WO2011132751A1 - Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element - Google Patents

Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element Download PDF

Info

Publication number
WO2011132751A1
WO2011132751A1 PCT/JP2011/059867 JP2011059867W WO2011132751A1 WO 2011132751 A1 WO2011132751 A1 WO 2011132751A1 JP 2011059867 W JP2011059867 W JP 2011059867W WO 2011132751 A1 WO2011132751 A1 WO 2011132751A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
fluorine
integer
Prior art date
Application number
PCT/JP2011/059867
Other languages
French (fr)
Japanese (ja)
Inventor
徳俊 三木
耕平 後藤
雅章 片山
幸司 園山
和義 保坂
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020127030217A priority Critical patent/KR101775181B1/en
Priority to JP2012511706A priority patent/JP5713009B2/en
Priority to CN201180030910.9A priority patent/CN102947753B/en
Publication of WO2011132751A1 publication Critical patent/WO2011132751A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent used for producing a liquid crystal alignment film and a liquid crystal display element using the same.
  • a polyimide film is used as a liquid crystal alignment film used in a liquid crystal display element.
  • This polyimide film is formed by using a solution of a polyamic acid, which is a precursor of polyimide, or a solution of a solvent-soluble polyimide as a substrate. The method of apply
  • coating and baking is taken.
  • This polyamic acid or solvent-soluble polyimide is generally synthesized by reacting a tetracarboxylic acid derivative such as tetracarboxylic dianhydride with a diamine.
  • pretilt angle control of the liquid crystal in which the alignment tilt angle of the liquid crystal molecules with respect to the substrate surface is maintained at an arbitrary value. It is known that the magnitude of the pretilt angle can be changed by selecting the structure of the polyimide constituting the liquid crystal alignment film.
  • the method using a diamine having a side chain as a part of the polyimide raw material can control the pretilt angle in accordance with the proportion of the diamine used, so that the desired pretilt angle is obtained. This is relatively easy and is useful as a means for increasing the pretilt angle.
  • Examples of the side chain structure of the diamine that increases the pretilt angle of the liquid crystal include a long-chain alkyl group or a fluoroalkyl group (for example, see Patent Document 1), a cyclic group or a combination of a cyclic group and an alkyl group (for example, see Patent Document 2), A steroid skeleton (see, for example, Patent Document 3) is known.
  • JP-A-2-282726 Japanese Patent Laid-Open No. 3-179323 JP-A-4-281427
  • MVA Multi-domain Vertical Alignment
  • TN Transmission Nematic
  • the liquid crystal injection speed is lowered, so that the production efficiency at the time of manufacturing the liquid crystal display element is deteriorated, and when the ODF (One Drop Drop Filling) method is used.
  • ODF One Drop Drop Filling
  • the present invention has been made in view of the above circumstances, and improves the liquid crystal wettability on the liquid crystal alignment film, has high production efficiency at the time of manufacturing a liquid crystal display element, and does not cause poor display of alignment unevenness. It is providing a processing agent, a liquid crystal aligning film, and a liquid crystal display element.
  • the present inventors have achieved the above object by a polyimide precursor having a specific side chain structure and a liquid crystal aligning agent containing polyimide obtained by dehydrating and ring-closing the polyimide precursor. Therefore, the present invention has been found to be extremely effective, and the present invention has been completed.
  • the present invention has the following gist.
  • Liquid crystal alignment treatment comprising a diamine compound represented by the following formula [1] and a polymer obtained by reacting a diamine component containing the diamine compound represented by the following formula [2] with tetracarboxylic dianhydride. Agent.
  • X 1 is a divalent organic group selected from —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, and X 2 is a single bond.
  • a benzene ring or a cyclohexyl ring is a divalent organic group selected from a benzene ring or a cyclohexyl ring
  • X 4 is a cyclohexyl ring
  • X 5 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or 1 carbon atom. From 18 to 18 fluorine-containing alkoxyl groups, and n is an integer from 1 to 4.
  • Y 1 represents —O—, —CH 2 O—, — (CH 2 ) a — (a is an integer of 1 to 10), —COO—, —OCO—, or Y 2 is a divalent organic group selected from a bond
  • Y 2 is a single bond or a divalent organic group selected from — (CH 2 ) b — (b is an integer of 1 to 10)
  • Y 3 Is a divalent organic group selected from a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO—.
  • Y 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, or a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton, on the cyclic group
  • Arbitrary hydrogen atoms include an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, The fluorine-containing alkoxyl group having 1 to 3 carbon atoms, may be substituted with one selected from a fluorine atom
  • Y 5 represents a divalent cyclic group selected from cyclohexyl ring, a benzene ring or a heterocyclic cyclohexane
  • any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms).
  • Z 2 to Z 5 are groups selected from a hydrogen atom, a methyl group, a chlorine atom, or a benzene ring, which may be the same or different, and in the formula [3g] Z 6 and Z 7 are a hydrogen atom or a methyl group, and each may be the same or different.
  • liquid crystal aligning agent a crosslinkable compound having at least one substituent selected from the group consisting of epoxy group, oxetane group, isocyanate group and cyclocarbonate group, hydroxyl group, hydroxyalkyl group, alkoxyl group and lower alkoxyalkyl
  • liquid crystal alignment treatment according to any one of (1) to (4), having a crosslinkable compound having at least one substituent selected from the group consisting of groups, or a crosslinkable compound having a polymerizable unsaturated bond Agent.
  • liquid crystal aligning agent according to any one of (1) to (5), wherein the polymer in the liquid crystal aligning agent is a polyimide obtained by dehydrating and ring-closing polyamic acid.
  • liquid crystal aligning agent according to any one of (1) to (6), wherein the liquid crystal aligning agent contains 5 to 60% by mass of a poor solvent.
  • a liquid crystal alignment film used for a liquid crystal display element which is a polymer obtained by polymerizing the polymerizable compound while applying a voltage to the liquid crystal layer, and is obtained by a method of controlling the alignment direction of the liquid crystal during driving.
  • a liquid crystal display element comprising the liquid crystal alignment film according to (10), wherein the polymerization is performed while applying a voltage to the liquid crystal layer using a liquid crystal material in which a liquid crystal is mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation.
  • a liquid crystal display element obtained by polymerizing an organic compound and obtained by a method of controlling the alignment direction of liquid crystal during driving.
  • liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, there is provided a liquid crystal display element having high liquid crystal wettability on the liquid crystal alignment film, high production efficiency at the time of producing the liquid crystal display element, and no display defects of alignment unevenness. be able to.
  • the present invention includes a diamine component including a diamine compound represented by the following formula [1] (also referred to as a specific diamine compound) and a diamine compound represented by the following formula [2] (also referred to as a specific side chain diamine compound);
  • a liquid crystal aligning agent containing a polymer obtained by reacting with tetracarboxylic dianhydride, a liquid crystal aligning film obtained using the liquid crystal aligning agent, and a liquid crystal display device having the liquid crystal aligning film is there.
  • X 1 is a divalent organic group selected from —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, and X 2 is a single bond.
  • a benzene ring or a cyclohexyl ring is a divalent organic group selected from a benzene ring or a cyclohexyl ring
  • X 4 is a cyclohexyl ring
  • X 5 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or 1 carbon atom. From 18 to 18 fluorine-containing alkoxyl groups, and n is an integer from 1 to 4.
  • Y 1 is —O—, —CH 2 O—, — (CH 2 ) a — (a is an integer of 1 to 10), —COO—, —OCO—, or a single bond
  • Y 2 is a single bond or a divalent organic group selected from — (CH 2 ) b — (b is an integer of 1 to 10)
  • Y 3 is A divalent organic group selected from a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO—.
  • Y 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, or a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms and having a steroid skeleton.
  • the hydrogen atom is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, Fluorine-containing alkoxyl group having 1 to 3 carbon atoms, may be substituted with one selected from a fluorine atom
  • Y 5 represents a divalent cyclic group selected from cyclohexyl ring, a benzene ring or a heterocyclic cyclohexane
  • Arbitrary hydrogen atoms on these cyclic groups are alkyl groups having 1 to 3 carbon atoms, alkoxyl groups having 1 to 3 carbon atoms, fluorine-containing alkyl groups having 1 to 3 carbon atoms, or fluorine containing 1 to 3 carbon atoms
  • n is an integer of 0 to 4
  • Y 6 is an alkyl group
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent using the specific diamine compound of the present invention and the specific side chain type diamine compound even when a large amount of diamine components having side chains are used in order to obtain a high pretilt angle, The liquid crystal wettability on the liquid crystal alignment film is increased.
  • the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention it is possible to provide a liquid crystal display element that has high production efficiency at the time of manufacturing the liquid crystal display element and that does not cause poor display of alignment unevenness. .
  • the specific diamine compound of the present invention is a diamine compound represented by the following formula [1].
  • X 1 is a divalent organic group selected from —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, and in particular, —NHCO— , -CONH- is preferable. More preferred is —NHCO—.
  • X 2 is a divalent organic group selected from a single bond, a benzene ring, or a cyclohexyl ring, that is, a phenylene group or a cyclohexylene group. Among them, a single bond or benzene A ring is preferred.
  • X 3 is a divalent organic group selected from a benzene ring or a cyclohexyl ring.
  • X 4 is a divalent organic group selected from a benzene ring or a cyclohexyl ring.
  • X 5 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable.
  • it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferably, it is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • n is an integer of 1 to 4, and an integer of 1 or 2 is particularly preferable.
  • Preferred combinations of X 1 , X 2 , X 3 , X 4 and n in the formula [1] are as shown in 1-1 to 1-64 shown in Tables 1 to 5.
  • the specific side chain diamine compound of the present invention is a diamine compound represented by the following formula [2].
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO—. It is a divalent organic group selected.
  • a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, or —COO— is preferable because the side chain structure can be easily synthesized.
  • it is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O—, or —COO—.
  • Y 2 is a single bond or a divalent organic group selected from — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 0) is preferable.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO—, or —OCO—. It is a divalent organic group selected.
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO— is preferable because they are easy to synthesize.
  • they are a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO—.
  • Y 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, or a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms and having a steroid skeleton
  • Arbitrary hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 3 carbon atoms
  • an organic group having 12 to 25 carbon atoms having a benzene ring, a cyclohexyl ring or a steroid skeleton is preferable.
  • Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, or a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl having 1 to 3 carbon atoms.
  • a benzene ring or a cyclohexyl ring is preferable.
  • Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, or It is a hydrogen atom.
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable.
  • it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferably, it is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • n is an integer of 0 to 4. Preferably, it is an integer of 0-2.
  • Preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , and n in Formula [2] are as shown in Tables 2-1 to 2-629 shown in Tables 6 to 47.
  • c is an integer from 1 to 10.
  • c is an integer from 1 to 10.
  • c is an integer from 1 to 10.
  • a is an integer from 1 to 10.
  • a is an integer from 1 to 10.
  • a is an integer from 1 to 10.
  • a is an integer from 1 to 10.
  • a is an integer from 1 to 10.
  • a and c are each independently an integer of 1 to 10.
  • m is an integer of 1 to 4. Preferably, it is an integer of 1 to 2.
  • the structure is represented by the following formula [2-1] to formula [2-32].
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, —CH 2 OCO—
  • R 2 Is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group).
  • R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, Or —CH 2 —, wherein R 4 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group).
  • R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 — or —O—, wherein R 6 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group.
  • R 7 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer, respectively. is there).
  • R 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer, respectively. is there).
  • a 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • a 3 represents a 1,4-cyclohexylene group or 1, 4 -Phenylene group
  • a 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 3 )
  • a 1 is an oxygen atom or —COO— * (However, the bond marked with “*” binds to (CH 2 ) a 2.
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10.
  • a 3 is an integer of 0 or 1).
  • a diamine having an alkyl group or a fluorine-containing alkyl group in the diamine side chain can be used.
  • diamines represented by the following formulas [DA1] to [DA12] can be exemplified.
  • a 1 is 1 or more carbon atoms 22 an alkyl group, or a fluorine-containing alkyl group).
  • a 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—.
  • a 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
  • p is an integer of 1 to 10).
  • the above-mentioned other diamine compounds may be used alone or in combination of two or more depending on the properties such as liquid crystal orientation, voltage holding ratio, and accumulated charge when the liquid crystal alignment film is used.
  • tetracarboxylic dianhydride (also referred to as a specific tetracarboxylic dianhydride) represented by the following formula [3] as a part of the raw material.
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms.
  • Z 1 is a tetravalent group represented by, for example, the following formulas [3a] to [3j].
  • Z 2 to Z 5 are groups selected from a hydrogen atom, a methyl group, a chlorine atom, or a benzene ring, which may be the same or different, and in the formula [3g], Z 6 and Z 7 are a hydrogen atom or a methyl group, and may be the same or different.
  • Z 1 particularly preferred structure of Z 1 is represented by formula [3a], formula [3c], formula [3d], formula [3e], formula [3f], or from the viewpoint of polymerization reactivity and ease of synthesis.
  • Formula [3g] particularly preferred structure of Z 1 is represented by formula [3a], formula [3c], formula [3d], formula [3e], formula [3f], or from the viewpoint of polymerization reactivity and ease of synthesis.
  • the above-mentioned other tetracarboxylic dianhydrides can be used alone or in combination of two or more depending on the properties such as liquid crystal alignment properties, voltage holding ratio, accumulated charge, etc. when the liquid crystal alignment film is formed.
  • the polymer used in the present invention includes a specific diamine compound represented by the above formula [1] and a diamine component containing a specific side chain diamine compound represented by the above formula [2] and a tetracarboxylic acid diester.
  • the method for synthesizing the polymer of the present invention is not particularly limited, but a method of reacting a diamine component with tetracarboxylic dianhydride, as in a general polyimide precursor (for example, polyamic acid) or polyimide synthesis method. Can be used. At that time, tetracarboxylic acid derivatives such as tetracarboxylic acid or tetracarboxylic acid dihalide can also be used.
  • the liquid crystal alignment film obtained by using the polymer of the present invention increases the wettability of the liquid crystal on the liquid crystal alignment film as the content ratio of the specific diamine compound in the diamine component increases. It is possible to provide a liquid crystal display element that is high and does not cause poor display of uneven alignment. In addition, the pretilt angle of the liquid crystal can be increased as the content of the specific side chain diamine compound increases.
  • the content of the specific side chain diamine compound in the diamine component is preferably 0.01 to 99 mol with respect to 1 mol of the specific diamine compound. More preferably, it is 0.1 to 50 mol, still more preferably 0.5 to 20 mol, and most preferably 0.5 to 10 mol.
  • a specific tetracarboxylic dianhydride represented by the above formula [3] as the tetracarboxylic dianhydride.
  • 1 mol% or more of tetracarboxylic dianhydrides are specific tetracarboxylic dianhydrides.
  • 5 mol% or more of the tetracarboxylic dianhydride is a specific tetracarboxylic dianhydride, and more preferably 10 mol% or more.
  • specific tetracarboxylic dianhydride may be sufficient as 100 mol% of tetracarboxylic dianhydride.
  • the polyimide precursor of the present invention by a reaction between a diamine component and tetracarboxylic dianhydride, a known synthesis method can be used.
  • the diamine component and tetracarboxylic dianhydride are reacted in an organic solvent.
  • the reaction between the diamine component and tetracarboxylic dianhydride is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
  • the organic solvent used for the reaction between the diamine component and tetracarboxylic dianhydride is not particularly limited as long as the generated polyimide precursor is soluble. Specific examples are given below.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent.
  • a method of adding by dispersing or dissolving a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used.
  • the diamine component or tetracarboxylic dianhydride when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed and reacted to form a high molecular weight product.
  • the polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of ⁇ 5 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight copolymer, and if the concentration is too high, the viscosity of the reaction solution will become too high and uniform stirring will occur. Since it becomes difficult, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component and the total number of moles of tetracarboxylic dianhydride is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the polyamic acid which is the polyimide precursor, and is useful as a polymer for obtaining a liquid crystal alignment film.
  • the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, and catalyst imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a poor solvent and precipitated.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating.
  • the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the polyimide precursor or polyimide contained in the liquid crystal aligning agent of the present invention is determined by considering the strength of the coating film obtained therefrom, the workability at the time of coating film formation, and the uniformity of the coating film.
  • the weight average molecular weight measured by Gel Permeation Chromatography is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution which the resin component for forming a resin film melt
  • the resin component includes the above-described polymer of the present invention, that is, the diamine component including the specific diamine compound represented by the formula [1] and the specific side chain diamine compound represented by the formula [2].
  • the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
  • all of the resin components may be the polymer of the present invention, and other polymers may be mixed with the polymer of the present invention.
  • the content of the polymer other than the polymer of the present invention in the resin component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
  • Examples of such another polymer include a polyimide precursor or a polyimide that does not use a specific diamine compound and a specific side chain diamine compound as a raw material.
  • a crosslinkable compound that is a compound that crosslinks a polymer for the purpose of obtaining a liquid crystal alignment film whose voltage holding ratio does not decrease even under heat or ultraviolet irradiation, specifically, At least one selected from the group consisting of a crosslinkable compound having at least one substituent selected from an epoxy group, an isocyanate group, an oxetane group, and a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, an alkoxyl group, and a lower alkoxyalkyl group. It is preferable to introduce a crosslinkable compound having a seed substituent or a crosslinkable compound having a polymerizable unsaturated bond. In addition, it is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, and tetraglycidyl.
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
  • crosslinkable compounds represented by the following formulas [4a] to [4k].
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group, an alkoxyl group, and a lower alkoxyalkyl group include, for example, an amino resin having a hydroxyl group, an alkoxyl group, or a lower alkoxyalkyl group, such as a melamine resin. And urea resin, guanamine resin, glycoluril-formaldehyde resin, succinylamide-formaldehyde resin, and ethylene urea-formaldehyde resin.
  • the lower alkoxyalkyl group is, for example, an alkoxyalkyl group having 1 to 4 carbon atoms.
  • crosslinkable compound for example, a melamine derivative, a benzoguanamine derivative or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both can be used.
  • the melamine derivative and benzoguanamine derivative may exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Eight-substituted MW-30 (from Sanwa Chemical Co., Ltd.), methoxymethylated melamines such as Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated etoxy Methylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzogu
  • benzene or phenolic compounds having a hydroxyl group or an alkoxyl group examples include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis (sec -Butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meta ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (me ) Acrylate, neopentyl glycol di (meth) acrylate,
  • a 1 is an n-valent group selected from a cyclohexyl ring, a bicyclohexyl ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring, or a phenanthrene ring
  • a 2 is a group selected from the following formula [5a] or [5b]
  • n is an integer of 1 to 4.
  • crosslinkable compound contained in the liquid crystal aligning agent of this invention may be one type, and may be combined two or more types.
  • the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of the polymer of the present invention made of a polyimide precursor or polyimide.
  • the amount is more preferably 0.1 to 100 parts by weight, particularly 1 to 50 parts by weight, so that the crosslinking reaction proceeds and the desired effect is exhibited and the orientation of the liquid crystal is not lowered.
  • Nitrogen-containing heterocyclic amine compounds represented by the following formulas [M1] to [M156] are used as compounds that promote charge transfer in the liquid crystal alignment film and promote charge release of a liquid crystal cell using the liquid crystal alignment film. It is preferable to add.
  • the nitrogen-containing heterocyclic amine compound may be added directly to the polymer solution, but it is made into a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent. It is preferable to add after adding.
  • the solvent is not particularly limited as long as it is an organic solvent that dissolves the above-described resin component.
  • the organic solvent used in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent that dissolves the above-described resin component. Examples thereof include N-methyl-2-pyrrolidone and butyl cellosolve.
  • the liquid crystal aligning agent of the present invention preferably contains a poor solvent.
  • the poor solvent refers to a solvent that improves film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied. Specific examples of the poor solvent include the following.
  • solvents may be used alone or in combination.
  • the above poor solvent it is preferably 1 to 80% by mass, more preferably 5 to 60% by mass, and further preferably 20 to 60% by mass of the total solvent contained in the liquid crystal aligning agent. %.
  • the liquid crystal aligning agent of the present invention may contain components other than those described above. Examples thereof include a solvent compound that improves film thickness uniformity and surface smoothness, and a compound that improves the adhesion between the liquid crystal alignment film and the substrate.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass) and the like.
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent.
  • Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. It is. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. May be added.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment after being applied and baked on a substrate and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the like.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used.
  • an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
  • the method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • Calcination after applying the liquid crystal aligning agent on the substrate can form a coating film by evaporating the solvent at 50 to 300 ° C., preferably 80 to 250 ° C., by a heating means such as a hot plate. If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
  • Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the liquid-crystal aligning agent of this invention has the high wettability of the liquid crystal on a liquid-crystal aligning film, it can inject
  • the liquid crystal alignment treatment agent of the present invention is a liquid crystal layer using a liquid crystal display element in which alignment unevenness easily occurs during liquid crystal injection, that is, a liquid crystal material in which a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed with liquid crystal. It is also useful for a liquid crystal display device obtained by a method of controlling the alignment direction of liquid crystal during driving with a polymer obtained by polymerizing a polymerizable compound while applying a voltage to the substrate.
  • liquid crystal display element After obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, a liquid crystal cell is prepared, and a polymerizable compound is polymerized by irradiation with heat or ultraviolet rays.
  • the liquid crystal display element has a controlled orientation.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
  • Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the liquid crystal used in this case is mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound When the polymerizable compound is less than 0.01 parts by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases, and the liquid crystal display The burn-in characteristic of the element is deteriorated.
  • the orientation of the liquid crystal can be controlled by polymerizing the polymerizable compound by irradiating the liquid crystal cell with heat or ultraviolet rays while applying an AC or DC voltage.
  • the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
  • PCH7DAB 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene
  • PBCH5DAB 1,3-diamino-4- ⁇ 4- [trans-4- (trans-4 -N-pentylcyclohexyl) cyclohexyl] phenoxy ⁇ benzene
  • m-PBCH5DABz 1,3-diamino-5- ⁇ 4- [4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxymethyl ⁇ benzene
  • ColDAB -1 Specific side chain diamine compound represented by the following formula
  • Crosslinkable compound (1) YH-434L (manufactured by Tohto Kasei) (epoxy-based crosslinkable compound)
  • Crosslinkable compound (2) OXT-221 (manufactured by Toa Gosei) (oxetane-based crosslinkable compound)
  • Crosslinkable compound (3) crosslinkable compound represented by the following formula (hydroxylated phenol-based crosslinkable compound)
  • the molecular weight of polyimide in the synthesis example is as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko) and columns (KD-803, KD-805) (manufactured by Shodex). Measured.
  • GPC gel permeation chromatography
  • the imidation ratio of polyimide in the synthesis example was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard ⁇ 5 (Kusano Kagaku)) and add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture) Then, it was completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • JNW-ECA500 deuterated dimethyl sulfoxide
  • the imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • Table 48 shows the polyamic acid and polyimide of the present invention.
  • a liquid crystal alignment treatment agent is spin-coated on the ITO surface of a substrate with 3 ⁇ 4 cm ITO electrodes, and is heated on a hot plate at 80 ° C. for 5 minutes, and then heated at 220 ° C. for 30 minutes in a heat-circulating clean oven. A substrate with a 100 nm thick polyimide liquid crystal alignment film was obtained.
  • Example 1 The polyamic acid solution (1) (10.5 g), NMP (8.50 g), and BCS (24.6 g) having a resin solid content concentration of 24.9% by mass obtained in Synthesis Example 1 were added at 25 ° C. By mixing for a time, a liquid crystal aligning agent (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 2 The polyimide powder (2) (2.52 g), NMP (22.3 g), and BCS (19.7 g) obtained in Synthesis Example 2 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (2 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 3 The polyimide powder (3) (2.50 g), NMP (24.0 g), and BCS (17.6 g) obtained in Synthesis Example 3 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (3 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 4 The polyimide powder (4) (2.51 g), NMP (26.1 g), and BCS (15.7 g) obtained in Synthesis Example 4 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (4 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 5 The polyimide powder (5) (2.50 g), NMP (29.9 g), and BCS (11.8 g) obtained in Synthesis Example 5 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (5 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 6 The polyamic acid solution (6) (11.0 g), NMP (11.1 g), and BCS (23.7 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 6 were obtained at 25 ° C. By mixing for a time, a liquid crystal aligning agent (6) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 7 The polyimide powder (7) (2.51 g), NMP (30.0 g), and BCS (11.8 g) obtained in Synthesis Example 7 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (7 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 8 The polyimide powder (8) (2.50 g), NMP (26.0 g), and BCS (15.7 g) obtained in Synthesis Example 8 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (8 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 9 The polyimide powder (9) (2.50 g), NMP (31.9 g), and BCS (9.80 g) obtained in Synthesis Example 9 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (9 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 10 The polyimide powder (10) (2.53 g), NMP (30.3 g), and BCS (11.9 g) obtained in Synthesis Example 10 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (10 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 11 The polyimide powder (2) (2.50 g), NMP (22.1 g), BCS (19.6 g), and crosslinkable compound (1) (0.25 g) obtained in Synthesis Example 2 were added at 25 ° C.
  • the liquid crystal aligning agent (11) was obtained by mixing for 12 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 12 The polyimide powder (3) (2.50 g), NMP (24.0 g), BCS (17.6 g), and crosslinkable compound (2) (0.50 g) obtained in Synthesis Example 3 were added at 25 ° C.
  • the liquid crystal aligning agent (12) was obtained by mixing for 12 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • Example 13 The polyimide powder (3) (2.51 g), NMP (24.1 g), BCS (17.7 g), and the crosslinkable compound (3) (0.25 g) obtained in Synthesis Example 3 were added at 25 ° C. It mixed for 12 hours and obtained the liquid-crystal aligning agent (13). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • the liquid crystal wettability on the liquid crystal alignment film is high while the pretilt angle of the liquid crystal is high.
  • Comparative Example 1 Comparative Example 2, and Comparative Example 5 using only the specific side chain type diamine compound, the pretilt angle of the liquid crystal is high, but the liquid crystal wettability on the liquid crystal alignment film is low. Further, Comparative Example 3 using a side chain diamine compound other than the specific diamine compound and the specific side chain diamine compound similarly has a high pretilt angle of the liquid crystal, but low wettability of the liquid crystal on the liquid crystal alignment film. As a result. In addition, in Comparative Example 4 using only the specific diamine compound, the liquid crystal wettability on the liquid crystal alignment film was high, but the pretilt angle of the liquid crystal was low.
  • the liquid crystal alignment treatment agent of the present invention can obtain a liquid crystal alignment film having high liquid crystal wettability on the liquid crystal alignment film.
  • a liquid crystal alignment film having high liquid crystal wettability even when a large amount of a diamine component having a side chain is used to obtain a high pretilt angle, the effect can be obtained. Therefore, by using the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention, it is possible to obtain a liquid crystal display element that has high production efficiency at the time of manufacturing the liquid crystal display element and does not cause poor display of alignment unevenness.
  • the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention is a liquid crystal display element in which alignment unevenness easily occurs during liquid crystal injection, that is, a liquid crystal mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation.
  • This is a polymer obtained by polymerizing a liquid crystal layer while applying a voltage to the liquid crystal layer, and is also useful for a liquid crystal display device obtained by a method for controlling the alignment direction of liquid crystal during driving.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Disclosed is a liquid-crystal alignment agent that contains a polymer obtained through causing the reaction of a tetracarboxylic acid dianhydride and a diamine component containing the diamine compounds of formula 1 and formula 2. X1 is a divalent organic group selected from -NHCO-, -N(CH3)CO-, -CONH-, or -CON(CH3)-. X2 is a divalent organic group selected from a single bond, a benzene ring, or a cyclohexyl ring. X3 and X4 are divalent organic groups selected from a benzene ring or a cyclohexyl ring. X­5 is selected from an alkyl group having a carbon number of 1-18, a fluorine-containing alkyl group having a carbon number of 1-18, an alkoxyl group having a carbon number of 1-18, or a fluorine-containing alkoxyl group having a carbon number of 1-18, and n is an integer from 1 to 4. Y1 is a divalent organic group selected from a single bond, -(CH2)a (a being an integer from 1 to 10), -O-, -CH2O-, -COO-, or -OCO-. Y2 is a divalent organic group selected from a single bond or -(CH2)b- (b being an integer from 1 to 10). Y3 is a divalent organic group selected from a single bond, -(CH2)c- (c being an integer from 1 to 10), -O-, -CH2O-, -COO-, or -OCO-. Y4 indicates a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, or a heterocycle, or indicates a divalent organic group having a carbon number of 12-25 and having a steroid skeleton, and any given hydrogen atom on the aforementioned cyclic groups may be replaced by a group selected from an alkyl group having a carbon number of 1-3, an alkoxyl group having a carbon number of 1-3, a fluorine-containing alkyl group having a carbon number of 1-3, a fluorine-containing alkoxyl group having a carbon number of 1-3, or a fluorine atom. Y5 indicates a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, or a heterocycle, any given hydrogen atom on these cyclic groups may be replaced by a group selected from an alkyl group having a carbon number of 1-3, an alkoxyl group having a carbon number of 1-3, a fluorine-containing alkyl group having a carbon number of 1-3, a fluorine-containing alkoxyl group having a carbon number of 1-3, or a fluorine atom, and n is an integer from 0 to 4. Y6 is an alkyl group having a carbon number of 1-18, a fluorine-containing alkyl group having a carbon number of 1-18, an alkoxyl group having a carbon number of 1-18, a fluorine-containing alkoxyl group having a carbon number of 1-18, or a hydrogen atom, and m is an integer from 1 to 4.

Description

液晶配向処理剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向膜を作製する際に用いる液晶配向処理剤及びそれを用いた液晶表示素子に関するものである。 The present invention relates to a liquid crystal alignment treatment agent used for producing a liquid crystal alignment film and a liquid crystal display element using the same.
 現在、液晶表示素子に用いられる液晶配向膜には、多くの場合ポリイミド膜が使用されており、このポリイミド膜は、ポリイミドの前駆体であるポリアミド酸の溶液、又は溶媒可溶性ポリイミドの溶液を基板に塗布し、焼成する方法がとられている。このポリアミド酸又は溶媒可溶性ポリイミドは、一般的に、テトラカルボン酸二無水物などのテトラカルボン酸誘導体と、ジアミンとの反応によって合成されている。 Currently, in many cases, a polyimide film is used as a liquid crystal alignment film used in a liquid crystal display element. This polyimide film is formed by using a solution of a polyamic acid, which is a precursor of polyimide, or a solution of a solvent-soluble polyimide as a substrate. The method of apply | coating and baking is taken. This polyamic acid or solvent-soluble polyimide is generally synthesized by reacting a tetracarboxylic acid derivative such as tetracarboxylic dianhydride with a diamine.
 液晶配向膜に求められる特性の一つとして、基板面に対する液晶分子の配向傾斜角を任意の値に保つ、いわゆる液晶のプレチルト角制御がある。このプレチルト角の大きさは、液晶配向膜を構成しているポリイミドの構造を選択することで変更出来ることが知られている。 As one of the characteristics required for the liquid crystal alignment film, there is so-called pretilt angle control of the liquid crystal in which the alignment tilt angle of the liquid crystal molecules with respect to the substrate surface is maintained at an arbitrary value. It is known that the magnitude of the pretilt angle can be changed by selecting the structure of the polyimide constituting the liquid crystal alignment film.
 ポリイミドの構造によってプレチルト角を制御する技術の中でも、側鎖を有するジアミンをポリイミド原料の一部として用いる方法は、このジアミンの使用割合に応じてプレチルト角が制御できるので、目的のプレチルト角にせしめることが比較的容易であり、プレチルト角を大きくする手段として有用である。液晶のプレチルト角を大きくするジアミンの側鎖構造としては、長鎖のアルキル基又はフルオロアルキル基(例えば特許文献1参照)、環状基又は環状基とアルキル基の組み合わせ(例えば特許文献2参照)、ステロイド骨格(例えば特許文献3参照)などが知られている。 Among the techniques for controlling the pretilt angle depending on the structure of the polyimide, the method using a diamine having a side chain as a part of the polyimide raw material can control the pretilt angle in accordance with the proportion of the diamine used, so that the desired pretilt angle is obtained. This is relatively easy and is useful as a means for increasing the pretilt angle. Examples of the side chain structure of the diamine that increases the pretilt angle of the liquid crystal include a long-chain alkyl group or a fluoroalkyl group (for example, see Patent Document 1), a cyclic group or a combination of a cyclic group and an alkyl group (for example, see Patent Document 2), A steroid skeleton (see, for example, Patent Document 3) is known.
特開平2-282726号公報JP-A-2-282726 特開平3-179323号公報Japanese Patent Laid-Open No. 3-179323 特開平4-281427号公報JP-A-4-281427
 近年、従来のTN(Twisted Nematic)モードの液晶表示素子に比べて視野角特性に優れる液晶表示素子として、広視野角が得られるMVA(Multi-domain Vertical Alignment)モードが広く用いられている。このMVAモードでは、液晶分子を基板に対して、垂直に配向させる(プレチルト角を90°にする)必要があり、上述した側鎖を有するジアミン成分を多く使用した液晶配向膜が求められる。しかしながら、この液晶配向膜は、液晶との親和性を低下させ、液晶配向膜上における液晶の濡れ拡がり性を低下させる。具体的には、液晶の注入を真空注入法で行う場合には、液晶の注入速度が低下するため、液晶表示素子作製時の生産効率が悪くなり、ODF(One Drop Filling)法で行う場合には、液晶滴下部分や液晶同士の融合部分などに配向ムラが発生しやすくなり、液晶表示素子の表示不良が起こる問題がある。 In recent years, MVA (Multi-domain Vertical Alignment) mode capable of obtaining a wide viewing angle has been widely used as a liquid crystal display device that has superior viewing angle characteristics as compared with conventional TN (Twisted Nematic) mode liquid crystal display devices. In this MVA mode, it is necessary to align liquid crystal molecules perpendicularly to the substrate (pretilt angle is set to 90 °), and a liquid crystal alignment film using many diamine components having side chains as described above is required. However, this liquid crystal alignment film reduces the affinity with the liquid crystal and reduces the wettability of the liquid crystal on the liquid crystal alignment film. Specifically, when the liquid crystal is injected by the vacuum injection method, the liquid crystal injection speed is lowered, so that the production efficiency at the time of manufacturing the liquid crystal display element is deteriorated, and when the ODF (One Drop Drop Filling) method is used. However, there is a problem that alignment unevenness is likely to occur in a liquid crystal dropping portion or a fusion portion of liquid crystals, and a display defect of a liquid crystal display element occurs.
 本発明は、上記の事情に鑑みなされたものであって、液晶配向膜上における液晶の濡れ拡がり性を高め、液晶表示素子作製時の生産効率が高く、配向ムラの表示不良が起こらない液晶配向処理剤、液晶配向膜及び液晶表示素子を提供することにある。 The present invention has been made in view of the above circumstances, and improves the liquid crystal wettability on the liquid crystal alignment film, has high production efficiency at the time of manufacturing a liquid crystal display element, and does not cause poor display of alignment unevenness. It is providing a processing agent, a liquid crystal aligning film, and a liquid crystal display element.
 本発明者は、鋭意研究を行った結果、特定の側鎖構造を有するポリイミド前駆体、及び該ポリイミド前駆体を脱水閉環させて得られるポリイミドを含む液晶配向処理剤が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。 As a result of diligent research, the present inventors have achieved the above object by a polyimide precursor having a specific side chain structure and a liquid crystal aligning agent containing polyimide obtained by dehydrating and ring-closing the polyimide precursor. Therefore, the present invention has been found to be extremely effective, and the present invention has been completed.
 すなわち、本発明は以下の要旨を有するものである。
(1)
 下記の式[1]で示されるジアミン化合物、及び下記の式[2]で示されるジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物とを反応させて得られる重合体を含有する液晶配向処理剤。
That is, the present invention has the following gist.
(1)
Liquid crystal alignment treatment comprising a diamine compound represented by the following formula [1] and a polymer obtained by reacting a diamine component containing the diamine compound represented by the following formula [2] with tetracarboxylic dianhydride. Agent.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式[1]中、Xは-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-より選ばれる2価の有機基であり、Xは単結合、ベンゼン環、又はシクロへキシル環より選ばれる2価の有機基であり、Xはベンゼン環、又はシクロへキシル環より選ばれる2価の有機基であり、Xはシクロへキシル環、又はベンゼン環より選ばれる2価の有機基であり、Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基より選ばれ、nは1~4の整数である)。 (In the formula [1], X 1 is a divalent organic group selected from —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, and X 2 is a single bond. , A benzene ring or a cyclohexyl ring, X 3 is a divalent organic group selected from a benzene ring or a cyclohexyl ring, and X 4 is a cyclohexyl ring, Or a divalent organic group selected from a benzene ring, and X 5 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or 1 carbon atom. From 18 to 18 fluorine-containing alkoxyl groups, and n is an integer from 1 to 4.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式[2]中、Yは、-O-、-CHO-、-(CH-(aは1~10の整数である)、-COO-、-OCO-、又は単結合より選ばれる2価の有機基であり、Yは単結合、又は-(CH-(bは1~10の整数である)より選ばれる2価の有機基であり、Yは単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-、又は-OCO-より選ばれる2価の有機基であり、Yはベンゼン環、シクロへキシル環、又は複素環から選ばれる2価の環状基、又は、ステロイド骨格を有する炭素数12~25の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、又は炭素数1~3のフッ素含有アルコキシル基、フッ素原子から選ばれるもので置換されていても良く、Yはシクロへキシル環、ベンゼン環、又は複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、又は炭素数1~3のフッ素含有アルコキシル基、フッ素原子から選ばれるもので置換されていても良く、nは0~4の整数であり、Yは、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、炭素数1~18のフッ素含有アルコキシル基又は水素原子であり、mは1~4の整数である)。 (In the formula [2], Y 1 represents —O—, —CH 2 O—, — (CH 2 ) a — (a is an integer of 1 to 10), —COO—, —OCO—, or Y 2 is a divalent organic group selected from a bond, Y 2 is a single bond or a divalent organic group selected from — (CH 2 ) b — (b is an integer of 1 to 10), Y 3 Is a divalent organic group selected from a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO—. Y 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, or a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton, on the cyclic group Arbitrary hydrogen atoms include an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, The fluorine-containing alkoxyl group having 1 to 3 carbon atoms, may be substituted with one selected from a fluorine atom, Y 5 represents a divalent cyclic group selected from cyclohexyl ring, a benzene ring or a heterocyclic cyclohexane And any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or fluorine having 1 to 3 carbon atoms An alkoxyl group that may be substituted with a fluorine atom, n is an integer of 0 to 4, Y 6 is an alkyl group having 1 to 18 carbon atoms, or a fluorine-containing alkyl group having 1 to 18 carbon atoms A group, an alkoxyl group having 1 to 18 carbon atoms, a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, or a hydrogen atom, and m is an integer of 1 to 4).
(2)
 式[1]中、Xが-NHCO-である(1)記載の液晶配向処理剤。
(2)
The liquid crystal aligning agent according to (1), wherein in formula [1], X 1 is —NHCO—.
(3)
前記テトラカルボン酸二無水物が、下記の式[3]で示されるテトラカルボン酸二無水物である(1)又は(2)記載の液晶配向処理剤。
(3)
The liquid crystal aligning agent according to (1) or (2), wherein the tetracarboxylic dianhydride is a tetracarboxylic dianhydride represented by the following formula [3].
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式[3]中、Zは炭素数4~13の4価の有機基であり、かつ、炭素数4~6の非芳香族環状炭化水素基を含有する)。 (In the formula [3], Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms).
(4)
が、下記の式[3a]~式[3j]で示される構造である(3)に記載の液晶配向処理剤。
(4)
The liquid crystal aligning agent according to (3), wherein Z 1 is a structure represented by the following formulas [3a] to [3j].
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式[3a]中、Z~Zは水素原子、メチル基、塩素原子、又はベンゼン環から選ばれる基であり、それぞれ、同じであっても異なっても良く、式[3g]中、Z及びZは水素原子、又はメチル基であり、それぞれ、同じであっても異なっても良い)。 (In the formula [3a], Z 2 to Z 5 are groups selected from a hydrogen atom, a methyl group, a chlorine atom, or a benzene ring, which may be the same or different, and in the formula [3g] Z 6 and Z 7 are a hydrogen atom or a methyl group, and each may be the same or different.
(5)
 液晶配向処理剤中に、エポキシ基、オキセタン基、イソシアネート基及びシクロカーボネート基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基、アルコキシル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を有する(1)~(4)のいずれか一項に記載の液晶配向処理剤。
(5)
In the liquid crystal aligning agent, a crosslinkable compound having at least one substituent selected from the group consisting of epoxy group, oxetane group, isocyanate group and cyclocarbonate group, hydroxyl group, hydroxyalkyl group, alkoxyl group and lower alkoxyalkyl The liquid crystal alignment treatment according to any one of (1) to (4), having a crosslinkable compound having at least one substituent selected from the group consisting of groups, or a crosslinkable compound having a polymerizable unsaturated bond Agent.
(6)
 液晶配向処理剤中の重合体がポリアミド酸を脱水閉環させて得られるポリイミドである(1)~(5)のいずれか一項に記載の液晶配向処理剤。
(6)
The liquid crystal aligning agent according to any one of (1) to (5), wherein the polymer in the liquid crystal aligning agent is a polyimide obtained by dehydrating and ring-closing polyamic acid.
(7)
 液晶配向処理剤中に5~60質量%の貧溶媒を含有する(1)~(6)のいずれか一項に記載の液晶配向処理剤。
(7)
The liquid crystal aligning agent according to any one of (1) to (6), wherein the liquid crystal aligning agent contains 5 to 60% by mass of a poor solvent.
(8)
 (1)~(7)のいずれか一項に記載の液晶配向処理剤を用いて得られる液晶配向膜。
(8)
A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of (1) to (7).
(9)
 (8)に記載の液晶配向膜を有する液晶表示素子。
(9)
The liquid crystal display element which has a liquid crystal aligning film as described in (8).
(10)
 (1)~(7)のいずれか一項に記載の液晶配向処理剤を用いて得られる液晶配向膜であって、液晶に熱や紫外線照射により重合する重合性化合物を混合した液晶材料を用いて、液晶層に電圧を印加しながら前記重合性化合物を重合させて得られるポリマーで、駆動時の液晶の配向方向を制御する方法により得られる液晶表示素子に用いられる液晶配向膜。
(10)
A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of (1) to (7), wherein a liquid crystal material in which a liquid crystal is mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation is used. A liquid crystal alignment film used for a liquid crystal display element, which is a polymer obtained by polymerizing the polymerizable compound while applying a voltage to the liquid crystal layer, and is obtained by a method of controlling the alignment direction of the liquid crystal during driving.
(11)
 (10)に記載の液晶配向膜を具備する液晶表示素子であって、液晶に熱や紫外線照射により重合する重合性化合物を混合した液晶材料を用いて、液晶層に電圧を印加しながら前記重合性化合物を重合させて得られるポリマーで、駆動時の液晶の配向方向を制御する方法により得られる液晶表示素子。
(11)
A liquid crystal display element comprising the liquid crystal alignment film according to (10), wherein the polymerization is performed while applying a voltage to the liquid crystal layer using a liquid crystal material in which a liquid crystal is mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation. A liquid crystal display element obtained by polymerizing an organic compound and obtained by a method of controlling the alignment direction of liquid crystal during driving.
 本発明の液晶配向処理剤を用いることによって、液晶配向膜上における液晶の濡れ拡がり性が高く、液晶表示素子作製時の生産効率が高く、配向ムラの表示不良が起こらない液晶表示素子を提供することができる。 By using the liquid crystal aligning agent of the present invention, there is provided a liquid crystal display element having high liquid crystal wettability on the liquid crystal alignment film, high production efficiency at the time of producing the liquid crystal display element, and no display defects of alignment unevenness. be able to.
 以下に、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明は、下記の式[1]で示されるジアミン化合物(特定ジアミン化合物ともいわれる)、及び下記の式[2]で示されるジアミン化合物(特定側鎖型ジアミン化合物ともいわれる)を含むジアミン成分とテトラカルボン酸二無水物とを反応させて得られる重合体を含有する液晶配向処理剤、該液晶配向処理剤を用いて得られる液晶配向膜、更には、該液晶配向膜を有する液晶表示素子である。 The present invention includes a diamine component including a diamine compound represented by the following formula [1] (also referred to as a specific diamine compound) and a diamine compound represented by the following formula [2] (also referred to as a specific side chain diamine compound); A liquid crystal aligning agent containing a polymer obtained by reacting with tetracarboxylic dianhydride, a liquid crystal aligning film obtained using the liquid crystal aligning agent, and a liquid crystal display device having the liquid crystal aligning film is there.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式[1]中、Xは-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-より選ばれる2価の有機基であり、Xは単結合、ベンゼン環、又はシクロへキシル環より選ばれる2価の有機基であり、Xはベンゼン環、又はシクロへキシル環より選ばれる2価の有機基であり、Xはシクロへキシル環、又はベンゼン環より選ばれる2価の有機基であり、Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基より選ばれ、nは1~4の整数である)。 (In the formula [1], X 1 is a divalent organic group selected from —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, and X 2 is a single bond. , A benzene ring or a cyclohexyl ring, X 3 is a divalent organic group selected from a benzene ring or a cyclohexyl ring, and X 4 is a cyclohexyl ring, Or a divalent organic group selected from a benzene ring, and X 5 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or 1 carbon atom. From 18 to 18 fluorine-containing alkoxyl groups, and n is an integer from 1 to 4.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式[2]中、Yは-O-、-CHO-、-(CH-(aは1~10の整数である)、-COO-、-OCO-、又は単結合より選ばれる2価の有機基であり、Yは単結合、又は-(CH-(bは1~10の整数である)より選ばれる2価の有機基であり、Yは単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-、又は-OCO-より選ばれる2価の有機基であり、Yはベンゼン環、シクロへキシル環、又は複素環から選ばれる2価の環状基、又は、ステロイド骨格を有する炭素数12~25の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、又は炭素数1~3のフッ素含有アルコキシル基、フッ素原子から選ばれるもので置換されていても良く、Yはシクロへキシル環、ベンゼン環、又は複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、又は炭素数1~3のフッ素含有アルコキシル基、フッ素原子から選ばれるもので置換されていても良く、nは0~4の整数であり、Yは、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、炭素数1~18のフッ素含有アルコキシル基又は水素原子であり、mは1~4の整数である)。 (In the formula [2], Y 1 is —O—, —CH 2 O—, — (CH 2 ) a — (a is an integer of 1 to 10), —COO—, —OCO—, or a single bond Y 2 is a single bond or a divalent organic group selected from — (CH 2 ) b — (b is an integer of 1 to 10), and Y 3 is A divalent organic group selected from a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO—. , Y 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, or a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms and having a steroid skeleton. The hydrogen atom is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, Fluorine-containing alkoxyl group having 1 to 3 carbon atoms, may be substituted with one selected from a fluorine atom, Y 5 represents a divalent cyclic group selected from cyclohexyl ring, a benzene ring or a heterocyclic cyclohexane, Arbitrary hydrogen atoms on these cyclic groups are alkyl groups having 1 to 3 carbon atoms, alkoxyl groups having 1 to 3 carbon atoms, fluorine-containing alkyl groups having 1 to 3 carbon atoms, or fluorine containing 1 to 3 carbon atoms An alkoxyl group, which may be substituted with one selected from fluorine atoms, n is an integer of 0 to 4, Y 6 is an alkyl group having 1 to 18 carbon atoms, or a fluorine-containing alkyl group having 1 to 18 carbon atoms , An alkoxyl group having 1 to 18 carbon atoms, a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, or a hydrogen atom, and m is an integer of 1 to 4.
 本発明の特定ジアミン化合物、及び特定側鎖型ジアミン化合物を用いた液晶配向処理剤より得られる液晶配向膜は、高いプレチルト角を得るために、側鎖を有するジアミン成分を多く使用した場合でも、液晶配向膜上における液晶の濡れ拡がり性が高くなる。それにより、本発明の液晶配向処理剤から得られた液晶配向膜を用いることで、液晶表示素子作製時の生産効率が高く、配向ムラの表示不良が起こらない液晶表示素子を提供することができる。 The liquid crystal alignment film obtained from the liquid crystal aligning agent using the specific diamine compound of the present invention and the specific side chain type diamine compound, even when a large amount of diamine components having side chains are used in order to obtain a high pretilt angle, The liquid crystal wettability on the liquid crystal alignment film is increased. Thus, by using the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention, it is possible to provide a liquid crystal display element that has high production efficiency at the time of manufacturing the liquid crystal display element and that does not cause poor display of alignment unevenness. .
<特定ジアミン化合物>
 本発明の特定ジアミン化合物は、下記の式[1]で示されるジアミン化合物である。
<Specific diamine compound>
The specific diamine compound of the present invention is a diamine compound represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式[1]中、Xは-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-より選ばれる2価の有機基であり、なかでも、-NHCO-、-CONH-が好ましい。より好ましくは、-NHCO-である。 In the formula [1], X 1 is a divalent organic group selected from —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, and in particular, —NHCO— , -CONH- is preferable. More preferred is —NHCO—.
 式[1]中、Xは単結合、ベンゼン環、又はシクロへキシル環より選ばれる2価の有機基、すなわち、フェニレン基、又はシクロへキシレン基であり、なかでも、単結合、又はベンゼン環が好ましい。 In the formula [1], X 2 is a divalent organic group selected from a single bond, a benzene ring, or a cyclohexyl ring, that is, a phenylene group or a cyclohexylene group. Among them, a single bond or benzene A ring is preferred.
 式[1]中、Xはベンゼン環、又はシクロへキシル環より選ばれる2価の有機基である。 In the formula [1], X 3 is a divalent organic group selected from a benzene ring or a cyclohexyl ring.
 式[1]中、Xはベンゼン環、又はシクロへキシル環より選ばれる2価の有機基である。 In the formula [1], X 4 is a divalent organic group selected from a benzene ring or a cyclohexyl ring.
 式[1]中、Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基より選ばれ、なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシル基である。更に好ましくは、炭素数1~9のアルキル基、又は炭素数1~9のアルコキシル基である。 In the formula [1], X 5 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Among them, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferably, it is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[1]中、nは1~4の整数であり、なかでも、1、又は2の整数が好ましい。 In the formula [1], n is an integer of 1 to 4, and an integer of 1 or 2 is particularly preferable.
 式[1]におけるX、X、X、X、nの好ましい組み合わせは、表1~表5に示す1-1~1-64の通りである。 Preferred combinations of X 1 , X 2 , X 3 , X 4 and n in the formula [1] are as shown in 1-1 to 1-64 shown in Tables 1 to 5.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
<特定側鎖型ジアミン化合物>
 本発明の特定側鎖型ジアミン化合物は、下記の式[2]で示されるジアミン化合物である。
<Specific side chain diamine compound>
The specific side chain diamine compound of the present invention is a diamine compound represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式[2]中、Yは単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-、-COO-、又は-OCO-より選ばれる2価の有機基である。なかでも、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、又は-COO-は、側鎖構造を合成しやすいので好ましい。より好ましくは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-、又は-COO-である。 In the formula [2], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO—. It is a divalent organic group selected. Among these, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, or —COO— is preferable because the side chain structure can be easily synthesized. . More preferably, it is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O—, or —COO—.
 式[2]中、Yは単結合、又は-(CH-(bは1~15の整数である)より選ばれる2価の有機基である。なかでも、単結合、又は-(CH-(bは1~0の整数である)が好ましい。 In the formula [2], Y 2 is a single bond or a divalent organic group selected from — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 0) is preferable.
 式[2]中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-、又は-OCO-より選ばれる2価の有機基である。なかでも、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-、又は-OCO-は、合成しやすいので好ましい。より好ましくは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-、又は-OCO-である。 In the formula [2], Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO—, or —OCO—. It is a divalent organic group selected. Among these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO— is preferable because they are easy to synthesize. . More preferably, they are a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO—.
 式[2]中、Yはベンゼン環、シクロへキシル環、又は複素環から選ばれる2価の環状基、又は、ステロイド骨格を有する炭素数12~25の2価の有機基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基、フッ素原子から選ばれるもので置換されていても良い。なかでも、ベンゼン環、シクロへキシル環又はステロイド骨格を有する炭素数12~25の有機基が好ましい。 In the formula [2], Y 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, or a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms and having a steroid skeleton, Arbitrary hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 3 carbon atoms And may be substituted with one selected from fluorine atoms. Of these, an organic group having 12 to 25 carbon atoms having a benzene ring, a cyclohexyl ring or a steroid skeleton is preferable.
 式[2]中、Yはベンゼン環、シクロへキシル環、又は複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基、フッ素原子から選ばれるもので置換されていても良い。なかでも、ベンゼン環、又はシクロへキシル環が好ましい。 In the formula [2], Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, or a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl having 1 to 3 carbon atoms. And a group selected from a group selected from a group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, and a fluorine atom. Of these, a benzene ring or a cyclohexyl ring is preferable.
 式[2]中、Yは、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、炭素数1~18のフッ素含有アルコキシル基又は水素原子である。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシル基である。更に好ましくは、炭素数1~9のアルキル基、又は炭素数1~9のアルコキシル基である。 In the formula [2], Y 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, or It is a hydrogen atom. Among these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferably, it is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[2]中、nは0~4の整数である。好ましくは、0~2の整数である。 In the formula [2], n is an integer of 0 to 4. Preferably, it is an integer of 0-2.
 式[2]におけるY、Y、Y、Y、Y、Y、nの好ましい組み合わせは、表6~表47に示す2-1~2-629の通りである。 Preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , and n in Formula [2] are as shown in Tables 2-1 to 2-629 shown in Tables 6 to 47.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019

(表中、cは1~10の整数である)
Figure JPOXMLDOC01-appb-T000019

(In the table, c is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000020

(表中、cは1~10の整数である)
Figure JPOXMLDOC01-appb-T000020

(In the table, c is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000021

(表中、cは1~10の整数である)
Figure JPOXMLDOC01-appb-T000021

(In the table, c is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027

(表中、aは1~10の整数である)
Figure JPOXMLDOC01-appb-T000027

(In the table, a is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000028

(表中、aは1~10の整数である)
Figure JPOXMLDOC01-appb-T000028

(In the table, a is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000029

(表中、aは1~10の整数である)
Figure JPOXMLDOC01-appb-T000029

(In the table, a is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000030

(表中、aは1~10の整数である)
Figure JPOXMLDOC01-appb-T000030

(In the table, a is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000031

(表中、aは1~10の整数である)
Figure JPOXMLDOC01-appb-T000031

(In the table, a is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000032

(表中、a、cはそれぞれ独立に1~10の整数である)
Figure JPOXMLDOC01-appb-T000032

(In the table, a and c are each independently an integer of 1 to 10)
Figure JPOXMLDOC01-appb-T000033

(表中、cは1~10の整数である)
Figure JPOXMLDOC01-appb-T000033

(In the table, c is an integer of 1 to 10)
Figure JPOXMLDOC01-appb-T000034

(表中、cは1~10の整数である)
Figure JPOXMLDOC01-appb-T000034

(In the table, c is an integer of 1 to 10)
Figure JPOXMLDOC01-appb-T000035

(表中、cは1~10の整数である)
Figure JPOXMLDOC01-appb-T000035

(In the table, c is an integer of 1 to 10)
Figure JPOXMLDOC01-appb-T000036

(表中、cは1~10の整数である)
Figure JPOXMLDOC01-appb-T000036

(In the table, c is an integer of 1 to 10)
Figure JPOXMLDOC01-appb-T000037

(表中、cは1~10の整数である)
Figure JPOXMLDOC01-appb-T000037

(In the table, c is an integer of 1 to 10)
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039

(表中、cは1~10の整数である)
Figure JPOXMLDOC01-appb-T000039

(In the table, c is an integer of 1 to 10)
Figure JPOXMLDOC01-appb-T000040

(表中、cは1~10の整数である)
Figure JPOXMLDOC01-appb-T000040

(In the table, c is an integer of 1 to 10)
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000042

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000043

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000043

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000044

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000044

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000045

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000045

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000046

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000046

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000047

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000047

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000048

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000048

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000049

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000049

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000050

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000050

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000051

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000051

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000052

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000052

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000053

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000053

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000054

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000054

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000055

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000055

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000056

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000056

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000057

(表中、bは1~10の整数である)
Figure JPOXMLDOC01-appb-T000057

(In the table, b is an integer from 1 to 10)
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 式[2]中、mは1~4の整数である。好ましくは、1~2の整数である。 In the formula [2], m is an integer of 1 to 4. Preferably, it is an integer of 1 to 2.
 具体的には、例えば下記の式[2-1]~式[2-32]で示される構造である。 Specifically, for example, the structure is represented by the following formula [2-1] to formula [2-32].
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
(式[2-1]及び式[2-2]中、Rは、-O-、-OCH-、-CHO-、-COOCH-、-CHOCO-を示し、Rは炭素数1以上22以下のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である)。 (In Formula [2-1] and Formula [2-2], R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, —CH 2 OCO—, and R 2 Is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group).
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
(式[2-3]~式[2-5]中、Rは、-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Rは炭素数1以上22以下のアルキル基、アルコキシ基、フッ素含有アルキル基、又はフッ素含有アルコキシ基である)。 (In the formulas [2-3] to [2-5], R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, Or —CH 2 —, wherein R 4 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group).
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
(式[2-6]及び式[2-7]中、Rは、-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、又は-O-を示し、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である)。 (In the formulas [2-6] and [2-7], R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 — or —O—, wherein R 6 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
(式[2-8]及び式[2-9]中、Rは、炭素数3以上12以下のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である)。 (In Formula [2-8] and Formula [2-9], R 7 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer, respectively. is there).
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
(式[2-10]及び式[2-11]中、Rは、炭素数3以上12以下のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である)。 (In Formula [2-10] and Formula [2-11], R 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer, respectively. is there).
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
(式[2-12]中、Aは、フッ素原子で置換されていてもよい炭素数3~20のアルキル基であり、Aは、1,4-シクロへキシレン基、又は1,4-フェニレン基であり、Aは、酸素原子、又は-COO-*(ただし、「*」を付した結合手がAと結合する)であり、Aは、酸素原子、又は-COO-*(ただし、「*」を付した結合手が(CH)aと結合する)である。また、aは、0又は1の整数であり、aは2~10の整数であり、aは0又は1の整数である)。 (In the formula [2-12], A 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 represents a 1,4-cyclohexylene group or 1, 4 -Phenylene group, A 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 3 ), and A 1 is an oxygen atom or —COO— * (However, the bond marked with “*” binds to (CH 2 ) a 2. ) a 1 is an integer of 0 or 1, and a 2 is an integer of 2 to 10. , A 3 is an integer of 0 or 1).
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068

 
Figure JPOXMLDOC01-appb-C000068

 
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
<その他ジアミン化合物>
 本発明においては、本発明の効果を損なわない限りにおいて、特定ジアミン化合物及び特定側鎖型ジアミン化合物以外のその他のジアミン化合物を、ジアミン成分として併用することができる。その具体例を以下に挙げる。
<Other diamine compounds>
In this invention, unless the effect of this invention is impaired, other diamine compounds other than a specific diamine compound and a specific side chain type diamine compound can be used together as a diamine component. Specific examples are given below.
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン。 p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4 , 6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dihydroxy -4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl 3,3′-difluoro-4,4′-biphenyl, 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2 '-Diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2,3'- Diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldi Aniline, 3,3'-sulfonyldianiline, bis ( -Aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'-thiodianiline, 3,3'-thiodianiline 4,4'-diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'- Diaminodiphenyl) amine, N-methyl (3,3′-diaminodiphenyl) amine, N-methyl (3,4′-diaminodiphenyl) amine, N-methyl (2,2′-diaminodiphenyl) amine, N-methyl (2,3′-diaminodiphenyl) amine, 4,4′-diaminobenzophenone, 3 , 3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diamino Naphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis ( 4-aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4- Bis (4aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4 Aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis ( 4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline 4,4 '-[1,3-phenylenebis (methylene)] dianiline, 3,4'-[1,4-phenylenebis (methylene)] dianiline, 3,4 '-[1,3-phenylenebis ( Methylene)] dianiline, 3,3 ′-[1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylene [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [ (3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1, 3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N , N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N ′-(1,3-phenyl) Enylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N'-bis (4-aminophenyl) terephthalamide, N, N'-bis (3-aminophenyl) terephthalamide, N, N'-bis (4-aminophenyl) isophthalamide, N, N'- Bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4- Aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophen) ) Hexafluoropropane, 2,2′-bis (3-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4 -Aminophenyl) propane, 2,2'-bis (3-aminophenyl) propane, 2,2'-bis (3-amino-4-methylphenyl) propane, 3,5-diaminobenzoic acid, 2,5- Diaminobenzoic acid, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3 -Aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminopheno) B) Hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis ( 4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4 -Aminophenoxy) dodecane, aromatic diamines such as 1,12- (3-aminophenoxy) dodecane, bis (4-aminocyclohexyl) methane, bis (4-amino No-3-methylcyclohexyl) methane and other alicyclic diamines, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane Aliphatic diamines such as 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane and 1,12-diaminododecane.
 また、本発明の効果を損なわない限りにおいて、ジアミン側鎖にアルキル基、フッ素含有アルキル基を有するジアミンを用いることができる。 Further, as long as the effects of the present invention are not impaired, a diamine having an alkyl group or a fluorine-containing alkyl group in the diamine side chain can be used.
 具体的には、下記の式[DA1]~式[DA12]で示されるジアミンを例示することができる。 Specifically, diamines represented by the following formulas [DA1] to [DA12] can be exemplified.
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
(式[DA1]~式[DA5]中、Aは、炭素数1以上22以下のアルキル基、又はフッ素含有アルキル基である)。 (Wherein [DA1] ~ formula [DA5], A 1 is 1 or more carbon atoms 22 an alkyl group, or a fluorine-containing alkyl group).
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
(式[DA6]~式[DA11]中、Aは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、Aは炭素数1以上22以下のアルキル基、又はフッ素含有アルキル基を示す)。 (In the formulas [DA6] to [DA11], A 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—. A 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
(式[DA12]中、pは1~10の整数である)。 (In the formula [DA12], p is an integer of 1 to 10).
 上記その他ジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The above-mentioned other diamine compounds may be used alone or in combination of two or more depending on the properties such as liquid crystal orientation, voltage holding ratio, and accumulated charge when the liquid crystal alignment film is used.
<テトラカルボン酸二無水物>
 本発明の重合体を得るためには、下記の式[3]で示されるテトラカルボン酸二無水物(特定テトラカルボン酸二無水物ともいわれる)を原料の一部に用いることが好ましい。
<Tetracarboxylic dianhydride>
In order to obtain the polymer of the present invention, it is preferable to use a tetracarboxylic dianhydride (also referred to as a specific tetracarboxylic dianhydride) represented by the following formula [3] as a part of the raw material.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 式[3]中、Zは炭素数4~13の4価の有機基であり、かつ、炭素数4~6の非芳香族環状炭化水素基を含有する。 In the formula [3], Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms.
 Zは、具体的には、例えば下記の式[3a]~式[3j]で示される4価の基である。 Specifically, Z 1 is a tetravalent group represented by, for example, the following formulas [3a] to [3j].
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 式[3a]中、Z~Zは水素原子、メチル基、塩素原子、又はベンゼン環から選ばれる基であり、それぞれ、同じであっても異なっても良く、式[3g]中、Z及びZは水素原子、又はメチル基であり、それぞれ、同じであっても異なっても良い。 In the formula [3a], Z 2 to Z 5 are groups selected from a hydrogen atom, a methyl group, a chlorine atom, or a benzene ring, which may be the same or different, and in the formula [3g], Z 6 and Z 7 are a hydrogen atom or a methyl group, and may be the same or different.
 式[3]中、Zの特に好ましい構造は、重合反応性や合成の容易さから、式[3a]、式[3c]、式[3d]、式[3e]、式[3f]、又は式[3g]である。 In formula [3], particularly preferred structure of Z 1 is represented by formula [3a], formula [3c], formula [3d], formula [3e], formula [3f], or from the viewpoint of polymerization reactivity and ease of synthesis. Formula [3g].
<その他テトラカルボン酸二無水物>
 本発明においては、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸二無水物以外のその他のテトラカルボン酸二無水物を併用することができる。その具体例は以下の化合物の二無水物である。
<Other tetracarboxylic dianhydrides>
In this invention, unless the effect of this invention is impaired, other tetracarboxylic dianhydrides other than specific tetracarboxylic dianhydride can be used together. Specific examples thereof are dianhydrides of the following compounds.
 ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸。 Pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7 -Anthracene tetracarboxylic acid, 1,2,5,6-anthracene tetracarboxylic acid, 3,3 ', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4-biphenyltetracarboxylic acid, bis ( 3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2 , 2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) pro Bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4 -Dicarboxyphenyl) pyridine, 3,3 ', 4,4'-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, 1,3-diphenyl-1,2,3,4- Cyclobutane tetracarboxylic acid.
 上記その他テトラカルボン酸二無水物は、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The above-mentioned other tetracarboxylic dianhydrides can be used alone or in combination of two or more depending on the properties such as liquid crystal alignment properties, voltage holding ratio, accumulated charge, etc. when the liquid crystal alignment film is formed.
<重合体>
 本発明で用いる重合体は、上述したように、上記式[1]で示される特定ジアミン化合物、及び上記式[2]で示される特定側鎖型ジアミン化合物を含有するジアミン成分とテトラカルボン酸二無水物との反応によって得られるポリアミド酸や、このポリアミド酸を脱水閉環させて得られるポリイミドである。かかるポリアミド酸及びポリイミドのいずれも液晶配向膜を得るための重合体として有用である。
<Polymer>
As described above, the polymer used in the present invention includes a specific diamine compound represented by the above formula [1] and a diamine component containing a specific side chain diamine compound represented by the above formula [2] and a tetracarboxylic acid diester. Polyamide acid obtained by reaction with an anhydride and polyimide obtained by dehydrating and ring-closing this polyamic acid. Both the polyamic acid and the polyimide are useful as a polymer for obtaining a liquid crystal alignment film.
 本発明の重合体を合成する方法は特に限定されないが、一般的なポリイミド前駆体(例えば、ポリアミド酸)又はポリイミドの合成方法と同様に、ジアミン成分とテトラカルボン酸二無水物とを反応させる方法を用いることができる。その際、テトラカルボン酸又はテトラカルボン酸ジハライドなどのテトラカルボン酸誘導体を用いることもできる。 The method for synthesizing the polymer of the present invention is not particularly limited, but a method of reacting a diamine component with tetracarboxylic dianhydride, as in a general polyimide precursor (for example, polyamic acid) or polyimide synthesis method. Can be used. At that time, tetracarboxylic acid derivatives such as tetracarboxylic acid or tetracarboxylic acid dihalide can also be used.
 本発明の重合体を用いて得られる液晶配向膜は、上記ジアミン成分における特定ジアミン化合物の含有割合が多くなるほど、液晶配向膜上における液晶の濡れ拡がり性を高め、液晶表示素子作製時の生産効率が高く、配向ムラの表示不良が起こらない液晶表示素子を提供することができる。また、特定側鎖型ジアミン化合物の含有割合が多くなるほど、液晶のプレチルト角を高くすることができる。 The liquid crystal alignment film obtained by using the polymer of the present invention increases the wettability of the liquid crystal on the liquid crystal alignment film as the content ratio of the specific diamine compound in the diamine component increases. It is possible to provide a liquid crystal display element that is high and does not cause poor display of uneven alignment. In addition, the pretilt angle of the liquid crystal can be increased as the content of the specific side chain diamine compound increases.
 上記した特性を高める目的では、ジアミン成分において、特定側鎖型ジアミン化合物の含有量は、特定ジアミン化合物1モルに対して、0.01~99モルであることが好ましい。より好ましくは、0.1~50モルであり、更に好ましくは、0.5~20モルであり、最も好ましくは0.5~10モルである。 For the purpose of enhancing the above properties, the content of the specific side chain diamine compound in the diamine component is preferably 0.01 to 99 mol with respect to 1 mol of the specific diamine compound. More preferably, it is 0.1 to 50 mol, still more preferably 0.5 to 20 mol, and most preferably 0.5 to 10 mol.
 また、本発明の重合体を得るためには、テトラカルボン酸二無水物として上記式[3]で示される特定テトラカルボン酸二無水物を用いることが好ましい。その際、テトラカルボン酸二無水物の1モル%以上が特定テトラカルボン酸二無水物であることが好ましい。更には、テトラカルボン酸二無水物の5モル%以上が特定テトラカルボン酸二無水物であることが好ましく、より好ましくは10モル%以上である。また、テトラカルボン酸二無水物の100モル%が特定テトラカルボン酸二無水物であってもよい。 In order to obtain the polymer of the present invention, it is preferable to use a specific tetracarboxylic dianhydride represented by the above formula [3] as the tetracarboxylic dianhydride. In that case, it is preferable that 1 mol% or more of tetracarboxylic dianhydrides are specific tetracarboxylic dianhydrides. Furthermore, it is preferable that 5 mol% or more of the tetracarboxylic dianhydride is a specific tetracarboxylic dianhydride, and more preferably 10 mol% or more. Moreover, specific tetracarboxylic dianhydride may be sufficient as 100 mol% of tetracarboxylic dianhydride.
 ジアミン成分とテトラカルボン酸二無水物との反応により、本発明のポリイミド前駆体を得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物とを有機溶媒中で反応させる方法である。ジアミン成分とテトラカルボン酸二無水物との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。 In obtaining the polyimide precursor of the present invention by a reaction between a diamine component and tetracarboxylic dianhydride, a known synthesis method can be used. In general, the diamine component and tetracarboxylic dianhydride are reacted in an organic solvent. The reaction between the diamine component and tetracarboxylic dianhydride is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
 ジアミン成分とテトラカルボン酸二無水物との反応に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。その具体例を以下に挙げる。 The organic solvent used for the reaction between the diamine component and tetracarboxylic dianhydride is not particularly limited as long as the generated polyimide precursor is soluble. Specific examples are given below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどである。これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphoric triamide, γ-butyrolactone, isopropyl Alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol , Ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl Ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether , Dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether Tellurium, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate , Methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropio Acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, and the like. These may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction, and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 ジアミン成分とテトラカルボン酸二無水物とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いても良い。また、ジアミン成分又はテトラカルボン酸二無水物が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させても良く、個別に順次反応させても良く、さらに個別に反応させた低分子量体を混合反応させ高分子量体としても良い。 When the diamine component and tetracarboxylic dianhydride are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent. A method of adding by dispersing or dissolving, a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used. Further, when the diamine component or tetracarboxylic dianhydride is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed and reacted to form a high molecular weight product.
 その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の共重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of −5 ° C. to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight copolymer, and if the concentration is too high, the viscosity of the reaction solution will become too high and uniform stirring will occur. Since it becomes difficult, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合成モル数とテトラカルボン酸二無水物の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。 In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component and the total number of moles of tetracarboxylic dianhydride is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
 本発明のポリイミドは前記のポリイミド前駆体であるポリアミド酸を脱水閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。 The polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the polyamic acid which is the polyimide precursor, and is useful as a polymer for obtaining a liquid crystal alignment film.
 本発明のポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。 In the polyimide of the present invention, the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、ポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。 Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, and catalyst imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 When the polyimide precursor is thermally imidized in a solution, the temperature is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を貧溶媒に投入して沈殿させれば良い。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a poor solvent and precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
 本発明の液晶配向処理剤に含有されるポリイミド前駆体又はポリイミドの分子量は、そこから得られる塗膜の強度及び、塗膜形成時の作業性、塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polyimide precursor or polyimide contained in the liquid crystal aligning agent of the present invention is determined by considering the strength of the coating film obtained therefrom, the workability at the time of coating film formation, and the uniformity of the coating film. The weight average molecular weight measured by Gel Permeation Chromatography) is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
<液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布液であり、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液である。ここで、前記の樹脂成分は、上記した本発明の重合体、すなわち、上記式[1]で示される特定ジアミン化合物、及び上記式[2]で示される特定側鎖型ジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物とを反応させて得られる重合体から選ばれる少なくとも一種の重合体を含む樹脂成分である。その際、樹脂成分の含有量は1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、特に好ましくは3~10質量%である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution which the resin component for forming a resin film melt | dissolved in the organic solvent. Here, the resin component includes the above-described polymer of the present invention, that is, the diamine component including the specific diamine compound represented by the formula [1] and the specific side chain diamine compound represented by the formula [2]. And a resin component containing at least one polymer selected from polymers obtained by reacting carboxylic acid dianhydride with tetracarboxylic dianhydride. In that case, the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
 本発明において、前記の樹脂成分は、全てが本発明の重合体であってもよく、本発明の重合体にそれ以外の他の重合体が混合されていてもよい。その際、樹脂成分中における本発明の重合体以外の重合体の含有量は0.5質量%~15質量%、好ましくは1質量%~10質量%である。 In the present invention, all of the resin components may be the polymer of the present invention, and other polymers may be mixed with the polymer of the present invention. In that case, the content of the polymer other than the polymer of the present invention in the resin component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
 かかる他の重合体としては、例えば、特定ジアミン化合物、及び特定側鎖型ジアミン化合物を原料としないポリイミド前駆体又はポリイミドなどが挙げられる。 Examples of such another polymer include a polyimide precursor or a polyimide that does not use a specific diamine compound and a specific side chain diamine compound as a raw material.
 本発明の液晶配向処理剤には、熱や紫外線照射においても、電圧保持率が低下しない液晶配向膜を得ることを目的に、重合体を架橋する化合物である架橋性化合物、具体的には、エポキシ基、イソシアネート基、オキセタン基、及びシクロカーボネート基から選ばれる少なくとも1種の置換基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基、アルコキシル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物や、重合性不飽和結合を有する架橋性化合物を導入することが好ましい。なお、これら置換基や、重合性不飽和結合は、架橋性化合物中に、2個以上有する必要がある。 In the liquid crystal alignment treatment agent of the present invention, a crosslinkable compound that is a compound that crosslinks a polymer for the purpose of obtaining a liquid crystal alignment film whose voltage holding ratio does not decrease even under heat or ultraviolet irradiation, specifically, At least one selected from the group consisting of a crosslinkable compound having at least one substituent selected from an epoxy group, an isocyanate group, an oxetane group, and a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, an alkoxyl group, and a lower alkoxyalkyl group. It is preferable to introduce a crosslinkable compound having a seed substituent or a crosslinkable compound having a polymerizable unsaturated bond. In addition, it is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えばビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン、1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノール等が挙げられる。 Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, and tetraglycidyl. 1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy) -1 -Trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl, Liglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxy) Propoxy) phenyl) ethyl) phenyl) propane, 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3 -Epoxypropoxy) phenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol and the like.
 オキセタン基を有する架橋性化合物としては、下記の式[4]で示すオキセタン基を少なくとも2個有する架橋性化合物である。 The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 具体的には、例えば下記の式[4a]~式[4k]で示される架橋性化合物である。 Specifically, for example, crosslinkable compounds represented by the following formulas [4a] to [4k].
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 ヒドロキシル基、アルコキシル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基、アルコキシル基又は低級アルコキシアルキル基を有するアミノ樹脂、例えばメラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂、エチレン尿素-ホルムアルデヒド樹脂などが挙げられる。なお、低級アルコキシアルキル基とは、例えば炭素数1~4のアルコキシアルキル基である。 Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group, an alkoxyl group, and a lower alkoxyalkyl group include, for example, an amino resin having a hydroxyl group, an alkoxyl group, or a lower alkoxyalkyl group, such as a melamine resin. And urea resin, guanamine resin, glycoluril-formaldehyde resin, succinylamide-formaldehyde resin, and ethylene urea-formaldehyde resin. The lower alkoxyalkyl group is, for example, an alkoxyalkyl group having 1 to 4 carbon atoms.
 この架橋性化合物は、例えば、アミノ基の水素原子がメチロール基又はアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体又はグリコールウリルを用いることができる。このメラミン誘導体及びベンゾグアナミン誘導体は二量体又は三量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。 As the crosslinkable compound, for example, a melamine derivative, a benzoguanamine derivative or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group or an alkoxymethyl group or both can be used. The melamine derivative and benzoguanamine derivative may exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 このようなメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル製)や、サイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル等、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。 Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (from Sanwa Chemical Co., Ltd.), methoxymethylated melamines such as Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated etoxy Methylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide). Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
 ヒドロキシル基又はアルコキシル基を有するベンゼン又はフェノール性化合物として、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン、2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。 Examples of benzene or phenolic compounds having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis (sec -Butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
 より具体的には、下記の式[6-1]~式[6-48]で示される架橋性化合物である。 More specifically, it is a crosslinkable compound represented by the following formula [6-1] to formula [6-48].
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
 重合性不飽和結合を有する架橋性化合物としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物、さらに、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等の重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル、N-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物が挙げられる。 Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylolpropane, Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meta ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (me ) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) ) Acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl ester phthalate di (meth) acrylate, neopentyl glycol dihydroxypivalate Crosslinkable compounds having two polymerizable unsaturated groups in the molecule, such as (meth) acrylate, in addition to 2-hydroxyethyl (meth) acrylate, 2-hydroxy Propyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro-2-hydroxypropyl Crosslinkable compounds having one polymerizable unsaturated group in the molecule, such as (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester and N-methylol (meth) acrylamide It is done.
 加えて、下記の式[5]で示される化合物を用いることもできる。 In addition, a compound represented by the following formula [5] can also be used.
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
(式[5]中、Aは、シクロヘキシル環、ビシクロヘキシル環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環、又はフェナントレン環から選ばれるn価の基であり、Aは、下記の式[5a]、又は式[5b]から選ばれる基であり、nは1~4の整数である)。 (In the formula [5], A 1 is an n-valent group selected from a cyclohexyl ring, a bicyclohexyl ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring, or a phenanthrene ring, A 2 is a group selected from the following formula [5a] or [5b], and n is an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向処理剤に含有される架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。 The above compound is an example of a crosslinkable compound and is not limited thereto. Moreover, the crosslinkable compound contained in the liquid crystal aligning agent of this invention may be one type, and may be combined two or more types.
 本発明の液晶配向処理剤における、架橋性化合物の含有量は、ポリイミド前駆体又はポリイミドからなる上記本発明の重合体100質量部に対して、0.1~150質量部であることが好ましく、架橋反応が進行し目的の効果を発現し、かつ液晶の配向性を低下させないために、より好ましくは0.1~100質量部であり、特には、1~50質量部である。 In the liquid crystal aligning agent of the present invention, the content of the crosslinkable compound is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of the polymer of the present invention made of a polyimide precursor or polyimide. The amount is more preferably 0.1 to 100 parts by weight, particularly 1 to 50 parts by weight, so that the crosslinking reaction proceeds and the desired effect is exhibited and the orientation of the liquid crystal is not lowered.
 液晶配向膜中の電荷移動を促進し、該液晶配向膜を用いた液晶セルの電荷抜けを促進させる化合物として、下記の式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することが好ましい。この窒素含有複素環アミン化合物は、重合体の溶液に直接添加しても構わないが、適当な溶媒で濃度0.1質量%~10質量%、好ましくは1質量%~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した樹脂成分を溶解させる有機溶媒であれば特に限定されない。 Nitrogen-containing heterocyclic amine compounds represented by the following formulas [M1] to [M156] are used as compounds that promote charge transfer in the liquid crystal alignment film and promote charge release of a liquid crystal cell using the liquid crystal alignment film. It is preferable to add. The nitrogen-containing heterocyclic amine compound may be added directly to the polymer solution, but it is made into a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent. It is preferable to add after adding. The solvent is not particularly limited as long as it is an organic solvent that dissolves the above-described resin component.
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 本発明の液晶配向処理剤に用いる有機溶媒は、上述した樹脂成分を溶解させる有機溶媒であれば特に限定されない。例えば、N-メチル-2-ピロリドンや、ブチルセロソルブ等が挙げられる。 The organic solvent used in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent that dissolves the above-described resin component. Examples thereof include N-methyl-2-pyrrolidone and butyl cellosolve.
 また、本発明の液晶配向処理剤には、貧溶媒が含まれることが好ましい。貧溶媒とは、液晶配向処理剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒を指す。貧溶媒の具体例としては次のものが挙げられる。 In addition, the liquid crystal aligning agent of the present invention preferably contains a poor solvent. The poor solvent refers to a solvent that improves film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied. Specific examples of the poor solvent include the following.
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する溶媒などが挙げられる。 For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dip Pyrene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, n-hexane, n-pentane, n-octane, diethyl ether , Methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3- Ethyl methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy -2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ester Ter-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactyl isoamyl ester, etc. have low surface tension A solvent etc. are mentioned.
 これらの溶媒は1種類でも複数種類を混合して用いてもよい。上記のような貧溶媒を用いる場合は、液晶配向処理剤に含まれる溶媒全体の1~80質量%であることが好ましく、より好ましくは5~60質量%であり、さらに好ましくは20~60質量%である。 These solvents may be used alone or in combination. When the above poor solvent is used, it is preferably 1 to 80% by mass, more preferably 5 to 60% by mass, and further preferably 20 to 60% by mass of the total solvent contained in the liquid crystal aligning agent. %.
 本発明の液晶配向処理剤は、上記以外の成分を含有してもよい。膜厚の均一性や表面平滑性を向上させる溶媒化合物、液晶配向膜と基板との密着性を向上させる化合物などが挙げられる。 The liquid crystal aligning agent of the present invention may contain components other than those described above. Examples thereof include a solvent compound that improves film thickness uniformity and surface smoothness, and a compound that improves the adhesion between the liquid crystal alignment film and the substrate.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。 Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
 より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ製)、メガファックF171、F173、R-30(大日本インキ製)、フロラードFC430、FC431(住友スリーエム製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有される樹脂成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass) and the like. The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物であるものが挙げられる。 Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。 For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, poly Propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl -2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 これら基板との密着させる化合物を使用する場合は、液晶配向処理剤に含有される樹脂成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When using a compound to be adhered to these substrates, the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. It is. If it is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
 本発明の液晶配向処理剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。 In addition to the above, the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. May be added.
<液晶配向膜・液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、又は垂直配向用途などでは配向処理無しで液晶配向膜として用いることができる。この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment after being applied and baked on a substrate and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the like. In this case, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
 液晶配向処理剤の塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いてもよい。 The method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
 液晶配向処理剤を基板上に塗布した後の焼成は、ホットプレートなどの加熱手段により50~300℃、好ましくは80~250℃で溶媒を蒸発させて、塗膜を形成させることができる。焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射などで処理する。 Calcination after applying the liquid crystal aligning agent on the substrate can form a coating film by evaporating the solvent at 50 to 300 ° C., preferably 80 to 250 ° C., by a heating means such as a hot plate. If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。 The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。なお、本発明の液晶配向処理剤は、液晶配向膜上における液晶の濡れ拡がり性が高いため、減圧しなくても液晶を速く注入することができる。 To give an example of liquid crystal cell production, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside. Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like. . The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm. In addition, since the liquid-crystal aligning agent of this invention has the high wettability of the liquid crystal on a liquid-crystal aligning film, it can inject | pour a liquid crystal quickly, without reducing pressure.
 更に、本発明の液晶配向処理剤は、液晶注入時の配向ムラが発生しやすい液晶表示素子、すなわち、液晶に熱や紫外線照射により重合する重合性化合物を混合した液晶材料を用いて、液晶層に電圧を印加しながら重合性化合物を重合させて得られるポリマーで駆動時の液晶の配向方向を制御する方法により得られる液晶表示素子に対しても有用である。 Further, the liquid crystal alignment treatment agent of the present invention is a liquid crystal layer using a liquid crystal display element in which alignment unevenness easily occurs during liquid crystal injection, that is, a liquid crystal material in which a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed with liquid crystal. It is also useful for a liquid crystal display device obtained by a method of controlling the alignment direction of liquid crystal during driving with a polymer obtained by polymerizing a polymerizable compound while applying a voltage to the substrate.
 この液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、液晶セルを作製し、熱や紫外線を照射して重合性化合物を重合させ、液晶の配向を制御した液晶表示素子としたものである。 In this liquid crystal display element, after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, a liquid crystal cell is prepared, and a polymerizable compound is polymerized by irradiation with heat or ultraviolet rays. The liquid crystal display element has a controlled orientation.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 To give an example of liquid crystal cell production, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside. Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like. . The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 また、この際に用いられる液晶は、熱や紫外線照射により重合する重合性化合物を混合している。重合性化合物としては、アクリレート基やメタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御ができなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなり、液晶表示素子の焼き付き特性が低下する。 In addition, the liquid crystal used in this case is mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation. Examples of the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule. In that case, the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. When the polymerizable compound is less than 0.01 parts by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases, and the liquid crystal display The burn-in characteristic of the element is deteriorated.
 液晶セルを作製した後、液晶セルに、交流又は直流の電圧を印加しながら、熱や紫外線を照射し、重合性化合物を重合させることで、液晶の配向を制御することができる。 After producing the liquid crystal cell, the orientation of the liquid crystal can be controlled by polymerizing the polymerizable compound by irradiating the liquid crystal cell with heat or ultraviolet rays while applying an AC or DC voltage.
 以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。 As described above, the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、これらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
「本発明のポリイミド前駆体及びポリイミドの合成」
(テトラカルボン酸二無水物)
 CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
 TCA:2,3,5-トリカルボキシシクロペンチル酢酸―1,4:2,3-二無水物
 TDA:3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物
"Synthesis of polyimide precursor and polyimide of the present invention"
(Tetracarboxylic dianhydride)
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride BODA: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride TCA: 2,3,5 -Tricarboxycyclopentylacetic acid-1,4: 2,3-dianhydride TDA: 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
(特定ジアミン化合物)
 DA-1:4-(トランスー4-ヘプチルシクロヘキシル)ベンズアミド-2‘,4’-フェニレンジアミン
(Specific diamine compound)
DA-1: 4- (trans-4-heptylcyclohexyl) benzamide-2 ′, 4′-phenylenediamine
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
(特定側鎖型ジアミン化合物)
 PCH7DAB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
 PBCH5DAB:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
 m-PBCH5DABz:1,3-ジアミノ-5-{4-〔4-(トランス-4-n-ペンチルシクロヘキシル)シクロヘキシル〕フェノキシメチル}ベンゼン
 ColDAB-1:下記の式で示される特定側鎖型ジアミン化合物
(Specific side chain diamine compounds)
PCH7DAB: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene PBCH5DAB: 1,3-diamino-4- {4- [trans-4- (trans-4 -N-pentylcyclohexyl) cyclohexyl] phenoxy} benzene m-PBCH5DABz: 1,3-diamino-5- {4- [4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxymethyl} benzene ColDAB -1: Specific side chain diamine compound represented by the following formula
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
(その他ジアミン化合物)
 p-PDA:p-フェニレンジアミン
 m-PDA:m-フェニレンジアミン
 DBA:3,5-ジアミノ安息香酸
 AP18:1,3-ジアミノ-4-オクタデシルオキシベンゼン
(Other diamine compounds)
p-PDA: p-phenylenediamine m-PDA: m-phenylenediamine DBA: 3,5-diaminobenzoic acid AP18: 1,3-diamino-4-octadecyloxybenzene
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
(架橋性化合物)
 架橋性化合物(1):YH-434L(東都化成製)(エポキシ系架橋性化合物)
 架橋性化合物(2):OXT-221(東亜合成製)(オキセタン系架橋性化合物)
 架橋性化合物(3):下記の式で示される架橋性化合物(ヒドロキシル化フェノール系架橋性化合物)
(Crosslinkable compound)
Crosslinkable compound (1): YH-434L (manufactured by Tohto Kasei) (epoxy-based crosslinkable compound)
Crosslinkable compound (2): OXT-221 (manufactured by Toa Gosei) (oxetane-based crosslinkable compound)
Crosslinkable compound (3): crosslinkable compound represented by the following formula (hydroxylated phenol-based crosslinkable compound)
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
(有機溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
(Organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve
(ポリイミド前駆体及びポリイミドの分子量測定)
 合成例におけるポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工製)、カラム(KD-803、KD-805)(Shodex製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)(東ソー製)、及びポリエチレングリコール(分子量 約12,000、4,000、1,000)(ポリマーラボラトリー製)。
(Measurement of molecular weight of polyimide precursor and polyimide)
The molecular weight of polyimide in the synthesis example is as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko) and columns (KD-803, KD-805) (manufactured by Shodex). Measured.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, Tetrahydrofuran (THF) 10ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) (manufactured by Tosoh), and polyethylene glycol (molecular weight: about 12, 000, 4,000, 1,000) (manufactured by Polymer Laboratories).
(イミド化率の測定)
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード φ5(草野科学製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5から10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(Measurement of imidization rate)
The imidation ratio of polyimide in the synthesis example was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard φ5 (Kusano Kagaku)) and add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture) Then, it was completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
<合成例1>
 BODA(7.50g,30.0mmol)、DA-1(1.53g,3.75mmol)、PCH7DAB(5.71g,15.0mmol)、p-PDA(2.03g,18.8mmol)をNMP(30.1g)中で混合し、80℃で5時間反応させた後、CBDA(1.47g,7.50mmol)とNMP(24.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が、24.9質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量は25,400、重量平均分子量は73,300であった。
<Synthesis Example 1>
BODA (7.50 g, 30.0 mmol), DA-1 (1.53 g, 3.75 mmol), PCH7DAB (5.71 g, 15.0 mmol), p-PDA (2.03 g, 18.8 mmol) were added to NMP ( 30.1 g), and the mixture was reacted at 80 ° C. for 5 hours. Then, CBDA (1.47 g, 7.50 mmol) and NMP (24.8 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. A polyamic acid solution (1) having a concentration of 24.9% by mass was obtained. The number average molecular weight of this polyamic acid was 25,400, and the weight average molecular weight was 73,300.
<合成例2>
 合成例1で得られた樹脂固形分濃度が24.9質量%のポリアミド酸溶液(1)(20.2g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.47g)、ピリジン(1.88g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(320ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は21,200、重量平均分子量は54,400であった。
<Synthesis Example 2>
After adding NMP to the polyamic acid solution (1) (20.2 g) having a resin solid content concentration of 24.9% by mass obtained in Synthesis Example 1 and diluting to 6% by mass, acetic anhydride ( 2.47 g) and pyridine (1.88 g) were added and reacted at 80 ° C. for 4 hours. This reaction solution was poured into methanol (320 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (2). The imidation ratio of this polyimide was 55%, the number average molecular weight was 21,200, and the weight average molecular weight was 54,400.
<合成例3>
 BODA(6.89g,27.5mmol)、DA-1(1.40g,3.43mmol)、PBCH5DAB(4.47g,10.3mmol)、DBA(3.14g,20.6mmol)をNMP(28.6g)中で混合し、80℃で4.5時間反応させた後、CBDA(1.35g,6.88mmol)とNMP(23.4g)を加え、40℃で6時間反応させ、樹脂固形分濃度が、24.9質量%のポリアミド酸溶液を得た。
<Synthesis Example 3>
BODA (6.89 g, 27.5 mmol), DA-1 (1.40 g, 3.43 mmol), PBCH5DAB (4.47 g, 10.3 mmol), DBA (3.14 g, 20.6 mmol) and NMP (28. 6 g), and after reacting at 80 ° C. for 4.5 hours, CBDA (1.35 g, 6.88 mmol) and NMP (23.4 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. A polyamic acid solution having a concentration of 24.9% by mass was obtained.
 得られたポリアミド酸溶液(20.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(4.53g)、ピリジン(3.31g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は80%であり、数平均分子量は19,600、重量平均分子量は49,700であった。 After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (4.53 g) and pyridine (3.31 g) were added as an imidation catalyst, Reacted for hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (3). The imidation ratio of this polyimide was 80%, the number average molecular weight was 19,600, and the weight average molecular weight was 49,700.
<合成例4>
 BODA(3.99g,15.9mmol)、DA-1(1.86g,4.56mmol)、m-PBCH5DABz(2.54g,5.69mmol)、DBA(1.91g,12.6mmol)をNMP(19.3g)中で混合し、80℃で4時間反応させた後、CBDA(1.34g,6.83mmol)とNMP(15.7g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
<Synthesis Example 4>
BODA (3.99 g, 15.9 mmol), DA-1 (1.86 g, 4.56 mmol), m-PBCH5DABz (2.54 g, 5.69 mmol), DBA (1.91 g, 12.6 mmol) and NMP ( 19.3 g), and the mixture was reacted at 80 ° C. for 4 hours. Then, CBDA (1.34 g, 6.83 mmol) and NMP (15.7 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. A polyamic acid solution having a concentration of 25.0% by mass was obtained.
 得られたポリアミド酸溶液(20.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(4.51g)、ピリジン(3.30g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(320ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は81%であり、数平均分子量は20,100、重量平均分子量は50,200であった。 After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (4.51 g) and pyridine (3.30 g) were added as imidization catalysts, Reacted for hours. This reaction solution was poured into methanol (320 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (4). The imidation ratio of this polyimide was 81%, the number average molecular weight was 20,100, and the weight average molecular weight was 50,200.
<合成例5>
 BODA(7.09g,28.3mmol)、DA-1(2.89g,7.09mmol)、ColDAB-1(2.62g,5.32mmol)、m-PDA(2.49g,23.0mmol)をNMP(27.9g)中で混合し、80℃で4時間反応させた後、CBDA(1.39g,7.09mmol)とNMP(22.5g)を加え、40℃で5時間反応させ、樹脂固形分濃度が24.6質量%のポリアミド酸溶液を得た。
<Synthesis Example 5>
BODA (7.09 g, 28.3 mmol), DA-1 (2.89 g, 7.09 mmol), ColDAB-1 (2.62 g, 5.32 mmol), m-PDA (2.49 g, 23.0 mmol) After mixing in NMP (27.9 g) and reacting at 80 ° C. for 4 hours, CBDA (1.39 g, 7.09 mmol) and NMP (22.5 g) were added and reacted at 40 ° C. for 5 hours. A polyamic acid solution having a solid content concentration of 24.6% by mass was obtained.
 得られたポリアミド酸溶液(20.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)、ピリジン(1.93g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は21,200、重量平均分子量は54,200であった。 After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.50 g) and pyridine (1.93 g) were added as an imidization catalyst, Reacted for hours. This reaction solution was put into methanol (300 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (5). The imidation ratio of this polyimide was 55%, the number average molecular weight was 21,200, and the weight average molecular weight was 54,200.
<合成例6>
 TCA(3.43g,15.3mmol)、DA-1(0.62g,1.52mmol)、PCH7DAB(2.33g,6.12mmol)、p-PDA(0.83g,7.68mmol)をNMP(21.6g)中で混合し、40℃で7時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(6)を得た。このアミド酸の数平均分子量は25,900、重量平均分子量は69,900であった。
<Synthesis Example 6>
TCA (3.43 g, 15.3 mmol), DA-1 (0.62 g, 1.52 mmol), PCH7DAB (2.33 g, 6.12 mmol), p-PDA (0.83 g, 7.68 mmol) were added to NMP ( 21.6 g) and the mixture was reacted at 40 ° C. for 7 hours to obtain a polyamic acid solution (6) having a resin solid content concentration of 25.0% by mass. This amic acid had a number average molecular weight of 25,900 and a weight average molecular weight of 69,900.
<合成例7>
 TCA(3.11g,13.9mmol)、DA-1(0.57g,1.40mmol)、PBCH5DAB(1.80g,4.16mmol)、m-PDA(0.90g,8.32mmol)をNMP(19.2g)中で混合し、40℃で7時間反応させ、樹脂固形分濃度が24.9質量%のポリアミド酸溶液を得た。
<Synthesis Example 7>
TCA (3.11 g, 13.9 mmol), DA-1 (0.57 g, 1.40 mmol), PBCH5DAB (1.80 g, 4.16 mmol), m-PDA (0.90 g, 8.32 mmol) were added to NMP ( In 19.2 g), the mixture was reacted at 40 ° C. for 7 hours to obtain a polyamic acid solution having a resin solid content concentration of 24.9% by mass.
 得られたポリアミド酸溶液(20.5g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.52g)、ピリジン(1.95g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(7)を得た。このポリイミドのイミド化率は52%であり、数平均分子量は18,800、重量平均分子量は48,300であった。 After adding NMP to the obtained polyamic acid solution (20.5 g) and diluting to 6% by mass, acetic anhydride (2.52 g) and pyridine (1.95 g) were added as an imidization catalyst, Reacted for hours. This reaction solution was put into methanol (300 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (7). The imidation ratio of this polyimide was 52%, the number average molecular weight was 18,800, and the weight average molecular weight was 48,300.
<合成例8>
 BODA(1.21g,4.84mmol)、DA-1(1.31g,3.21mmol)、PBCH5DAB(2.09g,4.83mmol)、DBA(1.23g,8.08mmol)をNMP(13.8g)中で混合し、80℃で1.5時間反応させた後、TCA(2.53g,11.3mmol)とNMP(11.3g)を加え、40℃で8時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
<Synthesis Example 8>
BODA (1.21 g, 4.84 mmol), DA-1 (1.31 g, 3.21 mmol), PBCH5DAB (2.09 g, 4.83 mmol), DBA (1.23 g, 8.08 mmol) and NMP (13. 8 g), the mixture was reacted at 80 ° C. for 1.5 hours, TCA (2.53 g, 11.3 mmol) and NMP (11.3 g) were added, and the mixture was reacted at 40 ° C. for 8 hours. A polyamic acid solution having a concentration of 25.0% by mass was obtained.
 得られたポリアミド酸溶液(20.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(4.50g)、ピリジン(3.32g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(8)を得た。このポリイミドのイミド化率は82%であり、数平均分子量は21,300、重量平均分子量は49,900であった。 After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (4.50 g) and pyridine (3.32 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (300 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (8). The imidation ratio of this polyimide was 82%, the number average molecular weight was 21,300, and the weight average molecular weight was 49,900.
<合成例9>
 BODA(1.22g,4.88mmol)、DA-1(0.66g,1.62mmol)、ColDAB-1(1.60g,3.25mmol)、m-PDA(1.23g,11.4mmol)をNMP(12.5g)中で混合し、80℃で1.5時間反応させた後、TCA(2.55g,11.4mmol)とNMP(10.0g)を加え、40℃で7時間反応させ、樹脂固形分濃度が24.4質量%のポリアミド酸溶液を得た。
<Synthesis Example 9>
BODA (1.22 g, 4.88 mmol), DA-1 (0.66 g, 1.62 mmol), ColDAB-1 (1.60 g, 3.25 mmol), m-PDA (1.23 g, 11.4 mmol) After mixing in NMP (12.5 g) and reacting at 80 ° C. for 1.5 hours, TCA (2.55 g, 11.4 mmol) and NMP (10.0 g) were added and reacted at 40 ° C. for 7 hours. A polyamic acid solution having a resin solid content concentration of 24.4% by mass was obtained.
 得られたポリアミド酸溶液(20.5g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.52g)、ピリジン(1.91g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(310ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は53%であり、数平均分子量は22,800、重量平均分子量は56,100であった。 After adding NMP to the obtained polyamic acid solution (20.5 g) and diluting to 6% by mass, acetic anhydride (2.52 g) and pyridine (1.91 g) were added as imidization catalysts, The reaction was allowed for 5 hours. This reaction solution was poured into methanol (310 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (9). The imidation ratio of this polyimide was 53%, the number average molecular weight was 22,800, and the weight average molecular weight was 56,100.
<合成例10>
 TDA(1.49g,4.96mmol)、DA-1(1.35g,3.31mmol)、PCH7DAB(2.52g,6.62mmol)、DBA(1.01g,6.64mmol)をNMP(14.2g)中で混合し、80℃で2時間反応させた後、CBDA(2.27g,11.6mmol)とNMP(11.7g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
<Synthesis Example 10>
TDA (1.49 g, 4.96 mmol), DA-1 (1.35 g, 3.31 mmol), PCH7DAB (2.52 g, 6.62 mmol), DBA (1.01 g, 6.64 mmol) and NMP (14. 2g), the mixture was reacted at 80 ° C for 2 hours, CBDA (2.27g, 11.6mmol) and NMP (11.7g) were added, and the mixture was reacted at 40 ° C for 6 hours. A 25.0 mass% polyamic acid solution was obtained.
 得られたポリアミド酸溶液(20.1g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(4.50g)、ピリジン(3.33g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(310ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は76%であり、数平均分子量は18,200、重量平均分子量は47,800であった。 After adding NMP to the obtained polyamic acid solution (20.1 g) and diluting to 6% by mass, acetic anhydride (4.50 g) and pyridine (3.33 g) were added as an imidization catalyst, Reacted for hours. This reaction solution was poured into methanol (310 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (10). The imidation ratio of this polyimide was 76%, the number average molecular weight was 18,200, and the weight average molecular weight was 47,800.
<合成例11>
 BODA(6.79g,27.1mmol)、PCH7DAB(5.16g,13.6mmol)、p-PDA(2.20g,20.3mmol)をNMP(25.0g)中で混合し、80℃で4時間反応させた後、CBDA(1.33g,6.78mmol)とNMP(20.5g)を加え、40℃で6時間反応させ、樹脂固形分濃度が、25.4質量%のポリアミド酸溶液(11)を得た。このポリアミド酸の数平均分子量は24,400、重量平均分子量は69,400であった。
<Synthesis Example 11>
BODA (6.79 g, 27.1 mmol), PCH7DAB (5.16 g, 13.6 mmol), p-PDA (2.20 g, 20.3 mmol) were mixed in NMP (25.0 g) and mixed at 80 ° C. for 4 hours. After reacting for a period of time, CBDA (1.33 g, 6.78 mmol) and NMP (20.5 g) were added and reacted at 40 ° C. for 6 hours. The polyamic acid solution (resin solid content concentration was 25.4% by mass) 11) was obtained. The number average molecular weight of this polyamic acid was 24,400, and the weight average molecular weight was 69,400.
<合成例12>
 合成例11で得られた樹脂固形分濃度が25.4質量%のポリアミド酸溶液(11)(20.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.45g)、ピリジン(1.86g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(12)を得た。このポリイミドのイミド化率は56%であり、数平均分子量は19,800、重量平均分子量は51,900であった。
<Synthesis Example 12>
After adding NMP to the polyamic acid solution (11) (20.0 g) having a resin solid content concentration of 25.4% by mass obtained in Synthesis Example 11 and diluting to 6% by mass, acetic anhydride ( 2.45 g) and pyridine (1.86 g) were added and reacted at 80 ° C. for 4 hours. This reaction solution was put into methanol (300 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (12). The imidation ratio of this polyimide was 56%, the number average molecular weight was 19,800, and the weight average molecular weight was 51,900.
<合成例13>
 BODA(6.74g,26.9mmol)、DA-1(1.37g,3.36mmol)、AP18(5.07g,13.5mmol)、p-PDA(1.82g,16.8mmol)をNMP(26.3g)中で混合し、80℃で4時間反応させた後、CBDA(1.32g,6.73mmol)とNMP(22.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が、24.7質量%のポリアミド酸溶液を得た。
<Synthesis Example 13>
BODA (6.74 g, 26.9 mmol), DA-1 (1.37 g, 3.36 mmol), AP18 (5.07 g, 13.5 mmol), p-PDA (1.82 g, 16.8 mmol) were added to NMP ( 26.3 g), and reacted at 80 ° C. for 4 hours. Then, CBDA (1.32 g, 6.73 mmol) and NMP (22.8 g) were added and reacted at 40 ° C. for 6 hours to obtain a resin solid content. A polyamic acid solution having a concentration of 24.7% by mass was obtained.
 得られたポリアミド酸溶液(20.2g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.51g)、ピリジン(1.92g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(310ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(13)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は20,800、重量平均分子量は50,100であった。 After adding NMP to the obtained polyamic acid solution (20.2 g) and diluting to 6% by mass, acetic anhydride (2.51 g) and pyridine (1.92 g) were added as an imidization catalyst, The reaction was allowed for 5 hours. This reaction solution was poured into methanol (310 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (13). The imidation ratio of this polyimide was 55%, the number average molecular weight was 20,800, and the weight average molecular weight was 50,100.
<合成例14>
 BODA(6.23g,24.9mmol)、DA-1(5.07g,12.4mmol)、p-PDA(2.02g,18.7mmol)をNMP(24.0g)中で混合し、80℃で4時間反応させた後、CBDA(1.22g,6.22mmol)とNMP(19.6g)を加え、40℃で6時間反応させ、樹脂固形分濃度が、25.0質量%のポリアミド酸溶液を得た。
<Synthesis Example 14>
BODA (6.23 g, 24.9 mmol), DA-1 (5.07 g, 12.4 mmol), p-PDA (2.02 g, 18.7 mmol) were mixed in NMP (24.0 g), and the mixture was mixed at 80 ° C. Then, CBDA (1.22 g, 6.22 mmol) and NMP (19.6 g) were added and reacted at 40 ° C. for 6 hours, and the polyamic acid having a resin solid content concentration of 25.0% by mass was added. A solution was obtained.
 得られたポリアミド酸溶液(20.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.48g)、ピリジン(1.90g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(14)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は25,300、重量平均分子量は62,100であった。 After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.48 g) and pyridine (1.90 g) were added as an imidization catalyst, Reacted for hours. This reaction solution was put into methanol (300 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (14). The imidation ratio of this polyimide was 55%, the number average molecular weight was 25,300, and the weight average molecular weight was 62,100.
<合成例15>
 BODA(1.12g,4.48mmol)、ColDAB-1(1.47g,2.98mmol)、m-PDA(1.29g,11.9mmol)をNMP(10.8g)中で混合し、80℃で2時間反応させた後、TCA(2.34g,10.4mmol)とNMP(8.42g)を加え、40℃で8時間反応させ、樹脂固形分濃度が、24.4質量%のポリアミド酸溶液を得た。
<Synthesis Example 15>
BODA (1.12 g, 4.48 mmol), ColDAB-1 (1.47 g, 2.98 mmol), m-PDA (1.29 g, 11.9 mmol) were mixed in NMP (10.8 g), and 80 ° C. Then, TCA (2.34 g, 10.4 mmol) and NMP (8.42 g) were added, and the mixture was reacted at 40 ° C. for 8 hours. The polyamic acid having a resin solid content concentration of 24.4 mass% was obtained. A solution was obtained.
 得られたポリアミド酸溶液(20.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.43g)、ピリジン(1.85g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(15)を得た。このポリイミドのイミド化率は52%であり、数平均分子量は19,200、重量平均分子量は51,900であった。 After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.43 g) and pyridine (1.85 g) were added as imidization catalysts, Reacted for hours. This reaction solution was put into methanol (300 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (15). The imidation ratio of this polyimide was 52%, the number average molecular weight was 19,200, and the weight average molecular weight was 51,900.
 本発明のポリアミド酸及びポリイミドを表48に示す。 Table 48 shows the polyamic acid and polyimide of the present invention.
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000104
「本発明の液晶配向処理剤の製造」
 下記する実施例1~実施例13、及び比較例1~比較例5では、液晶配向処理剤の製造例を記載するが、各液晶配向処理剤の評価のために使用される本発明の液晶配向処理剤を表49、及び表50に示す。
“Production of Liquid Crystal Alignment Treatment Agent of the Present Invention”
In Examples 1 to 13 and Comparative Examples 1 to 5 described below, production examples of liquid crystal alignment treatment agents are described. The liquid crystal alignment of the present invention used for evaluation of each liquid crystal alignment treatment agent is described. The treating agents are shown in Table 49 and Table 50.
 「液晶配向膜の作製」、「液晶の濡れ拡がり性の評価」、「液晶セルの作製」、及び「液晶配向性及びプレチルト角の評価」は、下記の通りである。また、実施例1~実施例13、及び比較例1~比較例5で得られた各液晶配向処理剤の特性を、表51~表54に示す。 “Preparation of liquid crystal alignment film”, “Evaluation of wettability of liquid crystal”, “Preparation of liquid crystal cell”, and “Evaluation of liquid crystal alignment and pretilt angle” are as follows. In addition, Tables 51 to 54 show the characteristics of the liquid crystal alignment treatment agents obtained in Examples 1 to 13 and Comparative Examples 1 to 5.
「液晶配向膜の作製」
 液晶配向処理剤を、3×4cmITO電極付き基板のITO面にスピンコートし、ホットプレート上にて80℃で5分間、熱循環型クリーンオーブン中にて220℃で30分間加熱処理をして膜厚100nmのポリイミド液晶配向膜付きの基板を得た。
"Production of liquid crystal alignment film"
A liquid crystal alignment treatment agent is spin-coated on the ITO surface of a substrate with 3 × 4 cm ITO electrodes, and is heated on a hot plate at 80 ° C. for 5 minutes, and then heated at 220 ° C. for 30 minutes in a heat-circulating clean oven. A substrate with a 100 nm thick polyimide liquid crystal alignment film was obtained.
「液晶の濡れ拡がり性の評価」
 上記の「液晶配向膜の作製」で得られた液晶配向膜付きの基板、液晶にMLC-6608(メルク・ジャパン製)、及び全自動接触角計CA-W(協和界面科学製)を用い、液晶の濡れ拡がり性の評価を行った。評価は、液晶が液晶配向膜に着液して10秒後の液晶の接触角を測定し、その液晶の接触角が低いほど、液晶配向膜上における液晶の濡れ拡がり性が高いとした。
"Evaluation of liquid crystal wettability"
Using a substrate with a liquid crystal alignment film obtained in the above-mentioned “Preparation of liquid crystal alignment film”, MLC-6608 (manufactured by Merck Japan), and a fully automatic contact angle meter CA-W (manufactured by Kyowa Interface Science) as the liquid crystal, The wettability of the liquid crystal was evaluated. Evaluation was made by measuring the contact angle of the liquid crystal 10 seconds after the liquid crystal reached the liquid crystal alignment film. The lower the contact angle of the liquid crystal, the higher the wettability of the liquid crystal on the liquid crystal alignment film.
「液晶セルの作製」
 上記の「液晶配向膜の作製」で得られた液晶配向膜付きの基板の塗膜面をロール径120mm、レーヨン布のラビング装置にて、回転数300rpm、移動速度20mm/sec、押し込み量0.2mmの条件にてラビング処理をした。この液晶配向膜付き基板を2枚用意し、液晶配向膜面を内側にして6μmのスペーサーを挟み、ラビング方向が逆向きになるようにして組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、MLC-6608(メルク・ジャパン製)を注入し、注入口を封止して、アンチパラレル配向のネマティック液晶セルを得た。
"Production of liquid crystal cell"
The coating film surface of the substrate with the liquid crystal alignment film obtained in the above-mentioned “Preparation of liquid crystal alignment film” was rotated at a rotational speed of 300 rpm, a moving speed of 20 mm / sec, and a pushing amount of 0. The rubbing process was performed under the condition of 2 mm. Prepare two substrates with this liquid crystal alignment film, combine them so that the liquid crystal alignment film surface is on the inside, sandwich a 6μm spacer, and the rubbing direction is reversed. did. MLC-6608 (manufactured by Merck Japan Co., Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an antiparallel aligned nematic liquid crystal cell.
「液晶配向性及びプレチルト角の評価」
 上記の「液晶セルの作製」で得られた液晶セルについて、液晶注入後の初期、及び95℃5分加熱処理後に関して、プレチルト角測定装置PAS-301(ELSICON製)を用いて室温で測定した。また、各条件の液晶セルについて、偏光顕微鏡観察により液晶の配向均一性を確認した。いずれの液晶セルとも、ラビング処理に伴う削れや配向不良はなく、液晶は均一に配向していた。
"Evaluation of liquid crystal alignment and pretilt angle"
The liquid crystal cell obtained in the above-mentioned “Preparation of liquid crystal cell” was measured at room temperature using a pretilt angle measuring apparatus PAS-301 (manufactured by ELSICON) at an initial stage after liquid crystal injection and after a heat treatment at 95 ° C. for 5 minutes. . Moreover, about the liquid crystal cell of each condition, the orientation uniformity of the liquid crystal was confirmed by polarizing microscope observation. In any of the liquid crystal cells, there was no shaving or poor alignment due to the rubbing treatment, and the liquid crystal was uniformly aligned.
<実施例1>
 合成例1で得られた樹脂固形分濃度24.9質量%のポリアミド酸溶液(1)(10.5g)、NMP(8.50g)、及びBCS(24.6g)を、25℃にて6時間混合して、液晶配向処理剤(1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
The polyamic acid solution (1) (10.5 g), NMP (8.50 g), and BCS (24.6 g) having a resin solid content concentration of 24.9% by mass obtained in Synthesis Example 1 were added at 25 ° C. By mixing for a time, a liquid crystal aligning agent (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例2>
 合成例2で得られたポリイミド粉末(2)(2.52g)、NMP(22.3g)、及びBCS(19.7g)を、25℃にて8時間混合して、液晶配向処理剤(2)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 2>
The polyimide powder (2) (2.52 g), NMP (22.3 g), and BCS (19.7 g) obtained in Synthesis Example 2 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (2 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例3>
 合成例3で得られたポリイミド粉末(3)(2.50g)、NMP(24.0g)、及びBCS(17.6g)を、25℃にて8時間混合して、液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 3>
The polyimide powder (3) (2.50 g), NMP (24.0 g), and BCS (17.6 g) obtained in Synthesis Example 3 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (3 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例4>
 合成例4で得られたポリイミド粉末(4)(2.51g)、NMP(26.1g)、及びBCS(15.7g)を、25℃にて8時間混合して、液晶配向処理剤(4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 4>
The polyimide powder (4) (2.51 g), NMP (26.1 g), and BCS (15.7 g) obtained in Synthesis Example 4 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (4 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例5>
 合成例5で得られたポリイミド粉末(5)(2.50g)、NMP(29.9g)、及びBCS(11.8g)を、25℃にて8時間混合して、液晶配向処理剤(5)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 5>
The polyimide powder (5) (2.50 g), NMP (29.9 g), and BCS (11.8 g) obtained in Synthesis Example 5 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (5 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例6>
 合成例6で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(6)(11.0g)、NMP(11.1g)、及びBCS(23.7g)を、25℃にて6時間混合して、液晶配向処理剤(6)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 6>
The polyamic acid solution (6) (11.0 g), NMP (11.1 g), and BCS (23.7 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 6 were obtained at 25 ° C. By mixing for a time, a liquid crystal aligning agent (6) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例7>
 合成例7で得られたポリイミド粉末(7)(2.51g)、NMP(30.0g)、及びBCS(11.8g)を、25℃にて8時間混合して、液晶配向処理剤(7)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 7>
The polyimide powder (7) (2.51 g), NMP (30.0 g), and BCS (11.8 g) obtained in Synthesis Example 7 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (7 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例8>
 合成例8で得られたポリイミド粉末(8)(2.50g)、NMP(26.0g)、及びBCS(15.7g)を、25℃にて8時間混合して、液晶配向処理剤(8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 8>
The polyimide powder (8) (2.50 g), NMP (26.0 g), and BCS (15.7 g) obtained in Synthesis Example 8 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (8 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例9>
 合成例9で得られたポリイミド粉末(9)(2.50g)、NMP(31.9g)、及びBCS(9.80g)を、25℃にて8時間混合して、液晶配向処理剤(9)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 9>
The polyimide powder (9) (2.50 g), NMP (31.9 g), and BCS (9.80 g) obtained in Synthesis Example 9 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (9 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例10>
 合成例10で得られたポリイミド粉末(10)(2.53g)、NMP(30.3g)、及びBCS(11.9g)を、25℃にて8時間混合して、液晶配向処理剤(10)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 10>
The polyimide powder (10) (2.53 g), NMP (30.3 g), and BCS (11.9 g) obtained in Synthesis Example 10 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (10 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例11>
 合成例2で得られたポリイミド粉末(2)(2.50g)、NMP(22.1g)、BCS(19.6g)、及び架橋性化合物(1)(0.25g)を、25℃にて12時間混合し、液晶配向処理剤(11)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 11>
The polyimide powder (2) (2.50 g), NMP (22.1 g), BCS (19.6 g), and crosslinkable compound (1) (0.25 g) obtained in Synthesis Example 2 were added at 25 ° C. The liquid crystal aligning agent (11) was obtained by mixing for 12 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例12>
 合成例3で得られたポリイミド粉末(3)(2.50g)、NMP(24.0g)、BCS(17.6g)、及び架橋性化合物(2)(0.50g)を、25℃にて12時間混合し、液晶配向処理剤(12)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 12>
The polyimide powder (3) (2.50 g), NMP (24.0 g), BCS (17.6 g), and crosslinkable compound (2) (0.50 g) obtained in Synthesis Example 3 were added at 25 ° C. The liquid crystal aligning agent (12) was obtained by mixing for 12 hours. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<実施例13>
 合成例3で得られたポリイミド粉末(3)(2.51g)、NMP(24.1g)、BCS(17.7g)、及び架橋性化合物(3)(0.25g)を、25℃にて12時間混合し、液晶配向処理剤(13)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 13>
The polyimide powder (3) (2.51 g), NMP (24.1 g), BCS (17.7 g), and the crosslinkable compound (3) (0.25 g) obtained in Synthesis Example 3 were added at 25 ° C. It mixed for 12 hours and obtained the liquid-crystal aligning agent (13). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例1>
 合成例11で得られた樹脂固形分濃度25.4質量%のポリアミド酸溶液(11)(10.0g)、NMP(8.50g)、及びBCS(23.9g)を、25℃にて6時間混合して、液晶配向処理剤(14)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 1>
The polyamic acid solution (11) (10.0 g), NMP (8.50 g), and BCS (23.9 g) having a resin solid content concentration of 25.4% by mass obtained in Synthesis Example 11 were added at 25 ° C. It mixed for a time and the liquid-crystal aligning agent (14) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例2>
 合成例12で得られたポリイミド粉末(12)(2.50g)、NMP(22.1g)、及びBCS(19.6g)を、25℃にて8時間混合して、液晶配向処理剤(15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 2>
The polyimide powder (12) (2.50 g), NMP (22.1 g), and BCS (19.6 g) obtained in Synthesis Example 12 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (15 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例3>
 合成例13で得られたポリイミド粉末(13)(2.51g)、NMP(24.1g)、及びBCS(17.7g)を、25℃にて8時間混合して、液晶配向処理剤(16)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 3>
The polyimide powder (13) (2.51 g), NMP (24.1 g), and BCS (17.7 g) obtained in Synthesis Example 13 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (16 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例4>
 合成例14で得られたポリイミド粉末(14)(2.50g)、NMP(22.1g)、及びBCS(19.6g)を、25℃にて8時間混合して、液晶配向処理剤(17)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 4>
The polyimide powder (14) (2.50 g), NMP (22.1 g), and BCS (19.6 g) obtained in Synthesis Example 14 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (17 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
<比較例5>
 合成例15で得られたポリイミド粉末(15)(2.50g)、NMP(29.9g)、及びBCS(11.8g)を、25℃にて8時間混合して、液晶配向処理剤(18)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 5>
The polyimide powder (15) (2.50 g), NMP (29.9 g), and BCS (11.8 g) obtained in Synthesis Example 15 were mixed at 25 ° C. for 8 hours to obtain a liquid crystal alignment treatment agent (18 ) This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000106
Figure JPOXMLDOC01-appb-T000106
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000108
Figure JPOXMLDOC01-appb-T000108
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000110
 上記の結果からわかるように、実施例1~実施例13の液晶配向処理剤から得られた液晶配向膜では、液晶のプレチルト角が高いながら、液晶配向膜上における液晶の濡れ拡がり性が高い。 As can be seen from the above results, in the liquid crystal alignment films obtained from the liquid crystal alignment treatment agents of Examples 1 to 13, the liquid crystal wettability on the liquid crystal alignment film is high while the pretilt angle of the liquid crystal is high.
 また、特定側鎖型ジアミン化合物のみを用いた比較例1、比較例2、及び比較例5では、液晶のプレチルト角は高いが、液晶配向膜上における液晶の濡れ拡がり性が低い。更に、特定ジアミン化合物と特定側鎖型ジアミン化合物以外の側鎖型ジアミン化合物を用いた比較例3は、同様に、液晶のプレチルト角は高いが、液晶配向膜上における液晶の濡れ拡がり性は低い結果となった。加えて、特定ジアミン化合物のみを用いた比較例4では、液晶配向膜上における液晶の濡れ拡がり性は高いが、液晶のプレチルト角は低くなった。 In Comparative Example 1, Comparative Example 2, and Comparative Example 5 using only the specific side chain type diamine compound, the pretilt angle of the liquid crystal is high, but the liquid crystal wettability on the liquid crystal alignment film is low. Further, Comparative Example 3 using a side chain diamine compound other than the specific diamine compound and the specific side chain diamine compound similarly has a high pretilt angle of the liquid crystal, but low wettability of the liquid crystal on the liquid crystal alignment film. As a result. In addition, in Comparative Example 4 using only the specific diamine compound, the liquid crystal wettability on the liquid crystal alignment film was high, but the pretilt angle of the liquid crystal was low.
 本発明の液晶配向処理剤は、液晶配向膜上における液晶の濡れ拡がり性が高い液晶配向膜を得ることができる。特に、高いプレチルト角を得るために、側鎖を有するジアミン成分を多く使用した場合でも、その効果が得られる。そのため、本発明の液晶配向処理剤から得られた液晶配向膜を用いることで、液晶表示素子作製時の生産効率が高く、配向ムラの表示不良が起こらない液晶表示素子を得ることができる。その結果、大画面で高精細の液晶テレビなどに好適に利用でき、TN素子、STN素子、TFT液晶素子、特に垂直配向型の液晶表示素子に有用である。 The liquid crystal alignment treatment agent of the present invention can obtain a liquid crystal alignment film having high liquid crystal wettability on the liquid crystal alignment film. In particular, even when a large amount of a diamine component having a side chain is used to obtain a high pretilt angle, the effect can be obtained. Therefore, by using the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention, it is possible to obtain a liquid crystal display element that has high production efficiency at the time of manufacturing the liquid crystal display element and does not cause poor display of alignment unevenness. As a result, it can be suitably used for a large-screen, high-definition liquid crystal television and the like, and is useful for a TN element, an STN element, a TFT liquid crystal element, particularly a vertical alignment type liquid crystal display element.
 更に、本発明の液晶配向処理剤から得られた液晶配向膜は、液晶注入時の配向ムラが発生しやすい液晶表示素子、すなわち、液晶に熱や紫外線照射により重合する重合性化合物を混合した液晶材料を用いて、液晶層に電圧を印加しながらそれを重合させて得られるポリマーで、駆動時の液晶の配向方向を制御する方法により得られる液晶表示素子に対しても有用である。 Furthermore, the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention is a liquid crystal display element in which alignment unevenness easily occurs during liquid crystal injection, that is, a liquid crystal mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation. This is a polymer obtained by polymerizing a liquid crystal layer while applying a voltage to the liquid crystal layer, and is also useful for a liquid crystal display device obtained by a method for controlling the alignment direction of liquid crystal during driving.

Claims (11)

  1.  下記の式[1]で示されるジアミン化合物、及び下記の式[2]で示されるジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物とを反応させて得られる重合体を含有する液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001

    (式[1]中、Xは-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-より選ばれる2価の有機基であり、Xは単結合、ベンゼン環、又はシクロへキシル環より選ばれる2価の有機基であり、Xはベンゼン環、又はシクロへキシル環より選ばれる2価の有機基であり、Xはシクロへキシル環、又はベンゼン環より選ばれる2価の有機基であり、Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基より選ばれ、nは1~4の整数である)。
    Figure JPOXMLDOC01-appb-C000002

    (式[2]中、Yは-O-、-CHO-、-(CH-(aは1~10の整数である)、-COO-、-OCO-、又は単結合より選ばれる2価の有機基であり、Yは単結合、又は-(CH-(bは1~10の整数である)より選ばれる2価の有機基であり、Yは単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-、又は-OCO-より選ばれる2価の有機基であり、Yはベンゼン環、シクロへキシル環、又は複素環から選ばれる2価の環状基、又は、ステロイド骨格を有する炭素数12~25の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、又は炭素数1~3のフッ素含有アルコキシル基、フッ素原子から選ばれるもので置換されていても良く、Yはシクロへキシル環、ベンゼン環、又は複素環から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、又は炭素数1~3のフッ素含有アルコキシル基、フッ素原子から選ばれるもので置換されていても良く、nは0~4の整数であり、Yは、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、炭素数1~18のフッ素含有アルコキシル基又は水素原子であり、mは1~4の整数である)。
    Liquid crystal alignment treatment comprising a diamine compound represented by the following formula [1] and a polymer obtained by reacting a diamine component containing the diamine compound represented by the following formula [2] with tetracarboxylic dianhydride. Agent.
    Figure JPOXMLDOC01-appb-C000001

    (In the formula [1], X 1 is a divalent organic group selected from —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, and X 2 is a single bond. , A benzene ring or a cyclohexyl ring, X 3 is a divalent organic group selected from a benzene ring or a cyclohexyl ring, and X 4 is a cyclohexyl ring, Or a divalent organic group selected from a benzene ring, and X 5 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or 1 carbon atom. From 18 to 18 fluorine-containing alkoxyl groups, and n is an integer from 1 to 4.
    Figure JPOXMLDOC01-appb-C000002

    (In the formula [2], Y 1 is —O—, —CH 2 O—, — (CH 2 ) a — (a is an integer of 1 to 10), —COO—, —OCO—, or a single bond Y 2 is a single bond or a divalent organic group selected from — (CH 2 ) b — (b is an integer of 1 to 10), and Y 3 is A divalent organic group selected from a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO—, or —OCO—. , Y 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, or a heterocyclic ring, or a divalent organic group having 12 to 25 carbon atoms and having a steroid skeleton. The hydrogen atom is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, Fluorine-containing alkoxyl group having 1 to 3 carbon atoms, may be substituted with one selected from a fluorine atom, Y 5 represents a divalent cyclic group selected from cyclohexyl ring, a benzene ring or a heterocyclic cyclohexane, Arbitrary hydrogen atoms on these cyclic groups are alkyl groups having 1 to 3 carbon atoms, alkoxyl groups having 1 to 3 carbon atoms, fluorine-containing alkyl groups having 1 to 3 carbon atoms, or fluorine containing 1 to 3 carbon atoms An alkoxyl group, which may be substituted with one selected from fluorine atoms, n is an integer of 0 to 4, Y 6 is an alkyl group having 1 to 18 carbon atoms, or a fluorine-containing alkyl group having 1 to 18 carbon atoms , An alkoxyl group having 1 to 18 carbon atoms, a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, or a hydrogen atom, and m is an integer of 1 to 4.
  2.  式[1]中、Xが-NHCO-である請求項1に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 1 , wherein, in the formula [1], X 1 is -NHCO-.
  3. 前記テトラカルボン酸二無水物が、下記の式[3]で示されるテトラカルボン酸二無水物である請求項1、又は請求項2に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000003

    (式[3]中、Zは炭素数4~13の4価の有機基であり、かつ、炭素数4~6の非芳香族環状炭化水素基を含有する)。
    The liquid crystal aligning agent according to claim 1, wherein the tetracarboxylic dianhydride is a tetracarboxylic dianhydride represented by the following formula [3].
    Figure JPOXMLDOC01-appb-C000003

    (In the formula [3], Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms).
  4. が、下記の式[3a]~式[3j]で示される構造である請求項3に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000004

    (式[3a]中、Z~Zは水素原子、メチル基、塩素原子、又はベンゼン環から選ばれる基であり、それぞれ、同じであっても異なっても良く、式[3g]中、Z及びZは水素原子、又はメチル基であり、それぞれ、同じであっても異なっても良い)。
    The liquid crystal aligning agent according to claim 3, wherein Z 1 has a structure represented by the following formulas [3a] to [3j].
    Figure JPOXMLDOC01-appb-C000004

    (In the formula [3a], Z 2 to Z 5 are groups selected from a hydrogen atom, a methyl group, a chlorine atom, or a benzene ring, which may be the same or different, and in the formula [3g] Z 6 and Z 7 are a hydrogen atom or a methyl group, and each may be the same or different.
  5.  液晶配向処理剤中に、エポキシ基、オキセタン基、イソシアネート基及びシクロカーボネート基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基、アルコキシル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を有する請求項1~請求項4のいずれか一項に記載の液晶配向処理剤。 In the liquid crystal aligning agent, a crosslinkable compound having at least one substituent selected from the group consisting of epoxy group, oxetane group, isocyanate group and cyclocarbonate group, hydroxyl group, hydroxyalkyl group, alkoxyl group and lower alkoxyalkyl 5. The liquid crystal alignment treatment according to claim 1, comprising a crosslinkable compound having at least one substituent selected from the group consisting of groups, or a crosslinkable compound having a polymerizable unsaturated bond. Agent.
  6.  液晶配向処理剤中の重合体がポリアミド酸を脱水閉環させて得られるポリイミドである請求項1~請求項5のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 5, wherein the polymer in the liquid crystal aligning agent is a polyimide obtained by dehydrating and ring-closing polyamic acid.
  7.  液晶配向処理剤中に5~60質量%の貧溶媒を含有する請求項1~請求項6のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 6, wherein the liquid crystal aligning agent contains 5 to 60% by mass of a poor solvent.
  8.  請求項1~請求項7のいずれか一項に記載の液晶配向処理剤を用いて得られる液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal alignment treatment agent according to any one of claims 1 to 7.
  9.  請求項8に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 8.
  10.  請求項1~請求項7のいずれか一項に記載の液晶配向処理剤を用いて得られる液晶配向膜であって、液晶に熱や紫外線照射により重合する重合性化合物を混合した液晶材料を用いて、液晶層に電圧を印加しながら前記重合性化合物を重合させて得られるポリマーで、駆動時の液晶の配向方向を制御する方法により得られる液晶表示素子に用いられる液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of claims 1 to 7, wherein a liquid crystal material in which a liquid crystal is mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation is used. A liquid crystal alignment film used for a liquid crystal display element, which is a polymer obtained by polymerizing the polymerizable compound while applying a voltage to the liquid crystal layer, and is obtained by a method of controlling the alignment direction of the liquid crystal during driving.
  11.  請求項10に記載の液晶配向膜を具備する液晶表示素子であって、液晶に熱や紫外線照射により重合する重合性化合物を混合した液晶材料を用いて、液晶層に電圧を印加しながら前記重合性化合物を重合させて得られるポリマーで、駆動時の液晶の配向方向を制御する方法により得られる液晶表示素子。 11. A liquid crystal display element comprising the liquid crystal alignment film according to claim 10, wherein the polymerization is performed while applying a voltage to the liquid crystal layer using a liquid crystal material in which a liquid crystal is mixed with a polymerizable compound that is polymerized by heat or ultraviolet irradiation. A liquid crystal display element obtained by polymerizing an organic compound and obtained by a method of controlling the alignment direction of liquid crystal during driving.
PCT/JP2011/059867 2010-04-22 2011-04-21 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element WO2011132751A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127030217A KR101775181B1 (en) 2010-04-22 2011-04-21 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element
JP2012511706A JP5713009B2 (en) 2010-04-22 2011-04-21 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN201180030910.9A CN102947753B (en) 2010-04-22 2011-04-21 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-099170 2010-04-22
JP2010099170 2010-04-22
JP2010105674 2010-04-30
JP2010-105674 2010-04-30

Publications (1)

Publication Number Publication Date
WO2011132751A1 true WO2011132751A1 (en) 2011-10-27

Family

ID=44834267

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/059867 WO2011132751A1 (en) 2010-04-22 2011-04-21 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element
PCT/JP2011/059868 WO2011132752A1 (en) 2010-04-22 2011-04-21 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059868 WO2011132752A1 (en) 2010-04-22 2011-04-21 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element

Country Status (5)

Country Link
JP (2) JP5713009B2 (en)
KR (2) KR101775182B1 (en)
CN (2) CN102947753B (en)
TW (2) TWI486380B (en)
WO (2) WO2011132751A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105523A1 (en) * 2012-01-12 2013-07-18 和光純薬工業株式会社 Liquid crystal aligning agent
WO2013115387A1 (en) * 2012-02-03 2013-08-08 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2013125595A1 (en) * 2012-02-22 2013-08-29 日産化学工業株式会社 Composition, liquid crystal aligninig agent, liquid crystal alighment film, and liquid crystal display element
CN103364996A (en) * 2012-03-30 2013-10-23 索尼公司 Liquid crystal display apparatus and manufacturing method thereof
KR20140084278A (en) * 2011-11-01 2014-07-04 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20140114749A (en) * 2013-03-19 2014-09-29 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, polymer and compound
CN104737069A (en) * 2012-08-30 2015-06-24 日产化学工业株式会社 Liquid crystal aligning agent and liquid crystal display element using same
KR20150100494A (en) * 2014-02-25 2015-09-02 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
KR20150119199A (en) * 2013-02-13 2015-10-23 닛산 가가쿠 고교 가부시키 가이샤 Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent
WO2016204178A1 (en) * 2015-06-16 2016-12-22 三菱化学株式会社 Alignment film, and composition for alignment films
WO2017038627A1 (en) * 2015-08-28 2017-03-09 日産化学工業株式会社 Novel diamine compound having radical generation ability and base generation ability, and novel imide polymer using said novel diamine compound as starting material
EP3163367A4 (en) * 2014-06-25 2018-01-24 Nissan Chemical Industries, Ltd. Liquid crystal display element
KR20190031570A (en) * 2016-08-03 2019-03-26 닛산 가가쿠 가부시키가이샤 A liquid crystal display element having a liquid crystal panel having a curved shape and a liquid crystal alignment agent therefor
WO2019244939A1 (en) * 2018-06-19 2019-12-26 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using same, and production method for said liquid crystal display element, and diamine compound
WO2020085450A1 (en) * 2018-10-26 2020-04-30 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2021065933A1 (en) 2019-10-02 2021-04-08 日産化学株式会社 Liquid crystal light control element
JP2022140484A (en) * 2016-02-15 2022-09-26 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display
WO2023157876A1 (en) 2022-02-17 2023-08-24 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187457B2 (en) * 2012-04-18 2017-08-30 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
WO2014133154A1 (en) * 2013-03-01 2014-09-04 日産化学工業株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
KR102194116B1 (en) * 2013-03-26 2020-12-22 닛산 가가쿠 가부시키가이샤 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
TWI490253B (en) * 2013-07-12 2015-07-01 Daxin Materials Corp Liquid crystal alignment agent, liquid crystal alignment film. and liquid crystal display device
TWI477479B (en) * 2013-07-18 2015-03-21 Daxin Materials Corp Benzene diamine, polymer, composition for alignment film, alignment film, and liquid crystal display device
WO2015012368A1 (en) * 2013-07-25 2015-01-29 日産化学工業株式会社 Liquid-crystal display element, liquid-crystal alignment agent, and liquid-crystal alignment film
WO2015022980A1 (en) * 2013-08-14 2015-02-19 日産化学工業株式会社 Liquid crystal display element
KR102069288B1 (en) * 2013-08-28 2020-01-23 삼성디스플레이 주식회사 Liquid crystal aligning agent and liquid crystal display
TWI487731B (en) * 2013-09-04 2015-06-11 Daxin Materials Corp Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device having the same
KR102345961B1 (en) * 2014-03-27 2021-12-30 닛산 가가쿠 가부시키가이샤 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
US20170184923A1 (en) * 2014-06-17 2017-06-29 Nissan Chemical Industries, Ltd. Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
KR102546376B1 (en) * 2015-03-02 2023-06-21 닛산 가가쿠 가부시키가이샤 Liquid crystal display element
TWI602811B (en) * 2016-10-04 2017-10-21 達興材料股份有限公司 Diamine compound, polymer, insulating film and electronic device
TWI679217B (en) * 2018-03-02 2019-12-11 達興材料股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
JP2022067054A (en) * 2020-10-19 2022-05-02 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, and manufacturing method for liquid crystal element
WO2023013622A1 (en) * 2021-08-06 2023-02-09 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010528A1 (en) * 2006-07-18 2008-01-24 Nissan Chemical Industries, Ltd. Liquid crystal orienting agent and liquid crystal oriented film and liquid crystal display element using the same
WO2009148100A1 (en) * 2008-06-04 2009-12-10 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
WO2010047316A1 (en) * 2008-10-22 2010-04-29 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal element using same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100205963B1 (en) * 1997-05-29 1999-07-01 이서봉 Novel soluble polyimide resin for liquid crystal orientation film
US6194039B1 (en) * 1999-10-22 2001-02-27 Elsicon, Inc. Materials for inducing alignment in liquid crystals and liquid crystal displays
JP4600616B2 (en) * 2000-07-07 2010-12-15 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
US7113241B2 (en) * 2001-08-31 2006-09-26 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
JP4013052B2 (en) * 2002-09-25 2007-11-28 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element
JP4122516B2 (en) * 2003-11-12 2008-07-23 Jsr株式会社 Liquid crystal alignment film and manufacturing method thereof
CN1762978B (en) * 2004-10-05 2010-12-15 Jsr株式会社 Novel diamine compound,polymer and liquid crystal tropism agent
TWI406838B (en) * 2006-08-04 2013-09-01 Jnc Corp Diamide,liquid crystal alignment agent,liquid crystal alignment film and liquid crystal display
JP2008176304A (en) * 2006-12-22 2008-07-31 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment layer, liquid crystal display element, and optical member
JP5071659B2 (en) * 2007-02-22 2012-11-14 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5267454B2 (en) * 2007-03-23 2013-08-21 日産化学工業株式会社 Diamine compound, polyamic acid, polyimide and liquid crystal alignment treatment agent
JP5067570B2 (en) * 2007-08-01 2012-11-07 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR101589322B1 (en) * 2008-01-25 2016-01-27 닛산 가가쿠 고교 가부시키 가이샤 Liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
TWI460209B (en) * 2008-05-09 2014-11-11 Chi Mei Corp Liquid crystal aligning agent and method for producing liquid crystal alignment film
WO2010035719A1 (en) 2008-09-24 2010-04-01 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010528A1 (en) * 2006-07-18 2008-01-24 Nissan Chemical Industries, Ltd. Liquid crystal orienting agent and liquid crystal oriented film and liquid crystal display element using the same
WO2009148100A1 (en) * 2008-06-04 2009-12-10 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
WO2010047316A1 (en) * 2008-10-22 2010-04-29 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal element using same

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938923B1 (en) * 2011-11-01 2019-04-10 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2017226647A (en) * 2011-11-01 2017-12-28 日産化学工業株式会社 Novel diamine compound, polyimide precursor and polyimide
KR20140084278A (en) * 2011-11-01 2014-07-04 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2013065755A1 (en) * 2011-11-01 2015-04-02 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013105523A1 (en) * 2012-01-12 2013-07-18 和光純薬工業株式会社 Liquid crystal aligning agent
JPWO2013105523A1 (en) * 2012-01-12 2015-05-11 和光純薬工業株式会社 Liquid crystal alignment agent
WO2013115387A1 (en) * 2012-02-03 2013-08-08 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN104246591B (en) * 2012-02-03 2017-08-08 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells
KR20140120353A (en) * 2012-02-03 2014-10-13 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TWI575022B (en) * 2012-02-03 2017-03-21 Nissan Chemical Ind Ltd Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR102012060B1 (en) 2012-02-03 2019-10-14 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JPWO2013115387A1 (en) * 2012-02-03 2015-05-11 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102035366B1 (en) * 2012-02-22 2019-10-22 닛산 가가쿠 가부시키가이샤 Composition, liquid crystal aligninig agent, liquid crystal alighment film, and liquid crystal display element
JP2020056034A (en) * 2012-02-22 2020-04-09 日産化学株式会社 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JPWO2013125595A1 (en) * 2012-02-22 2015-07-30 日産化学工業株式会社 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP2018083943A (en) * 2012-02-22 2018-05-31 日産化学工業株式会社 Composition, liquid crystal orientation treatment agent, liquid crystal orientation film and liquid crystal display element
TWI568796B (en) * 2012-02-22 2017-02-01 Nissan Chemical Ind Ltd A liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display device
KR20140129217A (en) * 2012-02-22 2014-11-06 닛산 가가쿠 고교 가부시키 가이샤 Composition, liquid crystal aligninig agent, liquid crystal alighment film, and liquid crystal display element
CN104136542A (en) * 2012-02-22 2014-11-05 日产化学工业株式会社 Composition, liquid crystal aligninig agent, liquid crystal alighment film, and liquid crystal display element
WO2013125595A1 (en) * 2012-02-22 2013-08-29 日産化学工業株式会社 Composition, liquid crystal aligninig agent, liquid crystal alighment film, and liquid crystal display element
CN103364996A (en) * 2012-03-30 2013-10-23 索尼公司 Liquid crystal display apparatus and manufacturing method thereof
CN104737069B (en) * 2012-08-30 2018-08-10 日产化学工业株式会社 Aligning agent for liquid crystal and the liquid crystal display element for using the aligning agent for liquid crystal
CN104737069A (en) * 2012-08-30 2015-06-24 日产化学工业株式会社 Liquid crystal aligning agent and liquid crystal display element using same
CN105122128A (en) * 2013-02-13 2015-12-02 日产化学工业株式会社 Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent
CN105122128B (en) * 2013-02-13 2017-11-28 日产化学工业株式会社 The manufacture method of liquid crystal orientation film, liquid crystal orientation film, liquid crystal represent element and aligning agent for liquid crystal
KR102172134B1 (en) 2013-02-13 2020-10-30 닛산 가가쿠 가부시키가이샤 Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent
KR20150119199A (en) * 2013-02-13 2015-10-23 닛산 가가쿠 고교 가부시키 가이샤 Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent
KR102078613B1 (en) 2013-03-19 2020-02-18 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, polymer and compound
KR20140114749A (en) * 2013-03-19 2014-09-29 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display device, polymer and compound
JP2018205763A (en) * 2014-02-25 2018-12-27 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR102193532B1 (en) * 2014-02-25 2020-12-21 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
KR20150100494A (en) * 2014-02-25 2015-09-02 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
JP2016042177A (en) * 2014-02-25 2016-03-31 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
EP3163367A4 (en) * 2014-06-25 2018-01-24 Nissan Chemical Industries, Ltd. Liquid crystal display element
US10386681B2 (en) * 2014-06-25 2019-08-20 Nissan Chemical Industries, Ltd. Liquid crystal display element
JPWO2016204178A1 (en) * 2015-06-16 2018-04-12 三菱ケミカル株式会社 Alignment film and composition for alignment film
WO2016204178A1 (en) * 2015-06-16 2016-12-22 三菱化学株式会社 Alignment film, and composition for alignment films
JPWO2017038627A1 (en) * 2015-08-28 2018-07-12 日産化学工業株式会社 Novel diamine compound having radical generating ability and base generating ability and novel imide polymer using the same as raw material
WO2017038627A1 (en) * 2015-08-28 2017-03-09 日産化学工業株式会社 Novel diamine compound having radical generation ability and base generation ability, and novel imide polymer using said novel diamine compound as starting material
JP2022140484A (en) * 2016-02-15 2022-09-26 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display
JP7351382B2 (en) 2016-02-15 2023-09-27 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102438830B1 (en) 2016-08-03 2022-08-31 닛산 가가쿠 가부시키가이샤 Liquid crystal display element having a liquid crystal panel having a curved shape, and liquid crystal aligning agent therefor
JPWO2018025872A1 (en) * 2016-08-03 2019-06-20 日産化学株式会社 Liquid crystal display device having liquid crystal panel having curved surface shape and liquid crystal alignment agent therefor
KR20190031570A (en) * 2016-08-03 2019-03-26 닛산 가가쿠 가부시키가이샤 A liquid crystal display element having a liquid crystal panel having a curved shape and a liquid crystal alignment agent therefor
JPWO2019244939A1 (en) * 2018-06-19 2021-07-15 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element using the same, manufacturing method of the liquid crystal display element, diamine compound
WO2019244939A1 (en) * 2018-06-19 2019-12-26 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using same, and production method for said liquid crystal display element, and diamine compound
JP7401853B2 (en) 2018-06-19 2023-12-20 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element using the same, and manufacturing method of the liquid crystal display element
WO2020085450A1 (en) * 2018-10-26 2020-04-30 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JPWO2020085450A1 (en) * 2018-10-26 2021-09-16 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7375766B2 (en) 2018-10-26 2023-11-08 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2021065933A1 (en) 2019-10-02 2021-04-08 日産化学株式会社 Liquid crystal light control element
WO2023157876A1 (en) 2022-02-17 2023-08-24 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
JPWO2011132752A1 (en) 2013-07-18
JP5713009B2 (en) 2015-05-07
KR101775181B1 (en) 2017-09-05
KR20130091652A (en) 2013-08-19
TW201209076A (en) 2012-03-01
CN102947752A (en) 2013-02-27
JPWO2011132751A1 (en) 2013-07-18
CN102947753A (en) 2013-02-27
TWI486380B (en) 2015-06-01
KR101775182B1 (en) 2017-09-05
WO2011132752A1 (en) 2011-10-27
CN102947753B (en) 2015-09-02
KR20130091651A (en) 2013-08-19
JP5936000B2 (en) 2016-06-15
TW201209077A (en) 2012-03-01
TWI447146B (en) 2014-08-01
CN102947752B (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP5713009B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5904121B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013035803A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6368955B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5900337B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5998931B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6065074B2 (en) Diamine compounds, polyimide precursors and polyimides
JP6465159B2 (en) Novel diamine compounds, polyimide precursors and polyimides
JP5874646B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6052171B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2013115387A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6003882B2 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014126102A1 (en) Production method for liquid-crystal alignment film, liquid-crystal alignment film, liquid-crystal display element, and liquid-crystal alignment agent
JP6264577B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030910.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772083

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511706

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127030217

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11772083

Country of ref document: EP

Kind code of ref document: A1