WO2012091109A1 - Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2012091109A1
WO2012091109A1 PCT/JP2011/080446 JP2011080446W WO2012091109A1 WO 2012091109 A1 WO2012091109 A1 WO 2012091109A1 JP 2011080446 W JP2011080446 W JP 2011080446W WO 2012091109 A1 WO2012091109 A1 WO 2012091109A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
aligning agent
carbon atoms
formula
Prior art date
Application number
PCT/JP2011/080446
Other languages
French (fr)
Japanese (ja)
Inventor
徳俊 三木
耕平 後藤
雅章 片山
保坂 和義
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020137019957A priority Critical patent/KR101856274B1/en
Priority to CN201180068634.5A priority patent/CN103415805B/en
Priority to JP2012551048A priority patent/JP5874646B2/en
Publication of WO2012091109A1 publication Critical patent/WO2012091109A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent used for producing a liquid crystal alignment film and a liquid crystal display element using the same.
  • Liquid crystal display elements are now widely used as display devices that are thin and light.
  • a liquid crystal alignment film is used to determine the alignment state of the liquid crystal.
  • most of the liquid crystal alignment films are produced by performing some alignment treatment on the surface of the polymer film formed on the electrode substrate.
  • a method for orienting a polymer film As a method for orienting a polymer film, a method generally used at present is a method of performing a so-called rubbing process in which the surface of the polymer film is rubbed with a cloth made of rayon or the like under pressure. .
  • a method of using a liquid crystal alignment treatment agent containing a specific thermally crosslinkable compound together with at least one polymer of polyamic acid or polyimide for the scraping of the polymer film accompanying such rubbing treatment for example,
  • a method for improving rubbing resistance by using a curing agent, such as a method using a liquid crystal aligning agent containing an epoxy group-containing compound see, for example, Patent Document 2
  • Patent Document 2 A method for improving rubbing resistance by using a curing agent, such as a method using a liquid crystal aligning agent containing an epoxy group-containing compound (see, for example, Patent Document 2) has been proposed. .
  • the rubbing treatment is performed under strong rubbing conditions in a short time. Therefore, compared to the conventional case, there is a problem in that the polymer film scraped off due to the rubbing treatment and many scratches accompanying the rubbing treatment occur. These abnormalities are considered to be one of the causes that deteriorate the characteristics of the liquid crystal display element and further cause the yield to decrease.
  • liquid crystal display elements are used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels.
  • a backlight with a large calorific value may be used.
  • the liquid crystal alignment film is required to have high reliability from another point of view, that is, high stability against light from the backlight.
  • the voltage holding ratio which is one of the electrical characteristics of the liquid crystal display element
  • line burn-in which is one of the display defects of the liquid crystal display element.
  • the liquid crystal display element with high reliability cannot be obtained. Therefore, in the liquid crystal alignment film, in addition to good initial characteristics, for example, it is required that the voltage holding ratio does not easily decrease even after being exposed to light irradiation for a long time.
  • an object of the present invention is to provide a liquid crystal alignment treatment agent that can provide the above-mentioned liquid crystal alignment film, and a liquid crystal display element obtained by using this liquid crystal alignment treatment agent.
  • the present invention has the following gist.
  • Liquid crystal aligning agent containing the following component (A) and component (B).
  • Component (A) An amine having one primary amino group and a hydroxyl group in the molecule, and the primary amino group and the hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group.
  • Component (B) at least one polymer selected from the group consisting of polyimide precursors and polyimides.
  • X 1 is an organic group having an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group
  • X 2 is a single bond, —O—, —NH—, —CO—, — COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO 2
  • X 3 is a single bond, a benzene ring or a cyclohexane ring
  • X 4 is a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO
  • the component (B) is at least one heavy selected from the group consisting of a polyamic acid obtained by reacting a diamine component and a tetracarboxylic dianhydride and a polyimide obtained by dehydrating and ring-closing the polyamic acid.
  • the liquid crystal aligning agent according to any one of (1) to (7), which is a coalescence.
  • the liquid-crystal aligning agent as described in said (8) whose diamine component is a diamine compound which has a side chain shown by following formula [2].
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15)
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—
  • Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms,
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms.
  • Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, which may be the same or different.
  • Z 6 and Z 7 Are hydrogen atoms or methyl groups, which may be the same or different.
  • liquid crystal aligning agent according to any one of (1) to (15), wherein the liquid crystal aligning agent contains 5% by mass to 60% by mass of a poor solvent.
  • a liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of (1) to (16).
  • a liquid crystal display device having the liquid crystal alignment film according to (17).
  • a liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • the liquid crystal alignment film according to (17) which is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes.
  • the polymer film is less likely to be scraped or scratched due to the rubbing process during the manufacturing process of the liquid crystal display element, and further, it can be irradiated with light for a long time. Even when exposed, a liquid crystal alignment film in which a decrease in voltage holding ratio is suppressed can be obtained. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
  • the present invention is a liquid crystal aligning agent containing the following component (A) and component (B), a liquid crystal aligning film obtained using the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film.
  • Component (A) An amine having one primary amino group and a hydroxyl group in the molecule, and the primary amino group and the hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group.
  • Compound hereinafter sometimes referred to as a specific amine compound.
  • Component (B) at least one polymer selected from the group consisting of a polyimide precursor and a polyimide (hereinafter sometimes referred to as a specific polymer).
  • the primary amino group in the specific amine compound forms a salt with the carboxyl group in the specific polymer, or relative to the carboxyl group or carboxy ester group in the specific polymer, It is considered that the amide bond is accompanied by elimination of water or alcohol, or that the imide group in the specific polymer undergoes a binding reaction involving ring opening of the imide group. Furthermore, it is considered that the primary amino group that forms a salt with the carboxyl group in the specific polymer forms an amide bond due to elimination of water in the baking step in producing the liquid crystal alignment film.
  • the liquid crystal aligning agent of the present invention is a simple means of mixing in an organic solvent, the specific amine compound and the specific polymer are efficiently bonded in the liquid crystal alignment film obtained therefrom. I think.
  • the hydroxyl group in the specific amine compound is heated by an esterification reaction accompanied by elimination of water or alcohol with respect to a carboxyl group or a carboxy ester group in the specific polymer, or water generated by hydroxyl groups in the specific amine compound.
  • an etherification reaction involving the elimination of Therefore, as described above, the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention has a specific amine compound bonded to a specific polymer.
  • the curing process of the sealing agent when producing the liquid crystal display element, that is, the baking process causes a cross-linking reaction between the polymers, the physical stability is improved, and the resistance to heat and light is high. Become.
  • the specific amine compound that causes the crosslinking reaction is bonded to the specific polymer, the characteristics of the liquid crystal display element are deteriorated due to remaining unreacted components that occur when the crosslinking compound is added. There is no problem.
  • the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention is less scraped from the polymer coating film due to the rubbing process during the manufacturing process of the liquid crystal display element than the liquid crystal alignment film containing no specific amine compound. And scratches associated with the rubbing process are less likely to occur, and further, even when exposed to light irradiation for a long time, a decrease in voltage holding ratio can be suppressed.
  • the specific amine compound of the present invention has one primary amino group and a hydroxyl group in the molecule, and the primary amino group and the hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group. It is an amine compound.
  • X 1 represents an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group so that the primary amino group contained in the specific amine compound can easily form a salt or bond with the specific polymer. It is an organic group.
  • aliphatic hydrocarbon group examples include a linear alkyl group, a branched alkyl group, or a hydrocarbon group having an unsaturated bond.
  • a linear or branched alkyl group having 1 to 20 carbon atoms is preferable. More preferred is a linear or branched alkyl group having 1 to 15 carbon atoms, and further preferred is a linear or branched alkyl group having 1 to 10 carbon atoms.
  • non-aromatic cyclic hydrocarbon group examples include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, Cyclotridecane ring, cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tricyclodecosan ring, bicyclohexyl ring, bicyclo Examples include heptane ring, decahydronaphthalene ring,
  • a ring having 3 to 20 carbon atoms is preferable.
  • a ring having 3 to 15 carbon atoms is more preferable, and a non-aromatic cyclic hydrocarbon group having a ring having 6 to 12 carbon atoms is still more preferable.
  • it is a cyclohexane ring or a bicyclohexyl ring, and particularly preferably a cyclohexane ring.
  • X 2 represents a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ). CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO 2 —.
  • a single bond, —O—, —NH—, —COO—, —OCO—, —CONH— or —NHCO— is preferable.
  • X 3 is a single bond, a benzene ring or a cyclohexane ring. More preferably, it is a single bond or a benzene ring.
  • X 4 represents a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ).
  • X 5 is an organic group having a single bond, an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group.
  • Specific examples of the aliphatic hydrocarbon group and the non-aromatic cyclic hydrocarbon group include those described above. Of these, a single bond, a linear or branched alkyl group having 1 to 20 carbon atoms, or a non-aromatic cyclic hydrocarbon group having 3 to 20 carbon atoms is preferable. More preferably, they are a single bond, a linear or branched alkyl group having 1 to 15 carbon atoms, or a non-aromatic cyclic hydrocarbon group having 3 to 15 carbon atoms.
  • n is an integer of 1 to 5.
  • an integer of 1 to 4 is preferable. More preferably, it is an integer of 1 to 3.
  • Preferred combinations of X 1 , X 2 , X 3 , X 4 , X 5 and n in the formula [1] are as shown in Tables 1 to 14.
  • the specific polymer of the present invention is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide, and the polyimide precursor has a structure represented by the following formula [A].
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group
  • a 1 and A 2 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, They may be the same or different
  • n represents a positive integer
  • R 1 and R 2 are the same as defined in Formula [A]).
  • R 1 , R 2 and n are as defined in the formula [A]).
  • R 1 and R 2 may each be one type, or may be a combination of different types having different R 1 and R 2 as repeating units. .
  • diamine component it is preferable to use a diamine compound having a side chain represented by the following formula [2] (hereinafter also referred to as a specific side chain structure).
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable because the side chain structure can be easily synthesized. More preferably, it is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
  • Y 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15).
  • a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— is preferable because they are easily synthesized. More preferably, they are a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms Group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Y 4 is a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. Of these, an organic group having 12 to 25 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable.
  • Y 5 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl having 1 to 3 carbon atoms.
  • n is an integer of 0 to 4. Preferably, it is an integer of 0-2.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. .
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable.
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [2] are as shown in Table 15 to Table 56.
  • a diamine compound represented by the following formula [2a] (hereinafter sometimes referred to as a specific diamine compound) is preferably used as a part of the raw material. .
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [2a] have the same meaning as defined in the formula [2], and m is an integer of 1 to 4.
  • the preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the above formula [2a] are as shown in Table 15 to Table 56, as in the formula [2]. It is.
  • m is an integer of 1 to 4.
  • it is an integer of 1.
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • R 2 represents An alkyl group having 1 to 22 carbon atoms, an alkoxyl group, a fluorine-containing alkyl group, or a fluorine-containing alkoxyl group).
  • R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or — CH 2 —, wherein R 4 is an alkyl group having 1 to 22 carbon atoms, an alkoxyl group, a fluorine-containing alkyl group or a fluorine-containing alkoxyl group).
  • R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 — or —O—, wherein R 6 is a fluorine group, a cyano group, a trifluoromethyl group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
  • R 7 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • R 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • a 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • a 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 3 )
  • a 1 is an oxygen atom or —COO— * (where “*” Is a bond with (CH 2 ) a 2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is an integer of 0 or 1.
  • diamine compounds other than the specific diamine compound can be used as the diamine component as long as the effects of the present invention are not impaired.
  • specific examples are given below.
  • a diamine compound having an alkyl group or a fluorine-containing alkyl group in the diamine side chain can be used as long as the effects of the present invention are not impaired.
  • diamines represented by the following formulas [DA1] to [DA12] can be exemplified. (Wherein [DA1] ⁇ formula [DA5], A 1 is an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms).
  • a 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—
  • a 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
  • p is an integer of 1 to 10).
  • diamine compounds represented by the following formulas [DA13] to [DA20] can also be used as long as the effects of the present invention are not impaired.
  • n is an integer of 1 to 5).
  • a diamine compound having a carboxyl group in the molecule represented by the following formulas [DA21] to [DA24] can also be used.
  • m 1 is an integer of 1 to 4
  • a 4 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —. , —CF 2 —, —C (CF 3 ) —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—, each of m 2 and m 3 is an integer of 0 to 4 and m 2 + m 3 Is an integer of 1 to 4, and in formula [DA23], m 4 and m 5 are each an integer of 1 to 5, and in formula [DA24], A 5 is a linear or branched alkyl having 1 to 5 carbon atoms.
  • m 6 is an integer of 1 to 5, wherein [DA25], a 6 represents a single bond, -CH 2 -, - C 2 H 4 -, - C (C 3) 2 -, - CF 2 -, - C (CF 3) -, - O -, - CO -, - NH -, - N (CH 3) -, - CONH -, - NHCO -, - CH 2 O —, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—, and m 7 is an integer of 1 to 4.
  • the above-mentioned specific diamine compound and other diamine compounds may be used alone or in combination of two or more depending on the properties such as liquid crystal orientation, voltage holding ratio and accumulated charge when the liquid crystal alignment film is used. .
  • a tetracarboxylic dianhydride represented by the following formula [3] (hereinafter sometimes referred to as a specific tetracarboxylic dianhydride) is used as part of the raw material. It is preferable.
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms.
  • the structure is represented by the following formula [3a] to formula [3j].
  • Z 2 to Z 5 are groups selected from a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 And Z 7 are a hydrogen atom or a methyl group, and may be the same or different.
  • particularly preferred structure of Z 1 is the formula [3a], the formula [3c], the formula [3d], the formula [3e], the formula [3f] or the formula because of the polymerization reactivity and the ease of synthesis. [3 g].
  • tetracarboxylic dianhydrides other than the specific tetracarboxylic dianhydride (hereinafter also referred to as other tetracarboxylic dianhydrides) are used as long as the effects of the present invention are not impaired. be able to.
  • Other tetracarboxylic dianhydrides include the following tetracarboxylic acid dianhydrides.
  • the above-mentioned specific tetracarboxylic dianhydride and other tetracarboxylic dianhydrides may be used alone or in combination of two or more depending on properties such as liquid crystal alignment, voltage holding ratio and accumulated charge when used as a liquid crystal alignment film. It can also be used by mixing.
  • the specific polymer of the present invention is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide, and the polyimide precursor is a structure represented by the formula [A].
  • the method for synthesizing the specific polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid.
  • a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and a diamine component a method of obtaining polyamic acid by dehydration polycondensation reaction of tetracarboxylic acid and a diamine component, or tetracarboxylic acid dihalide
  • a method is used in which a polyamic acid is obtained by polycondensation of a diamine component and diamine component.
  • a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group and a diamine component a polycondensation of a tetracarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and a diamine component.
  • a method or a method of converting a carboxyl group of a polyamic acid into an ester is used.
  • the method of imidating the said polyamic acid or polyamic-acid alkylester to make a polyimide is used.
  • the liquid crystal alignment film obtained using the specific polymer of the present invention can increase the pretilt angle of the liquid crystal as the content ratio of the specific diamine compound in the diamine component increases.
  • 5 mol% or more and 60 mol% or less of a diamine component are specific diamine compounds from the viewpoint of the applicability
  • a specific tetracarboxylic dianhydride as the tetracarboxylic acid component.
  • 1 mol% or more of a tetracarboxylic acid component is a specific tetracarboxylic dianhydride, More preferably, it is 5 mol% or more, More preferably, it is 10 mol% or more.
  • 100 mol% of the tetracarboxylic acid component may be a specific tetracarboxylic dianhydride.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out in an organic solvent.
  • the organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Specific examples are given below.
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is.
  • a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent a method of alternately adding a tetracarboxylic acid component and a diamine component, etc. Any of these methods may be used.
  • the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a specific polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution will become too high and uniform stirring will occur. It becomes difficult. Therefore, it is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyimide precursor, and is useful as a polymer for obtaining a liquid crystal alignment film.
  • the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature at which the polyimide precursor is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and a method is preferably performed while removing water generated by the imidization reaction from the system.
  • the catalytic imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C. it can.
  • the amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid groups, and the amount of the acid anhydride is 1 mol times to 50 mols of the amic acid groups. Double, preferably 3 to 30 mole times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like.
  • pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
  • use of acetic anhydride is preferable because purification after completion of the reaction is easy.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • impurities in the polymer can be reduced.
  • the solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the specific polymer of the present invention is a weight average measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained polymer film, workability at the time of forming the polymer film, and uniformity of the polymer film.
  • the molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid-crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a coating liquid containing the specific amine compound, the polymer component containing a specific polymer, and an organic solvent.
  • the content of the specific amine compound in the liquid crystal alignment treatment agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of the specific polymer, and the desired crosslinking reaction proceeds.
  • the amount is more preferably 0.1 to 100 parts by mass in order to exhibit film curability and not to deteriorate the alignment of the liquid crystal. More preferred is 1 to 50 parts by weight, and particularly preferred is 0.1 to 20 parts by weight.
  • the polymer component in the liquid crystal aligning agent of the present invention may all be a specific polymer used in the present invention, and other polymers may be mixed with the specific polymer of the present invention. .
  • the content of the other polymer in the polymer component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
  • Other polymers include polyimide precursors or polyimides obtained from a diamine component that does not contain a specific diamine compound and a tetracarboxylic acid component that does not contain a specific tetracarboxylic dianhydride.
  • a polyimide precursor and a polymer other than polyimide specifically, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide and the like can be mentioned.
  • the organic solvent in the liquid crystal aligning agent of the present invention preferably has an organic solvent content of 70% by mass to 99% by mass from the viewpoint of forming a uniform polymer film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
  • the organic solvent in that case will not be specifically limited if it is an organic solvent in which the specific polymer mentioned above is dissolved.
  • the liquid crystal aligning agent of the present invention has at least one selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group or an oxetane group, and a hydroxyl group and an alkoxyl group, as long as the effects of the present invention are not impaired.
  • a crosslinkable compound having a substituent a crosslinkable compound having a polymerizable unsaturated bond can also be introduced.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl , Triglycidyl-p-
  • the crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4]. Specifically, it is a crosslinkable compound represented by the following formula [4a] to formula [4k].
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group and / or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, Examples include glycoluril-formaldehyde resin, succinylamide-formaldehyde resin, and ethylene urea-formaldehyde resin.
  • a melamine derivative in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group or both, a benzoguanamine derivative, glycoluril, or the like can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • Eight-substituted MW-30 (above, manufactured by Sanwa Chemical Co., Ltd.), Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated eth Cymethylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzo
  • Examples of the benzene or phenolic compound having a hydroxyl group and / or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4 -Bis (sec-butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane and glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meta ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (me ) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) ) Acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycid
  • E 1 is a group selected from a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring and a phenanthrene ring
  • E 2 is the following: A group selected from the formula [5a] and the formula [5b], and n is an integer of 1 to 4.
  • the said compound is an example of a crosslinkable compound, It is not limited to these.
  • the crosslinkable compound contained in the liquid crystal aligning agent of this invention may be one type, and may be combined two or more types.
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 parts by mass to 150 parts by mass with respect to 100 parts by mass of the polymer component.
  • the amount is more preferably 0.1 to 100 parts by weight, and particularly 1 to 50 parts by weight.
  • Nitrogen-containing heterocyclic amine compounds represented by the following formulas [M1] to [M156] are used as compounds that promote charge transfer in the liquid crystal alignment film and promote charge release of a liquid crystal cell using the liquid crystal alignment film. It is preferable to add to the liquid crystal aligning agent. This amine compound may be added directly to the solution of the specific polymer, but it is added after a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent. It is preferable to do.
  • the solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer described above.
  • the liquid-crystal aligning agent of this invention is the organic solvent (henceforth a poor solvent) which improves the uniformity of the film thickness of a polymer film at the time of apply
  • a compound may be used.
  • a compound that improves the adhesion between the liquid crystal alignment film and the substrate can also be used.
  • the poor solvent that improves the uniformity of the film thickness and the surface smoothness include the following.
  • the content is preferably 5% by mass to 80% by mass, and more preferably 5% by mass to 60% by mass with respect to the total organic solvent contained in the liquid crystal aligning agent.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) and the like.
  • the ratio of these surfactants to be used is preferably 0.01 parts by weight to 2 parts by weight, more preferably 0.01 parts by weight to 100 parts by weight of the polymer component contained in the liquid crystal aligning agent. 1 part by mass.
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • a compound that improves the adhesion to the substrate When using a compound that improves the adhesion to the substrate, it is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. Is 1 to 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the liquid crystal aligning agent of the present invention includes the above-mentioned crosslinkable compound, poor solvent, compound for improving film thickness uniformity and surface smoothness, and compound for improving adhesion to the substrate. As long as the effect is not impaired, a dielectric material or conductive material for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film may be added.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. Moreover, in the case of vertical alignment use etc., it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet method are generally used. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method spray method, and the like, and these may be used depending on the purpose.
  • the solvent can be evaporated at 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C. by a heating means such as a hot plate to form a polymer film. If the thickness of the polymer film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is between 10 nm and 100 nm. When the liquid crystal is aligned horizontally or tilted, the polymer film after baking is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method and then preparing a liquid crystal cell by a known method.
  • a method for manufacturing a liquid crystal cell prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting the liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the substrate after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
  • the liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board
  • the liquid crystal composition is also preferably used for a liquid crystal display device produced through a step of polymerizing a polymerizable compound by at least one of irradiation with active energy rays and heating while applying a voltage between electrodes.
  • ultraviolet rays are suitable as the active energy ray.
  • the above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
  • a PSA method a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound.
  • the pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer.
  • the PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
  • a liquid crystal cell is prepared after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, and a polymerizable compound is produced by at least one of irradiation with ultraviolet rays and heating.
  • the orientation of liquid crystal molecules can be controlled by polymerizing.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method of bonding the other substrate and injecting liquid crystal under reduced pressure, or a method in which a liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed, and then the substrate is bonded to perform sealing. .
  • a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled.
  • the polymerizable compound exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases, and the liquid crystal display The burn-in characteristic of the element is deteriorated.
  • the polymerizable compound After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display device manufactured through a step of disposing a liquid crystal alignment film containing a group and applying a voltage between the electrodes.
  • ultraviolet rays are suitable as the active energy ray.
  • liquid crystal aligning agent of this invention contains the specific amine compound which has the double bond site
  • the double bond site include an acryl group, a methacryl group, a vinyl group, and a cinnamoyl group.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method of bonding the other substrate and injecting liquid crystal under reduced pressure, or a method in which a liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed, and then the substrate is bonded to perform sealing. .
  • the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
  • the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder is put into an NMR sample tube (NMR sampling tube standard ⁇ 5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) mixed product) 0.53 ml. was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • the imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 to 10.0 ppm. It calculated
  • equation using the integrated value. Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • This reaction solution was poured into methanol (320 ml), and the resulting precipitate was filtered off. This deposit was wash
  • the imidation ratio of this polyimide was 53%, the number average molecular weight was 21,100, and the weight average molecular weight was 53,900.
  • the liquid crystal alignment treatment agent is spin-coated on the ITO surface of the substrate with 30 mm ⁇ 40 mm ITO electrode, and heat-treated at 80 ° C. for 5 minutes on a hot plate and at 220 ° C. for 30 minutes in a thermal circulation clean oven, A substrate with a polyimide liquid crystal alignment film having a thickness of 100 nm was obtained.
  • the liquid crystal alignment treatment agent is spin-coated on the ITO surface of the substrate with 30 mm ⁇ 40 mm ITO electrode, and heat-treated at 80 ° C. for 5 minutes on a hot plate and at 220 ° C. for 30 minutes in a thermal circulation clean oven, An ITO substrate with a polyimide liquid crystal alignment film having a thickness of 100 nm was obtained.
  • the coated surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm.
  • This substrate with a liquid crystal alignment film was combined with a liquid crystal alignment film surface inside, with a 6 ⁇ m spacer in between, and the periphery was adhered with a sealant to produce an empty cell.
  • a liquid crystal obtained by mixing 0.3% by mass of the polymerizable compound (1) represented by the following formula with respect to 100% by mass of MLC-6608 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method. Thereafter, the injection port was sealed to obtain a liquid crystal cell.
  • the response speed of the liquid crystal cell after ultraviolet irradiation was faster than that of the liquid crystal cell before ultraviolet irradiation, confirming that the alignment direction of the liquid crystal was controlled. did.
  • any liquid crystal cell it was confirmed that the liquid crystal was uniformly aligned by observation with a polarizing microscope.
  • the measurement uses a voltage holding ratio measuring device (manufactured by Toyo Technica Co., Ltd., VHR-1), Voltage (applied voltage): ⁇ 1 V, Pulse Width (applied pulse): 60 ⁇ s, and Frame Period (frame period): The setting was performed at 16.67 ms or 50 ms.
  • the liquid crystal cell for which the measurement of the voltage holding ratio was completed was irradiated with ultraviolet rays of 50 J / cm 2 in terms of 365 nm, and then VHR was measured under the same conditions.
  • the ultraviolet irradiation was performed using a desktop UV curing device (HCT3B28HEX-1) (SEN LIGHT CORPRATION).
  • Example 1 Polyamide acid solution (1) (10.0 g), NMP (5.67 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 1 and N-1 solution (1.50 g) of A-1 (A- 1 was mixed with 5 mass% NMP solution) and BCS (25.8 g), and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (1).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing treatment resistance and evaluation of electric characteristics of normal cells and PSA cells were performed under the above-described conditions.
  • Example 2 Polyamide acid solution (2) (10.5 g), NMP (8.95 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 2 and N-1 solution (2.51 g) of A-1 (A- 1 was mixed with 5 mass% NMP solution) and BCS (22.0 g), and the mixture was stirred at 25 ° C. for 2.5 hours to obtain a liquid crystal aligning agent (2).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
  • NMP (13.8 g) was added to the polyimide powder (3) (2.48 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • N-1 solution of A-1 (1.49 g) NMP solution with A-1 of 5.0% by mass
  • NMP (8.13 g) NMP (8.13 g)
  • BCS (19.2 g) BCS (19.2 g)
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing treatment resistance and evaluation of electric characteristics of normal cells and PSA cells were performed under the above-described conditions.
  • NMP (13.6 g) was added to the polyimide powder (3) (2.51 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours.
  • N-2 solution (2.51 g) of A-2 NMP solution containing 5.0% by mass of A-2
  • NMP (8.00 g) NMP (8.00 g)
  • BCS (19.8 g) were added, and the mixture was heated to 50 ° C.
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
  • NMP (13.5 g) was added to the polyimide powder (5) (2.55 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours.
  • N-2 solution (3.57 g) of A-2 NMP solution containing 5.0% by mass of A-2
  • NMP (7.93 g) NMP (7.93 g)
  • BCS (20.5 g) were added, and the mixture was heated to 50 ° C. And stirred for 15 hours to obtain a liquid crystal aligning agent (6).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
  • Example 7 NMP (19.2 g) was added to the polyimide powder (6) (2.51 g) obtained in Synthesis Example 6 and dissolved by stirring at 70 ° C. for 24 hours. To this solution, an NMP solution of A-1 (1.51 g) (NMP solution of 5.0% by mass of A-1), NMP (9.46 g), and BCS (12.9 g) were added, and the mixture was heated to 50 ° C. For 10 hours to obtain a liquid crystal aligning agent (7). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation. Using the obtained liquid crystal aligning agent (7), evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the above-described conditions.
  • NMP (15.3 g) was added to the polyimide powder (7) (2.50 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 24 hours.
  • N-2 solution of A-2 (1.50 g) NMP solution containing 5.0% by mass of A-2
  • NMP (8.97 g) NMP (8.97 g)
  • BCS BCS (17.2 g)
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
  • Example 9 Polyamic acid solution (8) (11.0 g), NMP (4.00 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 8, NMP solution (2.50 g) of A-1 (A- NMP solution 1 of 5% by mass) and BCS (26.3 g) were mixed and stirred at 25 ° C. for 2.5 hours to obtain a liquid crystal aligning agent (9).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
  • NMP (12.0 g) was added to the polyimide powder (9) (2.53 g) obtained in Synthesis Example 9, and dissolved by stirring at 70 ° C. for 24 hours.
  • an NMP solution of A-1 (3.54 g) NMP solution of A-1 of 5.0% by mass
  • NMP (7.00 g) NMP (7.00 g)
  • BCS (22.6 g) were added, and the mixture was heated to 50 ° C.
  • a liquid crystal aligning agent (10) was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
  • NMP (15.4 g) was added to the polyimide powder (10) (2.46 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours.
  • N-2 solution of A-2 (4.92 g) NMP solution containing 5.0% by mass of A-2
  • NMP (9.00 g) NMP (9.00 g)
  • BCS BCS (15.8 g)
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the above-described conditions.
  • NMP (13.6 g) was added to the polyimide powder (11) (2.50 g) obtained in Synthesis Example 11, and dissolved by stirring at 70 ° C. for 24 hours.
  • N-2 solution of A-2 (2.50 g) NMP solution containing 5.0% by mass of A-2
  • NMP (7.98 g) NMP (7.98 g)
  • BCS (19.7 g) BCS (19.7 g)
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing treatment resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
  • NMP (13.6 g) was added to the polyimide powder (12) (2.43 g) obtained in Synthesis Example 12, and dissolved by stirring at 70 ° C. for 24 hours.
  • an NMP solution of A-1 (1.46 g) NMP solution of 5.0% by mass of A-1
  • NMP (7.95 g) NMP (7.95 g)
  • BCS (18.8 g) were added, and the mixture was heated to 50 ° C.
  • a liquid crystal aligning agent (13) was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing treatment resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
  • NMP (13.6 g) was added to the polyimide powder (13) (2.50 g) obtained in Synthesis Example 13, and dissolved by stirring at 70 ° C. for 24 hours.
  • an NMP solution of A-1 (2.50 g) (NMP solution containing 5.0% by mass of A-1), NMP (5.78 g), and BCS (19.7 g) were added, and the mixture was heated to 50 ° C. For 12 hours to obtain a liquid crystal aligning agent (14).
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
  • evaluation of rubbing treatment resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
  • the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the example of the present invention is less rubbing scraped by rubbing than the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the comparative example. Further, the decrease in the voltage holding ratio was small even after being exposed to ultraviolet rays for a long time. In Comparative Examples 1 to 4 which do not contain the specific amine compound, there were many rubbing scraps due to the rubbing treatment, and the decrease in the voltage holding ratio after being exposed to ultraviolet rays for a long time was also large.
  • the polymer film is less likely to be scraped or scratched due to the rubbing process during the manufacturing process of the liquid crystal display element, and further, it can be irradiated with light for a long time. Even if exposed, a liquid crystal alignment film capable of suppressing a decrease in voltage holding ratio can be obtained. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability, and can be suitably used for a large-screen, high-definition liquid crystal television, etc. It is useful for a device, a TFT liquid crystal device, particularly a vertical alignment type liquid crystal display device.
  • liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is also useful for a liquid crystal display element that needs to be irradiated with ultraviolet rays when producing a liquid crystal display element.
  • a liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes, and containing a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates, A liquid crystal display element manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes, and further comprising a liquid crystal layer between a pair of substrates provided with electrodes, A liquid crystal produced by placing a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between substrates and polymerizing the polymerizable group while applying a voltage between the electrodes. It is also useful for display elements.

Abstract

Provided is a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film wherein burrs and cuts associated with rubbing do not easily occur and there is little reduction in a voltage holding ratio even after light irradiation for a long time. The liquid crystal aligning agent contains a component (A) and a component (B), listed below. Component (A): An amine compound having one primary amino group and a hydroxyl group in a molecule and wherein the primary amino group and the hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group. Compound (B): At least one type of polymer selected from a group comprising a polyamide precursor and a polyamide.

Description

液晶配向処理剤、液晶配向膜および液晶表示素子Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向膜を作製する際に用いる液晶配向処理剤およびそれを用いた液晶表示素子に関するものである。 The present invention relates to a liquid crystal alignment treatment agent used for producing a liquid crystal alignment film and a liquid crystal display element using the same.
 液晶表示素子は、薄型・軽量を実現する表示デバイスとして、現在、広く使用されている。通常、この液晶表示素子には、液晶の配向状態を決定づけるために液晶配向膜が使用されている。また、一部の垂直配向型の液晶表示素子などを除き、その液晶配向膜のほとんどは、電極基板上に形成された重合体被膜の表面を、なんらかの配向処理を行うことで作製されている。 Liquid crystal display elements are now widely used as display devices that are thin and light. Usually, in this liquid crystal display element, a liquid crystal alignment film is used to determine the alignment state of the liquid crystal. Further, except for some vertical alignment type liquid crystal display elements and the like, most of the liquid crystal alignment films are produced by performing some alignment treatment on the surface of the polymer film formed on the electrode substrate.
 重合体被膜の配向処理方法として、現在、一般的に用いられている方法は、その重合体被膜表面を、レーヨンなどを素材とする布によって圧力をかけて擦る、いわゆるラビング処理を行う方法である。このようなラビング処理にともなう重合体被膜の削れカスに対しては、ポリアミド酸またはポリイミドの少なくとも1種の重合体と共に、特定の熱架橋性化合物を含有する液晶配向処理剤を使用する方法(例えば特許文献1参照)や、同様にエポキシ基含有化合物を含有する液晶配向処理剤を使用する方法(例えば特許文献2参照)など、硬化剤を用いることによってラビング耐性を向上させる方法が提案されている。 As a method for orienting a polymer film, a method generally used at present is a method of performing a so-called rubbing process in which the surface of the polymer film is rubbed with a cloth made of rayon or the like under pressure. . A method of using a liquid crystal alignment treatment agent containing a specific thermally crosslinkable compound together with at least one polymer of polyamic acid or polyimide for the scraping of the polymer film accompanying such rubbing treatment (for example, A method for improving rubbing resistance by using a curing agent, such as a method using a liquid crystal aligning agent containing an epoxy group-containing compound (see, for example, Patent Document 2) has been proposed. .
日本特開平9-185065号公報Japanese Unexamined Patent Publication No. 9-185065 日本特開平9-146100号公報Japanese Unexamined Patent Publication No. 9-146100
 近年、液晶表示素子の製造プロセス時間の短縮を目的に、ラビング処理は、短時間に強いラビング条件で行われる。そのため、従来に比べて、ラビング処理に伴う重合体被膜の削れカスやラビング処理に伴う傷が、多く発生してしまう問題がある。そして、これらの異常は、液晶表示素子の特性を低下させ、さらには、歩留まりの低下を引き起こす原因の1つとされている。 Recently, for the purpose of shortening the manufacturing process time of the liquid crystal display element, the rubbing treatment is performed under strong rubbing conditions in a short time. Therefore, compared to the conventional case, there is a problem in that the polymer film scraped off due to the rubbing treatment and many scratches accompanying the rubbing treatment occur. These abnormalities are considered to be one of the causes that deteriorate the characteristics of the liquid crystal display element and further cause the yield to decrease.
 また、近年の液晶表示素子の高性能化に伴い、大画面で高精細の液晶テレビや、車載用途、例えば、カーナビゲーションシステムやメーターパネルなどの用途に液晶表示素子が用いられている。こうした用途では、高輝度を得るために、発熱量の大きいバックライトを使用する場合がある。このため、液晶配向膜には、さらに別の観点からの高い信頼性、すなわち、バックライトからの光に対する高い安定性が要求されるようになっている。特に、液晶表示素子の電気特性の1つである電圧保持率が、バックライトからの光照射によって低下してしまうと、液晶表示素子の表示不良の1つである焼き付き不良(以下、線焼き付きと称することもある)が発生しやすくなってしまい、信頼性の高い液晶表示素子を得ることができない。したがって、液晶配向膜においては、初期特性が良好なことに加え、例えば、長時間、光の照射に曝された後であっても、電圧保持率が低下しにくいことが求められている。 Also, with the recent improvement in performance of liquid crystal display elements, liquid crystal display elements are used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels. In such applications, in order to obtain high luminance, a backlight with a large calorific value may be used. For this reason, the liquid crystal alignment film is required to have high reliability from another point of view, that is, high stability against light from the backlight. In particular, when the voltage holding ratio, which is one of the electrical characteristics of the liquid crystal display element, is reduced by light irradiation from the backlight, the burn-in defect (hereinafter referred to as line burn-in) which is one of the display defects of the liquid crystal display element. The liquid crystal display element with high reliability cannot be obtained. Therefore, in the liquid crystal alignment film, in addition to good initial characteristics, for example, it is required that the voltage holding ratio does not easily decrease even after being exposed to light irradiation for a long time.
 そこで、本発明は、上記特性を兼ね備えた液晶配向膜を提供することを目的とする。すなわち、本発明の目的は、液晶表示素子の製造プロセス中のラビング処理に伴う重合体被膜の削れカスやラビング処理に伴う傷が発生しにくく、さらに、この特性に加えて、長時間、光の照射に曝されても、電圧保持率の低下が抑制された液晶配向膜を提供することにある。 Therefore, an object of the present invention is to provide a liquid crystal alignment film having the above characteristics. That is, the object of the present invention is that the polymer film is less likely to be scraped or damaged due to the rubbing process during the manufacturing process of the liquid crystal display element. An object of the present invention is to provide a liquid crystal alignment film in which a decrease in voltage holding ratio is suppressed even when exposed to irradiation.
 また、本発明の目的は、上記の液晶配向膜を提供することのできる液晶配向処理剤、この液晶配向処理剤を用いて得られる液晶表示素子を提供することにある。 Also, an object of the present invention is to provide a liquid crystal alignment treatment agent that can provide the above-mentioned liquid crystal alignment film, and a liquid crystal display element obtained by using this liquid crystal alignment treatment agent.
 本発明者は、鋭意研究を行った結果、特定構造を有するアミン化合物を含む液晶配向処理剤が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that a liquid crystal aligning agent containing an amine compound having a specific structure is extremely effective for achieving the above object, and has completed the present invention. .
 すなわち、本発明は以下の要旨を有するものである。
(1)下記の成分(A)および成分(B)を含有する液晶配向処理剤。
成分(A):分子内に1級アミノ基を1個と水酸基を有し、かつ前記1級アミノ基と水酸基が脂肪族炭化水素基または非芳香族環式炭化水素基に結合しているアミン化合物。
成分(B):ポリイミド前駆体およびポリイミドからなる群より選ばれる少なくとも1種の重合体。
(2)成分(A)のアミン化合物が、下記の式[1]で示される化合物である上記(1)に記載の液晶配向処理剤。
That is, the present invention has the following gist.
(1) Liquid crystal aligning agent containing the following component (A) and component (B).
Component (A): An amine having one primary amino group and a hydroxyl group in the molecule, and the primary amino group and the hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group. Compound.
Component (B): at least one polymer selected from the group consisting of polyimide precursors and polyimides.
(2) The liquid-crystal aligning agent as described in said (1) whose amine compound of a component (A) is a compound shown by following formula [1].
Figure JPOXMLDOC01-appb-C000006
(式[1]中、Xは脂肪族炭化水素基または非芳香族環式炭化水素基を有する有機基であり、Xは単結合、-O-、-NH-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-または-SO-であり、Xは単結合、ベンゼン環またはシクロヘキサン環であり、Xは単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-または-SO-であり、Xは単結合、脂肪族炭化水素基または非芳香族環式炭化水素基を有する有機基であり、nは1~5の整数である)。
(3)成分(A)のアミン化合物である式[1]のXが、炭素数1~10の直鎖状若しくは分岐状アルキル基、シクロヘキサン環またはビシクロヘキシル環である上記(2)に記載の液晶配向処理剤。
(4)成分(A)のアミン化合物である式[1]のXが、単結合、-O-または-OCO-である上記(2)または上記(3)に記載の液晶配向処理剤。
(5)成分(A)のアミン化合物である式[1]のXが、単結合またはベンゼン環である上記(2)~上記(4)のいずれかに記載の液晶配向処理剤。
(6)成分(A)のアミン化合物である式[1]のXが、単結合、-O-、-NH-または-CONH-である上記(2)~上記(5)のいずれかに記載の液晶配向処理剤。
(7)成分(A)のアミン化合物である式[1]のXが、単結合、炭素数が1~10の直鎖状若しくは分岐状アルキル基、またはシクロヘキサン環である上記(2)~上記(6)のいずれかに記載の液晶配向処理剤。
(8)成分(B)が、ジアミン成分とテトラカルボン酸二無水物とを反応させて得られるポリアミド酸および該ポリアミド酸を脱水閉環させて得られるポリイミドからなる群より選ばれる少なくとも1種の重合体である上記(1)~上記(7)のいずれかに記載の液晶配向処理剤。
(9)ジアミン成分が、下記の式[2]で示される側鎖を有するジアミン化合物である上記(8)に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000006
(In the formula [1], X 1 is an organic group having an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group, and X 2 is a single bond, —O—, —NH—, —CO—, — COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO 2 , X 3 is a single bond, a benzene ring or a cyclohexane ring, X 4 is a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO 2 —, wherein X 5 is a single bond, an aliphatic hydrocarbon group Or an organic group having a non-aromatic cyclic hydrocarbon group, and n is an integer of 1 to 5.
(3) The above (2), wherein X 1 of the formula [1] which is the amine compound of the component (A) is a linear or branched alkyl group having 1 to 10 carbon atoms, a cyclohexane ring or a bicyclohexyl ring. Liquid crystal alignment treatment agent.
(4) The liquid crystal aligning agent according to the above (2) or (3), wherein X 2 of the formula [1] which is the amine compound of the component (A) is a single bond, —O— or —OCO—.
(5) The liquid crystal aligning agent according to any one of (2) to (4) above, wherein X 3 of formula [1] which is the amine compound of component (A) is a single bond or a benzene ring.
(6) Any one of the above (2) to (5), wherein X 4 of the formula [1] which is the amine compound of component (A) is a single bond, —O—, —NH— or —CONH—. The liquid crystal aligning agent of description.
(7) X 5 of the formula [1] which is an amine compound of component (A) is a single bond, a linear or branched alkyl group having 1 to 10 carbon atoms, or a cyclohexane ring. The liquid-crystal aligning agent in any one of said (6).
(8) The component (B) is at least one heavy selected from the group consisting of a polyamic acid obtained by reacting a diamine component and a tetracarboxylic dianhydride and a polyimide obtained by dehydrating and ring-closing the polyamic acid. The liquid crystal aligning agent according to any one of (1) to (7), which is a coalescence.
(9) The liquid-crystal aligning agent as described in said (8) whose diamine component is a diamine compound which has a side chain shown by following formula [2].
Figure JPOXMLDOC01-appb-C000007
(式[2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-であり、Yは単結合または-(CH-(bは1~15の整数である)であり、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-であり、Yはベンゼン環、シクロへキサン環および複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、または、ステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基であり、Yはベンゼン環、シクロへキサン環および複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、nは0~4の整数であり、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基である)。
(10)ジアミン成分が、下記の式[2a]で示されるジアミン化合物である上記(8)に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000007
(In the formula [2], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Y 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 3 carbon atoms Alternatively, it may be substituted with a fluorine atom, or has a steroid skeleton having 12 to 25 carbon atoms A divalent organic group selected from organic groups, Y 5 is a cyclic group selected from benzene ring, the group consisting of cyclohexane ring and heterocyclic cyclohexane, any hydrogen atoms on these cyclic groups, An alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, n is an integer of 0 to 4, Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine group having 1 to 18 carbon atoms An alkoxyl group).
(10) The liquid-crystal aligning agent as described in said (8) whose diamine component is a diamine compound shown by following formula [2a].
Figure JPOXMLDOC01-appb-C000008
(式[2a]中、Y、Y、Y、Y、Y、Y及びnは、式[2]の定義と同じ意義を有し、mは1~4の整数である。)
(11)前記式[2a]のジアミン化合物が、ジアミン成分中に5~80モル%含まれる上記(9)または上記(10)に記載の液晶配向処理剤。
(12)成分(B)の重合体が、下記の式[3]で示されるテトラカルボン酸二無水物を用いた重合体である上記(8)~上記(11)のいずれかに記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000008
(In Formula [2a], Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n have the same significance as defined in Formula [2], and m is an integer of 1 to 4. .)
(11) The liquid crystal aligning agent according to (9) or (10), wherein the diamine compound of the formula [2a] is contained in an amount of 5 to 80 mol% in the diamine component.
(12) The liquid crystal according to any one of (8) to (11) above, wherein the polymer of component (B) is a polymer using a tetracarboxylic dianhydride represented by the following formula [3]: Alignment treatment agent.
Figure JPOXMLDOC01-appb-C000009
(式[3]中、Zは炭素数4~13の4価の有機基であり、かつ炭素数4~6の非芳香族環状炭化水素基を含有する)。
(13)テトラカルボン酸二無水物が、下記の式[3a]~式[3j]で示される構造である上記(12)に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000009
(In the formula [3], Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms).
(13) The liquid crystal aligning agent according to the above (12), wherein the tetracarboxylic dianhydride has a structure represented by the following formulas [3a] to [3j].
Figure JPOXMLDOC01-appb-C000010
(式[3a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環であり、それぞれ、同じであっても異なってもよく、式[3g]中、ZおよびZは水素原子またはメチル基であり、それぞれ、同じであっても異なってもよい)。
(14)成分(B)の重合体が、ポリアミド酸を脱水閉環させて得られるポリイミドである上記(1)~上記(13)のいずれかに記載の液晶配向処理剤。
(15)成分(B)の100質量部に対し、成分(A)が0.1質量部~20質量部である上記(1)~上記(14)のいずれかに記載の液晶配向処理剤。
(16)液晶配向処理剤中に5質量%~60質量%の貧溶媒を含有する上記(1)~上記(15)のいずれかに記載の液晶配向処理剤。
(17)上記(1)~上記(16)のいずれか一項に記載の液晶配向処理剤を用いて得られる液晶配向膜。
(18)上記(17)に記載の液晶配向膜を有する液晶表示素子。
(19)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられる上記(17)に記載の液晶配向膜。
(20)上記(19)に記載の液晶配向膜を有する液晶表示素子。
(21)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられる上記(17)に記載の液晶配向膜。
(22)上記(21)に記載の液晶配向膜を有する液晶表示素子。
Figure JPOXMLDOC01-appb-C000010
(In the formula [3a], Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, which may be the same or different. In the formula [3g], Z 6 and Z 7 Are hydrogen atoms or methyl groups, which may be the same or different.
(14) The liquid crystal aligning agent according to any one of (1) to (13) above, wherein the polymer of component (B) is a polyimide obtained by dehydrating and ring-closing polyamic acid.
(15) The liquid crystal aligning agent according to any one of (1) to (14), wherein the component (A) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the component (B).
(16) The liquid crystal aligning agent according to any one of (1) to (15), wherein the liquid crystal aligning agent contains 5% by mass to 60% by mass of a poor solvent.
(17) A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of (1) to (16).
(18) A liquid crystal display device having the liquid crystal alignment film according to (17).
(19) A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal alignment film according to (17), which is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes.
(20) A liquid crystal display device having the liquid crystal alignment film according to (19).
(21) A liquid crystal alignment film having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal alignment film according to (17), which is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable group while applying a voltage between the electrodes.
(22) A liquid crystal display device having the liquid crystal alignment film according to (21).
 本発明の液晶配向処理剤を用いることにより、液晶表示素子の製造プロセス中のラビング処理に伴う重合体被膜の削れカスやラビング処理に伴う傷が発生しにくく、さらに、長時間、光の照射に曝されても、電圧保持率の低下が抑制された液晶配向膜を得ることができる。よって、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。 By using the liquid crystal alignment treatment agent of the present invention, the polymer film is less likely to be scraped or scratched due to the rubbing process during the manufacturing process of the liquid crystal display element, and further, it can be irradiated with light for a long time. Even when exposed, a liquid crystal alignment film in which a decrease in voltage holding ratio is suppressed can be obtained. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
 本発明は、下記の成分(A)および成分(B)を含有する液晶配向処理剤、該液晶配向処理剤を用いて得られる液晶配向膜、さらには、該液晶配向膜を有する液晶表示素子である。
 成分(A):分子内に1級アミノ基を1個と水酸基を有し、かつ前記1級アミノ基と水酸基が脂肪族炭化水素基または非芳香族環式炭化水素基に結合しているアミン化合物(以下、特定アミン化合物と称することもある)。
 成分(B):ポリイミド前駆体およびポリイミドからなる群より選ばれる少なくとも1種の重合体(以下、特定重合体と称することもある)。
The present invention is a liquid crystal aligning agent containing the following component (A) and component (B), a liquid crystal aligning film obtained using the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film. is there.
Component (A): An amine having one primary amino group and a hydroxyl group in the molecule, and the primary amino group and the hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group. Compound (hereinafter sometimes referred to as a specific amine compound).
Component (B): at least one polymer selected from the group consisting of a polyimide precursor and a polyimide (hereinafter sometimes referred to as a specific polymer).
 本発明の液晶配向処理剤において、特定アミン化合物中の1級アミノ基は、特定重合体中のカルボキシル基と塩形成をしているか、特定重合体中のカルボキシル基やカルボキシエステル基に対して、水またはアルコールの脱離を伴うアミド結合をしているか、または、特定重合体中のイミド基に対してイミド基の開環を伴う結合反応をしていると考えられる。さらに、液晶配向膜を作製する際の焼成工程によって、特定重合体中のカルボキシル基と塩形成をしている1級アミノ基は、水の脱離によりアミド結合を形成すると考えられる。その結果、本発明の液晶配向処理剤は、有機溶媒中で混合するという簡便な手段にもかかわらず、そこから得られた液晶配向膜中では、特定アミン化合物と特定重合体とが効率良く結合していると考える。 In the liquid crystal aligning agent of the present invention, the primary amino group in the specific amine compound forms a salt with the carboxyl group in the specific polymer, or relative to the carboxyl group or carboxy ester group in the specific polymer, It is considered that the amide bond is accompanied by elimination of water or alcohol, or that the imide group in the specific polymer undergoes a binding reaction involving ring opening of the imide group. Furthermore, it is considered that the primary amino group that forms a salt with the carboxyl group in the specific polymer forms an amide bond due to elimination of water in the baking step in producing the liquid crystal alignment film. As a result, although the liquid crystal aligning agent of the present invention is a simple means of mixing in an organic solvent, the specific amine compound and the specific polymer are efficiently bonded in the liquid crystal alignment film obtained therefrom. I think.
 また、特定アミン化合物中の水酸基は、熱により、特定重合体中のカルボキシル基やカルボキシエステル基に対して、水またはアルコールの脱離を伴うエステル化反応や、特定アミン化合物中の水酸基同士による水の脱離を伴うエーテル化反応が起こることが知られている。したがって、上述したように、本発明の液晶配向処理剤から得られた液晶配向膜は、特定アミン化合物が、特定重合体に結合していることから、液晶配向膜を作製する際の焼成工程や、液晶表示素子を作製する際のシール剤の硬化工程、すなわち、焼成工程により、ポリマー間の架橋反応が起こり、物理的な安定性が向上し、さらには、熱や光に対する耐性が高いものとなる。 In addition, the hydroxyl group in the specific amine compound is heated by an esterification reaction accompanied by elimination of water or alcohol with respect to a carboxyl group or a carboxy ester group in the specific polymer, or water generated by hydroxyl groups in the specific amine compound. It is known that an etherification reaction involving the elimination of Therefore, as described above, the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention has a specific amine compound bonded to a specific polymer. The curing process of the sealing agent when producing the liquid crystal display element, that is, the baking process causes a cross-linking reaction between the polymers, the physical stability is improved, and the resistance to heat and light is high. Become.
 更に、本発明では、架橋反応を起こす特定アミン化合物が、特定重合体に結合していることから、架橋性化合物を添加した場合に起こる未反応成分の残存による液晶表示素子の特性の低下などの問題は発生しない。 Furthermore, in the present invention, since the specific amine compound that causes the crosslinking reaction is bonded to the specific polymer, the characteristics of the liquid crystal display element are deteriorated due to remaining unreacted components that occur when the crosslinking compound is added. There is no problem.
 したがって、本発明の液晶配向処理剤から得られる液晶配向膜は、特定アミン化合物を含まない液晶配向膜と比較して、液晶表示素子の製造プロセス中のラビング処理に伴う重合体被膜膜の削れカスやラビング処理に伴う傷が発生しにくく、さらに、長時間、光の照射に曝されても、電圧保持率の低下を抑制することができる。 Therefore, the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention is less scraped from the polymer coating film due to the rubbing process during the manufacturing process of the liquid crystal display element than the liquid crystal alignment film containing no specific amine compound. And scratches associated with the rubbing process are less likely to occur, and further, even when exposed to light irradiation for a long time, a decrease in voltage holding ratio can be suppressed.
 この特定アミン化合物は、分子内に含まれる1級アミノ基が1個のみであるので、液晶配向処理剤を調製する際や液晶配向剤の保管中に、ポリマーの析出やゲル化といった問題が起こる可能性も回避できる。
<特定アミン化合物>
 本発明の特定アミン化合物は、分子内に1級アミノ基を1個と水酸基を有し、かつ前記1級アミノ基と水酸基が脂肪族炭化水素基または非芳香族環式炭化水素基に結合しているアミン化合物である。
Since this specific amine compound has only one primary amino group contained in the molecule, problems such as polymer precipitation and gelation occur when preparing the liquid crystal aligning agent or during storage of the liquid crystal aligning agent. The possibility can also be avoided.
<Specific amine compound>
The specific amine compound of the present invention has one primary amino group and a hydroxyl group in the molecule, and the primary amino group and the hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group. It is an amine compound.
 より具体的には、下記の式[1]で示されるアミン化合物である。
Figure JPOXMLDOC01-appb-C000011
 式[1]中、Xは特定アミン化合物に含まれる1級アミノ基が特定重合体と塩形成や結合反応をしやすくするため、脂肪族炭化水素基または非芳香族環式炭化水素基を有する有機基である。
More specifically, it is an amine compound represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000011
In the formula [1], X 1 represents an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group so that the primary amino group contained in the specific amine compound can easily form a salt or bond with the specific polymer. It is an organic group.
 脂肪族炭化水素基の具体例としては、直鎖状アルキル基、分岐状アルキル基または不飽和結合を有する炭化水素基等を挙げることができる。なかでも、炭素数が1~20の直鎖状または分岐状アルキル基が好ましい。より好ましくは炭素数が1~15の直鎖状または分岐状アルキル基であり、さらに好ましくは炭素数が1~10の直鎖状または分岐状アルキル基である。 Specific examples of the aliphatic hydrocarbon group include a linear alkyl group, a branched alkyl group, or a hydrocarbon group having an unsaturated bond. Of these, a linear or branched alkyl group having 1 to 20 carbon atoms is preferable. More preferred is a linear or branched alkyl group having 1 to 15 carbon atoms, and further preferred is a linear or branched alkyl group having 1 to 10 carbon atoms.
 非芳香族環式炭化水素基の具体例としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロウンデカン環、シクロドデカン環、シクロトリデカン環、シクロテトラデカン環、シクロペンタデカン環、シクロヘキサデカン環、シクロヘプタデカン環、シクロオクタデカン環、シクロノナデカン環、シクロイコサン環、トリシクロエイコサン環、トリシクロデコサン環、ビシクロへキシル環、ビシクロヘプタン環、デカヒドロナフタレン環、ノルボルネン環、アダマンタン環などが挙げられる。なかでも、炭素数3~20からなる環が好ましい。より好ましくは炭素数3~15からなる環であり、さらに好ましくは炭素数6~12からなる環の非芳香族環式炭化水素基である。具体的には、シクロヘキサン環またはビシクロへキシル環であり、特に好ましくは、シクロヘキサン環である。 Specific examples of the non-aromatic cyclic hydrocarbon group include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, cycloundecane ring, cyclododecane ring, Cyclotridecane ring, cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosane ring, tricyclodecosan ring, bicyclohexyl ring, bicyclo Examples include heptane ring, decahydronaphthalene ring, norbornene ring, adamantane ring and the like. Of these, a ring having 3 to 20 carbon atoms is preferable. A ring having 3 to 15 carbon atoms is more preferable, and a non-aromatic cyclic hydrocarbon group having a ring having 6 to 12 carbon atoms is still more preferable. Specifically, it is a cyclohexane ring or a bicyclohexyl ring, and particularly preferably a cyclohexane ring.
 式[1]中、Xは単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-または-SO-である。なかでも、単結合、-O-、-NH-、-COO-、-OCO-、-CONH-または-NHCO-が好ましい。より好ましくは、単結合、-O-、-NH-、-OCO-または-NHCO-であり、特に好ましくは、単結合、-O-または-OCO-である。
 式[1]中、Xは単結合、ベンゼン環またはシクロヘキサン環である。より好ましくは、単結合またはベンゼン環である。
 式[1]中、Xは単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-または-SO-である。なかでも、単結合、-O-、-NH-、-COO-、-OCO-、-CONH-または-NHCO-が好ましい。より好ましくは、単結合、-O-、-NH-、-OCO-または-CONH-であり、特に好ましくは、単結合、-O-、-NH-または-CONH-である。
In the formula [1], X 2 represents a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ). CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO 2 —. Of these, a single bond, —O—, —NH—, —COO—, —OCO—, —CONH— or —NHCO— is preferable. More preferred is a single bond, —O—, —NH—, —OCO— or —NHCO—, and particularly preferred is a single bond, —O— or —OCO—.
In the formula [1], X 3 is a single bond, a benzene ring or a cyclohexane ring. More preferably, it is a single bond or a benzene ring.
In the formula [1], X 4 represents a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ). CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO 2 —. Of these, a single bond, —O—, —NH—, —COO—, —OCO—, —CONH— or —NHCO— is preferable. More preferred is a single bond, —O—, —NH—, —OCO— or —CONH—, and particularly preferred is a single bond, —O—, —NH— or —CONH—.
 式[1]中、Xは単結合、脂肪族炭化水素基または非芳香族環式炭化水素基を有する有機基である。脂肪族炭化水素基および非芳香族環式炭化水素基の具体例は、上述したものが挙げられる。なかでも、単結合、炭素数1~20の直鎖状若しくは分岐状アルキル基、または炭素数3~20からなる非芳香族環式炭化水素基が好ましい。より好ましくは、単結合、炭素数1~15の直鎖状若しくは分岐状アルキル基、または炭素数3~15からなる非芳香族環式炭化水素基である。さらに好ましくは、単結合、炭素数が1~10の直鎖状若しくは分岐状アルキル基、シクロヘキサン環またはビシクロへキシル環であり、特に好ましくは、単結合、炭素数が1~10の直鎖状若しくは分岐状アルキル基またはシクロヘキサン環である。
 式[1]中、nは1~5の整数である。なかでも、1~4の整数が好ましい。より好ましくは、1~3の整数である。
 式[1]におけるX、X、X、X、Xおよびnの好ましい組み合わせは、表1~表14に示すとおりである。
In the formula [1], X 5 is an organic group having a single bond, an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group. Specific examples of the aliphatic hydrocarbon group and the non-aromatic cyclic hydrocarbon group include those described above. Of these, a single bond, a linear or branched alkyl group having 1 to 20 carbon atoms, or a non-aromatic cyclic hydrocarbon group having 3 to 20 carbon atoms is preferable. More preferably, they are a single bond, a linear or branched alkyl group having 1 to 15 carbon atoms, or a non-aromatic cyclic hydrocarbon group having 3 to 15 carbon atoms. More preferably, they are a single bond, a linear or branched alkyl group having 1 to 10 carbon atoms, a cyclohexane ring or a bicyclohexyl ring, and particularly preferably a single bond, a linear chain having 1 to 10 carbon atoms. Or it is a branched alkyl group or a cyclohexane ring.
In the formula [1], n is an integer of 1 to 5. Among these, an integer of 1 to 4 is preferable. More preferably, it is an integer of 1 to 3.
Preferred combinations of X 1 , X 2 , X 3 , X 4 , X 5 and n in the formula [1] are as shown in Tables 1 to 14.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
<特定重合体>
 本発明の特定重合体は、ポリイミド前駆体およびポリイミドからなる群より選ばれる少なくとも1種の重合体であり、ポリイミド前駆体は、下記の式[A]で示される構造である。
Figure JPOXMLDOC01-appb-C000026
(式[A]中、Rは4価の有機基であり、Rは2価の有機基であり、AおよびAは水素原子または炭素数1~8のアルキル基であり、それぞれ同じであっても異なってもよく、nは正の整数を示す)。
<Specific polymer>
The specific polymer of the present invention is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide, and the polyimide precursor has a structure represented by the following formula [A].
Figure JPOXMLDOC01-appb-C000026
(In the formula [A], R 1 is a tetravalent organic group, R 2 is a divalent organic group, A 1 and A 2 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, They may be the same or different, and n represents a positive integer).
 本発明の特定重合体は、下記の式[B]で示されるジアミン成分と下記の式[C]で示されるテトラカルボン酸二無水物とを原料とすることで比較的簡便に得られるという理由から、下記の式[D]で示される繰り返し単位の構造式からなるポリアミド酸または該ポリアミド酸をイミド化させたポリイミドが好ましい。 The reason why the specific polymer of the present invention can be obtained relatively easily by using a diamine component represented by the following formula [B] and a tetracarboxylic dianhydride represented by the following formula [C] as raw materials. Therefore, a polyamic acid having a structural formula of a repeating unit represented by the following formula [D] or a polyimide obtained by imidizing the polyamic acid is preferable.
Figure JPOXMLDOC01-appb-C000027
(式[B]および式[C]中、RおよびRは、式[A]で定義したものと同意義である)。
Figure JPOXMLDOC01-appb-C000027
(In Formula [B] and Formula [C], R 1 and R 2 are the same as defined in Formula [A]).
(式[D]中、R、Rおよびnは式[A]で定義したものと同意義である)。
 式[A]および式[D]において、RおよびRはそれぞれ1種類でもあっても、それぞれ異なったRおよびRを有して繰り返し単位として異なった複数種を組み合わせたものでもよい。
(In the formula [D], R 1 , R 2 and n are as defined in the formula [A]).
In the formula [A] and the formula [D], R 1 and R 2 may each be one type, or may be a combination of different types having different R 1 and R 2 as repeating units. .
 ジアミン成分には、下記の式[2]で示される側鎖(以下、特定側鎖構造と称することもある)を有するジアミン化合物を用いることが好ましい。 As the diamine component, it is preferable to use a diamine compound having a side chain represented by the following formula [2] (hereinafter also referred to as a specific side chain structure).
Figure JPOXMLDOC01-appb-C000029
 式[2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-である。なかでも、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-または-COO-は、側鎖構造を合成しやすいので好ましい。より好ましくは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-または-COO-である。
Figure JPOXMLDOC01-appb-C000029
In the formula [2], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Among these, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable because the side chain structure can be easily synthesized. More preferably, it is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 式[2]中、Yは単結合または-(CH-(bは1~15の整数である)である。なかでも、単結合または-(CH-(bは1~10の整数である)が好ましい。 In the formula [2], Y 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
 式[2]中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-である。なかでも、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-が、合成しやすいので好ましい。より好ましくは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-または-OCO-である。 In the formula [2], Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Among these, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— is preferable because they are easily synthesized. More preferably, they are a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or —OCO—.
 式[2]中、Yはベンゼン環、シクロへキサン環および複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。さらに、Yは、ステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基である。なかでも、ベンゼン環、シクロへキサン環またはステロイド骨格を有する炭素数12~25の有機基が好ましい。 In the formula [2], Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms Group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Y 4 is a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. Of these, an organic group having 12 to 25 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable.
 式[2]中、Yはベンゼン環、シクロへキサン環および複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよい。 In the formula [2], Y 5 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl having 1 to 3 carbon atoms. Group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
 式[2]中、nは0~4の整数である。好ましくは、0~2の整数である。 In the formula [2], n is an integer of 0 to 4. Preferably, it is an integer of 0-2.
 式[2]中、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基である。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基または炭素数1~12のアルコキシル基である。さらに好ましくは、炭素数1~9のアルキル基または炭素数1~9のアルコキシル基である。
 式[2]におけるY、Y、Y、Y、Y、Yおよびnの好ましい組み合わせは、表15~表56に示すとおりである。
In the formula [2], Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. . Of these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
Preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [2] are as shown in Table 15 to Table 56.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
 本発明の重合体に特定側鎖構造を導入する方法としては、下記の式[2a]で示されるジアミン化合物(以下、特定ジアミン化合物と称することもある)を原料の一部に用いることが好ましい。
Figure JPOXMLDOC01-appb-T000071
As a method for introducing a specific side chain structure into the polymer of the present invention, a diamine compound represented by the following formula [2a] (hereinafter sometimes referred to as a specific diamine compound) is preferably used as a part of the raw material. .
Figure JPOXMLDOC01-appb-C000072
 式[2a]中のY、Y、Y、Y、Y、Y及びnは、式[2]の定義と同じ意義を有し、mは1~4の整数である。)
 また、上記の式 式[2a]におけるY、Y、Y、Y、Y、Yおよびnの好ましい組み合わせは、式[2]と同様に、表15~表56に示すとおりである。
 式[2a]中、mは、1~4の整数である。好ましくは、1の整数である。
Figure JPOXMLDOC01-appb-C000072
Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [2a] have the same meaning as defined in the formula [2], and m is an integer of 1 to 4. )
Further, the preferred combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the above formula [2a] are as shown in Table 15 to Table 56, as in the formula [2]. It is.
In the formula [2a], m is an integer of 1 to 4. Preferably, it is an integer of 1.
 より具体的には、下記の式[2-1]~式[2-32]で示される構造である。
Figure JPOXMLDOC01-appb-C000073
(式[2-1]および式[2-2]中、Rは-O-、-OCH-、-CHO-、-COOCH-または-CHOCO-を示し、Rは炭素数1以上22以下のアルキル基、アルコキシル基、フッ素含有アルキル基またはフッ素含有アルコキシル基である)。
More specifically, the structure is represented by the following formulas [2-1] to [2-32].
Figure JPOXMLDOC01-appb-C000073
(In Formula [2-1] and Formula [2-2], R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and R 2 represents An alkyl group having 1 to 22 carbon atoms, an alkoxyl group, a fluorine-containing alkyl group, or a fluorine-containing alkoxyl group).
Figure JPOXMLDOC01-appb-C000074
(式[2-3]~式[2-5]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-または-CH-を示し、Rは炭素数1以上22以下のアルキル基、アルコキシル基、フッ素含有アルキル基またはフッ素含有アルコキシル基である)。
Figure JPOXMLDOC01-appb-C000074
(In the formulas [2-3] to [2-5], R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or — CH 2 —, wherein R 4 is an alkyl group having 1 to 22 carbon atoms, an alkoxyl group, a fluorine-containing alkyl group or a fluorine-containing alkoxyl group).
Figure JPOXMLDOC01-appb-C000075
(式[2-6]および式[2-7]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-または-O-を示し、Rはフッ素基、シアノ基、トリフルオロメチル基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基または水酸基である)。
Figure JPOXMLDOC01-appb-C000075
(In the formulas [2-6] and [2-7], R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 — or —O—, wherein R 6 is a fluorine group, a cyano group, a trifluoromethyl group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group).
Figure JPOXMLDOC01-appb-C000076
(式[2-8]および式[2-9]中、Rは炭素数3以上12以下のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である)。
Figure JPOXMLDOC01-appb-C000076
(In Formula [2-8] and Formula [2-9], R 7 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. ).
Figure JPOXMLDOC01-appb-C000077
(式[2-10]および式[2-11]中、Rは炭素数3以上12以下のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である)。
Figure JPOXMLDOC01-appb-C000077
(In the formulas [2-10] and [2-11], R 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. ).
Figure JPOXMLDOC01-appb-C000078
(式[2-12]中、Aはフッ素原子で置換されていてもよい炭素数3~20のアルキル基であり、Aは1,4-シクロへキシレン基または1,4-フェニレン基であり、Aは酸素原子または-COO-*(ただし、「*」を付した結合手がAと結合する)であり、Aは酸素原子または-COO-*(ただし、「*」を付した結合手が(CH)a)と結合する)である。また、aは0または1の整数であり、aは2~10の整数であり、aは0または1の整数である)。
Figure JPOXMLDOC01-appb-C000078
(In the formula [2-12], A 4 represents an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and A 3 represents a 1,4-cyclohexylene group or a 1,4-phenylene group. A 2 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 3 ), and A 1 is an oxygen atom or —COO— * (where “*” Is a bond with (CH 2 ) a 2 ). A 1 is an integer of 0 or 1, a 2 is an integer of 2 to 10, and a 3 is an integer of 0 or 1.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 本発明においては、本発明の効果を損なわない限りにおいて、特定ジアミン化合物以外のその他のジアミン化合物(以下、その他ジアミン化合物と称することもある)を、ジアミン成分として用いることができる。その具体例を以下に挙げる。
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、4-(アミノメチル)アニリン、3-(アミノメチル)アニリン、4-(2-アミノエチル)アニリンまたは3-(2-アミノエチルアニリン)などの芳香族ジアミン;ビス(4-アミノシクロヘキシル)メタンまたはビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン;1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカンまたは1,12-ジアミノドデカンなどの脂肪族ジアミン。
In the present invention, other diamine compounds other than the specific diamine compound (hereinafter sometimes referred to as other diamine compounds) can be used as the diamine component as long as the effects of the present invention are not impaired. Specific examples are given below.
p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2, 5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4 , 6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dihydroxy -4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,3'-diph Fluoro-4,4′-biphenyl, 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 2,3′-diaminobiphenyl, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 2,2′-diaminodiphenylmethane, 2,3′-diaminodiphenylmethane, 4, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3 '-Sulphonyldianiline, bis (4-aminophenyl) silane, bis (3-amino Nophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4′-thiodianiline, 3,3′-thiodianiline, 4,4′-diaminodiphenylamine, 3, 3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine, N-methyl (3 3'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) amine, N-methyl (2,3'-diaminodiphenyl) amine, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone 1,4-diaminonaphthalene, 2,2′-diaminobenzophenone, 2,3′-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8- Diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3 -Aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane, 1,4-bis ( 3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) ben 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-amino) Benzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis (methylene) ] Dianiline, 3,4 '-[1,4-phenylenebis (methylene)] dianiline, 3,4'-[1,3-phenylenebis (methylene)] dianiline, 3,3 '-[1,4-phenylene Bis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3 -Ami Phenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis ( 3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide), N, N '-(1,3-phenylene) bis (4-aminobenzamide), N, N'-(1,4-phenylene) bi (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3 -Aminophenyl) terephthalamide, N, N'-bis (4-aminophenyl) isophthalamide, N, N'-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl ] Hexafluoropropane, 2,2'-bis (4-aminophenyl) hexafluoropropane, 2,2'-bis (3-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2 '-Bis (3-amino-4-methylphenyl) propane, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-amino) Phenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4 -Aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) Nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane, 4- (aminomethyl) aniline, 3- (aminomethyl) aniline, 4- (2-aminoethyl) aniline or Aromatic diamines such as 3- (2-aminoethylaniline); bis (4-aminocyclohexyl) methane or bis (4-amino-3-methyl) Cyclohexyl) alicyclic diamines such as methane; 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8 An aliphatic diamine such as diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane or 1,12-diaminododecane;
 また、本発明の効果を損なわない限りにおいて、ジアミン側鎖にアルキル基またはフッ素含有アルキル基を有するジアミン化合物を用いることができる。
 具体的には、下記の式[DA1]~式[DA12]で示されるジアミンを例示することができる。
Figure JPOXMLDOC01-appb-C000084
(式[DA1]~式[DA5]中、Aは炭素数1以上22以下のアルキル基またはフッ素含有アルキル基である)。
In addition, a diamine compound having an alkyl group or a fluorine-containing alkyl group in the diamine side chain can be used as long as the effects of the present invention are not impaired.
Specifically, diamines represented by the following formulas [DA1] to [DA12] can be exemplified.
Figure JPOXMLDOC01-appb-C000084
(Wherein [DA1] ~ formula [DA5], A 1 is an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms).
Figure JPOXMLDOC01-appb-C000085
(式[DA6]~式[DA11]中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-または-NH-を示し、Aは炭素数1以上22以下のアルキル基またはフッ素含有アルキル基を示す)。
Figure JPOXMLDOC01-appb-C000085
(In the formulas [DA6] to [DA11], A 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—, A 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group).
Figure JPOXMLDOC01-appb-C000086
(式[DA12]中、pは1~10の整数である)。
Figure JPOXMLDOC01-appb-C000086
(In the formula [DA12], p is an integer of 1 to 10).
 加えて、本発明の効果を損なわない限りにおいて、下記の式[DA13]~式[DA20]で示されるジアミン化合物を用いることもできる。 In addition, diamine compounds represented by the following formulas [DA13] to [DA20] can also be used as long as the effects of the present invention are not impaired.
Figure JPOXMLDOC01-appb-C000087
(式[DA17]中、mは0~3の整数であり、式[DA20]中、nは1~5の整数である)。
Figure JPOXMLDOC01-appb-C000087
(In the formula [DA17], m is an integer of 0 to 3, and in the formula [DA20], n is an integer of 1 to 5).
 さらに、本発明の効果を損なわない限りにおいて、下記の式[DA21]~式[DA24]で示される分子内にカルボキシル基を有するジアミン化合物を用いることもできる。 Furthermore, as long as the effects of the present invention are not impaired, a diamine compound having a carboxyl group in the molecule represented by the following formulas [DA21] to [DA24] can also be used.
Figure JPOXMLDOC01-appb-C000088
(式[DA21]中、mは1~4の整数であり、式[DA22]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF)-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-または-N(CH)CO-であり、mおよびmはそれぞれ0~4の整数であり、かつm+mは1~4の整数であり、式[DA23]中、mおよびmはそれぞれ1~5の整数であり、式[DA24]中、Aは炭素数1~5の直鎖または分岐アルキル基であり、mは1~5の整数であり、式[DA25]中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF)-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-または-N(CH)CO-であり、mは1~4の整数である)。
Figure JPOXMLDOC01-appb-C000088
(In the formula [DA21], m 1 is an integer of 1 to 4, and in the formula [DA22], A 4 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —. , —CF 2 —, —C (CF 3 ) —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—, each of m 2 and m 3 is an integer of 0 to 4 and m 2 + m 3 Is an integer of 1 to 4, and in formula [DA23], m 4 and m 5 are each an integer of 1 to 5, and in formula [DA24], A 5 is a linear or branched alkyl having 1 to 5 carbon atoms. a group, m 6 is an integer of 1 to 5, wherein [DA25], a 6 represents a single bond, -CH 2 -, - C 2 H 4 -, - C (C 3) 2 -, - CF 2 -, - C (CF 3) -, - O -, - CO -, - NH -, - N (CH 3) -, - CONH -, - NHCO -, - CH 2 O —, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—, and m 7 is an integer of 1 to 4.
 上記の特定ジアミン化合物およびその他ジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持率および蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。 The above-mentioned specific diamine compound and other diamine compounds may be used alone or in combination of two or more depending on the properties such as liquid crystal orientation, voltage holding ratio and accumulated charge when the liquid crystal alignment film is used. .
 本発明の特定重合体を得るためには、下記の式[3]で示されるテトラカルボン酸二無水物(以下、特定テトラカルボン酸二無水物と称することもある)を原料の一部に用いることが好ましい。 In order to obtain the specific polymer of the present invention, a tetracarboxylic dianhydride represented by the following formula [3] (hereinafter sometimes referred to as a specific tetracarboxylic dianhydride) is used as part of the raw material. It is preferable.
Figure JPOXMLDOC01-appb-C000089
 式[3]中、Zは炭素数4~13の4価の有機基であり、かつ炭素数4~6の非芳香族環状炭化水素基を含有する。
Figure JPOXMLDOC01-appb-C000089
In the formula [3], Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms.
 具体的には、下記の式[3a]~式[3j]で示される構造である。
Figure JPOXMLDOC01-appb-C000090
 式[3a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環から選ばれる基であり、それぞれ、同じであっても異なっても良く、式[3g]中、ZおよびZは水素原子またはメチル基であり、それぞれ、同じであっても異なっても良い。
 式[3]中、Zの特に好ましい構造は、重合反応性や合成の容易性から、式[3a]、式[3c]、式[3d]、式[3e]、式[3f]または式[3g]である。
Specifically, the structure is represented by the following formula [3a] to formula [3j].
Figure JPOXMLDOC01-appb-C000090
In the formula [3a], Z 2 to Z 5 are groups selected from a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different. In the formula [3g], Z 6 And Z 7 are a hydrogen atom or a methyl group, and may be the same or different.
In the formula [3], particularly preferred structure of Z 1 is the formula [3a], the formula [3c], the formula [3d], the formula [3e], the formula [3f] or the formula because of the polymerization reactivity and the ease of synthesis. [3 g].
 本発明においては、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸二無水物以外のその他のテトラカルボン酸二無水物(以下、その他テトラカルボン酸二無水物と称することもある)を用いることができる。その他テトラカルボン酸二無水物としては、以下に示すテトラカルボン酸の酸二無水物が挙げられる。 In the present invention, other tetracarboxylic dianhydrides other than the specific tetracarboxylic dianhydride (hereinafter also referred to as other tetracarboxylic dianhydrides) are used as long as the effects of the present invention are not impaired. be able to. Other tetracarboxylic dianhydrides include the following tetracarboxylic acid dianhydrides.
 ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸または1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸。
 上記の特定テトラカルボン酸二無水物およびその他テトラカルボン酸二無水物は、液晶配向膜とした際の液晶配向性、電圧保持率および蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。
Pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7 -Anthracene tetracarboxylic acid, 1,2,5,6-anthracene tetracarboxylic acid, 3,3 ', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4-biphenyltetracarboxylic acid, bis ( 3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2 , 2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propane, bi (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4-dicarboxy) Phenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid or 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic acid.
The above-mentioned specific tetracarboxylic dianhydride and other tetracarboxylic dianhydrides may be used alone or in combination of two or more depending on properties such as liquid crystal alignment, voltage holding ratio and accumulated charge when used as a liquid crystal alignment film. It can also be used by mixing.
 本発明の特定重合体は、ポリイミド前駆体およびポリイミドからなる群より選ばれる少なくとも1種の重合体であり、ポリイミド前駆体とは、式[A]で示される構造である。 The specific polymer of the present invention is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide, and the polyimide precursor is a structure represented by the formula [A].
 本発明において、特定重合体を合成する方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。一般的には、テトラカルボン酸およびその誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種または複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る。具体的には、テトラカルボン酸二無水物とジアミン成分とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸とジアミン成分とを脱水重縮合反応させてポリアミド酸を得る方法またはテトラカルボン酸ジハライドとジアミン成分とを重縮合させてポリアミド酸を得る方法が用いられる。 In the present invention, the method for synthesizing the specific polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid. Specifically, a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and a diamine component, a method of obtaining polyamic acid by dehydration polycondensation reaction of tetracarboxylic acid and a diamine component, or tetracarboxylic acid dihalide A method is used in which a polyamic acid is obtained by polycondensation of a diamine component and diamine component.
 ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸とジアミン成分とを重縮合させる方法、カルボン酸基をジアルキルエステル化したテトラカルボン酸ジハライドとジアミン成分とを重縮合させる方法またはポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。
 さらに、ポリイミドを得るには、前記のポリアミド酸またはポリアミド酸アルキルエステルをイミド化してポリイミドとする方法が用いられる。
To obtain the polyamic acid alkyl ester, a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group and a diamine component, a polycondensation of a tetracarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group and a diamine component. A method or a method of converting a carboxyl group of a polyamic acid into an ester is used.
Furthermore, in order to obtain a polyimide, the method of imidating the said polyamic acid or polyamic-acid alkylester to make a polyimide is used.
 本発明の特定重合体を用いて得られる液晶配向膜は、上記ジアミン成分における特定ジアミン化合物の含有割合が多くなるほど、液晶のプレチルト角を高くすることができる。この特性を高める目的では、ジアミン成分の5モル%以上80モル%以下が特定ジアミン化合物であることが好ましい。なかでも、液晶配向処理剤の塗布性や液晶配向膜としての電気特性の観点から、ジアミン成分の5モル%以上60モル%以下が特定ジアミン化合物であることが好ましい。 The liquid crystal alignment film obtained using the specific polymer of the present invention can increase the pretilt angle of the liquid crystal as the content ratio of the specific diamine compound in the diamine component increases. For the purpose of enhancing this property, it is preferable that 5 mol% or more and 80 mol% or less of the diamine component is the specific diamine compound. Especially, it is preferable that 5 mol% or more and 60 mol% or less of a diamine component are specific diamine compounds from the viewpoint of the applicability | paintability of a liquid-crystal aligning agent, and the electrical property as a liquid crystal aligning film.
 また、本発明の特定重合体を得るためには、テトラカルボン酸成分に特定テトラカルボン酸二無水物を用いることが好ましい。その際、テトラカルボン酸成分の1モル%以上が特定テトラカルボン酸二無水物であることが好ましく、より好ましくは、5モル%以上、さらに好ましくは、10モル%以上である。また、テトラカルボン酸成分の100モル%が特定テトラカルボン酸二無水物であってもよい。 In order to obtain the specific polymer of the present invention, it is preferable to use a specific tetracarboxylic dianhydride as the tetracarboxylic acid component. In that case, it is preferable that 1 mol% or more of a tetracarboxylic acid component is a specific tetracarboxylic dianhydride, More preferably, it is 5 mol% or more, More preferably, it is 10 mol% or more. Further, 100 mol% of the tetracarboxylic acid component may be a specific tetracarboxylic dianhydride.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。その具体例を以下に挙げる。 The reaction between the diamine component and the tetracarboxylic acid component is usually carried out in an organic solvent. The organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Specific examples are given below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどである。これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, isopropyl alcohol, Methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene Glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether , Propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether , Dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether , 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n -Pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, Methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid Propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, and the like. These may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction, and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分またはテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ特定重合体としてもよい。その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の特定重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 When the diamine component and the tetracarboxylic acid component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is. And a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent, a method of alternately adding a tetracarboxylic acid component and a diamine component, etc. Any of these methods may be used. In addition, when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted to form a specific polymer. In this case, the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a specific polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution will become too high and uniform stirring will occur. It becomes difficult. Therefore, it is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 本発明のポリイミドは、前記のポリイミド前駆体を脱水閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。
 本発明のポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
The polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyimide precursor, and is useful as a polymer for obtaining a liquid crystal alignment film.
In the polyimide of the present invention, the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化またはポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalyst imidization in which a catalyst is added to the polyimide precursor solution.
The temperature at which the polyimide precursor is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and a method is preferably performed while removing water generated by the imidization reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で攪拌することにより行うことができる。塩基性触媒の量は、アミド酸基の0.5モル倍~30モル倍、好ましくは2モル倍~20モル倍であり、酸無水物の量は、アミド酸基の1モル倍~50モル倍、好ましくは3モル倍~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸または無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると、反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalytic imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C. it can. The amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid groups, and the amount of the acid anhydride is 1 mol times to 50 mols of the amic acid groups. Double, preferably 3 to 30 mole times. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is easy. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミド前駆体またはポリイミドの反応溶液から、生成したポリイミド前駆体またはポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
 本発明の特定重合体の分子量は、得られる重合体被膜の強度、重合体被膜形成時の作業性、重合体被膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the specific polymer of the present invention is a weight average measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained polymer film, workability at the time of forming the polymer film, and uniformity of the polymer film. The molecular weight is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
<液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布液であり、特定アミン化合物、特定重合体を含む重合体成分および有機溶媒を含有する塗布液である。
<Liquid crystal aligning agent>
The liquid-crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a coating liquid containing the specific amine compound, the polymer component containing a specific polymer, and an organic solvent.
 本発明の液晶配向処理剤における、特定アミン化合物の含有量は、特定重合体100質量部に対して、0.1質量部~150質量部であることが好ましく、架橋反応が進行して所望の膜硬化性を発現し、かつ液晶の配向性を低下させないために、より好ましくは、0.1質量部~100質量部である。さらに好ましくは、1質量部~50質量部であり、特に好ましいのは、0.1質量部~20質量部である。 The content of the specific amine compound in the liquid crystal alignment treatment agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of the specific polymer, and the desired crosslinking reaction proceeds. The amount is more preferably 0.1 to 100 parts by mass in order to exhibit film curability and not to deteriorate the alignment of the liquid crystal. More preferred is 1 to 50 parts by weight, and particularly preferred is 0.1 to 20 parts by weight.
 本発明の液晶配向処理剤における、重合体成分は、全てが本発明に用いる特定重合体であってもよく、本発明の特定重合体にそれ以外の他の重合体が混合されていてもよい。その際、重合体成分中におけるそれ以外の他の重合体の含有量は0.5質量%~15質量%、好ましくは1質量%~10質量%である。それ以外の他の重合体としては、特定ジアミン化合物を含まないジアミン成分と特定テトラカルボン酸二無水物を含まないテトラカルボン酸成分から得られるポリイミド前駆体またはポリイミドが挙げられる。さらには、ポリイミド前駆体およびポリイミド以外の重合体、具体的には、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミドなどが挙げられる。 The polymer component in the liquid crystal aligning agent of the present invention may all be a specific polymer used in the present invention, and other polymers may be mixed with the specific polymer of the present invention. . At that time, the content of the other polymer in the polymer component is 0.5 to 15% by mass, preferably 1 to 10% by mass. Other polymers include polyimide precursors or polyimides obtained from a diamine component that does not contain a specific diamine compound and a tetracarboxylic acid component that does not contain a specific tetracarboxylic dianhydride. Furthermore, a polyimide precursor and a polymer other than polyimide, specifically, an acrylic polymer, a methacrylic polymer, polystyrene, polyamide and the like can be mentioned.
 本発明の液晶配向処理剤中の有機溶媒は、塗布により均一な重合体被膜を形成するという観点から、有機溶媒の含有量が70質量%~99質量%であることが好ましい。この含有量は、目的とする液晶配向膜の膜厚によって適宜変更することができる。その際の有機溶媒としては、上述した特定重合体を溶解させる有機溶媒であれば特に限定されない。より具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。 The organic solvent in the liquid crystal aligning agent of the present invention preferably has an organic solvent content of 70% by mass to 99% by mass from the viewpoint of forming a uniform polymer film by coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film. The organic solvent in that case will not be specifically limited if it is an organic solvent in which the specific polymer mentioned above is dissolved. More specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinylpyrrolidone, Dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, Examples thereof include ethylene carbonate, propylene carbonate, diglyme and 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination.
 本発明の液晶配向処理剤には、本発明の効果を損なわない限り、エポキシ基、イソシアネート基またはオキセタン基を有する架橋性化合物、さらには、ヒドロキシル基およびアルコキシル基からなら群より選ばれる少なくとも1種の置換基を有する架橋性化合物、加えて、重合性不飽和結合を有する架橋性化合物を導入することもできる。 The liquid crystal aligning agent of the present invention has at least one selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group or an oxetane group, and a hydroxyl group and an alkoxyl group, as long as the effects of the present invention are not impaired. In addition to the crosslinkable compound having a substituent, a crosslinkable compound having a polymerizable unsaturated bond can also be introduced.
 エポキシ基またはイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン、1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシフェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノール等が挙げられる。 Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl , Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3- Epoxypropoxy) phenyl) ethyl) phenyl) propane, 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2, And 3-epoxypropoxyphenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol.
 オキセタン基を有する架橋性化合物としては、下記の式[4]で示すオキセタン基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000091
 具体的には、下記の式[4a]~式[4k]で示される架橋性化合物である。
The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000091
Specifically, it is a crosslinkable compound represented by the following formula [4a] to formula [4k].
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 ヒドロキシル基およびアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基および/またはアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂、エチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基、アルコキシメチル基またはその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、グリコールウリルなどを用いることができる。このメラミン誘導体若しくはベンゾグアナミン誘導体は、2量体または3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基またはアルコキシメチル基を平均3個以上6個以下有するものが好ましい。 Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group and / or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, Examples include glycoluril-formaldehyde resin, succinylamide-formaldehyde resin, and ethylene urea-formaldehyde resin. Specifically, a melamine derivative in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group or both, a benzoguanamine derivative, glycoluril, or the like can be used. The melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 このようなメラミン誘導体またはベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)、サイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。 Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (above, manufactured by Sanwa Chemical Co., Ltd.), Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated eth Cymethylated benzoguanamine, methoxymethylated butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide). Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, methoxymethylolated glycoluril such as Powderlink 1174, and the like.
 ヒドロキシル基および/またはアルコキシル基を有する、ベンゼンまたはフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン、2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。 Examples of the benzene or phenolic compound having a hydroxyl group and / or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4 -Bis (sec-butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等の重合性不飽和基を分子内に2個有する架橋性化合物、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル、N-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物が挙げられる。 Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol. Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane and glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meta ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (me ) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) ) Acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl ester phthalate di (meth) acrylate, neopentyl glycol dihydroxypivalate Crosslinkable compounds having two polymerizable unsaturated groups in the molecule such as (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropylene (Meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro-2-hydroxypropyl ( Examples thereof include crosslinkable compounds having one polymerizable unsaturated group in the molecule, such as (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester, and N-methylol (meth) acrylamide. .
 加えて、下記の式[5]で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000095
(式[5]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環およびフェナントレン環から選ばれる基であり、Eは下記の式[5a]および式[5b]から選ばれる基であり、nは1~4の整数である)。
In addition, a compound represented by the following formula [5] can also be used.
Figure JPOXMLDOC01-appb-C000095
(In Formula [5], E 1 is a group selected from a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring and a phenanthrene ring, and E 2 is the following: A group selected from the formula [5a] and the formula [5b], and n is an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000096
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向処理剤に含有される架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
Figure JPOXMLDOC01-appb-C000096
The said compound is an example of a crosslinkable compound, It is not limited to these. Moreover, the crosslinkable compound contained in the liquid crystal aligning agent of this invention may be one type, and may be combined two or more types.
 本発明の液晶配向処理剤における、架橋性化合物の含有量は、重合体成分100質量部に対して、0.1質量部~150質量部であることが好ましく、架橋反応が進行して目的の効果を発現し、かつ液晶の配向性を低下させないために、より好ましくは0.1質量部~100質量部であり、特には、1質量部~50質量部である。 The content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 parts by mass to 150 parts by mass with respect to 100 parts by mass of the polymer component. In order to exhibit the effect and not to deteriorate the orientation of the liquid crystal, the amount is more preferably 0.1 to 100 parts by weight, and particularly 1 to 50 parts by weight.
 液晶配向膜中の電荷移動を促進し、該液晶配向膜を用いた液晶セルの電荷抜けを促進させる化合物として、下記の式[M1]~式[M156]で示される窒素含有複素環アミン化合物を、液晶配向処理剤中に添加することが好ましい。このアミン化合物は、特定重合体の溶液に直接添加しても構わないが、適当な溶媒で濃度0.1質量%~10質量%、好ましくは1質量%~7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した特定重合体を溶解させる有機溶媒であれば特に限定されない。 Nitrogen-containing heterocyclic amine compounds represented by the following formulas [M1] to [M156] are used as compounds that promote charge transfer in the liquid crystal alignment film and promote charge release of a liquid crystal cell using the liquid crystal alignment film. It is preferable to add to the liquid crystal aligning agent. This amine compound may be added directly to the solution of the specific polymer, but it is added after a solution having a concentration of 0.1% by mass to 10% by mass, preferably 1% by mass to 7% by mass with an appropriate solvent. It is preferable to do. The solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer described above.
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
 本発明の液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の重合体被膜の膜厚の均一性や表面平滑性を向上させる有機溶媒(以下、貧溶媒と称することもある)または化合物を用いることができる。さらに、液晶配向膜と基板との密着性を向上させる化合物などを用いることもできる。 Unless the effect of this invention is impaired, the liquid-crystal aligning agent of this invention is the organic solvent (henceforth a poor solvent) which improves the uniformity of the film thickness of a polymer film at the time of apply | coating a liquid-crystal aligning agent, and surface smoothness. Or a compound may be used. Furthermore, a compound that improves the adhesion between the liquid crystal alignment film and the substrate can also be used.
 膜厚の均一性や表面平滑性を向上させる貧溶媒の具体例としては、以下に示すものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する有機溶媒が挙げられる。
Specific examples of the poor solvent that improves the uniformity of the film thickness and the surface smoothness include the following.
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipro Lenglycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, n-hexane, n-pentane, n-octane, diethyl ether Methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxy Ethyl propionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy- 2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether Low surface tension such as ru-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactyl isoamyl ester An organic solvent is mentioned.
 これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような貧溶媒を用いる場合は、液晶配向処理剤に含まれる有機溶媒全体の5質量%~80質量%であることが好ましく、より好ましくは5質量%~60質量%である。 These poor solvents may be used alone or in combination. When the above poor solvent is used, the content is preferably 5% by mass to 80% by mass, and more preferably 5% by mass to 60% by mass with respect to the total organic solvent contained in the liquid crystal aligning agent.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。 Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
 より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有される重合体成分の100質量部に対して、好ましくは0.01質量部~2質量部、より好ましくは0.01質量部~1質量部である。 More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) and the like. The ratio of these surfactants to be used is preferably 0.01 parts by weight to 2 parts by weight, more preferably 0.01 parts by weight to 100 parts by weight of the polymer component contained in the liquid crystal aligning agent. 1 part by mass.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、以下に示す官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-tri Toxisilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxy Silane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyl Trimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, poly Lopylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl -2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 基板との密着性を向上させる化合物を使用する場合は、液晶配向処理剤に含有される重合体成分の100質量部に対して0.1質量部~30質量部であることが好ましく、より好ましくは1質量部~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When using a compound that improves the adhesion to the substrate, it is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. Is 1 to 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
 本発明の液晶配向処理剤には、上記の架橋性化合物、貧溶媒、膜厚の均一性や表面平滑性を向上させる化合物、および基板との密着性を向上させる化合物の他に、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。 The liquid crystal aligning agent of the present invention includes the above-mentioned crosslinkable compound, poor solvent, compound for improving film thickness uniformity and surface smoothness, and compound for improving adhesion to the substrate. As long as the effect is not impaired, a dielectric material or conductive material for changing the electrical characteristics such as the dielectric constant and conductivity of the liquid crystal alignment film may be added.
<液晶配向膜・液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では、配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。 
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法スプレー法などがあり、目的に応じてこれらを用いてもよい。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. Moreover, in the case of vertical alignment use etc., it can be used as a liquid crystal alignment film without alignment treatment. The substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet method are generally used. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method spray method, and the like, and these may be used depending on the purpose.
 液晶配向処理剤を基板上に塗布した後は、ホットプレートなどの加熱手段により50℃~300℃、好ましくは80℃~250℃で溶媒を蒸発させて重合体被膜とすることができる。焼成後の重合体被膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm~300nm、より好ましくは10nm~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の重合体被膜をラビングまたは偏光紫外線照射などで処理する。 After the liquid crystal alignment treatment agent is applied on the substrate, the solvent can be evaporated at 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C. by a heating means such as a hot plate to form a polymer film. If the thickness of the polymer film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is between 10 nm and 100 nm. When the liquid crystal is aligned horizontally or tilted, the polymer film after baking is treated by rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。 The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method and then preparing a liquid crystal cell by a known method.
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法などが例示できる。 As a method for manufacturing a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting the liquid crystal under reduced pressure, or a method of sealing the substrate by bonding the substrate after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed.
 さらに、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射および加熱の少なくとも一方により重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。 Furthermore, the liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board | substrates provided with the electrode, The polymeric compound superposed | polymerized by at least one of an active energy ray and a heat | fever between a pair of board | substrates. The liquid crystal composition is also preferably used for a liquid crystal display device produced through a step of polymerizing a polymerizable compound by at least one of irradiation with active energy rays and heating while applying a voltage between electrodes. Here, ultraviolet rays are suitable as the active energy ray.
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルトを制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルトを制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルトを調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルトを制御することが難しい垂直配向型の液晶層の形成に適している。 The above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method. In the PSA method, a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound. The pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. The PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process.
 すなわち、本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、液晶セルを作製し、紫外線の照射および加熱の少なくとも一方により重合性化合物を重合することで液晶分子の配向を制御することができる。 That is, in the liquid crystal display element of the present invention, a liquid crystal cell is prepared after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, and a polymerizable compound is produced by at least one of irradiation with ultraviolet rays and heating. The orientation of liquid crystal molecules can be controlled by polymerizing.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法などが挙げられる。 If an example of liquid crystal cell production is given, prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method of bonding the other substrate and injecting liquid crystal under reduced pressure, or a method in which a liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed, and then the substrate is bonded to perform sealing. .
 液晶には、熱や紫外線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基やメタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100質量部に対して0.01質量部~10質量部であることが好ましく、より好ましくは0.1質量部~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって、液晶表示素子の焼き付き特性が低下する。 In the liquid crystal, a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed. Examples of the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule. In that case, the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. When the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled. When the polymerizable compound exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases, and the liquid crystal display The burn-in characteristic of the element is deteriorated.
 液晶セルを作製した後は、液晶セルに交流または直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。 After producing the liquid crystal cell, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
 加えて、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。 In addition, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display device manufactured through a step of disposing a liquid crystal alignment film containing a group and applying a voltage between the electrodes. Here, ultraviolet rays are suitable as the active energy ray.
 活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を液晶配向処理剤中に添加する方法や、重合性基を含む重合体成分を用いる方法が挙げられる。本発明の液晶配向処理剤は、熱や紫外線の照射により反応する2重結合部位を持つ特定アミン化合物を含んでいるため、紫外線の照射および加熱の少なくとも一方により液晶分子の配向を制御することができる。なお、上記2重結合部位としては、アクリル基、メタクリル基、ビニル基、シンナモイル基が挙げられる。 In order to obtain a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat, a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent, A method using a coalescing component may be mentioned. Since the liquid-crystal aligning agent of this invention contains the specific amine compound which has the double bond site | part which reacts by irradiation of a heat | fever or an ultraviolet-ray, it can control the orientation of a liquid crystal molecule by at least one of an ultraviolet irradiation and a heating. it can. Examples of the double bond site include an acryl group, a methacryl group, a vinyl group, and a cinnamoyl group.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法などが挙げられる。 If an example of liquid crystal cell production is given, prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method of bonding the other substrate and injecting liquid crystal under reduced pressure, or a method in which a liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed, and then the substrate is bonded to perform sealing. .
 液晶セルを作製した後は、液晶セルに交流または直流の電圧を印加しながら、熱や紫外線を照射することで、液晶分子の配向を制御することができる。 After the liquid crystal cell is produced, the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
 以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。 As described above, the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定して解釈されるものではない
「ポリイミド前駆体およびポリイミドの合成」
(テトラカルボン酸二無水物)
 CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
 TCA:下記の式で示されるテトラカルボン酸二無水物
 TDA:下記の式で示されるテトラカルボン酸二無水物
The following examples further illustrate the present invention in more detail, but are not to be construed as being limited to “synthesis of polyimide precursor and polyimide”.
(Tetracarboxylic dianhydride)
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride BODA: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride TCA: represented by the following formula Tetracarboxylic dianhydride TDA: tetracarboxylic dianhydride represented by the following formula
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
(特定ジアミン化合物)
 PCH7DAB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
 PBCH5DAB:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
 m-PBCH5DABz:1,3-ジアミノ-5-{4-〔4-(トランス-4-n-ペンチルシクロヘキシル)フェニル〕フェノキシメチル}ベンゼン
 ColDAB-1:下記の式で示される特定ジアミン化合物
 ColDAB-2:下記の式で示される特定ジアミン化合物
(Specific diamine compound)
PCH7DAB: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene PBCH5DAB: 1,3-diamino-4- {4- [trans-4- (trans-4 -N-pentylcyclohexyl) cyclohexyl] phenoxy} benzene m-PBCH5DABz: 1,3-diamino-5- {4- [4- (trans-4-n-pentylcyclohexyl) phenyl] phenoxymethyl} benzene ColDAB -1: Specific diamine compound represented by the following formula ColDAB-2: Specific diamine compound represented by the following formula
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
(その他ジアミン化合物)
 p-PDA:p-フェニレンジアミン
 m-PDA:m-フェニレンジアミン
 DBA:3,5-ジアミノ安息香酸
 AP18:1,3-ジアミノ-4-オクタデシルオキシベンゼン
(Other diamine compounds)
p-PDA: p-phenylenediamine m-PDA: m-phenylenediamine DBA: 3,5-diaminobenzoic acid AP18: 1,3-diamino-4-octadecyloxybenzene
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
(特定アミン化合物)
 A-1:アミノエタノール
 A-2:3-アミノ-1-プロパノール
(Specific amine compounds)
A-1: Aminoethanol A-2: 3-Amino-1-propanol
Figure JPOXMLDOC01-appb-C000106
(有機溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
(ポリイミド前駆体およびポリイミドの分子量測定)
 合成例におけるポリイミドの数平均分子量および重量平均分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803、KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)(東ソー社製)およびポリエチレングリコール(分子量 約12,000、4,000、1,000)(ポリマーラボラトリー社製)。
Figure JPOXMLDOC01-appb-C000106
(Organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve (Measurement of molecular weight of polyimide precursor and polyimide)
The number average molecular weight and weight average molecular weight of the polyimide in the synthesis example are as follows: normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK), column (KD-803, KD-805) (manufactured by Shodex) Was measured as follows.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol) / L, 10 ml / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight: about 12, 000, 4,000, 1,000) (manufactured by Polymer Laboratory).
(イミド化率の測定)
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05質量%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5から10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い、以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
(Measurement of imidization rate)
The imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder is put into an NMR sample tube (NMR sampling tube standard φ5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) mixed product) 0.53 ml. Was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。 In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
<合成例1>
 CBDA(3.10g,15.8mmol)、PCH7DAB(3.01g,7.90mmol)、およびp-PDA(0.85g,7.90mmol)をNMP(20.9g)中で混合し、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量は26,100、重量平均分子量は74,200であった。
<Synthesis Example 1>
CBDA (3.10 g, 15.8 mmol), PCH7DAB (3.01 g, 7.90 mmol), and p-PDA (0.85 g, 7.90 mmol) were mixed in NMP (20.9 g) at 40 ° C. Reaction was performed for 6 hours to obtain a polyamic acid solution (1) having a resin solid content concentration of 25.0% by mass. The number average molecular weight of this polyamic acid was 26,100, and the weight average molecular weight was 74,200.
<合成例2>
 BODA(5.31g,21.2mmol)、PCH7DAB(3.03g,7.96mmol)、およびDBA(2.82g,18.6mmol)をNMP(20.1g)中で混合し、80℃で5時間反応させた後、CBDA(1.04g,5.30mmol)とNMP(16.5g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(2)を得た。このポリアミド酸の数平均分子量は25,300、重量平均分子量は65,100であった。
<Synthesis Example 2>
BODA (5.31 g, 21.2 mmol), PCH7DAB (3.03 g, 7.96 mmol), and DBA (2.82 g, 18.6 mmol) were mixed in NMP (20.1 g) and at 80 ° C. for 5 hours. After the reaction, CBDA (1.04 g, 5.30 mmol) and NMP (16.5 g) were added, the mixture was reacted at 40 ° C. for 6 hours, and the polyamic acid solution (2) having a resin solid content concentration of 25.0 mass% Got. The number average molecular weight of this polyamic acid was 25,300, and the weight average molecular weight was 65,100.
<合成例3>
 合成例2で得られた樹脂固形分濃度が25.0質量%のポリアミド酸溶液(2)(20.0g)に、NMPを加えて6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)、およびピリジン(1.90g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(320ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(3)を得た。このポリイミドのイミド化率は58%であり、数平均分子量は21,500、重量平均分子量は51,900であった。
<Synthesis Example 3>
After adding NMP to the polyamic acid solution (2) (20.0 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 2 and diluting to 6% by mass, acetic anhydride ( 2.50 g) and pyridine (1.90 g) were added and reacted at 80 ° C. for 4 hours. This reaction solution was poured into methanol (320 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (3). The imidation ratio of this polyimide was 58%, the number average molecular weight was 21,500, and the weight average molecular weight was 51,900.
<合成例4>
 BODA(5.36g,21.4mmol)、PBCH5DAB(4.05g,9.36mmol)、およびDBA(2.65g,17.4mmol)をNMP(21.6g)中で混合し、80℃で5時間反応させた後、CBDA(1.05g,5.35mmol)とNMP(17.7g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.50g)、およびピリジン(3.30g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(400ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(4)を得た。このポリイミドのイミド化率は80%であり、数平均分子量は19,600、重量平均分子量は49,100であった。
<Synthesis Example 4>
BODA (5.36 g, 21.4 mmol), PBCH5DAB (4.05 g, 9.36 mmol), and DBA (2.65 g, 17.4 mmol) were mixed in NMP (21.6 g) and at 80 ° C. for 5 hours. After the reaction, CBDA (1.05 g, 5.35 mmol) and NMP (17.7 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25.0 mass%. .
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and Reacted for hours. This reaction solution was poured into methanol (400 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (4). The imidation ratio of this polyimide was 80%, the number average molecular weight was 19,600, and the weight average molecular weight was 49,100.
<合成例5>
 BODA(3.27g,13.1mmol)、m-PBCH5DABz(2.51g,5.61mmol)、およびp-PDA(1.42g,13.1mmol)をNMP(13.7g)中で混合し、80℃で5時間反応させた後、CBDA(1.10g,5.61mmol)とNMP(11.2g)を加え、40℃で6.5時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(20.1g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.52g)、およびピリジン(3.35g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(430ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(5)を得た。このポリイミドのイミド化率は81%であり、数平均分子量は20,200、重量平均分子量は50,300であった。
<Synthesis Example 5>
BODA (3.27 g, 13.1 mmol), m-PBCH5DABz (2.51 g, 5.61 mmol), and p-PDA (1.42 g, 13.1 mmol) were mixed in NMP (13.7 g) After reacting at 5 ° C. for 5 hours, CBDA (1.10 g, 5.61 mmol) and NMP (11.2 g) were added, and reacted at 40 ° C. for 6.5 hours. The resin solid content concentration was 25.0% by mass. A polyamic acid solution was obtained.
After adding NMP to the obtained polyamic acid solution (20.1 g) and diluting to 6% by mass, acetic anhydride (4.52 g) and pyridine (3.35 g) were added as an imidization catalyst, and Reacted for hours. This reaction solution was poured into methanol (430 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (5). The imidation ratio of this polyimide was 81%, the number average molecular weight was 20,200, and the weight average molecular weight was 50,300.
<合成例6>
 BODA(5.26g,21.0mmol)、ColDAB-1(2.06g,3.94mmol)、およびDBA(3.40g,22.3mmol)をNMP(19.4g)中で混合し、80℃で5時間反応させた後、CBDA(1.03g,5.25mmol)とNMP(15.9g)を加え、40℃で7時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(20.2g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.55g)、およびピリジン(1.92g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(310ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(6)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は17,200、重量平均分子量は45,900であった。
<Synthesis Example 6>
BODA (5.26 g, 21.0 mmol), ColDAB-1 (2.06 g, 3.94 mmol), and DBA (3.40 g, 22.3 mmol) were mixed in NMP (19.4 g) at 80 ° C. After reacting for 5 hours, CBDA (1.03 g, 5.25 mmol) and NMP (15.9 g) were added and reacted at 40 ° C. for 7 hours to obtain a polyamic acid solution having a resin solid content concentration of 25.0 mass%. Obtained.
After adding NMP to the obtained polyamic acid solution (20.2 g) and diluting to 6% by mass, acetic anhydride (2.55 g) and pyridine (1.92 g) were added as an imidization catalyst, Reacted for hours. This reaction solution was poured into methanol (310 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (6). The imidation ratio of this polyimide was 55%, the number average molecular weight was 17,200, and the weight average molecular weight was 45,900.
<合成例7>
 BODA(3.36g,13.4mmol)、ColDAB-2(1.42g,2.88mmol)、およびp-PDA(1.77g,16.3mmol)をNMP(12.7g)中で混合し、80℃で5時間反応させた後、CBDA(1.13g,5.76mmol)とNMP(10.4g)を加え、40℃で7時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.48g)、およびピリジン(1.90g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(330ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(7)を得た。このポリイミドのイミド化率は53%であり、数平均分子量は15,600、重量平均分子量は44,200であった。
<Synthesis Example 7>
BODA (3.36 g, 13.4 mmol), ColDAB-2 (1.42 g, 2.88 mmol), and p-PDA (1.77 g, 16.3 mmol) were mixed in NMP (12.7 g) After reacting at 5 ° C. for 5 hours, CBDA (1.13 g, 5.76 mmol) and NMP (10.4 g) were added, reacted at 40 ° C. for 7 hours, and the polyamic acid having a resin solid content concentration of 25.0 mass% A solution was obtained.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.48 g) and pyridine (1.90 g) were added as an imidization catalyst, and Reacted for hours. This reaction solution was poured into methanol (330 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (7). The imidation ratio of this polyimide was 53%, the number average molecular weight was 15,600, and the weight average molecular weight was 44,200.
<合成例8>
 TCA(3.12g,13.9mmol)、PCH7DAB(1.59g,4.18mmol)、およびm-PDA(1.05g,9.71mmol)をNMP(17.3g)中で混合し、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液(8)を得た。このポリアミド酸の数平均分子量は26,700、重量平均分子量は74,200であった。
<Synthesis Example 8>
TCA (3.12 g, 13.9 mmol), PCH7DAB (1.59 g, 4.18 mmol), and m-PDA (1.05 g, 9.71 mmol) were mixed in NMP (17.3 g) at 40 ° C. The reaction was performed for 6 hours to obtain a polyamic acid solution (8) having a resin solid content concentration of 25.0% by mass. The number average molecular weight of this polyamic acid was 26,700, and the weight average molecular weight was 74,200.
<合成例9>
 TCA(3.10g,13.8mmol)、PBCH5DAB(1.79g,4.14mmol)、およびDBA(1.47g,9.66mmol)をNMP(19.1g)中で混合し、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.46g)、およびピリジン(1.96g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(320ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(9)を得た。このポリイミドのイミド化率は54%であり、数平均分子量は23,200、重量平均分子量は59,600であった。
<Synthesis Example 9>
TCA (3.10 g, 13.8 mmol), PBCH5DAB (1.79 g, 4.14 mmol), and DBA (1.47 g, 9.66 mmol) were mixed in NMP (19.1 g) and at 40 ° C. for 6 hours. The reaction was performed to obtain a polyamic acid solution having a resin solid content concentration of 25.0% by mass.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.46 g) and pyridine (1.96 g) were added as imidization catalysts, Reacted for hours. This reaction solution was poured into methanol (320 ml), and the resulting precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain polyimide powder (9). The imidation ratio of this polyimide was 54%, the number average molecular weight was 23,200, and the weight average molecular weight was 59,600.
<合成例10>
 TCA(3.08g,13.7mmol)、ColDAB-2(1.35g,2.74mmol)、およびm-PDA(1.19g,11.0mmol)をNMP(16.9g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.46g)、およびピリジン(1.95g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(320ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(10)を得た。このポリイミドのイミド化率は53%であり、数平均分子量は21,100、重量平均分子量は53,900であった。
<Synthesis Example 10>
TCA (3.08 g, 13.7 mmol), ColDAB-2 (1.35 g, 2.74 mmol), and m-PDA (1.19 g, 11.0 mmol) were mixed in NMP (16.9 g). The reaction was carried out at 0 ° C. for 8 hours to obtain a polyamic acid solution having a resin solid content concentration of 25.0 mass%.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.46 g) and pyridine (1.95 g) were added as imidization catalysts, Reacted for hours. This reaction solution was poured into methanol (320 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (10). The imidation ratio of this polyimide was 53%, the number average molecular weight was 21,100, and the weight average molecular weight was 53,900.
<合成例11>
 TDA(1.98g,6.59mmol)、PBCH5DAB(2.85g,6.59mmol)、およびp-PDA(1.66g,15.4mmol)をNMP(15.7g)中で混合し、80℃で5時間反応させた後、CBDA(3.01g,15.3mmol)とNMP(12.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.50g)、およびピリジン(3.30g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(450ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(11)を得た。このポリイミドのイミド化率は79%であり、数平均分子量は19,100、重量平均分子量は48,500であった。
<Synthesis Example 11>
TDA (1.98 g, 6.59 mmol), PBCH5DAB (2.85 g, 6.59 mmol), and p-PDA (1.66 g, 15.4 mmol) were mixed in NMP (15.7 g) at 80 ° C. After reacting for 5 hours, CBDA (3.01 g, 15.3 mmol) and NMP (12.8 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25.0 mass%. Obtained.
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and Reacted for hours. This reaction solution was poured into methanol (450 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (11). The imidation ratio of this polyimide was 79%, the number average molecular weight was 19,100, and the weight average molecular weight was 48,500.
<合成例12>
 TDA(1.99g,6.64mmol)、m-PBCH5DABz(2.97g,6.65mmol)、およびDBA(2.36g,15.5mmol)をNMP(17.1g)中で混合し、80℃で5時間反応させた後、CBDA(3.04g,15.5mmol)とNMP(14.0g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(20.5g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.46g)、およびピリジン(3.32g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(450ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(12)を得た。このポリイミドのイミド化率は80%であり、数平均分子量は19,900、重量平均分子量は50,100であった。
<Synthesis Example 12>
TDA (1.99 g, 6.64 mmol), m-PBCH5DABz (2.97 g, 6.65 mmol), and DBA (2.36 g, 15.5 mmol) were mixed in NMP (17.1 g) at 80 ° C. After reacting for 5 hours, CBDA (3.04 g, 15.5 mmol) and NMP (14.0 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25.0 mass%. Obtained.
After adding NMP to the obtained polyamic acid solution (20.5 g) and diluting to 6% by mass, acetic anhydride (4.46 g) and pyridine (3.32 g) were added as an imidization catalyst, and Reacted for hours. This reaction solution was poured into methanol (450 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (12). The imidation ratio of this polyimide was 80%, the number average molecular weight was 19,900, and the weight average molecular weight was 50,100.
<合成例13>
 BODA(5.61g,22.4mmol)、AP18(3.17g,8.42mmol)、およびDBA(2.99g,19.7mmol)をNMP(21.2g)中で混合し、80℃で5時間反応させた後、CBDA(1.10g,5.61mmol)とNMP(17.4g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25.0質量%のポリアミド酸溶液を得た。
 得られたポリアミド酸溶液(20.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(2.54g)、およびピリジン(1.95g)を加え、80℃で4.5時間反応させた。この反応溶液をメタノール(330ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(13)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は18,200、重量平均分子量は46,200であった。
 本発明のポリアミド酸およびポリイミドを表57に示す。
<Synthesis Example 13>
BODA (5.61 g, 22.4 mmol), AP18 (3.17 g, 8.42 mmol), and DBA (2.99 g, 19.7 mmol) were mixed in NMP (21.2 g) and at 80 ° C. for 5 hours. After the reaction, CBDA (1.10 g, 5.61 mmol) and NMP (17.4 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a resin solid content concentration of 25.0 mass%. .
After adding NMP to the obtained polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.54 g) and pyridine (1.95 g) were added as an imidization catalyst, The reaction was allowed for 5 hours. This reaction solution was poured into methanol (330 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (13). The imidation ratio of this polyimide was 60%, the number average molecular weight was 18,200, and the weight average molecular weight was 46,200.
The polyamic acid and polyimide of the present invention are shown in Table 57.
*1:ポリアミド酸。 * 1: Polyamic acid.
「本発明の液晶配向処理剤の製造」
 下記する実施例1~実施例14、および比較例1~比較例4では、液晶配向処理剤の製造例を記載するが、各液晶配向処理剤は評価のために使用される。また、本発明の液晶配向処理剤を表58および表59に示す。
 「液晶配向膜の作製」、「ラビング処理耐性の評価」、「液晶セルの作製(通常セル)」、「液晶セルの作製(PSAセル)」および「電気特性の評価」は、下記のとおりである。また、実施例1~実施例14および比較例1~比較例4で得られた各液晶配向処理剤の特性を、表60~表64に示す。
表60および表61にラビング処理耐性の評価、表62および表63に通常セルを用いた電気特性の評価、さらに、表64にPSAセルを用いた電気特性の評価結果を示す。
“Production of Liquid Crystal Alignment Treatment Agent of the Present Invention”
In Examples 1 to 14 and Comparative Examples 1 to 4 described below, production examples of liquid crystal alignment treatment agents are described. Each liquid crystal alignment treatment agent is used for evaluation. Further, Table 58 and Table 59 show the liquid crystal aligning agents of the present invention.
“Preparation of liquid crystal alignment film”, “Evaluation of rubbing treatment resistance”, “Preparation of liquid crystal cell (ordinary cell)”, “Preparation of liquid crystal cell (PSA cell)” and “Evaluation of electrical characteristics” are as follows: is there. In addition, Tables 60 to 64 show the characteristics of the liquid crystal alignment treatment agents obtained in Examples 1 to 14 and Comparative Examples 1 to 4.
Table 60 and Table 61 show the evaluation of rubbing resistance, Table 62 and Table 63 show the evaluation of electrical characteristics using a normal cell, and Table 64 shows the evaluation results of electrical characteristics using a PSA cell.
「液晶配向膜の作製」
 液晶配向処理剤を、30mm×40mmITO電極付き基板のITO面にスピンコートし、ホットプレート上にて80℃で5分間、熱循環型クリーンオーブン中にて220℃で30分間加熱処理をして、膜厚100nmのポリイミド液晶配向膜付きの基板を得た。
"Production of liquid crystal alignment film"
The liquid crystal alignment treatment agent is spin-coated on the ITO surface of the substrate with 30 mm × 40 mm ITO electrode, and heat-treated at 80 ° C. for 5 minutes on a hot plate and at 220 ° C. for 30 minutes in a thermal circulation clean oven, A substrate with a polyimide liquid crystal alignment film having a thickness of 100 nm was obtained.
「ラビング処理耐性の評価」
 上記の「液晶配向膜の作製」で得られた液晶配向膜付きの基板の塗膜面を、ロール径120mmのラビング装置でレーヨン布を用いて、ロール回転数300rpm、ロール進行速度20mm/sec、および押し込み量0.4mmの条件でラビング処理した。ラビング処理後の基板の中心付近の液晶配向膜表面を、倍率100倍に設定したレーザー顕微鏡で無作為に5箇所観察し、観察視野である約6.5mm四方の範囲に確認されるラビング傷およびラビング削れカス(付着物)量の平均値から、ラビング処理耐性を評価した。なお、評価基準は次のように定めた。
(評価基準)
 A:ラビング傷やラビング削れカス20個以下、
 B:ラビング傷やラビング削れカスが20~40個、
 C:ラビング傷やラビング削れカスが40~60個、
 D:ラビング傷やラビング削れカスが60個以上。
"Evaluation of resistance to rubbing treatment"
Using the rayon cloth with a rubbing device having a roll diameter of 120 mm, the coating surface of the substrate with the liquid crystal alignment film obtained in the above-mentioned “Preparation of liquid crystal alignment film”, roll rotation speed 300 rpm, roll progression speed 20 mm / sec, And the rubbing process was carried out under the condition of the pushing amount of 0.4 mm. The surface of the liquid crystal alignment film in the vicinity of the center of the substrate after the rubbing treatment is randomly observed with a laser microscope set at a magnification of 100 times, and the rubbing scratches confirmed in the observation visual field range of about 6.5 mm square and The rubbing treatment resistance was evaluated from the average value of the rubbing scrap residue (attachment). The evaluation criteria were determined as follows.
(Evaluation criteria)
A: Less than 20 rubbing scratches and rubbing scraps
B: 20 to 40 rubbing scratches and rubbing scraps
C: 40-60 rubbing scratches and rubbing scraps
D: 60 or more rubbing scratches or rubbing scraps.
「液晶セルの作製(通常セル)」
 液晶配向処理剤を、30mm×40mmITO電極付き基板のITO面にスピンコートし、ホットプレート上にて80℃で5分間、熱循環型クリーンオーブン中にて220℃で30分間加熱処理をして、膜厚100nmのポリイミド液晶配向膜付きのITO基板を得た。このITO基板の塗膜面を、ロール径120mmのラビング装置でレーヨン布を用いて、ロール回転数1000rpm、ロール進行速度50mm/sec、および押し込み量0.1mmの条件でラビング処理した。
 得られた液晶配向膜付きのITO基板を2枚用意し、液晶配向膜面を内側にして6μmのスペーサーを挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、MLC-6608(メルク・ジャパン社製)を注入し、注入口を封止して液晶セル(通常セル)を得た。
"Production of liquid crystal cell (normal cell)"
The liquid crystal alignment treatment agent is spin-coated on the ITO surface of the substrate with 30 mm × 40 mm ITO electrode, and heat-treated at 80 ° C. for 5 minutes on a hot plate and at 220 ° C. for 30 minutes in a thermal circulation clean oven, An ITO substrate with a polyimide liquid crystal alignment film having a thickness of 100 nm was obtained. The coated surface of the ITO substrate was rubbed using a rayon cloth with a rubbing apparatus having a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm.
Two obtained ITO substrates with a liquid crystal alignment film were prepared, combined with a liquid crystal alignment film surface on the inside with a 6 μm spacer in between, and the periphery was adhered with a sealant to produce an empty cell. MLC-6608 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell (ordinary cell).
 実施例および比較例で得られた液晶セルについて、偏光顕微鏡観察により液晶の配向均一性を確認した。いずれの液晶セルとも、ラビング処理に伴う削れや配向不良はなく、液晶は均一に配向していた。
「液晶セルの作製(PSAセル)」
 液晶配向処理剤を、中心に10mm×10mmのパターン間隔20μmのITO電極付き基板と、中心に10mm×40mmのITO電極付き基板のITO面にスピンコートし、ホットプレート上にて80℃で5分間、熱循環型クリーンオーブン中にて220℃で30分間加熱処理をして、膜厚100nmのポリイミド塗膜を得た。塗膜面を純水にて洗浄し、その後、熱循環型クリーンオーブン中にて100℃で15分間加熱処理をして、液晶配向膜付き基板を得た。
About the liquid crystal cell obtained by the Example and the comparative example, the alignment uniformity of the liquid crystal was confirmed by polarizing microscope observation. In any of the liquid crystal cells, there was no shaving or poor alignment due to the rubbing treatment, and the liquid crystal was uniformly aligned.
"Production of liquid crystal cell (PSA cell)"
A liquid crystal alignment treatment agent is spin-coated on the ITO surface of a 10 mm × 10 mm ITO electrode substrate with a pattern spacing of 20 μm in the center and a 10 mm × 40 mm ITO electrode substrate in the center, and is heated on a hot plate at 80 ° C. for 5 minutes. Then, heat treatment was performed at 220 ° C. for 30 minutes in a heat circulation type clean oven to obtain a polyimide coating film having a thickness of 100 nm. The coating surface was washed with pure water, and then heat-treated at 100 ° C. for 15 minutes in a heat-circulating clean oven to obtain a substrate with a liquid crystal alignment film.
 この液晶配向膜付き基板を、液晶配向膜面を内側にして、6μmのスペーサーを挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、MLC-6608(メルク・ジャパン社製)100質量%に対して、下記の式で示される重合性化合物(1)を0.3質量%混合した液晶を注入した後、注入口を封止して、液晶セルを得た。 This substrate with a liquid crystal alignment film was combined with a liquid crystal alignment film surface inside, with a 6 μm spacer in between, and the periphery was adhered with a sealant to produce an empty cell. A liquid crystal obtained by mixing 0.3% by mass of the polymerizable compound (1) represented by the following formula with respect to 100% by mass of MLC-6608 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method. Thereafter, the injection port was sealed to obtain a liquid crystal cell.
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 得られた液晶セルに、交流5Vの電圧を印加しながら、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で20J/cmの紫外線照射を行い、液晶の配向方向が制御された液晶セル(PSAセル)を得た。液晶セルに紫外線を照射している際の照射装置内の温度は、50℃であった。
 この液晶セルの紫外線照射前と紫外線照射後の液晶の応答速度を測定した。応答速度は、透過率90%から透過率10%までのT90→T10を測定した。実施例および比較例で得られたPSAセルは、紫外線照射前の液晶セルに比べて、紫外線照射後の液晶セルの応答速度が早くなったことから、液晶の配向方向が制御されたことを確認した。
 また、いずれの液晶セルとも、偏光顕微鏡観察により、液晶は均一に配向していることを確認した。
While applying an AC voltage of 5 V to the obtained liquid crystal cell, using a metal halide lamp with an illuminance of 60 mW, the wavelength of 350 nm or less was cut, and ultraviolet irradiation of 20 J / cm 2 in terms of 365 nm was performed, and the alignment direction of the liquid crystal A liquid crystal cell (PSA cell) was controlled. The temperature in the irradiation apparatus when the liquid crystal cell was irradiated with ultraviolet rays was 50 ° C.
The response speed of the liquid crystal before and after ultraviolet irradiation of the liquid crystal cell was measured. As the response speed, T90 → T10 from 90% transmittance to 10% transmittance was measured. In the PSA cells obtained in the examples and comparative examples, the response speed of the liquid crystal cell after ultraviolet irradiation was faster than that of the liquid crystal cell before ultraviolet irradiation, confirming that the alignment direction of the liquid crystal was controlled. did.
In any liquid crystal cell, it was confirmed that the liquid crystal was uniformly aligned by observation with a polarizing microscope.
「電気特性の評価」
 上記の「液晶セルの作製(通常セル)」および「液晶セルの作製(PSAセル)」で得られた液晶セルに、80℃の温度下で1Vの電圧を60μm印加し、16.67ms後および50ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHR)として計算した。なお、測定は、電圧保持率測定装置(東陽テクニカ社製、VHR-1)を使用し、Voltage(印加電圧):±1V、Pulse Width(印加パルス):60μs、およびFlame Period(フレーム周期):16.67msまたは50msの設定で行った。
 電圧保持率の測定が終了した液晶セルに、365nm換算で50J/cmの紫外線を照射した後、同様条件にて、VHRの測定を行った。なお、紫外線照射は、卓上型UV硬化装置(HCT3B28HEX-1)(センライト社製(SEN LIGHT CORPORATION))を用いて行った。
"Evaluation of electrical characteristics"
A voltage of 1 V was applied to the liquid crystal cell obtained in the above-mentioned “Preparation of liquid crystal cell (normal cell)” and “Preparation of liquid crystal cell (PSA cell)” at a temperature of 80 ° C., and after 16.67 ms and The voltage after 50 ms was measured, and how much the voltage could be held was calculated as the voltage holding ratio (VHR). In addition, the measurement uses a voltage holding ratio measuring device (manufactured by Toyo Technica Co., Ltd., VHR-1), Voltage (applied voltage): ± 1 V, Pulse Width (applied pulse): 60 μs, and Frame Period (frame period): The setting was performed at 16.67 ms or 50 ms.
The liquid crystal cell for which the measurement of the voltage holding ratio was completed was irradiated with ultraviolet rays of 50 J / cm 2 in terms of 365 nm, and then VHR was measured under the same conditions. The ultraviolet irradiation was performed using a desktop UV curing device (HCT3B28HEX-1) (SEN LIGHT CORPRATION).
<実施例1>
 合成例1で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(1)(10.0g)、NMP(5.67g)、A-1のNMP溶液(1.50g)(A-1が5質量%のNMP溶液)、およびBCS(25.8g)を混合し、25℃にて2時間攪拌して、液晶配向処理剤(1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(1)を用いて、上述した条件にて、ラビング処理耐性の評価、通常セルおよびPSAセルの電気特性の評価を行った。
<Example 1>
Polyamide acid solution (1) (10.0 g), NMP (5.67 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 1 and N-1 solution (1.50 g) of A-1 (A- 1 was mixed with 5 mass% NMP solution) and BCS (25.8 g), and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (1). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (1), evaluation of rubbing treatment resistance and evaluation of electric characteristics of normal cells and PSA cells were performed under the above-described conditions.
<実施例2>
 合成例2で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(2)(10.5g)、NMP(8.95g)、A-1のNMP溶液(2.51g)(A-1が5質量%のNMP溶液)、およびBCS(22.0g)を混合し、25℃にて2.5時間攪拌して、液晶配向処理剤(2)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(2)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 2>
Polyamide acid solution (2) (10.5 g), NMP (8.95 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 2 and N-1 solution (2.51 g) of A-1 (A- 1 was mixed with 5 mass% NMP solution) and BCS (22.0 g), and the mixture was stirred at 25 ° C. for 2.5 hours to obtain a liquid crystal aligning agent (2). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (2), evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
<実施例3>
 合成例3で得られたポリイミド粉末(3)(2.48g)に、NMP(13.8g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、A-1のNMP溶液(1.49g)(A-1が5.0質量%のNMP溶液)、NMP(8.13g)、およびBCS(19.2g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(3)を用いて、上述した条件にて、ラビング処理耐性の評価、通常セルおよびPSAセルの電気特性の評価を行った。
<Example 3>
NMP (13.8 g) was added to the polyimide powder (3) (2.48 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, add N-1 solution of A-1 (1.49 g) (NMP solution with A-1 of 5.0% by mass), NMP (8.13 g), and BCS (19.2 g), and add to 50 ° C. For 10 hours to obtain a liquid crystal aligning agent (3). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (3), evaluation of rubbing treatment resistance and evaluation of electric characteristics of normal cells and PSA cells were performed under the above-described conditions.
<実施例4>
 合成例3で得られたポリイミド粉末(3)(2.51g)に、NMP(13.6g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、A-2のNMP溶液(2.51g)(A-2が5.0質量%のNMP溶液)、NMP(8.00g)、およびBCS(19.8g)を加え、50℃にて12時間攪拌して、液晶配向処理剤(4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(4)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 4>
NMP (13.6 g) was added to the polyimide powder (3) (2.51 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, N-2 solution (2.51 g) of A-2 (NMP solution containing 5.0% by mass of A-2), NMP (8.00 g), and BCS (19.8 g) were added, and the mixture was heated to 50 ° C. For 12 hours to obtain a liquid crystal aligning agent (4). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (4), evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
<実施例5>
 合成例4で得られたポリイミド粉末(4)(2.50g)に、NMP(13.3g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、A-1のNMP溶液(3.50g)(A-1が5.0質量%のNMP溶液)、NMP(7.77g)、およびBCS(20.1g)を加え、50℃にて15時間攪拌して、液晶配向処理剤(5)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(5)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 5>
NMP (13.3 g) was added to the polyimide powder (4) (2.50 g) obtained in Synthesis Example 4 and dissolved by stirring at 70 ° C. for 24 hours. To this solution was added an NMP solution of A-1 (3.50 g) (NMP solution containing 5.0% by mass of A-1), NMP (7.77 g), and BCS (20.1 g). For 15 hours to obtain a liquid crystal aligning agent (5). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (5), evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the above-described conditions.
<実施例6>
 合成例5で得られたポリイミド粉末(5)(2.55g)に、NMP(13.5g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、A-2のNMP溶液(3.57g)(A-2が5.0質量%のNMP溶液)、NMP(7.93g)、およびBCS(20.5g)を加え、50℃にて15時間攪拌して、液晶配向処理剤(6)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(6)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 6>
NMP (13.5 g) was added to the polyimide powder (5) (2.55 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, N-2 solution (3.57 g) of A-2 (NMP solution containing 5.0% by mass of A-2), NMP (7.93 g), and BCS (20.5 g) were added, and the mixture was heated to 50 ° C. And stirred for 15 hours to obtain a liquid crystal aligning agent (6). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (6), evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
<実施例7>
 合成例6で得られたポリイミド粉末(6)(2.51g)に、NMP(19.2g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、A-1のNMP溶液(1.51g)(A-1が5.0質量%のNMP溶液)、NMP(9.46g)、およびBCS(12.9g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(7)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(7)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 7>
NMP (19.2 g) was added to the polyimide powder (6) (2.51 g) obtained in Synthesis Example 6 and dissolved by stirring at 70 ° C. for 24 hours. To this solution, an NMP solution of A-1 (1.51 g) (NMP solution of 5.0% by mass of A-1), NMP (9.46 g), and BCS (12.9 g) were added, and the mixture was heated to 50 ° C. For 10 hours to obtain a liquid crystal aligning agent (7). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (7), evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the above-described conditions.
<実施例8>
 合成例7で得られたポリイミド粉末(7)(2.50g)に、NMP(15.3g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、A-2のNMP溶液(1.50g)(A-2が5.0質量%のNMP溶液)、NMP(8.97g)、およびBCS(17.2g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(8)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 8>
NMP (15.3 g) was added to the polyimide powder (7) (2.50 g) obtained in Synthesis Example 7 and dissolved by stirring at 70 ° C. for 24 hours. To this solution was added N-2 solution of A-2 (1.50 g) (NMP solution containing 5.0% by mass of A-2), NMP (8.97 g), and BCS (17.2 g), and the mixture was heated to 50 ° C. For 10 hours to obtain a liquid crystal aligning agent (8). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (8), evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
<実施例9>
 合成例8で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(8)(11.0g)、NMP(4.00g)、A-1のNMP溶液(2.50g)(A-1が5質量%のNMP溶液)、およびBCS(26.3g)を混合し、25℃にて2.5時間攪拌して、液晶配向処理剤(9)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(9)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 9>
Polyamic acid solution (8) (11.0 g), NMP (4.00 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 8, NMP solution (2.50 g) of A-1 (A- NMP solution 1 of 5% by mass) and BCS (26.3 g) were mixed and stirred at 25 ° C. for 2.5 hours to obtain a liquid crystal aligning agent (9). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (9), evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
<実施例10>
 合成例9で得られたポリイミド粉末(9)(2.53g)に、NMP(12.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、A-1のNMP溶液(3.54g)(A-1が5.0質量%のNMP溶液)、NMP(7.00g)、およびBCS(22.6g)を加え、50℃にて15時間攪拌して、液晶配向処理剤(10)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(10)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 10>
NMP (12.0 g) was added to the polyimide powder (9) (2.53 g) obtained in Synthesis Example 9, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, an NMP solution of A-1 (3.54 g) (NMP solution of A-1 of 5.0% by mass), NMP (7.00 g), and BCS (22.6 g) were added, and the mixture was heated to 50 ° C. For 15 hours to obtain a liquid crystal aligning agent (10). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (10), evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
<実施例11>
 合成例10で得られたポリイミド粉末(10)(2.46g)に、NMP(15.4g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、A-2のNMP溶液(4.92g)(A-2が5.0質量%のNMP溶液)、NMP(9.00g)、およびBCS(15.8g)を加え、50℃にて15時間攪拌して、液晶配向処理剤(11)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(11)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 11>
NMP (15.4 g) was added to the polyimide powder (10) (2.46 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. To this solution was added N-2 solution of A-2 (4.92 g) (NMP solution containing 5.0% by mass of A-2), NMP (9.00 g), and BCS (15.8 g), and the mixture was heated to 50 ° C. For 15 hours to obtain a liquid crystal aligning agent (11). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (11), evaluation of rubbing resistance and evaluation of electric characteristics of a normal cell were performed under the above-described conditions.
<実施例12>
 合成例11で得られたポリイミド粉末(11)(2.50g)に、NMP(13.6g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、A-2のNMP溶液(2.50g)(A-2が5.0質量%のNMP溶液)、NMP(7.98g)、およびBCS(19.7g)を加え、50℃にて12時間攪拌して、液晶配向処理剤(12)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(12)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 12>
NMP (13.6 g) was added to the polyimide powder (11) (2.50 g) obtained in Synthesis Example 11, and dissolved by stirring at 70 ° C. for 24 hours. To this solution was added an N-2 solution of A-2 (2.50 g) (NMP solution containing 5.0% by mass of A-2), NMP (7.98 g), and BCS (19.7 g), and the mixture was heated to 50 ° C. For 12 hours to obtain a liquid crystal aligning agent (12). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (12), evaluation of rubbing treatment resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
<実施例13>
 合成例12で得られたポリイミド粉末(12)(2.43g)に、NMP(13.6g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、A-1のNMP溶液(1.46g)(A-1が5.0質量%のNMP溶液)、NMP(7.95g)、およびBCS(18.8g)を加え、50℃にて10時間攪拌して、液晶配向処理剤(13)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(13)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 13>
NMP (13.6 g) was added to the polyimide powder (12) (2.43 g) obtained in Synthesis Example 12, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, an NMP solution of A-1 (1.46 g) (NMP solution of 5.0% by mass of A-1), NMP (7.95 g), and BCS (18.8 g) were added, and the mixture was heated to 50 ° C. For 10 hours to obtain a liquid crystal aligning agent (13). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (13), evaluation of rubbing treatment resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
<実施例14>
 合成例13で得られたポリイミド粉末(13)(2.50g)に、NMP(13.6g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、A-1のNMP溶液(2.50g)(A-1が5.0質量%のNMP溶液)、NMP(5.78g)、およびBCS(19.7g)を加え、50℃にて12時間攪拌して、液晶配向処理剤(14)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(14)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Example 14>
NMP (13.6 g) was added to the polyimide powder (13) (2.50 g) obtained in Synthesis Example 13, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, an NMP solution of A-1 (2.50 g) (NMP solution containing 5.0% by mass of A-1), NMP (5.78 g), and BCS (19.7 g) were added, and the mixture was heated to 50 ° C. For 12 hours to obtain a liquid crystal aligning agent (14). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (14), evaluation of rubbing treatment resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
<比較例1>
 合成例1で得られた樹脂固形分濃度25.0質量%のポリアミド酸溶液(1)(10.5g)、NMP(7.00g)、およびBCS(26.3g)を混合し、25℃にて2時間攪拌して、液晶配向処理剤(15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(15)を用いて、上述した条件にて、ラビング処理耐性の評価、通常セルおよびPSAセルの電気特性の評価を行った。
<Comparative Example 1>
The polyamic acid solution (1) (10.5 g), NMP (7.00 g), and BCS (26.3 g) having a resin solid content concentration of 25.0% by mass obtained in Synthesis Example 1 were mixed, and the mixture was heated to 25 ° C. For 2 hours to obtain a liquid crystal aligning agent (15). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (15), evaluation of rubbing resistance and evaluation of electric characteristics of normal cells and PSA cells were performed under the above-described conditions.
<比較例2>
 合成例3で得られたポリイミド粉末(3)(2.48g)に、NMP(14.3g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、NMP(8.41g)、およびBCS(18.6g)を加え、50℃にて15時間攪拌して、液晶配向処理剤(16)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(16)を用いて、上述した条件にて、ラビング処理耐性の評価、通常セルおよびPSAセルの電気特性の評価を行った。
<Comparative Example 2>
NMP (14.3 g) was added to the polyimide powder (3) (2.48 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 24 hours. NMP (8.41 g) and BCS (18.6 g) were added to this solution, and the mixture was stirred at 50 ° C. for 15 hours to obtain a liquid crystal aligning agent (16). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (16), evaluation of rubbing treatment resistance and evaluation of electric characteristics of normal cells and PSA cells were performed under the above-described conditions.
<比較例3>
 合成例4で得られたポリイミド粉末(4)(2.50g)に、NMP(14.5g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、NMP(8.50g)、およびBCS(18.8g)を加え、50℃にて15時間攪拌して、液晶配向処理剤(17)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(17)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Comparative Example 3>
NMP (14.5 g) was added to the polyimide powder (4) (2.50 g) obtained in Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours. NMP (8.50 g) and BCS (18.8 g) were added to this solution, and the mixture was stirred at 50 ° C. for 15 hours to obtain a liquid crystal aligning agent (17). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (17), evaluation of rubbing treatment resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
<比較例4>
 合成例13で得られたポリイミド粉末(13)(2.51g)に、NMP(13.2g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、NMP(7.75g)、およびBCS(20.9g)を加え、50℃にて15時間攪拌して、液晶配向処理剤(18)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 得られた液晶配向処理剤(18)を用いて、上述した条件にて、ラビング処理耐性の評価および通常セルの電気特性の評価を行った。
<Comparative example 4>
NMP (13.2 g) was added to the polyimide powder (13) (2.51 g) obtained in Synthesis Example 13 and dissolved by stirring at 70 ° C. for 24 hours. NMP (7.75 g) and BCS (20.9 g) were added to this solution, and the mixture was stirred at 50 ° C. for 15 hours to obtain a liquid crystal aligning agent (18). This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity or precipitation.
Using the obtained liquid crystal aligning agent (18), evaluation of rubbing treatment resistance and evaluation of electric characteristics of a normal cell were performed under the conditions described above.
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000115
 上記の結果からわかるように、本発明の実施例の液晶配向処理剤から得られた液晶配向膜は、比較例の液晶配向処理剤から得られる液晶配向膜に比べて、ラビング処理によるラビング削れカスが少なく、さらに、長時間、紫外線に曝された後であっても、電圧保持率の低下が小さかった。
 特定アミン化合物を含まない比較例1~比較例4は、ラビング処理によるラビング削れカスも多く、さらに、長時間、紫外線に曝された後の電圧保持率の低下も大きくなった。
As can be seen from the above results, the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the example of the present invention is less rubbing scraped by rubbing than the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the comparative example. Further, the decrease in the voltage holding ratio was small even after being exposed to ultraviolet rays for a long time.
In Comparative Examples 1 to 4 which do not contain the specific amine compound, there were many rubbing scraps due to the rubbing treatment, and the decrease in the voltage holding ratio after being exposed to ultraviolet rays for a long time was also large.
 また、同一のポリイミド前駆体またはポリイミドで、特定アミン化合物を含む実施例と特定アミン化合物を含まない比較例との比較において、特定アミン化合物を含む実施例では、長時間、紫外線に曝された後であっても、電圧保持率の低下が小さかった。具体的には、実施例1と比較例1との比較、実施例3および実施例4と比較例2との比較、実施例5と比較例3との比較および実施例14と比較例4との比較である。 In addition, in the comparison between the example including the specific amine compound and the comparative example not including the specific amine compound in the same polyimide precursor or polyimide, in the example including the specific amine compound, after being exposed to ultraviolet rays for a long time. Even so, the decrease in the voltage holding ratio was small. Specifically, the comparison between Example 1 and Comparative Example 1, the comparison between Example 3 and Example 4 and Comparative Example 2, the comparison between Example 5 and Comparative Example 3, and the comparison between Example 14 and Comparative Example 4 It is a comparison.
 本発明の液晶配向処理剤を用いることにより、液晶表示素子の製造プロセス中のラビング処理に伴う重合体被膜の削れカスやラビング処理に伴う傷が発生しにくく、さらに、長時間、光の照射に曝されても、電圧保持率の低下を抑制することができる液晶配向膜を得ることができる。よって、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用でき、TN素子、STN素子、TFT液晶素子、特に垂直配向型の液晶表示素子に有用である。 By using the liquid crystal alignment treatment agent of the present invention, the polymer film is less likely to be scraped or scratched due to the rubbing process during the manufacturing process of the liquid crystal display element, and further, it can be irradiated with light for a long time. Even if exposed, a liquid crystal alignment film capable of suppressing a decrease in voltage holding ratio can be obtained. Therefore, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability, and can be suitably used for a large-screen, high-definition liquid crystal television, etc. It is useful for a device, a TFT liquid crystal device, particularly a vertical alignment type liquid crystal display device.
 さらに、本発明の液晶配向処理剤から得られた液晶配向膜は、液晶表示素子を作製する際に、紫外線を照射する必要がある液晶表示素子に対しても有用である。 Furthermore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is also useful for a liquid crystal display element that needs to be irradiated with ultraviolet rays when producing a liquid crystal display element.
 すなわち、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子、さらには、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に対しても有用である。 That is, a liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes, and containing a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates, A liquid crystal display element manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes, and further comprising a liquid crystal layer between a pair of substrates provided with electrodes, A liquid crystal produced by placing a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between substrates and polymerizing the polymerizable group while applying a voltage between the electrodes. It is also useful for display elements.
 なお、2010年12月28日に出願された日本特許出願2010-292723号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2010-292723 filed on Dec. 28, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (22)

  1.  下記の成分(A)および成分(B)を含有する液晶配向処理剤。
    成分(A):分子内に1級アミノ基を1個と水酸基を有し、かつ前記1級アミノ基と水酸基が脂肪族炭化水素基または非芳香族環式炭化水素基に結合しているアミン化合物。
    成分(B):ポリイミド前駆体およびポリイミドからなる群より選ばれる少なくとも1種の重合体。
    Liquid crystal aligning agent containing the following component (A) and component (B).
    Component (A): An amine having one primary amino group and a hydroxyl group in the molecule, and the primary amino group and the hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group. Compound.
    Component (B): at least one polymer selected from the group consisting of polyimide precursors and polyimides.
  2.  成分(A)のアミン化合物が、下記の式[1]で示される化合物である請求項1に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、Xは脂肪族炭化水素基または非芳香族環式炭化水素基を有する有機基であり、Xは単結合、-O-、-NH-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-または-SO-であり、Xは単結合、ベンゼン環またはシクロヘキサン環であり、Xは単結合、-O-、-CO-、-COO-、-OCO-、-NH-、-N(CH)-、-NHCO-、-N(CH)CO-、-CONH-、-CON(CH)-、-S-または-SO-であり、Xは単結合、脂肪族炭化水素基または非芳香族環式炭化水素基を有する有機基であり、nは1~5の整数である)。
    The liquid-crystal aligning agent of Claim 1 whose amine compound of a component (A) is a compound shown by following formula [1].
    Figure JPOXMLDOC01-appb-C000001
    (In the formula [1], X 1 is an organic group having an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group, and X 2 is a single bond, —O—, —NH—, —CO—, — COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO 2 , X 3 is a single bond, a benzene ring or a cyclohexane ring, X 4 is a single bond, —O—, —CO—, —COO—, —OCO—, —NH—, —N (CH 3 ) —, —NHCO—, —N (CH 3 ) CO—, —CONH—, —CON (CH 3 ) —, —S— or —SO 2 —, wherein X 5 is a single bond, an aliphatic hydrocarbon group Or an organic group having a non-aromatic cyclic hydrocarbon group, and n is an integer of 1 to 5.
  3.  成分(A)のアミン化合物である式[1]のXが、炭素数1~10の直鎖状若しくは分岐状のアルキル基、シクロヘキサン環またはビシクロヘキシル環である請求項2に記載の液晶配向処理剤。 The liquid crystal alignment according to claim 2, wherein X 1 of the formula [1] which is an amine compound of the component (A) is a linear or branched alkyl group having 1 to 10 carbon atoms, a cyclohexane ring or a bicyclohexyl ring. Processing agent.
  4.  成分(A)のアミン化合物である式[1]のXが、単結合、-O-または-OCO-である請求項2または請求項3に記載の液晶配向処理剤。 4. The liquid crystal aligning agent according to claim 2, wherein X 2 of the formula [1], which is the amine compound of component (A), is a single bond, —O— or —OCO—.
  5.  成分(A)のアミン化合物である式[1]のXが、単結合またはベンゼン環である請求項2~請求項4のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 2 to 4, wherein X 3 of the formula [1] which is the amine compound of the component (A) is a single bond or a benzene ring.
  6.  成分(A)のアミン化合物である式[1]のXが、単結合、-O-、-NH-または-CONH-である請求項2~請求項5のいずれか一項に記載の液晶配向処理剤。 The liquid crystal according to any one of claims 2 to 5, wherein X 4 of the formula [1] which is the amine compound of the component (A) is a single bond, -O-, -NH- or -CONH-. Alignment treatment agent.
  7.  成分(A)のアミン化合物である式[1]のXが、単結合、炭素数が1~10の直鎖状若しくは分岐状のアルキル基またはシクロヘキサン環である請求項2~請求項6のいずれか一項に記載の液晶配向処理剤。 X 5 of formula [1] which is an amine compound of component (A) is a single bond, a linear or branched alkyl group having 1 to 10 carbon atoms, or a cyclohexane ring. The liquid-crystal aligning agent as described in any one of Claims.
  8.  成分(B)が、ジアミン成分とテトラカルボン酸二無水物とを反応させて得られるポリアミド酸および該ポリアミド酸を脱水閉環させて得られるポリイミドからなる群より選ばれる少なくとも1種の重合体である請求項1~請求項7のいずれか一項に記載の液晶配向処理剤。 Component (B) is at least one polymer selected from the group consisting of polyamic acid obtained by reacting a diamine component with tetracarboxylic dianhydride and polyimide obtained by dehydrating and ring-closing the polyamic acid. The liquid crystal aligning agent according to any one of claims 1 to 7.
  9.  ジアミン成分が、下記の式[2]で示される側鎖を有するジアミン化合物である請求項8に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000002
    (式[2]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-であり、Yは単結合または-(CH-(bは1~15の整数である)であり、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-または-OCO-であり、Yはベンゼン環、シクロへキサン環および複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、または、ステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基であり、Yはベンゼン環、シクロへキサン環および複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子が、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基またはフッ素原子で置換されていてもよく、nは0~4の整数であり、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基または炭素数1~18のフッ素含有アルコキシル基である)。
    The liquid crystal aligning agent according to claim 8, wherein the diamine component is a diamine compound having a side chain represented by the following formula [2].
    Figure JPOXMLDOC01-appb-C000002
    (In the formula [2], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Y 2 is a single bond or — (CH 2 ) b — (b is an integer of 1 to 15), Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or —OCO—, wherein Y 4 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, Any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 3 carbon atoms Alternatively, it may be substituted with a fluorine atom, or has a steroid skeleton having 12 to 25 carbon atoms A divalent organic group selected from organic groups, Y 5 is a cyclic group selected from benzene ring, the group consisting of cyclohexane ring and heterocyclic cyclohexane, any hydrogen atoms on these cyclic groups, An alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, n is an integer of 0 to 4, Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine group having 1 to 18 carbon atoms An alkoxyl group).
  10.  ジアミン成分が、下記の式[2a]で示されるジアミン化合物である請求項8に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000003
    (式[2a]中、Y、Y、Y、Y、Y、Y及びnは、式[2]の定義と同じ意義を有し、mは1~4の整数である。)
    The liquid-crystal aligning agent of Claim 8 whose diamine component is a diamine compound shown by following formula [2a].
    Figure JPOXMLDOC01-appb-C000003
    (In Formula [2a], Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n have the same significance as defined in Formula [2], and m is an integer of 1 to 4. .)
  11.  前記式[2a]のジアミン化合物が、ジアミン成分中に5モル%~80モル%含まれる請求項9または請求項10に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 9 or 10, wherein the diamine compound of the formula [2a] is contained in the diamine component in an amount of 5 mol% to 80 mol%.
  12.  成分(B)の重合体が、下記の式[3]で示されるテトラカルボン酸二無水物を用いた重合体である請求項8~請求項11のいずれか一項に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000004
    (式[3]中、Zは炭素数4~13の4価の有機基であり、かつ炭素数4~6の非芳香族環状炭化水素基を含有する)。
    The liquid crystal aligning agent according to any one of claims 8 to 11, wherein the polymer of the component (B) is a polymer using a tetracarboxylic dianhydride represented by the following formula [3]. .
    Figure JPOXMLDOC01-appb-C000004
    (In the formula [3], Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 6 carbon atoms).
  13.  テトラカルボン酸二無水物が、下記の式[3a]~式[3j]で示される構造である請求項12に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000005
    (式[3a]中、Z~Zは水素原子、メチル基、塩素原子またはベンゼン環であり、それぞれ、同じであっても異なってもよく、式[3g]中、ZおよびZは水素原子またはメチル基であり、それぞれ、同じであっても異なってもよい)。
    The liquid crystal aligning agent according to claim 12, wherein the tetracarboxylic dianhydride has a structure represented by the following formulas [3a] to [3j].
    Figure JPOXMLDOC01-appb-C000005
    (In the formula [3a], Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, which may be the same or different. In the formula [3g], Z 6 and Z 7 Are hydrogen atoms or methyl groups, which may be the same or different.
  14.  成分(B)の重合体が、ポリアミド酸を脱水閉環させて得られるポリイミドである請求項1~請求項13のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 13, wherein the polymer of component (B) is a polyimide obtained by dehydrating and ring-closing polyamic acid.
  15.  成分(B)の100質量部に対し、成分(A)が0.1質量部~20質量部である請求項1~請求項14のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 14, wherein the component (A) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the component (B).
  16.  液晶配向処理剤中に5質量%~60質量%の貧溶媒を含有する請求項1~請求項15のいずれか一項に記載の液晶配向処理剤。 The liquid crystal aligning agent according to any one of claims 1 to 15, wherein the liquid crystal aligning agent contains 5% by mass to 60% by mass of a poor solvent.
  17.  請求項1~請求項16のいずれか一項に記載の液晶配向処理剤を用いて得られる液晶配向膜。 A liquid crystal alignment film obtained using the liquid crystal alignment treatment agent according to any one of claims 1 to 16.
  18.  請求項17に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 17.
  19.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられる請求項17に記載の液晶配向膜。 A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes The liquid crystal aligning film of Claim 17 used for the liquid crystal display element manufactured through the process of superposing | polymerizing the said polymeric compound, applying a voltage in between.
  20.  請求項19に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 19.
  21.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられる請求項17に記載の液晶配向膜。 A liquid crystal layer comprising a liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates; The liquid crystal alignment film according to claim 17, which is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable group while applying a voltage therebetween.
  22.  請求項21に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 21.
PCT/JP2011/080446 2010-12-28 2011-12-28 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element WO2012091109A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137019957A KR101856274B1 (en) 2010-12-28 2011-12-28 Liquid crysatal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN201180068634.5A CN103415805B (en) 2010-12-28 2011-12-28 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells
JP2012551048A JP5874646B2 (en) 2010-12-28 2011-12-28 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-292723 2010-12-28
JP2010292723 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091109A1 true WO2012091109A1 (en) 2012-07-05

Family

ID=46383197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080446 WO2012091109A1 (en) 2010-12-28 2011-12-28 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP5874646B2 (en)
KR (1) KR101856274B1 (en)
CN (1) CN103415805B (en)
TW (1) TWI545147B (en)
WO (1) WO2012091109A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060056A1 (en) * 2013-10-22 2015-04-30 Jnc株式会社 Liquid crystal composition and liquid crystal display element
CN110462501A (en) * 2016-12-28 2019-11-15 日产化学株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616919B2 (en) * 2012-03-27 2014-10-29 富士フイルム株式会社 Rubbing treatment method and optical film manufacturing method
CN105940342B (en) * 2013-11-28 2019-06-21 日产化学工业株式会社 Aligning agent for liquid crystal and the liquid crystal expression element for having used it
KR102597729B1 (en) * 2015-02-06 2023-11-02 닛산 가가쿠 가부시키가이샤 Liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element
ES2831103T3 (en) * 2016-02-26 2021-06-07 Nissan Chemical Corp Liquid crystal display device
JPWO2018025872A1 (en) * 2016-08-03 2019-06-20 日産化学株式会社 Liquid crystal display device having liquid crystal panel having curved surface shape and liquid crystal alignment agent therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0887017A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Production of liquid crystal display element
JPH11202337A (en) * 1998-01-16 1999-07-30 Canon Inc Production of liquid crystal element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245187B2 (en) * 2001-09-04 2013-07-24 Jnc株式会社 Polyamideimide, liquid crystal aligning agent varnish, and liquid crystal display element
JP2003113377A (en) * 2001-10-02 2003-04-18 Fuji Photo Film Co Ltd Liquid crystal composition and liquid crystal element
KR101158382B1 (en) * 2004-02-26 2012-06-22 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent for photoalignment and liquid crystal display device utilizing the same
CN101910929B (en) * 2007-12-28 2012-04-11 日产化学工业株式会社 Liquid crystal aligning agent and liquid crystal display device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0887017A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Production of liquid crystal display element
JPH11202337A (en) * 1998-01-16 1999-07-30 Canon Inc Production of liquid crystal element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060056A1 (en) * 2013-10-22 2015-04-30 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JPWO2015060056A1 (en) * 2013-10-22 2017-03-09 Jnc株式会社 Liquid crystal composition and liquid crystal display element
US10377949B2 (en) 2013-10-22 2019-08-13 Jnc Corporation Liquid crystal composition and liquid crystal display device
CN110462501A (en) * 2016-12-28 2019-11-15 日产化学株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
CN110462501B (en) * 2016-12-28 2022-10-28 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
KR101856274B1 (en) 2018-06-25
CN103415805A (en) 2013-11-27
CN103415805B (en) 2016-02-10
JP5874646B2 (en) 2016-03-02
TW201242991A (en) 2012-11-01
TWI545147B (en) 2016-08-11
KR20140002723A (en) 2014-01-08
JPWO2012091109A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5936000B2 (en) Manufacturing method of liquid crystal display element
JP6414145B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5904121B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2020056034A (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP5900337B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5874646B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6065074B2 (en) Diamine compounds, polyimide precursors and polyimides
WO2014157235A1 (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP5998931B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6052171B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6102752B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6003882B2 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014133043A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137019957

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11852961

Country of ref document: EP

Kind code of ref document: A1