Arbitrary hydrogen atoms on these cyclic groups include an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxyl having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom.
  • a bivalent cyclic group a benzene ring or a cyclohexyl ring is preferable.
  • n is an integer of 0 to 4, preferably an integer of 0 to 2.
  • X 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable.
  • it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • a preferable combination of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and n in the formula [1a] is the same as that in the formula [1].
  • more preferred combinations are 1-25 to 1-96, 1-145 to 1-168, -217 to 1-240, 1-268 to 1-315, 1-364 to 1-387, 1-436 to 1-483, and the like.
  • Particularly preferred combinations are 1-49 to 1-96, 1-145. ⁇ 1-168, 1-217 ⁇ 1-240, etc.
  • m is an integer of 1 to 4, preferably 1.
  • the formula [1a] is, for example, a structure represented by the following formulas [1-1] to [1-13].
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or CH 2 OCO—
  • R 2 represents a straight chain.
  • R 3 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O —, —OCH 2 — or —CH 2 —, wherein R 4 is a linear or branched alkyl group having 1 to 22 carbon atoms, an alkoxyl group having 1 to 22 carbon atoms, or fluorine having 1 to 22 carbon atoms.
  • R 5 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O —, —OCH 2 —, —CH 2 —, —O— or —NH—
  • R 6 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or It is a hydroxyl group.
  • R 7 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is Trans isomer.
  • R 8 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is trans Is an isomer.
  • a 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 is a 1,4-cyclohexylene group.
  • a 2 is an oxygen atom or COO— * (where a bond marked with “*” is bonded to A 3 ), and A 1 is an oxygen atom or COO — * ( However, a bond marked with “*” is combined with (CH 2 ) a 2 ).
  • a 1 is 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is 0 or 1.
  • diamine compounds have the formulas [1-1] to [1-6], the formulas [1-9] to [1-13], etc. It is.
  • Said specific side chain type diamine compound can also be used 1 type or in mixture of 2 or more types according to characteristics, such as liquid crystal orientation at the time of setting it as a liquid crystal aligning film, a voltage holding ratio, and an accumulation charge.
  • the diamine compound which has an alkyl group or a fluorine-containing alkyl group in a diamine side chain can be used.
  • diamine compounds represented by the following formulas [DA1] to [DA12] can be exemplified.
  • a 1 is a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • a 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—
  • 3 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • p is an integer of 1 to 10.
  • diamine compounds represented by the following formulas [DA13] to [DA20] can also be used.
  • m is an integer of 0 to 3.
  • n is an integer of 1 to 5.
  • a diamine compound having a carboxyl group in the molecule represented by the following formulas [DA21] to [DA24] can also be used.
  • m 1 is an integer of 1 to 4.
  • a 4 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—.
  • a 6 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—.
  • —CO— —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — Or —N (CH 3 ) CO—
  • m 7 is an integer of 1 to 4.
  • a diamine compound represented by the following formula [DA26] can also be used as long as the effects of the present invention are not impaired.
  • a 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ).
  • a 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ).
  • a 4 is a nitrogen-containing aromatic heterocycle, and n is 1 to 4 Is an integer.
  • a diamine compound having a steroid skeleton represented by the following formulas [DA27] to [DA46] can also be used as long as the effects of the present invention are not impaired.
  • Said other diamine compound can also be used 1 type or in mixture of 2 or more types according to characteristics, such as liquid crystal orientation at the time of setting it as a liquid crystal aligning film, a voltage holding ratio, and an accumulation charge.
  • tetracarboxylic dianhydride (also referred to as a specific tetracarboxylic dianhydride) represented by the following formula [2] as a part of the raw material.
  • Y 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms.
  • Y 1 in the formula [2] is, for example, a tetravalent group represented by the following formulas [2a] to [2j].
  • Y 2 to Y 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Y 6 and Y 7 are a hydrogen atom or a methyl group, and may be the same or different.
  • particularly preferred structure of Y 1 is represented by formula [2a], formula [2c], formula [2d], formula [2e], formula [2f] or formula because of polymerization reactivity and ease of synthesis. [2g].
  • the formula [2a], the formula [2e], the formula [2f], or the formula [2g] is preferable.
  • tetracarboxylic dianhydrides other tetracarboxylic dianhydrides other than the specific tetracarboxylic dianhydride (also referred to as other tetracarboxylic dianhydrides) can be used as long as the effects of the present invention are not impaired.
  • examples of other tetracarboxylic dianhydrides include tetracarboxylic dianhydrides of the following tetracarboxylic acids.
  • the above-mentioned specific tetracarboxylic dianhydride and other tetracarboxylic dianhydrides may be used alone or in combination of two or more depending on properties such as liquid crystal orientation, voltage holding ratio, and accumulated charge when used as a liquid crystal alignment film. It can also be used as a mixture.
  • the specific polymer of the present invention is at least one polymer selected from the group consisting of a polyimide precursor having a side chain represented by the formula [1] and a polyimide obtained by imidizing the polyimide precursor.
  • the polyimide precursor has a structure represented by the following formula [A].
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group
  • a 1 and A 2 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, (It may be the same or different, and n represents a positive integer.)
  • the method for synthesizing the specific polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid.
  • a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and a diamine component a method of obtaining polyamic acid by dehydration polycondensation reaction of tetracarboxylic acid and a diamine component, or tetracarboxylic acid dihalide
  • a method is used in which a polyamic acid is obtained by polycondensation of a diamine component and diamine component.
  • Polyamide acid alkyl ester can be obtained by polycondensation of carboxylic acid group with dialkyl esterified tetracarboxylic acid and diamine component, tetracarboxylic acid dihalide with carboxylic acid group dialkylesterified and diamine component.
  • a method or a method of converting a carboxyl group of a polyamic acid into an ester is used.
  • a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the liquid crystal alignment film obtained using the specific polymer of the present invention is more hydrophobic and liquid crystal when the liquid crystal alignment film is used as the content of the specific side chain structure represented by the formula [1] in the diamine component increases.
  • the pretilt angle can be increased.
  • at least one selected from the group consisting of the specific side chain diamine compounds represented by the formulas [1-1] to [1-6] and the formulas [1-9] to [1-13] is used. That is.
  • At least one selected from the group consisting of specific side chain diamine compounds represented by formulas [1-1] to [1-6] or formulas [1-9] to [1-12] may be used.
  • 5 mol% or more and 60 mol% or less of a diamine component are a specific side chain type diamine compound from the viewpoint of the applicability
  • the specific tetracarboxylic dianhydride shown by said Formula [2] is a tetracarboxylic acid component.
  • 1 mol% or more of a tetracarboxylic acid component is a specific tetracarboxylic dianhydride, More preferably, it is 5 mol% or more, More preferably, it is 10 mol% or more.
  • 100 mol% of the tetracarboxylic acid component may be a specific tetracarboxylic dianhydride.
  • the reaction of the diamine component and the tetracarboxylic acid component is usually performed in an organic solvent.
  • the organic solvent used in that case may be the specific solvent of the present invention, and is not particularly limited as long as the produced polyimide precursor is dissolved. Specific examples are given below.
  • These may be used alone or in combination.
  • water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyimide precursor, it is preferable to use a dehydrated and dried organic solvent.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is.
  • a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent a method of alternately adding a tetracarboxylic acid component and a diamine component, etc. Any of these methods may be used.
  • the polymerization temperature can be selected from -20 to 150 ° C., but is preferably in the range of ⁇ 5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a specific polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution will become too high and uniform stirring will occur. It becomes difficult. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor formed increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by ring-closing the above polyimide precursor, and is useful as a polymer for obtaining a liquid crystal alignment film.
  • the cyclization rate (also referred to as imidization rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature when the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C.
  • a method of performing the thermal imidization reaction while removing generated water from the system is preferable.
  • the catalytic imidation of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • the polymer recovered by precipitation is redissolved in an organic solvent, and reprecipitation and recovery are repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the specific polymer of the present invention is a weight average measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained polymer film, workability at the time of forming the polymer film, and uniformity of the polymer film.
  • the molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of this invention is a coating solution for forming a liquid crystal aligning film, and is a coating liquid for forming the resin film containing a specific solvent and a specific polymer.
  • the polymer component in the liquid crystal aligning agent of the present invention may all be the specific polymer of the present invention, and other polymers may be mixed with the specific polymer of the present invention. In that case, the content of the other polymer in the polymer component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
  • polyimide precursors and polyimide precursors obtained from a diamine component not containing a specific side chain diamine compound and a tetracarboxylic acid component not containing a specific tetracarboxylic dianhydride were imidized.
  • examples thereof include at least one polymer selected from the group consisting of polyimides.
  • a polyimide precursor and a polymer other than polyimide specifically, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, a siloxane polymer, and the like can be given.
  • the organic solvent in the liquid crystal aligning agent of the present invention preferably contains 70 to 99% by mass of the organic solvent in the liquid crystal aligning agent from the viewpoint of forming a uniform film by coating.
  • the content of the organic solvent can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
  • the specific solvent of the present invention is preferably used. In that case, the following solvent can also be used in addition to the specific solvent as long as it is an organic solvent capable of dissolving the specific polymer.
  • N-methyl-2-pyrrolidone, ⁇ -butyllactone, etc. (these are also referred to as component (C)).
  • the amount of the component (C) used is preferably 0.1 to 70% by mass with respect to the total organic solvent contained in the liquid crystal aligning agent. Among these, 1 to 60% by mass is preferable. The amount is more preferably 1 to 50% by mass, and further preferably 3 to 40% by mass.
  • the liquid crystal alignment treatment agent of the present invention is an organic solvent that improves the coating film uniformity and surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied, i.e., a poor solvent, as long as the effects of the present invention are not impaired. Can be used. Specific examples of the poor solvent for improving the coating film uniformity and surface smoothness of the liquid crystal alignment film are given below.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propaned
  • component (D) monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether or the like (these are also referred to as component (D)).
  • the amount of the poor solvent (component (D)) used is preferably 1 to 80% by mass of the whole organic solvent contained in the liquid crystal aligning agent. Among these, 5 to 70% by mass is preferable. More preferably, it is 10 to 70% by mass.
  • Preferred combinations of organic solvents in the liquid crystal aligning agent of the present invention are as shown in Tables 1 to 3.
  • NEP represents N-ethyl-2-pyrrolidone
  • NMP represents N-methyl-2-pyrrolidone
  • ⁇ -BL represents ⁇ -butyrolactone
  • BCS represents ethylene glycol monobutyl ether
  • ECS represents Ethylene glycol monoethyl ether
  • MC represents diethylene glycol monomethyl ether
  • EC represents diethylene glycol monoethyl ether
  • PGME represents propylene glycol monomethyl ether.
  • organic solvent combinations 2-1 to 2-10, 2-14 to 2-17, 2-19 to 2-25, 2-29 to 2-32, 2-34 to 2-40, or 2 A combination of -44 to 2-46 is preferred.
  • the liquid crystal aligning agent of the present invention includes a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, and a lower alkoxyalkyl group.
  • a crosslinkable compound having at least one substituent selected from the group or a crosslinkable compound having a polymerizable unsaturated bond can be introduced. It is preferable to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [3]. Specifically, it is a crosslinkable compound represented by the following formulas [3-1] to [3-11].
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [4]. Specifically, it is a crosslinkable compound represented by the following formulas [4-1] to [4-37].
  • n is an integer of 1 to 5. In the formula [4-25], n is an integer of 1 to 5. In the formula [4-36], n is 1 to 100. (In the formula [4-37], n is an integer of 1 to 10.)
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently a structure represented by the formula [4], a hydrogen atom, a hydroxyl group, An alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an aliphatic ring or an aromatic ring, at least one having a structure represented by the formula [4].
  • n is an integer of 1 to 10.
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine resin, a urea resin, a guanamine resin, and a glycoluril such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group and / or an alkoxymethyl group can be used.
  • Melamine derivatives and benzoguanamine derivatives can also exist as dimers or trimers. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per tria
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Methoxymethylated ethoxy Methylated butoxymethylated benzoguanamine such as Cymel 1128-10, Butoxymethylated benzoguanamine such as Cymel 1128, Carboxyl-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide) and the like.
  • glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, methoxymethylolated glycoluril such as Powderlink 1174, and the like.
  • Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
  • the crosslinkable compounds represented by the formulas [6-1] to [6-48] which are listed on pages 62 to 66 of International Publication No. WO2011 / 132751 (published 2011.10.27). It is done.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane and glycerin polyglycidyl ether poly (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) Acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidy
  • E 1 is a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring, and a phenanthrene ring
  • E 2 Is a group selected from the following formulas [6a] and [6b], and n is an integer of 1 to 4.
  • the said compound is an example of a crosslinkable compound, It is not limited to these.
  • the crosslinkable compound contained in the liquid-crystal aligning agent of this invention may be one type, and may combine two or more types.
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is more preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of all polymer components, and 1 to 50 parts by weight. Part is most preferred.
  • the liquid crystal aligning agent of the present invention can use a compound that improves the uniformity of the film thickness and surface smoothness of the polymer film when the liquid crystal aligning agent is applied. . Furthermore, a compound that improves the adhesion between the liquid crystal alignment film and the substrate can also be used. Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) and the like.
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. It is.
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • a compound that improves the adhesion to the substrate When using a compound that improves the adhesion to the substrate, it is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. 1 to 20 parts by mass. If the amount is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may be deteriorated.
  • the liquid crystal alignment treatment agent of the present invention impairs the effects of the present invention, in addition to the above poor solvent, crosslinkable compound, compound for improving film thickness uniformity and surface smoothness, and compound for adhering to a substrate. If it is within the range, a dielectric or conductive material may be added for the purpose of changing electrical characteristics such as dielectric constant and conductivity of the liquid crystal alignment film.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. Moreover, in the case of vertical alignment use etc., it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, inkjet method, and the like are common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
  • the solvent is evaporated at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven. It can be a united film.
  • the thickness of the polymer film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm.
  • the polymer film after baking is treated with rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • a liquid crystal cell manufacturing method a pair of substrates on which a liquid crystal alignment film is formed are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside, so that the other Examples include a method of bonding substrates and injecting liquid crystal under reduced pressure and a method of sealing liquid crystal by dropping a liquid crystal on a liquid crystal alignment film surface on which spacers are dispersed.
  • the liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board
  • the liquid crystal composition is preferably used also for a liquid crystal display device produced through a step of polymerizing a polymerizable compound by applying active energy rays and heating while applying a voltage between electrodes.
  • ultraviolet rays are suitable as the active energy ray.
  • the liquid crystal display element controls a pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
  • a small amount of a photopolymerizable compound for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and the photopolymerizable compound is irradiated with ultraviolet light.
  • the pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer.
  • the PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
  • a liquid crystal cell is prepared after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, and a polymerizable compound is obtained by at least one of ultraviolet irradiation and heating.
  • the orientation of the liquid crystal molecules can be controlled by polymerizing.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded, the liquid crystal is injected under reduced pressure and sealed, the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
  • the liquid crystal is mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound When the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of unreacted polymerizable compound increases and the liquid crystal display The burn-in characteristic of the element is deteriorated.
  • the polymerizable compound After the liquid crystal cell is produced, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates.
  • positioning the liquid crystal aligning film containing this, and applying a voltage between electrodes is used preferably.
  • ultraviolet rays are suitable as the active energy ray.
  • a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent A method using a coalescing component may be mentioned.
  • the liquid crystal aligning agent of the present invention contains a specific compound having a double bond site that reacts by irradiation with heat or ultraviolet rays, the alignment of liquid crystal molecules can be controlled by at least one of ultraviolet irradiation and heating. it can.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
  • Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure and sealing is performed, and a method in which the substrate is attached and sealed after the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed.
  • the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
  • the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
  • TCA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • TDA tetracarboxylic dianhydride represented by the following formula
  • PCH7DAB 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene
  • PBCH5DAB 1,3-diamino-4- ⁇ 4- [trans-4- (trans-4 -N-pentylcyclohexyl) cyclohexyl] phenoxy ⁇ benzene
  • m-PBCH5DABz 1,3-diamino-5- ⁇ 4- [4- (trans-4-n-pentylcyclohexyl) phenyl] phenoxymethyl ⁇ benzene
  • NEP N-ethyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • ⁇ -BL ⁇ -butyrolactone
  • BCS ethylene glycol monobutyl ether
  • ECS ethylene glycol monoethyl ether
  • MC diethylene glycol monomethyl ether
  • EC diethylene glycol monoethyl ether
  • PGME Propylene glycol monomethyl ether
  • the physical properties of the polyimide precursor and polyimide were measured or evaluated as follows.
  • the molecular weight of polyimide in the synthesis example is as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and columns (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as described above.
  • GPC normal temperature gel permeation chromatography
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder is put into an NMR sample tube (NMR sampling tube standard ⁇ 5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) mixed product) 0.53 ml. was added and dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring machine (JNW-ECA500, manufactured by JEOL Datum).
  • NEP was added to the polyamic acid solution (2) (90.0 g) having a resin solid concentration of 25.0% by mass obtained in Synthesis Example 2 and diluted to 6% by mass, and then acetic anhydride (11 .6 g) and pyridine (8.56 g) were added and reacted at 80 ° C. for 4 hours.
  • This reaction solution was poured into methanol (1800 ml), and the resulting precipitate was filtered off.
  • This reaction solution was poured into methanol (900 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 54%, the number average molecular weight was 21,800, and the weight average molecular weight was 56,200.
  • NEP was added to the obtained polyamic acid solution (50.0 g), diluted to 6% by mass, acetic anhydride (11.1 g) and pyridine (8.05 g) were added as an imidization catalyst, and 3 ° C. was added at 90 ° C. Reacted for hours.
  • This reaction solution was poured into methanol (1500 ml), and the resulting precipitate was filtered off. This deposit was wash
  • NMP was added to the polyamic acid solution (12) (50.0 g) having a resin solid concentration of 25.0% by mass obtained in Synthesis Example 12 and diluted to 6% by mass, and then acetic anhydride (6 .23 g) and pyridine (4.65 g) were added and reacted at 80 ° C. for 4 hours.
  • This reaction solution was poured into methanol (1000 ml), and the resulting precipitate was filtered off.
  • the imidation ratio of this polyimide was 58%, the number average molecular weight was 16,900, and the weight average molecular weight was 43,800.
  • Examples 1 to 34 and Comparative Examples 1 to 12 are preparation examples of the liquid crystal aligning agent, and all are for evaluation of the liquid crystal aligning agent.
  • the liquid crystal alignment treatment agents obtained in the examples and comparative examples “printability evaluation of liquid crystal alignment treatment agent”, “inkjet applicability evaluation of liquid crystal alignment treatment agent”, “production of liquid crystal cell (normal cell)”, “Evaluation of liquid crystal alignment and pretilt angle (normal cell)”, “Preparation of liquid crystal cell (PSA cell)”, and “Evaluation of liquid crystal alignment (PSA cell)” were performed.
  • Printability evaluation was performed using the liquid crystal aligning agent obtained by the Example and the comparative example.
  • a simple printer S15 type manufactured by Nissha Printing Co., Ltd.
  • the printer For printing, the printed area is 80 mm x 80 mm, the printing pressure is 0.2 mm, the number of discarded substrates is 5 sheets, the time from printing to temporary drying is 90 seconds, and temporary drying is performed on a hot plate.
  • the test was carried out at 70 ° C. for 5 minutes. The pinhole of the obtained coating film was evaluated, the linearity of the liquid crystal alignment film end was evaluated, and the rise of the liquid crystal alignment film end was evaluated.
  • the pinhole was evaluated by visually observing the coating film under a sodium lamp. Specifically, the number of pinholes confirmed on the liquid crystal alignment film was counted, and the smaller the number of pinholes, the better the coatability.
  • Evaluation of the linearity of the edge part of a liquid crystal aligning film was performed by observing the coating film of a right side edge part with respect to a printing direction with an optical microscope (the Nikon company make, ECLIPSE E600WPOL). Specifically, the observation was performed with an optical microscope at a magnification of 25 times, and the difference between 3 and 4 in FIG. 1, which was the obtained coating film image, that is, the length of A in FIG. 1 was measured. All coating images were obtained at the same magnification. The shorter the length of A, the better the linearity of the end portion of the liquid crystal alignment film.
  • Evaluation of the bulge of the edge part of a liquid crystal aligning film was performed by observing the coating film of the right edge part with an optical microscope with respect to the printing direction. Specifically, observation was performed with an optical microscope at a magnification of 25 times, and the length of B in the obtained coating film image (FIG. 2) was measured. All coating images were obtained at the same magnification. The shorter the length of B, the better the bulge 5 at the end of the liquid crystal alignment film.
  • Tables 8 to 10 show the number of pinholes, the length of A, and the length of B of the liquid crystal alignment films obtained in Examples and Comparative Examples.
  • the liquid crystal alignment treatment agents obtained in the examples and comparative examples were spin-coated on the ITO surface of a 30 mm ⁇ 40 mm ITO electrode substrate, and heated on a hot plate at 80 ° C. for 5 minutes in a thermal circulation clean oven. Heat treatment was performed at 220 ° C. for 30 minutes to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm.
  • the coated surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm. .
  • the pretilt angle was measured at room temperature using PAS-301 (manufactured by ELSICON). Furthermore, ultraviolet irradiation was performed using a tabletop UV curing device (HCT3B28HEX-1) (manufactured by Senlite). Tables 11 to 13 show the results of liquid crystal alignment and pretilt angles of the liquid crystal cells obtained in the examples and comparative examples.
  • Liquid crystal alignment treatment agent (5) obtained in Example 5 Liquid crystal alignment treatment agent (6) obtained in Example 6, liquid crystal alignment treatment agent (11) obtained in Example 11, obtained in Example 17
  • the liquid crystal aligning agent (17) obtained and the liquid crystal aligning agent (30) obtained in Example 30 were placed in the center with a substrate with ITO electrodes having a pattern spacing of 20 ⁇ m of 10 mm ⁇ 10 mm and an ITO electrode having a center of 10 mm ⁇ 40 mm.
  • a polymerizable compound (1) represented by the following formula was added to MLC-6608 (manufactured by Merck Japan Co., Ltd.) by a reduced pressure injection method into this empty cell, and the polymerizable compound was added to 100% by mass of MLC-6608.
  • a liquid crystal cell was obtained by injecting liquid crystal mixed by 3% by mass and sealing the injection port. While applying an AC voltage of 5 V to the obtained liquid crystal cell, using a metal halide lamp with an illuminance of 60 mW, the wavelength of 350 nm or less was cut, and ultraviolet irradiation of 20 J / cm 2 in terms of 365 nm was performed, and the alignment direction of the liquid crystal A liquid crystal cell (PSA cell) was controlled. The temperature in the irradiation apparatus when the liquid crystal cell was irradiated with ultraviolet rays was 50 ° C.
  • Examples 1 to 34 and Comparative Examples 1 to 12 will be described in detail below.
  • the conditions for preparing the liquid crystal aligning agent in each example are summarized in Tables 5 to 7.
  • the results are summarized in Tables 8-13.
  • NEP (32.0 g) was added to the polyamic acid solution (1) (10.1 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 1, and the mixture was stirred at 25 ° C. for 2 hours to perform liquid crystal alignment treatment.
  • Agent (1) was obtained.
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (1), production of cells and various evaluations were performed under the above-described conditions.
  • NEP (12.1 g), BCS (11.8 g) and EC (7.84 g) were added to the polyamic acid solution (1) (10.0 g) having a resin solid content concentration of 25.0 mass% obtained in Synthesis Example 1.
  • the liquid crystal aligning agent (2) was obtained by stirring at 25 ° C. for 2 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (2), cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (31.7 g) was added to the polyamic acid solution (2) (10.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 2, and the mixture was stirred at 25 ° C. for 2 hours to perform liquid crystal alignment treatment.
  • Agent (3) was obtained.
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (3), cell preparation and various evaluations were performed under the above-described conditions.
  • Example 4 NEP (14.0 g) and BCS (17.6 g) were added to the polyamic acid solution (2) (10.0 g) having a resin solid content concentration of 25.0 mass% obtained in Synthesis Example 2, and 2 at 25 ° C.
  • the liquid crystal aligning agent (4) was obtained by stirring for a period of time. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (4), cell preparation and various evaluations were performed under the above-described conditions.
  • Example 5 NEP (40.0 g) was added to the polyimide powder (3) (2.55 g) obtained in Synthesis Example 3, and the mixture was stirred at 70 ° C. for 24 hours to obtain a liquid crystal aligning agent (5).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (14.6 g) was added to the polyimide powder (3) (2.54 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • NEP (7.30g) and BCS (17.9g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (6).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • production of cells and various evaluations were performed under the above-described conditions.
  • Example 7 NEP (29.7 g) was added to the polyimide powder (3) (2.50 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. NEP (14.8g) and BCS (36.4g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (7). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (7), “evaluation of ink jet coatability of liquid crystal aligning agent” was performed under the above-described conditions.
  • Example 8 NEP (17.3 g) was added to the polyimide powder (3) (2.55 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. NEP (8.71 g), BCS (8.01 g) and MC (6.00 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (8).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (18.7 g) was added to the polyimide powder (3) (2.56 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • NEP (9.40 g), BCS (6.00 g) and EC (6.00 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (9).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (17.3 g) was added to the polyimide powder (3) (2.55 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • NEP (8.70g) and PGME (14.0g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (10).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (16.0 g) was added to the polyimide powder (3) (2.55 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • NMP (6.02g) and BCS (18.0g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (11).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • production of cells and various evaluations were performed under the above-described conditions.
  • NEP 27.6 g was added to the polyimide powder (3) (2.50 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • “evaluation of ink-jet coating property of liquid crystal aligning agent” was performed under the above-described conditions.
  • NEP (16.0 g) was added to the polyimide powder (3) (2.55 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • ⁇ -BL (4.02 g) and BCS (20.0 g) were added and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (13).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • a cell was prepared and various evaluations were performed under the above-described conditions.
  • Example 14 NEP (12.0 g) was added to the polyimide powder (4) (2.55 g) obtained in Synthesis Example 4 and dissolved by stirring at 70 ° C. for 24 hours. NEP (6.02g) and BCS (22.0g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (14). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (14), cell preparation and various evaluations were performed under the above-described conditions.
  • Example 15 NEP (16.1 g) was added to the polyimide powder (4) (2.57 g) obtained in Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours. NEP (8.10g) and ECS (16.1g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (15), a cell was prepared and various evaluations were performed under the above-described conditions.
  • NEP (18.5 g) was added to the polyimide powder (4) (2.53 g) obtained in Synthesis Example 4 and dissolved by stirring at 70 ° C. for 24 hours.
  • NEP (9.20 g), BCS (7.93 g) and MC (3.97 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (16).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • Example 17 NEP (16.0 g) was added to the polyimide powder (4) (2.55 g) obtained in Synthesis Example 4 and dissolved by stirring at 70 ° C. for 24 hours. NMP (10.0g) and BCS (14.1g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (17). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (17), cell preparation and various evaluations were performed under the above-described conditions.
  • Example 18 NEP (20.0 g) was added to the polyimide powder (4) (2.55 g) obtained in Synthesis Example 4 and dissolved by stirring at 70 ° C. for 24 hours. ⁇ -BL (4.00 g) and BCS (16.0 g) were added to this solution and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (18). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (18), production of cells and various evaluations were performed under the above-described conditions.
  • Example 19 NEP (12.5 g) was added to the polyimide powder (5) (2.55 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. NEP (3.54g) and BCS (24.0g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (19). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (19), cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (13.4 g) was added to the polyimide powder (5) (2.56 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours.
  • NEP (6.70 g), BCS (16.1 g) and MC (4.02 g) were added to this solution and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (20).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • Example 21 NEP (12.0 g) was added to the polyimide powder (5) (2.55 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. NMP (10.0g) and BCS (18.1g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (21). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (21), cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (17.8 g) was added to the polyimide powder (5) (2.55 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours.
  • ⁇ -BL (2.00 g) and BCS (20.0 g) were added to this solution and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (22).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • Example 23 NEP (6.21 g) and BCS (25.5 g) were added to the polyamic acid solution (6) (10.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 6, and 2 at 25 ° C.
  • the liquid crystal aligning agent (23) was obtained by stirring for a time. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (23), cell preparation and various evaluations were performed under the above-described conditions.
  • Example 24 NEP (16.0 g), BCS (7.87 g) and PGME (7.84 g) were added to the polyamic acid solution (6) (10.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 6. In addition, the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (24). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (24), cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (15.9 g) was added to the polyimide powder (7) (2.54 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 24 hours.
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (17.3 g) was added to the polyimide powder (7) (2.55 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 24 hours.
  • NEP (8.71 g), BCS (8.01 g) and PGME (6.00 g) were added to this solution and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (26).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (20.0 g) was added to the polyimide powder (7) (2.55 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 24 hours.
  • NMP (8.00 g), BCS (10.1 g) and EC (2.02 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (27).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (21.3 g) was added to the polyimide powder (8) (2.55 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. NEP (10.7g) and BCS (8.01g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (29). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (29), cell preparation and various evaluations were performed under the above-described conditions.
  • NEP (26.1 g) was added to the polyimide powder (8) (2.56 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours.
  • NMP (8.00 g), BCS (4.00 g) and MC (2.00 g) were added to this solution and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (30).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • Example 31 NEP (16.0 g) was added to the polyimide powder (9) (2.55 g) obtained in Synthesis Example 9, and dissolved by stirring at 70 ° C. for 24 hours. NMP (12.0 g) and BCS (12.1 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (31). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (31), cell preparation and various evaluations were performed under the above-described conditions.
  • Example 32 NEP (20.0 g) was added to the polyimide powder (9) (2.55 g) obtained in Synthesis Example 9 and dissolved by stirring at 70 ° C. for 24 hours. ⁇ -BL (4.00 g) and BCS (15.8 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (32). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (32), cell preparation and various evaluations were performed under the above-described conditions.
  • Example 33 NEP (32.2 g) was added to the polyimide powder (10) (2.55 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. NMP (4.00 g), BCS (2.00 g) and EC (2.00 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (33).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • cell preparation and various evaluations were performed under the above-described conditions.
  • Example 34 NEP (16.0 g) was added to the polyimide powder (10) (2.55 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. ⁇ -BL (2.01 g), BCS (16.0 g) and MC (6.00 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (34). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (34), cell preparation and various evaluations were performed under the above-described conditions.
  • the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the example was exposed to high temperature and light irradiation for a longer time than the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the comparative example.
  • a liquid crystal alignment film with a small change in pretilt angle can be obtained.
  • the liquid crystal aligning agent of an Example can obtain the liquid crystal aligning film with the small change of the said pretilt angle, and can obtain uniform coating property.
  • the diamine compound not containing the specific side chain structure was used.
  • the change in the pretilt angle is large, many pinholes are generated, and the coating film uniformity at the end of the liquid crystal alignment film is poor.
  • Comparative Example 6 although a specific solvent is used, many pinholes are generated, and the coating film uniformity at the end of the liquid crystal alignment film is poor.
  • the liquid crystal alignment treatment agent of the present invention has high wettability of the coating solution to the substrate, uniform coating properties, and the pretilt angle does not change even when exposed to high temperature and light irradiation for a long time. It is possible to provide a liquid crystal alignment film having excellent coating properties at the edges, and a liquid crystal display element having such a liquid crystal alignment film is excellent in reliability and suitable for a large-screen, high-definition liquid crystal television. And is particularly useful for vertical alignment type liquid crystal display elements such as TN elements, STN elements, and TFT liquid crystal elements.

Abstract

Provided is a liquid crystal aligning agent which has high wettability and spreadability over substrates and is capable of providing a liquid crystal alignment film that has excellent coating film uniformity and excellent coating film properties in the end portions, said liquid crystal alignment film enabling the achievement of pretilt angles that do not change even if left at high temperatures or irradiated with light for a long period of time. A liquid crystal aligning agent which contains N-ethyl-2-pyrrolidone and at least one polymer that is selected from the group consisting of polyimide precursors having a side chain represented by formula [1] and polyimides. (In the formula, each of X1, X2 and X3 independently represents a single bond or the like; each of X4 and X5 independently represents a benzene ring or the like; X6 represents an alkyl group having 1-18 carbon atoms, or the like; and n represents an integer of 0-4.)

Description

液晶配向処理剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向膜を作製する際に用いる液晶配向処理剤及びそれを用いた液晶表示素子に関するものである。 The present invention relates to a liquid crystal alignment treatment agent used for producing a liquid crystal alignment film and a liquid crystal display element using the same.
 現在、液晶表示素子に用いられる液晶配向膜には、多くの特性が求められている。その中の特性の一つとして、基板面に対する液晶分子の配向傾斜角を任意の値に保つ、いわゆる液晶のプレチルト角の制御がある。このプレチルト角の大きさは、液晶配向膜を構成しているポリイミドの構造を選択することで変更できることが知られている。ポリイミドの構造によってプレチルト角を制御する技術の中でも、側鎖を有するジアミン化合物をポリイミド原料の一部として用いる方法は、このジアミン化合物の使用割合に応じてプレチルト角が制御できる。そのため、目的のプレチルト角を得ることが比較的容易であり、プレチルト角を大きくする手段として有用である。液晶のプレチルト角を大きくするジアミン化合物の側鎖構造としては、長鎖のアルキル基又はフルオロアルキル基(例えば特許文献1参照)、フェニル基やシクロヘキシル基などの環構造を含むものが提案されている(例えば特許文献2,3参照)。 Currently, a liquid crystal alignment film used for a liquid crystal display element is required to have many characteristics. One of the characteristics is control of the so-called pretilt angle of the liquid crystal, in which the alignment tilt angle of the liquid crystal molecules with respect to the substrate surface is maintained at an arbitrary value. It is known that the magnitude of the pretilt angle can be changed by selecting the structure of the polyimide constituting the liquid crystal alignment film. Among the techniques for controlling the pretilt angle depending on the structure of the polyimide, the method using a diamine compound having a side chain as a part of the polyimide raw material can control the pretilt angle according to the use ratio of the diamine compound. Therefore, it is relatively easy to obtain the target pretilt angle, which is useful as a means for increasing the pretilt angle. As the side chain structure of the diamine compound that increases the pretilt angle of the liquid crystal, one containing a ring structure such as a long-chain alkyl group or fluoroalkyl group (see, for example, Patent Document 1), a phenyl group, or a cyclohexyl group has been proposed. (For example, refer to Patent Documents 2 and 3).
 近年、液晶表示素子が、大画面の液晶テレビや高精細なモバイル用途(デジタルカメラや携帯電話の表示部分)に広く実用化されていることに伴い、従来に比べて使用される基板の大型化、基板段差の凹凸が大きくなってきている。そのような状況においても、表示特性の点から、大型基板や段差に対して、均一に液晶配向膜が成膜されることが求められている。この液晶配向膜の作製の工程において、ポリアミド酸や溶媒可溶性ポリイミド(樹脂ともいう)の液晶配向処理剤(塗布溶液ともいう)を基板に塗布する場合、工業的にはフレキソ印刷法やインクジェット塗布法などで行うことが一般的である。その際、塗布溶液の溶媒には、樹脂の溶解性に優れる溶媒(良溶媒ともいう)であるN-メチル-2-ピロリドンやγ-ブチロラクトンなどに加えて、液晶配向膜の塗膜均一性を高めるために、樹脂の溶解性が低い溶媒(貧溶媒ともいう)であるブチルセロソルブなどが混合されている(例えば特許文献4参照)。 In recent years, liquid crystal display elements have become widely used in large-screen liquid crystal televisions and high-definition mobile applications (display parts of digital cameras and mobile phones). The unevenness of the step of the substrate is getting larger. Even in such a situation, from the viewpoint of display characteristics, it is required that the liquid crystal alignment film be uniformly formed on a large substrate or a step. When applying a liquid crystal alignment treatment agent (also referred to as a coating solution) of polyamic acid or solvent-soluble polyimide (also referred to as a resin) to the substrate in the process of producing the liquid crystal alignment film, it is industrially a flexographic printing method or an ink jet coating method. It is common to do so. At that time, the solvent of the coating solution includes N-methyl-2-pyrrolidone, γ-butyrolactone, and the like that are excellent in the solubility of the resin (also referred to as a good solvent), and the uniformity of the liquid crystal alignment film. In order to increase this, butyl cellosolve, which is a solvent having low resin solubility (also referred to as a poor solvent), or the like is mixed (for example, see Patent Document 4).
日本特開平2-282726号公報Japanese Unexamined Patent Publication No. 2-282726 日本特開平9-278724号公報Japanese Unexamined Patent Publication No. 9-278724 国際公開第2004/52962号パンフレットInternational Publication No. 2004/52962 Pamphlet 日本特開平2-37324号公報Japanese Unexamined Patent Publication No. 2-37324
 液晶配向膜は、基板に対する液晶の角度、すなわち液晶のプレチルト角の制御を行うためにも用いられているが、液晶表示素子が高性能化し、その使用範囲が年々拡大してゆく中で、単に所定のプレチルト角が得られるだけではなく、プレチルト角の安定性が、ますます重要となってきている。 The liquid crystal alignment film is also used to control the angle of the liquid crystal with respect to the substrate, that is, the pretilt angle of the liquid crystal, but as the liquid crystal display element becomes more sophisticated and its use range is expanding year by year, Not only can a predetermined pretilt angle be obtained, but also the stability of the pretilt angle has become increasingly important.
 液晶表示素子の製造工程においては、液晶の配向均一性を高めるために、液晶を封入した後に加熱処理して、一旦液晶を等方化する場合がある。しかしながら、プレチルト角の安定性が低い場合は、この等方化処理後に目的の大きさのプレチルト角が得られない、あるいはプレチルト角にばらつきが生じるといった問題が起こる。特に、高輝度を得るために発熱量が大きく、光の照射量が多いバックライトを使用している液晶表示素子、例えば、カーナビゲーションシステムや大型テレビでは、長時間高温及び光の照射に曝された環境下で、使用あるいは放置される場合がある。そのような過酷条件において、プレチルト角が徐々に変化した場合、初期の表示特性が得られない、あるいは、表示にムラが発生するなどの問題が起こる。 In the manufacturing process of the liquid crystal display element, in order to improve the alignment uniformity of the liquid crystal, the liquid crystal is encapsulated and then heat-treated to temporarily make the liquid crystal isotropic. However, when the stability of the pretilt angle is low, there arises a problem that a pretilt angle having a target size cannot be obtained after this isotropic processing or the pretilt angle varies. In particular, a liquid crystal display element using a backlight that generates a large amount of heat and has a large amount of light to obtain high brightness, such as a car navigation system or a large television, is exposed to high temperature and light irradiation for a long time. In some environments, it may be used or left unattended. Under such severe conditions, when the pretilt angle is gradually changed, problems such as inability to obtain initial display characteristics or occurrence of unevenness in display occur.
 また、側鎖を有するジアミン化合物を使用して得られるポリアミド酸や溶媒可溶性ポリイミドを用いた液晶配向処理剤は、液晶配向膜の塗膜均一性が低下する傾向にある。特に、均一な塗膜性が得られない場合、すなわち、はじきやピンホールが発生した場合、液晶表示素子にした際に、その部分が表示欠陥となる。そのため、基板への塗布溶液の濡れ拡がり性が高い貧溶媒の混合量を多くする必要があるが、貧溶媒は、ポリアミド酸や溶媒可溶性ポリイミドを溶解させる能力に劣るため、大量に混合すると樹脂の析出が起こる問題がある。
 さらに、近年、スマートフォンや携帯電話などのモバイル用途向けに、液晶表示素子が用いられている。これら用途では、できるだけ多くの表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤が、液晶配向膜の端部に近接した位置に存在する。そのため、液晶配向膜の端部の塗膜性が低下する場合、すなわち、液晶配向膜の端部が直線ではない、あるいはその端部が盛り上がっている状態である場合、シール剤の基板間の接着効果が低下し、液晶表示素子の表示特性や信頼性を低下させてしまう。
Moreover, the coating-film uniformity of a liquid crystal aligning film exists in the tendency for the liquid-crystal aligning agent using the polyamic acid obtained by using the diamine compound which has a side chain, or a solvent soluble polyimide to fall. In particular, when uniform coating properties cannot be obtained, i.e., when repelling or pinholes occur, when the liquid crystal display element is formed, that portion becomes a display defect. Therefore, it is necessary to increase the mixing amount of the poor solvent having high wettability of the coating solution to the substrate, but the poor solvent is inferior in the ability to dissolve the polyamic acid and the solvent-soluble polyimide. There is a problem that precipitation occurs.
In recent years, liquid crystal display elements have been used for mobile applications such as smartphones and mobile phones. In these applications, in order to secure as many display surfaces as possible, a sealant used for bonding the substrates of the liquid crystal display elements is present at a position close to the end of the liquid crystal alignment film. Therefore, when the coating property of the end portion of the liquid crystal alignment film is deteriorated, that is, when the end portion of the liquid crystal alignment film is not straight or the end portion is raised, adhesion between the substrates of the sealing agent is performed. The effect is reduced, and the display characteristics and reliability of the liquid crystal display element are lowered.
 本発明は、上記の事情を鑑みなされたものである。すなわち、本発明が解決しようとする課題は、長時間高温及び光の照射に曝されても、プレチルト角が変化しない液晶配向膜を提供することである。また、側鎖を有するジアミン化合物を使用して得られるポリアミド酸や溶媒可溶性ポリイミドを用いた液晶配向処理剤であっても、基板への塗布溶液の濡れ拡がり性が高く均一な塗膜性が得られ、さらに、液晶配向膜の端部の塗膜性にも優れる液晶配向膜を提供することにある。さらには、上記の液晶配向膜を有する液晶表示素子、上記の液晶配向膜を提供できる液晶配向処理剤を提供することにある。 The present invention has been made in view of the above circumstances. That is, the problem to be solved by the present invention is to provide a liquid crystal alignment film whose pretilt angle does not change even when exposed to high temperature and light irradiation for a long time. In addition, even a liquid crystal alignment treatment agent using a polyamic acid or a solvent-soluble polyimide obtained by using a diamine compound having a side chain has high wettability of the coating solution on the substrate and a uniform coating property. Furthermore, it is providing the liquid crystal aligning film which is excellent also in the coating property of the edge part of a liquid crystal aligning film. Furthermore, it is providing the liquid crystal aligning agent which can provide the liquid crystal display element which has said liquid crystal aligning film, and said liquid crystal aligning film.
 本発明者は、鋭意研究を行った結果、特定構造の溶媒及び特定構造の側鎖を有する重合体を含有する液晶配向処理剤が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の要旨を有するものである。
(1)下記の成分(A)及び成分(B)を含有することを特徴とする液晶配向処理剤。
成分(A):N-エチル-2-ピロリドン。
成分(B):下記式[1]で示される側鎖を有するポリイミド前駆体及びポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1種の重合体。
Figure JPOXMLDOC01-appb-C000005
(式[1]中、Xは単結合、-(CH-(aは1~15の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。Xは単結合又は-(CH-(bは1~15の整数である)である。Xは単結合、-(CH-(cは1~10の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。Xはベンゼン環、シクロヘキシル環及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)である。Xはベンゼン環、シクロヘキシル環及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)である。Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基であり、nは0~4の整数である。)
As a result of intensive studies, the present inventor has found that a liquid crystal aligning agent containing a solvent having a specific structure and a polymer having a side chain having a specific structure is extremely effective for achieving the above object. The present invention has been completed.
That is, the present invention has the following gist.
(1) A liquid crystal aligning agent comprising the following component (A) and component (B).
Component (A): N-ethyl-2-pyrrolidone.
Component (B): at least one polymer selected from the group consisting of a polyimide precursor having a side chain represented by the following formula [1] and a polyimide obtained by imidizing the polyimide precursor.
Figure JPOXMLDOC01-appb-C000005
(In the formula [1], X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH. —, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—, X 2 is a single bond or — (CH 2 ) b— (b is an integer of 1 to 15.) X 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —NH—, — N (CH 3) -, - CONH -, - NHCO -, - CH 2 O -, - COO -, - OCO -, - CON (CH 3) - or -N (CH 3) is CO- .X 4 Is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon C 1-3 alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, .X 5 benzene rings and may be substituted with a fluorine-containing alkoxyl group or a fluorine atom having 1 to 3 carbon atoms), cyclohexyl A divalent cyclic group selected from a ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms) X 6 represents an alkyl group having 1 to 18 carbon atoms, or a fluorine-containing alkyl group having 1 to 18 carbon atoms, which may be substituted with a fluorine-containing alkoxyl group having 1 to 3 carbon atoms or a fluorine atom. And an alkoxyl group having 1 to 18 carbon atoms or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, and n is an integer of 0 to 4.)
(2)前記成分(B)が、前記式[1]で示される側鎖を有するジアミン化合物を原料の一部に用いたポリイミド前駆体及びポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1種の重合体である上記(1)に記載の液晶配向処理剤。
(3)前記式[1]で示される側鎖を有するジアミン化合物が、下記式[1a]で示されるジアミン化合物である上記(2)に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000006
(式[1a]中、Xは単結合、-(CH-(aは1~15の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。Xは単結合又は-(CH-(bは1~15の整数である)である。Xは単結合、-(CH-(cは1~10の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。Xはベンゼン環、シクロヘキシル環及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)である。Xはベンゼン環、シクロヘキシル環及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)である。Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。nは0~4の整数であり、mは1~4の整数である。)
(4)前記式[1a]で示されるジアミンを、原料のジアミン成分の5~80モル%用いた上記(2)又は(3)に記載の液晶配向処理剤。
(2) The component (B) is selected from the group consisting of a polyimide precursor using a diamine compound having a side chain represented by the formula [1] as a part of the raw material and a polyimide obtained by imidizing the polyimide precursor. The liquid-crystal aligning agent as described in said (1) which is an at least 1 sort (s) of polymer.
(3) The liquid-crystal aligning agent as described in said (2) whose diamine compound which has a side chain shown by said Formula [1] is a diamine compound shown by following formula [1a].
Figure JPOXMLDOC01-appb-C000006
(In the formula [1a], X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH —, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—, X 2 is a single bond or — (CH 2 ) b— (b is an integer of 1 to 15.) X 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —NH—, — N (CH 3) -, - CONH -, - NHCO -, - CH 2 O -, - COO -, - OCO -, - CON (CH 3) - or -N (CH 3) a CO- .X 4 Is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, Prime 1-3 alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, .X 5 benzene rings and may be substituted with a fluorine-containing alkoxyl group or a fluorine atom having 1 to 3 carbon atoms), cyclohexyl A divalent cyclic group selected from a ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms) X 6 represents an alkyl group having 1 to 18 carbon atoms, or a fluorine-containing alkyl group having 1 to 18 carbon atoms, which may be substituted with a fluorine-containing alkoxyl group having 1 to 3 carbon atoms or a fluorine atom. And an alkoxyl group having 1 to 18 carbon atoms or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, n is an integer of 0 to 4, and m is an integer of 1 to 4.)
(4) The liquid crystal aligning agent according to the above (2) or (3), wherein the diamine represented by the formula [1a] is used in an amount of 5 to 80 mol% of the starting diamine component.
(5)前記成分(B)が、下記式[2]で示されるテトラカルボン酸二無水物を用いた重合体である上記(1)~(4)のいずれかに記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000007
(式[2]中、Yは炭素数4~13の4価の有機基であり、かつ炭素数4~10の非芳香族環状炭化水素基を含有する。) 
(6)前記Yが、下記式[2a]~[2j]で示される構造の基である上記(5)に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000008
(式[2a]中、Y~Yは水素原子、メチル基、塩素原子又はベンゼン環であり、それぞれ、同じであっても異なってもよく、式[2g]中、Y及びYは水素原子又はメチル基であり、それぞれ、同じであっても異なってもよい)。
(7)前記成分(B)である重合体が、ポリアミド酸である上記(1)~(6)のいずれかに記載の液晶配向処理剤。
(8)前記成分(B)である重合体が、ポリアミド酸を脱水閉環させて得られるポリイミドである上記(1)~(6)のいずれかに記載の液晶配向処理剤。
(5) The liquid crystal aligning agent according to any one of the above (1) to (4), wherein the component (B) is a polymer using a tetracarboxylic dianhydride represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000007
(In Formula [2], Y 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms.)
(6) The liquid crystal aligning agent according to (5), wherein Y 1 is a group having a structure represented by the following formulas [2a] to [2j].
Figure JPOXMLDOC01-appb-C000008
(In Formula [2a], Y 2 to Y 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different. In Formula [2g], Y 6 and Y 7 Are hydrogen atoms or methyl groups, which may be the same or different.
(7) The liquid crystal aligning agent according to any one of (1) to (6), wherein the polymer as the component (B) is a polyamic acid.
(8) The liquid crystal aligning agent according to any one of the above (1) to (6), wherein the polymer as the component (B) is a polyimide obtained by dehydrating and ring-closing polyamic acid.
(9)成分(C)として、N-メチル-2-ピロリドン又はγ-ブチロラクトンを含有する上記(1)~(8)のいずれかに記載の液晶配向処理剤。
(10)(D)成分として、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル及びプロピレングリコールモノブチルエーテルからなる群から選ばれる少なくとも1つを含有する上記(1)~(9)のいずれかに記載の液晶配向処理剤。
(11)前記成分(A)が液晶配向処理剤に含まれる有機溶媒全体の10~100質量%である上記(1)~(10)のいずれかに記載の液晶配向処理剤。
(12)前記成分(C)が液晶配向処理剤に含まれる有機溶媒全体の0.1~50質量%である上記(9)~(11)のいずれかに記載の液晶配向処理剤。
(13)前記成分(D)が液晶配向処理剤に含まれる有機溶媒全体の5~80質量%である上記(10)~(12)のいずれかに記載の液晶配向処理剤。
(14)液晶配向処理剤中の前記成分(B)が0.1~15質量%である上記(1)~(13)のいずれかに記載の液晶配向処理剤。
(9) The liquid crystal aligning agent according to any one of the above (1) to (8), which contains N-methyl-2-pyrrolidone or γ-butyrolactone as the component (C).
(10) As component (D), 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, Any one of (1) to (9) above containing at least one selected from the group consisting of diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether and propylene glycol monobutyl ether Liquid crystal aligning agent.
(11) The liquid crystal aligning agent according to any one of (1) to (10), wherein the component (A) is 10 to 100% by mass of the total organic solvent contained in the liquid crystal aligning agent.
(12) The liquid crystal aligning agent according to any one of the above (9) to (11), wherein the component (C) is 0.1 to 50% by mass of the whole organic solvent contained in the liquid crystal aligning agent.
(13) The liquid crystal aligning agent according to any one of the above (10) to (12), wherein the component (D) is 5 to 80% by mass of the whole organic solvent contained in the liquid crystal aligning agent.
(14) The liquid crystal aligning agent according to any one of (1) to (13), wherein the component (B) in the liquid crystal aligning agent is 0.1 to 15% by mass.
(15)上記(1)~(14)のいずれかに記載の液晶配向処理剤を用いて得られる液晶配向膜。
(16)上記(1)~(14)のいずれかに記載の液晶配向処理剤を用いて、インクジェット法にて得られる液晶配向膜。
(17)上記(15)又は(16)に記載の液晶配向膜を有する液晶表示素子。
(18)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする上記(15)又は(16)に記載の液晶配向膜。
(15) A liquid crystal alignment film obtained using the liquid crystal aligning agent according to any one of (1) to (14).
(16) A liquid crystal alignment film obtained by an ink jet method using the liquid crystal alignment treatment agent according to any one of (1) to (14).
(17) A liquid crystal display device having the liquid crystal alignment film according to (15) or (16).
(18) A liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal alignment film as described in (15) or (16) above, which is used for a liquid crystal display device produced through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes.
(19)上記(18)に記載の液晶配向膜を有することを特徴とする液晶表示素子。
(20)電極と前記液晶配向膜とを備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造されることを特徴とする上記(19)に記載の液晶表示素子。
(21)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする上記(15)又は(16)に記載の液晶配向膜。
(22)上記(21)に記載の液晶配向膜を有することを特徴とする液晶表示素子。
(23)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造されることを特徴とする上記(22)に記載の液晶表示素子。
(19) A liquid crystal display element comprising the liquid crystal alignment film according to (18).
(20) A polymerizable compound having a liquid crystal layer between a pair of substrates provided with an electrode and the liquid crystal alignment film, and polymerized by at least one of active energy rays and heat between the pair of substrates. The liquid crystal display element according to (19), wherein the liquid crystal display element is produced through a step of disposing a liquid crystal composition and polymerizing the polymerizable compound while applying a voltage between the electrodes.
(21) A liquid crystal alignment film comprising a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal alignment film as described in (15) or (16) above, which is used for a liquid crystal display device produced through a step of polymerizing the polymerizable group while applying a voltage between the electrodes.
(22) A liquid crystal display element comprising the liquid crystal alignment film according to (21).
(23) A liquid crystal alignment film having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal display element according to (22), wherein the liquid crystal display element is manufactured through a step of polymerizing the polymerizable group while applying a voltage between the electrodes.
 本発明の液晶配向処理剤によれば、長時間の高温や光の照射に曝されても、プレチルト角が変化しない液晶配向膜が得られ、さらに、基板への溶液の濡れ拡がり性が高く、大型基板や段差基板に対して、塗膜均一性に優れた液晶配向膜が得られる。かかる液晶配向膜を用いることにより、表示特性に優れた信頼性の高い液晶表示素子を提供することが可能となる。 According to the liquid crystal alignment treatment agent of the present invention, a liquid crystal alignment film whose pretilt angle does not change even when exposed to a high temperature or light irradiation for a long time is obtained, and further, the wettability of the solution to the substrate is high, A liquid crystal alignment film excellent in coating film uniformity can be obtained for a large substrate or a stepped substrate. By using such a liquid crystal alignment film, it is possible to provide a highly reliable liquid crystal display element having excellent display characteristics.
液晶配向膜の端部の直線性を評価するために用いる光学顕微鏡の塗膜画像の例。The example of the coating-film image of the optical microscope used in order to evaluate the linearity of the edge part of a liquid crystal aligning film. 液晶配向膜の端部の盛り上がりの評価をするために用いる光学顕微鏡の塗膜画像の例。The example of the coating-film image of the optical microscope used in order to evaluate the swelling of the edge part of a liquid crystal aligning film.
 本発明の液晶配向処理剤は、の成分(A)であるN-エチル-2-ピロリドン(特定溶媒ともいう)、及び成分(B)である、上記の式[1]で示される側鎖(特定側鎖構造ともいう)を有するポリイミド前駆体及びポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1種の重合体(特定重合体ともいう)を含有する。 The liquid crystal aligning agent of the present invention comprises N-ethyl-2-pyrrolidone (also referred to as a specific solvent) as component (A) and a side chain represented by the above formula [1] as component (B) ( It contains at least one polymer (also referred to as a specific polymer) selected from the group consisting of a polyimide precursor having a specific side chain structure) and a polyimide obtained by imidizing the polyimide precursor.
 本発明における特定溶媒は、ポリアミド酸や可溶性ポリイミドの溶解性に優れる良溶媒である。さらに、通常用いられているN-メチル-2-ピロリドンやγ-ブチロラクトンに比べて溶媒としての表面張力が低い。そのため、特定溶媒を用いた液晶配向処理剤は、それを用いていない液晶配向処理剤に比べて、基板への塗布溶液の濡れ拡がり性が高くなり、樹脂の溶解性が低い貧溶媒を多く用いなくても、塗膜均一性に優れた液晶配向膜を得ることができる。さらに、塗布溶液の濡れ拡がり性が高くなることで、液晶配向膜にした際の、その端部の直線性が高くなる。
 また、かかる特定溶媒は、通常用いられているN-メチル-2-ピロリドンやγ-ブチロラクトンに比べて沸点が高いため、特定溶媒を用いた液晶配向剤は、液晶配向膜にした際の、その端部の盛り上がりを抑制することができる。
The specific solvent in the present invention is a good solvent excellent in solubility of polyamic acid or soluble polyimide. Furthermore, the surface tension as a solvent is lower than that of commonly used N-methyl-2-pyrrolidone and γ-butyrolactone. Therefore, a liquid crystal alignment treatment agent using a specific solvent has a higher wettability of the coating solution applied to the substrate and uses a poor solvent having a low resin solubility than a liquid crystal alignment treatment agent that does not use it. Even if not, a liquid crystal alignment film excellent in coating film uniformity can be obtained. Furthermore, since the wet spreading property of the coating solution is increased, the linearity of the end portion when the liquid crystal alignment film is formed is increased.
In addition, since the specific solvent has a higher boiling point than the commonly used N-methyl-2-pyrrolidone and γ-butyrolactone, the liquid crystal aligning agent using the specific solvent is obtained when the liquid crystal alignment film is used. Swelling at the end can be suppressed.
 本発明における特定側鎖構造は、側鎖部分にベンゼン環、シクロヘキシル環又は複素環を有する。これらベンゼン環、シクロヘキシル環又は複素環は、従来技術の長鎖アルキル基に比べて、剛直な構造を示す。これにより、側鎖部位の熱や紫外線に対する安定性が向上し、熱や光に対してもプレチルト角が安定な液晶配向膜を得ることができる。また、これらベンゼン環、シクロヘキシル環又は複素環は、剛直な構造を示すにも係わらず、従来技術のステロイド骨格からなる環状基に比べて、重合体の有機溶媒溶解性が高い。そのため、本発明の特定側鎖構造を有する液晶配向処理剤は、従来技術のステロイド骨格からなる環状基を有する液晶配向処理剤に比べて、基板への塗布均一性が高くなる。
 以上の点から、本発明の特定溶媒及び特定側鎖構造を有する重合体を含む液晶配向処理剤によれば、長時間高温及び光の照射に曝されても、プレチルト角が変化せず、さらに、塗膜均一性に優れた液晶配向膜が得られ、また、この液晶配向膜を用いることで、表示特性に優れた信頼性の高い液晶表示素子が得られる。
The specific side chain structure in this invention has a benzene ring, a cyclohexyl ring, or a heterocyclic ring in a side chain part. These benzene ring, cyclohexyl ring or heterocyclic ring show a rigid structure as compared with the long-chain alkyl group of the prior art. As a result, the stability of the side chain site to heat and ultraviolet light is improved, and a liquid crystal alignment film having a stable pretilt angle against heat and light can be obtained. In addition, although these benzene rings, cyclohexyl rings, and heterocycles exhibit a rigid structure, the polymers have higher solubility in organic solvents than cyclic groups composed of steroid skeletons of the prior art. Therefore, the liquid crystal aligning agent having a specific side chain structure of the present invention has higher application uniformity to the substrate than the liquid crystal aligning agent having a cyclic group having a steroid skeleton according to the prior art.
From the above points, according to the liquid crystal aligning agent containing the specific solvent and the polymer having a specific side chain structure of the present invention, the pretilt angle does not change even when exposed to high temperature and light irradiation for a long time. A liquid crystal alignment film having excellent coating film uniformity can be obtained, and by using this liquid crystal alignment film, a highly reliable liquid crystal display element having excellent display characteristics can be obtained.
<特定溶媒>
 本発明の特定溶媒は、N-エチル-2-ピロリドンである。N-エチル-2-ピロリドンは、基板への塗布溶液の濡れ拡がり性を高める効果を有するため、液晶配向処理剤に含まれる有機溶媒全体の10~100質量%であることが好ましい。なかでも、有機溶媒全体の15~100質量%が好ましく、より好ましくは、20~100質量%であり、さらに好ましくは、25~100質量%である。
 液晶配向処理剤中の有機溶媒の全体の中で、本発明の特定溶媒の量が多いほど、本発明の効果、すなわち、基板への塗布溶液の濡れ拡がり性が高くなり、塗膜均一性に優れた液晶配向膜を得ることができる。
<Specific solvent>
The specific solvent of the present invention is N-ethyl-2-pyrrolidone. Since N-ethyl-2-pyrrolidone has an effect of improving the wettability of the coating solution to the substrate, it is preferably 10 to 100% by mass of the whole organic solvent contained in the liquid crystal aligning agent. Of these, 15 to 100% by mass of the whole organic solvent is preferable, more preferably 20 to 100% by mass, and still more preferably 25 to 100% by mass.
The greater the amount of the specific solvent of the present invention in the whole organic solvent in the liquid crystal aligning agent, the higher the effect of the present invention, that is, the wet spreading property of the coating solution to the substrate, and the more uniform the coating film. An excellent liquid crystal alignment film can be obtained.
<特定側鎖構造>
 本発明の特定重合体は、すなわち、ポリイミド前駆体及びポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1種は、下記の式[1]で示される特定側鎖構造を有する。
Figure JPOXMLDOC01-appb-C000009
 式[1]中、Xは単結合、-(CH-(aは1~15の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。なかでも、単結合、-(CH-(aは1~15の整数である)、-O-、-CONH-、-CHO-又は-COO-は、側鎖構造を合成しやすいので好ましい。より好ましくは、単結合、-(CH-(aは1~10の整数である)、-O-、-CONH-、-CHO-又は-COO-である。さらに好ましくは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-である。
 Xは単結合又は-(CH-(bは1~15の整数である)である。なかでも、単結合又は-(CH-(bは1~10の整数である)が好ましい。
<Specific side chain structure>
The specific polymer of the present invention, that is, at least one selected from the group consisting of a polyimide precursor and a polyimide obtained by imidizing the polyimide precursor has a specific side chain structure represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000009
In the formula [1], X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH— , —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—. Among them, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CONH—, —CH 2 O—, or —COO— It is preferable because it is easy. More preferably, they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CONH—, —CH 2 O— or —COO—. More preferably, they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
X 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
 Xは単結合、-(CH-(cは1~15の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。なかでも、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-は、合成しやすいので好ましい。より好ましくは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-又は-OCO-である。
 Xはベンゼン環、シクロヘキシル環及び複素環から選ばれる2価の環状基である。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。なかでも、2価の環状基としては、ベンゼン環又はシクロヘキシル環が好ましい。
X 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, — CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—. Among these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— is preferable because they are easily synthesized. More preferably, they are a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or —OCO—.
X 4 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring. The optional hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom. Especially, as a bivalent cyclic group, a benzene ring or a cyclohexyl ring is preferable.
 Xはベンゼン環、シクロヘキシル環及び複素環から選ばれる2価の環状基である。これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。なかでも、2価の環状基としては、ベンゼン環又はシクロヘキサン環が好ましい。
 nは0~4の整数であり、好ましくは、0~2の整数である。
 Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。さらに好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。
X 5 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring. Arbitrary hydrogen atoms on these cyclic groups include an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxyl having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom. Especially, as a bivalent cyclic group, a benzene ring or a cyclohexane ring is preferable.
n is an integer of 0 to 4, preferably an integer of 0 to 2.
X 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Of these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[1]におけるX、X、X、X、X、X及びnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13頁~33頁の表6~45に掲載される(2-1)~(2-600)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるX~Xが、Y1~Y6として示されているが、Y1~Y6は、X~Xと読み替えるものとする。 X 1, X 2, X 3 in the formula [1], the X 4, X 5, preferred combinations of X 6 and n, 13 pp to 33 pages of International Publication WO2011 / 132751 (2011.10.27 public) The same combinations as (2-1) to (2-600) listed in Tables 6 to 45 are listed. In each table of the International Publication, X 1 to X 6 in the present invention are indicated as Y 1 to Y 6, but Y 1 to Y 6 should be read as X 1 to X 6 .
<特定側鎖型ジアミン化合物>
 本発明の特定重合体、すなわち、ポリイミド前駆体及びポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1種に式[1]で示される特定側鎖構造を導入する方法としては、特定側鎖構造を有するジアミン化合物を原料の一部に用いることが好ましい。特に、下記の式[1a]で示されるジアミン化合物(特定側鎖型ジアミン化合物ともいう)を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式[1a]中、Xは単結合、-(CH-(aは1~15の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。なかでも、単結合、-(CH-(aは1~15の整数である)、-O-、-CONH-、-CHO-又は-COO-は、側鎖構造を合成しやすいので好ましい。より好ましくは、単結合、-(CH-(aは1~10の整数である)、-O-、-CONH-、-CHO-又は-COO-である。さらに好ましくは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-である。
<Specific side chain diamine compound>
As a specific polymer of the present invention, that is, a method for introducing a specific side chain structure represented by the formula [1] into at least one selected from the group consisting of a polyimide precursor and a polyimide obtained by imidizing a polyimide precursor, It is preferable to use a diamine compound having a side chain structure as a part of the raw material. In particular, it is preferable to use a diamine compound represented by the following formula [1a] (also referred to as a specific side chain diamine compound).
Figure JPOXMLDOC01-appb-C000010
In the formula [1a], X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH— , —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—. Among them, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CONH—, —CH 2 O—, or —COO— It is preferable because it is easy. More preferably, they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CONH—, —CH 2 O— or —COO—. More preferably, they are a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 Xは単結合又は-(CH-(bは1~15の整数である)である。なかでも、単結合又は-(CH-(bは1~10の整数である)が好ましい。
 Xは単結合、-(CH-(cは1~15の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。なかでも、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-は、合成しやすいので好ましい。より好ましくは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-又は-OCO-である。
 Xはベンゼン環、シクロヘキシル環又は複素環から選ばれる2価の環状基である。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。なかでも、2価の環状基としては、ベンゼン環又はシクロヘキシル環が好ましい。
X 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
X 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, — CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—. Among these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— is preferable because they are easily synthesized. More preferably, they are a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or —OCO—.
X 4 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring or a heterocyclic ring. The optional hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom. Especially, as a bivalent cyclic group, a benzene ring or a cyclohexyl ring is preferable.
 Xはベンゼン環、シクロヘキシル環及び複素環から選ばれる2価の環状基である。これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。なかでも、2価の環状基としては、ベンゼン環又はシクロヘキシル環が好ましい。
 nは0~4の整数であり、好ましくは、0~2の整数である。
 Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。さらに好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。
X 5 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring. Arbitrary hydrogen atoms on these cyclic groups include an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxyl having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom. Especially, as a bivalent cyclic group, a benzene ring or a cyclohexyl ring is preferable.
n is an integer of 0 to 4, preferably an integer of 0 to 2.
X 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Of these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[1a]におけるX、X、X、X、X、X及びnの好ましい組み合わせは、式[1]と同様である。
 式[1]におけるX、X、X、X、X、X及びnの組み合わせにおいて、より好ましい組み合わせは、1-25~1-96、1-145~1-168、1-217~1-240、1-268~1-315、1-364~1-387、1-436~1-483などであり、特に好ましい組み合わせは、1-49~1-96、1-145~1-168、1-217~1-240などである。
 式[1a]においては、mは、1~4の整数であり、好ましくは、1である。
A preferable combination of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and n in the formula [1a] is the same as that in the formula [1].
Among the combinations of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and n in the formula [1], more preferred combinations are 1-25 to 1-96, 1-145 to 1-168, -217 to 1-240, 1-268 to 1-315, 1-364 to 1-387, 1-436 to 1-483, and the like. Particularly preferred combinations are 1-49 to 1-96, 1-145. ˜1-168, 1-217˜1-240, etc.
In the formula [1a], m is an integer of 1 to 4, preferably 1.
 式[1a]としては、具体的には、例えば下記の式[1-1]~[1-13]で示される構造である。
Figure JPOXMLDOC01-appb-C000011
(式[1-1]~[1-3]中、Rは-O-、-OCH-、-CHO-、-COOCH-又はCHOCO-であり、Rは直鎖状又は分岐状の、炭素数1~22のアルキル基、炭素数1~22のアルコキシル基、炭素数1~22のフッ素含有アルキル基又は炭素数1~22のフッ素含有アルコキシル基である。)
Figure JPOXMLDOC01-appb-C000012
(式[1-4]~[1-6]中、Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-又は-CH-であり、Rは直鎖状又は分岐状の、炭素数1~22のアルキル基、炭素数1~22のアルコキシル基、炭素数1~22のフッ素含有アルキル基又は炭素数1~22のフッ素含有アルコキシル基である。)
Specifically, the formula [1a] is, for example, a structure represented by the following formulas [1-1] to [1-13].
Figure JPOXMLDOC01-appb-C000011
(In the formulas [1-1] to [1-3], R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or CH 2 OCO—, and R 2 represents a straight chain. Or a branched or branched alkyl group having 1 to 22 carbon atoms, an alkoxyl group having 1 to 22 carbon atoms, a fluorine-containing alkyl group having 1 to 22 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 22 carbon atoms.)
Figure JPOXMLDOC01-appb-C000012
(In the formulas [1-4] to [1-6], R 3 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O —, —OCH 2 — or —CH 2 —, wherein R 4 is a linear or branched alkyl group having 1 to 22 carbon atoms, an alkoxyl group having 1 to 22 carbon atoms, or fluorine having 1 to 22 carbon atoms. A containing alkyl group or a fluorine-containing alkoxyl group having 1 to 22 carbon atoms.)
Figure JPOXMLDOC01-appb-C000013
(式[1-7]及び[1-8]中、Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-又は-NH-であり、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基である。)
Figure JPOXMLDOC01-appb-C000014
(式[1-9]及び[1-10]中、Rは炭素数3~12の直鎖状又は分岐状のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000013
(In the formulas [1-7] and [1-8], R 5 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O —, —OCH 2 —, —CH 2 —, —O— or —NH—, and R 6 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or It is a hydroxyl group.)
Figure JPOXMLDOC01-appb-C000014
(In the formulas [1-9] and [1-10], R 7 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is Trans isomer.)
Figure JPOXMLDOC01-appb-C000015
(式[1-11]及び[1-12]中、Rは炭素数3~12の直鎖状又は分岐状アルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000016
(式[1-13]中、Aはフッ素原子で置換されていてもよい炭素数3~20の直鎖状又は分岐状のアルキル基であり、Aは1,4-シクロへキシレン基又は1,4-フェニレン基であり、Aは酸素原子又はCOO-*(ただし、「*」を付した結合手がAと結合する)であり、Aは酸素原子又はCOO-*(ただし、「*」を付した結合手が(CH)a)と結合する)である。
 また、aは0又は1であり、aは2~10の整数であり、aは0又は1である。)
Figure JPOXMLDOC01-appb-C000015
(In the formulas [1-11] and [1-12], R 8 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is trans Is an isomer.)
Figure JPOXMLDOC01-appb-C000016
(In the formula [1-13], A 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 is a 1,4-cyclohexylene group. Alternatively, it is a 1,4-phenylene group, A 2 is an oxygen atom or COO— * (where a bond marked with “*” is bonded to A 3 ), and A 1 is an oxygen atom or COO — * ( However, a bond marked with “*” is combined with (CH 2 ) a 2 ).
A 1 is 0 or 1, a 2 is an integer of 2 to 10, and a 3 is 0 or 1. )
 上記の式[1-1]~[1-13]中、特に好ましい構造のジアミン化合物は、式[1-1]~[1-6]、式[1-9]~[1-13]などである。
 上記の特定側鎖型ジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
Among the above formulas [1-1] to [1-13], particularly preferred diamine compounds have the formulas [1-1] to [1-6], the formulas [1-9] to [1-13], etc. It is.
Said specific side chain type diamine compound can also be used 1 type or in mixture of 2 or more types according to characteristics, such as liquid crystal orientation at the time of setting it as a liquid crystal aligning film, a voltage holding ratio, and an accumulation charge.
<その他ジアミン化合物>
 本発明においては、本発明の効果を損なわない限りにおいて、特定側鎖型ジアミン化合物以外のその他のジアミン化合物(その他ジアミン化合物ともいう)を、原料のジアミン成分として用いることができる。その具体例を以下に挙げる。
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン化合物;ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン化合物;1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン化合物。
<Other diamine compounds>
In the present invention, as long as the effects of the present invention are not impaired, other diamine compounds (also referred to as other diamine compounds) other than the specific side chain diamine compound can be used as the diamine component of the raw material. Specific examples are given below.
p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4 , 6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dihydroxy -4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,3'-diph Fluoro-4,4′-biphenyl, 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 2,3′-diaminobiphenyl, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 2,2′-diaminodiphenylmethane, 2,3′-diaminodiphenylmethane, 4, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3 '-Sulphonyldianiline, bis (4-aminophenyl) silane, bis (3-amino Nophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4′-thiodianiline, 3,3′-thiodianiline, 4,4′-diaminodiphenylamine, 3, 3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine, N-methyl (3,3 3'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) amine, N-methyl (2,3'-diaminodiphenyl) amine, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone 1,4-diaminonaphthalene, 2,2′-diaminobenzophenone, 2,3′-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8- Diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis ( 3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene Zen, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-amino) Benzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis (methylene) ] Dianiline, 3,4 '-[1,4-phenylenebis (methylene)] dianiline, 3,4'-[1,3-phenylenebis (methylene)] dianiline, 3,3 '-[1,4-phenylene Bis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3 -A Nophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis ( 3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N '-(1,3-phenylene) bis (4-aminobenzamide), N, N'-(1,4-phenylene) (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis ( 3-aminophenyl) terephthalamide, N, N′-bis (4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) Phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) hexafluoropropane 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2, 2'-bis (3-amino-4-methylphenyl) propane, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5 -Bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) ) Heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-amino) Phenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) ) Aromatic diamine compounds such as undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane; bis (4-amino Cyclohexane) methane, alicyclic diamine compounds such as bis (4-amino-3-methylcyclohexyl) methane; 1,3-diaminopropane 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, Aliphatic diamine compounds such as 1,11-diaminoundecane and 1,12-diaminododecane.
 また、本発明の効果を損なわない限りにおいて、ジアミン側鎖にアルキル基又はフッ素含有アルキル基を有するジアミン化合物を用いることができる。
 具体的には、例えば下記の式[DA1]~[DA12]で示されるジアミン化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000017
(式[DA1]~[DA5]中、Aは炭素数1~22の直鎖状又は分岐状のアルキル基又は炭素数1~22の直鎖状又は分岐状のフッ素含有アルキル基である。)
Figure JPOXMLDOC01-appb-C000018
(式[DA6]~[DA11]中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-又は-NH-を示し、Aは炭素数1~22の直鎖状又は分岐状のアルキル基又は炭素数1~22の直鎖状又は分岐状のフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000019
(式[DA12]中、pは1~10の整数である。)
Moreover, as long as the effect of this invention is not impaired, the diamine compound which has an alkyl group or a fluorine-containing alkyl group in a diamine side chain can be used.
Specifically, for example, diamine compounds represented by the following formulas [DA1] to [DA12] can be exemplified.
Figure JPOXMLDOC01-appb-C000017
(In the formulas [DA1] to [DA5], A 1 is a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms. )
Figure JPOXMLDOC01-appb-C000018
(In the formulas [DA6] to [DA11], A 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—, 3 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
Figure JPOXMLDOC01-appb-C000019
(In the formula [DA12], p is an integer of 1 to 10)
 本発明の効果を損なわない限りにおいて、下記の式[DA13]~[DA20]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000020
(式[DA17]中、mは0~3の整数である。式[DA20]中、nは1~5の整数である。)
As long as the effects of the present invention are not impaired, diamine compounds represented by the following formulas [DA13] to [DA20] can also be used.
Figure JPOXMLDOC01-appb-C000020
(In the formula [DA17], m is an integer of 0 to 3. In the formula [DA20], n is an integer of 1 to 5.)
 さらに、本発明の効果を損なわない限りにおいて、下記の式[DA21]~[DA24]で示される、分子内にカルボキシル基を有するジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000021
(式[DA21]中、mは1~4の整数である。
 式[DA22]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-であり、m及びmはそれぞれ0~4の整数であり、かつm+mは1~4の整数である。
 式[DA23]中、m及びmは、それぞれ1~5の整数である。式[DA24]中、Aは炭素数1~5の直鎖状又は分岐状のアルキル基であり、mは1~5の整数である。
 式[DA25]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-であり、mは1~4の整数である。)
Furthermore, as long as the effects of the present invention are not impaired, a diamine compound having a carboxyl group in the molecule represented by the following formulas [DA21] to [DA24] can also be used.
Figure JPOXMLDOC01-appb-C000021
(In the formula [DA21], m 1 is an integer of 1 to 4.
In the formula [DA22], A 4 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—. , —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — Or —N (CH 3 ) CO—, each of m 2 and m 3 is an integer from 0 to 4, and m 2 + m 3 is an integer from 1 to 4.
In the formula [DA23], m 4 and m 5 are each an integer of 1 to 5. In the formula [DA24], A 5 is a linear or branched alkyl group having 1 to 5 carbon atoms, and m 6 is an integer of 1 to 5.
In the formula [DA25], A 6 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —O—. , —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — Or —N (CH 3 ) CO—, and m 7 is an integer of 1 to 4. )
 さらに、本発明の効果を損なわない限りにおいて、下記の式[DA26]で示されるジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000022
(式[DA26]中、Aは-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCO-、-CON(CH)-又は-N(CH)CO-より選ばれる2価の有機基であり、Aは単結合、炭素数1~20の脂肪族炭化水素基、非芳香族環式炭化水素基又は芳香族炭化水素基である。Aは単結合、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-COO-、-OCO-、-CON(CH)-、-N(CH)CO-又は-O(CH-(mは1~5の整数である)であり、Aは窒素含有芳香族複素環であり、nは1~4の整数である。)
Furthermore, a diamine compound represented by the following formula [DA26] can also be used as long as the effects of the present invention are not impaired.
Figure JPOXMLDOC01-appb-C000022
(In the formula [DA26], A 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ). A divalent organic group selected from — or —N (CH 3 ) CO—, and A 2 is a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a non-aromatic cyclic hydrocarbon group or an aromatic group. A 3 is a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ). -, -N (CH 3 ) CO- or -O (CH 2 ) m- (m is an integer of 1 to 5), A 4 is a nitrogen-containing aromatic heterocycle, and n is 1 to 4 Is an integer.)
 さらに、本発明の効果を損なわない限りにおいて、下記の式[DA27]~[DA46]で示されるステロイド骨格を有するジアミン化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Furthermore, a diamine compound having a steroid skeleton represented by the following formulas [DA27] to [DA46] can also be used as long as the effects of the present invention are not impaired.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 上記のその他ジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Said other diamine compound can also be used 1 type or in mixture of 2 or more types according to characteristics, such as liquid crystal orientation at the time of setting it as a liquid crystal aligning film, a voltage holding ratio, and an accumulation charge.
<特定テトラカルボン酸二無水物>
 本発明の特定重合体を得るためには、下記の式[2]で示されるテトラカルボン酸二無水物(特定テトラカルボン酸二無水物ともいう)を原料の一部に用いることが好ましい。
Figure JPOXMLDOC01-appb-C000029
 式[2]中、Yは炭素数4~13の4価の有機基であり、かつ炭素数4~10の非芳香族環状炭化水素基を含有する。
<Specific tetracarboxylic dianhydride>
In order to obtain the specific polymer of the present invention, it is preferable to use a tetracarboxylic dianhydride (also referred to as a specific tetracarboxylic dianhydride) represented by the following formula [2] as a part of the raw material.
Figure JPOXMLDOC01-appb-C000029
In the formula [2], Y 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms.
 式[2]中のYは、具体的には、例えば下記の式[2a]~[2j]で示される4価の基である。
Figure JPOXMLDOC01-appb-C000030
 式[2a]中、Y~Yは、水素原子、メチル基、塩素原子又はベンゼン環であり、それぞれ、同じであっても異なっても良い。
 また、式[2g]中、Y及びYは、水素原子又はメチル基であり、それぞれ、同じであっても異なっても良い。
 式[2]中、Yの特に好ましい構造は、重合反応性や合成の容易性から、式[2a]、式[2c]、式[2d]、式[2e]、式[2f]又は式[2g]である。なかでも、式[2a]、式[2e]、式[2f]又は式[2g]が好ましい。
Specifically, Y 1 in the formula [2] is, for example, a tetravalent group represented by the following formulas [2a] to [2j].
Figure JPOXMLDOC01-appb-C000030
In the formula [2a], Y 2 to Y 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
In formula [2g], Y 6 and Y 7 are a hydrogen atom or a methyl group, and may be the same or different.
In formula [2], particularly preferred structure of Y 1 is represented by formula [2a], formula [2c], formula [2d], formula [2e], formula [2f] or formula because of polymerization reactivity and ease of synthesis. [2g]. Among these, the formula [2a], the formula [2e], the formula [2f], or the formula [2g] is preferable.
<その他テトラカルボン酸二無水物>
 本発明においては、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸二無水物以外のその他のテトラカルボン酸二無水物(その他テトラカルボン酸二無水物ともいう)を用いることができる。その他テトラカルボン酸二無水物としては、以下に示すテトラカルボン酸のテトラカルボン酸二無水物が挙げられる。
 ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸又は1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸。
 上記の特定テトラカルボン酸二無水物及びその他テトラカルボン酸二無水物は、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
<Other tetracarboxylic dianhydrides>
In the present invention, other tetracarboxylic dianhydrides other than the specific tetracarboxylic dianhydride (also referred to as other tetracarboxylic dianhydrides) can be used as long as the effects of the present invention are not impaired. Examples of other tetracarboxylic dianhydrides include tetracarboxylic dianhydrides of the following tetracarboxylic acids.
Pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7 -Anthracene tetracarboxylic acid, 1,2,5,6-anthracene tetracarboxylic acid, 3,3 ', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4-biphenyltetracarboxylic acid, bis ( 3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2 , 2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bi (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4-dicarboxy) Phenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid or 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic acid.
The above-mentioned specific tetracarboxylic dianhydride and other tetracarboxylic dianhydrides may be used alone or in combination of two or more depending on properties such as liquid crystal orientation, voltage holding ratio, and accumulated charge when used as a liquid crystal alignment film. It can also be used as a mixture.
<特定重合体>
 本発明の特定重合体は、前記式[1]で示される側鎖を有するポリイミド前駆体及びポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1種の重合体である。
 ポリイミド前駆体は、下記の式[A]で示される構造である。
Figure JPOXMLDOC01-appb-C000031
(式[A]中、Rは4価の有機基であり、Rは2価の有機基であり、A及びAは水素原子又は炭素数1~8のアルキル基であり、それぞれ同じであっても異なってもよく、nは正の整数を示す。)
<Specific polymer>
The specific polymer of the present invention is at least one polymer selected from the group consisting of a polyimide precursor having a side chain represented by the formula [1] and a polyimide obtained by imidizing the polyimide precursor.
The polyimide precursor has a structure represented by the following formula [A].
Figure JPOXMLDOC01-appb-C000031
(In the formula [A], R 1 is a tetravalent organic group, R 2 is a divalent organic group, A 1 and A 2 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, (It may be the same or different, and n represents a positive integer.)
 本発明の特定重合体は、下記の式[B]で示されるジアミン成分と下記の式[C]で示されるテトラカルボン酸二無水物とを原料とすることで比較的簡便に得られるという理由から、下記の式[D]で示される繰り返し単位の構造式からなるポリアミド酸又は該ポリアミド酸をイミド化させたポリイミドが好ましい。
Figure JPOXMLDOC01-appb-C000032
(式[B]及び[C]中、R及びRは式[A]で定義したものと同義である。)
Figure JPOXMLDOC01-appb-C000033
(式[D]中、R及びRは式[A]で定義したものと同義である。)
Reason that the specific polymer of the present invention can be obtained relatively easily by using a diamine component represented by the following formula [B] and a tetracarboxylic dianhydride represented by the following formula [C] as raw materials. Therefore, a polyamic acid having a structural formula of a repeating unit represented by the following formula [D] or a polyimide obtained by imidizing the polyamic acid is preferable.
Figure JPOXMLDOC01-appb-C000032
(In formulas [B] and [C], R 1 and R 2 have the same meaning as defined in formula [A].)
Figure JPOXMLDOC01-appb-C000033
(In formula [D], R 1 and R 2 have the same meaning as defined in formula [A].)
 本発明において、特定重合体を合成する方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。一般的には、テトラカルボン酸及びその誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る。具体的には、テトラカルボン酸二無水物とジアミン成分とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸とジアミン成分とを脱水重縮合反応させてポリアミド酸を得る方法又はテトラカルボン酸ジハライドとジアミン成分とを重縮合させてポリアミド酸を得る方法が用いられる。
 ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸とジアミン成分とを重縮合させる方法、カルボン酸基をジアルキルエステル化したテトラカルボン酸ジハライドとジアミン成分とを重縮合させる方法又はポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。
 ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
In the present invention, the method for synthesizing the specific polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid. Specifically, a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and a diamine component, a method of obtaining polyamic acid by dehydration polycondensation reaction of tetracarboxylic acid and a diamine component, or tetracarboxylic acid dihalide A method is used in which a polyamic acid is obtained by polycondensation of a diamine component and diamine component.
Polyamide acid alkyl ester can be obtained by polycondensation of carboxylic acid group with dialkyl esterified tetracarboxylic acid and diamine component, tetracarboxylic acid dihalide with carboxylic acid group dialkylesterified and diamine component. A method or a method of converting a carboxyl group of a polyamic acid into an ester is used.
In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
 本発明の特定重合体を用いて得られる液晶配向膜は、上記ジアミン成分における前記式[1]で示される特定側鎖構造の含有割合が多くなるほど、液晶配向膜とした際の疎水性と液晶のプレチルト角を高くすることができる。その際、ジアミン成分には、前記式[1a]で示される特定側鎖型ジアミン化合物を用いることが好ましい。特に好ましくは、前記式[1-1]~[1-6]及び式[1-9]~[1-13]で示される特定側鎖型ジアミン化合物からなる群から選ばれる少なくとも1種を用いることである。なかでも、式[1-1]~[1-6]又は式[1-9]~[1-12]で示される特定側鎖型ジアミン化合物からなる群から選ばれる少なくとも1種を用いることが好ましい。この特性を高める目的では、ジアミン成分の5モル%以上80モル%以下が特定側鎖型ジアミン化合物であることが好ましい。なかでも、液晶配向処理剤の塗布性や液晶配向膜としての電気特性の観点から、ジアミン成分の5モル%以上60モル%以下が特定側鎖型ジアミン化合物であることが好ましい。さらに好ましくは、ジアミン成分の10モル%以上60モル%以下である。 The liquid crystal alignment film obtained using the specific polymer of the present invention is more hydrophobic and liquid crystal when the liquid crystal alignment film is used as the content of the specific side chain structure represented by the formula [1] in the diamine component increases. The pretilt angle can be increased. In that case, it is preferable to use the specific side chain type diamine compound shown by the said Formula [1a] for a diamine component. Particularly preferably, at least one selected from the group consisting of the specific side chain diamine compounds represented by the formulas [1-1] to [1-6] and the formulas [1-9] to [1-13] is used. That is. Among them, at least one selected from the group consisting of specific side chain diamine compounds represented by formulas [1-1] to [1-6] or formulas [1-9] to [1-12] may be used. preferable. In order to enhance this property, it is preferable that 5 mol% or more and 80 mol% or less of the diamine component is the specific side chain type diamine compound. Especially, it is preferable that 5 mol% or more and 60 mol% or less of a diamine component are a specific side chain type diamine compound from the viewpoint of the applicability | paintability of a liquid crystal aligning agent, and the electrical property as a liquid crystal aligning film. More preferably, it is 10 mol% or more and 60 mol% or less of the diamine component.
 本発明の特定重合体を得るためには、テトラカルボン酸成分として前記式[2]で示される特定テトラカルボン酸二無水物を用いることが好ましい。特に、式[2]中のYが前記式[2a]~[2j]で示される構造の基であるテトラカルボン酸二無水物を用いることが好ましい。その際、テトラカルボン酸成分の1モル%以上が特定テトラカルボン酸二無水物であることが好ましく、より好ましくは、5モル%以上、さらに好ましくは、10モル%以上である。また、テトラカルボン酸成分の100モル%が特定テトラカルボン酸二無水物であってもよい。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、有機溶媒中で行う。その際に用いる有機溶媒としては、本発明の特定溶媒であってもよく、生成したポリイミド前駆体が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
In order to obtain the specific polymer of this invention, it is preferable to use the specific tetracarboxylic dianhydride shown by said Formula [2] as a tetracarboxylic acid component. In particular, it is preferable to use a tetracarboxylic dianhydride in which Y 1 in the formula [2] is a group having a structure represented by the formulas [2a] to [2j]. In that case, it is preferable that 1 mol% or more of a tetracarboxylic acid component is a specific tetracarboxylic dianhydride, More preferably, it is 5 mol% or more, More preferably, it is 10 mol% or more. Further, 100 mol% of the tetracarboxylic acid component may be a specific tetracarboxylic dianhydride.
The reaction of the diamine component and the tetracarboxylic acid component is usually performed in an organic solvent. The organic solvent used in that case may be the specific solvent of the present invention, and is not particularly limited as long as the produced polyimide precursor is dissolved. Specific examples are given below.
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノンなどである。
 これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4 -Hydroxy-4-methyl-2-pentanone and the like.
These may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyimide precursor, it is preferable to use a dehydrated and dried organic solvent.
 ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ特定重合体としてもよい。その際の重合温度は-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の特定重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 When the diamine component and the tetracarboxylic acid component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is. And a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent, a method of alternately adding a tetracarboxylic acid component and a diamine component, etc. Any of these methods may be used. In addition, when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted to form a specific polymer. In this case, the polymerization temperature can be selected from -20 to 150 ° C., but is preferably in the range of −5 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a specific polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution will become too high and uniform stirring will occur. It becomes difficult. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 本発明のポリイミドは、前記のポリイミド前駆体を閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。
 本発明のポリイミドにおいて、アミド酸基の閉環率(イミド化率ともいう)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor formed increases as the molar ratio approaches 1.0.
The polyimide of the present invention is a polyimide obtained by ring-closing the above polyimide precursor, and is useful as a polymer for obtaining a liquid crystal alignment film.
In the polyimide of the present invention, the cyclization rate (also referred to as imidization rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃であり、好ましくは120~250℃である。
 熱イミド化反応は、生成する水を系外に除きながら行う方法が好ましい。
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
The temperature when the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C.
A method of performing the thermal imidization reaction while removing generated water from the system is preferable.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
The catalytic imidation of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。 沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿と回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒としては、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating. Further, when the polymer recovered by precipitation is redissolved in an organic solvent, and reprecipitation and recovery are repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
 本発明の特定重合体の分子量は、得られる重合体被膜の強度、重合体被膜形成時の作業性、重合体被膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the specific polymer of the present invention is a weight average measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained polymer film, workability at the time of forming the polymer film, and uniformity of the polymer film. The molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
<液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布溶液であり、特定溶媒及び特定重合体を含有する樹脂被膜を形成するための塗布液である。
 本発明の液晶配向処理剤中の重合体成分は、全てが本発明の特定重合体であってもよく、本発明の特定重合体にそれ以外の他の重合体が混合されていてもよい。その際、重合体成分中のそれ以外の他の重合体の含有量は、0.5~15質量%、好ましくは1~10質量%である。
 それ以外の他の重合体としては、特定側鎖型ジアミン化合物を含まないジアミン成分と特定テトラカルボン酸二無水物を含まないテトラカルボン酸成分から得られるポリイミド前駆体及びポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1種の重合体が挙げられる。さらには、ポリイミド前駆体及びポリイミド以外の重合体、具体的には、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド、シロキサン系ポリマーなどが挙げられる。
<Liquid crystal alignment agent>
The liquid crystal aligning agent of this invention is a coating solution for forming a liquid crystal aligning film, and is a coating liquid for forming the resin film containing a specific solvent and a specific polymer.
The polymer component in the liquid crystal aligning agent of the present invention may all be the specific polymer of the present invention, and other polymers may be mixed with the specific polymer of the present invention. In that case, the content of the other polymer in the polymer component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
As other polymers, polyimide precursors and polyimide precursors obtained from a diamine component not containing a specific side chain diamine compound and a tetracarboxylic acid component not containing a specific tetracarboxylic dianhydride were imidized. Examples thereof include at least one polymer selected from the group consisting of polyimides. Furthermore, a polyimide precursor and a polymer other than polyimide, specifically, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide, a siloxane polymer, and the like can be given.
 本発明の液晶配向処理剤中の有機溶媒は、塗布により均一な被膜を形成するという観点から、液晶配向処理剤中、有機溶媒の含有量が70~99質量%であることが好ましい。有機溶媒の含有量は、目的とする液晶配向膜の膜厚によって適宜変更することができる。
 有機溶媒としては、本発明の特定溶媒を用いることが好ましい。その際、特定重合体を溶解させる有機溶媒であれば、特定溶媒以外に、下記の溶媒を用いることもできる。具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン又は4-ヒドロキシ-4-メチル-2-ペンタノンである。
 なかでも、N-メチル-2-ピロリドン、γ-ブチルラクトンなど(これらは、成分(C)ともいう)を用いることが好ましい。
 成分(C)の使用量は、液晶配向処理剤に含まれる有機溶媒全体の0.1~70質量%であることが好ましい。なかでも、1~60質量%が好ましい。より好ましくは1~50質量%であり、さらに好ましくは、3~40質量%である。
The organic solvent in the liquid crystal aligning agent of the present invention preferably contains 70 to 99% by mass of the organic solvent in the liquid crystal aligning agent from the viewpoint of forming a uniform film by coating. The content of the organic solvent can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
As the organic solvent, the specific solvent of the present invention is preferably used. In that case, the following solvent can also be used in addition to the specific solvent as long as it is an organic solvent capable of dissolving the specific polymer. Specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopenta Non or 4-hydroxy-4-methyl-2-pentanone.
Among these, it is preferable to use N-methyl-2-pyrrolidone, γ-butyllactone, etc. (these are also referred to as component (C)).
The amount of the component (C) used is preferably 0.1 to 70% by mass with respect to the total organic solvent contained in the liquid crystal aligning agent. Among these, 1 to 60% by mass is preferable. The amount is more preferably 1 to 50% by mass, and further preferably 3 to 40% by mass.
 本発明の液晶配向処理剤は、本発明の効果を損なわない限りにおいて、液晶配向処理剤を塗布した際の液晶配向膜の塗膜均一性や表面平滑性を向上させる有機溶媒、すなわち貧溶媒を用いることができる。液晶配向膜の塗膜均一性や表面平滑性を向上させる貧溶媒の具体例を以下に挙げる。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2-(メトキシメトキシ)エタノール、エチレングリコールイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールものヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの表面張力が低い有機溶媒である。
The liquid crystal alignment treatment agent of the present invention is an organic solvent that improves the coating film uniformity and surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied, i.e., a poor solvent, as long as the effects of the present invention are not impaired. Can be used. Specific examples of the poor solvent for improving the coating film uniformity and surface smoothness of the liquid crystal alignment film are given below.
For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentane Diol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2 Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate , Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 2- (methoxymethoxy) ethanol, ethylene glycol isopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol hexyl ether, 2- (hexyloxy) ethanol, Furfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol Monoethyl ether, diethylene glycol monobutyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, 1- (butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, dipropylene glycol monomethyl Ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene group Cole monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methyl lactate, lactic acid Ethyl, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate Ester, lactic n- propyl ester, lactate n- butyl ester, surface tension, such as lactic isoamyl ester is low organic solvent.
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテルなど(これらは、成分(D)ともいう)を用いることが好ましい。
 貧溶媒(成分(D))の使用量は、液晶配向処理剤に含まれる有機溶媒全体の1~80質量%であることが好ましい。なかでも、5~70質量%が好ましい。より好ましくは10~70質量%である。
Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol It is preferable to use monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether or the like (these are also referred to as component (D)).
The amount of the poor solvent (component (D)) used is preferably 1 to 80% by mass of the whole organic solvent contained in the liquid crystal aligning agent. Among these, 5 to 70% by mass is preferable. More preferably, it is 10 to 70% by mass.
 本発明の液晶配向処理剤中の有機溶媒の好ましい組み合わせは、表1~3に示すとおりである。 Preferred combinations of organic solvents in the liquid crystal aligning agent of the present invention are as shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表1~3中、NEPはN-エチル-2-ピロリドンを示し、NMPはN-メチル-2-ピロリドンを示し、γ-BLはγブチロラクトンを示し、BCSはエチレングリコールモノブチルエーテルを示し、ECSはエチレングリコールモノエチルエーテルを示し、MCはジエチレングリコールモノメチルエーテルを示し、ECはジエチレングリコールモノエチルエーテルを示し、PGMEはプロピレングリコールモノメチルエーテルを示す。
 これら有機溶媒の組み合わせのなかでも、2-1~2-10、2-14~2-17、2-19~2-25、2-29~2-32、2-34~2-40又は2-44~2-46の組み合わせが好ましい。より好ましいのは、2-1~2-10、2-14~2-17、2-19~2-2-25、2-32又は2-38-2-40の組み合わせである。特に好ましいのは、2-2、2-8~2-10、2-17、2-23~2-25、2-32又は2-38~2-40の組み合わせである。
In Tables 1 to 3, NEP represents N-ethyl-2-pyrrolidone, NMP represents N-methyl-2-pyrrolidone, γ-BL represents γ-butyrolactone, BCS represents ethylene glycol monobutyl ether, and ECS represents Ethylene glycol monoethyl ether, MC represents diethylene glycol monomethyl ether, EC represents diethylene glycol monoethyl ether, and PGME represents propylene glycol monomethyl ether.
Among these organic solvent combinations, 2-1 to 2-10, 2-14 to 2-17, 2-19 to 2-25, 2-29 to 2-32, 2-34 to 2-40, or 2 A combination of -44 to 2-46 is preferred. More preferred are combinations of 2-1 to 2-10, 2-14 to 2-17, 2-19 to 2-2-25, 2-32 or 2-38-2-40. Particularly preferred are combinations of 2-2, 2-8 to 2-10, 2-17, 2-23 to 2-25, 2-32 or 2-38 to 2-40.
 本発明の液晶配向処理剤には、本発明の効果を損なわない限りにおいて、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を導入することができる。これらの置換基や重合性不飽和結合は、架橋性化合物中に2個以上有することが好ましい。 As long as the effects of the present invention are not impaired, the liquid crystal aligning agent of the present invention includes a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, and a lower alkoxyalkyl group. A crosslinkable compound having at least one substituent selected from the group or a crosslinkable compound having a polymerizable unsaturated bond can be introduced. It is preferable to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン、1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。 Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxy) Propoxy) phenyl) ethyl) phenyl) propane, 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3 -Epoxypropoxy) phenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol and the like.
 オキセタン基を有する架橋性化合物としては、下記の式[3]で示すオキセタン基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000037
 具体的には、下記の式[3-1]~[3-11]で示される架橋性化合物である。
Figure JPOXMLDOC01-appb-C000038
The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [3].
Figure JPOXMLDOC01-appb-C000037
Specifically, it is a crosslinkable compound represented by the following formulas [3-1] to [3-11].
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 シクロカーボネート基を有する架橋性化合物としては、下記の式[4]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000041
 具体的には、下記の式[4-1]~[4-37]で示される架橋性化合物である。
Figure JPOXMLDOC01-appb-C000042
The crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000041
Specifically, it is a crosslinkable compound represented by the following formulas [4-1] to [4-37].
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
(式[4-24]中、nは1~5の整数である。式[4-25]中、nは1~5の整数である。式[4-36]中、nは1~100の整数である。式[4-37]中、nは1~10の整数である。)
Figure JPOXMLDOC01-appb-C000049
(In the formula [4-24], n is an integer of 1 to 5. In the formula [4-25], n is an integer of 1 to 5. In the formula [4-36], n is 1 to 100. (In the formula [4-37], n is an integer of 1 to 10.)
 さらに、下記の式[4-38]~[4-40]に示される少なくとも1種の構造を有するポリシロキサンを挙げることもできる。
Figure JPOXMLDOC01-appb-C000050
(式[4-38]~[4-40]中、R、R、R、R及びRは、それぞれ独立して、式[4]で示される構造、水素原子、水酸基、炭素数1~10のアルキル基、アルコキシル基、脂肪族環又は芳香族環であり、少なくとも1つは式[4]で示される構造である。)
Further, polysiloxanes having at least one structure represented by the following formulas [4-38] to [4-40] can also be mentioned.
Figure JPOXMLDOC01-appb-C000050
(In the formulas [4-38] to [4-40], R 1 , R 2 , R 3 , R 4 and R 5 are each independently a structure represented by the formula [4], a hydrogen atom, a hydroxyl group, An alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an aliphatic ring or an aromatic ring, at least one having a structure represented by the formula [4].
 より具体的には、下記の式[4-41]及び式[4-42]の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000051
(式[4-42]中、nは1~10の整数である。)
More specifically, compounds of the following formulas [4-41] and [4-42] can be mentioned.
Figure JPOXMLDOC01-appb-C000051
(In the formula [4-42], n is an integer of 1 to 10)
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂、エチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基及び/又はアルコキシメチル基で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。メラミン誘導体及びベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。 Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril. -Formaldehyde resin, succinylamide-formaldehyde resin, ethyleneurea-formaldehyde resin and the like. Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group and / or an alkoxymethyl group can be used. Melamine derivatives and benzoguanamine derivatives can also exist as dimers or trimers. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 このようなメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド製)等が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。 Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (above, manufactured by Sanwa Chemical Co., Ltd.) and Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236, Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123, etc. Methoxymethylated ethoxy Methylated butoxymethylated benzoguanamine such as Cymel 1128-10, Butoxymethylated benzoguanamine such as Cymel 1128, Carboxyl-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide) and the like. Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, methoxymethylolated glycoluril such as Powderlink 1174, and the like.
 ヒドロキシル基若しくはアルコキシル基を有するベンゼン又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン、2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。
 具体的には、国際公開公報WO2011/132751(2011.10.27公開)の62頁~66頁に掲載される、式[6-1]~[6-48]で示される架橋性化合物が挙げられる。
Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
Specifically, the crosslinkable compounds represented by the formulas [6-1] to [6-48], which are listed on pages 62 to 66 of International Publication No. WO2011 / 132751 (published 2011.10.27). It is done.
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル、N-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物;等が挙げられる。
 さらに、下記の式[6]で示される化合物を用いることもできる。
Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol. Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane and glycerin polyglycidyl ether poly (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) Acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate, neopentyl glycol dihydroxypivalate ( Crosslinkable compounds having two polymerizable unsaturated groups in the molecule such as (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropylene (Meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro-2-hydroxypropyl ( Crosslinkable compounds having one polymerizable unsaturated group in the molecule such as (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester, N-methylol (meth) acrylamide; Can be mentioned.
Furthermore, a compound represented by the following formula [6] can also be used.
Figure JPOXMLDOC01-appb-C000052
 式[6]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環及びフェナントレン環からからなる群から選ばれる基であり、Eは下記の式[6a]及び式[6b]から選ばれる基であり、nは1~4の整数である。
Figure JPOXMLDOC01-appb-C000053
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。
 また、本発明の液晶配向処理剤中に含有される架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
 本発明の液晶配向処理剤における、架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1~150質量部であることが好ましい。架橋反応が進行し目的の効果を発現し、かつ液晶の配向性を低下させないためには、すべての重合体成分100質量部に対して0.1~100質量部がより好ましく、1~50質量部が最も好ましい。
Figure JPOXMLDOC01-appb-C000052
In Formula [6], E 1 is a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring, and a phenanthrene ring, and E 2 Is a group selected from the following formulas [6a] and [6b], and n is an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000053
The said compound is an example of a crosslinkable compound, It is not limited to these.
Moreover, the crosslinkable compound contained in the liquid-crystal aligning agent of this invention may be one type, and may combine two or more types.
The content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components. In order for the crosslinking reaction to proceed and to exhibit the desired effect and not to reduce the orientation of the liquid crystal, the amount is more preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of all polymer components, and 1 to 50 parts by weight. Part is most preferred.
 本発明の液晶配向処理剤を用いて形成される液晶配向膜中の電荷移動を促進し、該液晶配向膜を用いた液晶セルの電荷抜けを促進させる化合物として、国際公開公報WO2011/132751(2011.10.27公開)の69頁~73頁に掲載される、式[M1]~[M156]で示される窒素含有複素環アミン化合物を添加することもできる。これらのアミン化合物は、特定重合体の溶液に直接添加しても構わないが、適当な溶媒で濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した特定重合体を溶解させる有機溶媒であれば特に限定されない。 As a compound that promotes charge transfer in a liquid crystal alignment film formed by using the liquid crystal alignment treatment agent of the present invention and promotes charge release of a liquid crystal cell using the liquid crystal alignment film, International Publication No. WO2011 / 132751 (2011). Of the nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156], which are listed on pages 69 to 73 of the publication of .10.27). These amine compounds may be added directly to the solution of the specific polymer, but may be added after a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent. preferable. The solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer described above.
 本発明の液晶配向処理剤は、本発明の効果を損なわない限りにおいて、液晶配向処理剤を塗布した際の重合体被膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。さらに、液晶配向膜と基板との密着性を向上させる化合物などを用いることもできる。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
As long as the effects of the present invention are not impaired, the liquid crystal aligning agent of the present invention can use a compound that improves the uniformity of the film thickness and surface smoothness of the polymer film when the liquid crystal aligning agent is applied. . Furthermore, a compound that improves the adhesion between the liquid crystal alignment film and the substrate can also be used.
Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) and the like. The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. It is.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、以下に示す官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-tri Toxisilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxy Silane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyl Trimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, poly Lopylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl -2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 基板との密着性を向上させる化合物を使用する場合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると、密着性向上の効果は期待できず、30質量部よりも多くなると、液晶の配向性が悪くなる場合がある。
 本発明の液晶配向処理剤には、上記の貧溶媒、架橋性化合物、膜厚の均一性や表面平滑性を向上させる化合物及び基板との密着させる化合物の他に、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質を添加してもよい。
When using a compound that improves the adhesion to the substrate, it is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent. 1 to 20 parts by mass. If the amount is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may be deteriorated.
The liquid crystal alignment treatment agent of the present invention impairs the effects of the present invention, in addition to the above poor solvent, crosslinkable compound, compound for improving film thickness uniformity and surface smoothness, and compound for adhering to a substrate. If it is within the range, a dielectric or conductive material may be added for the purpose of changing electrical characteristics such as dielectric constant and conductivity of the liquid crystal alignment film.
<液晶配向膜・液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では、配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。
<Liquid crystal alignment film / liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. Moreover, in the case of vertical alignment use etc., it can be used as a liquid crystal alignment film without alignment treatment. The substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法などが一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により50~300℃、好ましくは80~250℃で溶媒を蒸発させて重合体被膜とすることができる。焼成後の重合体被膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。
 液晶を水平配向や傾斜配向させる場合は、焼成後の重合体被膜をラビング又は偏光紫外線照射などで処理する。
The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, inkjet method, and the like are common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
After the liquid crystal alignment treatment agent is applied on the substrate, the solvent is evaporated at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven. It can be a united film. If the thickness of the polymer film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm.
When the liquid crystal is horizontally or tilted, the polymer film after baking is treated with rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。
 液晶セル作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法などが例示できる。
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
As a liquid crystal cell manufacturing method, a pair of substrates on which a liquid crystal alignment film is formed are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside, so that the other Examples include a method of bonding substrates and injecting liquid crystal under reduced pressure and a method of sealing liquid crystal by dropping a liquid crystal on a liquid crystal alignment film surface on which spacers are dispersed.
 さらに、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルトを制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルトを制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルトを調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルトを制御することが難しい垂直配向型の液晶層の形成に適している。
Furthermore, the liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board | substrates provided with the electrode, The polymeric compound superposed | polymerized by at least one of an active energy ray and a heat | fever between a pair of board | substrates. The liquid crystal composition is preferably used also for a liquid crystal display device produced through a step of polymerizing a polymerizable compound by applying active energy rays and heating while applying a voltage between electrodes. Here, ultraviolet rays are suitable as the active energy ray.
The liquid crystal display element controls a pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method. In the PSA method, a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and the photopolymerizable compound is irradiated with ultraviolet light. The pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. The PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
 すなわち、本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、液晶セルを作製し、紫外線の照射及び加熱の少なくとも一方により重合性化合物を重合することで液晶分子の配向を制御するものとすることができる。
 PSA方式の液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。
That is, in the liquid crystal display element of the present invention, a liquid crystal cell is prepared after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, and a polymerizable compound is obtained by at least one of ultraviolet irradiation and heating. The orientation of the liquid crystal molecules can be controlled by polymerizing.
To give an example of manufacturing a PSA type liquid crystal cell, a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded, the liquid crystal is injected under reduced pressure and sealed, the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed. .
 液晶には、熱や紫外線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基やメタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御ができなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。
The liquid crystal is mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation. Examples of the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule. In that case, the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. When the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of unreacted polymerizable compound increases and the liquid crystal display The burn-in characteristic of the element is deteriorated.
After the liquid crystal cell is produced, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
 さらに、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。
 活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を液晶配向処理剤中に添加する方法や、重合性基を含む重合体成分を用いる方法が挙げられる。本発明の液晶配向処理剤は、熱や紫外線の照射により、反応する2重結合部位を持つ特定化合物を含んでいるため、紫外線の照射及び加熱の少なくとも一方により液晶分子の配向を制御することができる。
Furthermore, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates. The liquid crystal display element manufactured through the process of arrange | positioning the liquid crystal aligning film containing this, and applying a voltage between electrodes is used preferably. Here, ultraviolet rays are suitable as the active energy ray.
In order to obtain a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat, a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent, A method using a coalescing component may be mentioned. Since the liquid crystal aligning agent of the present invention contains a specific compound having a double bond site that reacts by irradiation with heat or ultraviolet rays, the alignment of liquid crystal molecules can be controlled by at least one of ultraviolet irradiation and heating. it can.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射することで、液晶分子の配向を制御することができる。
 以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
If an example of liquid crystal cell production is given, prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure and sealing is performed, and a method in which the substrate is attached and sealed after the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed.
After the liquid crystal cell is manufactured, the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
As described above, the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
 以下に実施例を挙げて、本発明をさらに詳しく説明するが、これらに限定して解釈されるものではない。なお、実施例及び比較例で用いる化合物の略号は、以下のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention should not be construed as being limited thereto. In addition, the symbol of the compound used by an Example and a comparative example is as follows.
(テトラカルボン酸二無水物)
 CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
 TCA:下記の式で示されるテトラカルボン酸二無水物
 TDA:下記の式で示されるテトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000054
(Tetracarboxylic dianhydride)
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride BODA: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride TCA: represented by the following formula Tetracarboxylic dianhydride TDA: tetracarboxylic dianhydride represented by the following formula
Figure JPOXMLDOC01-appb-C000054
(特定側鎖型ジアミン化合物)
 PCH7DAB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
 PBCH5DAB:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
 m-PBCH5DABz:1,3-ジアミノ-5-{4-〔4-(トランス-4-n-ペンチルシクロヘキシル)フェニル〕フェノキシメチル}ベンゼン
Figure JPOXMLDOC01-appb-C000055
(Specific side chain diamine compounds)
PCH7DAB: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene PBCH5DAB: 1,3-diamino-4- {4- [trans-4- (trans-4 -N-pentylcyclohexyl) cyclohexyl] phenoxy} benzene m-PBCH5DABz: 1,3-diamino-5- {4- [4- (trans-4-n-pentylcyclohexyl) phenyl] phenoxymethyl} benzene
Figure JPOXMLDOC01-appb-C000055
(その他ジアミン化合物)
 p-PDA:p-フェニレンジアミン
 m-PDA:m-フェニレンジアミン
 DBA:3,5-ジアミノ安息香酸
 AP18:1,3-ジアミノ-4-オクタデシルオキシベンゼン
 ColDAB:下記の式で示されるジアミン化合物
Figure JPOXMLDOC01-appb-C000056
(Other diamine compounds)
p-PDA: p-phenylenediamine m-PDA: m-phenylenediamine DBA: 3,5-diaminobenzoic acid AP18: 1,3-diamino-4-octadecyloxybenzene ColDAB: diamine compound represented by the following formula
Figure JPOXMLDOC01-appb-C000056
(有機溶媒)
 NEP:N-エチル-2-ピロリドン
 NMP:N-メチル-2-ピロリドン
 γ-BL:γブチロラクトン
 BCS:エチレングリコールモノブチルエーテル
 ECS:エチレングリコールモノエチルエーテル
 MC:ジエチレングリコールモノメチルエーテル
 EC:ジエチレングリコールモノエチルエーテル
 PGME:プロピレングリコールモノメチルエーテル
(Organic solvent)
NEP: N-ethyl-2-pyrrolidone NMP: N-methyl-2-pyrrolidone γ-BL: γ-butyrolactone BCS: ethylene glycol monobutyl ether ECS: ethylene glycol monoethyl ether MC: diethylene glycol monomethyl ether EC: diethylene glycol monoethyl ether PGME: Propylene glycol monomethyl ether
 ポリイミド前駆体及びポリイミドに関する分子量やイミド化率等の物性は、以下のようにして測定、あるいは評価した。 The physical properties of the polyimide precursor and polyimide, such as molecular weight and imidization rate, were measured or evaluated as follows.
(ポリイミド前駆体及びポリイミドの分子量測定)
 合成例におけるポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803、KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量:約900,000、150,000、100,000、及び30,000)(東ソー社製)及びポリエチレングリコール(分子量:約12,000、4,000、及び1,000)(ポリマーラボラトリー社製)。
(Measurement of molecular weight of polyimide precursor and polyimide)
The molecular weight of polyimide in the synthesis example is as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and columns (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as described above.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol) / L, 10 ml / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight: (About 12,000, 4,000, and 1,000) (manufactured by Polymer Laboratory).
(イミド化率の測定)
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05質量%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500、日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5から10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(Measurement of imidization rate)
The imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder is put into an NMR sample tube (NMR sampling tube standard φ5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) mixed product) 0.53 ml. Was added and dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring machine (JNW-ECA500, manufactured by JEOL Datum). The imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, the peak integrated value of this proton, and a proton peak derived from the NH group of amic acid that appears in the vicinity of 9.5 to 10.0 ppm. Using the integrated value, the following formula was used.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
[ポリイミド及びポリイミド酸の合成]
<合成例1>
 CBDA(5.50g,28.0mmol)、PCH7DAB(3.20g,8.41mmol)、及びp-PDA(2.13g,19.7mmol)をNEP(32.5g)中で混合し、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量は25,100であり、重量平均分子量は74,800であった。
[Synthesis of polyimide and polyimide acid]
<Synthesis Example 1>
CBDA (5.50 g, 28.0 mmol), PCH7DAB (3.20 g, 8.41 mmol), and p-PDA (2.13 g, 19.7 mmol) were mixed in NEP (32.5 g) at 40 ° C. Reaction was performed for 6 hours to obtain a polyamic acid solution (1) having a resin solid content concentration of 25.0% by mass. The number average molecular weight of this polyamic acid was 25,100, and the weight average molecular weight was 74,800.
<合成例2>
 BODA(10.2g,40.8mmol)、PCH7DAB(9.70g,25.5mmol)、及びDBA(3.88g,25.5mmol)をNEP(42.6g)中で混合し、80℃で5時間反応させた。その後、CBDA(2.00g,10.2mmol)とNEP(34.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(2)を得た。このポリアミド酸の数平均分子量は24,200であり、重量平均分子量は64,000であった。
<Synthesis Example 2>
BODA (10.2 g, 40.8 mmol), PCH7DAB (9.70 g, 25.5 mmol), and DBA (3.88 g, 25.5 mmol) were mixed in NEP (42.6 g) and at 80 ° C. for 5 hours. Reacted. Thereafter, CBDA (2.00 g, 10.2 mmol) and NEP (34.8 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (2) having a resin solid content concentration of 25.0 mass%. . The number average molecular weight of this polyamic acid was 24,200, and the weight average molecular weight was 64,000.
<合成例3>
 合成例2で得られた樹脂固形分濃度が25.0質量%のポリアミド酸溶液(2)(90.0g)に、NEPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(11.6g)、及びピリジン(8.56g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(1800ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(3)を得た。このポリイミドのイミド化率は57%であり、数平均分子量は21,300であり、重量平均分子量は51,500であった。
<Synthesis Example 3>
NEP was added to the polyamic acid solution (2) (90.0 g) having a resin solid concentration of 25.0% by mass obtained in Synthesis Example 2 and diluted to 6% by mass, and then acetic anhydride (11 .6 g) and pyridine (8.56 g) were added and reacted at 80 ° C. for 4 hours. This reaction solution was poured into methanol (1800 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (3). The imidation ratio of this polyimide was 57%, the number average molecular weight was 21,300, and the weight average molecular weight was 51,500.
<合成例4>
 BODA(6.89g,27.5mmol)、PBCH5DAB(5.21g,12.0mmol)、及びDBA(3.42g,22.5mmol)をNEP(28.1g)中で混合し、80℃で5時間反応させ。その後、CBDA(1.35g,6.88mmol)とNEP(22.4g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(60.0g)にNEPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(13.5g)、及びピリジン(9.80g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(1500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(4)を得た。このポリイミドのイミド化率は79%であり、数平均分子量は19,200であり、重量平均分子量は48,200であった。
<Synthesis Example 4>
BODA (6.89 g, 27.5 mmol), PBCH5DAB (5.21 g, 12.0 mmol), and DBA (3.42 g, 22.5 mmol) were mixed in NEP (28.1 g) and at 80 ° C. for 5 hours. Let it react. Thereafter, CBDA (1.35 g, 6.88 mmol) and NEP (22.4 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25.0 mass%.
After adding NEP to the obtained polyamic acid solution (60.0 g) and diluting to 6% by mass, acetic anhydride (13.5 g) and pyridine (9.80 g) were added as an imidization catalyst, and Reacted for hours. This reaction solution was poured into methanol (1500 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (4). The imidation ratio of this polyimide was 79%, the number average molecular weight was 19,200, and the weight average molecular weight was 48,200.
<合成例5>
 BODA(5.95g,23.8mmol)、m-PBCH5DABz(4.56g,10.2mmol)、及びp-PDA(2.57g,23.8mmol)をNEP(25.0g)中で混合し、80℃で5時間反応させた。その後、CBDA(2.00g,10.2mmol)とNEP(20.3g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(55.0g)にNEPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(12.3g)、及びピリジン(9.11g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(1500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(5)を得た。このポリイミドのイミド化率は80%であり、数平均分子量は21,500であり、重量平均分子量は53,800であった。
<Synthesis Example 5>
BODA (5.95 g, 23.8 mmol), m-PBCH5DABz (4.56 g, 10.2 mmol), and p-PDA (2.57 g, 23.8 mmol) were mixed in NEP (25.0 g), and 80 The reaction was carried out at 5 ° C. for 5 hours. Thereafter, CBDA (2.00 g, 10.2 mmol) and NEP (20.3 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25.0 mass%.
After adding NEP to the obtained polyamic acid solution (55.0 g) and diluting to 6% by mass, acetic anhydride (12.3 g) and pyridine (9.11 g) were added as imidization catalysts, and Reacted for hours. This reaction solution was poured into methanol (1500 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (5). The imidation ratio of this polyimide was 80%, the number average molecular weight was 21,500, and the weight average molecular weight was 53,800.
<合成例6>
 TCA(4.50g,20.1mmol)、PCH7DAB(2.29g,6.02mmol)、及びm-PDA(1.52g,14.1mmol)をNEP(24.9g)中で混合し、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(6)を得た。このポリアミド酸の数平均分子量は25,100であり、重量平均分子量は71,900であった。
<Synthesis Example 6>
TCA (4.50 g, 20.1 mmol), PCH7DAB (2.29 g, 6.02 mmol), and m-PDA (1.52 g, 14.1 mmol) were mixed in NEP (24.9 g) at 40 ° C. The reaction was performed for 6 hours to obtain a polyamic acid solution (6) having a resin solid content concentration of 25.0% by mass. The number average molecular weight of this polyamic acid was 25,100, and the weight average molecular weight was 71,900.
<合成例7>
 TCA(7.25g,32.3mmol)、PBCH5DAB(4.20g,9.71mmol)、及びDBA(3.44g,22.6mmol)をNEP(44.7g)中で混合し、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(50.0g)にNEPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(6.05g)、及びピリジン(4.73g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(900ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(7)を得た。このポリイミドのイミド化率は54%であり、数平均分子量は21,800であり、重量平均分子量は56,200であった。
<Synthesis Example 7>
TCA (7.25 g, 32.3 mmol), PBCH5DAB (4.20 g, 9.71 mmol), and DBA (3.44 g, 22.6 mmol) were mixed in NEP (44.7 g) and at 40 ° C. for 6 hours. The reaction was performed to obtain a polyamic acid solution having a resin solid content concentration of 25.0% by mass.
After adding NEP to the obtained polyamic acid solution (50.0 g) and diluting to 6% by mass, acetic anhydride (6.05 g) and pyridine (4.73 g) were added as imidization catalysts, Reacted for hours. This reaction solution was poured into methanol (900 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (7). The imidation ratio of this polyimide was 54%, the number average molecular weight was 21,800, and the weight average molecular weight was 56,200.
<合成例8>
 TDA(2.98g,9.92mmol)、PCH7DAB(3.78g,9.93mmol)、及びDBA(3.53g,23.2mmol)をNEP(24.5g)中で混合し、80℃で5時間反応させた。その後、CBDA(4.55g,23.2mmol)とNEP(20.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(50.0g)にNEPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(11.1g)、及びピリジン(8.05g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(1500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(8)を得た。このポリイミドのイミド化率は76%であり、数平均分子量は20,700であり、重量平均分子量は52,500であった。
<Synthesis Example 8>
TDA (2.98 g, 9.92 mmol), PCH7DAB (3.78 g, 9.93 mmol), and DBA (3.53 g, 23.2 mmol) were mixed in NEP (24.5 g) and at 80 ° C. for 5 hours. Reacted. Thereafter, CBDA (4.55 g, 23.2 mmol) and NEP (20.1 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25.0 mass%.
NEP was added to the obtained polyamic acid solution (50.0 g), diluted to 6% by mass, acetic anhydride (11.1 g) and pyridine (8.05 g) were added as an imidization catalyst, and 3 ° C. was added at 90 ° C. Reacted for hours. This reaction solution was poured into methanol (1500 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (8). The imidation ratio of this polyimide was 76%, the number average molecular weight was 20,700, and the weight average molecular weight was 52,500.
<合成例9>
 TDA(3.29g,11.0mmol)、PBCH5DAB(4.74g,11.0mmol)、及びp-PDA(2.76g,25.5mmol)をNEP(26.1g)中で混合し、80℃で5時間反応させた。その後、CBDA(5.01g,25.5mmol)とNEP(21.3g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(50.5g)にNEPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(11.2g)、及びピリジン(8.21g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(1500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(9)を得た。このポリイミドのイミド化率は80%であり、数平均分子量は20,100であり、重量平均分子量は50,200であった。
<Synthesis Example 9>
TDA (3.29 g, 11.0 mmol), PBCH5DAB (4.74 g, 11.0 mmol), and p-PDA (2.76 g, 25.5 mmol) were mixed in NEP (26.1 g) at 80 ° C. The reaction was allowed for 5 hours. Thereafter, CBDA (5.01 g, 25.5 mmol) and NEP (21.3 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25.0 mass%.
After adding NEP to the obtained polyamic acid solution (50.5 g) and diluting to 6% by mass, acetic anhydride (11.2 g) and pyridine (8.21 g) were added as an imidization catalyst, and Reacted for hours. This reaction solution was poured into methanol (1500 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (9). The imidation ratio of this polyimide was 80%, the number average molecular weight was 20,100, and the weight average molecular weight was 50,200.
<合成例10>
 TDA(3.05g,10.2mmol)、m-PBCH5DABz(4.54g,10.2mmol)、及びDBA(3.61g,23.7mmol)をNEP(26.2g)中で混合し、80℃で5時間反応させた。その後、CBDA(4.65g,23.7mmol)とNEP(21.4g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(50.0g)にNEPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(11.2g)、及びピリジン(8.24g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(1500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(10)を得た。このポリイミドのイミド化率は80%であり、数平均分子量は20,500であり、重量平均分子量は52,900であった。
<Synthesis Example 10>
TDA (3.05 g, 10.2 mmol), m-PBCH5DABz (4.54 g, 10.2 mmol), and DBA (3.61 g, 23.7 mmol) were mixed in NEP (26.2 g) at 80 ° C. The reaction was performed for 5 hours. Thereafter, CBDA (4.65 g, 23.7 mmol) and NEP (21.4 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25.0 mass%.
After adding NEP to the obtained polyamic acid solution (50.0 g) and diluting to 6% by mass, acetic anhydride (11.2 g) and pyridine (8.24 g) were added as imidization catalysts, and Reacted for hours. This reaction solution was poured into methanol (1500 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (10). The imidation ratio of this polyimide was 80%, the number average molecular weight was 20,500, and the weight average molecular weight was 52,900.
<合成例11>
 BODA(5.21g,20.8mmol)、PCH7DAB(4.95g,13.0mmol)、及びDBA(1.98g,13.0mmol)をNMP(21.7g)中で混合し、80℃で5時間反応させた。その後、CBDA(1.02g,5.20mmol)とNMP(17.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(11)を得た。このポリアミド酸の数平均分子量は25,100であり、重量平均分子量は65,900であった。
<Synthesis Example 11>
BODA (5.21 g, 20.8 mmol), PCH7DAB (4.95 g, 13.0 mmol), and DBA (1.98 g, 13.0 mmol) were mixed in NMP (21.7 g) and at 80 ° C. for 5 hours. Reacted. Thereafter, CBDA (1.02 g, 5.20 mmol) and NMP (17.8 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (11) having a resin solid content concentration of 25.0 mass%. . The number average molecular weight of this polyamic acid was 25,100, and the weight average molecular weight was 65,900.
<合成例12>
 BODA(6.38g,25.5mmol)、AP18(6.00g,15.9mmol)、及びDBA(2.45g,16.1mmol)をNMP(26.5g)中で混合し、80℃で5時間反応させた。その後、CBDA(1.25g,6.37mmol)とNMP(21.7g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(12)を得た。このポリアミド酸の数平均分子量は18,900であり、重量平均分子量は54,800であった。
<Synthesis Example 12>
BODA (6.38 g, 25.5 mmol), AP18 (6.00 g, 15.9 mmol), and DBA (2.45 g, 16.1 mmol) were mixed in NMP (26.5 g) and at 80 ° C. for 5 hours. Reacted. Thereafter, CBDA (1.25 g, 6.37 mmol) and NMP (21.7 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (12) having a resin solid content concentration of 25.0 mass%. . The number average molecular weight of this polyamic acid was 18,900, and the weight average molecular weight was 54,800.
<合成例13>
 合成例12で得られた樹脂固形分濃度が25.0質量%のポリアミド酸溶液(12)(50.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.23g)、及びピリジン(4.65g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(13)を得た。このポリイミドのイミド化率は58%であり、数平均分子量は16,900であり、重量平均分子量は43,800であった。
<Synthesis Example 13>
NMP was added to the polyamic acid solution (12) (50.0 g) having a resin solid concentration of 25.0% by mass obtained in Synthesis Example 12 and diluted to 6% by mass, and then acetic anhydride (6 .23 g) and pyridine (4.65 g) were added and reacted at 80 ° C. for 4 hours. This reaction solution was poured into methanol (1000 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (13). The imidation ratio of this polyimide was 58%, the number average molecular weight was 16,900, and the weight average molecular weight was 43,800.
<合成例14>
 BODA(6.89g,27.5mmol)、ColDAB(5.40g,10.3mmol)、及びDBA(3.68g,24.2mmol)をNEP(28.6g)中で混合し、80℃で5.5時間反応させた。その後、CBDA(1.35g,6.88mmol)とNEP(23.4g)を加え、40℃で7時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(14)を得た。このポリアミド酸の数平均分子量は20,100であり、重量平均分子量は59,800であった。
<Synthesis Example 14>
BODA (6.89 g, 27.5 mmol), ColDAB (5.40 g, 10.3 mmol), and DBA (3.68 g, 24.2 mmol) were mixed in NEP (28.6 g) and 5.80 ° C. The reaction was allowed for 5 hours. Thereafter, CBDA (1.35 g, 6.88 mmol) and NEP (23.4 g) were added and reacted at 40 ° C. for 7 hours to obtain a polyamic acid solution (14) having a resin solid content concentration of 25.0 mass%. . The number average molecular weight of this polyamic acid was 20,100, and the weight average molecular weight was 59,800.
<合成例15>
 BODA(6.74g,26.9mmol)、ColDAB(5.28g,10.1mmol)、及びDBA(3.60g,23.7mmol)をNMP(27.9g)中で混合し、80℃で5.5時間反応させた。その後、CBDA(1.32g,6.73mmol)とNMP(22.9g)を加え、40℃で7時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(15)を得た。このポリアミド酸の数平均分子量は19,900であり、重量平均分子量は59,100であった。
<Synthesis Example 15>
BODA (6.74 g, 26.9 mmol), ColDAB (5.28 g, 10.1 mmol), and DBA (3.60 g, 23.7 mmol) were mixed in NMP (27.9 g) and 5.80 ° C. The reaction was performed for 5 hours. Thereafter, CBDA (1.32 g, 6.73 mmol) and NMP (22.9 g) were added and reacted at 40 ° C. for 7 hours to obtain a polyamic acid solution (15) having a resin solid content concentration of 25.0 mass%. . The number average molecular weight of this polyamic acid was 19,900, and the weight average molecular weight was 59,100.
<合成例16>
 合成例15で得られた樹脂固形分濃度が25.0質量%のポリアミド酸溶液(15)(55.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.81g)、及びピリジン(5.07g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(1100ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(16)を得た。このポリイミドのイミド化率は57%であり、数平均分子量は15,900であり、重量平均分子量は45,100であった。
 本発明のポリアミド酸及びポリイミドを、まとめて表4に示す。
<Synthesis Example 16>
NMP was added to the polyamic acid solution (15) (55.0 g) having a resin solid concentration of 25.0% by mass obtained in Synthesis Example 15 and diluted to 6% by mass, and then acetic anhydride (6 .81 g) and pyridine (5.07 g) were added and reacted at 80 ° C. for 4 hours. This reaction solution was poured into methanol (1100 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (16). The imidation ratio of this polyimide was 57%, the number average molecular weight was 15,900, and the weight average molecular weight was 45,100.
Table 4 summarizes the polyamic acid and polyimide of the present invention.
Figure JPOXMLDOC01-appb-T000057
*1:いずれもポリアミド酸であり、イミド化率は測定せず。
Figure JPOXMLDOC01-appb-T000057
* 1: All are polyamic acids and imidation ratio is not measured.
[液晶配向処理剤の調製]
 下記の実施例1~34及び比較例1~12は、液晶配向処理剤の調製例であり、いずれもが液晶配向処理剤の評価用である。
 実施例及び比較例で得られた液晶配向処理剤を用い、「液晶配向処理剤の印刷性評価」、「液晶配向処理剤のインクジェット塗布性評価」、「液晶セルの作製(通常セル)」、「液晶配向性及びプレチルト角の評価(通常セル)」、「液晶セルの作製(PSAセル)」、及び「液晶配向性の評価(PSAセル)」を行った。
[Preparation of liquid crystal alignment treatment agent]
The following Examples 1 to 34 and Comparative Examples 1 to 12 are preparation examples of the liquid crystal aligning agent, and all are for evaluation of the liquid crystal aligning agent.
Using the liquid crystal alignment treatment agents obtained in the examples and comparative examples, “printability evaluation of liquid crystal alignment treatment agent”, “inkjet applicability evaluation of liquid crystal alignment treatment agent”, “production of liquid crystal cell (normal cell)”, “Evaluation of liquid crystal alignment and pretilt angle (normal cell)”, “Preparation of liquid crystal cell (PSA cell)”, and “Evaluation of liquid crystal alignment (PSA cell)” were performed.
(液晶配向処理剤の印刷性評価)
 実施例及び比較例で得られた液晶配向処理剤を用いて印刷性評価を行った。印刷機には、簡易印刷機S15型(日本写真印刷社製)を用いた。印刷は、洗浄したクロム蒸着基板上に、印刷面積が80mm×80mm、印圧が0.2mm、捨て基板が5枚、印刷から仮乾燥までの時間が90秒、仮乾燥はホットプレート上にて70℃で5分間の条件で行った。
 得られた塗膜のピンホールの評価、液晶配向膜端部の直線性の評価、及び液晶配向膜端部の盛り上がりの評価を行った。
(Evaluation of printability of liquid crystal alignment treatment agent)
Printability evaluation was performed using the liquid crystal aligning agent obtained by the Example and the comparative example. A simple printer S15 type (manufactured by Nissha Printing Co., Ltd.) was used as the printer. For printing, the printed area is 80 mm x 80 mm, the printing pressure is 0.2 mm, the number of discarded substrates is 5 sheets, the time from printing to temporary drying is 90 seconds, and temporary drying is performed on a hot plate. The test was carried out at 70 ° C. for 5 minutes.
The pinhole of the obtained coating film was evaluated, the linearity of the liquid crystal alignment film end was evaluated, and the rise of the liquid crystal alignment film end was evaluated.
 ピンホールの評価は、塗膜をナトリウムランプの下で目視観察することで行った。具体的には、液晶配向膜上に確認されたピンホールの数を数え、ピンホールの数が少ないものほど、塗布性に優れるとした。 The pinhole was evaluated by visually observing the coating film under a sodium lamp. Specifically, the number of pinholes confirmed on the liquid crystal alignment film was counted, and the smaller the number of pinholes, the better the coatability.
 液晶配向膜の端部の直線性の評価は、印刷方向に対して右側端部の塗膜を光学顕微鏡(ニコン社製,ECLIPSE E600WPOL)で観察することにより行った。具体的には、光学顕微鏡により、倍率を25倍にして観察し、得られた塗膜画像である図1中の3と4の差、すなわち、図1中のAの長さを測定した。すべての塗膜画像は、同一倍率で得たものである。Aの長さが短いほど、液晶配向膜の端部の直線性に優れるとした。 Evaluation of the linearity of the edge part of a liquid crystal aligning film was performed by observing the coating film of a right side edge part with respect to a printing direction with an optical microscope (the Nikon company make, ECLIPSE E600WPOL). Specifically, the observation was performed with an optical microscope at a magnification of 25 times, and the difference between 3 and 4 in FIG. 1, which was the obtained coating film image, that is, the length of A in FIG. 1 was measured. All coating images were obtained at the same magnification. The shorter the length of A, the better the linearity of the end portion of the liquid crystal alignment film.
 液晶配向膜の端部の盛り上がりの評価は、印刷方向に対して右側端部の塗膜を光学顕微鏡で観察することにより行った。具体的には、光学顕微鏡により、倍率を25倍にして観察し、得られた塗膜画像(図2)の中のBの長さを測定した。すべての塗膜画像は、同一倍率で得たものである。このBの長さが短いほど、液晶配向膜の端部の盛り上がり5に優れるとした。
 表8~表10に、実施例及び比較例で得られた液晶配向膜のピンホールの数、Aの長さ及びBの長さを示す。
Evaluation of the bulge of the edge part of a liquid crystal aligning film was performed by observing the coating film of the right edge part with an optical microscope with respect to the printing direction. Specifically, observation was performed with an optical microscope at a magnification of 25 times, and the length of B in the obtained coating film image (FIG. 2) was measured. All coating images were obtained at the same magnification. The shorter the length of B, the better the bulge 5 at the end of the liquid crystal alignment film.
Tables 8 to 10 show the number of pinholes, the length of A, and the length of B of the liquid crystal alignment films obtained in Examples and Comparative Examples.
(液晶配向処理剤のインクジェット塗布性評価)
 実施例7で得られた液晶配向処理剤(7)及び実施例12で得られた液晶配向処理剤(12)を用いてインクジェット塗布性評価を行った。インクジェット塗布機には、HIS-200(日立プラントテクノロジー社製)を用いた。塗布は、洗浄したITO(酸化インジウムスズ)蒸着基板上に、塗布面積が70mm×70mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から仮乾燥までの時間が60秒、及び仮乾燥がホットプレート上にて70℃で5分間の条件で行った。
 得られた塗膜のピンホールの評価を、「液晶配向処理剤の印刷性評価」と同様の条件で行った。実施例7、12におけるピンホールの評価結果を、表8に示す。
(Evaluation of ink jet coatability of liquid crystal alignment treatment agent)
Using the liquid crystal aligning agent (7) obtained in Example 7 and the liquid crystal aligning agent (12) obtained in Example 12, inkjet applicability evaluation was performed. As the ink jet coater, HIS-200 (manufactured by Hitachi Plant Technology) was used. Application is on a cleaned ITO (indium tin oxide) vapor deposition substrate, the application area is 70 mm x 70 mm, the nozzle pitch is 0.423 mm, the scan pitch is 0.5 mm, the application speed is 40 mm / second, from application to temporary drying. The time was 60 seconds, and temporary drying was performed on a hot plate at 70 ° C. for 5 minutes.
The pinhole of the obtained coating film was evaluated under the same conditions as in “Evaluation of Printability of Liquid Crystal Alignment Agent”. Table 8 shows the pinhole evaluation results in Examples 7 and 12.
(液晶セルの作製(通常セル))
 実施例及び比較例で得られた液晶配向処理剤を、30mm×40mmのITO電極付き基板のITO面にスピンコートし、ホットプレート上にて80℃で5分間、熱循環型クリーンオーブン中にて220℃で30分間加熱処理をし、膜厚が100nmのポリイミド液晶配向膜付きのITO基板を得た。このITO基板の塗膜面を、ロール径が120mmのラビング装置でレーヨン布を用いて、ロール回転数が1000rpm、ロール進行速度が50mm/sec、及び押し込み量が0.1mmの条件でラビング処理した。
 得られた液晶配向膜付きのITO基板を2枚用意し、液晶配向膜面を内側にして6μmのスペーサーを挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、MLC-6608(メルク・ジャパン社製)を注入し、注入口を封止して液晶セル(通常セル)を得た。
(Production of liquid crystal cell (normal cell))
The liquid crystal alignment treatment agents obtained in the examples and comparative examples were spin-coated on the ITO surface of a 30 mm × 40 mm ITO electrode substrate, and heated on a hot plate at 80 ° C. for 5 minutes in a thermal circulation clean oven. Heat treatment was performed at 220 ° C. for 30 minutes to obtain an ITO substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm. The coated surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm. .
Two ITO substrates with the obtained liquid crystal alignment film were prepared, combined with a 6 μm spacer sandwiched with the liquid crystal alignment film surface on the inside, and the periphery was adhered with a sealant to produce an empty cell. MLC-6608 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell (ordinary cell).
(液晶配向性及びプレチルト角の評価(通常セル))
 上記で得られた液晶セルを用いて、液晶配向性及びプレチルト角の評価を行った。液晶配向性は、液晶セルを偏光顕微鏡(ニコン社製,ECLIPSE E600WPOL)で観察し、配向欠陥の有無を確認した。
 また、プレチルト角は、液晶注入後、95℃で5分間加熱処理した後、さらに120℃で5時間加熱処理を行った後、測定した。さらに、液晶注入後、95℃で5分間加熱処理した液晶セルに、365nm換算で10J/cmの紫外線を照射した後で、プレチルト角を測定した。
 95℃で5分間加熱処理した後のプレチルト角に対して、120℃で5時間過熱処理した後、又は紫外線を照射した後のプレチルト角の変化が小さいものほど、熱又は紫外線に対するプレチルト角の安定性が高いこととした。
 なお、プレチルト角は、PAS-301(ELSICON社製)を用いて室温で測定した。さらに、紫外線の照射は、卓上型UV硬化装置(HCT3B28HEX-1)(センライト製)を用いて行った。
 実施例及び比較例で得られた液晶セルの液晶配向性及びプレチルト角の結果は、表11~表13に示す。
(Evaluation of liquid crystal orientation and pretilt angle (normal cell))
Using the liquid crystal cell obtained above, the liquid crystal orientation and the pretilt angle were evaluated. The liquid crystal alignment was confirmed by observing the liquid crystal cell with a polarizing microscope (Nikon Corporation, ECLIPSE E600WPOL) to check for alignment defects.
The pretilt angle was measured after heat treatment at 95 ° C. for 5 minutes after liquid crystal injection, and further at 120 ° C. for 5 hours. Furthermore, after injecting the liquid crystal, the pretilt angle was measured after irradiating the liquid crystal cell heated at 95 ° C. for 5 minutes with ultraviolet rays of 10 J / cm 2 in terms of 365 nm.
The smaller the change in the pretilt angle after the heat treatment at 120 ° C for 5 hours or after the ultraviolet irradiation, the more stable the pretilt angle against heat or ultraviolet light after the heat treatment at 95 ° C for 5 minutes. It was decided that it was high.
The pretilt angle was measured at room temperature using PAS-301 (manufactured by ELSICON). Furthermore, ultraviolet irradiation was performed using a tabletop UV curing device (HCT3B28HEX-1) (manufactured by Senlite).
Tables 11 to 13 show the results of liquid crystal alignment and pretilt angles of the liquid crystal cells obtained in the examples and comparative examples.
(液晶セルの作製(PSAセル))
 実施例5で得られた液晶配向処理剤(5)、実施例6で得られた液晶配向処理剤(6)、実施例11で得られた液晶配向処理剤(11)、実施例17で得られた液晶配向処理剤(17)及び実施例30で得られた液晶配向処理剤(30)を、中心に10mm×10mmのパターン間隔20μmのITO電極付き基板と、中心に10mm×40mmのITO電極付き基板のITO面にスピンコートし、ホットプレート上にて80℃で5分間、熱循環型クリーンオーブン中にて220℃で30分間加熱処理をして、膜厚が100nmのポリイミド塗膜を得た。塗膜面を純水にて洗浄し、その後、熱循環型クリーンオーブン中にて100℃で15分間加熱処理をして、液晶配向膜付き基板を得た。
 この液晶配向膜付き基板を、液晶配向膜面を内側にして、6μmのスペーサーを挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、MLC-6608(メルク・ジャパン社製)に、下記の式で示される重合性化合物(1)を、MLC-6608の100質量%に対して重合性化合物を0.3質量%混合した液晶を注入し、注入口を封止して、液晶セルを得た。
Figure JPOXMLDOC01-appb-C000058
 得られた液晶セルに、交流5Vの電圧を印加しながら、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で20J/cmの紫外線照射を行い、液晶の配向方向が制御された液晶セル(PSAセル)を得た。液晶セルに紫外線を照射している際の照射装置内の温度は、50℃であった。
(Preparation of liquid crystal cell (PSA cell))
Liquid crystal alignment treatment agent (5) obtained in Example 5, liquid crystal alignment treatment agent (6) obtained in Example 6, liquid crystal alignment treatment agent (11) obtained in Example 11, obtained in Example 17 The liquid crystal aligning agent (17) obtained and the liquid crystal aligning agent (30) obtained in Example 30 were placed in the center with a substrate with ITO electrodes having a pattern spacing of 20 μm of 10 mm × 10 mm and an ITO electrode having a center of 10 mm × 40 mm. Spin coat the ITO surface of the attached substrate and heat-treat on a hot plate at 80 ° C. for 5 minutes and in a heat circulating clean oven at 220 ° C. for 30 minutes to obtain a polyimide coating film with a film thickness of 100 nm. It was. The coating surface was washed with pure water, and then heat-treated at 100 ° C. for 15 minutes in a heat-circulating clean oven to obtain a substrate with a liquid crystal alignment film.
This substrate with a liquid crystal alignment film was combined with a liquid crystal alignment film surface inside, with a 6 μm spacer in between, and the periphery was adhered with a sealant to produce an empty cell. A polymerizable compound (1) represented by the following formula was added to MLC-6608 (manufactured by Merck Japan Co., Ltd.) by a reduced pressure injection method into this empty cell, and the polymerizable compound was added to 100% by mass of MLC-6608. A liquid crystal cell was obtained by injecting liquid crystal mixed by 3% by mass and sealing the injection port.
Figure JPOXMLDOC01-appb-C000058
While applying an AC voltage of 5 V to the obtained liquid crystal cell, using a metal halide lamp with an illuminance of 60 mW, the wavelength of 350 nm or less was cut, and ultraviolet irradiation of 20 J / cm 2 in terms of 365 nm was performed, and the alignment direction of the liquid crystal A liquid crystal cell (PSA cell) was controlled. The temperature in the irradiation apparatus when the liquid crystal cell was irradiated with ultraviolet rays was 50 ° C.
(液晶配向性の評価(PSAセル))
 得られた液晶セルの紫外線照射前と紫外線照射後の液晶の応答速度を測定した。応答速度は、透過率90%から透過率10%までのT90→T10を測定した。実施例及び比較例で得られたPSAセルは、紫外線照射前の液晶セルに比べて、紫外線照射後の液晶セルの応答速度が早くなったことから、液晶の配向方向が制御されていることを確認した。
 また、いずれの液晶セルにおいても、偏光顕微鏡観察により、液晶は均一に配向していることを確認した。
(Evaluation of liquid crystal alignment (PSA cell))
The response speed of the liquid crystal before and after ultraviolet irradiation of the obtained liquid crystal cell was measured. As the response speed, T90 → T10 from 90% transmittance to 10% transmittance was measured. The PSA cells obtained in the examples and comparative examples have a higher response speed of the liquid crystal cell after ultraviolet irradiation than that of the liquid crystal cell before ultraviolet irradiation. confirmed.
Moreover, in any liquid crystal cell, it was confirmed by polarizing microscope observation that the liquid crystal was uniformly aligned.
 以下に、実施例1~34及び比較例1~12について、詳しく説明するが、各例における液晶配向処理剤の調製条件については、表5~7にまとめて示した。
 また、実施例1~34及び比較例1~12で得られた液晶配向処理剤を用いて、「液晶配向処理剤の印刷性評価」、「液晶配向処理剤のインクジェット塗布性評価」、「液晶セルの作製(通常セル)」、「液晶配向性及びプレチルト角の評価(通常セル)」、「液晶セルの作製(PSAセル)」、「液晶配向性の評価(PSAセル)」等を行った。その結果は、まとめて表8~13に示した。
Examples 1 to 34 and Comparative Examples 1 to 12 will be described in detail below. The conditions for preparing the liquid crystal aligning agent in each example are summarized in Tables 5 to 7.
In addition, using the liquid crystal alignment treatment agents obtained in Examples 1 to 34 and Comparative Examples 1 to 12, “liquid crystal alignment treatment agent printability evaluation”, “liquid crystal alignment treatment agent inkjet applicability evaluation”, “liquid crystal “Manufacture of cell (normal cell)”, “Evaluation of liquid crystal alignment and pretilt angle (normal cell)”, “Preparation of liquid crystal cell (PSA cell)”, “Evaluation of liquid crystal alignment (PSA cell)”, etc. . The results are summarized in Tables 8-13.
<実施例1>
 合成例1で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(1)(10.1g)にNEP(32.0g)を加え、25℃にて2時間攪拌して液晶配向処理剤(1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(1)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 1>
NEP (32.0 g) was added to the polyamic acid solution (1) (10.1 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 1, and the mixture was stirred at 25 ° C. for 2 hours to perform liquid crystal alignment treatment. Agent (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (1), production of cells and various evaluations were performed under the above-described conditions.
<実施例2>
 合成例1で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(1)(10.0g)にNEP(12.1g)、BCS(11.8g)及びEC(7.84g)を加え、25℃にて2時間攪拌して液晶配向処理剤(2)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(2)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 2>
NEP (12.1 g), BCS (11.8 g) and EC (7.84 g) were added to the polyamic acid solution (1) (10.0 g) having a resin solid content concentration of 25.0 mass% obtained in Synthesis Example 1. In addition, the liquid crystal aligning agent (2) was obtained by stirring at 25 ° C. for 2 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (2), cell preparation and various evaluations were performed under the above-described conditions.
<実施例3>
 合成例2で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(2)(10.0g)にNEP(31.7g)を加え、25℃にて2時間攪拌して液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(3)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 3>
NEP (31.7 g) was added to the polyamic acid solution (2) (10.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 2, and the mixture was stirred at 25 ° C. for 2 hours to perform liquid crystal alignment treatment. Agent (3) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (3), cell preparation and various evaluations were performed under the above-described conditions.
<実施例4>
 合成例2で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(2)(10.0g)にNEP(14.0g)及びBCS(17.6g)を加え、25℃にて2時間攪拌して液晶配向処理剤(4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(4)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 4>
NEP (14.0 g) and BCS (17.6 g) were added to the polyamic acid solution (2) (10.0 g) having a resin solid content concentration of 25.0 mass% obtained in Synthesis Example 2, and 2 at 25 ° C. The liquid crystal aligning agent (4) was obtained by stirring for a period of time. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (4), cell preparation and various evaluations were performed under the above-described conditions.
<実施例5>
 合成例3で得られたポリイミド粉末(3)(2.55g)にNEP(40.0g)を加え、70℃にて24時間攪拌して液晶配向処理剤(5)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(5)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 5>
NEP (40.0 g) was added to the polyimide powder (3) (2.55 g) obtained in Synthesis Example 3, and the mixture was stirred at 70 ° C. for 24 hours to obtain a liquid crystal aligning agent (5). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (5), cell preparation and various evaluations were performed under the above-described conditions.
<実施例6>
 合成例3で得られたポリイミド粉末(3)(2.54g)にNEP(14.6g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(7.30g)及びBCS(17.9g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(6)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(6)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 6>
NEP (14.6 g) was added to the polyimide powder (3) (2.54 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. NEP (7.30g) and BCS (17.9g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (6). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (6), production of cells and various evaluations were performed under the above-described conditions.
<実施例7>
 合成例3で得られたポリイミド粉末(3)(2.50g)にNEP(29.7g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(14.8g)及びBCS(36.4g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(7)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(7)を用いて、上記した条件のもとで、「液晶配向処理剤のインクジェット塗布性評価」を行った。
<Example 7>
NEP (29.7 g) was added to the polyimide powder (3) (2.50 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. NEP (14.8g) and BCS (36.4g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (7). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (7), “evaluation of ink jet coatability of liquid crystal aligning agent” was performed under the above-described conditions.
<実施例8>
 合成例3で得られたポリイミド粉末(3)(2.55g)にNEP(17.3g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(8.71g)、BCS(8.01g)及びMC(6.00g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(8)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 8>
NEP (17.3 g) was added to the polyimide powder (3) (2.55 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. NEP (8.71 g), BCS (8.01 g) and MC (6.00 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (8). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (8), cell preparation and various evaluations were performed under the above-described conditions.
<実施例9>
 合成例3で得られたポリイミド粉末(3)(2.56g)にNEP(18.7g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(9.40g)、BCS(6.00g)及びEC(6.00g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(9)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(9)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 9>
NEP (18.7 g) was added to the polyimide powder (3) (2.56 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. NEP (9.40 g), BCS (6.00 g) and EC (6.00 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (9). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (9), cell preparation and various evaluations were performed under the above-described conditions.
<実施例10>
 合成例3で得られたポリイミド粉末(3)(2.55g)にNEP(17.3g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(8.70g)及びPGME(14.0g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(10)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(10)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 10>
NEP (17.3 g) was added to the polyimide powder (3) (2.55 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. NEP (8.70g) and PGME (14.0g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (10). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (10), cell preparation and various evaluations were performed under the above-described conditions.
<実施例11>
 合成例3で得られたポリイミド粉末(3)(2.55g)にNEP(16.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNMP(6.02g)及びBCS(18.0g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(11)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(11)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 11>
NEP (16.0 g) was added to the polyimide powder (3) (2.55 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. NMP (6.02g) and BCS (18.0g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (11). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (11), production of cells and various evaluations were performed under the above-described conditions.
<実施例12>
 合成例3で得られたポリイミド粉末(3)(2.50g)にNEP(27.6g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNMP(10.3g)及びBCS(31.0g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(12)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(12)を用いて、上記した条件のもとで、「液晶配向処理剤のインクジェット塗布性評価」を行った。
<Example 12>
NEP (27.6 g) was added to the polyimide powder (3) (2.50 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. NMP (10.3g) and BCS (31.0g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (12). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (12), “evaluation of ink-jet coating property of liquid crystal aligning agent” was performed under the above-described conditions.
<実施例13>
 合成例3で得られたポリイミド粉末(3)(2.55g)にNEP(16.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にγ-BL(4.02g)及びBCS(20.0g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(13)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(13)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 13>
NEP (16.0 g) was added to the polyimide powder (3) (2.55 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, γ-BL (4.02 g) and BCS (20.0 g) were added and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (13). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (13), a cell was prepared and various evaluations were performed under the above-described conditions.
<実施例14>
 合成例4で得られたポリイミド粉末(4)(2.55g)にNEP(12.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(6.02g)及びBCS(22.0g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(14)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(14)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 14>
NEP (12.0 g) was added to the polyimide powder (4) (2.55 g) obtained in Synthesis Example 4 and dissolved by stirring at 70 ° C. for 24 hours. NEP (6.02g) and BCS (22.0g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (14). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (14), cell preparation and various evaluations were performed under the above-described conditions.
<実施例15>
 合成例4で得られたポリイミド粉末(4)(2.57g)にNEP(16.1g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(8.10g)及びECS(16.1g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(15)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 15>
NEP (16.1 g) was added to the polyimide powder (4) (2.57 g) obtained in Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours. NEP (8.10g) and ECS (16.1g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (15), a cell was prepared and various evaluations were performed under the above-described conditions.
<実施例16>
 合成例4で得られたポリイミド粉末(4)(2.53g)にNEP(18.5g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(9.20g)、BCS(7.93g)及びMC(3.97g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(16)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(16)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 16>
NEP (18.5 g) was added to the polyimide powder (4) (2.53 g) obtained in Synthesis Example 4 and dissolved by stirring at 70 ° C. for 24 hours. NEP (9.20 g), BCS (7.93 g) and MC (3.97 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (16). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (16), cell preparation and various evaluations were performed under the above-described conditions.
<実施例17>
 合成例4で得られたポリイミド粉末(4)(2.55g)にNEP(16.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNMP(10.0g)及びBCS(14.1g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(17)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(17)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 17>
NEP (16.0 g) was added to the polyimide powder (4) (2.55 g) obtained in Synthesis Example 4 and dissolved by stirring at 70 ° C. for 24 hours. NMP (10.0g) and BCS (14.1g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (17). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (17), cell preparation and various evaluations were performed under the above-described conditions.
<実施例18>
 合成例4で得られたポリイミド粉末(4)(2.55g)にNEP(20.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にγ-BL(4.00g)及びBCS(16.0g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(18)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(18)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 18>
NEP (20.0 g) was added to the polyimide powder (4) (2.55 g) obtained in Synthesis Example 4 and dissolved by stirring at 70 ° C. for 24 hours. Γ-BL (4.00 g) and BCS (16.0 g) were added to this solution and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (18). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (18), production of cells and various evaluations were performed under the above-described conditions.
<実施例19>
 合成例5で得られたポリイミド粉末(5)(2.55g)にNEP(12.5g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(3.54g)及びBCS(24.0g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(19)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(19)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 19>
NEP (12.5 g) was added to the polyimide powder (5) (2.55 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. NEP (3.54g) and BCS (24.0g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (19). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (19), cell preparation and various evaluations were performed under the above-described conditions.
<実施例20>
 合成例5で得られたポリイミド粉末(5)(2.56g)にNEP(13.4g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(6.70g)、BCS(16.1g)及びMC(4.02g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(20)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(20)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 20>
NEP (13.4 g) was added to the polyimide powder (5) (2.56 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. NEP (6.70 g), BCS (16.1 g) and MC (4.02 g) were added to this solution and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (20). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (20), cell preparation and various evaluations were performed under the above-described conditions.
<実施例21>
 合成例5で得られたポリイミド粉末(5)(2.55g)にNEP(12.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNMP(10.0g)及びBCS(18.1g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(21)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(21)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 21>
NEP (12.0 g) was added to the polyimide powder (5) (2.55 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. NMP (10.0g) and BCS (18.1g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (21). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (21), cell preparation and various evaluations were performed under the above-described conditions.
<実施例22>
 合成例5で得られたポリイミド粉末(5)(2.55g)にNEP(17.8g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にγ-BL(2.00g)及びBCS(20.0g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(22)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(22)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 22>
NEP (17.8 g) was added to the polyimide powder (5) (2.55 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. Γ-BL (2.00 g) and BCS (20.0 g) were added to this solution and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (22). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (22), cell preparation and various evaluations were performed under the above-described conditions.
<実施例23>
 合成例6で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(6)(10.0g)にNEP(6.21g)及びBCS(25.5g)を加え、25℃にて2時間攪拌して液晶配向処理剤(23)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(23)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 23>
NEP (6.21 g) and BCS (25.5 g) were added to the polyamic acid solution (6) (10.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 6, and 2 at 25 ° C. The liquid crystal aligning agent (23) was obtained by stirring for a time. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (23), cell preparation and various evaluations were performed under the above-described conditions.
<実施例24>
 合成例6で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(6)(10.0g)にNEP(16.0g)、BCS(7.87g)及びPGME(7.84g)を加え、25℃にて2時間攪拌して液晶配向処理剤(24)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(24)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 24>
NEP (16.0 g), BCS (7.87 g) and PGME (7.84 g) were added to the polyamic acid solution (6) (10.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 6. In addition, the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (24). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (24), cell preparation and various evaluations were performed under the above-described conditions.
<実施例25>
 合成例7で得られたポリイミド粉末(7)(2.54g)にNEP(15.9g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(8.00g)及びECS(15.9g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(25)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(25)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 25>
NEP (15.9 g) was added to the polyimide powder (7) (2.54 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 24 hours. NEP (8.00g) and ECS (15.9g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (25). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (25), cell preparation and various evaluations were performed under the above-described conditions.
<実施例26>
 合成例7で得られたポリイミド粉末(7)(2.55g)にNEP(17.3g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(8.71g)、BCS(8.01g)及びPGME(6.00g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(26)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(26)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 26>
NEP (17.3 g) was added to the polyimide powder (7) (2.55 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 24 hours. NEP (8.71 g), BCS (8.01 g) and PGME (6.00 g) were added to this solution and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (26). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (26), cell preparation and various evaluations were performed under the above-described conditions.
<実施例27>
 合成例7で得られたポリイミド粉末(7)(2.55g)にNEP(20.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNMP(8.00g)、BCS(10.1g)及びEC(2.02g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(27)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(27)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 27>
NEP (20.0 g) was added to the polyimide powder (7) (2.55 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 24 hours. NMP (8.00 g), BCS (10.1 g) and EC (2.02 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (27). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (27), cell preparation and various evaluations were performed under the above-described conditions.
<実施例28>
 合成例7で得られたポリイミド粉末(7)(2.55g)にNEP(18.1g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にγ-BL(2.00g)、BCS(12.0g)及びECS(8.00g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(28)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(28)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 28>
NEP (18.1 g) was added to the polyimide powder (7) (2.55 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 24 hours. To this solution, γ-BL (2.00 g), BCS (12.0 g) and ECS (8.00 g) were added, followed by stirring at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (28). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (28), cell preparation and various evaluations were performed under the above-described conditions.
<実施例29>
 合成例8で得られたポリイミド粉末(8)(2.55g)にNEP(21.3g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(10.7g)及びBCS(8.01g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(29)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(29)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 29>
NEP (21.3 g) was added to the polyimide powder (8) (2.55 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. NEP (10.7g) and BCS (8.01g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (29). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (29), cell preparation and various evaluations were performed under the above-described conditions.
<実施例30>
 合成例8で得られたポリイミド粉末(8)(2.56g)にNEP(26.1g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNMP(8.00g)、BCS(4.00g)及びMC(2.00g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(30)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(30)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 30>
NEP (26.1 g) was added to the polyimide powder (8) (2.56 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 24 hours. NMP (8.00 g), BCS (4.00 g) and MC (2.00 g) were added to this solution and stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (30). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (30), cell preparation and various evaluations were performed under the above-described conditions.
<実施例31>
 合成例9で得られたポリイミド粉末(9)(2.55g)にNEP(16.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNMP(12.0g)及びBCS(12.1g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(31)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(31)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 31>
NEP (16.0 g) was added to the polyimide powder (9) (2.55 g) obtained in Synthesis Example 9, and dissolved by stirring at 70 ° C. for 24 hours. NMP (12.0 g) and BCS (12.1 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (31). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (31), cell preparation and various evaluations were performed under the above-described conditions.
<実施例32>
 合成例9で得られたポリイミド粉末(9)(2.55g)にNEP(20.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にγ-BL(4.00g)及びBCS(15.8g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(32)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(32)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 32>
NEP (20.0 g) was added to the polyimide powder (9) (2.55 g) obtained in Synthesis Example 9 and dissolved by stirring at 70 ° C. for 24 hours. Γ-BL (4.00 g) and BCS (15.8 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (32). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (32), cell preparation and various evaluations were performed under the above-described conditions.
<実施例33>
 合成例10で得られたポリイミド粉末(10)(2.55g)にNEP(32.2g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNMP(4.00g)、BCS(2.00g)及びEC(2.00g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(33)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(33)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 33>
NEP (32.2 g) was added to the polyimide powder (10) (2.55 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. NMP (4.00 g), BCS (2.00 g) and EC (2.00 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (33). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (33), cell preparation and various evaluations were performed under the above-described conditions.
<実施例34>
 合成例10で得られたポリイミド粉末(10)(2.55g)にNEP(16.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にγ-BL(2.01g)、BCS(16.0g)及びMC(6.00g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(34)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(34)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Example 34>
NEP (16.0 g) was added to the polyimide powder (10) (2.55 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. Γ-BL (2.01 g), BCS (16.0 g) and MC (6.00 g) were added to this solution, and the mixture was stirred at 50 ° C. for 10 hours to obtain a liquid crystal aligning agent (34). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (34), cell preparation and various evaluations were performed under the above-described conditions.
<比較例1>
 合成例3で得られたポリイミド粉末(3)(2.52g)にNMP(14.5g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNMP(7.21g)及びBCS(17.8g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(35)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(35)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative Example 1>
NMP (14.5 g) was added to the polyimide powder (3) (2.52 g) obtained in Synthesis Example 3 and dissolved by stirring at 70 ° C. for 24 hours. NMP (7.21g) and BCS (17.8g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (35). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (35), cell preparation and various evaluations were performed under the above-described conditions.
<比較例2>
 合成例11で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(11)(10.1g)にNMP(32.0g)を加え、25℃にて2時間攪拌して液晶配向処理剤(36)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(36)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative example 2>
NMP (32.0 g) was added to the polyamic acid solution (11) (10.1 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 11, and the mixture was stirred at 25 ° C. for 2 hours for liquid crystal alignment treatment. Agent (36) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (36), cell preparation and various evaluations were performed under the above-described conditions.
<比較例3>
 合成例11で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(11)(10.0g)にNMP(14.0g)及びBCS(17.6g)を加え、25℃にて2時間攪拌して液晶配向処理剤(37)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(37)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative Example 3>
NMP (14.0 g) and BCS (17.6 g) were added to the polyamic acid solution (11) (10.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 11, and 2 at 25 ° C. The liquid crystal aligning agent (37) was obtained by stirring for a time. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (37), cell preparation and various evaluations were performed under the above-described conditions.
<比較例4>
 合成例12で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(12)(10.0g)にNMP(14.0g)及びBCS(17.4g)を加え、25℃にて2時間攪拌して液晶配向処理剤(38)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(38)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative Example 4>
NMP (14.0 g) and BCS (17.4 g) were added to the polyamic acid solution (12) (10.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 12, and 2 at 25 ° C. The liquid crystal aligning agent (38) was obtained by stirring for a time. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (38), cell preparation and various evaluations were performed under the above-described conditions.
<比較例5>
 合成例13で得られたポリイミド粉末(13)(2.55g)にNMP(14.7g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNMP(7.28g)及びBCS(18.0g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(39)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(39)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative Example 5>
NMP (14.7 g) was added to the polyimide powder (13) (2.55 g) obtained in Synthesis Example 13 and dissolved by stirring at 70 ° C. for 24 hours. NMP (7.28g) and BCS (18.0g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (39). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (39), cell preparation and various evaluations were performed under the above-described conditions.
<比較例6>
 合成例13で得られたポリイミド粉末(13)(2.55g)にNEP(14.7g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(7.30g)及びBCS(18.0g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(40)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(40)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative Example 6>
NEP (14.7 g) was added to the polyimide powder (13) (2.55 g) obtained in Synthesis Example 13 and dissolved by stirring at 70 ° C. for 24 hours. NEP (7.30g) and BCS (18.0g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (40). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (40), cell preparation and various evaluations were performed under the above-described conditions.
<比較例7>
 合成例14で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(14)(10.0g)にNEP(31.7g)を加え、25℃にて2時間攪拌して液晶配向処理剤(41)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(41)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative Example 7>
NEP (31.7 g) was added to the polyamic acid solution (14) (10.0 g) with a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 14, and the mixture was stirred at 25 ° C. for 2 hours to conduct liquid crystal alignment treatment. Agent (41) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (41), cell preparation and various evaluations were performed under the above-described conditions.
<比較例8>
 合成例14で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(14)(10.0g)にNEP(14.1g)及びBCS(17.6g)を加え、25℃にて2時間攪拌して液晶配向処理剤(42)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(42)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative Example 8>
NEP (14.1 g) and BCS (17.6 g) were added to the polyamic acid solution (14) (10.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 14, and 2 at 25 ° C. The liquid crystal aligning agent (42) was obtained by stirring for a period of time. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (42), cell preparation and various evaluations were performed under the above-described conditions.
<比較例9>
 合成例15で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(15)(10.0g)にNMP(31.7g)を加え、25℃にて2時間攪拌して液晶配向処理剤(43)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(43)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative Example 9>
NMP (31.7 g) was added to the polyamic acid solution (15) (10.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 15, and the mixture was stirred at 25 ° C. for 2 hours to conduct liquid crystal alignment treatment. Agent (43) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (43), cell preparation and various evaluations were performed under the above-described conditions.
<比較例10>
 合成例15で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(15)(10.0g)にNMP(14.0g)及びBCS(17.6g)を加え、25℃にて2時間攪拌して液晶配向処理剤(44)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(44)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative Example 10>
NMP (14.0 g) and BCS (17.6 g) were added to the polyamic acid solution (15) (10.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 15, and 2 at 25 ° C. The liquid crystal aligning agent (44) was obtained by stirring for the time. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (44), cell preparation and various evaluations were performed under the above-described conditions.
<比較例11>
 合成例16で得られたポリイミド粉末(16)(2.55g)にNMP(14.7g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNMP(7.30g)及びBCS(18.2g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(45)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(45)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative Example 11>
NMP (14.7 g) was added to the polyimide powder (16) (2.55 g) obtained in Synthesis Example 16, and dissolved by stirring at 70 ° C. for 24 hours. NMP (7.30g) and BCS (18.2g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (45). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (45), cell preparation and various evaluations were performed under the above-described conditions.
<比較例12>
 合成例16で得られたポリイミド粉末(16)(2.52g)にNEP(14.5g)を加え、70℃にて24時間攪拌して溶解させた。この溶液にNEP(7.21g)及びBCS(17.8g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(46)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(46)を用いて、上記した条件のもとで、セルの作製や各種の評価を行った。
<Comparative Example 12>
NEP (14.5 g) was added to the polyimide powder (16) (2.52 g) obtained in Synthesis Example 16, and dissolved by stirring at 70 ° C. for 24 hours. NEP (7.21g) and BCS (17.8g) were added to this solution, and it stirred at 50 degreeC for 10 hours, and obtained the liquid-crystal aligning agent (46). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (46), cell preparation and various evaluations were performed under the above-described conditions.
Figure JPOXMLDOC01-appb-T000059
*1:液晶配向処理剤中の重合体の占める割合。
Figure JPOXMLDOC01-appb-T000059
* 1: Ratio of the polymer in the liquid crystal aligning agent.
Figure JPOXMLDOC01-appb-T000060
*2:液晶配向処理剤中の重合体の占める割合。
Figure JPOXMLDOC01-appb-T000060
* 2: Ratio of the polymer in the liquid crystal aligning agent.
Figure JPOXMLDOC01-appb-T000061
*3:液晶配向処理剤中の重合体の占める割合。
Figure JPOXMLDOC01-appb-T000061
* 3: Ratio of the polymer in the liquid crystal aligning agent.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
*4:ピンホールによる配向欠陥が10個以上観察された。
Figure JPOXMLDOC01-appb-T000067
* 4: Ten or more alignment defects due to pinholes were observed.
 上記の結果からわかるように、実施例の液晶配向処理剤から得られた液晶配向膜は、比較例の液晶配向処理剤から得られる液晶配向膜に比べて、長時間高温及び光の照射に曝されても、プレチルト角の変化が小さい液晶配向膜を得ることができる。
 さらに、実施例の液晶配向処理剤は、上記プレチルト角の変化が小さい液晶配向膜が得られるとともに、均一な塗膜性を得ることができる。
As can be seen from the above results, the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the example was exposed to high temperature and light irradiation for a longer time than the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the comparative example. However, a liquid crystal alignment film with a small change in pretilt angle can be obtained.
Furthermore, the liquid crystal aligning agent of an Example can obtain the liquid crystal aligning film with the small change of the said pretilt angle, and can obtain uniform coating property.
 また、同一のポリアミド酸又はポリイミドで、本発明の特定溶媒を含む実施例と特定溶媒を含まない比較例との比較において、特定溶媒を含まない比較例では、上記プレチルト角の変化は小さいものの、ピンホールが多く発生し、液晶配向膜端部の塗膜均一性が悪い。具体的には、実施例3と比較例2との比較、実施例4と比較例3との比較、及び実施例6と比較例1との比較から確認できる。 In addition, in the same polyamic acid or polyimide, in the comparison of the example containing the specific solvent of the present invention and the comparative example not containing the specific solvent, in the comparative example not containing the specific solvent, although the change in the pretilt angle is small, Many pinholes are generated, and the coating uniformity at the edge of the liquid crystal alignment film is poor. Specifically, it can be confirmed from the comparison between Example 3 and Comparative Example 2, the comparison between Example 4 and Comparative Example 3, and the comparison between Example 6 and Comparative Example 1.
 さらに、本発明の特定側鎖構造を含むジアミン化合物を用いた実施例と特定側鎖構造を含まないジアミン化合物を用いた比較例との比較において、特定側鎖構造を含まないジアミン化合物を用いた比較例では、上記プレチルト角の変化が大きく、ピンホールが多く発生し、液晶配向膜端部の塗膜均一性が悪い。具体的には、実施例4と比較例4との比較、実施例4と比較例5との比較、及び実施例4と比較例6との比較から確認できる。特に、比較例6では、特定溶媒を用いているにも係わらず、ピンホールが多く発生し、液晶配向膜端部の塗膜均一性が悪い。 Furthermore, in the comparison of the example using the diamine compound containing the specific side chain structure of the present invention and the comparative example using the diamine compound not containing the specific side chain structure, the diamine compound not containing the specific side chain structure was used. In the comparative example, the change in the pretilt angle is large, many pinholes are generated, and the coating film uniformity at the end of the liquid crystal alignment film is poor. Specifically, it can be confirmed from a comparison between Example 4 and Comparative Example 4, a comparison between Example 4 and Comparative Example 5, and a comparison between Example 4 and Comparative Example 6. In particular, in Comparative Example 6, although a specific solvent is used, many pinholes are generated, and the coating film uniformity at the end of the liquid crystal alignment film is poor.
 また、本発明の特定側鎖構造を含むジアミン化合物を用いた実施例と特定側鎖構造を含まないジアミン化合物を用いた比較例との比較において、特定側鎖構造を含まないジアミン化合物を用いた比較例では、上記プレチルト角の変化が小さいものの、ピンホールが多く発生し、液晶配向膜端部の塗膜均一性が悪い。具体的には、実施例3と比較例7との比較、実施例3と比較例9との比較、実施例4と比較例8との比較、実施例4と比較例10との比較、実施例4と比較例11との比較、及び実施例4と比較例12との比較から確認できる。
 特に、比較例7、比較例8及び比較例12では、特定溶媒を用いているにも係わらず、ピンホールが多く発生し、液晶配向膜端部の塗膜均一性が悪い。
Moreover, in the comparison with the Example using the diamine compound containing the specific side chain structure of this invention and the comparative example using the diamine compound which does not contain the specific side chain structure, the diamine compound which does not contain the specific side chain structure was used. In the comparative example, although the change in the pretilt angle is small, many pinholes are generated, and the coating film uniformity at the liquid crystal alignment film edge is poor. Specifically, comparison between Example 3 and Comparative Example 7, comparison between Example 3 and Comparative Example 9, comparison between Example 4 and Comparative Example 8, comparison between Example 4 and Comparative Example 10, and implementation This can be confirmed from the comparison between Example 4 and Comparative Example 11 and the comparison between Example 4 and Comparative Example 12.
In particular, in Comparative Example 7, Comparative Example 8 and Comparative Example 12, although a specific solvent is used, many pinholes are generated and the coating film uniformity at the end of the liquid crystal alignment film is poor.
 本発明の液晶配向処理剤は、基板への塗布溶液の濡れ拡がり性が高く、均一な塗膜性を有し、長時間の高温及び光の照射に曝されてもプレチルト角が変化せず、端部の塗膜性にも優れる液晶配向膜を提供することが可能であり、このような液晶配向膜を有する液晶表示素子は、信頼性に優れ、大画面で高精細の液晶テレビなどに好適に利用でき、TN素子、STN素子、TFT液晶素子等の、特に垂直配向型の液晶表示素子に有用である。 The liquid crystal alignment treatment agent of the present invention has high wettability of the coating solution to the substrate, uniform coating properties, and the pretilt angle does not change even when exposed to high temperature and light irradiation for a long time. It is possible to provide a liquid crystal alignment film having excellent coating properties at the edges, and a liquid crystal display element having such a liquid crystal alignment film is excellent in reliability and suitable for a large-screen, high-definition liquid crystal television. And is particularly useful for vertical alignment type liquid crystal display elements such as TN elements, STN elements, and TFT liquid crystal elements.
 なお、2011年9月8日に出願された日本特許出願2011-196320号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-196320 filed on September 8, 2011 is cited here as the disclosure of the specification of the present invention. Incorporated.
 1  液晶配向膜
 2  クロム蒸着基板
 3  液晶配向膜の端部
 4  液晶配向膜の端部
 5  液晶配向膜の端部の盛り上がり
DESCRIPTION OF SYMBOLS 1 Liquid crystal aligning film 2 Chromium vapor deposition board | substrate 3 End part of liquid crystal aligning film 4 End part of liquid crystal aligning film 5 Swelling of end part of liquid crystal aligning film

Claims (23)

  1.  下記の成分(A)及び成分(B)を含有することを特徴とする液晶配向処理剤。
     成分(A):N-エチル-2-ピロリドン。
     成分(B):下記の式[1]で示される側鎖を有するポリイミド前駆体及びポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1種の重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、Xは単結合、-(CH-(aは1~15の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。Xは単結合又は(CH-(bは1~15の整数である)である。Xは単結合、-(CH-(cは1~10の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。Xはベンゼン環、シクロヘキシル環及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)である。Xはベンゼン環、シクロヘキシル環及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)である。Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基であり、nは0~4の整数である。)
    The liquid crystal aligning agent characterized by containing the following component (A) and component (B).
    Component (A): N-ethyl-2-pyrrolidone.
    Component (B): At least one polymer selected from the group consisting of a polyimide precursor having a side chain represented by the following formula [1] and a polyimide obtained by imidizing the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula [1], X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH. —, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—, X 2 is a single bond or (CH 2 ) b -(B is an integer of 1 to 15.) X 3 is a single bond,-(CH 2 ) c- (c is an integer of 1 to 10), -O-, -NH-, -N X 4 is (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—. A divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon 1-3 alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, .X 5 benzene rings and may be substituted with a fluorine-containing alkoxyl group or a fluorine atom having 1 to 3 carbon atoms), cyclohexyl ring And a divalent cyclic group selected from heterocyclic rings (any hydrogen atom on these cyclic groups contains an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms) X 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, or an alkyl group, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. A C 1-18 alkoxyl group or a C 1-18 fluorine-containing alkoxyl group, and n is an integer of 0-4.)
  2.  前記成分(B)が、前記式[1]で示される側鎖を有するジアミンを原料のジアミン成分の一部に用いたポリイミド前駆体及びポリイミド前駆体をイミド化したポリイミドからなる群から選ばれる少なくとも1種の重合体である請求項1に記載の液晶配向処理剤。 The component (B) is at least selected from the group consisting of a polyimide precursor obtained by using a diamine having a side chain represented by the formula [1] as a part of a raw material diamine component and a polyimide obtained by imidizing the polyimide precursor. The liquid-crystal aligning agent of Claim 1 which is 1 type of polymers.
  3.  前記式[1]で示される側鎖を有するジアミンが、下記の式[1a]で示されるジアミン化合物である請求項2に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000002
    (式[1a]中、Xは単結合、-(CH-(aは1~15の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。Xは単結合又は(CH-(bは1~15の整数である)である。Xは単結合、-(CH-(cは1~10の整数である)、-O-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-である。Xはベンゼン環、シクロヘキシル環及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)である。Xはベンゼン環、シクロヘキシル環及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)である。Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。nは0~4の整数であり、mは1~4の整数である。)
    The liquid crystal aligning agent according to claim 2, wherein the diamine having a side chain represented by the formula [1] is a diamine compound represented by the following formula [1a].
    Figure JPOXMLDOC01-appb-C000002
    (In the formula [1a], X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —NH—, —N (CH 3 ) —, —CONH —, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—, X 2 is a single bond or (CH 2 ) b -(B is an integer of 1 to 15.) X 3 is a single bond,-(CH 2 ) c- (c is an integer of 1 to 10), -O-, -NH-, -N X 4 is (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—. A divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon C 1-3 alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, .X 5 benzene rings and may be substituted with a fluorine-containing alkoxyl group or a fluorine atom having 1 to 3 carbon atoms), cyclohexyl A divalent cyclic group selected from a ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms) X 6 represents an alkyl group having 1 to 18 carbon atoms, or a fluorine-containing alkyl group having 1 to 18 carbon atoms, which may be substituted with a fluorine-containing alkoxyl group having 1 to 3 carbon atoms or a fluorine atom. And an alkoxyl group having 1 to 18 carbon atoms or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, n is an integer of 0 to 4, and m is an integer of 1 to 4.)
  4.  前記式[1a]で示されるジアミンを、原料のジアミン成分の5~80モル%用いた請求項3に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 3, wherein the diamine represented by the formula [1a] is used in an amount of 5 to 80 mol% of a diamine component as a raw material.
  5.  前記成分(B)が、下記の式[2]で示されるテトラカルボン酸二無水物を用いた重合体である請求項1~4のいずれか一項に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000003
    (式[2]中、Yは炭素数4~13の4価の有機基であり、かつ炭素数4~10の非芳香族環状炭化水素基を含有する)。
    The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the component (B) is a polymer using a tetracarboxylic dianhydride represented by the following formula [2].
    Figure JPOXMLDOC01-appb-C000003
    (In Formula [2], Y 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms).
  6.  前記Yが、下記の式[2a]~[2j]で示される構造の基である請求項5に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000004
    (式[2a]中、Y~Yは、水素原子、メチル基、塩素原子又はベンゼン環であり、それぞれ、同じであっても異なってもよい。式[2g]中、Y及びYは、水素原子又はメチル基であり、それぞれ、同じであっても異なってもよい)。
    6. The liquid crystal aligning agent according to claim 5, wherein Y 1 is a group having a structure represented by the following formulas [2a] to [2j].
    Figure JPOXMLDOC01-appb-C000004
    (In Formula [2a], Y 2 to Y 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different. In Formula [2g], Y 6 and Y 7 is a hydrogen atom or a methyl group, which may be the same or different.
  7.  前記成分(B)である重合体が、ポリアミド酸である請求項1~6のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 6, wherein the polymer as the component (B) is a polyamic acid.
  8.  前記成分(B)である重合体が、ポリアミド酸を脱水閉環させて得られるポリイミドである請求項1~6のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 6, wherein the polymer as the component (B) is a polyimide obtained by dehydrating and ring-closing polyamic acid.
  9.  成分(C)として、N-メチル-2-ピロリドン又はγ-ブチロラクトンを含有する請求項1~8のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 8, which contains N-methyl-2-pyrrolidone or γ-butyrolactone as component (C).
  10.  成分(D)として、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル及びプロピレングリコールモノブチルエーテルからなる群から選ばれる少なくとも1つを含有する請求項1~9のいずれか一項に記載の液晶配向処理剤。 As component (D), 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl 10. The liquid crystal aligning agent according to claim 1, comprising at least one selected from the group consisting of ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether and propylene glycol monobutyl ether. .
  11.  前記成分(A)が液晶配向処理剤に含まれる有機溶媒全体の10~100質量%である請求項1~10のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 10, wherein the component (A) is 10 to 100% by mass of the whole organic solvent contained in the liquid crystal aligning agent.
  12.  前記成分(C)が液晶配向処理剤に含まれる有機溶媒全体の0.1~70質量%である請求項9~11のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 9 to 11, wherein the component (C) is 0.1 to 70% by mass of the whole organic solvent contained in the liquid crystal aligning agent.
  13.  前記成分(D)が液晶配向処理剤に含まれる有機溶媒全体の5~80質量%である請求項10~12のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 10 to 12, wherein the component (D) is 5 to 80% by mass of the whole organic solvent contained in the liquid crystal aligning agent.
  14.  液晶配向処理剤中の前記成分(B)が0.1~15質量%である請求項1~13のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 13, wherein the component (B) in the liquid crystal aligning agent is 0.1 to 15% by mass.
  15.  請求項1~14のいずれか一項に記載の液晶配向処理剤を用いて得られる液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of claims 1 to 14.
  16.  請求項1~14のいずれか一項に記載の液晶配向処理剤を用いて、インクジェット法にて得られる液晶配向膜。 A liquid crystal alignment film obtained by an ink jet method using the liquid crystal alignment treatment agent according to any one of claims 1 to 14.
  17.  請求項15又は16に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 15 or 16.
  18.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される、液晶表示素子に用いられる請求項15又は16に記載の液晶配向膜。 A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes The liquid crystal aligning film of Claim 15 or 16 used for the liquid crystal display element manufactured through the process of superposing | polymerizing the said polymeric compound, applying a voltage in between.
  19.  請求項18に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 18.
  20.  電極と前記液晶配向膜とを備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される請求項19に記載の液晶表示素子。 A liquid crystal composition comprising a polymerizable compound having a liquid crystal layer between a pair of substrates provided with an electrode and the liquid crystal alignment film and polymerized between at least one of active energy rays and heat between the pair of substrates. The liquid crystal display element according to claim 19, wherein the liquid crystal display element is manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes.
  21.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される、液晶表示素子に用いられる請求項15又は16に記載の液晶配向膜。 A liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates; The liquid crystal aligning film of Claim 15 or 16 used for the liquid crystal display element manufactured through the process of superposing | polymerizing the said polymeric group, applying a voltage in between.
  22.  請求項21に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 21.
  23.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される請求項22に記載の液晶表示素子。 A liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates; The liquid crystal display element according to claim 22, which is produced through a step of polymerizing the polymerizable group while applying a voltage therebetween.
PCT/JP2012/072781 2011-09-08 2012-09-06 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element WO2013035803A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013532649A JP6011537B2 (en) 2011-09-08 2012-09-06 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN201280043173.0A CN103782231B (en) 2011-09-08 2012-09-06 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020187016751A KR20180072830A (en) 2011-09-08 2012-09-06 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020197031903A KR102224531B1 (en) 2011-09-08 2012-09-06 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020147005742A KR101951501B1 (en) 2011-09-08 2012-09-06 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011196320 2011-09-08
JP2011-196320 2011-09-08

Publications (1)

Publication Number Publication Date
WO2013035803A1 true WO2013035803A1 (en) 2013-03-14

Family

ID=47832243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072781 WO2013035803A1 (en) 2011-09-08 2012-09-06 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (2) JP6011537B2 (en)
KR (3) KR102224531B1 (en)
CN (2) CN103782231B (en)
TW (2) TWI586757B (en)
WO (1) WO2013035803A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101303A (en) * 2011-10-13 2013-05-23 Jsr Corp Liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element
WO2014157235A1 (en) * 2013-03-26 2014-10-02 日産化学工業株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
CN105431770A (en) * 2013-05-31 2016-03-23 日产化学工业株式会社 Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element
CN105492964A (en) * 2013-06-05 2016-04-13 日产化学工业株式会社 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
CN105637410A (en) * 2013-08-14 2016-06-01 日产化学工业株式会社 Liquid crystal display element
CN105683829A (en) * 2013-09-03 2016-06-15 日产化学工业株式会社 Liquid-crystal orientation treatment agent, liquid-crystal orientation film, and liquid-crystal display element
CN106462011A (en) * 2014-03-27 2017-02-22 日产化学工业株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
CN111386493A (en) * 2017-11-21 2020-07-07 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal display element
JP2020122154A (en) * 2013-05-13 2020-08-13 日産化学株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101951507B1 (en) * 2011-09-15 2019-02-22 닛산 가가쿠 가부시키가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
CN106575060B (en) * 2014-06-17 2019-11-29 日产化学工业株式会社 Liquid crystal indicates element, liquid crystal orientation film and aligning agent for liquid crystal
WO2016140302A1 (en) * 2015-03-04 2016-09-09 日産化学工業株式会社 Polyimide precursor, and liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element having precursor
KR102431140B1 (en) * 2015-11-02 2022-08-12 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Liquid crystal photo alinement agent and method of manufacturing liquid crystal display device using the same
JPWO2017082387A1 (en) * 2015-11-12 2018-08-02 富士フイルム株式会社 Method for producing liquid crystal alignment film, method for producing three-dimensional liquid crystal cell, and three-dimensional liquid crystal cell
EP3608627B1 (en) * 2018-08-09 2023-11-08 Cognex Corporation Positioning system for components of optical systems
KR20210041953A (en) 2019-10-08 2021-04-16 주식회사 엘지화학 Battery Pack Including Handle
CN115636965B (en) * 2022-12-26 2023-03-21 烟台泰和新材高分子新材料研究院有限公司 High-transmittance polyisophthaloyl metaphenylene diamine film and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148100A1 (en) * 2008-06-04 2009-12-10 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
WO2011105575A1 (en) * 2010-02-26 2011-09-01 日産化学工業株式会社 Liquid crystal display element and liquid crystal aligning agent

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237324A (en) 1988-07-27 1990-02-07 Sanyo Electric Co Ltd Production of polyimide oriented film
JP2762551B2 (en) 1989-04-25 1998-06-04 東レ株式会社 Liquid crystal alignment film and liquid crystal display device
DE69529364T2 (en) * 1994-05-09 2003-10-16 Nissan Chemical Ind Ltd Liquid crystal alignment layer
JP4085206B2 (en) 1996-02-15 2008-05-14 日産化学工業株式会社 Diaminobenzene derivative, polyimide and liquid crystal alignment film using the same
JP3582074B2 (en) * 1996-03-27 2004-10-27 Jsr株式会社 Liquid crystal alignment agent and liquid crystal display device
JP3809684B2 (en) * 1997-01-24 2006-08-16 Jsr株式会社 Liquid crystal alignment agent
US7303792B2 (en) 2002-12-11 2007-12-04 Nissan Chemical Industries, Ltd. Diaminobenzene derivative, polyimide precursor and polyimide obtained therefrom, and aligning agent for liquid crystal
JP2008216866A (en) * 2007-03-07 2008-09-18 Seiko Epson Corp Composition for forming liquid crystal alignment layer and method for manufacturing liquid crystal display device
WO2009093711A1 (en) * 2008-01-25 2009-07-30 Nissan Chemical Industries, Ltd. Liquid-crystal alignment material and liquid-crystal display element
CN102165365B (en) * 2008-09-24 2013-11-06 日产化学工业株式会社 Liquid crystal aligning agent and liquid crystal display element using same
KR101759756B1 (en) * 2010-04-16 2017-07-19 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film produced using same, and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148100A1 (en) * 2008-06-04 2009-12-10 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
WO2011105575A1 (en) * 2010-02-26 2011-09-01 日産化学工業株式会社 Liquid crystal display element and liquid crystal aligning agent

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101303A (en) * 2011-10-13 2013-05-23 Jsr Corp Liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element
WO2014157235A1 (en) * 2013-03-26 2014-10-02 日産化学工業株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
KR20150134407A (en) * 2013-03-26 2015-12-01 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
CN105283802A (en) * 2013-03-26 2016-01-27 日产化学工业株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
KR102194116B1 (en) * 2013-03-26 2020-12-22 닛산 가가쿠 가부시키가이샤 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JPWO2014157235A1 (en) * 2013-03-26 2017-02-16 日産化学工業株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
TWI637043B (en) * 2013-03-26 2018-10-01 日產化學工業股份有限公司 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP2020122154A (en) * 2013-05-13 2020-08-13 日産化学株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
TWI668491B (en) * 2013-05-31 2019-08-11 日商日產化學工業股份有限公司 Manufacturing method of substrate with liquid crystal alignment film for lateral electric field driving type liquid crystal display element
CN105431770A (en) * 2013-05-31 2016-03-23 日产化学工业株式会社 Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element
CN105431770B (en) * 2013-05-31 2021-06-04 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
JPWO2014192922A1 (en) * 2013-05-31 2017-02-23 日産化学工業株式会社 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
CN105492964A (en) * 2013-06-05 2016-04-13 日产化学工业株式会社 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
CN105492964B (en) * 2013-06-05 2020-04-10 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
CN105637410B (en) * 2013-08-14 2019-08-02 日产化学工业株式会社 Liquid crystal indicates element
CN105637410A (en) * 2013-08-14 2016-06-01 日产化学工业株式会社 Liquid crystal display element
CN105683829B (en) * 2013-09-03 2019-08-20 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
CN105683829A (en) * 2013-09-03 2016-06-15 日产化学工业株式会社 Liquid-crystal orientation treatment agent, liquid-crystal orientation film, and liquid-crystal display element
CN106462011A (en) * 2014-03-27 2017-02-22 日产化学工业株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
CN106462011B (en) * 2014-03-27 2021-11-12 日产化学工业株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
CN111386493A (en) * 2017-11-21 2020-07-07 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal display element
CN111386493B (en) * 2017-11-21 2023-05-23 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
KR101951501B1 (en) 2019-02-22
CN106635061A (en) 2017-05-10
KR20180072830A (en) 2018-06-29
JP6011537B2 (en) 2016-10-19
KR20140059219A (en) 2014-05-15
CN106635061B (en) 2020-03-31
JP2016194707A (en) 2016-11-17
CN103782231B (en) 2017-05-10
KR20190124815A (en) 2019-11-05
TWI586757B (en) 2017-06-11
TWI620794B (en) 2018-04-11
JPWO2013035803A1 (en) 2015-03-23
JP6414145B2 (en) 2018-10-31
TW201323521A (en) 2013-06-16
KR102224531B1 (en) 2021-03-05
CN103782231A (en) 2014-05-07
TW201726811A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6414145B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2020056034A (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP6390611B2 (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP6504377B2 (en) Polymer
WO2011132751A1 (en) Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element
JP5930239B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5900337B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2014092126A1 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2012091109A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6102752B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5930238B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2013065755A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014126102A1 (en) Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent
WO2012121257A1 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6264577B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6683955B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532649

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147005742

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830597

Country of ref document: EP

Kind code of ref document: A1