WO2016140302A1 - Polyimide precursor, and liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element having precursor - Google Patents

Polyimide precursor, and liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element having precursor Download PDF

Info

Publication number
WO2016140302A1
WO2016140302A1 PCT/JP2016/056560 JP2016056560W WO2016140302A1 WO 2016140302 A1 WO2016140302 A1 WO 2016140302A1 JP 2016056560 W JP2016056560 W JP 2016056560W WO 2016140302 A1 WO2016140302 A1 WO 2016140302A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
polyimide precursor
diamine
formula
Prior art date
Application number
PCT/JP2016/056560
Other languages
French (fr)
Japanese (ja)
Inventor
将人 長尾
近藤 光正
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020177027841A priority Critical patent/KR102600209B1/en
Priority to JP2017503708A priority patent/JP6753392B2/en
Priority to CN201680025765.8A priority patent/CN107531904B/en
Publication of WO2016140302A1 publication Critical patent/WO2016140302A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/84Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • C07C217/86Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom to an acyclic carbon atom of a hydrocarbon radical containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1025Preparatory processes from tetracarboxylic acids or derivatives and diamines polymerised by radiations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a polyimide precursor having a relatively large amount of radical generation, which can be used for a vertical alignment type liquid crystal display device produced by irradiating ultraviolet rays with voltage applied to liquid crystal molecules, and the polyimide precursor.
  • the present invention relates to a liquid crystal alignment agent having a liquid crystal alignment film, a liquid crystal alignment film formed using the liquid crystal alignment agent, and a liquid crystal display element formed using the liquid crystal alignment film.
  • a liquid crystal display element of a method in which liquid crystal molecules aligned perpendicular to the substrate respond by an electric field (also referred to as a vertical alignment (VA) method) is irradiated with ultraviolet rays while applying a voltage to the liquid crystal molecules in the manufacturing process.
  • VA vertical alignment
  • a photopolymerizable compound is previously added to the liquid crystal composition, and a polyimide-based vertical alignment film is used, and ultraviolet rays are applied while applying a voltage to the liquid crystal cell. Therefore, a technique for increasing the response speed of liquid crystal (PSA (Polymer Sustained Alignment) type element, see, for example, Patent Document 1 and Non-Patent Document 1) is known.
  • PSA Polymer Sustained Alignment
  • the direction in which the liquid crystal molecules incline in response to an electric field is usually controlled by protrusions provided on the substrate or slits provided on the display electrode, but photopolymerization is performed in the liquid crystal composition.
  • photopolymerization is performed in the liquid crystal composition.
  • the polymerizable compound reacts efficiently and exhibits the ability to fix alignment by irradiation with ultraviolet rays having a long wavelength without decomposition of components in the liquid crystal. Furthermore, it is necessary that unreacted polymerizable compound does not remain after ultraviolet irradiation and does not adversely affect the reliability of the liquid crystal display element.
  • An object of the present invention is to improve the response speed of a liquid crystal display device obtained by using a step of reacting a polymerizable compound in a liquid crystal and / or a liquid crystal alignment film without the above-mentioned problems of the prior art.
  • An object of the present invention is to provide a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element that can be used. More specifically, an object of the present invention is to provide a polyimide precursor having a relatively large amount of radical generation, and by using the polyimide precursor, the reaction of the polymerizable compound is promoted, and the pretilt angle in the liquid crystal is efficiently increased. The desired value is set to improve the response speed of the liquid crystal display element.
  • the inventors of the present invention have made a polyimide precursor a specific structure in which a radical is generated by ultraviolet irradiation and a relatively large amount of radical is generated with respect to the polymer constituting the liquid crystal aligning agent.
  • the reaction of the polymerizable compound in the liquid crystal display device obtained by using the step of reacting the polymerizable compound in the liquid crystal and / or the liquid crystal alignment film by introducing and using the liquid crystal aligning agent having the polyimide precursor.
  • the said polyimide precursor characterized by having more radical generation amount at the time of light irradiation on the same conditions than the 2nd polyimide precursor formed on the same conditions as a polyimide precursor.
  • the wavelength of light upon light irradiation is preferably 300 nm to 400 nm.
  • the first photoradical-generating diamine may be 0.1 to 100 mol% in 100 mol% of all diamines constituting the polyimide precursor.
  • the first photoradical-generating diamine is represented by the formula (A) (In the formula, Ar represents an aromatic hydrocarbon group which may have a substituent, R 101 represents a divalent organic group, R 102 to R 104 each independently represents a monovalent organic group) It is good to have the following structure.
  • -R 101 - is -T 1 -ST 2- (Where T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ).
  • S is a single bond or an alkylene group having 1 to 20 carbon atoms which is unsubstituted or substituted by a fluorine atom (—CH 2 — or —CF 2 — in an alkylene group is —CH ⁇ CH—, or A group selected from group G (wherein the groups selected from group G are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, -CONH-, -NH-, divalent carbocycle or divalent heterocycle))))
  • group G wherein the groups selected from group G are not adjacent to each other
  • any one of R 102 to R 104 is —OR 111 (where R 111 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms)
  • a linear, branched or cyclic alkyl group (wherein —CH 2 — or —CF 2 — in the alkyl group is —CH ⁇ CH— or a group selected from the following group G (provided that the group G is selected): Groups that are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, a divalent carbocycle or two Valent heterocycle)), and The other two are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, —OR 112 (R 112 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms.
  • a linear, branched or cyclic alkyl group or a group selected from the group consisting of optionally substituted aryl groups having 6 to 20 carbon atoms), a benzyl group, or a phenethyl group (In the case where the other two are the alkyl group or —OR 112 , they may be bonded to each other to form a ring).
  • Ar may be a phenylene group.
  • the first photoradical-generating diamine is represented by the following formula (2) (wherein Ar and R 101 to R 104 have the same definition as described above): It is good to be represented by
  • the first photoradical-generating diamine may be represented by the following formula (3).
  • the polyimide precursor may further have a side chain for vertically aligning the liquid crystal.
  • the polyimide precursor may further have a side chain including a photoreactive group in the structure.
  • a liquid crystal aligning agent comprising the polyimide precursor of any one of the above ⁇ 1> to ⁇ 11> and / or the polyimide of the above ⁇ 12>.
  • a liquid crystal display element obtained by reacting the polymerizable compound by irradiating ultraviolet rays while applying a voltage, containing a polymerizable compound in the liquid crystal and / or the liquid crystal alignment film It is good to be used for manufacturing.
  • a liquid crystal display device comprising the liquid crystal alignment film of ⁇ 15>.
  • T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—
  • S is a single bond or an alkylene group having 1 to 20 carbon atoms which is unsubstituted or substituted by a fluorine atom (—CH 2 — or —CF 2 — in an alkylene group is —CH ⁇ CH—, or
  • group G wherein the groups selected from group G are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, -CONH-, -NH-, divalent carbocycle or divalent hetero
  • R 102 to R 104 is —OR 111 (wherein R 111 is an unsubstituted or linear or branched or cyclic alkyl group having 1 to 20 carbon atoms substituted by a fluorine atom (alkyl —CH 2 — or —CF 2 — in the group is replaced by —CH ⁇ CH— or a group selected from the following group G (provided that the groups selected from group G are not adjacent to each other): May be substituted (group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, divalent carbocycle or divalent heterocycle)) And The other two are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, —OR 112 (R 112 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms.
  • a linear, branched or cyclic alkyl group or a group selected from the group consisting of optionally substituted aryl groups having 6 to 20 carbon atoms), a benzyl group, or a phenethyl group (In the case where the other two are the alkyl group or —OR 112 , they may be bonded to each other to form a ring).
  • the diamine according to any one of the above ⁇ 17> to ⁇ 19> may be represented by the following formula (2) (Ar and R 101 to R 104 have the same definition as described above).
  • the diamine of any one of the above ⁇ 17> to ⁇ 20> has the following formula (4) (R 103 and R 104 , and R 111 have the same definition as described above, and X 101 is a single bond or CO It is good to be represented by.
  • the diamine of any of the above ⁇ 17> to ⁇ 21> may be selected from the group consisting of the following formulas (3) to (3) -12.
  • a diamine selected from the group consisting of the following formulas (3) to (3) -12.
  • the diamine of any one of the above items ⁇ 17> to ⁇ 25> may be 0.1 to 100 mol% in 100 mol% of all diamines constituting the polyimide precursor.
  • the polyimide precursor according to ⁇ 26> or ⁇ 27> may further include a side chain for vertically aligning the liquid crystal.
  • the side chain for vertically aligning the liquid crystal has the following formula [II-1] (in the formula [II-1], X 1 represents a single bond, — (CH 2 ) a — ( a represents an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, X 2 is a single bond or (CH 2 ) b — (b is 1 to 15 X 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—.
  • X 4 is a benzene ring, a cyclohexane ring, and represents a divalent cyclic group selected from heterocyclic, any hydrogen atom in these cyclic groups, an alkyl group having 1 to 3 carbon atoms, 1 to 3 carbon atoms An alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom May be conversion, further, X 4 is may be a divalent organic group selected from an organic group having a carbon number of 17 to 51 having a steroid skeleton .
  • X 5 is a benzene ring, cyclohexane ring and heterocyclic And an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or a fluorine-containing alkyl group having
  • X 6 is an alkyl group having 1 to 18 carbon atoms, 1 to 18 carbon atoms And a fluorine-containing alkyl group having 1 to 18 carbon atoms or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • X 7 represents a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— And represents —COO— or OCO—, wherein X 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms.) It is good that it is at least one selected from.
  • the polyimide precursor according to any one of the above ⁇ 26> to ⁇ 29> may further have a side chain containing a photoreactive group in the structure.
  • a side chain containing a photoreactive group in the structure thereof The following formula [III] (In the formula [III], R 8 represents a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, — Represents N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—, wherein R 9 is a single bond, alkylene having 1 to 20 carbon atoms which may be substituted with a fluorine atom The alkylene group —CH 2 — may be optionally substituted with —CF 2 — or —CH ⁇ CH—, and if any of the following groups are not
  • Y 2 has 1 to 30 carbon atoms.
  • An alkylene group, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle may be substituted with a fluorine atom or an organic group.
  • —CH 2 — when the following groups are not adjacent to each other, —CH 2 — may be substituted by these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, — NH—, —NHCONH—, —CO—
  • Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, or represents a bond .
  • Y 4 is .
  • Y 5 is a single bond representing a cinnamoyl group, 1 to 3 carbon atoms
  • An alkylene group, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle may be substituted with a fluorine atom or an organic group.
  • Y 5 when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—, wherein Y 6 represents a photopolymerizable group which is an acryl group or a methacryl group. It is good to be represented by
  • ⁇ 31> A polyimide obtained by imidizing any of the polyimide precursors of ⁇ 26> to ⁇ 30>.
  • ⁇ 32> A liquid crystal aligning agent comprising the polyimide precursor of any one of the above ⁇ 26> to ⁇ 31> and / or the polyimide of the above ⁇ 31>.
  • ⁇ 33> In the above ⁇ 32>, a liquid crystal display element obtained by reacting the polymerizable compound by irradiating ultraviolet rays while applying a voltage, containing a polymerizable compound in the liquid crystal and / or the liquid crystal alignment film It is good to be used for manufacturing.
  • ⁇ 34> A liquid crystal alignment film formed with the liquid crystal aligning agent according to ⁇ 32> or ⁇ 33>.
  • ⁇ 35> A liquid crystal display device comprising the liquid crystal alignment film of ⁇ 34>.
  • a polyimide precursor having a relatively large amount of radical generation can be provided.
  • a liquid crystal aligning agent having the polyimide precursor and / or a liquid crystal aligning film formed with the liquid crystal aligning agent even if the irradiation amount of ultraviolet rays is relatively low, A desired pretilt angle can be obtained in the liquid crystal, and accordingly, a vertical alignment type liquid crystal display element, particularly a PSA type liquid crystal display element, having a high response speed can be provided.
  • the present invention relates to a polyimide precursor having a relatively large amount of radical generation, a diamine constituting the polyimide, a liquid crystal alignment agent having the polyimide precursor, a liquid crystal alignment film formed using the liquid crystal alignment agent, and the A liquid crystal display element is provided.
  • a polyimide precursor with a relatively large amount of radical generation The present invention provides a polyimide precursor having a relatively large amount of radical generation.
  • the present invention provides a polyimide precursor using a first photoradical-generating diamine.
  • the polyimide precursor using the first photoradical diamine was formed under the same conditions except that the first photoradical diamine was replaced with the second photoradical diamine represented by formula (1).
  • the amount of radical generation upon light irradiation under the same conditions is larger than that of the second polyimide precursor.
  • the wavelength of light “when irradiated with light under the same conditions” may be 300 to 400 nm, preferably 310 to 380 nm, more preferably 350 to 370 nm.
  • the “polyimide precursor” means a product obtained by reacting a diamine component with a tetracarboxylic dianhydride component.
  • “to a polyimide precursor using a diamine” or “a polyimide precursor is formed using a to diamine” means “to diamine” as a raw material for the polyimide precursor. It means being used.
  • the “diamine” includes a case where it is a part or the whole of a raw material.
  • a ⁇ diamine constituting a polyimide precursor means “a ⁇ diamine” is used as a raw material for the polyimide precursor to form the polyimide precursor.
  • the “diamine” includes a case where it is a part or the whole of a raw material.
  • the first photo radical generating diamine is 0.1 to 100 mol%, preferably 10 to 80 mol%, more preferably 30 out of 100 mol% of the total diamine constituting the polyimide precursor. It should be ⁇ 50 mol%.
  • the first photoradical-generating diamine has the formula (A) (In the formula, Ar represents an aromatic hydrocarbon group which may have a substituent, R 101 represents a divalent organic group, R 102 to R 104 each independently represents a monovalent organic group) It is good to have the following structure.
  • T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N ( CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—
  • S is a single bond or an alkylene group having 1 to 20 carbon atoms which is unsubstituted or substituted by a fluorine atom (—CH 2 — or —CF 2 — in an alkylene group is —CH ⁇ CH—, or A group selected from group G (wherein the groups selected from group G are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, -CONH-, -NH-, divalent carbocycle or divalent heterocycle
  • R 102 to R 104 is —OR 111 (wherein R 111 is an unsubstituted or linear or branched or cyclic alkyl group having 1 to 20 carbon atoms substituted by a fluorine atom (alkyl —CH 2 — or —CF 2 — in the group is replaced by —CH ⁇ CH— or a group selected from the following group G (provided that the groups selected from group G are not adjacent to each other): May be substituted (group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, divalent carbocycle or divalent heterocycle)) And The other two are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, —OR 112 (R 112 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms.
  • a linear, branched or cyclic alkyl group or a group selected from the group consisting of optionally substituted aryl groups having 6 to 20 carbon atoms), a benzyl group, or a phenethyl group (In the case where the other two are the alkyl group or —OR 112 , they may be bonded to each other to form a ring).
  • Ar is preferably a group selected from phenylene, naphthylene and biphenylene. Since Ar to which carbonyl is bonded is involved in the absorption wavelength of ultraviolet rays, a structure having a long conjugate length such as naphthylene or biphenylene is preferable when the wavelength is increased. Ar may be substituted with a substituent, and such a substituent is preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group, and an amino group. However, when Ar has a structure such as naphthylene or biphenylene, the solubility becomes poor and the difficulty of synthesis increases. Therefore, a phenyl group is most preferred because sufficient characteristics can be obtained with a phenyl group when the wavelength of ultraviolet rays is in the range of 300 nm to 400 nm, preferably 310 to 380 nm.
  • the first photoradical-generating diamine is preferably represented by the following formula (2) (Ar and R 101 to R 104 have the same definition as described above).
  • the diaminobenzene may have a structure of any of o-phenylenediamine, m-phenylenediamine, and p-phenylenediamine. However, in terms of reactivity with acid dianhydride, diaminobenzene may be m-phenylenediamine or p-phenylenediamine. Phenylenediamine is preferred.
  • the first photoradical-generating diamine is represented by the following formula (4) (R 103 and R 104 , and R 111 have the same definition as described above, and X 101 represents a single bond or CO).
  • X 101 represents a single bond or CO).
  • it is a diamine.
  • examples of the first photoradical-generating diamine include, but are not limited to, the following formulas (3) to (3) -12.
  • the first photoradical-generating diamine is particularly preferably a diamine represented by the formula (3).
  • the polyimide precursor of the present invention preferably further has a side chain for vertically aligning the liquid crystal.
  • the side chain for vertically aligning the liquid crystal is represented by the following formula [II-1] or [II-2].
  • X 1 to X 6 and n are as defined above.
  • X 7 and X 8 are as defined above.
  • X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O, from the viewpoint of availability of raw materials and ease of synthesis.
  • -Or COO- is preferred, and more preferred is a single bond,-(CH 2 ) a- (a is an integer of 1 to 10), -O-, -CH 2 O- or COO-.
  • X 2 is preferably a single bond or (CH 2 ) b — (b is an integer of 1 to 10).
  • X 3 is preferably a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or COO— from the viewpoint of ease of synthesis.
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or COO— is preferable.
  • X 4 is preferably an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton from the viewpoint of ease of synthesis.
  • X 5 is preferably a benzene ring or a cyclohexane ring.
  • n is preferably 0 to 3 and more preferably 0 to 2 in view of availability of raw materials and ease of synthesis.
  • X 6 is preferably an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • the organic group having 17 to 51 carbon atoms having a steroid skeleton in the present invention has 12 to 20 carbon atoms having a steroid skeleton.
  • An organic group having 12 to 25 carbon atoms having a steroid skeleton is to be read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.
  • (2-25) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-268) to (2-315) , (2-364) to (2-387), (2-436) to (2-483), or (2-603) to (2-615) are preferred.
  • Particularly preferred combinations are (2-49) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-603) to (2- 606), (2-607) to (2-609), (2-611), (2-612) or (2-624).
  • X 7 is preferably a single bond, —O—, —CH 2 O—, —CONH—, —CON (CH 3 ) — or COO—, more preferably a single bond.
  • X 8 is preferably an alkyl group having 8 to 18 carbon atoms.
  • the side chain for vertically aligning the liquid crystal it is preferable to use a structure represented by the formula [II-1] from the viewpoint of enhancing and stabilizing the alignment of the liquid crystal.
  • the ability of a polyimide precursor having a side chain for vertically aligning the liquid crystal to vertically align the liquid crystal varies depending on the structure of the side chain for vertically aligning the liquid crystal. As the amount of chains increases, the ability to orient liquid crystals vertically increases and decreases as they decrease. Moreover, when it has a cyclic structure, compared with what does not have a cyclic structure, there exists a tendency for the capability to orientate a liquid crystal vertically.
  • the polyimide precursor of the present invention may have a photoreactive side chain.
  • the photoreactive side chain has a functional group (also referred to as a photoreactive group in this specification) that can react by irradiation with light such as ultraviolet rays (UV) to form a covalent bond. That is, the polyimide precursor of the present invention preferably further has a side chain containing a photoreactive group in the structure.
  • the photoreactive side chain may be directly bonded to the main chain of the polymer, or may be bonded via a linking group.
  • the photoreactive side chain is represented, for example, by the following formula [III].
  • R 8 , R 9 and R 10 are as defined above.
  • R 8 is preferably a single bond, —O—, —COO—, —NHCO, or —CONH—.
  • R 9 can be formed by a common organic synthetic method, but from the viewpoint of ease of synthesis, a single bond or an alkylene group having 1 to 12 carbon atoms is preferable.
  • divalent carbocycle or heterocycle for replacing any —CH 2 — in R 9 include the following.
  • R 10 is preferably a methacryl group, an acryl group or a vinyl group from the viewpoint of photoreactivity.
  • the amount of the photoreactive side chain is preferably within a range in which the response speed of the liquid crystal can be increased by reacting with ultraviolet irradiation to form a covalent bond. In order to further increase the response speed of the liquid crystal It is preferable that it is as many as possible within a range that does not affect other characteristics.
  • the method for producing a polyimide precursor using the first photoradical-generating diamine and a polyimide obtained by imidizing the polyimide precursor is not particularly limited. Examples thereof include a method of polymerizing a first photoradical-generating diamine and tetracarboxylic dianhydride, a method of polymerizing a first photoradical-generating diamine and other diamines and tetracarboxylic dianhydride, and the like.
  • the same method as described above may be used for the method of producing a polyimide precursor further having a side chain and / or a photoreactive side chain for vertically aligning the liquid crystal, and a polyimide obtained by imidizing the polyimide precursor.
  • the preferred method also includes a first photoradical-generating diamine containing a side chain for vertically aligning liquid crystals and / or a first photoradical-generating diamine containing a photoreactive side chain, and a tetracarboxylic acid diester.
  • a method of polymerizing the anhydride is preferred.
  • the first photo-radical-generating diamine is a dinitro compound through each step, a mononitro compound having an amino group with a protective group that can be removed in the reduction process, or a diamine, which is usually used for reduction. It can be obtained by converting the nitro group to an amino group or deprotecting the protecting group by reaction.
  • the method for synthesizing the first photoradical-generating diamine synthesis method of the present invention is not particularly limited.
  • the following formula (5) in formula (5), Ar, R 101 to R 104 are represented by the above formula (A And the same definition as in the above), and a method of synthesizing the compound by reducing the nitro group and converting it to an amino group.
  • the method for reducing the nitro group is not particularly limited.
  • a reduction method in which the unsaturated bond is not reduced can be used. As long as the unsaturated bond is not reduced, the reduction method is not particularly limited.
  • hydrogen gas is used using reduced iron, tin, tin chloride, poisoned palladium-carbon, poisoned platinum-carbon as a catalyst. , Hydrazine, hydrogen chloride, ammonium chloride and the like.
  • a reduction method in which the benzyl group is not cleaved can be used.
  • the reduction method is not limited as long as the benzyl group is not cleaved.
  • platinum black, rhodium-alumina, platinum sulfide carbon, reduced iron, iron chloride, tin, tin chloride, zinc, etc. are used as a catalyst, hydrogen gas, There are methods using hydrazine, hydrogen chloride, ammonium chloride and the like.
  • reaction solvent a solvent that does not affect the reaction
  • ester solvents such as ethyl acetate and methyl acetate
  • aromatic hydrocarbon solvents such as toluene and xylene
  • aliphatic hydrocarbon solvents such as n-hexane, n-heptane and cyclohexane, 1,2-dimethoxyethane, tetrahydrofuran
  • Ether solvents such as dioxane
  • alcohol solvents such as methanol and ethanol
  • ketone solvents such as 2-butanone and 4-methyl-2-pentanone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl
  • aprotic polar solvents such as -2-pyrrolidone and dimethyl sulfoxide, and water.
  • the reaction temperature can be carried out at a temperature at which the reaction proceeds efficiently as long as it is below the boiling point of the solvent used without decomposition of the raw materials and products. Specifically, a temperature from ⁇ 78 ° C. to the boiling point of the solvent is preferable, and a temperature from 0 ° C. to the boiling point of the solvent is more preferable from the viewpoint of simplicity of synthesis.
  • the method for synthesizing the compound of formula (5) is not particularly limited.
  • R 102 of formula (5) is OR 111 (R 111 is the same as defined in ⁇ 6> above).
  • R 111 is the same as defined in ⁇ 6> above.
  • a method of introducing a substituent into the OH group can be mentioned.
  • the method for introducing a substituent into the OH group is not particularly limited.
  • L 1 in the following formula (7) is a halogen, an alkanesulfonyloxy group, or an arenesulfonyloxy group, R 111 is the same as defined in the above ⁇ 6>
  • a method of reacting an alkyl halide or alkyl sulfonate ester under neutral conditions or alkaline conditions is
  • reaction solvent and reaction temperature are the same as those described above, an alcohol solvent and water are not preferable because they may react with the raw material.
  • alkyl halide examples include methyl iodide, ethyl iodide, n-propyl iodide, n-butyl iodide, n-octadecyl iodide, benzyl iodide, bromoethane, 1-bromopropane, 1-bromobutane and 1-bromo.
  • the compound represented by the formula (5) is represented by the following formula (8)
  • the compound represented by the above formula (6) and the vinyl ether represented by the following formula (9) are used.
  • Examples of the synthesis method include a reaction in the presence of a catalyst or an acid catalyst.
  • Ar, R 101 , R 103 , and R 104 have the same definitions as those in the formula (A), and R 211 is carbon that is unsubstituted or substituted by a fluorine atom.
  • a linear, branched or cyclic alkyl group having 1 to 18 atoms (wherein —CH 2 — or —CF 2 — in the alkyl group is —CH ⁇ CH—, or a group selected from the following group G: The groups selected from Group G may not be adjacent to each other) (Group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, divalent Or a divalent heterocyclic ring).
  • R 211 is, in the above formula (8) is the same as the definition of R 211.
  • Examples of the vinyl ether include ethyl vinyl ether, n-butyl vinyl ether, n-octadecyl vinyl ether, diethylene glycol monovinyl ether and the like.
  • Examples of the acid catalyst include p-toluenesulfonic acid, pyridinium p-toluenesulfonate, methanesulfonic acid, and the like.
  • the compound represented by the formula (5) is represented by the following formula (10) (in the formula (10), Ar, R 101 , R 103 and R 104 have the same definitions as those in the formula (A)). Is a synthesis method in which the compound represented by the above formula (6) and 3,4-dihydropyran are reacted in the absence of a catalyst or in the presence of an acid catalyst.
  • Examples of the compound represented by the formula (12) include 2,4-dinitrofluorobenzene, 2,4-dinitrochlorobenzene, 2,4-dinitrobromobenzene, 2,4-dinitroiodobenzene, 3,5-dinitrochlorobenzene, Examples include 3,5-dinitroiodobenzene, 3,4-dinitrofluorobenzene, 3,4-dinitrochlorobenzene, 2,3-dinitrochlorobenzene, and the like.
  • Examples of the compound represented by the formula (14) include 2-hydroxy-1- (4- (hydroxymethyl) phenyl) -2-methyl-1-propanone, 1-hydroxycyclohexyl (4- (2-hydroxyethyl) phenyl )) Ketone, 1-hydroxycyclohexyl (4-hydroxyphenyl) ketone, 2-hydroxy-1- (4-((2-hydroxyethyl) thio) phenyl) -2-methyl-1-propanone, 2-hydroxy-1 -(4-hydroxyphenyl) -2-methyl-1-propanone, 2-hydroxy-1- (4- (2-hydroxyethoxy) phenyl) -2-methyl-1-propanone, 1- (3,4-dihydroxy Phenyl) -2-hydroxy-2-methyl-1-propanone, 2-hydroxy-1- (4- (2-hydroxyethyl) phenyl) -2- Chill-1-propanone, 2-hydroxy-1- (4- (3-hydroxypropyl) phenyl) -2-methyl-1-propanone and the like
  • the protecting group is not particularly limited, and examples thereof include a tetrahydropyranyl group, a benzyl group, a p-methoxybenzyl group, a methoxymethyl group, a trimethylsilyl group, a t-butyldimethylsilyl group, an acetyl group, a benzoyl group, and a trityl group. Is mentioned.
  • the method for introducing a tertiary hydroxyl group after protecting the primary hydroxyl group of the compound represented by formula (14) is not particularly limited.
  • R 102 in formula (5) is OR 111
  • the formula The same conditions as in the case of synthesizing the compound represented by formula (5) from the compound represented by (6) can be used.
  • Examples of the compound represented by the formula (16) include 3,5-dinitrobenzyl chloride, methanesulfonic acid (3,5-dinitrobenzyl), 2,4-dinitrobenzyl chloride, methanesulfonic acid (2,4-dinitrobenzyl). ) And the like.
  • the compound represented by the formula (5) is represented by the following formula (17) (in the formula (17), Ar, R 102 to R 104 , S, and T 2 are the same as defined in the above ⁇ 5>)
  • the method etc. are mentioned.
  • the reaction solvent and reaction temperature are the same as described above, but a protic solvent such as an alcohol solvent or water can be used unless it reacts with the raw material.
  • Examples of the compound represented by the formula (18) include 3,5-dinitrobenzoyl chloride.
  • Examples of the compound represented by the formula (19) include 3,5-dinitrobenzoic acid.
  • Examples of the dehydrating condensing agent include dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, diisopropylcarbodiimide, 1,1′-carbonyldiimidazole, bis (2-oxo-3-oxazolinidyl) phosphinic acid Chloride, di-2-pyridyl carbonate, triphenyl phosphite, dimethoxy-1,3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N,
  • a diamine having a specific side chain structure is preferably used as a part of the diamine component.
  • a diamine represented by the following formula [2] also referred to as a specific side chain diamine compound.
  • X represents a structure represented by the above formula [II-1] or [II-2], n represents an integer of 1 to 4, and 1 is particularly preferable.
  • n represents an integer of 1 to 4, and 1 is particularly preferable.
  • the specific side chain diamine it is preferable to use a diamine represented by the following formula [2-1] from the viewpoint that a high and stable liquid crystal vertical alignment can be obtained.
  • X 1 , X 2 , X 3 , X 4 , X 5 , and n in the above formula [2-1] are the same as defined in each of the above formula [II-1], and Preferable ones are also the same as defined above in Formula [II-1].
  • m is an integer of 1 to 4.
  • it is an integer of 1.
  • Specific examples of the specific side chain diamine include structures represented by the following formulas [2a-1] to [2a-31].
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or CH 2 OCO—
  • R 2 represents a linear or branched group having 1 to 22 carbon atoms.
  • R 3 is, -COO -, - OCO -, - CONH -, - NHCO -, - COOCH 2 -, - CH 2 OCO -, - CH 2 O -, - OCH 2 - or CH 2 - indicates, R 4 Is a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched, fluorine-containing alkyl group having 1 to 22 carbon atoms, or It is a fluorine-containing alkoxyl group.
  • R 5 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O—.
  • NH—, and R 6 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
  • R 7 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • R 8 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • a 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group
  • a 2 is an oxygen atom or a COO - * (wherein "*" bond marked with binds to a 3) is
  • a 1 is an oxygen atom or a COO - * (However, bond marked with "*" Is bonded to (CH 2 ) a 2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is an integer of 0 or 1.
  • Examples of the diamine having a specific side chain structure represented by the formula [II-2] include diamines represented by the following formulas [2b-1] to [2b-10].
  • a 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • a 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or NH—.
  • a 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • Said diamine can also be used 1 type or in mixture of 2 or more types according to characteristics, such as a liquid crystal aligning property at the time of setting it as a liquid crystal aligning film, a pretilt angle, a voltage holding characteristic, and a stored charge.
  • the diamine having a side chain for vertically aligning the liquid crystal is preferably used in an amount of 5 to 50 mol% of the diamine component used for the synthesis of the polyamic acid, more preferably 10 to 40 mol% of the diamine component, and particularly preferably. Is from 15 to 30 mol%.
  • the use of a diamine having a side chain that vertically aligns the liquid crystal is particularly excellent in terms of improving the response speed and the ability to fix and align the liquid crystal.
  • the diamine having a photoreactive side chain is, for example, a diamine having a side chain represented by the formula [3], and specifically, the following general formula [3] (R in the formula [3] 8 , the definitions of R 9 and R 10 are the same as those in the above formula [III], but are not limited thereto.
  • the bonding position of the two amino groups (—NH 2 ) in the formula [3] is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable. Specific examples of the diamine having a photoreactive side chain include the following.
  • X 9 and X 10 are each independently a single bond, —O—, —COO—, —NHCO—, or —NH—, a bonding group that is —NH—, and Y is a carbon atom that may be substituted with a fluorine atom Represents an alkylene group of 1 to 20.
  • examples of the diamine having a photoreactive side chain include a diamine having a group causing a photodimerization reaction and a group causing a photopolymerization reaction represented by the following formula in the side chain.
  • Y 1 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, or —CO—.
  • Y 2 is an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms or organic It may be substituted with a group.
  • Y 2 when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
  • Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, or a single bond.
  • Y 4 represents a cinnamoyl group.
  • Y 5 is a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms Alternatively, it may be substituted with an organic group.
  • —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
  • Y 6 represents a photopolymerizable group which is an acrylic group or a methacryl group.
  • the diamine having a photoreactive side chain depends on the liquid crystal alignment property when it is used as a liquid crystal alignment film, the pretilt angle, the voltage holding property, the characteristics such as accumulated charge, the response speed of the liquid crystal when it is used as a liquid crystal display device, etc. 1 type or 2 types or more can be mixed and used.
  • the diamine having a photoreactive side chain is preferably used in an amount of 10 to 70 mol%, more preferably 20 to 60 mol%, particularly preferably 30 to 50 mol% of the diamine component used for the synthesis of the polyamic acid. It is.
  • the above-mentioned other diamines can be used alone or in combination of two or more according to properties such as liquid crystal orientation, pretilt angle, voltage holding property, and accumulated charge when the liquid crystal alignment film is formed.
  • the tetracarboxylic dianhydride component to be reacted with the diamine component is not particularly limited. Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2, 3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetra Carboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxy) Phen
  • the liquid crystal aligning agent of the present invention may contain a polymerizable compound having a photopolymerizable or photocrosslinkable group at two or more terminals as required.
  • a polymerizable compound is a compound having two or more terminals having a group that undergoes photopolymerization or photocrosslinking.
  • the polymerizable compound having a photopolymerizable group is a compound having a functional group that causes polymerization upon irradiation with light.
  • the compound having a photocrosslinking group is at least one selected from a polymer of a polymerizable compound, a polyimide precursor, and a polyimide obtained by imidizing the polyimide precursor by irradiating light. It is a compound having a functional group capable of reacting with the polymer and crosslinking with these polymers.
  • a compound having a photocrosslinkable group also reacts with a compound having a photocrosslinkable group.
  • the side chain and the photoreactive property for aligning the liquid crystal vertically are used.
  • the response speed can be remarkably improved, and the response speed can be sufficiently improved even with a small amount of the polymerizable compound added.
  • Examples of the group that undergoes photopolymerization or photocrosslinking include monovalent groups represented by the following formula (IV).
  • R 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Z 1 represents a divalent aromatic ring or heterocyclic ring which may be substituted with an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms.
  • Z 2 represents a monovalent aromatic ring or heterocyclic ring which may be substituted with an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms.
  • the polymerizable compound examples include a compound having a photopolymerizable group at each of two ends represented by the following formula (V), a terminal having a photopolymerizable group represented by the following formula (VI), and light.
  • examples thereof include a compound having a terminal having a cross-linking group and a compound having a photo-crosslinking group at each of two terminals represented by the following formula (VII).
  • R 12, Z 1 and Z 2 are the same as R 12, Z 1 and Z 2 in the formula (IV), Q 1 is a divalent organic group is there.
  • Q 1 has a ring structure such as a phenylene group (—C 6 H 4 —), a biphenylene group (—C 6 H 4 —C 6 H 4 —), a cyclohexylene group (—C 6 H 10 —), and the like. Preferably it is. This is because the interaction with the liquid crystal tends to increase.
  • V examples include a polymerizable compound represented by the following formula (R-1).
  • R-1 a polymerizable compound represented by the following formula (R-1).
  • V and W are each represented by a single bond or —R 1 O—, and R 1 is a linear or branched alkylene group having 1 to 10 carbon atoms, preferably , -R 1 O-, wherein R 1 is a linear or branched alkylene group having 2 to 6 carbon atoms.
  • V and W may be the same or different, but synthesis is easy when they are the same.
  • the photopolymerization or photocrosslinking group is a polymerizable compound having an acrylate group or a methacrylate group instead of an ⁇ -methylene- ⁇ -butyrolactone group
  • the acrylate group or methacrylate group is a spacer such as an oxyalkylene group.
  • the polymerizable compound having a structure bonded to a phenylene group via a can significantly improve the response speed particularly like the polymerizable compound having ⁇ -methylene- ⁇ -butyrolactone groups at both ends. .
  • a polymerizable compound having a structure in which an acrylate group or a methacrylate group is bonded to a phenylene group through a spacer such as an oxyalkylene group has improved heat stability, and a high temperature, for example, a firing temperature of 200 ° C. or higher. Can withstand enough.
  • the manufacturing method of the said polymeric compound is not specifically limited, For example, it can manufacture according to the following synthesis example.
  • taraga and the like represented by the following reaction formula are proposed by P. Talaga, M. Schaeffer, C. Benezra and JLStampf, Synthesis, 530 (1990).
  • 2- (bromomethyl) propenoic acid can be synthesized by reacting with aldehyde or ketone using SnCl 2 .
  • Amberlyst 15 is a strongly acidic ion exchange resin manufactured by Rohm and Haas.
  • R ′ represents a monovalent organic group.
  • 2- (bromomethyl) acrylic acid is represented by the following reaction formula: K. Ramarajan, K. Kamalingam, DJO 'Donnell and KDBerlin, Organic Synthesis, vol.61, 56-59 (1983) Can be synthesized by the method proposed in
  • ⁇ Synthesis of polyamic acid> In obtaining a polyamic acid by a reaction between a diamine component and tetracarboxylic dianhydride, a known synthesis method can be used. In general, a diamine component and a tetracarboxylic dianhydride component are reacted in an organic solvent. The reaction between the diamine component and tetracarboxylic dianhydride is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
  • the organic solvent used in the above reaction is not particularly limited as long as the generated polyamic acid is soluble. Furthermore, even if it is an organic solvent in which a polyamic acid does not melt
  • organic solvent used in the above reaction examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, and N-ethyl-2.
  • -Pyrrolidone 2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethyl Sulfoxide, ⁇ -butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, Tilcerosolve acetate, butylcellosolve acetate, ethylcellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol
  • the method of reacting a diamine component and a tetracarboxylic dianhydride component in an organic solvent is to stir a solution in which the diamine component is dispersed or dissolved in the organic solvent, and the tetracarboxylic dianhydride component as it is or an organic solvent.
  • Dispersing or dissolving in a solution adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic dianhydride component in an organic solvent, alternating tetracarboxylic dianhydride component and diamine component Any of the methods of adding to In addition, when the diamine component or tetracarboxylic dianhydride component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. The body may be mixed and reacted to form a high molecular weight body.
  • the temperature at the time of reacting the diamine component and the tetracarboxylic dianhydride component is, for example, in the range of ⁇ 20 ° C. to 150 ° C., preferably ⁇ 5 ° C. to 100 ° C.
  • the total concentration of the diamine component and the tetracarboxylic dianhydride component is preferably 1 to 50% by mass, and more preferably 5 to 30% by mass with respect to the reaction solution.
  • the ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component in the polymerization reaction can be selected according to the molecular weight of the polyamic acid to be obtained. Similar to the usual polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced, and 0.8 to 1.2 if it shows a preferred range.
  • the method for synthesizing the polyamic acid used in the present invention is not limited to the above-described method, and in the same manner as the general polyamic acid synthesis method, instead of the tetracarboxylic dianhydride, a tetracarboxylic acid having a corresponding structure is used.
  • the corresponding polyamic acid can also be obtained by reacting by a known method using a tetracarboxylic acid derivative such as acid or tetracarboxylic acid dihalide.
  • Examples of the method of imidizing the polyamic acid to form a polyimide include thermal imidization in which a polyamic acid solution is heated as it is, and catalytic imidation in which a catalyst is added to the polyamic acid solution.
  • the imidation ratio from polyamic acid to polyimide is not necessarily 100%.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and is preferably carried out while removing water generated by the imidation reaction from the system.
  • Catalytic imidation of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the polyamic acid ester is a reaction of a tetracarboxylic acid diester dichloride with a diamine similar to the synthesis of the polyamic acid, a suitable condensing agent with a diamine similar to the synthesis of the tetracarboxylic acid diester and the polyamic acid, It can be produced by reacting in the presence of a base or the like. It can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxylic acid in the amic acid using a polymer reaction. Specifically, for example, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C.
  • a polyamic acid ester By reacting for ⁇ 4 hours, a polyamic acid ester can be synthesized.
  • the polyimide can also be obtained by heating the polyamic acid ester at a high temperature to promote dealcoholization and ring closure.
  • the reaction solution may be poured into a poor solvent and precipitated.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating.
  • the operation of re-dissolving the recovered polymer in an organic solvent and repeating the reprecipitation recovery is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the liquid crystal aligning agent of the present invention contains the polyimide precursor, and the content of the polyimide precursor is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass. It is. Further, when the polymerizable compound having a photopolymerizable or photocrosslinkable group at each of two or more terminals is contained, the content thereof is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polymer. The amount is preferably 5 to 30 parts by mass.
  • the liquid crystal aligning agent of this invention may contain other polymers other than the said polyimide precursor.
  • the content of such other polymer in all the components of the polymer is preferably 0.5 to 80% by mass, more preferably 20 to 50% by mass.
  • the molecular weight of the polymer of the liquid crystal aligning agent is determined by GPC (Gel Permeation Chromatography) in consideration of the strength of the liquid crystal aligning film obtained by applying the liquid crystal aligning agent, the workability at the time of forming the coating film, and the uniformity of the coating film. )
  • the weight average molecular weight measured by the method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
  • the solvent contained in the liquid crystal aligning agent is not particularly limited, and may be the above-described polyimide precursor and a polymerizable compound each having a photopolymerizable or photocrosslinkable group at two or more terminals contained as necessary. What is necessary is just to be able to dissolve or disperse the contained components.
  • combination of said polyamic acid can be mentioned. Among them, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone and 3-methoxy-N, N-dimethylpropanamide are soluble. To preferred. Of course, two or more kinds of mixed solvents may be used.
  • a solvent that improves the uniformity and smoothness of the coating film mixed with a solvent in which the components of the liquid crystal aligning agent are highly soluble examples include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, Ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether, dipropylene glycol,
  • the liquid crystal aligning agent may contain components other than those described above. Examples thereof include compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, and compounds that improve the adhesion between the liquid crystal aligning film and the substrate. Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) and the like.
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the total amount of the polymer contained in the liquid crystal aligning agent. .
  • compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds.
  • a phenol compound such as 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol may be added. .
  • These compounds are preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer contained in the liquid crystal aligning agent.
  • the liquid crystal aligning agent is added with a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant or conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired. May be.
  • liquid crystal aligning agent By applying this liquid crystal aligning agent on a substrate and baking it, a liquid crystal alignment film for vertically aligning liquid crystals can be formed.
  • the response speed of the liquid crystal display element using the liquid crystal aligning film obtained can be made quick.
  • the polymerizable compound that has two or more terminal groups that are photopolymerized or photocrosslinked, which may be contained in the liquid crystal aligning agent of the present invention is not contained in the liquid crystal aligning agent, or the liquid crystal aligning agent.
  • the photoreaction becomes highly sensitive even in the so-called PSA mode, and a tilt angle can be imparted even with a small amount of ultraviolet irradiation.
  • a cured film obtained by applying the liquid crystal aligning agent of the present invention to a substrate and then drying and baking as necessary can be used as a liquid crystal aligning film as it is.
  • the cured film is rubbed, irradiated with polarized light or light of a specific wavelength, or treated with an ion beam, or a voltage is applied to the liquid crystal display element after filling the liquid crystal as a PSA alignment film It is also possible to irradiate with UV. In particular, it is useful to use as an alignment film for PSA.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate.
  • Glass plate polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone ,
  • Plastic substrates such as trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, triacetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose can be used.
  • a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process.
  • an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
  • the application method of the liquid crystal aligning agent is not particularly limited, and examples thereof include screen printing, offset printing, flexographic printing, and other printing methods, ink jet methods, spray methods, roll coating methods, dip, roll coater, slit coater, spinner and the like. From the standpoint of productivity, the transfer printing method is widely used industrially, and is preferably used in the present invention.
  • the coating film formed by applying the liquid crystal aligning agent by the above method can be baked to obtain a cured film.
  • the drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, the drying process is performed. It is preferable.
  • the drying is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like.
  • a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C., for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes.
  • the firing temperature of the coating film formed by applying the liquid crystal aligning agent is not limited, and is, for example, 100 to 350 ° C, preferably 120 to 300 ° C, and more preferably 150 ° C to 250 ° C.
  • the firing time is 5 minutes to 240 minutes, preferably 10 minutes to 90 minutes, and more preferably 20 minutes to 90 minutes. Heating can be performed by a generally known method such as a hot plate, a hot air circulating furnace, an infrared furnace, or the like.
  • the thickness of the liquid crystal alignment film obtained by firing is not particularly limited, but is preferably 5 to 300 nm, more preferably 10 to 100 nm.
  • a liquid crystal cell can be produced by a known method after forming a liquid crystal alignment film on a substrate by the above method.
  • the liquid crystal display element include two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal aligning agent provided between the substrate and the liquid crystal layer.
  • a vertical alignment type liquid crystal display device comprising a liquid crystal cell having the above-described liquid crystal alignment film.
  • the liquid crystal aligning agent of the present invention is applied onto two substrates and baked to form a liquid crystal aligning film, and the two substrates are arranged so that the liquid crystal aligning films face each other.
  • a liquid crystal layer composed of liquid crystal is sandwiched between two substrates, that is, a liquid crystal layer is provided in contact with the liquid crystal alignment film, and ultraviolet rays are applied while applying a voltage to the liquid crystal alignment film and the liquid crystal layer.
  • This is a vertical alignment type liquid crystal display device including a liquid crystal cell to be manufactured.
  • the liquid crystal alignment film formed of the liquid crystal alignment agent of the present invention is used to irradiate ultraviolet rays while applying voltage to the liquid crystal alignment film and the liquid crystal layer to polymerize the polymerizable compound, and the photoreactive property of the polymer.
  • the alignment of the liquid crystal is more efficiently fixed, and the liquid crystal display device is remarkably excellent in response speed.
  • the substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
  • a substrate on which a transparent electrode for driving liquid crystal As a specific example, the thing similar to the board
  • a substrate provided with a conventional electrode pattern or protrusion pattern may be used.
  • the liquid crystal aligning agent of the present invention since the liquid crystal aligning agent of the present invention is used, a line of 1 to 10 ⁇ m, for example, is formed on one side substrate. / Slit electrode pattern is formed, and it is possible to operate even in the structure where slit pattern or projection pattern is not formed on the counter substrate.
  • the liquid crystal display element of this structure can simplify the process at the time of manufacture and has high transmittance. Can be obtained.
  • a high-performance element such as a TFT type element
  • an element in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
  • a transmissive liquid crystal display element it is common to use a substrate as described above.
  • an opaque substrate such as a silicon wafer may be used. Is possible.
  • a material such as aluminum that reflects light can be used for the electrode formed on the substrate.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and a liquid crystal material used in a conventional vertical alignment method, for example, a negative type such as MLC-6608 or MLC-6609 manufactured by Merck & Co., Inc. Liquid crystal can be used.
  • a liquid crystal containing a polymerizable compound represented by the following formula can be used.
  • a known method can be used as a method of sandwiching the liquid crystal layer between two substrates. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate so that the surface on which the liquid crystal alignment film is formed is on the inside. Then, the other substrate is bonded, and liquid crystal is injected under reduced pressure to seal.
  • a liquid crystal cell can also be produced by a method in which the other substrate is bonded to each other so as to be inside, and sealing is performed.
  • the thickness of the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the step of producing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer includes, for example, applying an electric field between the electrodes installed on the substrate to apply an electric field to the liquid crystal alignment film and the liquid crystal layer. And applying ultraviolet rays while maintaining this electric field.
  • the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p.
  • the irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is increased.
  • the polymerizable compound when ultraviolet rays are irradiated while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is stored by this polymer.
  • the pretilt angle of the obtained liquid crystal display element can be set to a desired value, and the response speed can be increased.
  • a polyimide precursor having a side chain for vertically aligning liquid crystal and a photoreactive side chain when irradiated with ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, and the polyimide precursor as an imide Since the photoreactive side chains of at least one polymer selected from the polyimide obtained by the reaction or the photoreactive side chains of the polymer react with the polymerizable compound, the liquid crystal display element obtained The response speed can be increased.
  • the pretilt angle of the liquid crystal display element depends on the liquid crystal alignment film used, that is, the liquid crystal aligning agent used, the polyimide precursor used, and the first photoradical-generating diamine used.
  • the polyimide precursor of the present invention particularly a polyimide precursor having a relatively large amount of radical generation, the amount of radical generation during UV irradiation increases.
  • the reaction of the above-described polymerizable compound is promoted, so that in the case of the same wavelength, the pretilt angle of the liquid crystal display element obtained with a small irradiation amount can be set to a desired value.
  • the response speed can be increased.
  • the pretilt angle of a liquid crystal display element tends to be farther from 90 ° as the amount of UV irradiation in forming the liquid crystal display element increases.
  • the molecular weights of the polyimide precursor and the imidized polymer are measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight as polyethylene glycol and polyethylene oxide equivalent values (hereinafter also referred to as Mn). Hereinafter, it is also referred to as Mw).
  • GPC device Room temperature gel permeation chromatography (GPC) device (SSC-7200) manufactured by Senshu Scientific Co., Ltd.
  • Standard sample for preparing calibration curve TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top manufactured by Polymer Laboratories) Molecular weight (Mp) about 12,000, 4,000, 1,000).
  • Mw weight average molecular weight
  • Mp peak top manufactured by Polymer Laboratories
  • Mp Molecular weight
  • the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS (tetramethylsilane) mixed product) (1. 0 ml) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • Step 1 Synthesis of 1- (4- (2,4-dinitrophenoxy) ethoxy) phenyl) -2-hydroxy-2-methylpropanone
  • 2,4- 100.0 g of dinitrofluorobenzene [Mw: 186.10 g / mol], 0.538 mol)
  • 120.6 g of 2-hydroxy-4 ′-(2-hydroxyethoxy) -2-methylpropiophenone [Mw : 224.25 g / mol], 0.538 mol
  • 81.7 g of triethylamine [Mw: 101.19 g / mol], 0.807 mol) and 1000 g of THF were added and refluxed for 24 hours.
  • the mixture was concentrated on a rotary evaporator, ethyl acetate was added, and this was washed several times with pure water and physiological saline, and
  • Step 2 Synthesis of 1- (4- (2,4-diaminophenoxy) ethoxy) phenyl) -2-hydroxy-2-methylpropanone (DA-1)
  • DA-1 4-(2-,4-diaminophenoxy) ethoxy) phenyl) -2-hydroxy-2-methylpropanone
  • the dinitrobenzene derivative obtained in Step 1 was added to a 1 L four-necked flask in 100. Weigh 10.0 g ([Mw: 390.34 g / mol], 0.256 mol) and 10.0 g of iron-doped platinum carbon (3 wt% manufactured by Evonic), add 500 ml of THF, and perform vacuum degassing and hydrogen replacement. Fully conducted and allowed to react for 24 hours at room temperature.
  • Aromatic diamine compound (DA-A) Synthesis of 1- (4- (2- (2,4-diaminophenoxy) ethoxy) phenyl) -2-methoxy-2-methylpropan-1-one An aromatic diamine compound (DA-A) was synthesized by the following route. The aromatic diamine compound (DA-A) corresponds to the above-mentioned specific diamine compound.
  • IRGACURE 2959 (2-hydroxy-1- (4- (2-hydroxyethoxy) phenyl) -2-methylpropan-1-one, 50.0 g, 223 mmol) was dissolved in THF (200 g), and p-toluenesulfonic acid was dissolved. Monohydrate (0.424 g, 2.23 mmol) was added, and 3,4-dihydro-2H-pyran (23.4 g, 279 mmol) was added dropwise over 10 minutes and reacted at room temperature for 3 hours.
  • the crude DA-A-3 (45.7 g) was dissolved in DMF (79.9 g), 1-fluoro-2,4-dinitrobenzene (35.7 g, 192 mmol), and triethylamine (29.1 g, 288 mmol) and stirred at room temperature for 24 hours. Thereafter, toluene (274 g) and water (274 g) were added and stirred, the aqueous layer was discarded, the organic layer was washed twice with water (274 g), and the organic layer was concentrated.
  • Step 5 Synthesis of 1- (4- (2- (2,4-dinitrophenoxy) ethoxy) phenyl) -2-methoxy-2-methylpropan-1-one (DA-A)
  • DA-A-4 (10.0 g, 24.7 mmol) was dissolved in THF, 1% platinum-carbon (0.2% Fe-doped, 59.5 wt% water content, 0.62 g) was added, and the hydrogen pressure was reduced to 0. The mixture was stirred at 2 to 0.5 MPa. After 3 hours, the completion of the reaction was confirmed by HPLC, the catalyst was filtered, the filtrate was concentrated, toluene (30 g) was added, the mixture was stirred at 65 ° C. for 30 minutes, cooled to 0 ° C., and the precipitated solid was removed.
  • NMP (44.0 g) was added to the obtained polyimide powder (A) (6.0 g), and the mixture was dissolved by stirring at 70 ° C. for 20 hours.
  • 3AMP (1 mass% NMP solution) 6.0g, NMP (4.0g), and BCS (40.0g) were added to this solution, and the liquid crystal aligning agent (A1) was obtained by stirring at room temperature for 5 hours.
  • liquid crystal aligning agent (A1) obtained in Example 1 Using the liquid crystal aligning agent (A1) obtained in Example 1, a liquid crystal cell was produced according to the procedure shown below.
  • the liquid crystal aligning agent (A1) obtained in Example 1 was spin-coated on the ITO surface of an ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 ⁇ m ⁇ 300 ⁇ m and a line / space of 5 ⁇ m was formed, After drying for 90 seconds on this hot plate, baking was performed in a hot air circulation oven at 200 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm.
  • liquid crystal aligning agent (A1) spin-coating the liquid crystal aligning agent (A1) on the ITO surface in which the electrode pattern is not formed, and drying for 90 seconds with a hot plate at 80 ° C., baking is performed in a hot air circulation oven at 200 ° C. for 30 minutes, A liquid crystal alignment film having a thickness of 100 nm was formed. After spraying 4 ⁇ m bead spacers on the liquid crystal alignment film of one of the two substrates, a sealant (solvent type thermosetting epoxy resin) was printed thereon. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was faced inward and bonded to the previous substrate, and then the sealing agent was cured to produce an empty cell. A liquid crystal cell was produced by injecting a polymerizable compound-containing liquid crystal MLC-3023 (trade name, manufactured by Merck & Co., Inc.) into the empty cell by a reduced pressure injection method.
  • a polymerizable compound-containing liquid crystal MLC-3023 trade name, manufactured by Merck
  • UV irradiation: 6J / cm 2 or 10J / cm 2 In a state where a DC voltage of 15 V was applied to the obtained liquid crystal cell, the liquid crystal cell was irradiated with UV through a 365 nm bandpass filter from the outside of the liquid crystal cell at 6 J / cm 2 or 10 J / cm 2 . The illuminance of UV was measured using UV-MO3A manufactured by ORC. Thereafter, for the purpose of deactivating the unreacted polymerizable compound remaining in the liquid crystal cell, UV (UV lamp: FLR40SUV32 /) was used with a UV-FL irradiation apparatus manufactured by Toshiba Lighting & Technology Co., Ltd.
  • the obtained liquid crystal cell was disposed between a pair of polarizing plates in a measuring apparatus configured in the order of a backlight, a pair of polarizing plates in a crossed Nicol state, and a light amount detector.
  • the pattern of the ITO electrode in which the line / space was formed was set at an angle of 45 ° with respect to the crossed Nicols.
  • a rectangular wave having a voltage of ⁇ 7 V and a frequency of 1 kHz is applied to the liquid crystal cell, and the change until the luminance observed by the light amount detector is saturated is captured by an oscilloscope, and the luminance when no voltage is applied is obtained.
  • a voltage of 0% and ⁇ 7 V was applied, the value of saturated luminance was taken as 100%, and the time taken for the luminance to change from 10% to 90% was taken as the response speed.
  • control liquid crystal aligning agent ( B1) was synthesized in the same manner as in Example 1, except for using DA-1 (13.22 g, 40.0 mmol) instead of “DA-A (13.78 g, 40.0 mmol)” in Example 1, the control liquid crystal aligning agent ( B1) was synthesized. Specifically, the control liquid crystal aligning agent (B1) was synthesized as follows. That is, BODA (10.01 g, 40.0 mmol), 3AMPDA (4.85 g, 20.0 mmol), DA-1 (13.22 g, 40.0 mmol), DA-2 (15.22 g, 40.0 mmol) were added. After dissolving in NMP (164.6 g) and reacting at 60 ° C.
  • CBDA 11.57 g, 59.0 mmol
  • NMP 54.9 g
  • acetic anhydride 46.4 g
  • pyridine 14.4 g
  • This reaction solution was poured into methanol (3300 ml), and the resulting precipitate was filtered off. This deposit was wash
  • the imidation ratio of this polyimide was 73%, the number average molecular weight was 23000 and the weight average molecular weight was 64000.
  • NMP (44.0 g) was added to the obtained polyimide powder (B) (6.0 g), and the mixture was dissolved by stirring at 70 ° C. for 20 hours.
  • 3AMP (1 mass% NMP solution) 6.0g, NMP (4.0g), and BCS (40.0g) were added to this solution, and the liquid crystal aligning agent (B1) was obtained by stirring at room temperature for 5 hours.
  • a control liquid crystal cell was prepared in the same manner as in Example 1 except that the liquid crystal aligning agent (B1) was used instead of the “liquid crystal aligning agent (A1)” in Example 1. Moreover, about the obtained control liquid crystal cell, operation similar to an Example was performed and the pretilt angle and the response speed were measured. The results are shown in Table 1.
  • Table 1 shows the following. That is, the control liquid crystal cell of Control Examples 1 and 2 (using the control liquid crystal aligning agent (B1) obtained using the control diamine (DA-1)) and Examples 1 and 2 (aromatic diamine compound (DA-A))
  • the pretilt angle is separated from 90 °. ing.
  • the liquid crystal cells of Examples 1 and 2 can have a desired pretilt angle and a desired response speed at a lower UV irradiation amount than the liquid crystal cells of Control Examples 1 and 2.
  • the aromatic diamine compound (DA-A) used in the liquid crystal cells of Examples 1 and 2 has a larger amount of radical generation during UV irradiation than the diamine (DA-1) used in the control liquid crystal cell.
  • DA-A aromatic diamine compound
  • the liquid crystal cells of Examples 1 and 2 may require less UV irradiation at the same wavelength than the control liquid crystal cells of Control Examples 1 and 2, liquid crystal damage due to shortening of the UV irradiation time can be reduced. Costs can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention provides a polyimide precursor in which the quantity of radicals generated is relatively large. Through this polyimide precursor, reaction of a polymerizable compound is accelerated, the pretilt angle in liquid crystals is efficiently set to the desired value, and a liquid crystal display element having enhanced response speed is provided. The present invention provides a polyimide precursor which uses a first photoradical generating diamine, the polyimide precursor being characterized in that the quantity of radicals generated during photoirradiation under the same conditions is greater than in a second polyimide precursor formed under the same conditions as the polyimide precursor except that the first photoradical generating diamine is replaced therein with a second photoradical generating diamine represented by formula (1). 

Description

ポリイミド前駆体、並びに該前駆体を有する液晶配向剤、液晶配向膜及び液晶表示素子POLYIMIDE PRECURSOR, LIQUID CRYSTAL ALIGNING AGENT, LIQUID CRYSTAL ALIGNING FILM AND LIQUID CRYSTAL DISPLAY DEVICE HAVING THE PRECURSOR
 本発明は、液晶分子に電圧を印加した状態で紫外線を照射することによって作製される垂直配向方式の液晶表示素子等に使用できる、ラジカル発生量が相対的に多いポリイミド前駆体、該ポリイミド前駆体を有する液晶配向剤、該液晶配向剤を有して形成される液晶配向膜、及び該液晶配向膜を有して形成される液晶表示素子に関する。 The present invention relates to a polyimide precursor having a relatively large amount of radical generation, which can be used for a vertical alignment type liquid crystal display device produced by irradiating ultraviolet rays with voltage applied to liquid crystal molecules, and the polyimide precursor. The present invention relates to a liquid crystal alignment agent having a liquid crystal alignment film, a liquid crystal alignment film formed using the liquid crystal alignment agent, and a liquid crystal display element formed using the liquid crystal alignment film.
 基板に対して垂直に配向している液晶分子を電界によって応答させる方式(垂直配向(VA)方式ともいう)の液晶表示素子には、その製造過程において液晶分子に電圧を印加しながら紫外線を照射する工程を含むものがある。
 このような垂直配向方式の液晶表示素子では、予め液晶組成物中に光重合性化合物を添加し、かつポリイミド系などの垂直配向膜を用い、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くする技術(PSA(Polymer Sustained Alignment)方式素子、例えば、特許文献1及び非特許文献1参照。)が知られている。
A liquid crystal display element of a method in which liquid crystal molecules aligned perpendicular to the substrate respond by an electric field (also referred to as a vertical alignment (VA) method) is irradiated with ultraviolet rays while applying a voltage to the liquid crystal molecules in the manufacturing process. There is a thing including the process to do.
In such a vertical alignment type liquid crystal display element, a photopolymerizable compound is previously added to the liquid crystal composition, and a polyimide-based vertical alignment film is used, and ultraviolet rays are applied while applying a voltage to the liquid crystal cell. Therefore, a technique for increasing the response speed of liquid crystal (PSA (Polymer Sustained Alignment) type element, see, for example, Patent Document 1 and Non-Patent Document 1) is known.
 かかるPSA方式素子では、通常、電界に応答した液晶分子の傾く方向は、基板上に設けられた突起や表示用電極に設けられたスリットなどによって制御されているが、液晶組成物中に光重合性化合物を添加し液晶セルに電圧を印加しながら紫外線を照射することにより、液晶分子の傾いていた方向が記憶されたポリマー構造物が液晶配向膜上に形成されるので、突起やスリットのみで液晶分子の傾き方向を制御する方法と比べて、液晶表示素子の応答速度が速くなるといわれている。 In such a PSA device, the direction in which the liquid crystal molecules incline in response to an electric field is usually controlled by protrusions provided on the substrate or slits provided on the display electrode, but photopolymerization is performed in the liquid crystal composition. By applying UV light while applying a voltage to the liquid crystal cell and applying a voltage to the liquid crystal cell, a polymer structure in which the tilted direction of the liquid crystal molecules is memorized is formed on the liquid crystal alignment film. It is said that the response speed of the liquid crystal display element is faster than the method of controlling the tilt direction of the liquid crystal molecules.
 一方、このPSA方式の液晶表示素子においては、液晶に添加する重合性化合物の溶解性が低く、添加量を増やすと低温時に析出するといった問題があるが、重合性化合物の添加量を減らすと良好な配向状態が得られなくなる。また、液晶中に残留する未反応の重合性化合物は液晶中の不純物(コンタミ)となるため液晶表示素子の信頼性を低下させるといった問題もある。また、PSA方式で必要なUV照射処理はその照射量が多いと、液晶中の成分が分解し、信頼性の低下を引き起こす。
 さらに、光重合性化合物を液晶組成物ではなく、液晶配向膜中に添加することによっても、液晶表示素子の応答速度が速くなることが報告されている(SC-PVA型液晶ディスプレイ、例えば、非特許文献2参照)。
On the other hand, in this PSA type liquid crystal display element, the solubility of the polymerizable compound added to the liquid crystal is low, and there is a problem that when the addition amount is increased, precipitation occurs at a low temperature, but it is good when the addition amount of the polymerizable compound is reduced. An orientation state cannot be obtained. Moreover, since the unreacted polymerizable compound remaining in the liquid crystal becomes an impurity (contamination) in the liquid crystal, there is a problem that the reliability of the liquid crystal display element is lowered. In addition, when the UV irradiation treatment necessary for the PSA method is large, components in the liquid crystal are decomposed, resulting in a decrease in reliability.
Furthermore, it has been reported that the response speed of the liquid crystal display element is increased by adding a photopolymerizable compound to the liquid crystal alignment film instead of the liquid crystal composition (SC-PVA liquid crystal display, for example, Patent Document 2).
特開2003-307720号公報JP 2003-307720 A
 近年では、液晶表示素子の品質向上に伴い、電圧印加に対する液晶の応答速度をさらに速くすることが望まれている。その為には、液晶中の成分の分解を伴わない長波長の紫外線照射で、重合性化合物が効率よく反応し、配向固定化能力を発揮することが必要である。さらに、紫外線照射後に未反応の重合性化合物が残存せず、液晶表示素子の信頼性に悪影響を与えないことも必要である。 In recent years, with the improvement of the quality of liquid crystal display elements, it is desired to further increase the response speed of the liquid crystal to voltage application. For that purpose, it is necessary that the polymerizable compound reacts efficiently and exhibits the ability to fix alignment by irradiation with ultraviolet rays having a long wavelength without decomposition of components in the liquid crystal. Furthermore, it is necessary that unreacted polymerizable compound does not remain after ultraviolet irradiation and does not adversely affect the reliability of the liquid crystal display element.
 本発明の課題は、上述の従来技術の問題点を伴わずに、液晶中及び/又は液晶配向膜中の重合性化合物を反応させる工程を用いて得られる液晶表示素子の応答速度を向上させることができる液晶配向剤、液晶配向膜、及び液晶表示素子を提供することにある。
 より具体的には、本発明の目的は、ラジカル発生量が相対的に多いポリイミド前駆体を提供し、該ポリイミド前駆体により、重合性化合物の反応を促進させて、液晶におけるプレチルト角を効率よく所望の値とし、液晶表示素子の応答速度を向上させることにある。
An object of the present invention is to improve the response speed of a liquid crystal display device obtained by using a step of reacting a polymerizable compound in a liquid crystal and / or a liquid crystal alignment film without the above-mentioned problems of the prior art. An object of the present invention is to provide a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element that can be used.
More specifically, an object of the present invention is to provide a polyimide precursor having a relatively large amount of radical generation, and by using the polyimide precursor, the reaction of the polymerizable compound is promoted, and the pretilt angle in the liquid crystal is efficiently increased. The desired value is set to improve the response speed of the liquid crystal display element.
 本発明者らは、鋭意検討を行った結果、液晶配向剤を構成する重合体に対して、紫外線照射によりラジカルを発生させ且つ該ラジカルの発生量が相対的に多い特定構造をポリイミド前駆体に導入し、該ポリイミド前駆体を有する液晶配向剤を使用することにより、液晶中及び/又は液晶配向膜中の重合性化合物を反応させる工程を用いて得られる液晶表示素子における、重合性化合物の反応性を高めることにより、上記課題を達成しうることを見出し、以下に詳述する発明を完成させた。 As a result of intensive studies, the inventors of the present invention have made a polyimide precursor a specific structure in which a radical is generated by ultraviolet irradiation and a relatively large amount of radical is generated with respect to the polymer constituting the liquid crystal aligning agent. The reaction of the polymerizable compound in the liquid crystal display device obtained by using the step of reacting the polymerizable compound in the liquid crystal and / or the liquid crystal alignment film by introducing and using the liquid crystal aligning agent having the polyimide precursor The inventors have found that the above-mentioned problems can be achieved by enhancing the properties, and have completed the invention described in detail below.
 <1> 第1の光ラジカル発生ジアミンを用いたポリイミド前駆体であって、該第1の光ラジカル発生ジアミンを式(1)で表される第2の光ラジカル発生ジアミンに代えた以外は該ポリイミド前駆体と同一の条件で形成した第2のポリイミド前駆体より、同一条件下での光照射時のラジカル発生量が多いことを特徴とする、上記ポリイミド前駆体。 <1> A polyimide precursor using a first photoradical generating diamine, except that the first photoradical generating diamine is replaced with a second photoradical generating diamine represented by the formula (1). The said polyimide precursor characterized by having more radical generation amount at the time of light irradiation on the same conditions than the 2nd polyimide precursor formed on the same conditions as a polyimide precursor.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 <2> 上記<1>において、光照射時の光の波長が、300nm~400nmであるのがよい。
 <3> 上記<1>又は<2>において、ポリイミド前駆体を構成する全ジアミン100モル%中、前記第1の光ラジカル発生ジアミンが、0.1~100モル%であるのがよい。
 <4> 上記<1>~<3>において、第1の光ラジカル発生ジアミンが、式(A)
(式中、Arは置換基を有してもよい芳香族炭化水素基を表し、
 R101は2価の有機基を表し、
 R102~R104は各々独立に、1価の有機基を表す)
の構造を有するのがよい。
<2> In the above item <1>, the wavelength of light upon light irradiation is preferably 300 nm to 400 nm.
<3> In the above item <1> or <2>, the first photoradical-generating diamine may be 0.1 to 100 mol% in 100 mol% of all diamines constituting the polyimide precursor.
<4> In the above items <1> to <3>, the first photoradical-generating diamine is represented by the formula (A)
(In the formula, Ar represents an aromatic hydrocarbon group which may have a substituent,
R 101 represents a divalent organic group,
R 102 to R 104 each independently represents a monovalent organic group)
It is good to have the following structure.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 <5> 上記<4>において、-R101-が、-T-S-T
(式中、
 T及びTはそれぞれ独立して、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、
 Sは、単結合、又は非置換若しくはフッ素原子によって置換されている炭素原子数1~20のアルキレン基(アルキレン基中の-CH-又は-CF-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環))である)
で表されるのがよい。
<5> In the above item <4>, -R 101 -is -T 1 -ST 2-
(Where
T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ). -, -CON (CH 3 )-, or -N (CH 3 ) CO-,
S is a single bond or an alkylene group having 1 to 20 carbon atoms which is unsubstituted or substituted by a fluorine atom (—CH 2 — or —CF 2 — in an alkylene group is —CH═CH—, or A group selected from group G (wherein the groups selected from group G are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, -CONH-, -NH-, divalent carbocycle or divalent heterocycle)))
It is good to be represented by
 <6> 上記<4>又は<5>において、R102~R104のうち、いずれか1つが、-OR111(R111は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基(アルキル基中の-CH-又は-CF-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環)で置換されていてもよい)であり、
 他の2つが、各々独立に、炭素数1~20の直鎖又は分岐鎖又は環状のアルキル基、-OR112(R112は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基、置換基を有してもよい炭素数6~20のアリール基からなる群から選ばれる基を表す)で表される基、ベンジル基、又はフェネチル基である(他の2つが前記アルキル基又は-OR112である場合、互いに結合して環を形成してもよい)のがよい。
<6> In the above <4> or <5>, any one of R 102 to R 104 is —OR 111 (where R 111 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms) A linear, branched or cyclic alkyl group (wherein —CH 2 — or —CF 2 — in the alkyl group is —CH═CH— or a group selected from the following group G (provided that the group G is selected): Groups that are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, a divalent carbocycle or two Valent heterocycle)), and
The other two are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, —OR 112 (R 112 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms. A linear, branched or cyclic alkyl group, or a group selected from the group consisting of optionally substituted aryl groups having 6 to 20 carbon atoms), a benzyl group, or a phenethyl group (In the case where the other two are the alkyl group or —OR 112 , they may be bonded to each other to form a ring).
 <7> 上記<4>~<6>のいずれかにおいて、Arがフェニレン基であるのがよい。
 <8> 上記<1>~<7>のいずれかにおいて、第1の光ラジカル発生ジアミンが、下記式(2)(式中、Ar及びR101~R104は、上述と同じ定義を有する)で表されるのがよい。
<7> In any one of the above items <4> to <6>, Ar may be a phenylene group.
<8> In any one of the above items <1> to <7>, the first photoradical-generating diamine is represented by the following formula (2) (wherein Ar and R 101 to R 104 have the same definition as described above): It is good to be represented by
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 <9> 上記<1>~<8>のいずれかにおいて、第1の光ラジカル発生ジアミンが、下記式(3)で表されるのがよい。 <9> In any one of the above items <1> to <8>, the first photoradical-generating diamine may be represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 <10> 上記<1>~<9>のいずれかにおいて、ポリイミド前駆体が液晶を垂直に配向させる側鎖をさらに有するのがよい。
 <11> 上記<1>~<10>のいずれかにおいて、ポリイミド前駆体が光反応性基を構造中に含む側鎖をさらに有するのがよい。
 <12>
 上記<1>~<11>のいずれかのポリイミド前駆体をイミド化して得られるポリイミド。
<10> In any one of the above items <1> to <9>, the polyimide precursor may further have a side chain for vertically aligning the liquid crystal.
<11> In any one of the above items <1> to <10>, the polyimide precursor may further have a side chain including a photoreactive group in the structure.
<12>
A polyimide obtained by imidizing any of the above polyimide precursors <1> to <11>.
 <13> 上記<1>~<11>のいずれかのポリイミド前駆体及び/又は上記<12>のポリイミドを有する液晶配向剤。
 <14> 上記<13>において、液晶中及び/又は液晶配向膜中に重合性化合物を含有し、電圧を印加しながら紫外線を照射することにより前記重合性化合物を反応させて得られる液晶表示素子の製造に用いられるのがよい。
 <15> 上記<13>又は<14>の液晶配向剤を有して形成される液晶配向膜。
 <16> 上記<15>の液晶配向膜を具備する液晶表示素子。
<13> A liquid crystal aligning agent comprising the polyimide precursor of any one of the above <1> to <11> and / or the polyimide of the above <12>.
<14> In the above <13>, a liquid crystal display element obtained by reacting the polymerizable compound by irradiating ultraviolet rays while applying a voltage, containing a polymerizable compound in the liquid crystal and / or the liquid crystal alignment film It is good to be used for manufacturing.
<15> A liquid crystal alignment film formed with the liquid crystal aligning agent according to <13> or <14>.
<16> A liquid crystal display device comprising the liquid crystal alignment film of <15>.
 <17> 下記式(A)
(式中、Arは、置換基を有してもよい芳香族炭化水素基を表し、
 R101は2価の有機基を表し、
 R102~R104は各々独立に、1価の有機基を表す)
で表される構造を有するジアミン。
<17> The following formula (A)
(In the formula, Ar represents an aromatic hydrocarbon group which may have a substituent,
R 101 represents a divalent organic group,
R 102 to R 104 each independently represents a monovalent organic group)
A diamine having a structure represented by:
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 <18> 上記<17>において、-R101-が、-T-S-T
(式中、T及びTはそれぞれ独立して、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、
 Sは、単結合、又は非置換若しくはフッ素原子によって置換されている炭素原子数1~20のアルキレン基(アルキレン基中の-CH-又は-CF-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環))である)
で表されるのがよい。
<18> In the above item <17>, -R 101 -is -T 1 -ST 2-
(Wherein T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—,
S is a single bond or an alkylene group having 1 to 20 carbon atoms which is unsubstituted or substituted by a fluorine atom (—CH 2 — or —CF 2 — in an alkylene group is —CH═CH—, or A group selected from group G (wherein the groups selected from group G are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, -CONH-, -NH-, divalent carbocycle or divalent heterocycle)))
It is good to be represented by
 <19> 上記<17>又は<18>において、
 R102~R104のうち、いずれか1つが、-OR111(R111は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基(アルキル基中の-CH-又は-CF-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環)で置換されていてもよい)であり、
 他の2つが、各々独立に、炭素数1~20の直鎖又は分岐鎖又は環状のアルキル基、-OR112(R112は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基、置換基を有してもよい炭素数6~20のアリール基からなる群から選ばれる基を表す)で表される基、ベンジル基、又はフェネチル基である(他の2つが前記アルキル基又は-OR112である場合、互いに結合して環を形成してもよい)であるのがよい。
<19> In the above <17> or <18>,
Any one of R 102 to R 104 is —OR 111 (wherein R 111 is an unsubstituted or linear or branched or cyclic alkyl group having 1 to 20 carbon atoms substituted by a fluorine atom (alkyl —CH 2 — or —CF 2 — in the group is replaced by —CH═CH— or a group selected from the following group G (provided that the groups selected from group G are not adjacent to each other): May be substituted (group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, divalent carbocycle or divalent heterocycle)) And
The other two are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, —OR 112 (R 112 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms. A linear, branched or cyclic alkyl group, or a group selected from the group consisting of optionally substituted aryl groups having 6 to 20 carbon atoms), a benzyl group, or a phenethyl group (In the case where the other two are the alkyl group or —OR 112 , they may be bonded to each other to form a ring).
 <20> 上記<17>~<19>のいずれかのジアミンが、下記式(2)(Ar及びR101~R104は上述と同じ定義を有する)で表されるのがよい。 <20> The diamine according to any one of the above <17> to <19> may be represented by the following formula (2) (Ar and R 101 to R 104 have the same definition as described above).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 <21> 上記<17>~<20>のいずれかのジアミンが、下記式(4)(R103及びR104、並びにR111は、上述と同じ定義を有し、X101は単結合又はCOを表す)で表されるのがよい。 <21> The diamine of any one of the above <17> to <20> has the following formula (4) (R 103 and R 104 , and R 111 have the same definition as described above, and X 101 is a single bond or CO It is good to be represented by.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 <22> 上記<17>~<21>のいずれかのジアミンが、下記式(3)~(3)-12からなる群から選ばれるのがよい。 <22> The diamine of any of the above <17> to <21> may be selected from the group consisting of the following formulas (3) to (3) -12.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 <23> 下記式(2)(式中、Arは置換基を有してもよい芳香族炭化水素基を表し、 R101は2価の有機基を表し、R102~R104は各々独立に、1価の有機基を表す)
で表されるジアミン。
<23> The following formula (2) (wherein Ar represents an aromatic hydrocarbon group which may have a substituent, R 101 represents a divalent organic group, and R 102 to R 104 each independently represents Represents a monovalent organic group)
Diamine represented by
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 <24> 下記式(3)で表されるジアミン。 <24> Diamine represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 <25> 下記式(3)~(3)-12からなる群から選ばれるジアミン。 <25> A diamine selected from the group consisting of the following formulas (3) to (3) -12.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 <26> 上記<17>~<25>のいずれかのジアミンを用いるポリイミド前駆体。
 <27> 上記<26>において、ポリイミド前駆体を構成する全ジアミン100モル%中、上記<17>~<25>のいずれかのジアミンが、0.1~100モル%であるのがよい。
 <28> 上記<26>又は<27>のポリイミド前駆体において、液晶を垂直に配向させる側鎖をさらに有するのがよい。
 <29> 上記<28>において、液晶を垂直に配向させる側鎖が、下記式[II-1](式[II-1]中、Xは、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-を表す。Xは、単結合又は(CH-(bは1~15の整数である)を表す。Xは、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-を表す。Xはベンゼン環、シクロヘキサン環、及び複素環から選ばれる2価の環状基で表し、これらの環状基の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、さらに、Xは、ステロイド骨格を有する炭素数17~51の有機基から選ばれる2価の有機基であってもよい。Xはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基を表し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。nは0~4の整数を表す。Xは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基を表す。)
及び
[II-2]
(式[II-2]中、Xは、単結合、-O-、-CHO-、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-COO-又はOCO-を表す。Xは、炭素数8~22のアルキル基又は炭素数6~18のフッ素含有アルキル基を表す。)
から選ばれる少なくとも1つであるのがよい。
<26> A polyimide precursor using the diamine according to any one of the above items <17> to <25>.
<27> In the above item <26>, the diamine of any one of the above items <17> to <25> may be 0.1 to 100 mol% in 100 mol% of all diamines constituting the polyimide precursor.
<28> The polyimide precursor according to <26> or <27> may further include a side chain for vertically aligning the liquid crystal.
<29> In the above item <28>, the side chain for vertically aligning the liquid crystal has the following formula [II-1] (in the formula [II-1], X 1 represents a single bond, — (CH 2 ) a — ( a represents an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, X 2 is a single bond or (CH 2 ) b — (b is 1 to 15 X 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. represents .X 4 is a benzene ring, a cyclohexane ring, and represents a divalent cyclic group selected from heterocyclic, any hydrogen atom in these cyclic groups, an alkyl group having 1 to 3 carbon atoms, 1 to 3 carbon atoms An alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom May be conversion, further, X 4 is may be a divalent organic group selected from an organic group having a carbon number of 17 to 51 having a steroid skeleton .X 5 is a benzene ring, cyclohexane ring and heterocyclic And an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or a fluorine-containing alkyl group having 1 to 3 carbon atoms. Group, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms or a fluorine atom, n represents an integer of 0 to 4. X 6 is an alkyl group having 1 to 18 carbon atoms, 1 to 18 carbon atoms And a fluorine-containing alkyl group having 1 to 18 carbon atoms or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.)
And [II-2]
(In the formula [II-2], X 7 represents a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— And represents —COO— or OCO—, wherein X 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms.)
It is good that it is at least one selected from.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 <30> 上記<26>~<29>のいずれかのポリイミド前駆体において、光反応性基を構造中に含む側鎖をさらに有するのがよい。
 <31> 上記<30>において、光反応性基を構造中に含む側鎖が、
下記式[III]
(式[III]中、Rは、単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表す。Rは、単結合、フッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表し、アルキレン基の-CH-は-CF-又は-CH=CH-で任意に置換されていてもよく、次のいずれかの基が互いに隣り合わない場合、これらの基に置換されていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは複素環。R10は、下記式R10-1~R10-7からなる群から選択される光反応性基を表す。)
又は
式(IV)
(Yは-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、又は-CO-を表す。Yは、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。Yは、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。Yは、-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、-CO-、又は単結合を表す。Yはシンナモイル基を表す。Yは単結合、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。Yは、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。Yはアクリル基又はメタクリル基である光重合性基を示す。)
で表されるのがよい。
<30> The polyimide precursor according to any one of the above <26> to <29> may further have a side chain containing a photoreactive group in the structure.
<31> In the above <30>, a side chain containing a photoreactive group in the structure thereof,
The following formula [III]
(In the formula [III], R 8 represents a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, — Represents N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—, wherein R 9 is a single bond, alkylene having 1 to 20 carbon atoms which may be substituted with a fluorine atom The alkylene group —CH 2 — may be optionally substituted with —CF 2 — or —CH═CH—, and if any of the following groups are not adjacent to each other, these groups are substituted: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, a divalent carbocyclic or heterocyclic ring, R 10 is a group represented by the following formula R 10 −1 to It represents a photoreactive group selected from the group consisting of R 10 -7.)
Or formula (IV)
(Y 1 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, or —CO—. Y 2 has 1 to 30 carbon atoms. An alkylene group, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle may be substituted with a fluorine atom or an organic group. In the case of 2 , when the following groups are not adjacent to each other, —CH 2 — may be substituted by these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, — NH—, —NHCONH—, —CO— Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, or represents a bond .Y 4 is .Y 5 is a single bond representing a cinnamoyl group, 1 to 3 carbon atoms An alkylene group, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle may be substituted with a fluorine atom or an organic group. In Y 5 , when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—, wherein Y 6 represents a photopolymerizable group which is an acryl group or a methacryl group.
It is good to be represented by
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 <31> 上記<26>~<30>のいずれかのポリイミド前駆体をイミド化して得られるポリイミド。
 <32> 上記<26>~<31>のいずれかのポリイミド前駆体及び/又は上記<31>のポリイミドを有する液晶配向剤。
 <33> 上記<32>において、液晶中及び/又は液晶配向膜中に重合性化合物を含有し、電圧を印加しながら紫外線を照射することにより前記重合性化合物を反応させて得られる液晶表示素子の製造に用いられるのがよい。
 <34> 上記<32>又は<33>の液晶配向剤を有して形成される液晶配向膜。
 <35> 上記<34>の液晶配向膜を具備する液晶表示素子。
<31> A polyimide obtained by imidizing any of the polyimide precursors of <26> to <30>.
<32> A liquid crystal aligning agent comprising the polyimide precursor of any one of the above <26> to <31> and / or the polyimide of the above <31>.
<33> In the above <32>, a liquid crystal display element obtained by reacting the polymerizable compound by irradiating ultraviolet rays while applying a voltage, containing a polymerizable compound in the liquid crystal and / or the liquid crystal alignment film It is good to be used for manufacturing.
<34> A liquid crystal alignment film formed with the liquid crystal aligning agent according to <32> or <33>.
<35> A liquid crystal display device comprising the liquid crystal alignment film of <34>.
 本発明により、ラジカル発生量が相対的に多いポリイミド前駆体を提供することができる。
 また、本発明により、該ポリイミド前駆体を有する液晶配向剤及び/又は該液晶配向剤を有して形成される液晶配向膜を用いることにより、紫外線の照射量を相対的に低くしても、液晶において所望のプレチルト角を得ることができ、これに伴って、応答速度が速い垂直配向方式の液晶表示素子、特にPSA型液晶表示素子を提供することができる。
According to the present invention, a polyimide precursor having a relatively large amount of radical generation can be provided.
Further, according to the present invention, by using a liquid crystal aligning agent having the polyimide precursor and / or a liquid crystal aligning film formed with the liquid crystal aligning agent, even if the irradiation amount of ultraviolet rays is relatively low, A desired pretilt angle can be obtained in the liquid crystal, and accordingly, a vertical alignment type liquid crystal display element, particularly a PSA type liquid crystal display element, having a high response speed can be provided.
 本発明は、ラジカル発生量が相対的に多いポリイミド前駆体、該ポリイミドを構成するジアミン、該ポリイミド前駆体を有する液晶配向剤、該液晶配向剤を有して形成される液晶配向膜、及び該液晶表示素子を提供する。以降、順に説明する。
<ラジカル発生量が相対的に多いポリイミド前駆体>
 本発明は、ラジカル発生量が相対的に多いポリイミド前駆体を提供する。
 具体的には、本発明は、第1の光ラジカル発生ジアミンを用いたポリイミド前駆体を提供する。
 第1の光ラジカル発生ジアミンを用いたポリイミド前駆体は、該第1の光ラジカル発生ジアミンを式(1)で表される第2の光ラジカル発生ジアミンに代えた以外、同一の条件で形成した第2のポリイミド前駆体よりも、同一条件下での光照射時のラジカル発生量が多いことを特徴とする。
 ここで、「同一条件下での光照射時」の光の波長は、300nm~400nm、好ましくは310~380nm、より好ましくは350~370nmであるのがよい。
The present invention relates to a polyimide precursor having a relatively large amount of radical generation, a diamine constituting the polyimide, a liquid crystal alignment agent having the polyimide precursor, a liquid crystal alignment film formed using the liquid crystal alignment agent, and the A liquid crystal display element is provided. Hereinafter, this will be described in order.
<Polyimide precursor with a relatively large amount of radical generation>
The present invention provides a polyimide precursor having a relatively large amount of radical generation.
Specifically, the present invention provides a polyimide precursor using a first photoradical-generating diamine.
The polyimide precursor using the first photoradical diamine was formed under the same conditions except that the first photoradical diamine was replaced with the second photoradical diamine represented by formula (1). The amount of radical generation upon light irradiation under the same conditions is larger than that of the second polyimide precursor.
Here, the wavelength of light “when irradiated with light under the same conditions” may be 300 to 400 nm, preferably 310 to 380 nm, more preferably 350 to 370 nm.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 なお、本明細書において、「ポリイミド前駆体」とは、ジアミン成分と、テトラカルボン酸二無水物成分とを反応させて得られたものを意味する。
 また、本明細書において、「~~ジアミンを用いたポリイミド前駆体」又は「ポリイミド前駆体は、~~ジアミンを用いて形成される」とは、ポリイミド前駆体の原料として「~~ジアミン」が用いられていることを意味する。ここで、該「ジアミン」は、原料の一部である場合又は全部である場合を含む。
 本明細書において、「ポリイミド前駆体を構成する~~ジアミン」とは、ポリイミド前駆体の原料として「~~ジアミン」が用いられて、該ポリイミド前駆体が形成されていることを意味する。ここで、該「ジアミン」は、原料の一部である場合又は全部である場合を含む。
In the present specification, the “polyimide precursor” means a product obtained by reacting a diamine component with a tetracarboxylic dianhydride component.
Further, in the present specification, “to a polyimide precursor using a diamine” or “a polyimide precursor is formed using a to diamine” means “to diamine” as a raw material for the polyimide precursor. It means being used. Here, the “diamine” includes a case where it is a part or the whole of a raw material.
In the present specification, “a ˜diamine constituting a polyimide precursor” means “a ˜diamine” is used as a raw material for the polyimide precursor to form the polyimide precursor. Here, the “diamine” includes a case where it is a part or the whole of a raw material.
 本発明のポリイミド前駆体は、ポリイミド前駆体を構成する全ジアミン100モル%中、第1の光ラジカル発生ジアミンが、0.1~100モル%、好ましくは10~80モル%、より好ましくは30~50モル%であるのがよい。 In the polyimide precursor of the present invention, the first photo radical generating diamine is 0.1 to 100 mol%, preferably 10 to 80 mol%, more preferably 30 out of 100 mol% of the total diamine constituting the polyimide precursor. It should be ˜50 mol%.
 第1の光ラジカル発生ジアミンは、式(A)
(式中、Arは置換基を有してもよい芳香族炭化水素基を表し、
 R101は2価の有機基を表し、
 R102~R104は各々独立に、1価の有機基を表す)
の構造を有するのがよい。
The first photoradical-generating diamine has the formula (A)
(In the formula, Ar represents an aromatic hydrocarbon group which may have a substituent,
R 101 represents a divalent organic group,
R 102 to R 104 each independently represents a monovalent organic group)
It is good to have the following structure.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 -R101-は、-T-S-T-で表される基であるのがよい。
 ここで、T及びTはそれぞれ独立して、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、
 Sは、単結合、又は非置換若しくはフッ素原子によって置換されている炭素原子数1~20のアルキレン基(アルキレン基中の-CH-又は-CF-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環))である。
-R 101 - is, -T 1 -S-T 2 - it is a group represented by.
Here, T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N ( CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—,
S is a single bond or an alkylene group having 1 to 20 carbon atoms which is unsubstituted or substituted by a fluorine atom (—CH 2 — or —CF 2 — in an alkylene group is —CH═CH—, or A group selected from group G (wherein the groups selected from group G are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, -CONH-, -NH-, divalent carbocycle or divalent heterocycle)).
 R102~R104のうち、いずれか1つが、-OR111(R111は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基(アルキル基中の-CH-又は-CF-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環)で置換されていてもよい)であり、
 他の2つが、各々独立に、炭素数1~20の直鎖又は分岐鎖又は環状のアルキル基、-OR112(R112は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基、置換基を有してもよい炭素数6~20のアリール基からなる群から選ばれる基を表す)で表される基、ベンジル基、又はフェネチル基である(他の2つが前記アルキル基又は-OR112である場合、互いに結合して環を形成してもよい)のがよい。
Any one of R 102 to R 104 is —OR 111 (wherein R 111 is an unsubstituted or linear or branched or cyclic alkyl group having 1 to 20 carbon atoms substituted by a fluorine atom (alkyl —CH 2 — or —CF 2 — in the group is replaced by —CH═CH— or a group selected from the following group G (provided that the groups selected from group G are not adjacent to each other): May be substituted (group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, divalent carbocycle or divalent heterocycle)) And
The other two are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, —OR 112 (R 112 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms. A linear, branched or cyclic alkyl group, or a group selected from the group consisting of optionally substituted aryl groups having 6 to 20 carbon atoms), a benzyl group, or a phenethyl group (In the case where the other two are the alkyl group or —OR 112 , they may be bonded to each other to form a ring).
 Arは、フェニレン、ナフチレン及びビフェニレンから選ばれる基であるのがよい。
 カルボニルが結合しているArは、紫外線の吸収波長に関与するため、長波長化する場合、ナフチレンやビフェニレンのような共役長の長い構造が好ましい。Arには置換基が置換していても良く、かかる置換基は、アルキル基、ヒドロキシル基、アルコキシ基、アミノ基などのような電子供与性の有機基が好ましい。
 しかしながら、Arがナフチレンやビフェニレンのような構造になると溶解性が悪くなり、合成の難易度も高くなる。そのため、紫外線の波長が300nm~400nm、好ましくは310~380nmの範囲であればフェニル基でも十分な特性が得られるため、フェニル基が最も好ましい。
Ar is preferably a group selected from phenylene, naphthylene and biphenylene.
Since Ar to which carbonyl is bonded is involved in the absorption wavelength of ultraviolet rays, a structure having a long conjugate length such as naphthylene or biphenylene is preferable when the wavelength is increased. Ar may be substituted with a substituent, and such a substituent is preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group, and an amino group.
However, when Ar has a structure such as naphthylene or biphenylene, the solubility becomes poor and the difficulty of synthesis increases. Therefore, a phenyl group is most preferred because sufficient characteristics can be obtained with a phenyl group when the wavelength of ultraviolet rays is in the range of 300 nm to 400 nm, preferably 310 to 380 nm.
 第1の光ラジカル発生ジアミンは、下記式(2)(Ar及びR101~R104は上述と同じ定義を有する)で表されるのがよい。なお、ジアミノベンゼンは、o-フェニレンジアミン、m-フェニレンジアミン、又はp-フェニレンジアミンのいずれでの構造でもよいが、酸二無水物との反応性の点では、m-フェニレンジアミン、又はp-フェニレンジアミンが好ましい。 The first photoradical-generating diamine is preferably represented by the following formula (2) (Ar and R 101 to R 104 have the same definition as described above). The diaminobenzene may have a structure of any of o-phenylenediamine, m-phenylenediamine, and p-phenylenediamine. However, in terms of reactivity with acid dianhydride, diaminobenzene may be m-phenylenediamine or p-phenylenediamine. Phenylenediamine is preferred.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 特に、第1の光ラジカル発生ジアミンは、下記式(4)(R103及びR104、並びにR111は、上述と同じ定義を有し、X101は単結合又はCOを表す)で表されるジアミンであるのがよい。 In particular, the first photoradical-generating diamine is represented by the following formula (4) (R 103 and R 104 , and R 111 have the same definition as described above, and X 101 represents a single bond or CO). Preferably it is a diamine.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 具体的には、第1の光ラジカル発生ジアミンとして、下記式(3)~(3)-12を挙げることができるが、これらに限定されない。第1の光ラジカル発生ジアミンは、特に式(3)で表されるジアミンであるのがよい。 Specifically, examples of the first photoradical-generating diamine include, but are not limited to, the following formulas (3) to (3) -12. The first photoradical-generating diamine is particularly preferably a diamine represented by the formula (3).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
<液晶を垂直に配向させる側鎖>
 本発明のポリイミド前駆体は、液晶を垂直に配向させる側鎖をさらに有するのが好ましい。
 液晶を垂直に配向させる側鎖は、下記の式[II-1]又は式[II-2]で表される。
 式[II-1]中、X~X、及びnは、上記で定義されたとおりである。また、式[II-2]中、X、Xは、上記で定義されたとおりである。 
<Side chains that align liquid crystal vertically>
The polyimide precursor of the present invention preferably further has a side chain for vertically aligning the liquid crystal.
The side chain for vertically aligning the liquid crystal is represented by the following formula [II-1] or [II-2].
In the formula [II-1], X 1 to X 6 and n are as defined above. In the formula [II-2], X 7 and X 8 are as defined above.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 なかでも、Xは、原料の入手性や合成の容易さの点から、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又はCOO-が好ましく、より好ましいのは、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又はCOO-である。なかでも、Xは、単結合又は(CH-(bは1~10の整数である)が好ましい。Xは、なかでも、合成の容易さの点から、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-又はCOO-が好ましく、より好ましいのは、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-又はCOO-である。 Among these, X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O, from the viewpoint of availability of raw materials and ease of synthesis. -Or COO- is preferred, and more preferred is a single bond,-(CH 2 ) a- (a is an integer of 1 to 10), -O-, -CH 2 O- or COO-. Among these, X 2 is preferably a single bond or (CH 2 ) b — (b is an integer of 1 to 10). X 3 is preferably a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or COO— from the viewpoint of ease of synthesis. A single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or COO— is preferable.
 なかでも、Xは、合成の容易さの点から、ベンゼン環、シクロへキサン環又はステロイド骨格を有する炭素数17~51の有機基が好ましい。Xは、なかでも、ベンゼン環又はシクロへキサン環が好ましい。nは、なかでも、原料の入手性や合成の容易さの点から、0~3が好ましく、より好ましいのは、0~2である。
 Xは、なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。
Among these, X 4 is preferably an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton from the viewpoint of ease of synthesis. X 5 is preferably a benzene ring or a cyclohexane ring. In particular, n is preferably 0 to 3 and more preferably 0 to 2 in view of availability of raw materials and ease of synthesis.
X 6 is preferably an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 式[II-1]におけるX、X、X、X、X、X及びnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13頁~34頁の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるX~Xが、Y1~Y6として示されているが、Y1~Y6は、X~Xと読み替えるものとする。
 また、国際公開公報の各表に掲載される(2-605)~(2-629)では、本発明におけるステロイド骨格を有する炭素数17~51の有機基が、ステロイド骨格を有する炭素数12~25の有機基と示されているが、ステロイド骨格を有する炭素数12~25の有機基は、ステロイド骨格を有する炭素数17~51の有機基と読み替えるものとする。なかでも、(2-25)~(2-96)、(2-145)~(2-168)、(2-217)~(2-240)、(2-268)~(2-315)、(2-364)~(2-387)、(2-436)~(2-483)又は(2-603)~(2-615)の組み合わせが好ましい。特に好ましい組み合わせは、(2-49)~(2-96)、(2-145)~(2-168)、(2-217)~(2-240)、(2-603)~(2-606)、(2-607)~(2-609)、(2-611)、(2-612)又は(2-624)である。
As preferred combinations of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and n in the formula [II-1], International Publication No. WO2011 / 132751 (published 2011.10.27), page 13 to The same combinations as (2-1) to (2-629) listed in Table 6 to Table 47 on page 34 can be mentioned. In each table of the International Publication, X 1 to X 6 in the present invention are indicated as Y 1 to Y 6, but Y 1 to Y 6 should be read as X 1 to X 6 .
Further, in (2-605) to (2-629) listed in each table of the International Publication, the organic group having 17 to 51 carbon atoms having a steroid skeleton in the present invention has 12 to 20 carbon atoms having a steroid skeleton. An organic group having 12 to 25 carbon atoms having a steroid skeleton is to be read as an organic group having 17 to 51 carbon atoms having a steroid skeleton. Among them, (2-25) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-268) to (2-315) , (2-364) to (2-387), (2-436) to (2-483), or (2-603) to (2-615) are preferred. Particularly preferred combinations are (2-49) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-603) to (2- 606), (2-607) to (2-609), (2-611), (2-612) or (2-624).
 式[II-2]中、なかでも、Xは、単結合、-O-、-CHO-、-CONH-、-CON(CH)-又はCOO-が好ましく、より好ましくは、単結合、-O-、-CONH-又はCOO-である。Xは、なかでも、炭素数8~18のアルキル基が好ましい。 In formula [II-2], among them, X 7 is preferably a single bond, —O—, —CH 2 O—, —CONH—, —CON (CH 3 ) — or COO—, more preferably a single bond. A bond, —O—, —CONH— or COO—; X 8 is preferably an alkyl group having 8 to 18 carbon atoms.
 液晶を垂直に配向させる側鎖としては、液晶の配向性を高くでき且つ安定化させる点から、式[II-1]で示される構造を用いることが好ましい。
 なお、液晶を垂直に配向させる側鎖を有するポリイミド前駆体が液晶を垂直に配向させる能力は、液晶を垂直に配向させる側鎖の構造によって異なるが、一般的に、液晶を垂直に配向させる側鎖の量が多くなると液晶を垂直に配向させる能力は上がり、少なくなると下がる。また、環状構造を有すると、環状構造を有さないものと比較して、液晶を垂直に配向させる能力が高い傾向がある。
As the side chain for vertically aligning the liquid crystal, it is preferable to use a structure represented by the formula [II-1] from the viewpoint of enhancing and stabilizing the alignment of the liquid crystal.
The ability of a polyimide precursor having a side chain for vertically aligning the liquid crystal to vertically align the liquid crystal varies depending on the structure of the side chain for vertically aligning the liquid crystal. As the amount of chains increases, the ability to orient liquid crystals vertically increases and decreases as they decrease. Moreover, when it has a cyclic structure, compared with what does not have a cyclic structure, there exists a tendency for the capability to orientate a liquid crystal vertically.
<光反応性の側鎖>
 本発明のポリイミド前駆体は、光反応性の側鎖を有していてもよい。光反応性の側鎖は、紫外線(UV)等の光の照射によって反応し、共有結合を形成し得る官能基(本明細書中、光反応性基ともいう)を有する。即ち、本発明のポリイミド前駆体は、光反応性基を構造中に含む側鎖をさらに有するのがよい。
 光反応性の側鎖は、重合体の主鎖に直接結合していてもよく、また、結合基を介して結合していてもよい。光反応性の側鎖は、例えば、下記式[III]で表される。
<Photoreactive side chain>
The polyimide precursor of the present invention may have a photoreactive side chain. The photoreactive side chain has a functional group (also referred to as a photoreactive group in this specification) that can react by irradiation with light such as ultraviolet rays (UV) to form a covalent bond. That is, the polyimide precursor of the present invention preferably further has a side chain containing a photoreactive group in the structure.
The photoreactive side chain may be directly bonded to the main chain of the polymer, or may be bonded via a linking group. The photoreactive side chain is represented, for example, by the following formula [III].
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式[III]中、R、R、R10は、上記で定義されたとおりである。なかでも、Rは、単結合、-O-、-COO-、-NHCO、又は-CONH-が好ましい。Rは、通常の有機合成的手法で形成させることができるが、合成の容易性の観点から、単結合又は、炭素数1~12のアルキレン基が好ましい。 In the formula [III], R 8 , R 9 and R 10 are as defined above. Among these, R 8 is preferably a single bond, —O—, —COO—, —NHCO, or —CONH—. R 9 can be formed by a common organic synthetic method, but from the viewpoint of ease of synthesis, a single bond or an alkylene group having 1 to 12 carbon atoms is preferable.
 また、Rの任意の-CH-を置き換える二価の炭素環若しくは複素環は、具体的には以下のものが例示される。 Specific examples of the divalent carbocycle or heterocycle for replacing any —CH 2 — in R 9 include the following.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 R10は、光反応性の点から、メタクリル基、アクリル基又はビニル基であることが好ましい。
 光反応性の側鎖の存在量は、紫外線の照射によって反応し共有結合を形成することにより液晶の応答速度を速めることができる範囲であることが好ましく、液晶の応答速度をより速めるためには、他の特性に影響が出ない範囲で、可能な限り多いことが好ましい。
R 10 is preferably a methacryl group, an acryl group or a vinyl group from the viewpoint of photoreactivity.
The amount of the photoreactive side chain is preferably within a range in which the response speed of the liquid crystal can be increased by reacting with ultraviolet irradiation to form a covalent bond. In order to further increase the response speed of the liquid crystal It is preferable that it is as many as possible within a range that does not affect other characteristics.
<液晶配向剤を形成するポリイミド前駆体>
 第1の光ラジカル発生ジアミンを用いたポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドを製造する方法は特に限定されない。例えば、第1の光ラジカル発生ジアミンとテトラカルボン酸二無水物を重合させる方法、第1の光ラジカル発生ジアミン及びそれ以外のジアミンとテトラカルボン酸二無水物を重合させる方法、などが挙げられる。
<Polyimide precursor forming liquid crystal aligning agent>
The method for producing a polyimide precursor using the first photoradical-generating diamine and a polyimide obtained by imidizing the polyimide precursor is not particularly limited. Examples thereof include a method of polymerizing a first photoradical-generating diamine and tetracarboxylic dianhydride, a method of polymerizing a first photoradical-generating diamine and other diamines and tetracarboxylic dianhydride, and the like.
 液晶を垂直に配向させる側鎖及び/又は光反応性側鎖をさらに有するポリイミド前駆体、及び該ポリイミド前駆体をイミド化したポリイミドを製造する方法についても前述と同様の方法が挙げられる。その好ましい方法も、同様に、液晶を垂直に配向させる側鎖を含有する第1の光ラジカル発生ジアミン及び/又は光反応性側鎖を含有する第1の光ラジカル発生ジアミンと、テトラカルボン酸二無水物を重合させる方法が好ましい。 The same method as described above may be used for the method of producing a polyimide precursor further having a side chain and / or a photoreactive side chain for vertically aligning the liquid crystal, and a polyimide obtained by imidizing the polyimide precursor. Similarly, the preferred method also includes a first photoradical-generating diamine containing a side chain for vertically aligning liquid crystals and / or a first photoradical-generating diamine containing a photoreactive side chain, and a tetracarboxylic acid diester. A method of polymerizing the anhydride is preferred.
<第1の光ラジカル発生ジアミンの合成>
 本発明において、第1の光ラジカル発生ジアミンは、各ステップを経てジニトロ体、或いは、還元工程で除去可能な保護基を施したアミノ基を有するモノニトロ体、或いは、ジアミンを合成し、通常用いる還元反応にてニトロ基をアミノ基に変換あるいは保護基を脱保護することにより得ることができる。
<Synthesis of first photoradical-generating diamine>
In the present invention, the first photo-radical-generating diamine is a dinitro compound through each step, a mononitro compound having an amino group with a protective group that can be removed in the reduction process, or a diamine, which is usually used for reduction. It can be obtained by converting the nitro group to an amino group or deprotecting the protecting group by reaction.
 本発明の第1の光ラジカル発生ジアミンの合成方法を合成する方法は特に限定されないが、例えば、下記式(5)(式(5)中、Ar,R101~R104は、上記式(A)中のそれぞれの定義と同じである)で表されるジニトロ化合物を合成し、さらにニトロ基を還元してアミノ基に変換することで合成する方法を挙げることができる。 The method for synthesizing the first photoradical-generating diamine synthesis method of the present invention is not particularly limited. For example, the following formula (5) (in formula (5), Ar, R 101 to R 104 are represented by the above formula (A And the same definition as in the above), and a method of synthesizing the compound by reducing the nitro group and converting it to an amino group.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 ニトロ基を還元する方法には、特に制限はないが、例えば、パラジウム-炭素、酸化白金、ラネーニッケル、白金-炭素、ロジウム-アルミナ、硫化白金炭素、還元鉄、塩化鉄、スズ、塩化スズ、亜鉛などを触媒として用い、水素ガス、ヒドラジン、塩化水素、塩化アンモニウムなどによって行う方法がある。
 構造に不飽和結合部位を持つ場合、不飽和結合が還元されない還元方法を用いることができる。
 不飽和結合が還元されない限り、その還元方法に特に制限はないが、例えば、還元鉄、スズ、塩化スズ、被毒されたパラジウム-炭素、被毒された白金-炭素を触媒として用い、水素ガス、ヒドラジン、塩化水素、塩化アンモニウムなどによって行う方法がある。
 構造にベンジル結合部位を持つ場合、ベンジル基が切断されない還元方法を用いることができる。
 ベンジル基が切断されない限り、その還元方法に制限はないが、例えば、白金黒、ロジウム-アルミナ、硫化白金炭素、還元鉄、塩化鉄、スズ、塩化スズ、亜鉛などを触媒として用い、水素ガス、ヒドラジン、塩化水素、塩化アンモニウムなどによって行う方法がある。
The method for reducing the nitro group is not particularly limited. For example, palladium-carbon, platinum oxide, Raney nickel, platinum-carbon, rhodium-alumina, platinum sulfide carbon, reduced iron, iron chloride, tin, tin chloride, zinc Or the like as a catalyst, and a method using hydrogen gas, hydrazine, hydrogen chloride, ammonium chloride or the like.
When the structure has an unsaturated bond site, a reduction method in which the unsaturated bond is not reduced can be used.
As long as the unsaturated bond is not reduced, the reduction method is not particularly limited. For example, hydrogen gas is used using reduced iron, tin, tin chloride, poisoned palladium-carbon, poisoned platinum-carbon as a catalyst. , Hydrazine, hydrogen chloride, ammonium chloride and the like.
When the structure has a benzyl bonding site, a reduction method in which the benzyl group is not cleaved can be used.
The reduction method is not limited as long as the benzyl group is not cleaved.For example, platinum black, rhodium-alumina, platinum sulfide carbon, reduced iron, iron chloride, tin, tin chloride, zinc, etc. are used as a catalyst, hydrogen gas, There are methods using hydrazine, hydrogen chloride, ammonium chloride and the like.
 反応溶媒としては、反応に影響を及ぼさない溶媒を用いることができる。例えば、酢酸エチル、酢酸メチルなどのエステル系溶媒、トルエン、キシレンなどの芳香族炭化水素溶媒、n-ヘキサン、n-ヘプタン、シクロヘキサンなどの脂肪族炭化水素溶媒、1,2-ジメトキシエタン、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、エタノールなどのアルコール系溶媒、2-ブタノン、4-メチル-2-ペンタノンなどのケトン系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシドなどの非プロトン性極性溶媒、水などが挙げられる。これらの有機溶媒は、単独、又は、2種類以上混合して使用することができる。 As the reaction solvent, a solvent that does not affect the reaction can be used. For example, ester solvents such as ethyl acetate and methyl acetate, aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents such as n-hexane, n-heptane and cyclohexane, 1,2-dimethoxyethane, tetrahydrofuran, Ether solvents such as dioxane, alcohol solvents such as methanol and ethanol, ketone solvents such as 2-butanone and 4-methyl-2-pentanone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl Examples include aprotic polar solvents such as -2-pyrrolidone and dimethyl sulfoxide, and water. These organic solvents can be used alone or in admixture of two or more.
 反応温度は、原料や生成物が分解することなく、用いる溶媒の沸点以下であれは、反応が効率よく進行する温度で行なうことができる。具体的には、-78℃から溶媒の沸点以下の温度が好ましく、0℃から溶媒の沸点以下の温度が合成の簡便性の観点から、より好ましい。 The reaction temperature can be carried out at a temperature at which the reaction proceeds efficiently as long as it is below the boiling point of the solvent used without decomposition of the raw materials and products. Specifically, a temperature from −78 ° C. to the boiling point of the solvent is preferable, and a temperature from 0 ° C. to the boiling point of the solvent is more preferable from the viewpoint of simplicity of synthesis.
 式(5)の化合物を合成する方法に特に制限はないが、例えば、式(5)のR102がOR111(R111は上記<6>に記載の定義と同じである)である場合には、下記式(6)(式(6)中、Ar,R101、R103、R104は、上記式(A)中のそれぞれの定義と同じである)で表されるジニトロ体を合成し、さらにOH基に置換基を導入する方法が挙げられる。 The method for synthesizing the compound of formula (5) is not particularly limited. For example, when R 102 of formula (5) is OR 111 (R 111 is the same as defined in <6> above). is represented by the following formula (6) (wherein (6), Ar, R 101 , R 103, R 104 , the above formula (a) is the same as the respective definitions in) to synthesize a dinitro product represented by Further, a method of introducing a substituent into the OH group can be mentioned.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 OH基に置換基を導入する方法に、特に制限はないが、例えば、下記式(7)(式(7)中のLはハロゲン、アルカンスルホニルオキシ基、又は、アレーンスルホニルオキシ基であり、R111は上記<6>に記載の定義と同じである)で表されるハロゲン化アルキル、又はアルキルスルホン酸エステルを、中性条件下、又はアルカリ条件下で反応させる方法が挙げられる。 The method for introducing a substituent into the OH group is not particularly limited. For example, L 1 in the following formula (7) (formula (7) is a halogen, an alkanesulfonyloxy group, or an arenesulfonyloxy group, R 111 is the same as defined in the above <6>), and a method of reacting an alkyl halide or alkyl sulfonate ester under neutral conditions or alkaline conditions.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 反応溶媒、反応温度は、前記の記載に準ずるが、アルコール溶媒、水は、原料と反応する可能性があるため、好ましくない。
 ハロゲン化アルキルとしては、ヨウ化メチル、ヨウ化エチル、ヨウ化n-プロピル、ヨウ化n-ブチル、ヨウ化n-オクタデシル、ヨウ化ベンジル、ブロモエタン、1-ブロモプロパン、1-ブロモブタン、1-ブロモオクタデカン、ベンジルブロミド、クロロエタン、1-クロロプロパン、1-クロロブタン、1-クロロオクタデカン、ベンジルクロリド、メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸n-プロピル、メタンスルホン酸n-ブチル、メタンスルホン酸n-オクタデシル、メタンスルホン酸ベンジルなどが挙げられる。
Although the reaction solvent and reaction temperature are the same as those described above, an alcohol solvent and water are not preferable because they may react with the raw material.
Examples of the alkyl halide include methyl iodide, ethyl iodide, n-propyl iodide, n-butyl iodide, n-octadecyl iodide, benzyl iodide, bromoethane, 1-bromopropane, 1-bromobutane and 1-bromo. Octadecane, benzyl bromide, chloroethane, 1-chloropropane, 1-chlorobutane, 1-chlorooctadecane, benzyl chloride, methyl methanesulfonate, ethyl methanesulfonate, n-propyl methanesulfonate, n-butyl methanesulfonate, methanesulfonic acid Examples thereof include n-octadecyl and benzyl methanesulfonate.
 式(5)で表される化合物が、下記式(8)で表される場合には、上記式(6)で表される化合物と、下記式(9)で表されるビニルエーテルとを、無触媒下、もしくは、酸触媒下で反応させる合成法を挙げることができる。
 なお、式(8)中、Ar,R101、R103、R104は、上記式(A)中のそれぞれの定義と同じであり、R211は、非置換若しくはフッ素原子によって置換されている炭素原子数1~18の直鎖又は分岐鎖又は環状のアルキル基(アルキル基中の-CH-又は-CF-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環)で置換されていてもよい。)である。
 また、式(9)中、R211は、上記式(8)中の、R211の定義と同じである。
When the compound represented by the formula (5) is represented by the following formula (8), the compound represented by the above formula (6) and the vinyl ether represented by the following formula (9) are used. Examples of the synthesis method include a reaction in the presence of a catalyst or an acid catalyst.
In the formula (8), Ar, R 101 , R 103 , and R 104 have the same definitions as those in the formula (A), and R 211 is carbon that is unsubstituted or substituted by a fluorine atom. A linear, branched or cyclic alkyl group having 1 to 18 atoms (wherein —CH 2 — or —CF 2 — in the alkyl group is —CH═CH—, or a group selected from the following group G: The groups selected from Group G may not be adjacent to each other) (Group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, divalent Or a divalent heterocyclic ring).
In the formula (9), R 211 is, in the above formula (8) is the same as the definition of R 211.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 ビニルエーテルとしては、エチルビニルエーテル、n-ブチルビニルエーテル、n-オクタデシルビニルエーテル、ジエチレングリコールモノビニルエーテルなどが挙げられる。
 酸触媒としては、p-トルエンスルホン酸、p-トルエンスルホン酸ピリジニウム、メタンスルホン酸などが挙げられる。
 式(5)で表される化合物が、下記式(10)(式(10)中、Ar,R101、R103、R104は、上記式(A)中のそれぞれの定義と同じである)で表される場合には、上記式(6)で表される化合物と、3,4-ジヒドロピランとを、無触媒下、もしくは、酸触媒下で反応させる合成法が挙げられる。
Examples of the vinyl ether include ethyl vinyl ether, n-butyl vinyl ether, n-octadecyl vinyl ether, diethylene glycol monovinyl ether and the like.
Examples of the acid catalyst include p-toluenesulfonic acid, pyridinium p-toluenesulfonate, methanesulfonic acid, and the like.
The compound represented by the formula (5) is represented by the following formula (10) (in the formula (10), Ar, R 101 , R 103 and R 104 have the same definitions as those in the formula (A)). Is a synthesis method in which the compound represented by the above formula (6) and 3,4-dihydropyran are reacted in the absence of a catalyst or in the presence of an acid catalyst.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 式(5)で表される化合物が、下記式(11)で表される場合(式(11)中、Ar,R102~R104は、上記式(A)中のそれぞれの定義と同じであり、S,Tは、上記<5>に記載の定義と同じである)には、下記式(12)(式(12)中、Lはハロゲンである)で表されるジニトロ化合物と、式(13)(式(13)中、Ar,R102~R104は、上記式(A)中のそれぞれの定義と同じであり、S,Tは、上記<5>に記載の定義と同じである)で表されるアルコールとを、アルカリ存在下で反応させる方法などが挙げられる。反応溶媒、反応温度は、前記の記載に準ずるが、アルコール系溶媒、水などのプロトン性溶媒は原料と反応しなければ用いることができる。 When the compound represented by the formula (5) is represented by the following formula (11) (in the formula (11), Ar, R 102 to R 104 are the same as the respective definitions in the formula (A). And S and T 2 are the same as defined in the above <5>), and a dinitro compound represented by the following formula (12) (in the formula (12), L 2 is halogen): (13) (In the formula (13), Ar, R 102 to R 104 are the same as the respective definitions in the above formula (A), and S and T 2 are the definitions described in the above <5>. And the like, and a method of reacting an alcohol represented by the same in the presence of an alkali. The reaction solvent and reaction temperature are the same as described above, but a protic solvent such as an alcohol solvent or water can be used unless it reacts with the raw material.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式(12)で表される化合物としては、2,4-ジニトロフルオロベンゼン、2,4-ジニトロクロロベンゼン、2,4-ジニトロブロモベンゼン、2,4-ジニトロヨードベンゼン、3,5-ジニトロクロロベンゼン、3,5-ジニトロヨードベンゼン、3,4-ジニトロフルオロベンゼン、3,4-ジニトロクロロベンゼン、2,3-ジニトロクロロベンゼンなどが挙げられる。
 式(13)で表される化合物の合成法に特に制限はないが、例えば、式(13)のR102がOR111で表される場合には、下記式(14)(式(14)中、Ar,R103、R104は、上記式(A)中のそれぞれの定義と同じであり、S,Tは、上記<5>に記載の定義と同じである)で表される化合物の一級水酸基を保護基によって保護し、残った三級水酸基に置換基を導入後、一級水酸基の保護基を脱保護する方法が挙げられる。
Examples of the compound represented by the formula (12) include 2,4-dinitrofluorobenzene, 2,4-dinitrochlorobenzene, 2,4-dinitrobromobenzene, 2,4-dinitroiodobenzene, 3,5-dinitrochlorobenzene, Examples include 3,5-dinitroiodobenzene, 3,4-dinitrofluorobenzene, 3,4-dinitrochlorobenzene, 2,3-dinitrochlorobenzene, and the like.
There is no particular limitation on the synthesis method of the compound represented by formula (13), for example, in the case where R 102 of Formula (13) is represented by OR 111, the following equation (14) (Formula (14) in , Ar, R 103 and R 104 are the same as defined in the above formula (A), and S and T 2 are the same as defined in <5> above. There is a method in which the primary hydroxyl group is protected with a protecting group, a substituent is introduced into the remaining tertiary hydroxyl group, and then the protecting group of the primary hydroxyl group is deprotected.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式(14)で表される化合物としては、2-ヒドロキシ-1-(4-(ヒドロキシメチル)フェニル)-2-メチル-1-プロパノン、1-ヒドロキシシクロヘキシル(4-(2-ヒドロキシエチル)フェニル))ケトン、1-ヒドロキシシクロヘキシル(4-ヒドロキシフェニル)ケトン、2-ヒドロキシ-1-(4-((2―ヒドロキシエチル)チオ)フェニル)-2-メチル-1-プロパノン、2-ヒドロキシ-1-(4-ヒドロキシフェニル)-2-メチル-1-プロパノン、2-ヒドロキシ-1-(4-(2-ヒドロキシエトキシ)フェニル)-2-メチル-1-プロパノン、1-(3,4-ジヒドロキシフェニル)-2-ヒドロキシ-2-メチル-1-プロパノン、2-ヒドロキシ-1-(4-(2-ヒドロキシエチル)フェニル)-2-メチル-1-プロパノン、2-ヒドロキシ-1-(4-(3-ヒドロキプロピル)フェニル)-2-メチル-1-プロパノンなどが挙げられる。
 保護基については、特に制限はないが、例えば、テトラヒドロピラニル基、ベンジル基、p-メトキシベンジル基、メトキシメチル基、トリメチルシリル基、t-ブチルジメチルシリル基、アセチル基、ベンゾイル基、トリチル基などが挙げられる。
Examples of the compound represented by the formula (14) include 2-hydroxy-1- (4- (hydroxymethyl) phenyl) -2-methyl-1-propanone, 1-hydroxycyclohexyl (4- (2-hydroxyethyl) phenyl )) Ketone, 1-hydroxycyclohexyl (4-hydroxyphenyl) ketone, 2-hydroxy-1- (4-((2-hydroxyethyl) thio) phenyl) -2-methyl-1-propanone, 2-hydroxy-1 -(4-hydroxyphenyl) -2-methyl-1-propanone, 2-hydroxy-1- (4- (2-hydroxyethoxy) phenyl) -2-methyl-1-propanone, 1- (3,4-dihydroxy Phenyl) -2-hydroxy-2-methyl-1-propanone, 2-hydroxy-1- (4- (2-hydroxyethyl) phenyl) -2- Chill-1-propanone, 2-hydroxy-1- (4- (3-hydroxypropyl) phenyl) -2-methyl-1-propanone and the like.
The protecting group is not particularly limited, and examples thereof include a tetrahydropyranyl group, a benzyl group, a p-methoxybenzyl group, a methoxymethyl group, a trimethylsilyl group, a t-butyldimethylsilyl group, an acetyl group, a benzoyl group, and a trityl group. Is mentioned.
 式(14)で表される化合物の一級水酸基を保護した後、三級水酸基を導入する方法については、特に制限はなく、例えば、式(5)のR102がOR111である場合に、式(6)で表される化合物から式(5)で表される化合物を合成する場合と同様の条件を用いることができる。
 各保護基の脱保護方法については、特に制限はなく、一般的な脱保護反応条件を適用することができる。
The method for introducing a tertiary hydroxyl group after protecting the primary hydroxyl group of the compound represented by formula (14) is not particularly limited. For example, when R 102 in formula (5) is OR 111 , the formula The same conditions as in the case of synthesizing the compound represented by formula (5) from the compound represented by (6) can be used.
There is no restriction | limiting in particular about the deprotection method of each protecting group, General deprotection reaction conditions can be applied.
 式(5)で表される化合物が、下記式(15)(式(15)中、Ar,R102~R104は、上記式(A)中のそれぞれの定義と同じであり、S,Tは、上記<5>に記載の定義と同じである)で表される場合には、下記式(16)(式(16)中、Lは、式(7)中のLと同じ定義である)で表されるジニトロ化合物と、式(13)で表されるアルコールとを、アルカリ存在下で反応させる方法などが挙げられる。反応溶媒、反応温度は、前記の記載に準ずるが、アルコール系溶媒、水などのプロトン性溶媒は原料と反応しなければ用いることができる。 In the compound represented by the formula (5), the following formula (15) (in the formula (15), Ar, R 102 to R 104 have the same definitions as those in the formula (A), and S, T 2 is the same as defined in the above <5>), the following formula (16) (in formula (16), L 1 is the same as L 1 in formula (7). And a method of reacting a dinitro compound represented by the formula (13) with an alcohol represented by the formula (13) in the presence of an alkali. The reaction solvent and reaction temperature are the same as described above, but a protic solvent such as an alcohol solvent or water can be used unless it reacts with the raw material.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 式(16)で表される化合物としては、3,5-ジニトロベンジルクロリド、メタンスルホン酸(3,5-ジニトロベンジル)、2,4-ジニトロベンジルクロリド、メタンスルホン酸(2,4-ジニトロベンジル)などが挙げられる。 Examples of the compound represented by the formula (16) include 3,5-dinitrobenzyl chloride, methanesulfonic acid (3,5-dinitrobenzyl), 2,4-dinitrobenzyl chloride, methanesulfonic acid (2,4-dinitrobenzyl). ) And the like.
 式(5)で表される化合物が、下記式(17)(式(17)中、Ar、R102~R104、S,Tは、上記<5>に記載の定義と同じである)で表される場合には、下記式(18)(式(18)中のLは、式(12)中のLと同じ定義である)で表されるジニトロ化合物と、式(13)で表されるアルコールとを、アルカリ存在下で反応させる方法、または、式(19)で表されるジニトロ化合物と、式(13)で表されるアルコールとを、脱水縮合剤存在下で反応させる方法などが挙げられる。反応溶媒、反応温度は、前記の記載に準ずるが、アルコール系溶媒、水などのプロトン性溶媒は原料と反応しなければ用いることができる。 The compound represented by the formula (5) is represented by the following formula (17) (in the formula (17), Ar, R 102 to R 104 , S, and T 2 are the same as defined in the above <5>) Is represented by the following formula (18) (L 2 in formula (18) has the same definition as L 2 in formula (12)), and formula (13) Or a reaction of reacting an alcohol represented by formula (19) with an alcohol represented by formula (13) in the presence of a dehydrating condensing agent. The method etc. are mentioned. The reaction solvent and reaction temperature are the same as described above, but a protic solvent such as an alcohol solvent or water can be used unless it reacts with the raw material.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 式(18)で表される化合物としては、3,5-ジニトロベンゾイルクロリドなどが挙げられる。
 式(19)で表される化合物としては、3,5-ジニトロ安息香酸などが挙げられる。
脱水縮合剤としては、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、ジイソプロピルカルボジイミド、1,1’-カルボニルジイミダゾール、ビス(2-オキソ-3-オキサゾリニジル)ホスフィン酸塩化物、ジ-2-ピリジル炭酸塩、トリフェニルホスファイト、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが挙げられる。
Examples of the compound represented by the formula (18) include 3,5-dinitrobenzoyl chloride.
Examples of the compound represented by the formula (19) include 3,5-dinitrobenzoic acid.
Examples of the dehydrating condensing agent include dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, diisopropylcarbodiimide, 1,1′-carbonyldiimidazole, bis (2-oxo-3-oxazolinidyl) phosphinic acid Chloride, di-2-pyridyl carbonate, triphenyl phosphite, dimethoxy-1,3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2 -Thioxo-3-benzoxazolyl) phosphonic acid diphenyl and the like.
<液晶を垂直に配向させる側鎖を有するポリイミド前駆体>
 液晶を垂直に配向させる側鎖をポリイミド前駆体に導入する方法は、特定側鎖構造を有するジアミンをジアミン成分の一部に用いることが好ましい。特に下記の式[2]で示されるジアミン(特定側鎖型ジアミン化合物ともいう)を用いることが好ましい。
<Polyimide precursor having side chain for vertically aligning liquid crystal>
As a method for introducing a side chain for vertically aligning liquid crystals into the polyimide precursor, a diamine having a specific side chain structure is preferably used as a part of the diamine component. In particular, it is preferable to use a diamine represented by the following formula [2] (also referred to as a specific side chain diamine compound).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 式[2]中、Xは、上記式[II-1]又は式[II-2]で示される構造を表し、nは1~4の整数を表し、特に、1が好ましい。
 特定側鎖型ジアミンとしては、高くて安定な液晶の垂直配向性を得ることができる点から、下記の式[2-1]で示されるジアミンを用いることが好ましい。
In the formula [2], X represents a structure represented by the above formula [II-1] or [II-2], n represents an integer of 1 to 4, and 1 is particularly preferable.
As the specific side chain diamine, it is preferable to use a diamine represented by the following formula [2-1] from the viewpoint that a high and stable liquid crystal vertical alignment can be obtained.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 上記式[2-1]におけるX、X、X、X、X、及びnは、上記式[II-1]におけるそれぞれで定義されたのと同じであり、また、それぞれの好ましいものも、上記式[II-1]におけるそれぞれで定義されたのと同じである。
 なお、式[2-1]中、mは1~4の整数である。好ましくは、1の整数である。
 特定側鎖型ジアミンは、具体的には、例えば、下記の式[2a-1]~式[2a-31]で示される構造が挙げられる。
 なお、式中、Rは-O-、-OCH-、-CHO-、-COOCH-又はCHOCO-を示し、Rは炭素数1~22の直鎖状若しくは分岐状アルキル基、炭素数1~22の直鎖状若しくは分岐状アルコキシル基、炭素数1~22の直鎖状若しくは分岐状の、フッ素含有アルキル基又はフッ素含有アルコキシル基である。
 Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-又はCH-を示し、Rは炭素数1~22の直鎖状若しくは分岐状アルキル基、炭素数1~22の直鎖状若しくは分岐状アルコキシル基、炭素数1~22の直鎖状若しくは分岐状の、フッ素含有アルキル基又はフッ素含有アルコキシル基である。
 Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-又はNH-を示し、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基である。
 Rは炭素数3~12の直鎖状又は分岐状アルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
 Rは炭素数3~12の直鎖状又は分岐状アルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
 Aはフッ素原子で置換されていてもよい炭素数3~20の直鎖状又は分岐状アルキル基であり、Aは1,4-シクロへキシレン基又は1,4-フェニレン基であり、Aは酸素原子又はCOO-*(ただし、「*」を付した結合手がAと結合する)であり、Aは酸素原子又はCOO-*(ただし、「*」を付した結合手が(CH)a)と結合する)である。また、aは0又は1の整数であり、aは2~10の整数であり、aは0又は1の整数である。
X 1 , X 2 , X 3 , X 4 , X 5 , and n in the above formula [2-1] are the same as defined in each of the above formula [II-1], and Preferable ones are also the same as defined above in Formula [II-1].
In the formula [2-1], m is an integer of 1 to 4. Preferably, it is an integer of 1.
Specific examples of the specific side chain diamine include structures represented by the following formulas [2a-1] to [2a-31].
In the formula, R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or CH 2 OCO—, and R 2 represents a linear or branched group having 1 to 22 carbon atoms. An alkyl group, a linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched alkyl group having 1 to 22 carbon atoms, or a fluorine-containing alkoxyl group.
R 3 is, -COO -, - OCO -, - CONH -, - NHCO -, - COOCH 2 -, - CH 2 OCO -, - CH 2 O -, - OCH 2 - or CH 2 - indicates, R 4 Is a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched, fluorine-containing alkyl group having 1 to 22 carbon atoms, or It is a fluorine-containing alkoxyl group.
R 5 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O—. Or NH—, and R 6 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
R 7 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
R 8 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
A 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, A 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group, a 2 is an oxygen atom or a COO - * (wherein "*" bond marked with binds to a 3) is, a 1 is an oxygen atom or a COO - * (However, bond marked with "*" Is bonded to (CH 2 ) a 2 ). A 1 is an integer of 0 or 1, a 2 is an integer of 2 to 10, and a 3 is an integer of 0 or 1.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 上記式[2a-1]~[2a-31]中、特に好ましいのは、式[2a-1]~式[2a-6]、式[2a-9]~式[2a-13]又は式[2a-22]~式[2a-31]である。 Of the above formulas [2a-1] to [2a-31], particularly preferred are formula [2a-1] to formula [2a-6], formula [2a-9] to formula [2a-13] 2a-22] to [2a-31].
 また、式[II-2]で示される特定側鎖構造を有するジアミンとしては、下記の式[2b-1]~[2b-10]で示されるジアミンが挙げられる。
 Aは、炭素数1~22のアルキル基又はフッ素含有アルキル基を示す。
Examples of the diamine having a specific side chain structure represented by the formula [II-2] include diamines represented by the following formulas [2b-1] to [2b-10].
A 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 上記式[2b-5]~式[2b-10]中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-又はNH-を示し、Aは炭素数1~22の直鎖状若しくは分岐状のアルキル基又は炭素数1~22の直鎖状若しくは分岐状のフッ素含有アルキル基を示す。
 上記のジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種又は2種以上を混合して使用することもできる。
In the above formulas [2b-5] to [2b-10], A 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or NH—. A 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
Said diamine can also be used 1 type or in mixture of 2 or more types according to characteristics, such as a liquid crystal aligning property at the time of setting it as a liquid crystal aligning film, a pretilt angle, a voltage holding characteristic, and a stored charge.
 上記の液晶を垂直に配向させる側鎖を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の5~50モル%用いることが好ましく、より好ましくはジアミン成分の10~40モル%であり、特に好ましくは15~30モル%である。
 液晶を垂直に配向させる側鎖を有するジアミンを用いると、応答速度の向上や液晶の配向固定化能力の点で特に優れる。
The diamine having a side chain for vertically aligning the liquid crystal is preferably used in an amount of 5 to 50 mol% of the diamine component used for the synthesis of the polyamic acid, more preferably 10 to 40 mol% of the diamine component, and particularly preferably. Is from 15 to 30 mol%.
The use of a diamine having a side chain that vertically aligns the liquid crystal is particularly excellent in terms of improving the response speed and the ability to fix and align the liquid crystal.
<光反応性側鎖を含有するジアミン>
 光反応性の側鎖を有するジアミンとしては、例えば、式[3]で表される側鎖を有するジアミンであり、具体的には、下記の一般式[3](式[3]中のR、R及びR10の定義は、上記式[III]と同じである)で表されるジアミンを挙げることができるが、これに限定されるものではない。
<Diamine containing photoreactive side chain>
The diamine having a photoreactive side chain is, for example, a diamine having a side chain represented by the formula [3], and specifically, the following general formula [3] (R in the formula [3] 8 , the definitions of R 9 and R 10 are the same as those in the above formula [III], but are not limited thereto.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 式[3]における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。
 光反応性の側鎖を有するジアミンは、具体的には以下のものが挙げられる。
 式中、X、X10は、それぞれ独立に、単結合、-O-、-COO-、-NHCO-、又は-NH-である結合基、Yはフッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表す。
The bonding position of the two amino groups (—NH 2 ) in the formula [3] is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
Specific examples of the diamine having a photoreactive side chain include the following.
In the formula, X 9 and X 10 are each independently a single bond, —O—, —COO—, —NHCO—, or —NH—, a bonding group that is —NH—, and Y is a carbon atom that may be substituted with a fluorine atom Represents an alkylene group of 1 to 20.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 また、光反応性の側鎖を有するジアミンとしては、下記式で表わされる光二量化反応を起こす基及び光重合反応を起こす基を側鎖に有するジアミンも挙げられる。 Also, examples of the diamine having a photoreactive side chain include a diamine having a group causing a photodimerization reaction and a group causing a photopolymerization reaction represented by the following formula in the side chain.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 上記式中、Yは-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、又は-CO-を表す。Yは、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。Yは、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。Yは、-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、-CO-、又は単結合を表す。Yはシンナモイル基を表す。Yは単結合、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。Yは、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。Yはアクリル基又はメタクリル基である光重合性基を示す。 In the above formula, Y 1 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, or —CO—. Y 2 is an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms or organic It may be substituted with a group. In Y 2 , when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—. Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, or a single bond. Y 4 represents a cinnamoyl group. Y 5 is a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms Alternatively, it may be substituted with an organic group. In Y 5 , when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—. Y 6 represents a photopolymerizable group which is an acrylic group or a methacryl group.
 上記光反応性の側鎖を有するジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類又は2種類以上を混合して使用できる。
 また、光反応性の側鎖を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の10~70モル%を用いることが好ましく、より好ましくは20~60モル%、特に好ましくは30~50モル%である。
The diamine having a photoreactive side chain depends on the liquid crystal alignment property when it is used as a liquid crystal alignment film, the pretilt angle, the voltage holding property, the characteristics such as accumulated charge, the response speed of the liquid crystal when it is used as a liquid crystal display device, etc. 1 type or 2 types or more can be mixed and used.
The diamine having a photoreactive side chain is preferably used in an amount of 10 to 70 mol%, more preferably 20 to 60 mol%, particularly preferably 30 to 50 mol% of the diamine component used for the synthesis of the polyamic acid. It is.
<その他のジアミン>
 なお、ポリイミド前駆体及び/又は、ポリイミドを製造する場合、本発明の効果を損わない限りにおいて、上記したジアミン以外のその他のジアミンをジアミン成分として併用することができる。具体的には、例えば、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミンが挙げられる。
<Other diamines>
In addition, when manufacturing a polyimide precursor and / or a polyimide, unless the effect of this invention is impaired, other diamines other than the above-mentioned diamine can be used together. Specifically, for example, p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl- m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2, 4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl 3,3′-dihydroxy-4,4′-diaminobiphenyl, 3,3′-dicarboxy-4,4′-diaminobiph Nyl, 3,3′-difluoro-4,4′-biphenyl, 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2 , 2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2,3 '-Diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'- Sulfonyl dianiline, 3,3′-sulfonyl dianiline, bis (4-aminophenyl) si Lan, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 4,4 '-Diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl (4,4'-diaminodiphenyl) amine N-methyl (3,3′-diaminodiphenyl) amine, N-methyl (3,4′-diaminodiphenyl) amine, N-methyl (2,2′-diaminodiphenyl) amine, N-methyl (2,3 '-Diaminodiphenyl) amine, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4' Diaminobenzophenone, 1,4-diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8 -Diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis ( 3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4- Bis (3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4- Aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis ( 4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis (Methylene)] dianiline, 3,4 ′-[1,4-phenylenebis (methylene)] dianiline, 3,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1, 4-phenylenebis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1, -Phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylene Bis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4 -Aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N '-(1,4-phenylene) bis (4 -Aminobenzamide), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) Terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis (4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenyl sulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′- Bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophene) ) Hexafluoropropane, 2,2'-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2'-bis (4-aminophenyl) propane, 2,2'-bis (3-amino) Phenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, 1,3-bis (4-aminophenoxy) propane 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) ) Pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, -Bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1, 9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1, Aromatic diamines such as 11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane Alicyclic diamines such as bis (4-aminocyclohexyl) methane and bis (4-amino-3-methylcyclohexyl) methane, 1,3- Diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diamino Examples thereof include aliphatic diamines such as decane, 1,11-diaminoundecane, and 1,12-diaminododecane.
 上記その他のジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The above-mentioned other diamines can be used alone or in combination of two or more according to properties such as liquid crystal orientation, pretilt angle, voltage holding property, and accumulated charge when the liquid crystal alignment film is formed.
<テトラカルボン酸二無水物>
 上記のジアミン成分と反応させるテトラカルボン酸二無水物成分は特に限定されない。具体的には、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロヘプタンテトラカルボン酸、2,3,4,5-テトラヒドロフランテトラカルボン酸、3,4-ジカルボキシ-1-シクロへキシルコハク酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸、テトラシクロ[6,2,1,1,0,2,7]ドデカ-4,5,9,10-テトラカルボン酸、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸等が挙げられる。勿論、テトラカルボン酸二無水物も、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用してもよい。
<Tetracarboxylic dianhydride>
The tetracarboxylic dianhydride component to be reacted with the diamine component is not particularly limited. Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2, 3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetra Carboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxy) Phenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) Lopan, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4) -Dicarboxyphenyl) pyridine, 3,3 ', 4,4'-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, 1,3-diphenyl-1,2,3,4- Cyclobutanetetracarboxylic acid, oxydiphthaltetracarboxylic acid, 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic Acid, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2-dimethyl-1,2,3,4-cyclobut Tetracarboxylic acid, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cycloheptanetetracarboxylic acid, 2,3,4,5-tetrahydrofurantetracarboxylic acid 3,4-dicarboxy-1-cyclohexylsuccinic acid, 2,3,5-tricarboxycyclopentylacetic acid, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic acid, bicyclo [4,3,0] nonane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4,0 ] Decane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4,0] decane-2,4,8,10-tetracarboxylic acid, tricyclo [6.3.0.0 <2,6 >] Undecane 3,5,9,11-tetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetra Hydrinaphthalene-1,2-dicarboxylic acid, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic acid, 5- (2,5-dioxotetrahydrofuryl) -3 -Methyl-3-cyclohexane-1,2-dicarboxylic acid, tetracyclo [6,2,1,1,0,2,7] dodeca-4,5,9,10-tetracarboxylic acid, 3,5, Examples thereof include 6-tricarboxynorbornane-2: 3,5: 6 dicarboxylic acid and 1,2,4,5-cyclohexanetetracarboxylic acid. Of course, tetracarboxylic dianhydride may be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
<重合性化合物>
 本発明の液晶配向剤には、必要に応じ、2つ以上の末端に光重合又は光架橋する基を有する重合性化合物を含有しても良い。かかる重合性化合物は、光重合又は光架橋する基を有する末端を二つ以上持っている化合物である。ここで、光重合する基を有する重合性化合物とは、光を照射することにより重合を生じさせる官能基を有する化合物である。また、光架橋する基を有する化合物とは、光を照射することにより、重合性化合物の重合体や、ポリイミド前駆体、及び、このポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一種の重合体と反応してこれらと架橋することができる官能基を有する化合物である。なお、光架橋する基を有する化合物は、光架橋する基を有する化合物同士でも反応する。
<Polymerizable compound>
The liquid crystal aligning agent of the present invention may contain a polymerizable compound having a photopolymerizable or photocrosslinkable group at two or more terminals as required. Such a polymerizable compound is a compound having two or more terminals having a group that undergoes photopolymerization or photocrosslinking. Here, the polymerizable compound having a photopolymerizable group is a compound having a functional group that causes polymerization upon irradiation with light. The compound having a photocrosslinking group is at least one selected from a polymer of a polymerizable compound, a polyimide precursor, and a polyimide obtained by imidizing the polyimide precursor by irradiating light. It is a compound having a functional group capable of reacting with the polymer and crosslinking with these polymers. A compound having a photocrosslinkable group also reacts with a compound having a photocrosslinkable group.
 上記重合性化合物を含有させた本発明の液晶配向剤を、SC-PVA型液晶ディスプレイなどの垂直配向方式の液晶表示素子に用いることにより、この液晶を垂直に配向させる側鎖及び光反応性の側鎖を有する重合体や、この重合性化合物を単独で用いた場合と比較して、応答速度を顕著に向上させることができ、少ない重合性化合物の添加量でも応答速度を十分に向上させることができる。
 光重合又は光架橋する基としては、下記式(IV)で表される一価の基が挙げられる。
 式中、R12は、水素原子、又は炭素数1~4のアルキル基を表す。Zは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基によって置換されていてもよい二価の芳香環若しくは複素環を表す。Zは炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基によって置換されていてもよい一価の芳香環若しくは複素環を表す。
By using the liquid crystal aligning agent of the present invention containing the polymerizable compound in a vertical alignment type liquid crystal display element such as an SC-PVA type liquid crystal display, the side chain and the photoreactive property for aligning the liquid crystal vertically are used. Compared to the case of using a polymer having a side chain and this polymerizable compound alone, the response speed can be remarkably improved, and the response speed can be sufficiently improved even with a small amount of the polymerizable compound added. Can do.
Examples of the group that undergoes photopolymerization or photocrosslinking include monovalent groups represented by the following formula (IV).
In the formula, R 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Z 1 represents a divalent aromatic ring or heterocyclic ring which may be substituted with an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Z 2 represents a monovalent aromatic ring or heterocyclic ring which may be substituted with an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 重合性化合物の具体例としては、下記式(V)で表される2つの末端のそれぞれに光重合する基を有する化合物、下記式(VI)で表される光重合する基を有する末端と光架橋する基を有する末端を有する化合物や、下記式(VII)で表される2つの末端のそれぞれに光架橋する基を有する化合物が挙げられる。
 なお、下記式(V)~(VII)において、R12、Z及びZは上記式(IV)におけるR12、Z及びZと同じであり、Qは二価の有機基である。Qは、フェニレン基(-C-)、ビフェニレン基(-C-C-)、シクロヘキシレン基(-C10-)等の環構造を有していることが好ましい。液晶との相互作用が大きくなりやすいためである。
Specific examples of the polymerizable compound include a compound having a photopolymerizable group at each of two ends represented by the following formula (V), a terminal having a photopolymerizable group represented by the following formula (VI), and light. Examples thereof include a compound having a terminal having a cross-linking group and a compound having a photo-crosslinking group at each of two terminals represented by the following formula (VII).
In Formula (V) ~ (VII), R 12, Z 1 and Z 2 are the same as R 12, Z 1 and Z 2 in the formula (IV), Q 1 is a divalent organic group is there. Q 1 has a ring structure such as a phenylene group (—C 6 H 4 —), a biphenylene group (—C 6 H 4 —C 6 H 4 —), a cyclohexylene group (—C 6 H 10 —), and the like. Preferably it is. This is because the interaction with the liquid crystal tends to increase.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 式(V)で表される重合性化合物の具体例は、下記式(R-1)で表される重合性化合物が挙げられる。下記式(R-1)において、V、Wは、単結合、又は-RO-で表され、Rは直鎖状若しくは分岐状の炭素数1~10のアルキレン基であり、好ましくは、-RO-で表され、Rは直鎖状若しくは分岐状の炭素数2~6のアルキレン基である。なお、V、Wは、同一でも異なっていてもよいが、同一であると合成が容易である。 Specific examples of the polymerizable compound represented by the formula (V) include a polymerizable compound represented by the following formula (R-1). In the following formula (R-1), V and W are each represented by a single bond or —R 1 O—, and R 1 is a linear or branched alkylene group having 1 to 10 carbon atoms, preferably , -R 1 O-, wherein R 1 is a linear or branched alkylene group having 2 to 6 carbon atoms. V and W may be the same or different, but synthesis is easy when they are the same.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 なお、光重合又は光架橋する基として、α-メチレン-γ-ブチロラクトン基ではなく、アクリレート基やメタクリレート基を有する重合性化合物であっても、このアクリレート基やメタクリレート基がオキシアルキレン基等のスペーサーを介してフェニレン基と結合している構造を有する重合性化合物は、上記両末端にα-メチレン-γ-ブチロラクトン基を有する重合性化合物と同様に、応答速度を特に大幅に向上させることができる。また、アクリレート基やメタクリレート基がオキシアルキレン基等のスペーサーを介してフェニレン基と結合している構造を有する重合性化合物は、熱に対する安定性が向上し、高温、例えば、200℃以上の焼成温度に十分耐えることができる。 It should be noted that even if the photopolymerization or photocrosslinking group is a polymerizable compound having an acrylate group or a methacrylate group instead of an α-methylene-γ-butyrolactone group, the acrylate group or methacrylate group is a spacer such as an oxyalkylene group. The polymerizable compound having a structure bonded to a phenylene group via a can significantly improve the response speed particularly like the polymerizable compound having α-methylene-γ-butyrolactone groups at both ends. . In addition, a polymerizable compound having a structure in which an acrylate group or a methacrylate group is bonded to a phenylene group through a spacer such as an oxyalkylene group has improved heat stability, and a high temperature, for example, a firing temperature of 200 ° C. or higher. Can withstand enough.
 上記重合性化合物の製造方法は特に限定されず、例えば、下記の合成例に従って製造することができる。例えば、上記式(R-1)で表される重合性化合物は、下記反応式で表されるタラガ等がP.Talaga,M.Schaeffer,C.Benezra and J.L.Stampf,Synthesis,530(1990)で提案する方法により、SnCl2を用いて2-(ブロモメチル)アクリル酸(2-(bromomethyl)propenoic acid)と、アルデヒド又はケトンとを反応させて合成できる。なお、Amberlyst 15は、ロームアンドハース社製の強酸性イオン交換樹脂である。
 なお、下記式中、R’は一価の有機基を表す。
The manufacturing method of the said polymeric compound is not specifically limited, For example, it can manufacture according to the following synthesis example. For example, as for the polymerizable compound represented by the above formula (R-1), taraga and the like represented by the following reaction formula are proposed by P. Talaga, M. Schaeffer, C. Benezra and JLStampf, Synthesis, 530 (1990). According to the method described above, 2- (bromomethyl) propenoic acid can be synthesized by reacting with aldehyde or ketone using SnCl 2 . Amberlyst 15 is a strongly acidic ion exchange resin manufactured by Rohm and Haas.
In the following formula, R ′ represents a monovalent organic group.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 また、2-(ブロモメチル)アクリル酸は、下記反応式で表されるラマラーン等がK.Ramarajan,K.Kamalingam,D.J.O' Donnell and K.D.Berlin, Organic Synthesis,vol.61,56-59(1983)で提案する方法で合成できる。 In addition, 2- (bromomethyl) acrylic acid is represented by the following reaction formula: K. Ramarajan, K. Kamalingam, DJO 'Donnell and KDBerlin, Organic Synthesis, vol.61, 56-59 (1983) Can be synthesized by the method proposed in
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 具体的な合成例として、Vが-R1O-、Wが-OR2-でR1とR2が同一である上記式(R-1)で表される重合性化合物を合成する場合は、下記反応式で示される2つの方法が挙げられる。 As a specific synthesis example, when synthesizing a polymerizable compound represented by the above formula (R-1) in which V is —R 1 O—, W is —OR 2 —, and R 1 and R 2 are the same, There are two methods represented by the following reaction formulas.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 また、R1とR2が異なる上記式(R-1)で表される重合性化合物を合成する場合は、下記反応式で示される方法が挙げられる。 In the case of synthesizing a polymerizable compound represented by the above formula (R-1) in which R 1 and R 2 are different, a method represented by the following reaction formula can be mentioned.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 上記式(R-1)中、V及びWが単結合である重合性化合物を合成する場合は、下記反応式で示される方法が挙げられる。 In the case of synthesizing a polymerizable compound in which V and W are single bonds in the above formula (R-1), a method represented by the following reaction formula may be mentioned.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
<ポリアミック酸の合成>
 ジアミン成分とテトラカルボン酸二無水物との反応により、ポリアミック酸を得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる方法である。ジアミン成分とテトラカルボン酸二無水物との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
<Synthesis of polyamic acid>
In obtaining a polyamic acid by a reaction between a diamine component and tetracarboxylic dianhydride, a known synthesis method can be used. In general, a diamine component and a tetracarboxylic dianhydride component are reacted in an organic solvent. The reaction between the diamine component and tetracarboxylic dianhydride is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
 上記反応に用いる有機溶媒としては、生成したポリアミック酸が溶解するものであれば特に限定されない。さらに、ポリアミック酸が溶解しない有機溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。なお、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 The organic solvent used in the above reaction is not particularly limited as long as the generated polyamic acid is soluble. Furthermore, even if it is an organic solvent in which a polyamic acid does not melt | dissolve, you may mix and use the said solvent in the range which the produced | generated polyamic acid does not precipitate. In addition, since the water | moisture content in an organic solvent inhibits a polymerization reaction and also causes the produced polyamic acid to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 上記反応に用いる有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、2-エチル-1-ヘキサノール等が挙げられる。これらの有機溶媒は単独又は混合して使用してもよい。 Examples of the organic solvent used in the above reaction include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, and N-ethyl-2. -Pyrrolidone, 2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethyl Sulfoxide, γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, Tilcerosolve acetate, butylcellosolve acetate, ethylcellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether , Propylene glycol monobutyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether Dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3- Methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl Ether, dihexyl ether, dioxane, n-hexane, n-pentane, n-octane , Diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, 3-methoxypropionic acid Methyl, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4 -Methyl-2-pentanone, 2-ethyl-1-hexanol and the like. These organic solvents may be used alone or in combination.
 ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる方法は、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌し、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などのいずれでもよい。また、ジアミン成分又はテトラカルボン酸二無水物成分が複数種の化合物からなる場合は、予め混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。 The method of reacting a diamine component and a tetracarboxylic dianhydride component in an organic solvent is to stir a solution in which the diamine component is dispersed or dissolved in the organic solvent, and the tetracarboxylic dianhydride component as it is or an organic solvent. Dispersing or dissolving in a solution, adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic dianhydride component in an organic solvent, alternating tetracarboxylic dianhydride component and diamine component Any of the methods of adding to In addition, when the diamine component or tetracarboxylic dianhydride component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. The body may be mixed and reacted to form a high molecular weight body.
 ジアミン成分とテトラカルボン酸二無水物成分とを反応させる際の温度は、例えば-20℃~150℃、好ましくは-5℃~100℃の範囲である。また、反応は、例えば、反応液に対してジアミン成分とテトラカルボン酸二無水物成分との合計の濃度が1~50質量%が好ましく、5~30質量%がより好ましい。
 上記の重合反応における、ジアミン成分の合計モル数に対するテトラカルボン酸二無水物成分の合計モル数の比率は、得ようとするポリアミック酸の分子量に応じて選択できる。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなり、好ましい範囲を示すならば0.8~1.2である。
The temperature at the time of reacting the diamine component and the tetracarboxylic dianhydride component is, for example, in the range of −20 ° C. to 150 ° C., preferably −5 ° C. to 100 ° C. In the reaction, for example, the total concentration of the diamine component and the tetracarboxylic dianhydride component is preferably 1 to 50% by mass, and more preferably 5 to 30% by mass with respect to the reaction solution.
The ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component in the polymerization reaction can be selected according to the molecular weight of the polyamic acid to be obtained. Similar to the usual polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced, and 0.8 to 1.2 if it shows a preferred range.
 本発明に用いられるポリアミック酸を合成する方法は上記の手法に限定されず、一般的なポリアミック酸の合成方法と同様に、上記のテトラカルボン酸二無水物に代えて、対応する構造のテトラカルボン酸又はテトラカルボン酸ジハライドなどのテトラカルボン酸誘導体を用い、公知の方法で反応させることでも対応するポリアミック酸を得ることができる。
 上記したポリアミック酸をイミド化させてポリイミドとする方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。なお、ポリアミック酸からポリイミドへのイミド化率は、必ずしも100%である必要はない。
The method for synthesizing the polyamic acid used in the present invention is not limited to the above-described method, and in the same manner as the general polyamic acid synthesis method, instead of the tetracarboxylic dianhydride, a tetracarboxylic acid having a corresponding structure is used. The corresponding polyamic acid can also be obtained by reacting by a known method using a tetracarboxylic acid derivative such as acid or tetracarboxylic acid dihalide.
Examples of the method of imidizing the polyamic acid to form a polyimide include thermal imidization in which a polyamic acid solution is heated as it is, and catalytic imidation in which a catalyst is added to the polyamic acid solution. The imidation ratio from polyamic acid to polyimide is not necessarily 100%.
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
The temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and is preferably carried out while removing water generated by the imidation reaction from the system.
Catalytic imidation of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 また、ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドと、上記ポリアミック酸の合成と同様のジアミンとの反応や、テトラカルボン酸ジエステルと上記ポリアミック酸の合成と同様のジアミンとを適当な縮合剤や、塩基の存在下等にて反応させることにより、製造することができる。また、上記の方法で予めポリアミック酸を合成し、高分子反応を利用してアミック酸中のカルボン酸をエステル化することでも得ることができる。具体的には、例えば、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって、ポリアミック酸エステルを合成することができる。そして、ポリアミック酸エステルを高温で加熱し、脱アルコールを促し閉環させることによっても、ポリイミドを得ることができる。 The polyamic acid ester is a reaction of a tetracarboxylic acid diester dichloride with a diamine similar to the synthesis of the polyamic acid, a suitable condensing agent with a diamine similar to the synthesis of the tetracarboxylic acid diester and the polyamic acid, It can be produced by reacting in the presence of a base or the like. It can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxylic acid in the amic acid using a polymer reaction. Specifically, for example, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour. By reacting for ˜4 hours, a polyamic acid ester can be synthesized. The polyimide can also be obtained by heating the polyamic acid ester at a high temperature to promote dealcoholization and ring closure.
 反応溶液から、生成したポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 In the case where the polyimide precursor or polyimide such as polyamic acid and polyamic acid ester produced is recovered from the reaction solution, the reaction solution may be poured into a poor solvent and precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating. Further, when the operation of re-dissolving the recovered polymer in an organic solvent and repeating the reprecipitation recovery is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
<液晶配向剤>
 本発明の液晶配向剤は、上記ポリイミド前駆体を含有するが、該ポリイミド前駆体の含有量は1~20質量%が好ましく、より好ましくは3~15質量%、特に好ましくは3~10質量%である。また、2つ以上の末端に光重合又は光架橋する基をそれぞれ有する重合性化合物を含有する場合、その含有量は、上記重合体100質量部に対して、1~50質量部が好ましく、さらに好ましくは5~30質量部である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of the present invention contains the polyimide precursor, and the content of the polyimide precursor is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass. It is. Further, when the polymerizable compound having a photopolymerizable or photocrosslinkable group at each of two or more terminals is contained, the content thereof is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polymer. The amount is preferably 5 to 30 parts by mass.
 また、本発明の液晶配向剤は、上記ポリイミド前駆体以外の他の重合体を含有していてもよい。その際、重合体全成分中におけるかかる他の重合体の含有量は0.5~80質量%が好ましく、より好ましくは20~50質量%である。
 液晶配向剤が有する重合体の分子量は、液晶配向剤を塗布して得られる液晶配向膜の強度及び、塗膜形成時の作業性、塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000が好ましく、10,000~150,000がより好ましい。
Moreover, the liquid crystal aligning agent of this invention may contain other polymers other than the said polyimide precursor. At that time, the content of such other polymer in all the components of the polymer is preferably 0.5 to 80% by mass, more preferably 20 to 50% by mass.
The molecular weight of the polymer of the liquid crystal aligning agent is determined by GPC (Gel Permeation Chromatography) in consideration of the strength of the liquid crystal aligning film obtained by applying the liquid crystal aligning agent, the workability at the time of forming the coating film, and the uniformity of the coating film. ) The weight average molecular weight measured by the method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
 液晶配向剤が含有する溶媒は、特に限定はなく、上記ポリイミド前駆体、及び、必要に応じて含有される、2つ以上の末端に光重合又は光架橋する基をそれぞれ有する重合性化合物等の含有成分を溶解又は分散できるものであればよい。例えば、上記のポリアミック酸の合成で例示したような有機溶媒を挙げることができる。中でもN-メチル-2-ピロリドン、γ-ブチロラクトン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミドは、溶解性の点から好ましい。もちろん、2種類以上の混合溶媒でもよい。 The solvent contained in the liquid crystal aligning agent is not particularly limited, and may be the above-described polyimide precursor and a polymerizable compound each having a photopolymerizable or photocrosslinkable group at two or more terminals contained as necessary. What is necessary is just to be able to dissolve or disperse the contained components. For example, the organic solvent which was illustrated by the synthesis | combination of said polyamic acid can be mentioned. Among them, N-methyl-2-pyrrolidone, γ-butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone and 3-methoxy-N, N-dimethylpropanamide are soluble. To preferred. Of course, two or more kinds of mixed solvents may be used.
 また、塗膜の均一性や平滑性を向上させる溶媒を、液晶配向剤の含有成分の溶解性が高い溶媒に混合して使用すると好ましい。かかる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、2-エチル-1-ヘキサノールなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒は、液晶配向剤に含まれる溶媒全体の5~80質量%が好ましく、20~60質量%がより好ましい。 In addition, it is preferable to use a solvent that improves the uniformity and smoothness of the coating film mixed with a solvent in which the components of the liquid crystal aligning agent are highly soluble. Examples of such solvents include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, Ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol Diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, Dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene , Amyl acetate , Butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n acetate -Butyl, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropion Acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propano Propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol Lactic acid methyl ester, lactic acid ethyl ester, lactic acid n-propyl ester, lactic acid n-butyl ester, lactic acid isoamyl ester, 2-ethyl-1-hexanol and the like. A plurality of these solvents may be mixed. These solvents are preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the liquid crystal aligning agent.
 液晶配向剤には、上記以外の成分を含有してもよい。その例としては、液晶配向剤を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、液晶配向膜と基板との密着性を向上させる化合物などが挙げられる。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含有される重合体の総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
The liquid crystal aligning agent may contain components other than those described above. Examples thereof include compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, and compounds that improve the adhesion between the liquid crystal aligning film and the substrate.
Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) and the like. The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the total amount of the polymer contained in the liquid crystal aligning agent. .
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、3-(N-アリル-N-グリシジル)アミノプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。 Specific examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetra Glycidyl-2,4-hexanediol, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N′-tetraglycidyl-4, 4′-diaminodiphenylmethane, 3- (N-allyl-N-glycidyl) aminopropyltrimethoxysilane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane, etc. .
 また、液晶配向膜の膜強度をさらに上げるために2,2’-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物は、液晶配向剤に含有される重合体の総量100質量部に対して0.1~30質量部が好ましく、1~20質量部がより好ましい。
 さらに、液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
In order to further increase the film strength of the liquid crystal alignment film, a phenol compound such as 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol may be added. . These compounds are preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer contained in the liquid crystal aligning agent.
In addition to the above, the liquid crystal aligning agent is added with a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant or conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired. May be.
 この液晶配向剤を基板上に塗布して焼成することにより、液晶を垂直に配向させる液晶配向膜を形成することができる。本発明の液晶配向剤の使用により、得られる液晶配向膜を用いた液晶表示素子の応答速度を速いものとすることができる。また、本発明の液晶配向剤中に含有してもよい、2つ以上の末端に光重合又は光架橋する基をそれぞれ有する重合性化合物は、液晶配向剤に含有させずに、又は液晶配向剤とともに、液晶中に含有させることにより、所謂、PSAモードにおいても光反応が高感度化し、少ない紫外線の照射量でもチルト角を付与することができる。 By applying this liquid crystal aligning agent on a substrate and baking it, a liquid crystal alignment film for vertically aligning liquid crystals can be formed. By using the liquid crystal aligning agent of this invention, the response speed of the liquid crystal display element using the liquid crystal aligning film obtained can be made quick. In addition, the polymerizable compound that has two or more terminal groups that are photopolymerized or photocrosslinked, which may be contained in the liquid crystal aligning agent of the present invention, is not contained in the liquid crystal aligning agent, or the liquid crystal aligning agent. In addition, by incorporating it in the liquid crystal, the photoreaction becomes highly sensitive even in the so-called PSA mode, and a tilt angle can be imparted even with a small amount of ultraviolet irradiation.
 例えば、本発明の液晶配向剤を、基板に塗布した後、必要に応じて乾燥し、焼成を行うことで得られる硬化膜を、そのまま液晶配向膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、PSA用配向膜として液晶充填後の液晶表示素子に電圧を印加した状態でUVを照射することも可能である。特に、PSA用配向膜として使用することが有用である。 For example, a cured film obtained by applying the liquid crystal aligning agent of the present invention to a substrate and then drying and baking as necessary can be used as a liquid crystal aligning film as it is. In addition, the cured film is rubbed, irradiated with polarized light or light of a specific wavelength, or treated with an ion beam, or a voltage is applied to the liquid crystal display element after filling the liquid crystal as a PSA alignment film It is also possible to irradiate with UV. In particular, it is useful to use as an alignment film for PSA.
 この際、用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。 In this case, the substrate to be used is not particularly limited as long as it is a highly transparent substrate. Glass plate, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone , Plastic substrates such as trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, triacetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose can be used. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
 液晶配向剤の塗布方法は特に限定されず、スクリーン印刷、オフセット印刷、フレキソ印刷等の印刷法、インクジェット法、スプレー法、ロールコート法や、ディップ、ロールコーター、スリットコーター、スピンナー等が挙げられる。生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。
 上記の方法で液晶配向剤を塗布して形成される塗膜は、焼成して硬化膜とすることができる。液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を行うことが好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40℃~150℃、好ましくは60℃~100℃のホットプレート上で、0.5分~30分、好ましくは1分~5分乾燥させる方法が挙げられる。
The application method of the liquid crystal aligning agent is not particularly limited, and examples thereof include screen printing, offset printing, flexographic printing, and other printing methods, ink jet methods, spray methods, roll coating methods, dip, roll coater, slit coater, spinner and the like. From the standpoint of productivity, the transfer printing method is widely used industrially, and is preferably used in the present invention.
The coating film formed by applying the liquid crystal aligning agent by the above method can be baked to obtain a cured film. The drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, the drying process is performed. It is preferable. The drying is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like. For example, a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C., for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes.
 液晶配向剤を塗布することにより形成された塗膜の焼成温度は限定されず、例えば100~350℃、好ましくは120~300℃であり、さらに好ましくは150℃~250℃である。焼成時間は5分~240分、好ましくは10分~90分であり、より好ましくは20分~90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環炉、赤外線炉などで行うことができる。
 また、焼成して得られる液晶配向膜の厚みは特に限定されないが、好ましくは5~300nm、より好ましくは10~100nmである。
The firing temperature of the coating film formed by applying the liquid crystal aligning agent is not limited, and is, for example, 100 to 350 ° C, preferably 120 to 300 ° C, and more preferably 150 ° C to 250 ° C. The firing time is 5 minutes to 240 minutes, preferably 10 minutes to 90 minutes, and more preferably 20 minutes to 90 minutes. Heating can be performed by a generally known method such as a hot plate, a hot air circulating furnace, an infrared furnace, or the like.
The thickness of the liquid crystal alignment film obtained by firing is not particularly limited, but is preferably 5 to 300 nm, more preferably 10 to 100 nm.
<液晶表示素子>
 本発明の液晶表示素子は、上記の方法により、基板に液晶配向膜を形成した後、公知の方法で液晶セルを作製できる。液晶表示素子の具体例としては、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する垂直配向方式の液晶表示素子である。具体的には、本発明の液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持し、すなわち、液晶配向膜に接触させて液晶層を設け、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することで作製される液晶セルを具備する垂直配向方式の液晶表示素子である。
<Liquid crystal display element>
In the liquid crystal display element of the present invention, a liquid crystal cell can be produced by a known method after forming a liquid crystal alignment film on a substrate by the above method. Specific examples of the liquid crystal display element include two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal aligning agent provided between the substrate and the liquid crystal layer. A vertical alignment type liquid crystal display device comprising a liquid crystal cell having the above-described liquid crystal alignment film. Specifically, the liquid crystal aligning agent of the present invention is applied onto two substrates and baked to form a liquid crystal aligning film, and the two substrates are arranged so that the liquid crystal aligning films face each other. A liquid crystal layer composed of liquid crystal is sandwiched between two substrates, that is, a liquid crystal layer is provided in contact with the liquid crystal alignment film, and ultraviolet rays are applied while applying a voltage to the liquid crystal alignment film and the liquid crystal layer. This is a vertical alignment type liquid crystal display device including a liquid crystal cell to be manufactured.
 本発明の液晶配向剤により形成された液晶配向膜を用い、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射して、重合性化合物を重合させると共に、重合体が有する光反応性の側鎖同士や、重合体が有する光反応性の側鎖と重合性化合物を反応させることにより、より効率的に液晶の配向が固定化され、応答速度が顕著に優れた液晶表示素子となる。 The liquid crystal alignment film formed of the liquid crystal alignment agent of the present invention is used to irradiate ultraviolet rays while applying voltage to the liquid crystal alignment film and the liquid crystal layer to polymerize the polymerizable compound, and the photoreactive property of the polymer. By reacting the side-chains or the photoreactive side chain of the polymer with the polymerizable compound, the alignment of the liquid crystal is more efficiently fixed, and the liquid crystal display device is remarkably excellent in response speed.
 本発明の液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。従来の電極パターンや突起パターンが設けられた基板を用いてもよいが、本発明の液晶表示素子においては、上記本発明の液晶配向剤を用いているため、片側基板に例えば1から10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造においても動作可能であり、この構造の液晶表示素子によって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。 The substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed. As a specific example, the thing similar to the board | substrate described with the said liquid crystal aligning film can be mentioned. A substrate provided with a conventional electrode pattern or protrusion pattern may be used. However, in the liquid crystal display element of the present invention, since the liquid crystal aligning agent of the present invention is used, a line of 1 to 10 μm, for example, is formed on one side substrate. / Slit electrode pattern is formed, and it is possible to operate even in the structure where slit pattern or projection pattern is not formed on the counter substrate. The liquid crystal display element of this structure can simplify the process at the time of manufacture and has high transmittance. Can be obtained.
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 透過型の液晶表示素子の場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
As a high-performance element such as a TFT type element, an element in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
In the case of a transmissive liquid crystal display element, it is common to use a substrate as described above. However, in a reflective liquid crystal display element, if only one substrate is used, an opaque substrate such as a silicon wafer may be used. Is possible. At that time, a material such as aluminum that reflects light can be used for the electrode formed on the substrate.
 本発明の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来の垂直配向方式で使用される液晶材料、例えば、メルク社製のMLC-6608やMLC-6609などのネガ型の液晶を用いることができる。また、PSAモードては、例えば下記式で表されるような重合性化合物含有の液晶を使用することができる。 The liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and a liquid crystal material used in a conventional vertical alignment method, for example, a negative type such as MLC-6608 or MLC-6609 manufactured by Merck & Co., Inc. Liquid crystal can be used. As the PSA mode, for example, a liquid crystal containing a polymerizable compound represented by the following formula can be used.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 本発明において、液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布した後に液晶を滴下し、その後液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせて封止を行う方法でも液晶セルを作製できる。上記スペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 In the present invention, a known method can be used as a method of sandwiching the liquid crystal layer between two substrates. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate so that the surface on which the liquid crystal alignment film is formed is on the inside. Then, the other substrate is bonded, and liquid crystal is injected under reduced pressure to seal. Also, a pair of substrates on which a liquid crystal alignment film is formed are prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate, and then liquid crystal is dropped, and then the surface on which the liquid crystal alignment film is formed A liquid crystal cell can also be produced by a method in which the other substrate is bonded to each other so as to be inside, and sealing is performed. The thickness of the spacer is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することにより液晶セルを作製する工程は、例えば基板上に設置されている電極間に電圧をかけることで液晶配向膜及び液晶層に電界を印加し、この電界を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間にかける電圧としては、例えば5~30Vp-p、好ましくは5~20Vp-pである。紫外線の照射量は、例えば、1~60J、好ましくは40J以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。 The step of producing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer includes, for example, applying an electric field between the electrodes installed on the substrate to apply an electric field to the liquid crystal alignment film and the liquid crystal layer. And applying ultraviolet rays while maintaining this electric field. Here, the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p. The irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is increased.
 上記のように、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子のプレチルト角を所望の値とすることができ、且つ応答速度を速くすることができる。また、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、液晶を垂直に配向させる側鎖と、光反応性の側鎖とを有するポリイミド前駆体、及び、このポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一種の重合体が有する光反応性の側鎖同士や、重合体が有する光反応性の側鎖と重合性化合物が反応するため、得られる液晶表示素子の応答速度を速くすることができる。 As described above, when ultraviolet rays are irradiated while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is stored by this polymer. Thus, the pretilt angle of the obtained liquid crystal display element can be set to a desired value, and the response speed can be increased. In addition, a polyimide precursor having a side chain for vertically aligning liquid crystal and a photoreactive side chain when irradiated with ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, and the polyimide precursor as an imide Since the photoreactive side chains of at least one polymer selected from the polyimide obtained by the reaction or the photoreactive side chains of the polymer react with the polymerizable compound, the liquid crystal display element obtained The response speed can be increased.
 液晶表示素子のプレチルト角は、用いる液晶配向膜、即ち用いる液晶配向剤、用いるポリイミド前駆体、用いる第1の光ラジカル発生ジアミンに依存する。上述のように、本発明のポリイミド前駆体、特にラジカル発生量が相対的に多いポリイミド前駆体を用いることにより、UV照射時のラジカル発生量が多くなる。また、ラジカル発生量が多くなると、上述の重合性化合物の反応が促進されることにより、同一波長の場合、少ない照射量で得られる液晶表示素子のプレチルト角を所望の値とすることができ、且つ応答速度を速くすることができる。
 一般に、液晶表示素子のプレチルト角は、液晶表示素子を形成する際のUV照射量が多いほど、90°から離れる傾向にある。
The pretilt angle of the liquid crystal display element depends on the liquid crystal alignment film used, that is, the liquid crystal aligning agent used, the polyimide precursor used, and the first photoradical-generating diamine used. As described above, by using the polyimide precursor of the present invention, particularly a polyimide precursor having a relatively large amount of radical generation, the amount of radical generation during UV irradiation increases. In addition, when the amount of radical generation increases, the reaction of the above-described polymerizable compound is promoted, so that in the case of the same wavelength, the pretilt angle of the liquid crystal display element obtained with a small irradiation amount can be set to a desired value. In addition, the response speed can be increased.
In general, the pretilt angle of a liquid crystal display element tends to be farther from 90 ° as the amount of UV irradiation in forming the liquid crystal display element increases.
 以下、実施例により、本発明をさらに具体的に説明するが、本発明はこの実施例により何ら限定されるものではない。
 なお、以下における、化合物の略号と構造、及び各特性の測定方法は、以下のとおりである。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
In the following, the abbreviations and structures of the compounds and the measuring methods of the respective properties are as follows.
(溶媒)
DMF:N、N-ジメチルホルムアミド
THF:テトラヒドロフラン
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
(ジアミン)
DA-A:1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-メトキシ-2-メチルプロパン-1-オン
DA-1:1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン
DA-2:4-(4-(4-ヘプチルシクロヘキシル)フェノキシ)ベンゼン-1,3-ジアミン
3AMPDA:3,5-ジアミノ-N-(ピリジン-3-イルメチル)ベンズアミド
(酸二無水物)
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
(添加剤)
3AMP:3-ピコリルアミン
(solvent)
DMF: N, N-dimethylformamide THF: Tetrahydrofuran NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve (diamine)
DA-A: 1- (4- (2- (2,4-diaminophenoxy) ethoxy) phenyl) -2-methoxy-2-methylpropan-1-one DA-1: 1- (4- (2- ( 2,4-diaminophenoxy) ethoxy) phenyl) -2-hydroxy-2-methylpropan-1-one DA-2: 4- (4- (4-heptylcyclohexyl) phenoxy) benzene-1,3-diamine 3AMPDA: 3,5-diamino-N- (pyridin-3-ylmethyl) benzamide (acid dianhydride)
BODA: Bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride (additive)
3AMP: 3-picolylamine
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
H NMR]
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)INOVA-400(Varian製)400MHz
溶媒:重クロロホルム(CDCl)、又は重水素化ジメチルスルホキシド(DMSO-d
標準物質:テトラメチルシラン(TMS)
積算回数:8、又は、32。
[ 1 H NMR]
Apparatus: Fourier transform type superconducting nuclear magnetic resonance apparatus (FT-NMR) INOVA-400 (manufactured by Varian) 400 MHz
Solvent: deuterated chloroform (CDCl 3 ) or deuterated dimethyl sulfoxide (DMSO-d 6 )
Standard substance: Tetramethylsilane (TMS)
Integration count: 8 or 32.
13C{H} NMR]
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)INOVA-400(Varian製)100MHz
溶媒:重クロロホルム(CDCl)、又は重水素化ジメチルスルホキシド(DMSO-d
標準物質:テトラメチルシラン(TMS)
積算回数:256。
[ 13 C { 1 H} NMR]
Apparatus: Fourier transform type superconducting nuclear magnetic resonance apparatus (FT-NMR) INOVA-400 (manufactured by Varian) 100 MHz
Solvent: chloroform (CDCl 3), or deuterated dimethyl sulfoxide (DMSO-d 6)
Standard substance: Tetramethylsilane (TMS)
Integration count: 256.
[分子量]
 ポリイミド前駆体及び該イミド化重合体の分子量は、GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分。
[Molecular weight]
The molecular weights of the polyimide precursor and the imidized polymer are measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight as polyethylene glycol and polyethylene oxide equivalent values (hereinafter also referred to as Mn). Hereinafter, it is also referred to as Mw).
GPC device: Room temperature gel permeation chromatography (GPC) device (SSC-7200) manufactured by Senshu Scientific Co., Ltd.
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L)
Flow rate: 1.0 ml / min.
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定。 Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top manufactured by Polymer Laboratories) Molecular weight (Mp) about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of mixed samples are measured separately.
[イミド化率の測定]
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学製))に入れ、重水素化ジメチルスルホキシド(DMSO-d,0.05%TMS(テトラメチルシラン)混合品)(1.0ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
[Measurement of imidization rate]
The imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS (tetramethylsilane) mixed product) (1. 0 ml) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
[ジアミン化合物の合成]
(対照合成例1:芳香族ジアミン化合物(DA-1)の合成)
[Synthesis of diamine compound]
(Control Synthesis Example 1: Synthesis of aromatic diamine compound (DA-1))
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Step1:1-(4-(2、4-ジニトロフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノンの合成
 攪拌子と窒素導入管を備えた2L四口フラスコに、2,4-ジニトロフルオロベンゼンを100.0g([Mw:186.10g/mol]、0.538mol)、2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノンを120.6g([Mw:224.25g/mol]、0.538mol)、トリエチルアミンを81.7g([Mw:101.19g/mol]、0.807mol)、THFを1000g加え、24時間還流させた。反応終了後、ロータリーエバポレーターで濃縮し、酢酸エチルを加え、これを純水と生理食塩水にて数回洗浄した後、無水硫酸マグネシウムで乾燥させた。
Step 1: Synthesis of 1- (4- (2,4-dinitrophenoxy) ethoxy) phenyl) -2-hydroxy-2-methylpropanone Into a 2 L four-necked flask equipped with a stirrer and a nitrogen inlet tube, 2,4- 100.0 g of dinitrofluorobenzene ([Mw: 186.10 g / mol], 0.538 mol), 120.6 g of 2-hydroxy-4 ′-(2-hydroxyethoxy) -2-methylpropiophenone ([Mw : 224.25 g / mol], 0.538 mol), 81.7 g of triethylamine ([Mw: 101.19 g / mol], 0.807 mol) and 1000 g of THF were added and refluxed for 24 hours. After completion of the reaction, the mixture was concentrated on a rotary evaporator, ethyl acetate was added, and this was washed several times with pure water and physiological saline, and then dried over anhydrous magnesium sulfate.
 無水硫酸マグネシウムを濾過にて取り除き、ロータリーエバポレーターにて濃縮した後、酢酸エチルとノルマルヘキサンにより再結晶し、乳白色の個体157.0g([Mw:390.34g/mol]、0.402mol、収率:75%)を得た。分子内水素原子の核磁気共鳴スペクトル(H-NMRスペクトル)にて確認した。測定データを以下に示す。
H NMR (400 MHz,CDCl)δ:8.75(Ar:1H)、8.48~8.45(Ar:1H)、8.09~8.05(Ar:2H)、7.34~7.31(Ar:1H)7.00~6.96(Ar:2H)、4.65~4.63(-CH2-:2H)、4.52~4.49(-CH2-:2H)、4.16(-OH:1H)、1.66~1.60(-CH3×2、6H) Total:18H.
After removing anhydrous magnesium sulfate by filtration and concentrating with a rotary evaporator, recrystallization with ethyl acetate and normal hexane gave 157.0 g of milky white solid ([Mw: 390.34 g / mol], 0.402 mol, yield) : 75%). It was confirmed by a nuclear magnetic resonance spectrum ( 1 H-NMR spectrum) of an intramolecular hydrogen atom. The measurement data is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ: 8.75 (Ar: 1H), 8.48-8.45 (Ar: 1H), 8.09-8.05 (Ar: 2H), 7.34 To 7.31 (Ar: 1H) 7.00 to 6.96 (Ar: 2H), 4.65 to 4.63 (-CH2-: 2H), 4.52 to 4.49 (-CH2-: 2H) ), 4.16 (—OH: 1H), 1.66 to 1.60 (—CH3 × 2, 6H) Total: 18H.
Step2 1-(4-(2、4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン(DA-1)の合成
 1L四口フラスコにStep1で得たジニトロベンゼン誘導体を100.0g([Mw:390.34g/mol]、0.256mol)と鉄がドープされた白金カーボン(Evonic社製 3wt%)を10.0g計り取り、THFを500ml加え、減圧脱気及び水素置換を十分に行い、室温で24時間反応させた。
Step 2 Synthesis of 1- (4- (2,4-diaminophenoxy) ethoxy) phenyl) -2-hydroxy-2-methylpropanone (DA-1) The dinitrobenzene derivative obtained in Step 1 was added to a 1 L four-necked flask in 100. Weigh 10.0 g ([Mw: 390.34 g / mol], 0.256 mol) and 10.0 g of iron-doped platinum carbon (3 wt% manufactured by Evonic), add 500 ml of THF, and perform vacuum degassing and hydrogen replacement. Fully conducted and allowed to react for 24 hours at room temperature.
 反応終了後、PTFE製のメンブランフィルターにて白金カーボンを除去し、濾液をロータリーエバポレーターによって除去し、固体を析出させた。得られた固体をイソプロピルアルコールにて加熱洗浄を行い、更に減圧乾燥させることにより、目的の化合物である薄ピンク色の固体72.7g([Mw:330.38g/mol]、0.220mol収率:86%)を得た。H-NMRスペクトル測定データを以下に示す。
H NMR (400 MHz,CDCl)δ:8.09~8.05(Ar:2H)、7.01~6.97(Ar:2H)、6.70~6.68(Ar:1H)、6.12(Ar:1H)、4.36~4.33(-CH2-:2H)、4.29~4.27(-OH&-CH2-:3H)、3.7(-NH2:2H)、3.39(-NH2:2H)、1.64~1.63(-CH3×2:6H) Total:22H.
After completion of the reaction, platinum carbon was removed with a PTFE membrane filter, and the filtrate was removed with a rotary evaporator to precipitate a solid. The obtained solid was heated and washed with isopropyl alcohol, and further dried under reduced pressure, whereby 72.7 g ([Mw: 330.38 g / mol], 0.220 mol yield) of the target compound was a light pink solid. : 86%). The 1 H-NMR spectrum measurement data is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ: 8.09 to 8.05 (Ar: 2H), 7.01 to 6.97 (Ar: 2H), 6.70 to 6.68 (Ar: 1H) 6.12 (Ar: 1H), 4.36 to 4.33 (-CH2-: 2H), 4.29 to 4.27 (-OH & -CH2-: 3H), 3.7 (-NH2: 2H) ), 3.39 (—NH2: 2H), 1.64 to 1.63 (—CH3 × 2: 6H) Total: 22H.
<合成例1>
 芳香族ジアミン化合物(DA-A):1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-メトキシ-2-メチルプロパン-1-オンの合成
 以下に示す5ステップの経路で芳香族ジアミン化合物(DA-A)を合成した。尚、芳香族ジアミン化合物(DA-A)は、上述した特定ジアミン化合物に該当する。
<Synthesis Example 1>
Aromatic diamine compound (DA-A): Synthesis of 1- (4- (2- (2,4-diaminophenoxy) ethoxy) phenyl) -2-methoxy-2-methylpropan-1-one An aromatic diamine compound (DA-A) was synthesized by the following route. The aromatic diamine compound (DA-A) corresponds to the above-mentioned specific diamine compound.
 第1ステップ:2-ヒドロキシ-2-メチル-1-(4-(2-((テトラヒドロ-2H-ピラン-2-イル)オキシ)エトキシ)フェニル)プロパン-1-オン(DA-A-1)の合成 First step: 2-hydroxy-2-methyl-1- (4- (2-((tetrahydro-2H-pyran-2-yl) oxy) ethoxy) phenyl) propan-1-one (DA-A-1) Synthesis of
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 IRGACURE2959(2-ヒドロキシ-1-(4-(2-ヒドロキシエトキシ)フェニル)-2-メチルプロパン-1-オン, 50.0g, 223 mmol)をTHF(200g)に溶解し、p-トルエンスルホン酸一水和物(0.424g, 2.23mmol)を加え、3,4-ジヒドロ-2H-ピラン(23.4g, 279mmol)を10分間かけて滴下し、室温で3時間反応させた。その後、反応液をろ過し、ろ液を濃縮することで、2-ヒドロキシ-2-メチル-1-(4-(2-((テトラヒドロ-2H-ピラン-2-イル)オキシ)エトキシ)フェニル)プロパン-1-オンの粗物を得た(緑色液体、73.7g)。
 1H NMR (DMSO-d6):δ 8.22 (d, J = 9.0 Hz, 2H, C6H4), 7.02 (d, J = 9.0 Hz, 2H, C6H4), 5.68 (s, 1H, OH), 4.66 (t, J = 3.6 Hz, 1H, CH), 4.22 (t, J = 4.8 Hz, 2H, CH2), 4.07-3.92 (m, 1H, CH2), 3.81-3.70 (m, 2H, CH2), 3.47-3.42 (m, 1H, CH2), 1.77-1.41 (m, 6H, CH2), 1.40 (s, 6H, C(CH3)2). 13C{1H} NMR (DMSO-d6):δ 202.4, 162.3, 162.1, 132.9, 127.9, 114.2, 98.5, 93.9, 93.6, 77.1, 70.2, 67.8, 65.5, 63.1, 62.0, 61.7, 59.9, 30.7, 30.6, 28.6, 25.6, 25.4, 20.8, 19.5 (each s).
IRGACURE 2959 (2-hydroxy-1- (4- (2-hydroxyethoxy) phenyl) -2-methylpropan-1-one, 50.0 g, 223 mmol) was dissolved in THF (200 g), and p-toluenesulfonic acid was dissolved. Monohydrate (0.424 g, 2.23 mmol) was added, and 3,4-dihydro-2H-pyran (23.4 g, 279 mmol) was added dropwise over 10 minutes and reacted at room temperature for 3 hours. Thereafter, the reaction solution is filtered, and the filtrate is concentrated to give 2-hydroxy-2-methyl-1- (4- (2-((tetrahydro-2H-pyran-2-yl) oxy) ethoxy) phenyl). A crude propan-1-one was obtained (green liquid, 73.7 g).
1 H NMR (DMSO-d 6 ): δ 8.22 (d, J = 9.0 Hz, 2H, C 6 H 4 ), 7.02 (d, J = 9.0 Hz, 2H, C 6 H 4 ), 5.68 (s, 1H , OH), 4.66 (t, J = 3.6 Hz, 1H, CH), 4.22 (t, J = 4.8 Hz, 2H, CH 2 ), 4.07-3.92 (m, 1H, CH 2 ), 3.81-3.70 (m , 2H, CH 2 ), 3.47-3.42 (m, 1H, CH 2 ), 1.77-1.41 (m, 6H, CH 2 ), 1.40 (s, 6H, C (CH 3 ) 2 ). 13 C { 1 H } NMR (DMSO-d 6 ): δ 202.4, 162.3, 162.1, 132.9, 127.9, 114.2, 98.5, 93.9, 93.6, 77.1, 70.2, 67.8, 65.5, 63.1, 62.0, 61.7, 59.9, 30.7, 30.6, 28.6, 25.6, 25.4, 20.8, 19.5 (each s).
 第2ステップ:2-メトキシ-2-メチル-1-(4-(2-((テトラヒドロ-2H-ピラン-2-イル)オキシ)エトキシ)フェニル)プロパン-1-オン(DA-A-2)の合成 Second step: 2-methoxy-2-methyl-1- (4- (2-((tetrahydro-2H-pyran-2-yl) oxy) ethoxy) phenyl) propan-1-one (DA-A-2) Synthesis of
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 水素化ナトリウム(57.1wt%純度、15.0g, 357mmol)をTHF(448g)に懸濁させ3℃に冷却し、DA-A-1の粗物(73.3g)をTHF(138g)に溶解した溶液を3℃で15分間かけて滴下した。その後、30分間撹拌し、ヨウ化メチル(41.0g, 357mmol)を5分間かけて滴下し、室温で22時間撹拌した。その後、室温で水(660g)、トルエン(586g)の順に加えて撹拌し、水層を廃棄し、有機層に水(650g)で2回洗浄後、有機層を濃縮することで、2-メトキシ-2-メチル-1-(4-(2-((テトラヒドロ-2H-ピラン-2-イル)オキシ)エトキシ)フェニル)プロパン-1-オンの粗物を得た(茶色液体、80.1g)。
 1H NMR (DMSO-d6):δ 8.19 (d, J = 8.8 Hz, 2H, C6H4), 7.06 (d, J = 8.8 Hz, 2H, C6H4), 4.66 (s, 1H, CH), 4.24-4.22 (m, 2H, CH2), 3.97-3.92 (m, 1H, CH), 3.80-3.72 (m, 2H, CH2), 3.47-3.43 (m, 1H, CH), 3.08 (s, 3H, CH3), 1.71-1.60 (m, 2H, CH2), 1.53-1.46 (m, 4H, (CH2)2), 1.41 (s, 6H, C(CH3)2). 13C{1H} NMR (DMSO-d6):δ 201.35, 162.6, 132.2, 127.5, 114.6, 98.5, 83.1, 67.9, 65.5, 61.7, 52.2, 30.6, 24.5, 24.9, 19.4 (each s).
Sodium hydride (57.1 wt% purity, 15.0 g, 357 mmol) was suspended in THF (448 g) and cooled to 3 ° C., and DA-A-1 crude product (73.3 g) was dissolved in THF (138 g). The dissolved solution was added dropwise at 3 ° C. over 15 minutes. Thereafter, the mixture was stirred for 30 minutes, methyl iodide (41.0 g, 357 mmol) was added dropwise over 5 minutes, and the mixture was stirred at room temperature for 22 hours. Then, water (660 g) and toluene (586 g) were added in this order at room temperature and stirred. The aqueous layer was discarded, the organic layer was washed twice with water (650 g), and the organic layer was concentrated to give 2-methoxy. A crude product of -2-methyl-1- (4- (2-((tetrahydro-2H-pyran-2-yl) oxy) ethoxy) phenyl) propan-1-one was obtained (brown liquid, 80.1 g). .
1 H NMR (DMSO-d 6 ): δ 8.19 (d, J = 8.8 Hz, 2H, C 6 H 4), 7.06 (d, J = 8.8 Hz, 2H, C 6 H 4), 4.66 (s, 1H , CH), 4.24-4.22 (m, 2H, CH 2 ), 3.97-3.92 (m, 1H, CH), 3.80-3.72 (m, 2H, CH 2 ), 3.47-3.43 (m, 1H, CH), 3.08 (s, 3H, CH 3 ), 1.71-1.60 (m, 2H, CH 2 ), 1.53-1.46 (m, 4H, (CH 2 ) 2 ), 1.41 (s, 6H, C (CH 3 ) 2 ) 13 C { 1 H} NMR (DMSO-d 6 ): δ 201.35, 162.6, 132.2, 127.5, 114.6, 98.5, 83.1, 67.9, 65.5, 61.7, 52.2, 30.6, 24.5, 24.9, 19.4 (each s).
 第3ステップ:1-(4-(2-ヒドロキシエトキシ)フェニル)-2-メトキシ-2-メチルプロパン-1-オン(DA-A-3)の合成 Third step: Synthesis of 1- (4- (2-hydroxyethoxy) phenyl) -2-methoxy-2-methylpropan-1-one (DA-A-3)
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 p-トルエンスルホン酸一水和物(0.469g, 2.46mmol)をメタノール(397g)とTHF(80g)の混合溶媒に溶解させた溶液に、DA-A-2の粗物(79.4g)をTHF(79g)に溶解させた溶液を室温で3分間かけて加えた。その後、2時間撹拌し、反応混合物を濃縮し、原料が20%残存したことを確認した。その後、残渣にTHF(350g)、水(290g)、および、p-トルエンスルホン酸一水和物(2.53g, 13.3mmol)を加え、室温で14時間撹拌した。その後、トルエン(350g)を加え、撹拌後、水層を廃棄し、有機層を水(340g)で2回洗浄し、有機層を濃縮することで1-(4-(2-ヒドロキシエトキシ)フェニル)-2-メトキシ-2-メチルプロパン-1-オンの粗物を得た(茶色液体、50.5g)。
 1H NMR (DMSO-d6):δ 8.20 (d, J = 9.0 Hz, 2H, C6H4), 7.05 (d, J = 9.0 Hz, 2H, C6H4), 4.96 (t, J = 5.4 Hz, 1H, OH), 4.10 (t, J = 4.8 Hz, 2H, CH2), 3.97-3.92 (dt, J = 5.4, 4.8 Hz, 2H, CH2), 3.09 (s, 3H, CH3), 1.42 (s, 6H, C(CH3)2). 13C{1H} NMR (DMSO-d6):δ 200.3, 162.8, 132.2, 127.4, 114.6, 83.1, 70.2, 59.8, 52.2, 24.9 (each s).
In a solution of p-toluenesulfonic acid monohydrate (0.469 g, 2.46 mmol) dissolved in a mixed solvent of methanol (397 g) and THF (80 g), a crude product of DA-A-2 (79.4 g ) In THF (79 g) was added at room temperature over 3 minutes. Thereafter, the mixture was stirred for 2 hours, and the reaction mixture was concentrated to confirm that 20% of the raw material remained. Thereafter, THF (350 g), water (290 g), and p-toluenesulfonic acid monohydrate (2.53 g, 13.3 mmol) were added to the residue, and the mixture was stirred at room temperature for 14 hours. Thereafter, toluene (350 g) is added, and after stirring, the aqueous layer is discarded. The organic layer is washed twice with water (340 g), and the organic layer is concentrated to give 1- (4- (2-hydroxyethoxy) phenyl. ) -2-Methoxy-2-methylpropan-1-one crude was obtained (brown liquid, 50.5 g).
1 H NMR (DMSO-d 6 ): δ 8.20 (d, J = 9.0 Hz, 2H, C 6 H 4 ), 7.05 (d, J = 9.0 Hz, 2H, C 6 H 4 ), 4.96 (t, J = 5.4 Hz, 1H, OH), 4.10 (t, J = 4.8 Hz, 2H, CH 2 ), 3.97-3.92 (dt, J = 5.4, 4.8 Hz, 2H, CH 2 ), 3.09 (s, 3H, CH . 3), 1.42 (s, 6H, C (CH 3) 2) 13 C {1 H} NMR (DMSO-d 6): δ 200.3, 162.8, 132.2, 127.4, 114.6, 83.1, 70.2, 59.8, 52.2, 24.9 (each s).
 第4ステップ:1-(4-(2-(2,4-ジニトロフェノキシ)エトキシ)フェニル)-2-メトキシ-2-メチルプロパン-1-オン(DA-A-4)の合成 Fourth step: Synthesis of 1- (4- (2- (2,4-dinitrophenoxy) ethoxy) phenyl) -2-methoxy-2-methylpropan-1-one (DA-A-4)
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 DA-A-3の粗物(45.7g)をDMF(79.9g)に溶解し、1-フルオロ-2,4-ジニトロベンゼン(35.7g, 192mmol)、および、トリエチルアミン(29.1g, 288mmol)を加え、室温で24時間撹拌した。その後、トルエン(274g)、および、水(274g)を加えて撹拌し、水層を廃棄し、有機層を水(274g)で2回洗浄し、有機層を濃縮した。続いて、残渣をシリカゲルカラムクロマトグラフィー(溶媒:トルエン/酢酸エチル=3/1(v/v)、Rf=0.3)で精製し、溶出液を濃縮した。その後、残渣に2-プロパノール(193g)を加えて、室温で撹拌、ろ過し、再度、ろ物を2-プロパノール(400g)を加え、60℃で撹拌、ろ過し、ろ物を乾燥することで、1-(4-(2-(2,4-ジニトロフェノキシ)エトキシ)フェニル)-2-メトキシ-2-メチルプロパン-1-オンを得た(薄茶色固体、29.2g、収率30%(4ステップ))。
 1H NMR (DMSO-d6):δ 8.73 (d, J = 2.8 Hz, 1H, C6H3), 8.50 (dd, J = 9.2, 2.8 Hz, 1H, C6H3), 8.16 (d, J = 8.8 Hz, 2H, C6H4), 7.65 (d, J = 9.2 Hz, 1H, C6H3), 7.37 (d, J = 8.8 Hz, 2H, C6H4), 4.71-4.69 (m, 2H, CH2), 4.45-4.43 (m, 2H, CH2), 3.04 (s, 3H, CH3), 1.37 (s, 6H, C(CH3)2). 13C{1H} NMR (DMSO-d6):δ 201.4, 162.2, 156.0, 140.3, 139.2, 132.2, 129.7, 127.8, 121.6, 116.4, 114.7, 83.1, 69.6, 66.5, 52.2, 24.8 (each s).
The crude DA-A-3 (45.7 g) was dissolved in DMF (79.9 g), 1-fluoro-2,4-dinitrobenzene (35.7 g, 192 mmol), and triethylamine (29.1 g, 288 mmol) and stirred at room temperature for 24 hours. Thereafter, toluene (274 g) and water (274 g) were added and stirred, the aqueous layer was discarded, the organic layer was washed twice with water (274 g), and the organic layer was concentrated. Subsequently, the residue was purified by silica gel column chromatography (solvent: toluene / ethyl acetate = 3/1 (v / v), Rf = 0.3), and the eluate was concentrated. Then, 2-propanol (193 g) was added to the residue, and the mixture was stirred and filtered at room temperature. Again, the filtrate was added with 2-propanol (400 g), stirred and filtered at 60 ° C., and the filtrate was dried. 1- (4- (2- (2,4-dinitrophenoxy) ethoxy) phenyl) -2-methoxy-2-methylpropan-1-one (light brown solid, 29.2 g, 30% yield) (4 steps)).
1 H NMR (DMSO-d 6 ): δ 8.73 (d, J = 2.8 Hz, 1H, C 6 H 3 ), 8.50 (dd, J = 9.2, 2.8 Hz, 1H, C 6 H 3 ), 8.16 (d , J = 8.8 Hz, 2H, C 6 H 4), 7.65 (d, J = 9.2 Hz, 1H, C 6 H 3), 7.37 (d, J = 8.8 Hz, 2H, C 6 H 4), 4.71- 4.69 (m, 2H, CH 2 ), 4.45-4.43 (m, 2H, CH 2 ), 3.04 (s, 3H, CH 3 ), 1.37 (s, 6H, C (CH 3 ) 2 ). 13 C { 1 H} NMR (DMSO-d 6 ): δ 201.4, 162.2, 156.0, 140.3, 139.2, 132.2, 129.7, 127.8, 121.6, 116.4, 114.7, 83.1, 69.6, 66.5, 52.2, 24.8 (each s).
 第5ステップ:1-(4-(2-(2,4-ジニトロフェノキシ)エトキシ)フェニル)-2-メトキシ-2-メチルプロパン-1-オン(DA-A)の合成 Step 5: Synthesis of 1- (4- (2- (2,4-dinitrophenoxy) ethoxy) phenyl) -2-methoxy-2-methylpropan-1-one (DA-A)
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 DA-A-4(10.0g, 24.7mmol)をTHFに溶解し、1%白金-炭素(0.2%Feドープ, 59.5wt%含水, 0.62g)を加え、水素圧0.2~0.5MPaの下撹拌した。3時間後、HPLCで反応の終了を確認し、触媒をろ過し、ろ液を濃縮後、トルエン(30g)を加えて、65℃で30分間撹拌後、0℃に冷却し、析出した固体をろ過、乾燥することで、1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-メトキシ-2-メチルプロパン-1-オンを得た(紫色固体、7.23g、収率85%)
 1H NMR (DMSO-d6): δ 8.20 (d, J = 9.2 Hz, 2H, C6H4), 7.08 (d, J = 9.2 Hz, 2H, C6H4), 6.57 (d, J = 8.4 Hz, 1H, C6H3), 5.96 (d, J = 2.4 Hz, 1H, C6H3), 5.77 (dd, J = 9.2, 2.8 Hz, 1H, C6H3), 4.48 (s, 2H, NH2), 4.42 (s, 2H, NH2), 4.34-4.32 (m, 2H, CH2), 4.12-4.10 (m, 2H, CH2), 3.08 (s, 3H, CH3), 1.41 (s, 6H, C(CH3)2). 13C{1H} NMR (DMSO-d6): δ 201.4, 162.6, 144.2, 139.6, 137.4, 132.3, 127.6, 116.3, 114.7, 102.7, 101.8, 83.1, 68.9, 67.4, 52.2, 24.9 (each s).
DA-A-4 (10.0 g, 24.7 mmol) was dissolved in THF, 1% platinum-carbon (0.2% Fe-doped, 59.5 wt% water content, 0.62 g) was added, and the hydrogen pressure was reduced to 0. The mixture was stirred at 2 to 0.5 MPa. After 3 hours, the completion of the reaction was confirmed by HPLC, the catalyst was filtered, the filtrate was concentrated, toluene (30 g) was added, the mixture was stirred at 65 ° C. for 30 minutes, cooled to 0 ° C., and the precipitated solid was removed. Filtration and drying gave 1- (4- (2- (2,4-diaminophenoxy) ethoxy) phenyl) -2-methoxy-2-methylpropan-1-one (purple solid, 7.23 g , Yield 85%)
1 H NMR (DMSO-d 6 ): δ 8.20 (d, J = 9.2 Hz, 2H, C 6 H 4 ), 7.08 (d, J = 9.2 Hz, 2H, C 6 H 4 ), 6.57 (d, J = 8.4 Hz, 1H, C 6 H 3 ), 5.96 (d, J = 2.4 Hz, 1H, C 6 H 3 ), 5.77 (dd, J = 9.2, 2.8 Hz, 1H, C 6 H 3 ), 4.48 ( s, 2H, NH 2 ), 4.42 (s, 2H, NH 2 ), 4.34-4.32 (m, 2H, CH 2 ), 4.12-4.10 (m, 2H, CH 2 ), 3.08 (s, 3H, CH 3 ), 1.41 (s, 6H, C (CH 3 ) 2 ). 13 C { 1 H} NMR (DMSO-d 6 ): δ 201.4, 162.6, 144.2, 139.6, 137.4, 132.3, 127.6, 116.3, 114.7, 102.7 , 101.8, 83.1, 68.9, 67.4, 52.2, 24.9 (each s).
(実施例1及び2)
<液晶配向剤の合成>
 BODA(10.01g、 40.0mmol)、3AMPDA(4.85g、20.0mmol)、DA-A(13.78g、40.0mmol)、DA-2(15.22g、40.0mmol)をNMP(166.2g)中で溶解し、60℃で5時間反応させたのち、CBDA(11.57g、59.0mmol)とNMP(55.4g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(250g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(45.9g)、およびピリジン(14.2g)を加え、70℃で3時間反応させた。この反応溶液をメタノール(3300ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(A)を得た。このポリイミドのイミド化率は72%であり、数平均分子量は14000、重量平均分子量は38000であった。
 得られたポリイミド粉末(A)(6.0g)にNMP(44.0g)を加え、70℃にて20時間攪拌して溶解させた。この溶液に3AMP(1質量%NMP溶液)6.0g、NMP(4.0g)、BCS(40.0g)を加え、室温で5時間攪拌することにより液晶配向剤(A1)を得た。
(Examples 1 and 2)
<Synthesis of liquid crystal alignment agent>
BODA (10.01 g, 40.0 mmol), 3AMPDA (4.85 g, 20.0 mmol), DA-A (13.78 g, 40.0 mmol), DA-2 (15.22 g, 40.0 mmol) were mixed with NMP ( 166.2 g), and after reacting at 60 ° C. for 5 hours, CBDA (11.57 g, 59.0 mmol) and NMP (55.4 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. Obtained.
After adding NMP to this polyamic acid solution (250 g) and diluting to 6.5% by mass, acetic anhydride (45.9 g) and pyridine (14.2 g) were added as imidization catalysts, and the mixture was reacted at 70 ° C. for 3 hours. It was. This reaction solution was poured into methanol (3300 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (A). The imidation ratio of this polyimide was 72%, the number average molecular weight was 14,000, and the weight average molecular weight was 38000.
NMP (44.0 g) was added to the obtained polyimide powder (A) (6.0 g), and the mixture was dissolved by stirring at 70 ° C. for 20 hours. 3AMP (1 mass% NMP solution) 6.0g, NMP (4.0g), and BCS (40.0g) were added to this solution, and the liquid crystal aligning agent (A1) was obtained by stirring at room temperature for 5 hours.
<液晶セルの作製>
 実施例1で得られた液晶配向剤(A1)を用いて下記に示すような手順で液晶セルの作製を行った。
 実施例1で得られた液晶配向剤(A1)を、画素サイズが100μm×300μmでライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートし、80℃のホットプレートで90秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
 また、液晶配向剤(A1)を電極パターンが形成されていないITO面にスピンコートし、80℃のホットプレートで90秒乾燥させた後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
 上記の2枚の基板について一方の基板の液晶配向膜上に4μmのビーズスペーサーを散布した後、その上からシール剤(溶剤型熱硬化タイプのエポキシ樹脂)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルにPSA用重合性化合物含有液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作製した。
<Production of liquid crystal cell>
Using the liquid crystal aligning agent (A1) obtained in Example 1, a liquid crystal cell was produced according to the procedure shown below.
The liquid crystal aligning agent (A1) obtained in Example 1 was spin-coated on the ITO surface of an ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 μm × 300 μm and a line / space of 5 μm was formed, After drying for 90 seconds on this hot plate, baking was performed in a hot air circulation oven at 200 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm.
Moreover, after spin-coating the liquid crystal aligning agent (A1) on the ITO surface in which the electrode pattern is not formed, and drying for 90 seconds with a hot plate at 80 ° C., baking is performed in a hot air circulation oven at 200 ° C. for 30 minutes, A liquid crystal alignment film having a thickness of 100 nm was formed.
After spraying 4 μm bead spacers on the liquid crystal alignment film of one of the two substrates, a sealant (solvent type thermosetting epoxy resin) was printed thereon. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was faced inward and bonded to the previous substrate, and then the sealing agent was cured to produce an empty cell. A liquid crystal cell was produced by injecting a polymerizable compound-containing liquid crystal MLC-3023 (trade name, manufactured by Merck & Co., Inc.) into the empty cell by a reduced pressure injection method.
<プレチルト角の測定>
<<UV照射:6J/cm又は10J/cm>>
 得られた液晶セルに15VのDC電圧を印加した状態で、この液晶セルの外側から365nmのバンドパスフィルターを通したUVを6J/cm又は10J/cm、該液晶セルに照射した。なお、UVの照度は、ORC社製UV-MO3Aを用いて測定した。その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射した。
 その後、UV照射後のセルについて画素部分のプレチルト角を測定した。なお、プレチルト角は、名菱テクニカ製LCDアナライザーLCA-LUV42Aを用いて、測定した。その結果を表1に示す。
<Measurement of pretilt angle>
<< UV irradiation: 6J / cm 2 or 10J / cm 2 >>
In a state where a DC voltage of 15 V was applied to the obtained liquid crystal cell, the liquid crystal cell was irradiated with UV through a 365 nm bandpass filter from the outside of the liquid crystal cell at 6 J / cm 2 or 10 J / cm 2 . The illuminance of UV was measured using UV-MO3A manufactured by ORC. Thereafter, for the purpose of deactivating the unreacted polymerizable compound remaining in the liquid crystal cell, UV (UV lamp: FLR40SUV32 /) was used with a UV-FL irradiation apparatus manufactured by Toshiba Lighting & Technology Co., Ltd. in a state where no voltage was applied. A-1) was irradiated for 30 minutes.
Thereafter, the pretilt angle of the pixel portion of the cell after UV irradiation was measured. The pretilt angle was measured using an LCD analyzer LCA-LUV42A manufactured by Meiryo Technica. The results are shown in Table 1.
<応答速度の測定>
 まず、バックライト、クロスニコルの状態にした一組の偏光板、光量検出器の順で構成される測定装置において、一組の偏光板の間に、得られた液晶セルを配置した。このとき、ライン/スペースが形成されているITO電極のパターンがクロスニコルに対して45°の角度になるようにした。そして、上記の液晶セルに電圧±7V、周波数1kHzの矩形波を印加し、光量検出器によって観測される輝度が飽和するまでの変化をオシロスコープにて取り込み、電圧を印加していない時の輝度を0%、±7Vの電圧を印加し、飽和した輝度の値を100%として、輝度が10%から90%まで変化するのにかかる時間を応答速度とした。
<Measurement of response speed>
First, the obtained liquid crystal cell was disposed between a pair of polarizing plates in a measuring apparatus configured in the order of a backlight, a pair of polarizing plates in a crossed Nicol state, and a light amount detector. At this time, the pattern of the ITO electrode in which the line / space was formed was set at an angle of 45 ° with respect to the crossed Nicols. Then, a rectangular wave having a voltage of ± 7 V and a frequency of 1 kHz is applied to the liquid crystal cell, and the change until the luminance observed by the light amount detector is saturated is captured by an oscilloscope, and the luminance when no voltage is applied is obtained. A voltage of 0% and ± 7 V was applied, the value of saturated luminance was taken as 100%, and the time taken for the luminance to change from 10% to 90% was taken as the response speed.
(対照例1及び2)
<対照液晶配向剤の合成>
 実施例1における「DA-A(13.78g、40.0mmol)」の代わりに、DA-1(13.22g、40.0mmol)を用いた以外、実施例1と同様に対照液晶配向剤(B1)を合成した。具体的には、次のように対照液晶配向剤(B1)を合成した。
 即ち、BODA(10.01g、 40.0mmol)、3AMPDA(4.85g、20.0mmol)、DA-1(13.22g、40.0mmol)、DA-2(15.22g、40.0mmol)をNMP(164.6g)中で溶解し、60℃で5時間反応させたのち、CBDA(11.57g、59.0mmol)とNMP(54.9g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(250g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(46.4g)、およびピリジン(14.4g)を加え、70℃で3時間反応させた。この反応溶液をメタノール(3300ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(B)を得た。このポリイミドのイミド化率は73%であり、数平均分子量は23000、重量平均分子量は64000であった。
 得られたポリイミド粉末(B)(6.0g)にNMP(44.0g)を加え、70℃にて20時間攪拌して溶解させた。この溶液に3AMP(1質量%NMP溶液)6.0g、NMP(4.0g)、BCS(40.0g)を加え、室温で5時間攪拌することにより液晶配向剤(B1)を得た。
(Control Examples 1 and 2)
<Synthesis of control liquid crystal aligning agent>
In the same manner as in Example 1, except for using DA-1 (13.22 g, 40.0 mmol) instead of “DA-A (13.78 g, 40.0 mmol)” in Example 1, the control liquid crystal aligning agent ( B1) was synthesized. Specifically, the control liquid crystal aligning agent (B1) was synthesized as follows.
That is, BODA (10.01 g, 40.0 mmol), 3AMPDA (4.85 g, 20.0 mmol), DA-1 (13.22 g, 40.0 mmol), DA-2 (15.22 g, 40.0 mmol) were added. After dissolving in NMP (164.6 g) and reacting at 60 ° C. for 5 hours, CBDA (11.57 g, 59.0 mmol) and NMP (54.9 g) were added and reacted at 40 ° C. for 10 hours to polyamic acid. A solution was obtained.
After adding NMP to this polyamic acid solution (250 g) and diluting to 6.5% by mass, acetic anhydride (46.4 g) and pyridine (14.4 g) were added as an imidation catalyst, and the mixture was reacted at 70 ° C. for 3 hours. It was. This reaction solution was poured into methanol (3300 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (B). The imidation ratio of this polyimide was 73%, the number average molecular weight was 23000 and the weight average molecular weight was 64000.
NMP (44.0 g) was added to the obtained polyimide powder (B) (6.0 g), and the mixture was dissolved by stirring at 70 ° C. for 20 hours. 3AMP (1 mass% NMP solution) 6.0g, NMP (4.0g), and BCS (40.0g) were added to this solution, and the liquid crystal aligning agent (B1) was obtained by stirring at room temperature for 5 hours.
<対照液晶セルの作製、並びにそのプレチルト角の測定及び応答速度の測定>
 実施例1における「液晶配向剤(A1)」の代わりに液晶配向剤(B1)を用いた以外、実施例1と同様に対照液晶セルを作製した。
 また、得られた対照液晶セルについて、実施例と同様の操作を行い、プレチルト角及び応答速度を測定した。その結果を表1に示す。
<Preparation of Control Liquid Crystal Cell and Measurement of Pretilt Angle and Response Speed>
A control liquid crystal cell was prepared in the same manner as in Example 1 except that the liquid crystal aligning agent (B1) was used instead of the “liquid crystal aligning agent (A1)” in Example 1.
Moreover, about the obtained control liquid crystal cell, operation similar to an Example was performed and the pretilt angle and the response speed were measured. The results are shown in Table 1.
 表1から次のことがわかる。
 即ち、対照例1及び2(対照ジアミン(DA-1)を用いて得られた対照液晶配向剤(B1)を使用)の対照液晶セルと実施例1及び2(芳香族ジアミン化合物(DA-A)を用いて得られた液晶配向剤(A1)を使用)の液晶セルを比較すると、実施例1及び2の液晶セルの方が、同一照射量の光照射時に、プレチルト角が90°から離れている。
 また、実施例1及び2の液晶セルは、対照例1及び2の液晶セルよりも、低UV照射量で所望のプレチルト角及び所望の応答速度を備えることが可能であることがわかる。これは、実施例1及び2の液晶セルに用いられる芳香族ジアミン化合物(DA-A)、のUV照射時のラジカル発生量が、対照液晶セルに用いられるジアミン(DA-1)よりも多いことに依る。
 実施例1及び2の液晶セルは、対照例1及び2の対照液晶セルよりも、同一波長でのUV照射量が少なくてよいため、UV照射時間の短縮による液晶のダメージを軽減でき、液晶作製のコストを抑えることができる。
Table 1 shows the following.
That is, the control liquid crystal cell of Control Examples 1 and 2 (using the control liquid crystal aligning agent (B1) obtained using the control diamine (DA-1)) and Examples 1 and 2 (aromatic diamine compound (DA-A)) When the liquid crystal cell of Example 1 and 2 is irradiated with the same amount of light, the pretilt angle is separated from 90 °. ing.
In addition, it can be seen that the liquid crystal cells of Examples 1 and 2 can have a desired pretilt angle and a desired response speed at a lower UV irradiation amount than the liquid crystal cells of Control Examples 1 and 2. This is because the aromatic diamine compound (DA-A) used in the liquid crystal cells of Examples 1 and 2 has a larger amount of radical generation during UV irradiation than the diamine (DA-1) used in the control liquid crystal cell. Depends on.
Since the liquid crystal cells of Examples 1 and 2 may require less UV irradiation at the same wavelength than the control liquid crystal cells of Control Examples 1 and 2, liquid crystal damage due to shortening of the UV irradiation time can be reduced. Costs can be reduced.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065

Claims (18)

  1.  第1の光ラジカル発生ジアミンを用いたポリイミド前駆体であって、
     該第1の光ラジカル発生ジアミンを式(1)で表される第2の光ラジカル発生ジアミンに代えた以外は前記ポリイミド前駆体と同一の条件で形成した第2のポリイミド前駆体より、同一条件下での光照射時のラジカル発生量が多いことを特徴とする、上記ポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000001
    A polyimide precursor using a first photoradical-generating diamine,
    From the second polyimide precursor formed under the same conditions as the polyimide precursor, except that the first photo radical generating diamine is replaced with the second photo radical generating diamine represented by the formula (1), the same conditions are used. The said polyimide precursor characterized by having a large amount of radical generation at the time of light irradiation below.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記光照射時の光の波長が、300nm~400nmである請求項1に記載のポリイミド前駆体。 The polyimide precursor according to claim 1, wherein a wavelength of light upon the light irradiation is 300 nm to 400 nm.
  3.  前記ポリイミド前駆体を構成する全ジアミン100モル%中、前記第1の光ラジカル発生ジアミンが、0.1~100モル%である請求項1又は2に記載のポリイミド前駆体。 The polyimide precursor according to claim 1 or 2, wherein the first photoradical-generating diamine is 0.1 to 100 mol% in 100 mol% of the total diamine constituting the polyimide precursor.
  4.  前記第1の光ラジカル発生ジアミンが、式(A)
    (式中、Arは置換基を有してもよい芳香族炭化水素基を表し、
     R101は2価の有機基を表し、
     R102~R104は各々独立に、1価の有機基を表す)
    の構造を有する請求項1~3のいずれか1項に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000002
    The first photoradical-generating diamine has the formula (A)
    (In the formula, Ar represents an aromatic hydrocarbon group which may have a substituent,
    R 101 represents a divalent organic group,
    R 102 to R 104 each independently represents a monovalent organic group)
    The polyimide precursor according to any one of claims 1 to 3, which has the following structure.
    Figure JPOXMLDOC01-appb-C000002
  5.  前記-R101-が、-T-S-T
    (式中、
     T及びTはそれぞれ独立して、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、
     Sは、単結合、又は非置換若しくはフッ素原子によって置換されている炭素原子数1~20のアルキレン基(アルキレン基中の-CH-又は-CF-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環))である)
    で表される請求項4に記載のポリイミド前駆体。
    -R 101 -is -T 1 -ST 2-
    (Where
    T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ). -, -CON (CH 3 )-, or -N (CH 3 ) CO-,
    S is a single bond or an alkylene group having 1 to 20 carbon atoms which is unsubstituted or substituted by a fluorine atom (—CH 2 — or —CF 2 — in an alkylene group is —CH═CH—, or A group selected from group G (wherein the groups selected from group G are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, -CONH-, -NH-, divalent carbocycle or divalent heterocycle)))
    The polyimide precursor of Claim 4 represented by these.
  6.  前記R102~R104のうち、いずれか1つが、-OR111(R111は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基(アルキル基中の-CH-又は-CF-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環)で置換されていてもよい)であり、
     他の2つが、各々独立に、炭素数1~20の直鎖又は分岐鎖又は環状のアルキル基、-OR112(R112は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基、置換基を有してもよい炭素数6~20のアリール基からなる群から選ばれる基を表す)で表される基、ベンジル基、又はフェネチル基である(他の2つが前記アルキル基又は-OR112である場合、互いに結合して環を形成してもよい)、請求項4又は5に記載のポリイミド前駆体。
    Wherein among R 102 ~ R 104, any one, -OR 111 (R 111 represents an unsubstituted or having 1 to 20 carbon atoms which is substituted by fluorine atom straight or branched chain or cyclic alkyl group ( —CH 2 — or —CF 2 — in the alkyl group is replaced by —CH═CH— or a group selected from the following group G (provided that the groups selected from group G are not adjacent to each other): May be substituted (group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, a divalent carbocycle or a divalent heterocycle). ) And
    The other two are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, —OR 112 (R 112 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms. A linear, branched or cyclic alkyl group, or a group selected from the group consisting of optionally substituted aryl groups having 6 to 20 carbon atoms), a benzyl group, or a phenethyl group The polyimide precursor according to claim 4 or 5, wherein when the other two are the alkyl group or -OR 112 , they may be bonded to each other to form a ring.
  7.  前記Arがフェニレン基である請求項4~6のいずれか1項に記載のポリイミド前駆体。 The polyimide precursor according to any one of claims 4 to 6, wherein Ar is a phenylene group.
  8.  前記第1の光ラジカル発生ジアミンが、下記式(2)(式中、Ar及びR101~R104は、上述と同じ定義を有する)で表される請求項1~7のいずれか1項に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000003
    The first photoradical-generating diamine is represented by the following formula (2) (wherein Ar and R 101 to R 104 have the same definition as described above): The polyimide precursor as described.
    Figure JPOXMLDOC01-appb-C000003
  9.  前記第1の光ラジカル発生ジアミンが、下記式(3)で表される請求項1~8のいずれか1項に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000004
    The polyimide precursor according to any one of claims 1 to 8, wherein the first photoradical-generating diamine is represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000004
  10.  液晶を垂直に配向させる側鎖をさらに有する請求項1~9のいずれか1項に記載のポリイミド前駆体。 10. The polyimide precursor according to claim 1, further comprising a side chain for vertically aligning the liquid crystal.
  11.  光反応性基を構造中に含む側鎖をさらに有する請求項1~10のいずれか1項に記載のポリイミド前駆体。 The polyimide precursor according to any one of claims 1 to 10, further comprising a side chain containing a photoreactive group in the structure.
  12.  請求項1~11のいずれか1項に記載のポリイミド前駆体をイミド化して得られるポリイミド。 A polyimide obtained by imidizing the polyimide precursor according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項記載のポリイミド前駆体及び/又は請求項12に記載のポリイミドを有する液晶配向剤。 A liquid crystal aligning agent comprising the polyimide precursor according to any one of claims 1 to 11 and / or the polyimide according to claim 12.
  14.  液晶中及び/又は液晶配向膜中に重合性化合物を含有し、電圧を印加しながら紫外線を照射することにより前記重合性化合物を反応させて得られる液晶表示素子の製造に用いられる請求項13に記載の液晶配向剤。 The liquid crystal and / or the liquid crystal alignment film contains a polymerizable compound and is used for producing a liquid crystal display device obtained by reacting the polymerizable compound by irradiating ultraviolet rays while applying a voltage. The liquid crystal aligning agent of description.
  15.  請求項13又は14に記載の液晶配向剤を有して形成される液晶配向膜。 A liquid crystal alignment film formed with the liquid crystal aligning agent according to claim 13 or 14.
  16.  請求項15に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 15.
  17.  下記式(2)(式中、Arは置換基を有してもよい芳香族炭化水素基を表し、
     R101は2価の有機基を表し、
     R102~R104は各々独立に、1価の有機基を表す)
    で表されるジアミン。
    Figure JPOXMLDOC01-appb-C000005
    The following formula (2) (wherein Ar represents an aromatic hydrocarbon group which may have a substituent,
    R 101 represents a divalent organic group,
    R 102 to R 104 each independently represents a monovalent organic group)
    Diamine represented by
    Figure JPOXMLDOC01-appb-C000005
  18.  下記式(3)で表されるジアミン。
    Figure JPOXMLDOC01-appb-C000006
    Diamine represented by following formula (3).
    Figure JPOXMLDOC01-appb-C000006
PCT/JP2016/056560 2015-03-04 2016-03-03 Polyimide precursor, and liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element having precursor WO2016140302A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177027841A KR102600209B1 (en) 2015-03-04 2016-03-03 Polyimide precursor, and liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element having precursor
JP2017503708A JP6753392B2 (en) 2015-03-04 2016-03-03 Polyimide precursor, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element having the precursor.
CN201680025765.8A CN107531904B (en) 2015-03-04 2016-03-03 Polyimide precursor, and liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015041976 2015-03-04
JP2015-041976 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016140302A1 true WO2016140302A1 (en) 2016-09-09

Family

ID=56848362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056560 WO2016140302A1 (en) 2015-03-04 2016-03-03 Polyimide precursor, and liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element having precursor

Country Status (5)

Country Link
JP (1) JP6753392B2 (en)
KR (1) KR102600209B1 (en)
CN (1) CN107531904B (en)
TW (2) TWI781080B (en)
WO (1) WO2016140302A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097155A1 (en) * 2016-11-22 2018-05-31 日産化学工業株式会社 Method for manufacturing liquid crystal display element, substrate for liquid crystal display element, and liquid crystal display element assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002065A (en) * 2005-06-22 2007-01-11 Fujifilm Holdings Corp Liquid crystal material, method for producing the same and display device containing the liquid crystal material
WO2015033921A1 (en) * 2013-09-03 2015-03-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100228722B1 (en) * 1997-09-12 1999-11-01 김충섭 Novel soluble polyimide resin having alkoxy substituent and its preparation process
WO2002051908A1 (en) * 2000-12-26 2002-07-04 Nissan Chemical Industries, Ltd. Diaminobenzene derivatives, polyimide precursors and polyimides prepared by using tha same, and liquid crystal aligning agents
JP4175826B2 (en) 2002-04-16 2008-11-05 シャープ株式会社 Liquid crystal display
CN1318479C (en) * 2002-12-11 2007-05-30 日产化学工业株式会社 Novel diaminobenzene derivative, polyimide precursor and polyimide obtained therefrom, and aligning agent for liquid crystal
KR101688687B1 (en) * 2010-02-26 2016-12-21 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent
CN106635061B (en) * 2011-09-08 2020-03-31 日产化学工业株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR101998907B1 (en) * 2011-12-28 2019-07-10 닛산 가가쿠 가부시키가이샤 Liquid crystal orientation agent, liquid crystal orientation membrane, liquid crystal display element, and diamine compound
KR102008788B1 (en) * 2013-01-23 2019-08-08 제이에스알 가부시끼가이샤 Liquid crystal aligning agent for psa mode liquid crystal display device, liquid crystal alignment film for psa mode liquid crystal display device, and the psa mode liquid crystal display device and manufacturing method thereof
JP6213281B2 (en) * 2013-03-19 2017-10-18 Jnc株式会社 Photosensitive diamine, liquid crystal aligning agent, and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002065A (en) * 2005-06-22 2007-01-11 Fujifilm Holdings Corp Liquid crystal material, method for producing the same and display device containing the liquid crystal material
WO2015033921A1 (en) * 2013-09-03 2015-03-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097155A1 (en) * 2016-11-22 2018-05-31 日産化学工業株式会社 Method for manufacturing liquid crystal display element, substrate for liquid crystal display element, and liquid crystal display element assembly
JPWO2018097155A1 (en) * 2016-11-22 2019-10-17 日産化学株式会社 Liquid crystal display element manufacturing method, liquid crystal display element substrate, and liquid crystal display element assembly
JP7227557B2 (en) 2016-11-22 2023-02-22 日産化学株式会社 Method for manufacturing liquid crystal display element

Also Published As

Publication number Publication date
TWI781080B (en) 2022-10-21
TW201702289A (en) 2017-01-16
KR102600209B1 (en) 2023-11-08
CN107531904A (en) 2018-01-02
KR20170125923A (en) 2017-11-15
JP6753392B2 (en) 2020-09-09
TW202239823A (en) 2022-10-16
TWI810976B (en) 2023-08-01
CN107531904B (en) 2020-10-30
JPWO2016140302A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP6725885B2 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
JP5387793B2 (en) Liquid crystal alignment agent
JP6172463B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP6864271B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP5975227B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP6635272B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
WO2012133819A1 (en) Liquid crystal aligning agent , liquid crystal alignment film, liquid crystal display element, process for producing liquid crystal display element, and polymerizable compound
WO2013099804A1 (en) Liquid crystal orientation agent, liquid crystal orientation membrane, liquid crystal display element, and diamine compound
WO2013100068A1 (en) Liquid crystal aligning agent, liquid crystal display element, method for manufacturing liquid crystal display element, and polymerizable compound
CN110192148B (en) Method for manufacturing liquid crystal display element, substrate for liquid crystal display element, and liquid crystal display element assembly
KR102600209B1 (en) Polyimide precursor, and liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element having precursor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177027841

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16758994

Country of ref document: EP

Kind code of ref document: A1