WO2013035736A1 - Curable composition for optical semiconductor device - Google Patents

Curable composition for optical semiconductor device Download PDF

Info

Publication number
WO2013035736A1
WO2013035736A1 PCT/JP2012/072603 JP2012072603W WO2013035736A1 WO 2013035736 A1 WO2013035736 A1 WO 2013035736A1 JP 2012072603 W JP2012072603 W JP 2012072603W WO 2013035736 A1 WO2013035736 A1 WO 2013035736A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organopolysiloxane
optical semiconductor
formula
curable composition
Prior art date
Application number
PCT/JP2012/072603
Other languages
French (fr)
Japanese (ja)
Inventor
穣 末▲崎▼
康成 日下
秀文 保井
亮介 山▲崎▼
良隆 国広
満 谷川
貴志 渡邉
靖 乾
千鶴 金
佑 山田
小林 祐輔
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020137029657A priority Critical patent/KR20140071961A/en
Publication of WO2013035736A1 publication Critical patent/WO2013035736A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5465Silicon-containing compounds containing nitrogen containing at least one C=N bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5455Silicon-containing compounds containing nitrogen containing at least one group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a curable composition for an optical semiconductor device used for sealing an optical semiconductor element or forming a lens above the optical semiconductor element in an optical semiconductor device.
  • the present invention also relates to an optical semiconductor device using the curable composition for optical semiconductor devices.
  • An optical semiconductor device such as a light emitting diode (LED) device has low power consumption and long life. Moreover, the optical semiconductor device can be used even in a harsh environment. Accordingly, optical semiconductor devices are used in a wide range of applications such as mobile phone backlights, liquid crystal television backlights, automobile lamps, lighting fixtures, and signboards.
  • LED light emitting diode
  • optical semiconductor element for example, LED
  • LED which is a light emitting element used in an optical semiconductor device
  • Patent Document 1 discloses an epoxy resin material containing hydrogenated bisphenol A glycidyl ether, an alicyclic epoxy monomer, and a latent catalyst as a sealant for an optical semiconductor device. This epoxy resin material is cured by thermal cationic polymerization.
  • a lens may be formed using a lens material for an optical semiconductor device in order to control the light emission direction or to prevent the front luminance from becoming too high.
  • the lens is disposed on the surface of the sealant, for example.
  • the lens may be disposed on the optical semiconductor element or so as to cover the optical semiconductor element.
  • Patent Document 2 includes (A) an organopolysiloxane having two or more aliphatic unsaturated bonds and (B) two or more hydrogen atoms bonded to silicon atoms as the lens material for an optical semiconductor device.
  • a lens material including an organohydrogenpolysiloxane, (C) a platinum group metal catalyst, and (D) a release agent is disclosed.
  • Patent Document 3 (1) optical transparency that is 90% or higher transmittance for light having a wavelength of 400 nm with an optical path length of 1.0 cm, and (2) after being exposed to 150 ° C. for 6 hours. , Thermal stability retaining 90% or higher transmission for light of 400 nm wavelength with 1.0 cm path length, and (3) thermal stability having a refractive index of 1.545 or higher at 589 nm A polysiloxane composition is disclosed.
  • Patent Document 4 discloses an LED encapsulant composition
  • an LED encapsulant composition comprising (1) at least one polyorganosiloxane and an effective amount of (2) an addition reaction catalyst, which is cured to form a resin.
  • the average composition formula of the mixture of (1) at least one polyorganosiloxane is (R 1 R 2 R 3 SiO 1/2 ) M ⁇ (R 4 R 5 SiO 2/2 ) D ⁇ (R 6 SiO 3 / 2 ) T ⁇ (SiO 4/2 ) Q
  • the light intensity (brightness) emitted from the optical semiconductor device may gradually decrease.
  • An object of the present invention is to provide a curable composition for an optical semiconductor device capable of improving the pot life of the composition, and an optical semiconductor device using the curable composition for an optical semiconductor device.
  • a first organopolysiloxane having two or more alkenyl groups a second organopolysiloxane having two or more hydrogen atoms bonded to a silicon atom, a hydrosilylation reaction catalyst, And a first silane compound having a ureido group or an isocyanate group, and a curable composition for an optical semiconductor device.
  • the curable composition for optical semiconductor devices according to the present invention is preferably an encapsulant for optical semiconductor devices or a lens material for optical semiconductor devices.
  • the first silane compound has a ureido group.
  • the first silane compound is a first silane compound represented by the following formula (S1) or the following formula (S2).
  • X1 represents an alkoxy group
  • X2 and X3 each represents an alkoxy group or a hydrocarbon group having 1 to 8 carbon atoms
  • R4 is a single bond directly bonding a nitrogen atom and a silicon atom. Or a hydrocarbon group having 1 to 8 carbon atoms.
  • X1 represents an alkoxy group
  • X2 and X3 each represents an alkoxy group or a hydrocarbon group having 1 to 8 carbon atoms
  • R4 represents a single bond directly connecting a nitrogen atom and a silicon atom. It represents a bond or a hydrocarbon group having 1 to 8 carbon atoms.
  • the first silane compound is a first silane compound represented by the above formula (S1).
  • the first silane compound represented by the above formula (S1) is a first silane compound represented by the following formula (S1-1). Silane compound.
  • R1 to R3 each represent a hydrocarbon group having 1 to 8 carbon atoms
  • R4 represents a single bond directly bonding a nitrogen atom and a silicon atom, or 1 to 8 hydrocarbon groups are represented.
  • the number average molecular weight of the first organopolysiloxane is 500 or more and 200,000 or less, and the number average of the second organopolysiloxane.
  • the molecular weight is 500 or more and 20000 or less.
  • a second silane compound having an epoxy group, a vinyl group, or a (meth) acryloyl group is further included.
  • the second silane compound is 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl. Trimethoxysilane, vinyltrimethoxysilane or 3- (meth) acryloxypropyltrimethoxysilane.
  • the content of the second silane compound is 0 with respect to a total of 100 parts by weight of the first and second organopolysiloxanes. 0.01 parts by weight or more and 5 parts by weight or less.
  • the first organopolysiloxane does not have a hydrogen atom bonded to a silicon atom
  • the second organopolysiloxane is alkenyl. Has a group.
  • the first organopolysiloxane has a methyl group represented by the following formula (1A) and bonded to an alkenyl group and a silicon atom.
  • a second organopolysiloxane which is a first organopolysiloxane and the second organopolysiloxane is represented by the following formula (51A) and has a hydrogen atom bonded to a silicon atom and a methyl group bonded to a silicon atom.
  • siloxane or the first organopolysiloxane is represented by the following formula (1B), is a first organopolysiloxane having an aryl group and an alkenyl group, and the second organopolysiloxane is A second organopolysiloxane represented by the following formula (51B) and having a hydrogen atom bonded to an aryl group and a silicon atom.
  • R1 to R6 each represents at least one alkenyl group, at least one represents a methyl group, and R1 to R6 other than the alkenyl group and the methyl group represent a hydrocarbon group having 2 to 8 carbon atoms. .
  • R51 to R56 each represents at least one hydrogen atom, at least one represents a methyl group, and R51 to R56 other than the hydrogen atom and the methyl group are hydrocarbon groups having 2 to 8 carbon atoms. Represents.
  • R51 to R56 represents an aryl group
  • R51 to R56 other than the aryl group and the hydrogen atom are carbon atoms having 1 to 8 carbon atoms. Represents a hydrogen group.
  • the first organopolysiloxane represented by the above formula (1A) or the above formula (1B) is a hydrogen atom bonded to a silicon atom.
  • the second organopolysiloxane represented by the formula (51A) or the formula (51B) has an alkenyl group, and in the formula (51A), at least one of R51 to R56 is Represents a hydrogen atom, at least one represents a methyl group, at least one represents an alkenyl group, R51 to R56 other than a hydrogen atom, a methyl group and an alkenyl group represent a hydrocarbon group having 2 to 8 carbon atoms;
  • at least one of R51 to R56 represents an aryl group, at least one represents a hydrogen atom, at least one represents an alkenyl group, an aryl group, a hydrogen atom and an alkyl group.
  • the second organopolysiloxane represented by the above formula (51A) or the above formula (51B) is represented by the following formula (51-a). ).
  • R52 and R53 each represent a hydrocarbon group having 1 to 8 carbon atoms.
  • first organopolysiloxane is represented by the above formula (1A) and the second organopolysiloxane is represented by the above formula (51A). It is also preferred that the first organopolysiloxane is represented by the formula (1B) and the second organopolysiloxane is represented by the formula (51B).
  • the content of the second organopolysiloxane is 10 parts by weight or more with respect to 100 parts by weight of the first organopolysiloxane. 400 parts by weight or less, and the content of the catalyst for hydrosilylation reaction in the curable composition is 0.01 ppm or more and 1000 ppm or less by weight unit of metal atom,
  • the content of the first silane compound is 0.01 parts by weight or more and 5 parts by weight or less with respect to a total of 100 parts by weight of siloxane.
  • the curable composition for optical semiconductor devices according to the present invention includes a first organopolysiloxane having an alkenyl group, a second organopolysiloxane having a hydrogen atom bonded to a silicon atom, a hydrosilylation reaction catalyst, Even if the optical semiconductor device using the curable composition for optical semiconductor devices is used in a harsh environment under high temperature and high humidity, since it contains the first silane compound having a ureido group or an isocyanate group The peeling from the adhesion target object of the hardened
  • FIG. 1 is a front sectional view showing an optical semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a front sectional view showing an optical semiconductor device according to the second embodiment of the present invention.
  • FIG. 3 is a front sectional view showing an optical semiconductor device according to the third embodiment of the present invention.
  • the curable composition for optical semiconductor devices includes a first organopolysiloxane having an alkenyl group, a second organopolysiloxane having a hydrogen atom bonded to a silicon atom, a hydrosilylation reaction catalyst, And a first silane compound having a ureido group or an isocyanate group.
  • the optical semiconductor device using the curable composition for optical semiconductor devices is cured even when used in harsh environments under high temperature and high humidity.
  • cured can be suppressed.
  • the curable composition when the optical semiconductor device is sealed using the curable composition for optical semiconductor devices according to the present invention or a lens is formed above the optical semiconductor device, the curable composition is cured. It becomes difficult for the object to peel from the object to be bonded.
  • the material of a package such as a sealant or a housing material in contact with a lens may be polyphthalamide (PPA).
  • PPA polyphthalamide
  • an electrode plated with silver may be formed on the back surface of the light emitting element.
  • the present inventors do not sufficiently increase the adhesiveness of the cured product to the object to be bonded. I found out. In particular, in the optical semiconductor device used for the curable composition for optical semiconductor devices, it is difficult to sufficiently enhance the adhesion of the cured product to the object to be bonded.
  • the inventor has a ureido group or an isocyanate group together with a first organopolysiloxane having an alkenyl group, a second organopolysiloxane having a hydrogen atom bonded to a silicon atom, and a catalyst for hydrosilylation reaction. It has been found that by adopting a composition further containing the first silane compound, the adhesion of the cured product to the object to be bonded can be sufficiently enhanced.
  • the present inventors use the first silane compound having a ureido group out of the first silane compound having a ureido group and the first silane compound having an isocyanate group, so that the cured product can be bonded. It has been found that the adhesion to objects is even higher.
  • the present inventors provide a ureido group in a composition comprising a first organopolysiloxane having an alkenyl group, a second organopolysiloxane having a hydrogen atom bonded to a silicon atom, and a catalyst for hydrosilylation reaction.
  • a first silane compound having an isocyanate group is used, the viscosity of the curable composition for optical semiconductor devices hardly changes, and the pot life of the curable composition for optical semiconductor devices is improved.
  • a curable composition for an optical semiconductor device comprising a first organopolysiloxane having an alkenyl group, a second organopolysiloxane having a hydrogen atom bonded to a silicon atom, and a hydrosilylation reaction catalyst is also obtained at room temperature.
  • the polymerization reaction proceeds slowly. For this reason, the viscosity of the curable composition gradually increases even at room temperature. Therefore, the first organopolysiloxane having an alkenyl group and the second organopolysiloxane having a hydrogen atom bonded to a silicon atom are provided as two separate liquids (first and second liquids). There is. These two liquids are mixed and used immediately before use by the user.
  • the hydrosilylation reaction catalyst is contained in at least one of the first liquid containing the first organopolysiloxane and the second liquid containing the second organopolysiloxane.
  • the reaction starts when the two liquids are mixed, so that the viscosity increases.
  • the discharge amount when dispensing the curable composition changes, and it becomes difficult to maintain a certain shape.
  • the sealing agent may be insufficiently filled or the lens shape may be deteriorated.
  • the ratio ( ⁇ 1 / ⁇ 2) of the curable composition (the curable composition immediately after preparation) to the viscosity ⁇ 2 is preferably 2 or less, more preferably 1.5 or less, and still more preferably 1.3 or less.
  • the ratio ( ⁇ 1 / ⁇ 2) is generally 1 or more, but may be 0.7 or more, for example, or 0.8 or more.
  • the viscosity change of the curable composition is small, that is, if the pot life of the curable composition is good, it is easy to manufacture an optical semiconductor device of a certain quality under a certain production condition.
  • the first organopolysiloxane is represented by the formula (1A) and is a first organopolysiloxane having an alkenyl group and a methyl group bonded to a silicon atom, or represented by the formula (1B) and an aryl
  • a first organopolysiloxane having a group and an alkenyl group is preferred.
  • a first organopolysiloxane different from the first organopolysiloxane represented by the formula (1A) or the formula (1B) may be used.
  • the second organopolysiloxane has an alkenyl group
  • the first organopolysiloxane preferably does not have a hydrogen atom bonded to a silicon atom.
  • the first organopolysiloxane preferably does not have a hydrogen atom bonded to a silicon atom.
  • the second organopolysiloxane is a second organopolysiloxane represented by the formula (51A) and having a hydrogen atom bonded to a silicon atom and a methyl group bonded to a silicon atom, or the formula (51B) And is preferably a second organopolysiloxane having an aryl group and a hydrogen atom bonded to a silicon atom.
  • a second organopolysiloxane different from the second organopolysiloxane represented by the formula (51A) or the formula (51B) may be used.
  • the organopolysiloxane represented by the formula (1A) is a first organopolysiloxane having a methyl group bonded to an alkenyl group and a silicon atom
  • the second organopolysiloxane is represented by the formula (51A)
  • a second organopolysiloxane having a hydrogen atom bonded to a silicon atom and a methyl group bonded to a silicon atom, or the first organopolysiloxane is represented by the formula (1B) and is aryl
  • the first organopolysiloxane having a group and an alkenyl group, and the second organopolysiloxane is represented by the formula (51B). It is preferred aryl group and a silicon atom is
  • a cured product of a conventional curable composition for optical semiconductor devices when used in a harsh environment such as a temperature cycle that repeatedly receives heating and cooling, the cured product is cracked or the cured product is a housing material. It may peel off from etc.
  • a cured product of a conventional curable composition for optical semiconductor devices has a problem that heat resistance is low.
  • the first organopolysiloxane is a first organopolysiloxane represented by the formula (1A) and having an alkenyl group and a methyl group bonded to a silicon atom.
  • the second organopolysiloxane is preferably the second organopolysiloxane represented by the formula (51A) and having a hydrogen atom bonded to a silicon atom and a methyl group bonded to a silicon atom.
  • the content ratios of methyl groups bonded to silicon atoms in the first organopolysiloxane and the second organopolysiloxane are each 80 mol% or more. preferable.
  • the content ratio of the methyl group bonded to the silicon atom is represented by the following formula (X).
  • the “functional group” means a group directly bonded to a silicon atom in the first organopolysiloxane or the second organopolysiloxane.
  • “average molecular weight of functional groups” means the sum of “average number of functional groups ⁇ functional group molecular weight” of each functional group. The same applies to “functional group” and “average molecular weight of functional group” in the following formula (Y).
  • a silver-plated electrode may be formed on the back surface of the light emitting element in order to reflect the light reaching the back side of the light emitting element. If a crack occurs in the sealant or the lens, or the sealant is peeled off from the housing material, the silver-plated electrode is exposed to the atmosphere or easily exposed to the atmosphere. As a result, the silver plating may be discolored by a corrosive gas such as hydrogen sulfide gas or sulfurous acid gas present in the atmosphere. When the color of the electrode changes, the reflectance decreases, which causes a problem that the brightness of the light emitted from the light emitting element decreases.
  • a corrosive gas such as hydrogen sulfide gas or sulfurous acid gas
  • the sealant or lens formed by the cured product of the curable composition has a high gas barrier property against corrosive gas, thereby suppressing discoloration of silver plating and lowering the brightness of light emitted from the light emitting element. Can be suppressed.
  • the first organopolysiloxane is the first organopolysiloxane represented by the formula (1B) and having an aryl group and an alkenyl group
  • the first The second organopolysiloxane represented by the formula (51B) is preferably a second organopolysiloxane having an aryl group and a hydrogen atom bonded to a silicon atom.
  • the content ratios of aryl groups in the first organopolysiloxane and the second organopolysiloxane are 30 mol% or more and 85 mol% or less, respectively. preferable.
  • the content ratio of the aryl group is represented by the following formula (Y).
  • aryl group (mol%) ⁇ (average number of aryl groups contained in one molecule of the first organopolysiloxane or the second organopolysiloxane ⁇ molecular weight of the aryl group) / (the first The average number of functional groups bonded to silicon atoms contained in one molecule of the second organopolysiloxane or the average molecular weight of the functional groups) ⁇ ⁇ 100 Formula (Y)
  • the content ratio of the aryl group indicates the content ratio of the phenyl group.
  • an optical semiconductor device using the above-described curable composition for optical semiconductor devices is provided. That is, according to a broad aspect of the present invention, an optical semiconductor element and a sealing agent disposed so as to seal the optical semiconductor element or a lens disposed on the optical semiconductor element are provided, and the sealing is performed.
  • An optical semiconductor device is provided in which the stopper or the lens is formed by curing a curable composition for an optical semiconductor device.
  • the curable composition for an optical semiconductor device used in the optical semiconductor device includes a first organopolysiloxane having two or more alkenyl groups and a second organopolysiloxane having two or more hydrogen atoms bonded to silicon atoms. And a hydrosilylation reaction catalyst and a first silane compound having a ureido group or an isocyanate group.
  • the cured product obtained by curing the curable composition can be prevented from being peeled off from the adhesion target, and further cured for an optical semiconductor device. Since the pot life of the composition is good, a homogeneous optical semiconductor device can be provided.
  • the first organopolysiloxane contained in the curable composition for optical semiconductor devices according to the present invention has two or more alkenyl groups.
  • the alkenyl group is preferably directly bonded to the silicon atom.
  • the carbon atom in the carbon-carbon double bond of the alkenyl group may be bonded to the silicon atom, and the carbon atom different from the carbon atom in the carbon-carbon double bond of the alkenyl group is bonded to the silicon atom. It may be bonded.
  • As for said 1st organopolysiloxane only 1 type may be used and 2 or more types may be used together.
  • the first organopolysiloxane is represented by the following formula (1A), and includes a first organopolysiloxane having an alkenyl group and a methyl group bonded to a silicon atom.
  • Siloxane hereinafter sometimes referred to as first organopolysiloxane A
  • the first organopolysiloxane A is preferably a first organopolysiloxane which does not have a hydrogen atom bonded to a silicon atom but has an alkenyl group and a methyl group bonded to a silicon atom.
  • R1 to R6 each represents at least one alkenyl group, at least one represents a methyl group, and R1 to R6 other than the alkenyl group and the methyl group represent a hydrocarbon group having 2 to 8 carbon atoms. .
  • the first organopolysiloxane is represented by the following formula (1B) and has a first organopolysiloxane having an aryl group and an alkenyl group (hereinafter referred to as the first organopolysiloxane). 1 may be referred to as organopolysiloxane B).
  • the first organopolysiloxane B is preferably a first organopolysiloxane which does not have a hydrogen atom bonded to a silicon atom and has an aryl group and an alkenyl group.
  • the aryl group include an unsubstituted phenyl group and a substituted phenyl group.
  • the structural unit represented by (R4R5SiO 2/2 ) and the structural unit represented by (R6SiO 3/2 ) each have an alkoxy group. It may have a hydroxy group.
  • the above formula (1A) and the above formula (1B) show an average composition formula.
  • the hydrocarbon group in the above formula (1A) and the above formula (1B) may be linear or branched.
  • R1 to R6 in the above formula (1A) and the above formula (1B) may be the same or different.
  • the oxygen atom part in the structural unit represented by (R4R5SiO 2/2 ) and the oxygen atom part in the structural unit represented by (R6SiO 3/2 ) are respectively siloxane.
  • An oxygen atom part forming a bond, an oxygen atom part of an alkoxy group, or an oxygen atom part of a hydroxy group is shown.
  • the content of alkoxy groups is small, and the content of hydroxy groups is also small.
  • an organosilicon compound such as an alkoxysilane compound is hydrolyzed and polycondensed to obtain a first organopolysiloxane
  • most of the alkoxy groups and hydroxy groups are converted into a partial skeleton of siloxane bonds. It is to be done. That is, most of oxygen atoms of the alkoxy group and oxygen atoms of the hydroxy group are converted into oxygen atoms forming a siloxane bond.
  • alkenyl group examples include vinyl group, allyl group, butenyl group, pentenyl group, and hexenyl group.
  • the alkenyl group in the first organopolysiloxane and the alkenyl group in the above formula (1A) and the above formula (1B) are preferably vinyl groups or allyl groups. More preferably, it is a group.
  • the first organopolysiloxane preferably has a vinyl group.
  • the hydrocarbon group having 2 to 8 carbon atoms in the above formula (1A) is not particularly limited, and examples thereof include ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, and n-heptyl. Group, n-octyl group, isopropyl group, isobutyl group, sec-butyl group, t-butyl group, isopentyl group, neopentyl group, t-pentyl group, isohexyl group, cyclohexyl group and aryl group.
  • Examples of the hydrocarbon group having 1 to 8 carbon atoms in the above formula (1B) include the same groups as the hydrocarbon group having 2 to 8 carbon atoms in the above formula (1A), and further includes a methyl group.
  • the first organopolysiloxane contains one vinyl group and two carbon atoms per silicon atom. It preferably contains a structural unit bonded to a hydrocarbon group of 1 to 8 (methyl group or hydrocarbon group of 2 to 8 carbon atoms).
  • (R1R2R3SiO 1 / The structural unit represented by 2 ) includes a structural unit in which R1 represents a vinyl group, and R2 and R3 represent a hydrocarbon group having 1 to 8 carbon atoms (methyl group or hydrocarbon group having 2 to 8 carbon atoms). It is preferable.
  • the structural unit represented by (R1R2R3SiO 1/2 ) may contain only the structural unit represented by the following formula (1-a), and the structural unit represented by the following formula (1-a) and And a structural unit other than the structural unit represented by the formula (1-a).
  • the presence of the structural unit represented by the following formula (1-a) allows a vinyl group to be present at the terminal, and the presence of the vinyl group at the terminal increases the opportunity for reaction, and the curability of the curable composition. Can be further increased.
  • the terminal oxygen atom generally forms a siloxane bond with an adjacent silicon atom, and shares an oxygen atom with the adjacent structural unit. Therefore, one oxygen atom at the terminal is defined as “O 1/2 ”.
  • R2 and R3 each represent a hydrocarbon group having 1 to 8 carbon atoms.
  • the content ratio of methyl groups bonded to silicon atoms in the first organopolysiloxane A is preferably 80 mol% or more.
  • the content ratio of the methyl group bonded to the silicon atom is obtained from the following formula (X1).
  • the content ratio of the methyl group is 80 mol% or more, the heat resistance of the cured product becomes considerably high, and even if the optical semiconductor device is used in a harsh environment under high temperature and high humidity, Is difficult to decrease and discoloration of the cured product is difficult to occur.
  • the content ratio of the methyl group bonded to the silicon atom in the first organopolysiloxane A is preferably 85 mol% or more, preferably 99.9 mol% or less, more preferably 99 mol% or less, and still more preferably 98 mol%. It is less than mol%.
  • the content ratio of the methyl group is not less than the above lower limit, the heat resistance of the cured product is further enhanced.
  • the content ratio of the methyl group is not more than the above upper limit, alkenyl groups can be sufficiently introduced, and it is easy to improve the curability of the curable composition.
  • the content ratio of the aryl group in the first organopolysiloxane B is preferably 30 mol% or more, and preferably 85 mol% or less.
  • the content ratio of this aryl group is calculated
  • the content ratio of the aryl group is 30 mol% or more, the gas barrier property of the cured product is further enhanced, and cracks and peeling are less likely to occur in the cured product.
  • the content ratio of the aryl group is 85 mol% or less, peeling of the cured product is more difficult to occur.
  • the content ratio of the aryl group in the first organopolysiloxane B is more preferably 35 mol% or more.
  • the content ratio of the aryl group in the first organopolysiloxane B is more preferably 80 mol% or less, still more preferably 75 mol% or less, and particularly preferably 70 mol%. Hereinafter, it is most preferably 65 mol% or less.
  • the first organopolysiloxane A preferably has an aryl group.
  • the aryl group include an unsubstituted phenyl group and a substituted phenyl group.
  • the content ratio of the aryl group in the first organopolysiloxane A is preferably 0.5 mol% or more, preferably 10 mol% or less, more preferably 5 mol% or less.
  • the heat resistance of the cured product is further improved.
  • the structural unit represented by (R4R5SiO 2/2 ) (hereinafter also referred to as a bifunctional structural unit) has the following formula ( The structure represented by 1-2), that is, a structure in which one of the oxygen atoms bonded to the silicon atom in the bifunctional structural unit forms a hydroxy group or an alkoxy group may be included.
  • the structural unit represented by (R4R5SiO 2/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula (1-b), and is further represented by the following formula (1-2-b). A portion surrounded by a broken line of the structural unit may be included. That is, a structural unit having a group represented by R4 and R5 and having an alkoxy group or a hydroxy group remaining at the terminal is also included in the structural unit represented by (R4R5SiO 2/2 ).
  • the structural unit represented by (R4R5SiO 2/2 ) is a broken line of the structural unit represented by the following formula (1-b) The part enclosed by is shown.
  • the structural unit represented by (R4R5SiO 2/2 ) having the remaining alkoxy group or hydroxy group has the following formula: A portion surrounded by a broken line in the structural unit represented by (1-2-b) is shown.
  • the oxygen atom in the Si—O—Si bond forms a siloxane bond with the adjacent silicon atom, and the adjacent structural unit and oxygen atom Sharing. Accordingly, one oxygen atom in the Si—O—Si bond is defined as “O 1/2 ”.
  • X represents OH or OR
  • OR represents a linear or branched alkoxy group having 1 to 4 carbon atoms.
  • R4 and R5 in formula (1-b), formula (1-2), and formula (1-2-b) are the same groups as R4 and R5 in formula (1A) and formula (1B). It is.
  • the structural unit represented by (R6SiO 3/2 ) (hereinafter also referred to as trifunctional structural unit) has the following formula ( 1-3) or a structure represented by formula (1-4), that is, a structure in which two oxygen atoms bonded to a silicon atom in a trifunctional structural unit each constitute a hydroxy group or an alkoxy group, or a trifunctional
  • One of the oxygen atoms bonded to the silicon atom in the structural unit may include a structure constituting a hydroxy group or an alkoxy group.
  • the structural unit represented by (R6SiO 3/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula (1-c), and further includes the following formula (1-3-c) or formula ( A portion surrounded by a broken line of the structural unit represented by 1-4-4-c) may be included. That is, a structural unit having a group represented by R6 and having an alkoxy group or a hydroxy group remaining at the terminal is also included in the structural unit represented by (R6SiO 3/2 ).
  • R6 in the above formula (1-c), formula (1-3), formula (1-3-c), formula (1-4) and formula (1-4-c) represents the above formula (1A) and It is the same group as R6 in the above formula (1B).
  • the linear or branched alkoxy group having 1 to 4 carbon atoms is not particularly limited.
  • the lower limit of a / (a + b + c) is 0, and the upper limit is 0.30.
  • a / (a + b + c) is less than or equal to the above upper limit, the heat resistance of the cured product is further increased, and peeling of the cured product can be further suppressed.
  • a / (a + b + c) becomes like this. Preferably it is 0.25 or less, More preferably, it is 0.20 or less.
  • the lower limit of b / (a + b + c) is 0.70, and the upper limit is 1.0.
  • b / (a + b + c) is not less than the above lower limit, the cured product does not become too hard, and cracks hardly occur in the cured product.
  • b / (a + b + c) is preferably 0.75 or more, more preferably 0.80 or more.
  • the lower limit of c / (a + b + c) is 0, and the upper limit is 0.10.
  • c / (a + b + c) is not more than the above upper limit, it is easy to maintain an appropriate viscosity of the curable composition, and the adhesiveness of the cured product is further enhanced.
  • c / (a + b + c) is preferably 0.05 or less.
  • the structural unit of (R6SiO 3/2 ) does not exist in the above formula (1A).
  • C / (a + b + c) in the above formula (1A) is preferably 0. That is, the first organopolysiloxane represented by the above formula (1A) is preferably the first organopolysiloxane represented by the following formula (1Aa). As a result, cracks are less likely to occur in the cured product, and the cured product is more difficult to peel from the housing material or the like.
  • a / (a + b) is preferably 0.25 or less, more preferably 0.20 or less, and still more preferably 0.15 or less.
  • b / (a + b) is preferably 0.75 or more, more preferably 0.80 or more, and further preferably 0.85 or more.
  • a / (a + b + c) is 0 or more and 0.50 or less.
  • a / (a + b + c) is less than or equal to the above upper limit, the heat resistance of the cured product is further increased, and peeling of the cured product can be further suppressed.
  • a / (a + b + c) is preferably 0.45 or less, more preferably 0.40 or less.
  • b / (a + b + c) is 0.40 or more and 1.0 or less.
  • b / (a + b + c) is not less than the above lower limit, the cured product does not become too hard, and cracks hardly occur in the cured product.
  • b / (a + b + c) is preferably 0.50 or more.
  • c / (a + b + c) is 0 or more and 0.50 or less.
  • c / (a + b + c) is not more than the above upper limit, it is easy to maintain an appropriate viscosity of the curable composition, and the adhesiveness of the cured product is further enhanced.
  • c / (a + b + c) is preferably 0.45 or less, more preferably 0.40 or less, and still more preferably 0.35 or less.
  • the structural unit of (R6SiO 3/2 ) does not exist in the above formula (1B).
  • C / (a + b + c) in the above formula (1B) is preferably 0. That is, the first organopolysiloxane represented by the above formula (1B) is preferably the first organopolysiloxane represented by the following formula (1Bb). As a result, cracks are less likely to occur in the cured product, and peeling of the cured product is further less likely to occur.
  • a / (a + b) in the above formula (1Bb) is preferably 0.45 or less, more preferably 0.40 or less.
  • b / (a + b) is preferably 0.55 or more, more preferably 0.60 or more.
  • NMR si-nuclear magnetic resonance analysis
  • TMS tetramethylsilane
  • Each peak corresponding to the structural unit represented by (R4R5SiO 2/2 ) and the bifunctional structural unit of the above formula (1-2) appears in the vicinity of ⁇ 10 to ⁇ 50 ppm, and the above formula (1A) and the above formula (1B )
  • the ratio of each structural unit in the above formula (1A) and the above formula (1B) can be measured by measuring 29 Si-NMR and comparing the peak areas of the respective signals.
  • the second organopolysiloxane contained in the curable composition for optical semiconductor devices according to the present invention has two or more hydrogen atoms bonded to silicon atoms.
  • the hydrogen atom is directly bonded to the silicon atom.
  • As for said 2nd organopolysiloxane only 1 type may be used and 2 or more types may be used together.
  • the second organopolysiloxane may contain a structural unit in which three oxygen atoms are bonded to one silicon atom.
  • one hydrogen atom may be bonded to the silicon atom to which three oxygen atoms are bonded, and one hydrocarbon group having 1 to 8 carbon atoms (methyl group or hydrocarbon having 2 to 8 carbon atoms). Group) may be bonded.
  • the second organopolysiloxane is represented by the following formula (51A) and has a hydrogen atom bonded to a silicon atom and a methyl group bonded to the silicon atom.
  • a second organopolysiloxane (hereinafter sometimes referred to as a second organopolysiloxane A) is preferred.
  • R51 to R56 each represents at least one hydrogen atom, at least one represents a methyl group, and R51 to R56 other than the hydrogen atom and the methyl group are hydrocarbon groups having 2 to 8 carbon atoms. Represents.
  • the second organopolysiloxane is represented by the following formula (51B), and includes a second organopolysiloxane having an aryl group and a hydrogen atom bonded to a silicon atom.
  • Siloxane hereinafter sometimes referred to as second organopolysiloxane B
  • the aryl group include an unsubstituted phenyl group and a substituted phenyl group.
  • R51 to R56 represents an aryl group
  • R51 to R56 other than the aryl group and the hydrogen atom are carbon atoms having 1 to 8 carbon atoms. Represents a hydrogen group.
  • the structural unit represented by (R54R55SiO 2/2 ) and the structural unit represented by (R56SiO 3/2 ) each have an alkoxy group. It may have a hydroxy group.
  • the above formula (51A) and the above formula (51B) show the average composition formula.
  • the hydrocarbon group in the above formula (51A) and the above formula (51B) may be linear or branched.
  • R51 to R56 in the above formula (51A) and the above formula (51B) may be the same or different.
  • the oxygen atom part in the structural unit represented by (R54R55SiO 2/2 ) and the oxygen atom part in the structural unit represented by (R56SiO 3/2 ) are respectively siloxane.
  • An oxygen atom part forming a bond, an oxygen atom part of an alkoxy group, or an oxygen atom part of a hydroxy group is shown.
  • the hydrocarbon group having 2 to 8 carbon atoms in the formula (51A) is not particularly limited, and examples thereof include an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, and an n-heptyl group.
  • Examples of the hydrocarbon group having 1 to 8 carbon atoms in the above formula (51B) include the same groups as the hydrocarbon group having 2 to 8 carbon atoms in the above formula (51A), and further includes a methyl group.
  • the second organopolysiloxane contains one hydrogen atom and two carbon atoms in one silicon atom. It preferably contains a structural unit bonded to a hydrocarbon group of 1 to 8 (methyl group or hydrocarbon group of 2 to 8 carbon atoms).
  • (R51R52R53SiO 1 / The structural unit represented by 2 ) includes a structural unit in which R51 represents a hydrogen atom, and R52 and R53 represent a hydrocarbon group having 1 to 8 carbon atoms (a methyl group or a hydrocarbon group having 2 to 8 carbon atoms). It is preferable.
  • the second organopolysiloxane has a structural unit represented by (HR52R53SiO 1/2 ). In other words, it preferably has a structural unit represented by the following formula (51-a).
  • the structural unit represented by (R51R52R53SiO 1/2 ) may contain only the structural unit represented by the following formula (51-a), and the structural unit represented by the following formula (51-a) And a structural unit other than the structural unit represented by the formula (51-a). Due to the presence of the structural unit represented by the following formula (51-a), a hydrogen atom can be present at the terminal.
  • the terminal oxygen atom generally forms a siloxane bond with an adjacent silicon atom, and shares an oxygen atom with the adjacent structural unit. Therefore, one oxygen atom at the terminal is defined as “O 1/2 ”.
  • R52 and R53 each represent a methyl group or a hydrocarbon group having 2 to 8 carbon atoms.
  • the first organopolysiloxane is a structural unit represented by the above formula (1-a). It is particularly preferable that the second organopolysiloxane has a structural unit represented by the above formula (51-a).
  • the second organopolysiloxane preferably has an alkenyl group, and more preferably has a vinyl group.
  • at least one of R51 to R56 represents a silicon atom, at least one represents a methyl group, at least one represents an alkenyl group, a hydrogen atom, a methyl group, and R51 to R56 other than the alkenyl group represent a hydrocarbon group having 2 to 8 carbon atoms.
  • At least one of R51 to R56 represents an aryl group, at least one represents a silicon atom, at least one represents an alkenyl group, and other than an aryl group, a hydrogen atom, and an alkenyl group R51 to R56 each represents a hydrocarbon group having 2 to 8 carbon atoms.
  • the content ratio of methyl groups bonded to silicon atoms in the second organopolysiloxane A is preferably 80 mol% or more.
  • the content ratio of the methyl group bonded to the silicon atom is obtained from the following formula (X51).
  • the content ratio of the methyl group bonded to the silicon atom in the second organopolysiloxane is preferably 85 mol% or more, preferably 99.9 mol% or less, more preferably 99 mol% or less, and still more preferably 98 mol%. % Or less.
  • the content ratio of the methyl group is not less than the preferable lower limit, the heat resistance of the cured product is further enhanced.
  • the content ratio of the methyl group is not more than the above upper limit, hydrogen atoms bonded to silicon atoms can be sufficiently introduced, and it is easy to improve the curability of the curable composition.
  • the content ratio of the aryl group in the second organopolysiloxane B is preferably 30 mol% or more, and preferably 85 mol% or less.
  • the content ratio of this aryl group is calculated
  • the content ratio of the aryl group is 30 mol% or more, the gas barrier property of the cured product is further enhanced, and cracks and peeling are less likely to occur in the cured product.
  • the content ratio of the aryl group is 85 mol% or less, peeling of the cured product is more difficult to occur.
  • the content ratio of the aryl group in the second organopolysiloxane B is more preferably 35 mol% or more.
  • the content ratio of the aryl group in the second organopolysiloxane B is more preferably 80 mol% or less, still more preferably 75 mol% or less, and particularly preferably 70 mol%. Hereinafter, it is most preferably 65 mol% or less.
  • Aryl group content (mol%) (average number of aryl groups contained in one molecule of the second organopolysiloxane ⁇ molecular weight of aryl group / included in one molecule of the second organopolysiloxane) Average number of functional groups bonded to silicon atoms ⁇ average molecular weight of functional groups) ⁇ 100 Formula (Y51)
  • the second organopolysiloxane A preferably has an aryl group.
  • the aryl group include an unsubstituted phenyl group and a substituted phenyl group.
  • the content ratio of the aryl group in the second organopolysiloxane A is preferably 0.5 mol% or more, preferably 10 mol% or less, more preferably 5 mol% or less.
  • the heat resistance of the cured product is further improved.
  • the structural unit represented by (R54R55SiO 2/2 ) (hereinafter also referred to as a bifunctional structural unit) has the following formula ( 51-2), that is, a structure in which one of oxygen atoms bonded to a silicon atom in the bifunctional structural unit constitutes a hydroxy group or an alkoxy group may be included.
  • the structural unit represented by (R54R55SiO 2/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula (51-b), and is further represented by the following formula (51-2-b). A portion surrounded by a broken line of the structural unit may be included. That is, a structural unit having a group represented by R54 and R55 and having an alkoxy group or a hydroxy group remaining at the terminal is also included in the structural unit represented by (R54R55SiO 2/2 ).
  • X represents OH or OR
  • OR represents a linear or branched alkoxy group having 1 to 4 carbon atoms.
  • R54 and R55 in the formula (51-b), formula (51-2) and formula (51-2-b) are the same groups as R54 and R55 in the formula (51A) and the formula (51B). It is.
  • the structural unit represented by (R56SiO 3/2 ) (hereinafter also referred to as trifunctional structural unit) has the following formula ( 51-3) or a structure represented by formula (51-4), that is, a structure in which two oxygen atoms bonded to a silicon atom in a trifunctional structural unit each constitute a hydroxy group or an alkoxy group, or a trifunctional
  • One of the oxygen atoms bonded to the silicon atom in the structural unit may include a structure constituting a hydroxy group or an alkoxy group.
  • the structural unit represented by (R56SiO 3/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula (51-c), and further includes the following formula (51-3-c) or formula ( A part surrounded by a broken line of the structural unit represented by 51-4-c) may be included. That is, a structural unit having a group represented by R56 and having an alkoxy group or a hydroxy group remaining at the terminal is also included in the structural unit represented by (R56SiO 3/2 ).
  • R56 in the above formula (51-c), formula (51-3), formula (51-3-c), formula (51-4) and formula (51-4-c) represents the above formula (51A) and It is the same group as R56 in the above formula (51B).
  • the linear or branched alkoxy group having 1 to 4 carbon atoms is not particularly limited.
  • the lower limit of p / (p + q + r) is 0.10 and the upper limit is 0.50.
  • p / (p + q + r) is less than or equal to the above upper limit, the hardness of the cured product is increased, adhesion of scratches and dust can be prevented, the heat resistance of the cured product is further increased, and peeling of the cured product can be further suppressed.
  • p / (p + q + r) becomes like this. Preferably it is 0.45 or less, More preferably, it is 0.40 or less.
  • the lower limit of q / (p + q + r) is 0, and the upper limit is 0.40.
  • q / (p + q + r) exceeds 0, the cured product does not become too hard and cracks are hardly generated in the cured product.
  • q / (p + q + r) becomes like this.
  • it is 0.10 or more, More preferably, it is 0.15 or more.
  • the structural unit of (R54R55SiO 2/2 ) does not exist in the above formula (51A).
  • the lower limit of r / (p + q + r) is 0.40, and the upper limit is 0.90.
  • r / (p + q + r) is not less than the above lower limit, the hardness of the cured product is increased, and scratches and dust can be prevented from adhering.
  • r / (p + q + r) is not more than the above upper limit, it is easy to maintain an appropriate viscosity of the curable composition, and the adhesiveness of the cured product is further enhanced.
  • p / (p + q + r) is 0.05 or more and 0.50 or less.
  • p / (p + q + r) is less than or equal to the above upper limit, the heat resistance of the cured product is further increased, and peeling of the cured product can be further suppressed.
  • p / (p + q + r) becomes like this.
  • it is 0.10 or more, Preferably it is 0.45 or less.
  • q / (p + q + r) is 0.05 or more and 0.50 or less.
  • q / (p + q + r) is not less than the above lower limit, the cured product does not become too hard and cracks are hardly generated in the cured product.
  • q / (p + q + r) is not more than the above upper limit, the gas barrier property of the cured product is further enhanced.
  • q / (p + q + r) is preferably 0.10 or more, and preferably 0.45 or less.
  • r / (p + q + r) is 0.20 or more and 0.80 or less.
  • r / (p + q + r) is equal to or greater than the above lower limit, the hardness of the cured product is increased, scratches and dust can be prevented, the heat resistance of the cured product is increased, and the thickness of the cured product is less likely to decrease in a high temperature environment.
  • r / (p + q + r) is not more than the above upper limit, it is easy to maintain an appropriate viscosity of the curable composition, and the adhesiveness of the cured product is further enhanced.
  • the ratio of each structural unit in the above formula (51A) and the above formula (51B) can be measured by measuring 29 Si-NMR and comparing the peak areas of the respective signals.
  • the content of the second organopolysiloxane is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, still more preferably 20 parts by weight or more, preferably 100 parts by weight of the first organopolysiloxane. 400 parts by weight or less, more preferably 300 parts by weight or less, still more preferably 200 parts by weight or less.
  • a curable composition more excellent in curability can be obtained.
  • the number average molecular weight (Mn) of the first organopolysiloxane is preferably 500 or more, more preferably 1000 or more, still more preferably 5000 or more, preferably 200000 or less, more preferably 100000 or less, still more preferably 60000 or less, Particularly preferred is 10,000 or less, and most preferred is 8000 or less.
  • the number average molecular weight (Mn) of the first organopolysiloxane represented by the above formula (1A) is preferably 500 or more, more preferably 1000 or more, further preferably 5000 or more, preferably 200000 or less, more preferably 100000. Hereinafter, it is more preferably 60000 or less.
  • the number average molecular weight (Mn) of the first organopolysiloxane represented by the above formula (1B) is preferably 500 or more, more preferably 1000 or more, preferably 10,000 or less, more preferably 8000 or less.
  • the number average molecular weights (Mn) of the second organopolysiloxane, the second organopolysiloxane represented by the formula (51A), and the second organopolysiloxane represented by the formula (51B) are each preferably Is 500 or more, more preferably 1000 or more, preferably 20000 or less, more preferably 10,000 or less.
  • the number average molecular weight is not less than the above lower limit, the volatile components are reduced at the time of thermosetting, and the thickness of the cured product is hardly reduced under a high temperature environment.
  • the number average molecular weight is not more than the above upper limit, viscosity adjustment is easy.
  • the number average molecular weight (Mn) is a value obtained by using polystyrene as a standard substance using gel permeation chromatography (GPC).
  • the number average molecular weight (Mn) is determined by two measuring devices manufactured by Waters (column: Shodex GPC LF-804 (length: 300 mm) manufactured by Showa Denko KK), measuring temperature: 40 ° C., flow rate: 1 mL / min, solvent: Tetrahydrofuran, standard substance: polystyrene) means a value measured.
  • the method for synthesizing the first and second organopolysiloxanes is not particularly limited, and examples thereof include a method in which an alkoxysilane compound is hydrolyzed and subjected to a condensation reaction, and a method in which a chlorosilane compound is hydrolyzed and condensed. Especially, the method of hydrolyzing and condensing an alkoxysilane compound from a viewpoint of reaction control is preferable.
  • Examples of the method of hydrolyzing and condensing the alkoxysilane compound include a method of reacting an alkoxysilane compound in the presence of water and an acidic catalyst or a basic catalyst. Further, the disiloxane compound may be hydrolyzed and used.
  • organosilicon compound for introducing an alkenyl group into the first organopolysiloxane examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, methoxydimethylvinylsilane, vinyldimethylethoxysilane, and 1,3-divinyl. -1,1,3,3-tetramethyldisiloxane and the like.
  • organosilicon compound for introducing a hydrogen atom bonded to a silicon atom into the second organopolysiloxane examples include trimethoxysilane, triethoxysilane, methyldimethoxysilane, methyldiethoxysilane, and 1,1,3, Examples include 3-tetramethyldisiloxane.
  • organosilicon compound for introducing an aryl group into the first and second organopolysiloxanes as necessary include triphenylmethoxysilane, triphenylethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methyl (phenyl) ) Dimethoxysilane, phenyltrimethoxysilane and the like.
  • organosilicon compounds examples include silane, cyclohexyl (methyl) dimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, hexyltrimethoxysilane, and octyltrimethoxysilane.
  • Examples of the acidic catalyst include inorganic acids, organic acids, acid anhydrides of inorganic acids and derivatives thereof, and acid anhydrides of organic acids and derivatives thereof.
  • Examples of the inorganic acid include hydrochloric acid, phosphoric acid, boric acid, and carbonic acid.
  • examples of the organic acid include formic acid, acetic acid, propionic acid, butyric acid, lactic acid, malic acid, tartaric acid, citric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid and oleic acid. Is mentioned.
  • Examples of the basic catalyst include alkali metal hydroxides, alkali metal alkoxides, and alkali metal silanol compounds.
  • alkali metal hydroxide examples include sodium hydroxide, potassium hydroxide and cesium hydroxide.
  • alkali metal alkoxide include sodium-t-butoxide, potassium-t-butoxide, and cesium-t-butoxide.
  • alkali metal silanol compound examples include a sodium silanolate compound, a potassium silanolate compound, and a cesium silanolate compound.
  • a potassium catalyst or a cesium catalyst is preferable.
  • the hydrosilylation reaction catalyst contained in the curable composition for optical semiconductor devices according to the present invention is bonded to an alkenyl group in the first organopolysiloxane and a silicon atom in the second organopolysiloxane. It is a catalyst for the hydrosilylation reaction between the hydrogen atom.
  • hydrosilylation reaction catalyst various catalysts that cause the hydrosilylation reaction to proceed can be used.
  • the said catalyst for hydrosilylation reaction only 1 type may be used and 2 or more types may be used together.
  • hydrosilylation reaction catalyst examples include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Since the transparency of the cured product is increased, a platinum-based catalyst is preferable.
  • platinum-based catalyst examples include platinum powder, chloroplatinic acid, platinum-alkenylsiloxane complex, platinum-olefin complex, and platinum-carbonyl complex.
  • platinum-alkenylsiloxane complex or a platinum-olefin complex is preferred.
  • Examples of the alkenylsiloxane in the platinum-alkenylsiloxane complex include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane and 1,3,5,7-tetramethyl-1,3,5. , 7-tetravinylcyclotetrasiloxane and the like.
  • Examples of the olefin in the platinum-olefin complex include allyl ether and 1,6-heptadiene.
  • alkenylsiloxane is preferably 1,3-divinyl-1,1,3,3-tetramethyldisiloxane.
  • the organosiloxane oligomer is preferably a dimethylsiloxane oligomer.
  • the olefin is preferably 1,6-heptadiene.
  • the content of the catalyst for hydrosilylation reaction is preferably 0.01 ppm or more, more preferably 1 ppm or more, preferably in terms of weight units of metal atoms (platinum atoms in the case of platinum alkenyl complexes). Is 1000 ppm or less, more preferably 500 ppm or less.
  • the content of the hydrosilylation reaction catalyst is not less than the above lower limit, it is easy to sufficiently cure the curable composition.
  • the content of the catalyst for hydrosilylation reaction is not more than the above upper limit, the problem of coloring of the cured product hardly occurs.
  • the curable composition for optical semiconductor devices according to the present invention includes a first silane compound having a ureido group or an isocyanate group.
  • a first silane compound having a ureido group or an isocyanate group By using the first silane compound having this specific group, even if the optical semiconductor device is used in a harsh environment under high temperature and high humidity, the curable composition is cured from the bonded object of the cured product. Peeling is less likely to occur.
  • the first silane compound may have a ureido group or an isocyanate group.
  • the composition comprising the first organopolysiloxane having an alkenyl group, the second organopolysiloxane having a hydrogen atom bonded to a silicon atom, and a catalyst for hydrosilylation reaction, the second organopolysiloxane having an ureido group or an isocyanate group.
  • 1 silane compound By using 1 silane compound, the viscosity of the curable composition for optical semiconductor devices hardly changes, and the pot life of the curable composition for optical semiconductor devices is improved.
  • the first silane compound may have a ureido group or an isocyanate group. From the viewpoint of further increasing the adhesiveness of the cured product to the object to be bonded, the first silane compound preferably has a ureido group. In addition, the use of the first silane compound having a ureido group can further suppress electrode discoloration due to sulfur-containing gas in the atmosphere in the optical semiconductor device.
  • the first silane compound is a first silane compound represented by the following formula (S1) or the following formula (S2). preferable.
  • the first silane compound is represented by the following formula (S1). It is preferable that it is the 1st silane compound represented.
  • X1 represents an alkoxy group
  • X2 and X3 each represents an alkoxy group or a hydrocarbon group having 1 to 8 carbon atoms
  • R4 is a single bond directly bonding a nitrogen atom and a silicon atom. Or a hydrocarbon group having 1 to 8 carbon atoms.
  • X1 represents an alkoxy group
  • X2 and X3 each represents an alkoxy group or a hydrocarbon group having 1 to 8 carbon atoms
  • R4 represents a single bond directly connecting a nitrogen atom and a silicon atom. It represents a bond or a hydrocarbon group having 1 to 8 carbon atoms.
  • the number of carbon atoms of the alkoxy group in X1 in the formula (S1) and the formula (S2) is preferably 1-8.
  • the alkoxy group in X2 and X3 preferably has 1 to 8 carbon atoms.
  • the first silane compound represented by the above formula (S1) is preferably the first silane compound represented by the following formula (S1-1).
  • S1-1 the adhesion of the cured product to the object to be bonded is further enhanced.
  • R1 to R3 each represent a hydrocarbon group having 1 to 8 carbon atoms
  • R4 represents a single bond directly bonding a nitrogen atom and a silicon atom, or 1 to 8 hydrocarbon groups are represented.
  • the first silane compound represented by the above formula (S2) is preferably the first silane compound represented by the following formula (S2-1).
  • S2-1 the adhesion of the cured product to the object to be bonded is further enhanced.
  • R1 to R3 each represent a hydrocarbon group having 1 to 8 carbon atoms
  • R4 represents a single bond directly bonding a nitrogen atom and a silicon atom, or 1 carbon atom. Represents 8 to 8 hydrocarbon groups.
  • the content of the first silane compound is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 100 parts by weight in total for the first and second organopolysiloxanes. 5 parts by weight or less, more preferably 3 parts by weight or less.
  • the content of the first silane compound is equal to or higher than the lower limit, peeling of the cured product from the adhesion target can be further suppressed.
  • the content of the first silane compound is not more than the above upper limit, it is possible to prevent the surface stickiness of the sealing agent from being deteriorated due to the excessive first silane coupling agent.
  • the curable composition for optical semiconductor devices according to the present invention preferably contains a second silane compound different from the first silane compound having a ureido group or an isocyanate group.
  • the second silane compound does not have a ureido group and an isocyanate group.
  • the second silane compound is not particularly limited, and examples thereof include vinyltriethoxysilane, vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, Examples include 3- (meth) acryloxypropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane.
  • (meth) acryloyl indicates acryloyl and methacryloyl.
  • (meth) acryloxy refers to acryloxy and methacryloxy.
  • the second silane compound preferably has an epoxy group, a vinyl group or a (meth) acryloyl group.
  • the second silane compound is 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Vinyltrimethoxysilane or 3- (meth) acryloxypropyltrimethoxysilane is preferable.
  • the content of the second silane compound is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 100 parts by weight based on the total of the first and second organopolysiloxanes. 5 parts by weight or less, more preferably 3 parts by weight or less.
  • the content of the second silane compound is equal to or more than the lower limit, peeling of the cured product from the adhesion target can be further suppressed.
  • the content of the second silane compound is not more than the above upper limit, it is possible to prevent the surface stickiness of the sealing agent from being deteriorated due to an excessive second silane coupling agent.
  • the curable composition for optical semiconductor devices according to the present invention preferably further contains silicon oxide particles.
  • the encapsulant preferably further contains silicon oxide particles.
  • the primary particle diameter of the silicon oxide particles is preferably 5 nm or more, more preferably 8 nm or more, preferably 200 nm or less, more preferably 150 nm or less.
  • the primary particle diameter of the silicon oxide particles is not less than the above lower limit, the dispersibility of the silicon oxide particles is further increased, and the transparency of the cured product is further increased.
  • the primary particle diameter of the silicon oxide particles is not more than the above upper limit, it is possible to sufficiently obtain the effect of increasing the viscosity at 25 ° C. and to suppress the decrease in the viscosity due to the temperature increase.
  • the primary particle diameter of the silicon oxide particles is measured as follows.
  • the cured product of the curable composition for optical semiconductor devices is observed using a transmission electron microscope (“JEM-2100” manufactured by JEOL Ltd.).
  • the size of the primary particles of 100 silicon oxide particles in the visual field is measured, and the average value of the measured values is defined as the primary particle diameter.
  • the primary particle diameter means an average value of the diameters of the silicon oxide particles when the silicon oxide particles are spherical, and an average value of the major diameters of the silicon oxide particles when the silicon oxide particles are non-spherical.
  • the BET specific surface area of the silicon oxide particles is preferably 30 m 2 / g or more, and preferably 400 m 2 / g or less.
  • the BET specific surface area of the silicon oxide particles is 30 m 2 / g or more, the viscosity at 25 ° C. of the curable composition can be controlled within a suitable range, and the decrease in the viscosity due to a temperature rise can be suppressed.
  • the BET specific surface area of the silicon oxide particles is 400 m 2 / g or less, the aggregation of the silicon oxide particles hardly occurs, the dispersibility can be increased, and the transparency of the cured product can be further increased. it can.
  • the silicon oxide particles are not particularly limited, and examples thereof include silica produced by a dry method such as fumed silica and fused silica, and silica produced by a wet method such as colloidal silica, sol-gel silica and precipitated silica. It is done.
  • fumed silica is suitably used as the silicon oxide particles from the viewpoint of obtaining a cured product with less volatile components and higher transparency.
  • Examples of the fumed silica include Aerosil 50 (specific surface area: 50 m 2 / g), Aerosil 90 (specific surface area: 90 m 2 / g), Aerosil 130 (specific surface area: 130 m 2 / g), Aerosil 200 (specific surface area). : 200 m 2 / g), Aerosil 300 (specific surface area: 300 m 2 / g), Aerosil 380 (specific surface area: 380 m 2 / g) (all manufactured by Nippon Aerosil Co., Ltd.) and the like.
  • the silicon oxide particles are preferably surface-treated with an organosilicon compound. By this surface treatment, the dispersibility of the silicon oxide particles becomes very high, and it is possible to further suppress the decrease in the viscosity due to the temperature rise of the curable composition.
  • the content of the silicon oxide particles is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight with respect to a total of 100 parts by weight of the first organopolysiloxane and the second organopolysiloxane. More preferably, it is 1 part by weight or more, preferably 40 parts by weight or less, more preferably 35 parts by weight or less, and still more preferably 20 parts by weight or less.
  • the content of the silicon oxide particles is equal to or higher than the lower limit, it is possible to suppress a decrease in viscosity at the time of curing.
  • the content of the silicon oxide particles is not more than the above upper limit, the viscosity of the curable composition can be controlled to a more appropriate range, and the transparency of the cured product is further enhanced.
  • the curable composition for optical semiconductor devices according to the present invention may further contain a phosphor.
  • the curable composition for optical semiconductor devices according to the present invention is an encapsulant for optical semiconductor devices
  • the encapsulant preferably further contains a phosphor.
  • the curable composition for optical semiconductor devices which concerns on this invention does not need to contain fluorescent substance. In this case, a phosphor may be added when the curable composition is used.
  • the phosphor absorbs light emitted from a light-emitting element that is sealed using the curable composition for optical semiconductor devices, and generates fluorescence to finally obtain light of a desired color. Acts as follows. The phosphor is excited by light emitted from the light emitting element to emit fluorescence, and light of a desired color is obtained by a combination of light emitted from the light emitting element and fluorescence emitted from the phosphor.
  • the content of the phosphor can be adjusted as appropriate so as to obtain light of a desired color, and is not particularly limited.
  • the content of the phosphor is preferably 0.1 parts by weight or more and preferably 40 parts by weight or less with respect to 100 parts by weight of the curable composition for optical semiconductor devices according to the present invention.
  • the content of the phosphor is preferably 0.1 parts by weight or more and preferably 40 parts by weight or less with respect to 100 parts by weight of all components excluding the phosphor of the curable composition for optical semiconductor devices.
  • the curable composition for an optical semiconductor device includes a dispersant, an antioxidant, an antifoaming agent, a colorant, a modifier, a leveling agent, a light diffusing agent, a heat conductive filler, or a flame retardant as necessary. Etc. may further be included.
  • said 1st organopolysiloxane, said 2nd organopolysiloxane, said hydrosilylation reaction catalyst, and said 1st silane compound are the liquids containing these 1 type, or 2 or more types separately.
  • the curable composition for optical semiconductor devices according to the present invention may be prepared by preparing and mixing a plurality of liquids immediately before use. For example, the first liquid containing the first organopolysiloxane and the second liquid containing the second organopolysiloxane are prepared separately, and the first liquid and the second liquid are prepared just before use.
  • the curable composition for optical semiconductor devices according to the present invention may be prepared by mixing with a liquid. At least one of the first liquid and the second liquid contains the hydrosilylation reaction catalyst.
  • the first liquid preferably contains a hydrosilylation reaction catalyst.
  • the first silane compound may be added to the first liquid or may be added to the second liquid. At least one of the first liquid and the second liquid contains the first silane compound.
  • the second silane compound, the silicon oxide particles, or the phosphor is used, the second silane compound, the silicon oxide particles, or the phosphor may be added to the first liquid, respectively. It may be added to the second liquid. It is preferable that at least one of the first liquid and the second liquid contains the second silane compound.
  • storage stability improves by making said 1st organopolysiloxane and said 2nd organopolysiloxane into 2 liquids of a 1st liquid and a 2nd liquid separately.
  • the curing temperature of the curable composition for optical semiconductor devices according to the present invention is not particularly limited.
  • the curing temperature of the curable composition for optical semiconductor devices is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 180 ° C. or lower, more preferably 150 ° C. or lower.
  • the curing temperature is not less than the above lower limit, curing of the curable composition proceeds sufficiently.
  • the curing temperature is not more than the above upper limit, the package is unlikely to be thermally deteriorated.
  • the curing method is not particularly limited, but it is preferable to use a step cure method.
  • the step cure method is a method in which the resin is temporarily cured at a low temperature and then cured at a high temperature. By using the step cure method, curing shrinkage of the cured product can be suppressed.
  • mixers such as a homodisper, a homomixer, a universal mixer, a planetarium mixer, a kneader, a triple roll, or a bead mill.
  • the light-emitting element is not particularly limited as long as it is a light-emitting element using a semiconductor.
  • the light-emitting element is a light-emitting diode
  • a structure in which an LED-type semiconductor material is stacked on a substrate is exemplified.
  • the semiconductor material include GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaAlN, and SiC.
  • Examples of the material of the substrate include sapphire, spinel, SiC, Si, ZnO, and GaN single crystal. Further, a buffer layer may be formed between the substrate and the semiconductor material as necessary. Examples of the material of the buffer layer include GaN and AlN.
  • optical semiconductor device examples include a light emitting diode device, a semiconductor laser device, and a photocoupler.
  • Such optical semiconductor devices include, for example, backlights such as liquid crystal displays, illumination, various sensors, light sources such as printers and copiers, vehicle measuring instrument light sources, signal lights, indicator lights, display devices, and light sources for planar light emitters. It is suitably used for displays, decorations, various lights and switching elements.
  • the curable composition for optical semiconductor devices according to the present invention is preferably an encapsulant for optical semiconductor devices or a lens material for optical semiconductor devices.
  • the curable composition for optical semiconductor devices according to the present invention may be an encapsulant for optical semiconductor devices or a lens material for optical semiconductor devices.
  • the curable composition for optical semiconductor devices according to the present invention is also used as a coating material for optical semiconductor devices for forming a coating layer on the surface of an optical semiconductor element.
  • An optical semiconductor device includes an optical semiconductor element and a sealing agent disposed so as to seal the optical semiconductor element or a lens disposed on the optical semiconductor element.
  • the sealing agent or the lens is formed by curing the above-described curable composition for optical semiconductor devices.
  • a cured product of the curable composition for an optical semiconductor device is disposed so as to seal a light emitting element formed of an optical semiconductor such as an LED, the cured product is effectively peeled from the housing or the like. Can be suppressed.
  • the lens may be directly laminated on the optical semiconductor element, or may be disposed on the optical semiconductor element via a sealant or the like disposed so as to seal the optical semiconductor element. That is, the lens may be disposed on the surface of the sealant.
  • the shape of the lens is not particularly limited. From the viewpoint of controlling the light emission direction in the optical semiconductor device and further suppressing the front luminance from becoming too high, the shape of the lens may be a part of a sphere or a part of a spheroid. preferable.
  • FIG. 1 is a front sectional view showing an optical semiconductor device according to the first embodiment of the present invention.
  • the optical semiconductor device 1 of this embodiment has a housing 2.
  • An optical semiconductor element 3 is disposed in the housing 2.
  • the optical semiconductor element 3 is surrounded by an inner surface 2 a having light reflectivity of the housing 2.
  • the optical semiconductor element 3 is a light emitting element such as an LED.
  • the inner surface 2a is formed such that the diameter of the inner surface 2a increases toward the opening end. Therefore, of the light emitted from the optical semiconductor element 3, the light that has reached the inner surface 2 a is reflected by the inner surface 2 a and travels forward of the optical semiconductor element 3.
  • a sealing agent 4 that is a cured product of the curable composition for optical semiconductor devices is filled.
  • the sealant 4 is formed by curing the sealant that is the curable composition for optical semiconductor devices according to the present invention, and is a cured product of the sealant.
  • FIG. 2 is a front sectional view showing an optical semiconductor device according to the second embodiment of the present invention.
  • the optical semiconductor device 11 shown in FIG. An optical semiconductor element 3 is disposed in the housing 2.
  • a sealing agent 12 is filled in a region surrounded by the inner surface 2 a of the housing 2 so as to seal the optical semiconductor element 3. That is, the optical semiconductor element 3 is sealed with the sealant 12 in the housing 2.
  • a sealing agent 12 is disposed so as to seal the optical semiconductor element 3.
  • a lens 13 is disposed on the surface 12 a of the sealant 12.
  • the lens 13 is formed by curing a lens material that is a curable composition for optical semiconductor devices according to the present invention, and is a cured product of the lens material.
  • FIG. 3 is a front sectional view showing an optical semiconductor device according to the third embodiment of the present invention.
  • an optical semiconductor element 23 is arranged on a substrate 22 on which a terminal 22a is provided.
  • An electrode 23 a provided on the upper surface of the optical semiconductor element 23 and a terminal 22 a provided on the upper surface of the substrate 22 are electrically connected by a bonding wire 24.
  • a lens 25 is disposed on the optical semiconductor element 23.
  • the lens 25 covers the surface of the optical semiconductor element 23 and the bonding wire 24.
  • the lens 25 is formed by curing a lens material that is a curable composition for optical semiconductor devices according to the present invention, and is a cured product of the lens material.
  • FIGS. 1 to 3 are merely examples of the optical semiconductor device according to the present invention, and the mounting structure of the optical semiconductor device can be modified as appropriate.
  • the number average molecular weight of the obtained polymer (A) was 37400.
  • the polymer (A) had the following average composition formula (A1).
  • Me represents a methyl group
  • Vi represents a vinyl group.
  • the content ratio of the methyl group of the obtained polymer (A) was 99 mol%.
  • the molecular weight of each polymer obtained in Synthesis Example 1 and Synthesis Examples 2 to 6 was measured by GPC measurement by adding 1 mL of tetrahydrofuran to 10 mg, stirring until dissolved.
  • GPC measurement a measuring device manufactured by Waters (column: Shodex GPC LF-804 (length: 300 mm) x 2 manufactured by Showa Denko KK), measuring temperature: 40 ° C., flow rate: 1 mL / min, solvent: tetrahydrofuran, standard substance: Polystyrene) was used.
  • the number average molecular weight (Mn) of the obtained polymer (B) was 1700.
  • the polymer (B) had the following average composition formula (B1).
  • Me represents a methyl group
  • Ph represents a phenyl group
  • Vi represents a vinyl group.
  • the content ratio of the phenyl group of the obtained polymer (B) was 80.8 mol%.
  • the polymer was obtained by removing the volatile component under reduced pressure.
  • 150 g of hexane and 150 g of ethyl acetate were added, washed 10 times with 300 g of ion-exchanged water, reduced in pressure to remove volatile components, and polymer (C) was obtained.
  • the number average molecular weight of the obtained polymer (C) was 3420.
  • the polymer (C) had the following average composition formula (C1).
  • Me represents a methyl group
  • Vi represents a vinyl group.
  • the content ratio of methyl groups of the obtained polymer (C) was 90 mol%.
  • Synthesis Example 4 Synthesis of Second Organopolysiloxane A 1000 mL separable flask equipped with a thermometer, a dropping device and a stirrer was charged with 31 g of trimethylmethoxysilane, 40 g of 1,1,3,3-tetramethyldisiloxane, diphenyl. 110 g of dimethoxysilane, 268 g of phenyltrimethoxysilane, and 45 g of vinyltrimethoxysilane were added and stirred at 50 ° C. Into this, a solution of 1.4 g of hydrochloric acid and 116 g of water was slowly added dropwise, and after the addition, the mixture was stirred at 50 ° C.
  • the number average molecular weight (Mn) of the obtained polymer (D) was 1100.
  • the polymer (D) had the following average composition formula (D1).
  • Me represents a methyl group
  • Ph represents a phenyl group
  • Vi represents a vinyl group.
  • the content ratio of the phenyl group of the obtained polymer (D) was 82.5 mol%.
  • Synthesis Example 5 Synthesis of First Organopolysiloxane
  • a 1 L separable flask equipped with a thermometer, a dropping device and a stirrer was charged with 474 g of dimethyldimethoxysilane, 10 g of diphenyldimethoxysilane, 1,3-divinyl-1,1, 1.2 g of 3,3-tetramethyldisiloxane and 200 g of dimethylformamide were added and stirred at 50 ° C.
  • a solution prepared by dissolving 2.2 g of potassium hydroxide in 144 g of water was slowly added dropwise thereto, and after the dropwise addition, the mixture was stirred at 50 ° C. for 2 hours to react, further heated to 85 ° C.
  • the number average molecular weight of the obtained polymer (E) was 52300.
  • the polymer (E) had the following average composition formula (E1).
  • Me represents a methyl group
  • Ph represents a phenyl group
  • Vi represents a vinyl group.
  • the content ratio of the methyl group of the obtained polymer (E) was 99 mol%.
  • the polymer was obtained by removing the volatile component under reduced pressure.
  • 150 g of hexane and 150 g of ethyl acetate were added, washed 10 times with 300 g of ion-exchanged water, reduced in pressure to remove volatile components, and polymer (F) was obtained.
  • the number average molecular weight of the obtained polymer (F) was 5480.
  • the polymer (F) had the following average composition formula (F1).
  • Me represents a methyl group
  • Vi represents a vinyl group.
  • the content ratio of the methyl group of the obtained polymer (F) was 90 mol%.
  • Example 1 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-ureidopropyltriethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
  • Example 2 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-isocyanatopropyltriethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
  • Example 3 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) 2), 3-ureidopropyltriethoxysilane (0.15 g), and 3-glycidoxypropyltrimethoxysilane (0.15 g) are mixed and defoamed to obtain a curable composition for optical semiconductor devices. Obtained.
  • Example 4 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-ureidopropyltriethoxysilane (0.15 g), and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (0.15 g) are mixed and degassed for use in an optical semiconductor device. A curable composition was obtained.
  • Example 5 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-ureidopropyltriethoxysilane (0.15 g), and vinyltrimethoxysilane (0.15 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
  • Example 6 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) 2), 3-ureidopropyltriethoxysilane (0.15 g), and 3-methacryloxypropyltrimethoxysilane (0.15 g) are mixed and degassed to obtain a curable composition for an optical semiconductor device. It was.
  • Example 7 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-ureidopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed.
  • a curable composition for an optical semiconductor device was obtained.
  • Example 8 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-isocyanatopropyltriethoxysilane (0.15 g), and 3-glycidoxypropyltrimethoxysilane (0.15 g) are mixed and degassed to obtain a curable composition for optical semiconductor devices. Obtained.
  • Example 9 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-isocyanatopropyltriethoxysilane (0.15 g), and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (0.15 g) are mixed and degassed for use in an optical semiconductor device. A curable composition was obtained.
  • Example 10 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-isocyanatopropyltriethoxysilane (0.15 g), and vinyltrimethoxysilane (0.15 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
  • Example 11 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) 2), 3-isocyanatopropyltriethoxysilane (0.15 g), and 3-methacryloxypropyltrimethoxysilane (0.15 g) are mixed and defoamed to obtain a curable composition for optical semiconductor devices. It was.
  • Example 12 Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-isocyanatopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed.
  • a curable composition for an optical semiconductor device was obtained.
  • Example 15 Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) 2), 3-ureidopropyltriethoxysilane (0.15 g), and 3-glycidoxypropyltrimethoxysilane (0.15 g) are mixed and defoamed to obtain a curable composition for optical semiconductor devices. Obtained.
  • Example 16 Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-ureidopropyltriethoxysilane (0.15 g), and vinyltrimethoxysilane (0.15 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
  • platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition)
  • 3-ureidopropyltriethoxysilane (0.15 g)
  • vinyltrimethoxysilane (0.15 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
  • Example 17 Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-ureidopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed.
  • a curable composition for an optical semiconductor device was obtained.
  • Example 18 Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-isocyanatopropyltriethoxysilane (0.15 g), and 3-glycidoxypropyltrimethoxysilane (0.15 g) are mixed and degassed to obtain a curable composition for optical semiconductor devices. Obtained.
  • Example 20 Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-isocyanatopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed.
  • a curable composition for an optical semiconductor device was obtained.
  • Example 21 Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-ureidopropyltriethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
  • Example 25 Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-ureidopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed.
  • a curable composition for an optical semiconductor device was obtained.
  • Example 28 Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-isocyanatopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed.
  • a curable composition for an optical semiconductor device was obtained.
  • the obtained optical semiconductor device was placed in a chamber at 40 ° C. and a relative humidity of 90% RH, and the chamber was filled with gas so that the concentration of hydrogen sulfide gas was 5 ppm and the concentration of sulfur dioxide gas was 15 ppm. . From the gas filling, the lead electrodes plated with silver were visually observed after 24 hours, 48 hours, 96 hours, 168 hours and 500 hours.
  • Thermal shock test Using the obtained optical semiconductor device and using a liquid bath thermal shock tester (“TSB-51” manufactured by ESPEC), the temperature was maintained at ⁇ 50 ° C. for 5 minutes, and then the temperature was increased to 135 ° C. A cold cycle test was conducted in which the process of holding at 5 ° C. for 5 minutes and then lowering the temperature to ⁇ 50 ° C. was 1 cycle. 20 samples were taken out after 500 cycles, 1000 cycles, 1500 cycles, 2000 cycles and 3000 cycles, respectively.
  • TTB-51 liquid bath thermal shock tester
  • the sample was observed with a stereomicroscope ("SMZ-10" manufactured by Nikon Corporation). It is observed whether cracks are generated in the cured products obtained by curing 20 samples of the curable composition for optical semiconductor devices, or whether the cured products are separated from the package or the electrode. The number of samples produced (NG number) was counted.
  • Viscosity ratio A curable composition for optical semiconductor devices immediately after fabrication (a curable composition immediately after fabrication) was prepared. Furthermore, the curable composition immediately after preparation was allowed to stand at room temperature (23 ° C.) for 3 hours to prepare a curable composition after 3 hours. Using a viscosity measuring device (“VISCOMETER TV-22” manufactured by Toki Sangyo Co., Ltd.), the viscosity of the curable composition immediately after preparation at 23 ° C. and 10 rpm, and the temperature of the curable composition after 3 hours at 23 ° C. and 10 rpm And the viscosity was measured. The viscosity ratio (viscosity value after 3 hours / initial viscosity value) to the viscosity value in the curable composition immediately after production of the viscosity value in the curable composition after 3 hours was determined.
  • VISCOMETER TV-22 manufactured by Toki Sangyo Co., Ltd.
  • the luminous intensity when a current of 20 mA was passed through the light emitting element was measured using a photometric measuring device (“OL770” manufactured by Optronic Laboratories) at a temperature of 23 ° C. (hereinafter, “initial” Called “luminosity”).
  • the optical semiconductor device was placed in a chamber under an atmosphere of 85 ° C. and a relative humidity of 85 RH% with a current of 20 mA flowing through the light emitting element, and left for 1000 hours.
  • the light intensity when a current of 20 mA was passed through the light emitting element was measured using a light intensity measuring device (“OL770” manufactured by Optronic Laboratories), and the rate of decrease in light intensity relative to the initial light intensity Calculated.
  • the rate of decrease in luminous intensity is less than 5%, it is “ ⁇ ”, when it is 5% or more and less than 10%, “ ⁇ ”, when it is 10% or more and less than 20%, “ ⁇ ”, when it is 20% or more It was determined as “x”.
  • the obtained optical semiconductor device was fixed with a double-sided tape on a slide glass with the light emitting surface facing up.
  • 0.2 g of sulfur was placed in a glass container with a lid having a capacity of 120 mL, and a slide glass on which the optical semiconductor device was fixed was placed in the glass container so that the optical semiconductor device and sulfur were not in direct contact.
  • the glass container was sealed and placed in an oven at 80 ° C. After being placed in the oven, changes in the silver-plated lead electrode were visually observed after 4 hours, 8 hours, 16 hours, 24 hours and 48 hours, respectively.
  • the gas corrosion test 2 was determined according to the following criteria. In addition, when the adhesiveness with respect to the adhesion target object of hardened

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

Provided is a curable composition for an optical semiconductor device with which it is possible to cure the curable composition and obtain a cured product that will not peel when bonded to another object, even when the optical semiconductor device is used in a harsh environment under high temperatures and high humidity, and with which pot life of the curable composition for an optical semiconductor device is good. The curable composition for an optical semiconductor device relating to the present invention comprises a first organopolysiloxane having two or more alkenyl groups, a second organopolysiloxane having two or more hydrogen atoms bonded to silicon atoms, a hydrosilylation catalyst, and a first silane compound having ureido groups or isocyanate groups.

Description

光半導体装置用硬化性組成物Curable composition for optical semiconductor device
 本発明は、光半導体装置において、光半導体素子を封止したり、光半導体素子の上方にレンズを形成したりするために用いられる光半導体装置用硬化性組成物に関する。また、本発明は、該光半導体装置用硬化性組成物を用いた光半導体装置に関する。 The present invention relates to a curable composition for an optical semiconductor device used for sealing an optical semiconductor element or forming a lens above the optical semiconductor element in an optical semiconductor device. The present invention also relates to an optical semiconductor device using the curable composition for optical semiconductor devices.
 発光ダイオード(LED)装置などの光半導体装置の消費電力は低く、かつ寿命は長い。また、光半導体装置は、過酷な環境下でも使用され得る。従って、光半導体装置は、携帯電話用バックライト、液晶テレビ用バックライト、自動車用ランプ、照明器具及び看板などの幅広い用途で使用されている。 An optical semiconductor device such as a light emitting diode (LED) device has low power consumption and long life. Moreover, the optical semiconductor device can be used even in a harsh environment. Accordingly, optical semiconductor devices are used in a wide range of applications such as mobile phone backlights, liquid crystal television backlights, automobile lamps, lighting fixtures, and signboards.
 光半導体装置に用いられている発光素子である光半導体素子(例えばLED)が大気と直接触れると、大気中の水分又は浮遊するごみ等により、光半導体素子の発光特性が急速に低下する。このため、上記光半導体素子は、通常、光半導体装置用封止剤により封止されている。 When an optical semiconductor element (for example, LED), which is a light emitting element used in an optical semiconductor device, is in direct contact with the atmosphere, the light emission characteristics of the optical semiconductor element rapidly deteriorate due to moisture in the atmosphere or floating dust. For this reason, the said optical semiconductor element is normally sealed with the sealing compound for optical semiconductor devices.
 下記の特許文献1には、光半導体装置用封止剤として、水素添加ビスフェノールAグリシジルエーテルと、脂環式エポキシモノマーと、潜在性触媒とを含むエポキシ樹脂材料が開示されている。このエポキシ樹脂材料は、熱カチオン重合により硬化する。 The following Patent Document 1 discloses an epoxy resin material containing hydrogenated bisphenol A glycidyl ether, an alicyclic epoxy monomer, and a latent catalyst as a sealant for an optical semiconductor device. This epoxy resin material is cured by thermal cationic polymerization.
 また、光半導体装置において、光の出射方向を制御したり、正面輝度が高くなりすぎるのを抑制したりするために、光半導体装置用レンズ材料を用いてレンズが形成されていることがある。上記レンズは、例えば、上記封止剤の表面上に配置されている。また、上記レンズは、光半導体素子上に又は光半導体素子を被覆するように配置されていることもある。 Also, in an optical semiconductor device, a lens may be formed using a lens material for an optical semiconductor device in order to control the light emission direction or to prevent the front luminance from becoming too high. The lens is disposed on the surface of the sealant, for example. The lens may be disposed on the optical semiconductor element or so as to cover the optical semiconductor element.
 下記の特許文献2には、上記光半導体装置用レンズ材料として、(A)脂肪族不飽和結合を2個以上有するオルガノポリシロキサンと、(B)珪素原子に結合した水素原子を2個以上有するオルガノハイドロジェンポリシロキサンと、(C)白金族金属系触媒と、(D)離型剤とを含むレンズ材料が開示されている。 Patent Document 2 below includes (A) an organopolysiloxane having two or more aliphatic unsaturated bonds and (B) two or more hydrogen atoms bonded to silicon atoms as the lens material for an optical semiconductor device. A lens material including an organohydrogenpolysiloxane, (C) a platinum group metal catalyst, and (D) a release agent is disclosed.
 下記の特許文献3には、(1)1.0cmの光路長で400nmの波長の光について90%又はそれ以上の透過率である光学的透明性、(2)150℃に6時間さらした後に、1.0cmの光路長で400nmの波長の光について90%又はそれ以上の透過率を保持する熱安定性、並びに(3)589nmで1.545又はそれ以上の屈折率を有する熱的安定性ポリシロキサン組成物が開示されている。 In the following Patent Document 3, (1) optical transparency that is 90% or higher transmittance for light having a wavelength of 400 nm with an optical path length of 1.0 cm, and (2) after being exposed to 150 ° C. for 6 hours. , Thermal stability retaining 90% or higher transmission for light of 400 nm wavelength with 1.0 cm path length, and (3) thermal stability having a refractive index of 1.545 or higher at 589 nm A polysiloxane composition is disclosed.
 下記の特許文献4には、(1)少なくとも1種のポリオルガノシロキサンと、有効量の(2)付加反応用触媒とを含み、硬化して樹脂状となるLED用封止剤組成物が開示されている。上記(1)少なくとも1種のポリオルガノシロキサンの混合物の平均組成式は、(RSiO1/2・(RSiO2/2・(RSiO3/2・(SiO4/2で表される。但し、R~Rは、各々同一でも異なっていてもよい有機基、水酸基または水素原子から選択され、かつ、R~Rの内の少なくとも1つは多重結合を有する炭化水素基およびまたは水素原子を含み、M、D、T、Qは0以上1未満の数であり、かつM+D+T+Q=1、Q+T>0である。 Patent Document 4 listed below discloses an LED encapsulant composition comprising (1) at least one polyorganosiloxane and an effective amount of (2) an addition reaction catalyst, which is cured to form a resin. Has been. The average composition formula of the mixture of (1) at least one polyorganosiloxane is (R 1 R 2 R 3 SiO 1/2 ) M · (R 4 R 5 SiO 2/2 ) D · (R 6 SiO 3 / 2 ) T · (SiO 4/2 ) Q Provided that R 1 to R 6 are each selected from the same or different organic groups, hydroxyl groups or hydrogen atoms, and at least one of R 1 to R 6 is a hydrocarbon group having a multiple bond and Alternatively, a hydrogen atom is included, M, D, T, and Q are numbers from 0 to less than 1, and M + D + T + Q = 1 and Q + T> 0.
特開2003-073452号公報JP 2003-073452 A 特開2006-328103号公報JP 2006-328103 A 特表2006-519896号公報JP 2006-519896 Gazette 特開2004-359756号公報JP 2004-359756 A
 特許文献1~4に記載のような従来の光半導体装置用組成物では、封止剤及びレンズ材料である組成物が硬化した硬化物の接着対象物に対する接着性が低いという問題がある。このため、従来の光半導体装置用封止剤の硬化物が、高温高湿下の過酷な環境で使用されると、封止剤がハウジング材等から剥離することがある。また、従来の光半導体装置用レンズ材料の硬化物が、高温高湿下の過酷な環境で使用されると、レンズが封止剤や光半導体素子、ハウジング又は基板などから、剥離しやすいという問題がある。 In the conventional compositions for optical semiconductor devices as described in Patent Documents 1 to 4, there is a problem that the adhesiveness of the cured product obtained by curing the composition as the sealant and the lens material to the object to be bonded is low. For this reason, when the hardened | cured material of the conventional sealing agent for optical semiconductor devices is used in the severe environment under high temperature and high humidity, a sealing agent may peel from a housing material etc. In addition, when a cured product of a conventional lens material for an optical semiconductor device is used in a harsh environment under high temperature and high humidity, the lens is easily peeled off from a sealing agent, an optical semiconductor element, a housing, or a substrate. There is.
 また、封止剤やレンズの剥離が生じると、光半導体装置から発せられる光度(明るさ)が徐々に低下することがある。 Also, when the sealant or the lens is peeled off, the light intensity (brightness) emitted from the optical semiconductor device may gradually decrease.
 本発明は、光半導体装置が高温高湿下での過酷な環境で使用されても、硬化性組成物が硬化した硬化物の接着対象物からの剥離を抑制でき、更に光半導体装置用硬化性組成物のポットライフを良好にすることができる光半導体装置用硬化性組成物、並びに該光半導体装置用硬化性組成物を用いた光半導体装置を提供することを目的とする。 Even if the optical semiconductor device is used in a harsh environment under high temperature and high humidity, it is possible to suppress peeling of the cured product obtained by curing the curable composition from the object to be bonded, and further, curable for an optical semiconductor device. An object of the present invention is to provide a curable composition for an optical semiconductor device capable of improving the pot life of the composition, and an optical semiconductor device using the curable composition for an optical semiconductor device.
 本発明の広い局面によれば、アルケニル基を2個以上有する第1のオルガノポリシロキサンと、珪素原子に結合した水素原子を2個以上有する第2のオルガノポリシロキサンと、ヒドロシリル化反応用触媒と、ウレイド基又はイソシアネート基を有する第1のシラン化合物とを含む、光半導体装置用硬化性組成物が提供される。 According to a wide aspect of the present invention, a first organopolysiloxane having two or more alkenyl groups, a second organopolysiloxane having two or more hydrogen atoms bonded to a silicon atom, a hydrosilylation reaction catalyst, And a first silane compound having a ureido group or an isocyanate group, and a curable composition for an optical semiconductor device.
 本発明に係る光半導体装置用硬化性組成物は、光半導体装置用封止剤又は光半導体装置用レンズ材料であることが好ましい。 The curable composition for optical semiconductor devices according to the present invention is preferably an encapsulant for optical semiconductor devices or a lens material for optical semiconductor devices.
 本発明に係る光半導体装置用硬化性組成物のある特定の局面では、上記第1のシラン化合物が、ウレイド基を有する。 In a specific aspect of the curable composition for optical semiconductor devices according to the present invention, the first silane compound has a ureido group.
 本発明に係る光半導体装置用硬化性組成物のある特定の局面では、上記第1のシラン化合物は、下記式(S1)又は下記式(S2)で表される第1のシラン化合物である。 In a specific aspect of the curable composition for optical semiconductor devices according to the present invention, the first silane compound is a first silane compound represented by the following formula (S1) or the following formula (S2).
Figure JPOXMLDOC01-appb-C000009
 上記式(S1)中、X1はアルコキシ基を表し、X2及びX3はそれぞれアルコキシ基又は炭素数1~8の炭化水素基を表し、R4は窒素原子と珪素原子とを直接結合している単結合を表すか又は炭素数1~8の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000009
In the above formula (S1), X1 represents an alkoxy group, X2 and X3 each represents an alkoxy group or a hydrocarbon group having 1 to 8 carbon atoms, and R4 is a single bond directly bonding a nitrogen atom and a silicon atom. Or a hydrocarbon group having 1 to 8 carbon atoms.
Figure JPOXMLDOC01-appb-C000010
 上記式(S2)中、X1はアルコキシ基を表し、X2及びX3はそれぞれアルコキシ基又は炭素数1~8の炭化水素基を表し、R4は、窒素原子と珪素原子とを直接結合している単結合を表すか又は炭素数1~8の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000010
In the above formula (S2), X1 represents an alkoxy group, X2 and X3 each represents an alkoxy group or a hydrocarbon group having 1 to 8 carbon atoms, and R4 represents a single bond directly connecting a nitrogen atom and a silicon atom. It represents a bond or a hydrocarbon group having 1 to 8 carbon atoms.
 本発明に係る光半導体装置用硬化性組成物の他の特定の局面では、上記第1のシラン化合物が、上記式(S1)で表される第1のシラン化合物である。 In another specific aspect of the curable composition for optical semiconductor devices according to the present invention, the first silane compound is a first silane compound represented by the above formula (S1).
 本発明に係る光半導体装置用硬化性組成物の他の特定の局面では、上記式(S1)で表される第1のシラン化合物が、下記式(S1-1)で表される第1のシラン化合物である。 In another specific aspect of the curable composition for optical semiconductor devices according to the present invention, the first silane compound represented by the above formula (S1) is a first silane compound represented by the following formula (S1-1). Silane compound.
Figure JPOXMLDOC01-appb-C000011
 上記式(S1-1)中、R1~R3はそれぞれ炭素数1~8の炭化水素基を表し、R4は窒素原子と珪素原子とを直接結合している単結合を表すか又は炭素数1~8の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000011
In the above formula (S1-1), R1 to R3 each represent a hydrocarbon group having 1 to 8 carbon atoms, and R4 represents a single bond directly bonding a nitrogen atom and a silicon atom, or 1 to 8 hydrocarbon groups are represented.
 本発明に係る光半導体装置用硬化性組成物のある特定の局面では、上記第1のオルガノポリシロキサンの数平均分子量が、500以上、200000以下であり、上記第2のオルガノポリシロキサンの数平均分子量が、500以上、20000以下である。 In a specific aspect of the curable composition for optical semiconductor devices according to the present invention, the number average molecular weight of the first organopolysiloxane is 500 or more and 200,000 or less, and the number average of the second organopolysiloxane. The molecular weight is 500 or more and 20000 or less.
 本発明に係る光半導体装置用硬化性組成物の他の特定の局面では、エポキシ基、ビニル基又は(メタ)アクリロイル基を有する第2のシラン化合物がさらに含まれている。 In another specific aspect of the curable composition for an optical semiconductor device according to the present invention, a second silane compound having an epoxy group, a vinyl group, or a (meth) acryloyl group is further included.
 本発明に係る光半導体装置用硬化性組成物のさらに他の特定の局面では、上記第2のシラン化合物は、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリメトキシシラン又は3-(メタ)アクリロキシプロピルトリメトキシシランである。 In still another specific aspect of the curable composition for optical semiconductor devices according to the present invention, the second silane compound is 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl. Trimethoxysilane, vinyltrimethoxysilane or 3- (meth) acryloxypropyltrimethoxysilane.
 本発明に係る光半導体装置用硬化性組成物の他の特定の局面では、上記第1,第2のオルガノポリシロキサンの合計100重量部に対して、上記第2のシラン化合物の含有量が0.01重量部以上、5重量部以下である。 In another specific aspect of the curable composition for optical semiconductor devices according to the present invention, the content of the second silane compound is 0 with respect to a total of 100 parts by weight of the first and second organopolysiloxanes. 0.01 parts by weight or more and 5 parts by weight or less.
 本発明に係る光半導体装置用硬化性組成物の他の特定の局面では、上記第1のオルガノポリシロキサンが珪素原子に結合した水素原子を有さず、上記第2のオルガノポリシロキサンが、アルケニル基を有する。 In another specific aspect of the curable composition for optical semiconductor devices according to the present invention, the first organopolysiloxane does not have a hydrogen atom bonded to a silicon atom, and the second organopolysiloxane is alkenyl. Has a group.
 本発明に係る光半導体装置用硬化性組成物の別の特定の局面では、上記第1のオルガノポリシロキサンが、下記式(1A)で表され、アルケニル基及び珪素原子に結合したメチル基を有する第1のオルガノポリシロキサンであり、かつ上記第2のオルガノポリシロキサンが、下記式(51A)で表され、珪素原子に結合した水素原子及び珪素原子に結合したメチル基を有する第2のオルガノポリシロキサンであるか、又は、上記第1のオルガノポリシロキサンが、下記式(1B)で表され、アリール基及びアルケニル基を有する第1のオルガノポリシロキサンであり、かつ上記第2のオルガノポリシロキサンが、下記式(51B)で表され、アリール基及び珪素原子に結合した水素原子を有する第2のオルガノポリシロキサンである。 In another specific aspect of the curable composition for optical semiconductor devices according to the present invention, the first organopolysiloxane has a methyl group represented by the following formula (1A) and bonded to an alkenyl group and a silicon atom. A second organopolysiloxane which is a first organopolysiloxane and the second organopolysiloxane is represented by the following formula (51A) and has a hydrogen atom bonded to a silicon atom and a methyl group bonded to a silicon atom. It is siloxane, or the first organopolysiloxane is represented by the following formula (1B), is a first organopolysiloxane having an aryl group and an alkenyl group, and the second organopolysiloxane is A second organopolysiloxane represented by the following formula (51B) and having a hydrogen atom bonded to an aryl group and a silicon atom.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(1A)中、a、b及びcは、a/(a+b+c)=0~0.30、b/(a+b+c)=0.70~1.0及びc/(a+b+c)=0~0.10を満たし、R1~R6は、少なくとも1個がアルケニル基を表し、少なくとも1個がメチル基を表し、アルケニル基及びメチル基以外のR1~R6は、炭素数2~8の炭化水素基を表す。 In the above formula (1A), a, b and c are a / (a + b + c) = 0 to 0.30, b / (a + b + c) = 0.70 to 1.0 and c / (a + b + c) = 0 to 0. 10, R1 to R6 each represents at least one alkenyl group, at least one represents a methyl group, and R1 to R6 other than the alkenyl group and the methyl group represent a hydrocarbon group having 2 to 8 carbon atoms. .
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式(51A)中、p、q及びrは、p/(p+q+r)=0.10~0.50、q/(p+q+r)=0~0.40及びr/(p+q+r)=0.40~0.90を満たし、R51~R56は、少なくとも1個が水素原子を表し、少なくとも1個がメチル基を表し、水素原子及びメチル基以外のR51~R56は、炭素数2~8の炭化水素基を表す。 In the above formula (51A), p, q and r are p / (p + q + r) = 0.10 to 0.50, q / (p + q + r) = 0 to 0.40 and r / (p + q + r) = 0.40 to 0.90 is satisfied, R51 to R56 each represents at least one hydrogen atom, at least one represents a methyl group, and R51 to R56 other than the hydrogen atom and the methyl group are hydrocarbon groups having 2 to 8 carbon atoms. Represents.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(1B)中、a、b及びcは、a/(a+b+c)=0~0.50、b/(a+b+c)=0.40~1.0及びc/(a+b+c)=0~0.50を満たし、R1~R6は、少なくとも1個がアリール基を表し、少なくとも1個がアルケニル基を表し、アリール基及びアルケニル基以外のR1~R6は、炭素数1~8の炭化水素基を表す。 In the above formula (1B), a, b and c are a / (a + b + c) = 0 to 0.50, b / (a + b + c) = 0.40 to 1.0 and c / (a + b + c) = 0 to 0. 50, R1 to R6 each represents at least one aryl group, at least one represents an alkenyl group, and R1 to R6 other than the aryl group and the alkenyl group represent a hydrocarbon group having 1 to 8 carbon atoms. .
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式(51B)中、p、q及びrは、p/(p+q+r)=0.05~0.50、q/(p+q+r)=0.05~0.50及びr/(p+q+r)=0.20~0.80を満たし、R51~R56は、少なくとも1個がアリール基を表し、少なくとも1個が水素原子を表し、アリール基及び水素原子以外のR51~R56は、炭素数1~8の炭化水素基を表す。 In the above formula (51B), p, q and r are p / (p + q + r) = 0.05 to 0.50, q / (p + q + r) = 0.05 to 0.50 and r / (p + q + r) = 0. 20 to 0.80 are satisfied, at least one of R51 to R56 represents an aryl group, at least one represents a hydrogen atom, and R51 to R56 other than the aryl group and the hydrogen atom are carbon atoms having 1 to 8 carbon atoms. Represents a hydrogen group.
 本発明に係る光半導体装置用硬化性組成物の他の特定の局面では、上記式(1A)又は上記式(1B)で表される第1のオルガノポリシロキサンが、珪素原子に結合した水素原子を有さず、上記式(51A)又は上記式(51B)で表される第2のオルガノポリシロキサンが、アルケニル基を有し、上記式(51A)中、R51~R56は、少なくとも1個が水素原子を表し、少なくとも1個がメチル基を表し、少なくとも1個がアルケニル基を表し、水素原子、メチル基及びアルケニル基以外のR51~R56は、炭素数2~8の炭化水素基を表し、上記式(51B)中、R51~R56は、少なくとも1個がアリール基を表し、少なくとも1個が水素原子を表し、少なくとも1個がアルケニル基を表し、アリール基、水素原子及びアルケニル基以外のR51~R56は、炭素数1~8の炭化水素基を表す。 In another specific aspect of the curable composition for optical semiconductor devices according to the present invention, the first organopolysiloxane represented by the above formula (1A) or the above formula (1B) is a hydrogen atom bonded to a silicon atom. And the second organopolysiloxane represented by the formula (51A) or the formula (51B) has an alkenyl group, and in the formula (51A), at least one of R51 to R56 is Represents a hydrogen atom, at least one represents a methyl group, at least one represents an alkenyl group, R51 to R56 other than a hydrogen atom, a methyl group and an alkenyl group represent a hydrocarbon group having 2 to 8 carbon atoms; In the above formula (51B), at least one of R51 to R56 represents an aryl group, at least one represents a hydrogen atom, at least one represents an alkenyl group, an aryl group, a hydrogen atom and an alkyl group. R51 ~ other than alkenyl groups R56 represents a hydrocarbon group having 1 to 8 carbon atoms.
 本発明に係る光半導体装置用硬化性組成物のさらに他の特定の局面では、上記式(51A)又は上記式(51B)で表される第2のオルガノポリシロキサンは、下記式(51-a)で表される構造単位を有する。 In still another specific aspect of the curable composition for optical semiconductor devices according to the present invention, the second organopolysiloxane represented by the above formula (51A) or the above formula (51B) is represented by the following formula (51-a). ).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式(51-a)中、R52及びR53はそれぞれ、炭素数1~8の炭化水素基を表す。 In the above formula (51-a), R52 and R53 each represent a hydrocarbon group having 1 to 8 carbon atoms.
 上記第1のオルガノポリシロキサンが上記式(1A)で表され、かつ上記第2のオルガノポリシロキサンが上記式(51A)で表されることが好ましい。上記第1のオルガノポリシロキサンが上記式(1B)で表され、かつ上記第2のオルガノポリシロキサンが上記式(51B)で表されることも好ましい。 It is preferable that the first organopolysiloxane is represented by the above formula (1A) and the second organopolysiloxane is represented by the above formula (51A). It is also preferred that the first organopolysiloxane is represented by the formula (1B) and the second organopolysiloxane is represented by the formula (51B).
 本発明に係る光半導体装置用硬化性組成物の他の特定の局面では、上記第1のオルガノポリシロキサン100重量部に対して、上記第2のオルガノポリシロキサンの含有量が10重量部以上、400重量部以下であり、硬化性組成物中で、上記ヒドロシリル化反応用触媒の含有量は、金属原子の重量単位で0.01ppm以上、1000ppm以下であり、上記第1,第2のオルガノポリシロキサンの合計100重量部に対して、上記第1のシラン化合物の含有量が0.01重量部以上、5重量部以下である。 In another specific aspect of the curable composition for optical semiconductor devices according to the present invention, the content of the second organopolysiloxane is 10 parts by weight or more with respect to 100 parts by weight of the first organopolysiloxane. 400 parts by weight or less, and the content of the catalyst for hydrosilylation reaction in the curable composition is 0.01 ppm or more and 1000 ppm or less by weight unit of metal atom, The content of the first silane compound is 0.01 parts by weight or more and 5 parts by weight or less with respect to a total of 100 parts by weight of siloxane.
 本発明に係る光半導体装置用硬化性組成物は、アルケニル基を有する第1のオルガノポリシロキサンと、珪素原子に結合した水素原子を有する第2のオルガノポリシロキサンと、ヒドロシリル化反応用触媒と、ウレイド基又はイソシアネート基を有する第1のシラン化合物とを含むので、光半導体装置用硬化性組成物を用いた光半導体装置が高温高湿下での過酷な環境で使用されても、硬化性組成物が硬化した硬化物の接着対象物からの剥離を抑制できる。さらに、本発明に係る光半導体装置用硬化性組成物は、上述した組成を有するので、光半導体装置用硬化性組成物のポットライフを良好にすることができる。 The curable composition for optical semiconductor devices according to the present invention includes a first organopolysiloxane having an alkenyl group, a second organopolysiloxane having a hydrogen atom bonded to a silicon atom, a hydrosilylation reaction catalyst, Even if the optical semiconductor device using the curable composition for optical semiconductor devices is used in a harsh environment under high temperature and high humidity, since it contains the first silane compound having a ureido group or an isocyanate group The peeling from the adhesion target object of the hardened | cured material which the substance hardened | cured can be suppressed. Furthermore, since the curable composition for optical semiconductor devices which concerns on this invention has the composition mentioned above, the pot life of the curable composition for optical semiconductor devices can be made favorable.
図1は、本発明の第1の実施形態に係る光半導体装置を示す正面断面図である。FIG. 1 is a front sectional view showing an optical semiconductor device according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る光半導体装置を示す正面断面図である。FIG. 2 is a front sectional view showing an optical semiconductor device according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る光半導体装置を示す正面断面図である。FIG. 3 is a front sectional view showing an optical semiconductor device according to the third embodiment of the present invention.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 本発明に係る光半導体装置用硬化性組成物は、アルケニル基を有する第1のオルガノポリシロキサンと、珪素原子に結合した水素原子を有する第2のオルガノポリシロキサンと、ヒドロシリル化反応用触媒と、ウレイド基又はイソシアネート基を有する第1のシラン化合物とを含む。 The curable composition for optical semiconductor devices according to the present invention includes a first organopolysiloxane having an alkenyl group, a second organopolysiloxane having a hydrogen atom bonded to a silicon atom, a hydrosilylation reaction catalyst, And a first silane compound having a ureido group or an isocyanate group.
 本発明に係る光半導体装置用硬化性組成物における上記組成の採用により、光半導体装置用硬化性組成物を用いた光半導体装置が高温高湿下での過酷な環境で使用されても、硬化性組成物が硬化した硬化物の接着対象物からの剥離を抑制できる。 By adopting the above composition in the curable composition for optical semiconductor devices according to the present invention, the optical semiconductor device using the curable composition for optical semiconductor devices is cured even when used in harsh environments under high temperature and high humidity. The peeling from the adhesion target object of the hardened | cured material which the property composition hardened | cured can be suppressed.
 例えば、本発明に係る光半導体装置用硬化性組成物を用いて、光半導体素子を封止したり、光半導体素子の上方にレンズを形成したりしたときに、硬化性組成物が硬化した硬化物が接着対象物から剥離し難くなる。例えば、封止剤やレンズに接するハウジング材などのパッケージの材質がポリフタルアミド(PPA)であることがある。また、発光素子の背面側に達した光を反射させるために、発光素子の背面に、銀めっきされた電極が形成されていることがある。このようなPPAにより形成されたパッケージや銀めっきに対する硬化物の接着性が高いことが強く求められる。硬化物がパッケージや銀めっきから剥離すると、光半導体装置から発せられる光の量(光度)が低下する。 For example, when the optical semiconductor device is sealed using the curable composition for optical semiconductor devices according to the present invention or a lens is formed above the optical semiconductor device, the curable composition is cured. It becomes difficult for the object to peel from the object to be bonded. For example, the material of a package such as a sealant or a housing material in contact with a lens may be polyphthalamide (PPA). Moreover, in order to reflect the light which reached the back surface side of the light emitting element, an electrode plated with silver may be formed on the back surface of the light emitting element. There is a strong demand for the adhesiveness of the cured product to such a package formed by PPA or silver plating. When the cured product is peeled off from the package or silver plating, the amount of light (luminous intensity) emitted from the optical semiconductor device decreases.
 本発明者らは、ウレイド基又はイソシアネート基を有さないシランカップリング剤のみを光半導体装置用硬化性組成物に用いた場合には、硬化物の接着対象物に対する接着性が十分に高くならないことを見出した。特に、光半導体装置用硬化性組成物に用いた光半導体装置では、硬化物の接着対象物に対する接着性を十分に高めることは困難である。本発明者は鋭意検討した結果、アルケニル基を有する第1のオルガノポリシロキサンと珪素原子に結合した水素原子を有する第2のオルガノポリシロキサンとヒドロシリル化反応用触媒とともに、ウレイド基又はイソシアネート基を有する第1のシラン化合物をさらに含む組成の採用により、硬化物の接着対象物に対する接着性を十分に高めることができることを見出した。 In the case where only the silane coupling agent having no ureido group or isocyanate group is used in the curable composition for an optical semiconductor device, the present inventors do not sufficiently increase the adhesiveness of the cured product to the object to be bonded. I found out. In particular, in the optical semiconductor device used for the curable composition for optical semiconductor devices, it is difficult to sufficiently enhance the adhesion of the cured product to the object to be bonded. As a result of intensive studies, the inventor has a ureido group or an isocyanate group together with a first organopolysiloxane having an alkenyl group, a second organopolysiloxane having a hydrogen atom bonded to a silicon atom, and a catalyst for hydrosilylation reaction. It has been found that by adopting a composition further containing the first silane compound, the adhesion of the cured product to the object to be bonded can be sufficiently enhanced.
 さらに、本発明者らは、ウレイド基を有する第1のシラン化合物とイソシアネート基を有する第1のシラン化合物とのうち、ウレイド基を有する第1のシラン化合物を用いることで、硬化物の接着対象物に対する接着性がより一層高くなることを見出した。 Furthermore, the present inventors use the first silane compound having a ureido group out of the first silane compound having a ureido group and the first silane compound having an isocyanate group, so that the cured product can be bonded. It has been found that the adhesion to objects is even higher.
 さらに、本発明者らは、アルケニル基を有する第1のオルガノポリシロキサンと、珪素原子に結合した水素原子を有する第2のオルガノポリシロキサンと、ヒドロシリル化反応用触媒とを含む組成において、ウレイド基又はイソシアネート基を有する第1のシラン化合物を用いれば、光半導体装置用硬化性組成物の粘度が変化し難くなり、光半導体装置用硬化性組成物のポットライフが良好になることも見出した。 Furthermore, the present inventors provide a ureido group in a composition comprising a first organopolysiloxane having an alkenyl group, a second organopolysiloxane having a hydrogen atom bonded to a silicon atom, and a catalyst for hydrosilylation reaction. Alternatively, it has also been found that if the first silane compound having an isocyanate group is used, the viscosity of the curable composition for optical semiconductor devices hardly changes, and the pot life of the curable composition for optical semiconductor devices is improved.
 アルケニル基を有する第1のオルガノポリシロキサンと、珪素原子に結合した水素原子を有する第2のオルガノポリシロキサンと、ヒドロシリル化反応用触媒とを含む光半導体装置用硬化性組成物は、常温においても緩やかに重合反応が進行する。このため、常温でも徐々に硬化性組成物の粘度が上昇する。このため、アルケニル基を有する第1のオルガノポリシロキサンと珪素原子に結合した水素原子を有する第2のオルガノポリシロキサンとは、別々の2液(第1,第2の液)として提供されることがある。この2液は、使用者が使用する直前に混合して使用される。ヒドロシリル化反応用触媒は、第1のオルガノポリシロキサンを含む第1の液と第2のオルガノポリシロキサンを含む第2の液との内の少なくとも一方に含有される。 A curable composition for an optical semiconductor device comprising a first organopolysiloxane having an alkenyl group, a second organopolysiloxane having a hydrogen atom bonded to a silicon atom, and a hydrosilylation reaction catalyst is also obtained at room temperature. The polymerization reaction proceeds slowly. For this reason, the viscosity of the curable composition gradually increases even at room temperature. Therefore, the first organopolysiloxane having an alkenyl group and the second organopolysiloxane having a hydrogen atom bonded to a silicon atom are provided as two separate liquids (first and second liquids). There is. These two liquids are mixed and used immediately before use by the user. The hydrosilylation reaction catalyst is contained in at least one of the first liquid containing the first organopolysiloxane and the second liquid containing the second organopolysiloxane.
 このような第1,第2の液を有するキットでは、2液を混合したときから反応が始まるために粘度の上昇が起こる。2液を混合してから粘度が急激に上昇すると、硬化性組成物をディスペンスする際の吐出量が変化し、一定の形状を保つことが困難となる。例えば、封止剤の充填が不十分になったり、レンズ形状が悪くなったりすることがある。 In such a kit having the first and second liquids, the reaction starts when the two liquids are mixed, so that the viscosity increases. When the viscosity suddenly increases after mixing the two liquids, the discharge amount when dispensing the curable composition changes, and it becomes difficult to maintain a certain shape. For example, the sealing agent may be insufficiently filled or the lens shape may be deteriorated.
 一般に、光半導体装置を製造する際の可使時間を考慮すると、2液を混合してから室温(23℃)で3時間放置した後の硬化性組成物の粘度η1の、2液を混合した直後の硬化性組成物の粘度η2に対する比(η1/η2)は小さいほどよい。 In general, in consideration of the pot life when manufacturing an optical semiconductor device, two liquids having a viscosity η1 of the curable composition after mixing the two liquids and leaving them to stand at room temperature (23 ° C.) for 3 hours are mixed. The smaller the ratio (η1 / η2) to the viscosity η2 of the curable composition immediately after, the better.
 2液を混合してから23℃で3時間放置した後の硬化性組成物(作製直後から23℃で3時間放置した後の硬化性組成物)の粘度η1の、2液を混合した直後の硬化性組成物(作製直後の硬化性組成物)の粘度η2に対する比(η1/η2)は、好ましくは2以下、より好ましくは1.5以下、更に好ましくは1.3以下である。上記比(η1/η2)は一般に1以上であるが、例えば0.7以上であってもよく、0.8以上であってもよい。 Immediately after mixing the two liquids of the viscosity η1 of the curable composition after mixing the two liquids and leaving them at 23 ° C. for 3 hours (the curable composition after being left to stand at 23 ° C. for 3 hours immediately after the preparation) The ratio (η1 / η2) of the curable composition (the curable composition immediately after preparation) to the viscosity η2 is preferably 2 or less, more preferably 1.5 or less, and still more preferably 1.3 or less. The ratio (η1 / η2) is generally 1 or more, but may be 0.7 or more, for example, or 0.8 or more.
 硬化性組成物の粘度変化が小さいと、すなわち硬化性組成物のポットライフが良好であると、一定の製造条件で、一定の品質の光半導体装置を製造することが容易である。 If the viscosity change of the curable composition is small, that is, if the pot life of the curable composition is good, it is easy to manufacture an optical semiconductor device of a certain quality under a certain production condition.
 上記第1のオルガノポリシロキサンは、式(1A)で表され、アルケニル基と珪素原子に結合したメチル基とを有する第1のオルガノポリシロキサンであるか、又は式(1B)で表され、アリール基とアルケニル基とを有する第1のオルガノポリシロキサンであることが好ましい。但し、式(1A)又は式(1B)で表される第1のオルガノポリシロキサンとは異なる第1のオルガノポリシロキサンを用いてもよい。上記第2のオルガノポリシロキサンがアルケニル基を有する場合に、上記第1のオルガノポリシロキサンは、珪素原子に結合した水素原子を有さないことが好ましい。また、上記第1のオルガノポリシロキサンは、珪素原子に結合した水素原子を有さないことが好ましい。 The first organopolysiloxane is represented by the formula (1A) and is a first organopolysiloxane having an alkenyl group and a methyl group bonded to a silicon atom, or represented by the formula (1B) and an aryl A first organopolysiloxane having a group and an alkenyl group is preferred. However, a first organopolysiloxane different from the first organopolysiloxane represented by the formula (1A) or the formula (1B) may be used. When the second organopolysiloxane has an alkenyl group, the first organopolysiloxane preferably does not have a hydrogen atom bonded to a silicon atom. The first organopolysiloxane preferably does not have a hydrogen atom bonded to a silicon atom.
 上記第2のオルガノポリシロキサンは、式(51A)で表され、珪素原子に結合した水素原子と珪素原子に結合したメチル基とを有する第2のオルガノポリシロキサンであるか、又は式(51B)で表され、アリール基と珪素原子に結合した水素原子とを有する第2のオルガノポリシロキサンであることが好ましい。但し、式(51A)又は式(51B)で表される第2のオルガノポリシロキサンとは異なる第2のオルガノポリシロキサンを用いてもよい。 The second organopolysiloxane is a second organopolysiloxane represented by the formula (51A) and having a hydrogen atom bonded to a silicon atom and a methyl group bonded to a silicon atom, or the formula (51B) And is preferably a second organopolysiloxane having an aryl group and a hydrogen atom bonded to a silicon atom. However, a second organopolysiloxane different from the second organopolysiloxane represented by the formula (51A) or the formula (51B) may be used.
 硬化物の接着対象物に対する接着性を良好にし、かつ硬化物の耐熱性及びガスバリア性をより一層良好にしたり、硬化性組成物のポットライフをより一層良好にしたりする観点からは、上記第1のオルガノポリシロキサンが、式(1A)で表され、アルケニル基及び珪素原子に結合したメチル基を有する第1のオルガノポリシロキサンであり、かつ上記第2のオルガノポリシロキサンが、式(51A)で表され、珪素原子に結合した水素原子及び珪素原子に結合したメチル基を有する第2のオルガノポリシロキサンであるか、又は、上記第1のオルガノポリシロキサンが、式(1B)で表され、アリール基及びアルケニル基を有する第1のオルガノポリシロキサンであり、かつ上記第2のオルガノポリシロキサンが、式(51B)で表され、アリール基及び珪素原子に結合した水素原子を有する第2のオルガノポリシロキサンであることが好ましい。 From the viewpoint of improving the adhesiveness of the cured product to the object to be bonded, further improving the heat resistance and gas barrier properties of the cured product, and further improving the pot life of the curable composition, the above-mentioned first. The organopolysiloxane represented by the formula (1A) is a first organopolysiloxane having a methyl group bonded to an alkenyl group and a silicon atom, and the second organopolysiloxane is represented by the formula (51A) Or a second organopolysiloxane having a hydrogen atom bonded to a silicon atom and a methyl group bonded to a silicon atom, or the first organopolysiloxane is represented by the formula (1B) and is aryl The first organopolysiloxane having a group and an alkenyl group, and the second organopolysiloxane is represented by the formula (51B). It is preferred aryl group and a silicon atom is a second organopolysiloxane having hydrogen atoms bonded.
 また、従来の光半導体装置用硬化性組成物の硬化物が、加熱と冷熱とを繰り返し受ける温度サイクル等の過酷な環境で使用されると、硬化物にクラックが生じたり、硬化物がハウジング材等から剥離したりすることがある。特に、従来の光半導体装置用硬化性組成物の硬化物では、耐熱性が低いという問題がある。 In addition, when a cured product of a conventional curable composition for optical semiconductor devices is used in a harsh environment such as a temperature cycle that repeatedly receives heating and cooling, the cured product is cracked or the cured product is a housing material. It may peel off from etc. In particular, a cured product of a conventional curable composition for optical semiconductor devices has a problem that heat resistance is low.
 耐熱性により一層優れた硬化物を得る観点からは、上記第1のオルガノポリシロキサンが、式(1A)で表され、アルケニル基及び珪素原子に結合したメチル基を有する第1のオルガノポリシロキサンであり、かつ上記第2のオルガノポリシロキサンが、式(51A)で表され、珪素原子に結合した水素原子及び珪素原子に結合したメチル基を有する第2のオルガノポリシロキサンであることが好ましい。 From the viewpoint of obtaining a cured product that is more excellent in heat resistance, the first organopolysiloxane is a first organopolysiloxane represented by the formula (1A) and having an alkenyl group and a methyl group bonded to a silicon atom. The second organopolysiloxane is preferably the second organopolysiloxane represented by the formula (51A) and having a hydrogen atom bonded to a silicon atom and a methyl group bonded to a silicon atom.
 耐熱性により一層優れた硬化物を得る観点からは、上記第1のオルガノポリシロキサン及び上記第2のオルガノポリシロキサンの珪素原子に結合したメチル基の含有比率がそれぞれ80モル%以上であることが好ましい。上記珪素原子に結合したメチル基の含有比率は、下記式(X)で表される。 From the viewpoint of obtaining a cured product that is more excellent in heat resistance, the content ratios of methyl groups bonded to silicon atoms in the first organopolysiloxane and the second organopolysiloxane are each 80 mol% or more. preferable. The content ratio of the methyl group bonded to the silicon atom is represented by the following formula (X).
 珪素原子に結合したメチル基の含有比率(モル%)={(上記第1のオルガノポリシロキサン又は上記第2のオルガノポリシロキサンの1分子あたりに含まれる珪素原子に結合したメチル基の平均個数×メチル基の分子量)/(上記第1のオルガノポリシロキサン又は上記第2のオルガノポリシロキサンの1分子あたりに含まれる珪素原子に結合した官能基の平均個数×官能基の分子量の平均)}×100 ・・・式(X) Content ratio (mol%) of methyl groups bonded to silicon atoms = {(Average number of methyl groups bonded to silicon atoms contained in one molecule of the first organopolysiloxane or the second organopolysiloxane × Molecular weight of methyl group) / (average number of functional groups bonded to silicon atoms contained in one molecule of the first organopolysiloxane or the second organopolysiloxane × average molecular weight of functional groups)} × 100 ... Formula (X)
 上記式(X)における上記「官能基」は、上記第1のオルガノポリシロキサン又は上記第2のオルガノポリシロキサン中の珪素原子に直接結合している基を意味する。上記官能基が複数種ある場合に、「官能基の分子量の平均」は、官能基それぞれの「官能基の平均個数×官能基の分子量」の総和を意味する。下記式(Y)における「官能基」及び「官能基の分子量の平均」も同様である。 In the above formula (X), the “functional group” means a group directly bonded to a silicon atom in the first organopolysiloxane or the second organopolysiloxane. When there are a plurality of types of the functional groups, “average molecular weight of functional groups” means the sum of “average number of functional groups × functional group molecular weight” of each functional group. The same applies to “functional group” and “average molecular weight of functional group” in the following formula (Y).
 上述のように、発光素子の背面側に達した光を反射させるために、発光素子の背面に、銀めっきされた電極が形成されていることがある。封止剤やレンズにクラックが生じたり、封止剤がハウジング材から剥離したりすると、銀めっきされた電極が大気に晒されたり、大気と触れやすくなる。この結果、大気中に存在する硫化水素ガス又は亜硫酸ガス等の腐食性ガスによって、銀めっきが変色することがある。電極が変色すると反射率が低下するため、発光素子が発する光の明るさが低下するという問題がある。硬化性組成物の硬化物により形成された封止剤やレンズが、腐食性ガスに対して高いガスバリア性を有することにより、銀めっきの変色を抑制し、発光素子が発する光の明るさの低下を抑制できる。 As described above, a silver-plated electrode may be formed on the back surface of the light emitting element in order to reflect the light reaching the back side of the light emitting element. If a crack occurs in the sealant or the lens, or the sealant is peeled off from the housing material, the silver-plated electrode is exposed to the atmosphere or easily exposed to the atmosphere. As a result, the silver plating may be discolored by a corrosive gas such as hydrogen sulfide gas or sulfurous acid gas present in the atmosphere. When the color of the electrode changes, the reflectance decreases, which causes a problem that the brightness of the light emitted from the light emitting element decreases. The sealant or lens formed by the cured product of the curable composition has a high gas barrier property against corrosive gas, thereby suppressing discoloration of silver plating and lowering the brightness of light emitted from the light emitting element. Can be suppressed.
 ガスバリア性により一層優れた硬化物を得る観点からは、上記第1のオルガノポリシロキサンが、式(1B)で表され、アリール基及びアルケニル基を有する第1のオルガノポリシロキサンであり、かつ上記第2のオルガノポリシロキサンが、式(51B)で表され、アリール基及び珪素原子に結合した水素原子を有する第2のオルガノポリシロキサンであることが好ましい。 From the viewpoint of obtaining a cured product that is more excellent in gas barrier properties, the first organopolysiloxane is the first organopolysiloxane represented by the formula (1B) and having an aryl group and an alkenyl group, and the first The second organopolysiloxane represented by the formula (51B) is preferably a second organopolysiloxane having an aryl group and a hydrogen atom bonded to a silicon atom.
 ガスバリア性により一層優れた硬化物を得る観点からは、上記第1のオルガノポリシロキサン及び上記第2のオルガノポリシロキサンのアリール基の含有比率がそれぞれ30モル%以上、85モル%以下であることが好ましい。上記アリール基の含有比率は、下記式(Y)で表される。 From the viewpoint of obtaining a cured product that is more excellent in gas barrier properties, the content ratios of aryl groups in the first organopolysiloxane and the second organopolysiloxane are 30 mol% or more and 85 mol% or less, respectively. preferable. The content ratio of the aryl group is represented by the following formula (Y).
 アリール基の含有比率(モル%)={(上記第1のオルガノポリシロキサン又は上記第2のオルガノポリシロキサンの1分子あたりに含まれるアリール基の平均個数×アリール基の分子量)/(上記第1のオルガノポリシロキサン又は上記第2のオルガノポリシロキサンの1分子あたりに含まれる珪素原子に結合した官能基の平均個数×官能基の分子量の平均)}×100 ・・・式(Y) Content ratio of aryl group (mol%) = {(average number of aryl groups contained in one molecule of the first organopolysiloxane or the second organopolysiloxane × molecular weight of the aryl group) / (the first The average number of functional groups bonded to silicon atoms contained in one molecule of the second organopolysiloxane or the average molecular weight of the functional groups)} × 100 Formula (Y)
 なお、上記アリール基がフェニル基である場合には、上記アリール基の含有比率は、フェニル基の含有比率を示す。 When the aryl group is a phenyl group, the content ratio of the aryl group indicates the content ratio of the phenyl group.
 また、本発明の広い局面によれば、上述した光半導体装置用硬化性組成物を用いた光半導体装置が提供される。すなわち、本発明の広い局面によれば、光半導体素子と、上記光半導体素子を封止するように配置された封止剤、又は上記光半導体素子上に配置されたレンズとを備え、該封止剤又は該レンズが、光半導体装置用硬化性組成物を硬化させることにより形成されている、光半導体装置が提供される。該光半導体装置で用いられる光半導体装置用硬化性組成物は、アルケニル基を2個以上有する第1のオルガノポリシロキサンと、珪素原子に結合した水素原子を2個以上有する第2のオルガノポリシロキサンと、ヒドロシリル化反応用触媒と、ウレイド基又はイソシアネート基を有する第1のシラン化合物とを含む。 Further, according to a wide aspect of the present invention, an optical semiconductor device using the above-described curable composition for optical semiconductor devices is provided. That is, according to a broad aspect of the present invention, an optical semiconductor element and a sealing agent disposed so as to seal the optical semiconductor element or a lens disposed on the optical semiconductor element are provided, and the sealing is performed. An optical semiconductor device is provided in which the stopper or the lens is formed by curing a curable composition for an optical semiconductor device. The curable composition for an optical semiconductor device used in the optical semiconductor device includes a first organopolysiloxane having two or more alkenyl groups and a second organopolysiloxane having two or more hydrogen atoms bonded to silicon atoms. And a hydrosilylation reaction catalyst and a first silane compound having a ureido group or an isocyanate group.
 本明細書では、上述した光半導体装置用硬化性組成物に関する発明と、上述した光半導体装置に関する発明との双方が開示される。 In this specification, both the invention relating to the above-described curable composition for optical semiconductor devices and the invention relating to the above-described optical semiconductor device are disclosed.
 本発明に係る光半導体装置では、高温高湿下での過酷な環境で使用されても、硬化性組成物が硬化した硬化物の接着対象物からの剥離を抑制でき、更に光半導体装置用硬化性組成物のポットライフが良好であるために均質な光半導体装置を提供できる。 In the optical semiconductor device according to the present invention, even when used in a harsh environment under high temperature and high humidity, the cured product obtained by curing the curable composition can be prevented from being peeled off from the adhesion target, and further cured for an optical semiconductor device. Since the pot life of the composition is good, a homogeneous optical semiconductor device can be provided.
 以下、本発明に係る光半導体装置用硬化性組成物に含まれている各成分の詳細を説明する。 Hereinafter, the detail of each component contained in the curable composition for optical semiconductor devices which concerns on this invention is demonstrated.
 (第1のオルガノポリシロキサン)
 本発明に係る光半導体装置用硬化性組成物に含まれている第1のオルガノポリシロキサンは、アルケニル基を2個以上有する。アルケニル基は珪素原子に直接結合していることが好ましい。なお、上記アルケニル基の炭素-炭素二重結合における炭素原子が、珪素原子に結合していてもよく、上記アルケニル基の炭素-炭素二重結合における炭素原子とは異なる炭素原子が、珪素原子に結合していてもよい。上記第1のオルガノポリシロキサンは、1種のみが用いられてもよく、2種以上が併用されてもよい。
(First organopolysiloxane)
The first organopolysiloxane contained in the curable composition for optical semiconductor devices according to the present invention has two or more alkenyl groups. The alkenyl group is preferably directly bonded to the silicon atom. The carbon atom in the carbon-carbon double bond of the alkenyl group may be bonded to the silicon atom, and the carbon atom different from the carbon atom in the carbon-carbon double bond of the alkenyl group is bonded to the silicon atom. It may be bonded. As for said 1st organopolysiloxane, only 1 type may be used and 2 or more types may be used together.
 耐熱性により一層優れた硬化物を得る観点からは、上記第1のオルガノポリシロキサンは、下記式(1A)で表され、アルケニル基と珪素原子に結合したメチル基とを有する第1のオルガノポリシロキサン(以下、第1のオルガノポリシロキサンAと記載することがある)であることが好ましい。上記第1のオルガノポリシロキサンAは、珪素原子に結合した水素原子を有さず、アルケニル基と珪素原子に結合したメチル基とを有する第1のオルガノポリシロキサンであることが好ましい。 From the viewpoint of obtaining a cured product that is more excellent in heat resistance, the first organopolysiloxane is represented by the following formula (1A), and includes a first organopolysiloxane having an alkenyl group and a methyl group bonded to a silicon atom. Siloxane (hereinafter sometimes referred to as first organopolysiloxane A) is preferred. The first organopolysiloxane A is preferably a first organopolysiloxane which does not have a hydrogen atom bonded to a silicon atom but has an alkenyl group and a methyl group bonded to a silicon atom.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式(1A)中、a、b及びcは、a/(a+b+c)=0~0.30、b/(a+b+c)=0.70~1.0及びc/(a+b+c)=0~0.10を満たし、R1~R6は、少なくとも1個がアルケニル基を表し、少なくとも1個がメチル基を表し、アルケニル基及びメチル基以外のR1~R6は、炭素数2~8の炭化水素基を表す。 In the above formula (1A), a, b and c are a / (a + b + c) = 0 to 0.30, b / (a + b + c) = 0.70 to 1.0 and c / (a + b + c) = 0 to 0. 10, R1 to R6 each represents at least one alkenyl group, at least one represents a methyl group, and R1 to R6 other than the alkenyl group and the methyl group represent a hydrocarbon group having 2 to 8 carbon atoms. .
 ガスバリア性により一層優れた硬化物を得る観点からは、上記第1のオルガノポリシロキサンは、下記式(1B)で表され、アリール基とアルケニル基とを有する第1のオルガノポリシロキサン(以下、第1のオルガノポリシロキサンBと記載することがある)であることが好ましい。上記第1のオルガノポリシロキサンBは、珪素原子に結合した水素原子を有さず、アリール基とアルケニル基とを有する第1のオルガノポリシロキサンであることが好ましい。該アリール基としては、無置換のフェニル基及び置換フェニル基が挙げられる。 From the viewpoint of obtaining a cured product that is more excellent in gas barrier properties, the first organopolysiloxane is represented by the following formula (1B) and has a first organopolysiloxane having an aryl group and an alkenyl group (hereinafter referred to as the first organopolysiloxane). 1 may be referred to as organopolysiloxane B). The first organopolysiloxane B is preferably a first organopolysiloxane which does not have a hydrogen atom bonded to a silicon atom and has an aryl group and an alkenyl group. Examples of the aryl group include an unsubstituted phenyl group and a substituted phenyl group.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記式(1B)中、a、b及びcは、a/(a+b+c)=0~0.50、b/(a+b+c)=0.40~1.0及びc/(a+b+c)=0~0.50を満たし、R1~R6は、少なくとも1個がアリール基を表し、少なくとも1個がアルケニル基を表し、アリール基及びアルケニル基以外のR1~R6は、炭素数1~8の炭化水素基を表す。 In the above formula (1B), a, b and c are a / (a + b + c) = 0 to 0.50, b / (a + b + c) = 0.40 to 1.0 and c / (a + b + c) = 0 to 0. 50, R1 to R6 each represents at least one aryl group, at least one represents an alkenyl group, and R1 to R6 other than the aryl group and the alkenyl group represent a hydrocarbon group having 1 to 8 carbon atoms. .
 なお、上記式(1A)及び上記式(1B)中、(R4R5SiO2/2)で表される構造単位及び(R6SiO3/2)で表される構造単位はそれぞれ、アルコキシ基を有していてもよく、ヒドロキシ基を有していてもよい。 In the above formula (1A) and the above formula (1B), the structural unit represented by (R4R5SiO 2/2 ) and the structural unit represented by (R6SiO 3/2 ) each have an alkoxy group. It may have a hydroxy group.
 上記式(1A)及び上記式(1B)は平均組成式を示す。上記式(1A)及び上記式(1B)における炭化水素基は、直鎖状であってもよく、分岐状であってもよい。上記式(1A)及び上記式(1B)中のR1~R6は同一であってもよく、異なっていてもよい。 The above formula (1A) and the above formula (1B) show an average composition formula. The hydrocarbon group in the above formula (1A) and the above formula (1B) may be linear or branched. R1 to R6 in the above formula (1A) and the above formula (1B) may be the same or different.
 上記式(1A)及び上記式(1B)中、(R4R5SiO2/2)で表される構造単位における酸素原子部分、(R6SiO3/2)で表される構造単位における酸素原子部分はそれぞれ、シロキサン結合を形成している酸素原子部分、アルコキシ基の酸素原子部分、又はヒドロキシ基の酸素原子部分を示す。 In the formula (1A) and the formula (1B), the oxygen atom part in the structural unit represented by (R4R5SiO 2/2 ) and the oxygen atom part in the structural unit represented by (R6SiO 3/2 ) are respectively siloxane. An oxygen atom part forming a bond, an oxygen atom part of an alkoxy group, or an oxygen atom part of a hydroxy group is shown.
 なお、一般に、上記式(1A)及び上記式(1B)の各構造単位において、アルコキシ基の含有量は少なく、更にヒドロキシ基の含有量も少ない。これは、一般に、第1のオルガノポリシロキサンを得るために、アルコキシシラン化合物などの有機珪素化合物を加水分解し、重縮合させると、アルコキシ基及びヒドロキシ基の多くは、シロキサン結合の部分骨格に変換されるためである。すなわち、アルコキシ基の酸素原子及びヒドロキシ基の酸素原子の多くは、シロキサン結合を形成している酸素原子に変換される。上記式(1A)及び上記式(1B)の各構造単位がアルコキシ基又はヒドロキシ基を有する場合には、シロキサン結合の部分骨格に変換されなかった未反応のアルコキシ基又はヒドロキシ基がわずかに残存していることを示す。後述の式(51A)及び式(51B)の各構造単位がアルコキシ基又はヒドロキシ基を有する場合に関しても、同様のことがいえる。 In general, in each structural unit of the above formula (1A) and the above formula (1B), the content of alkoxy groups is small, and the content of hydroxy groups is also small. Generally, when an organosilicon compound such as an alkoxysilane compound is hydrolyzed and polycondensed to obtain a first organopolysiloxane, most of the alkoxy groups and hydroxy groups are converted into a partial skeleton of siloxane bonds. It is to be done. That is, most of oxygen atoms of the alkoxy group and oxygen atoms of the hydroxy group are converted into oxygen atoms forming a siloxane bond. When each structural unit of the above formula (1A) and the above formula (1B) has an alkoxy group or a hydroxy group, an unreacted alkoxy group or hydroxy group that has not been converted into a partial skeleton of a siloxane bond remains slightly. Indicates that The same applies to the case where each structural unit of formula (51A) and formula (51B) described later has an alkoxy group or a hydroxy group.
 上記アルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基及びヘキセニル基等が挙げられる。ガスバリア性をより一層高める観点からは、上記第1のオルガノポリシロキサンにおけるアルケニル基並びに上記式(1A)及び上記式(1B)中のアルケニル基は、ビニル基又はアリル基であることが好ましく、ビニル基であることがより好ましい。硬化性組成物の硬化性をより一層高める観点からは、上記第1のオルガノポリシロキサンは、ビニル基を有することが好ましい。 Examples of the alkenyl group include vinyl group, allyl group, butenyl group, pentenyl group, and hexenyl group. From the viewpoint of further enhancing the gas barrier properties, the alkenyl group in the first organopolysiloxane and the alkenyl group in the above formula (1A) and the above formula (1B) are preferably vinyl groups or allyl groups. More preferably, it is a group. From the viewpoint of further improving the curability of the curable composition, the first organopolysiloxane preferably has a vinyl group.
 上記式(1A)における炭素数2~8の炭化水素基としては特に限定されず、例えば、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、イソへキシル基、シクロヘキシル基及びアリール基が挙げられる。上記式(1B)における炭素数1~8の炭化水素基としては、上記式(1A)における炭素数2~8の炭化水素基と同様の基が挙げられ、更にメチル基が挙げられる。 The hydrocarbon group having 2 to 8 carbon atoms in the above formula (1A) is not particularly limited, and examples thereof include ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, and n-heptyl. Group, n-octyl group, isopropyl group, isobutyl group, sec-butyl group, t-butyl group, isopentyl group, neopentyl group, t-pentyl group, isohexyl group, cyclohexyl group and aryl group. Examples of the hydrocarbon group having 1 to 8 carbon atoms in the above formula (1B) include the same groups as the hydrocarbon group having 2 to 8 carbon atoms in the above formula (1A), and further includes a methyl group.
 硬化性組成物の硬化性を高め、熱サイクルでのクラック及び剥離をより一層抑制する観点からは、上記第1のオルガノポリシロキサンは、1つの珪素原子に、1つのビニル基と2つの炭素数1~8の炭化水素基(メチル基又は炭素数2~8の炭化水素基)とが結合した構造単位を含むことが好ましく、上記式(1A)及び上記式(1B)中、(R1R2R3SiO1/2)で表される構造単位は、R1がビニル基を表し、R2及びR3が炭素数1~8の炭化水素基(メチル基又は炭素数2~8の炭化水素基)を表す構造単位を含むことが好ましい。すなわち、硬化性組成物の硬化性を高め、熱サイクルでのクラック及び剥離をより一層抑制する観点からは、上記第1のオルガノポリシロキサンは、(CH=CHSiR2R3O1/2)で表される構造単位を有することが好ましく、すなわち下記式(1-a)で表される構造単位を有することが好ましい。(R1R2R3SiO1/2)で表される構造単位は、下記式(1-a)で表される構造単位のみを含んでいてもよく、下記式(1-a)で表される構造単位と下記式(1-a)で表される構造単位以外の構造単位とを含んでいてもよい。下記式(1-a)で表される構造単位の存在により、末端にビニル基を存在させることができ、末端にビニル基が存在することによって反応機会が多くなり、硬化性組成物の硬化性をより一層高めることができる。なお、下記式(1-a)で表される構造単位において、末端の酸素原子は、一般に隣接する珪素原子とシロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、末端の1つの酸素原子を「O1/2」とする。 From the viewpoint of enhancing the curability of the curable composition and further suppressing cracking and peeling during thermal cycling, the first organopolysiloxane contains one vinyl group and two carbon atoms per silicon atom. It preferably contains a structural unit bonded to a hydrocarbon group of 1 to 8 (methyl group or hydrocarbon group of 2 to 8 carbon atoms). In the above formula (1A) and the above formula (1B), (R1R2R3SiO 1 / The structural unit represented by 2 ) includes a structural unit in which R1 represents a vinyl group, and R2 and R3 represent a hydrocarbon group having 1 to 8 carbon atoms (methyl group or hydrocarbon group having 2 to 8 carbon atoms). It is preferable. That is, the first organopolysiloxane is represented by (CH 2 = CHSiR 2 R 3 O 1/2 ) from the viewpoint of enhancing the curability of the curable composition and further suppressing cracking and peeling during thermal cycling. It preferably has a structural unit, that is, it preferably has a structural unit represented by the following formula (1-a). The structural unit represented by (R1R2R3SiO 1/2 ) may contain only the structural unit represented by the following formula (1-a), and the structural unit represented by the following formula (1-a) and And a structural unit other than the structural unit represented by the formula (1-a). The presence of the structural unit represented by the following formula (1-a) allows a vinyl group to be present at the terminal, and the presence of the vinyl group at the terminal increases the opportunity for reaction, and the curability of the curable composition. Can be further increased. In the structural unit represented by the following formula (1-a), the terminal oxygen atom generally forms a siloxane bond with an adjacent silicon atom, and shares an oxygen atom with the adjacent structural unit. Therefore, one oxygen atom at the terminal is defined as “O 1/2 ”.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記式(1-a)中、R2及びR3はそれぞれ、炭素数1~8の炭化水素基を示す。 In the above formula (1-a), R2 and R3 each represent a hydrocarbon group having 1 to 8 carbon atoms.
 上記第1のオルガノポリシロキサンAにおける珪素原子に結合したメチル基の含有比率は80モル%以上であることが好ましい。この珪素原子に結合したメチル基の含有比率は下記式(X1)より求められる。このメチル基の含有比率が80モル%以上であると、硬化物の耐熱性がかなり高くなり、更に光半導体装置が高温高湿下での過酷な環境で通電した状態で使用されても、光度が低下し難くなりかつ硬化物の変色が生じ難くなる。上記第1のオルガノポリシロキサンAにおける上記珪素原子に結合したメチル基の含有比率は、好ましくは85モル%以上、好ましくは99.9モル%以下、より好ましくは99モル%以下、更に好ましくは98モル%以下である。上記メチル基の含有比率が上記下限以上であると、硬化物の耐熱性がより一層高くなる。上記メチル基の含有比率が上記上限以下であると、アルケニル基を充分に導入でき、硬化性組成物の硬化性を高めることが容易である。 The content ratio of methyl groups bonded to silicon atoms in the first organopolysiloxane A is preferably 80 mol% or more. The content ratio of the methyl group bonded to the silicon atom is obtained from the following formula (X1). When the content ratio of the methyl group is 80 mol% or more, the heat resistance of the cured product becomes considerably high, and even if the optical semiconductor device is used in a harsh environment under high temperature and high humidity, Is difficult to decrease and discoloration of the cured product is difficult to occur. The content ratio of the methyl group bonded to the silicon atom in the first organopolysiloxane A is preferably 85 mol% or more, preferably 99.9 mol% or less, more preferably 99 mol% or less, and still more preferably 98 mol%. It is less than mol%. When the content ratio of the methyl group is not less than the above lower limit, the heat resistance of the cured product is further enhanced. When the content ratio of the methyl group is not more than the above upper limit, alkenyl groups can be sufficiently introduced, and it is easy to improve the curability of the curable composition.
 珪素原子に結合したメチル基の含有比率(モル%)={(上記第1のオルガノポリシロキサンの1分子あたりに含まれる珪素原子に結合したメチル基の平均個数×メチル基の分子量)/(上記第1のオルガノポリシロキサンの1分子あたりに含まれる珪素原子に結合した官能基の平均個数×官能基の分子量の平均)}×100 ・・・式(X1) Content ratio (mol%) of methyl groups bonded to silicon atoms = {(average number of methyl groups bonded to silicon atoms contained in one molecule of the first organopolysiloxane × molecular weight of methyl groups) / (above Average number of functional groups bonded to silicon atoms contained in one molecule of the first organopolysiloxane × average of molecular weight of functional groups)} × 100 Formula (X1)
 上記第1のオルガノポリシロキサンBにおけるアリール基の含有比率は好ましくは30モル%以上、好ましくは85モル%以下である。このアリール基の含有比率は、下記式(Y1)より求められる。このアリール基の含有比率が30モル%以上であると、硬化物のガスバリア性がより一層高くなり、硬化物にクラック及び剥離がより一層生じ難くなる。上記アリール基の含有比率が85モル%以下であると、硬化物の剥離がより一層生じ難くなる。ガスバリア性を更に一層高める観点からは、上記第1のオルガノポリシロキサンBにおける上記アリール基の含有比率は35モル%以上であることがより好ましい。剥離をより一層生じ難くする観点からは、上記第1のオルガノポリシロキサンBにおける上記アリール基の含有比率は、より好ましくは80モル%以下、更に好ましくは75モル%以下、特に好ましくは70モル%以下、最も好ましくは65モル%以下である。 The content ratio of the aryl group in the first organopolysiloxane B is preferably 30 mol% or more, and preferably 85 mol% or less. The content ratio of this aryl group is calculated | required from a following formula (Y1). When the content ratio of the aryl group is 30 mol% or more, the gas barrier property of the cured product is further enhanced, and cracks and peeling are less likely to occur in the cured product. When the content ratio of the aryl group is 85 mol% or less, peeling of the cured product is more difficult to occur. From the viewpoint of further enhancing the gas barrier properties, the content ratio of the aryl group in the first organopolysiloxane B is more preferably 35 mol% or more. From the viewpoint of making peeling more difficult, the content ratio of the aryl group in the first organopolysiloxane B is more preferably 80 mol% or less, still more preferably 75 mol% or less, and particularly preferably 70 mol%. Hereinafter, it is most preferably 65 mol% or less.
 アリール基の含有比率(モル%)=(上記第1のオルガノポリシロキサンの1分子あたりに含まれるアリール基の平均個数×アリール基の分子量/上記第1のオルガノポリシロキサンの1分子あたりに含まれる珪素原子に結合した官能基の平均個数×官能基の分子量の平均)×100 ・・・式(Y1) Content ratio of aryl group (mol%) = (average number of aryl groups contained in one molecule of the first organopolysiloxane × molecular weight of aryl group / contained in one molecule of the first organopolysiloxane) Average number of functional groups bonded to silicon atoms × average molecular weight of functional groups) × 100 Formula (Y1)
 硬化性組成物の保存安定性をより一層高める観点からは、上記第1のオルガノポリシロキサンAは、アリール基を有することが好ましい。該アリール基としては、無置換のフェニル基及び置換フェニル基が挙げられる。上記第1のオルガノポリシロキサンAにおける上記アリール基の含有比率は好ましくは0.5モル%以上、好ましくは10モル%以下、より好ましくは5モル%以下である。上記第1のオルガノポリシロキサンAにおける上記アリール基の含有比率が上記上限以下であると、硬化物の耐熱性がより一層良好になる。 From the viewpoint of further improving the storage stability of the curable composition, the first organopolysiloxane A preferably has an aryl group. Examples of the aryl group include an unsubstituted phenyl group and a substituted phenyl group. The content ratio of the aryl group in the first organopolysiloxane A is preferably 0.5 mol% or more, preferably 10 mol% or less, more preferably 5 mol% or less. When the content ratio of the aryl group in the first organopolysiloxane A is not more than the above upper limit, the heat resistance of the cured product is further improved.
 上記式(1A)及び上記式(1B)で表される第1のオルガノポリシロキサンにおいて、(R4R5SiO2/2)で表される構造単位(以下、二官能構造単位ともいう)は、下記式(1-2)で表される構造、すなわち、二官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基又はアルコキシ基を構成する構造を含んでいてもよい。 In the first organopolysiloxane represented by the above formula (1A) and the above formula (1B), the structural unit represented by (R4R5SiO 2/2 ) (hereinafter also referred to as a bifunctional structural unit) has the following formula ( The structure represented by 1-2), that is, a structure in which one of the oxygen atoms bonded to the silicon atom in the bifunctional structural unit forms a hydroxy group or an alkoxy group may be included.
 (R4R5SiXO1/2) ・・・式(1-2) (R4R5SiXO 1/2 ) Formula (1-2)
 (R4R5SiO2/2)で表される構造単位は、下記式(1-b)で表される構造単位の破線で囲まれた部分を含み、更に下記式(1-2-b)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R4及びR5で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R4R5SiO2/2)で表される構造単位に含まれる。具体的には、アルコキシ基がシロキサン結合の部分骨格に変換された場合には、(R4R5SiO2/2)で表される構造単位は、下記式(1-b)で表される構造単位の破線で囲まれた部分を示す。未反応のアルコキシ基が残存している場合、又はアルコキシ基がヒドロキシ基に変換された場合には、残存アルコキシ基又はヒドロキシ基を有する(R4R5SiO2/2)で表される構造単位は、下記式(1-2-b)で表される構造単位の破線で囲まれた部分を示す。また、下記式(1-b)で表される構造単位において、Si-O-Si結合中の酸素原子は、隣接する珪素原子とシロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、Si-O-Si結合中の1つの酸素原子を「O1/2」とする。 The structural unit represented by (R4R5SiO 2/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula (1-b), and is further represented by the following formula (1-2-b). A portion surrounded by a broken line of the structural unit may be included. That is, a structural unit having a group represented by R4 and R5 and having an alkoxy group or a hydroxy group remaining at the terminal is also included in the structural unit represented by (R4R5SiO 2/2 ). Specifically, when the alkoxy group is converted to a partial skeleton of a siloxane bond, the structural unit represented by (R4R5SiO 2/2 ) is a broken line of the structural unit represented by the following formula (1-b) The part enclosed by is shown. When an unreacted alkoxy group remains, or when the alkoxy group is converted to a hydroxy group, the structural unit represented by (R4R5SiO 2/2 ) having the remaining alkoxy group or hydroxy group has the following formula: A portion surrounded by a broken line in the structural unit represented by (1-2-b) is shown. In the structural unit represented by the following formula (1-b), the oxygen atom in the Si—O—Si bond forms a siloxane bond with the adjacent silicon atom, and the adjacent structural unit and oxygen atom Sharing. Accordingly, one oxygen atom in the Si—O—Si bond is defined as “O 1/2 ”.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式(1-2)及び式(1-2-b)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1~4のアルコキシ基を表す。上記式(1-b)、式(1-2)及び式(1-2-b)中のR4及びR5は、上記式(1A)及び上記式(1B)中のR4及びR5と同様の基である。 In the above formulas (1-2) and (1-2-b), X represents OH or OR, and OR represents a linear or branched alkoxy group having 1 to 4 carbon atoms. R4 and R5 in formula (1-b), formula (1-2), and formula (1-2-b) are the same groups as R4 and R5 in formula (1A) and formula (1B). It is.
 上記式(1A)及び上記式(1B)で表される第1のオルガノポリシロキサンにおいて、(R6SiO3/2)で表される構造単位(以下、三官能構造単位ともいう)は、下記式(1-3)又は式(1-4)で表される構造、すなわち、三官能構造単位中の珪素原子に結合した酸素原子の2つがそれぞれヒドロキシ基若しくはアルコキシ基を構成する構造、又は、三官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基若しくはアルコキシ基を構成する構造を含んでいてもよい。 In the first organopolysiloxane represented by the above formula (1A) and the above formula (1B), the structural unit represented by (R6SiO 3/2 ) (hereinafter also referred to as trifunctional structural unit) has the following formula ( 1-3) or a structure represented by formula (1-4), that is, a structure in which two oxygen atoms bonded to a silicon atom in a trifunctional structural unit each constitute a hydroxy group or an alkoxy group, or a trifunctional One of the oxygen atoms bonded to the silicon atom in the structural unit may include a structure constituting a hydroxy group or an alkoxy group.
 (R6SiX1/2) ・・・式(1-3) (R6SiX 2 O 1/2 ) Formula (1-3)
 (R6SiXO2/2) ・・・式(1-4) (R6SiXO 2/2 ) Formula (1-4)
 (R6SiO3/2)で表される構造単位は、下記式(1-c)で表される構造単位の破線で囲まれた部分を含み、更に下記式(1-3-c)又は式(1-4-c)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R6で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R6SiO3/2)で表される構造単位に含まれる。 The structural unit represented by (R6SiO 3/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula (1-c), and further includes the following formula (1-3-c) or formula ( A portion surrounded by a broken line of the structural unit represented by 1-4-4-c) may be included. That is, a structural unit having a group represented by R6 and having an alkoxy group or a hydroxy group remaining at the terminal is also included in the structural unit represented by (R6SiO 3/2 ).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(1-3)、式(1-3-c)、式(1-4)及び式(1-4-c)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1~4のアルコキシ基を表す。上記式(1-c)、式(1-3)、式(1-3-c)、式(1-4)及び式(1-4-c)中のR6は、上記式(1A)及び上記式(1B)中のR6と同様の基である。 In the above formula (1-3), formula (1-3-c), formula (1-4) and formula (1-4-c), X represents OH or OR, and OR represents a linear or A branched alkoxy group having 1 to 4 carbon atoms is represented. R6 in the above formula (1-c), formula (1-3), formula (1-3-c), formula (1-4) and formula (1-4-c) represents the above formula (1A) and It is the same group as R6 in the above formula (1B).
 上記式(1-b)及び式(1-c)、式(1-2)~(1-4)、並びに式(1-2-b)、式(1-3-c)及び式(1-4-c)において、直鎖状又は分岐状の炭素数1~4のアルコキシ基としては特に限定されず、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、イソプロポキシ基、イソブトキシ基、sec-ブトキシ基及びt-ブトキシ基が挙げられる。 Formula (1-b) and Formula (1-c), Formulas (1-2) to (1-4), Formula (1-2-b), Formula (1-3-c) and Formula (1) In -4-c), the linear or branched alkoxy group having 1 to 4 carbon atoms is not particularly limited. For example, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, isopropoxy group , Isobutoxy group, sec-butoxy group and t-butoxy group.
 上記式(1A)中、a/(a+b+c)の下限は0、上限は0.30である。a/(a+b+c)が上記上限以下であると、硬化物の耐熱性がより一層高くなり、かつ硬化物の剥離をより一層抑制できる。上記式(1A)中、a/(a+b+c)は、好ましくは0.25以下、より好ましくは0.20以下である。なお、aが0であり、a/(a+b+c)が0である場合、上記式(1A)中、(R1R2R3SiO1/2)の構造単位は存在しない。 In the above formula (1A), the lower limit of a / (a + b + c) is 0, and the upper limit is 0.30. When a / (a + b + c) is less than or equal to the above upper limit, the heat resistance of the cured product is further increased, and peeling of the cured product can be further suppressed. In said formula (1A), a / (a + b + c) becomes like this. Preferably it is 0.25 or less, More preferably, it is 0.20 or less. When a is 0 and a / (a + b + c) is 0, there is no structural unit (R1R2R3SiO 1/2 ) in the above formula (1A).
 上記式(1A)中、b/(a+b+c)の下限は0.70、上限は1.0である。b/(a+b+c)が上記下限以上であると、硬化物が硬くなりすぎず、硬化物にクラックが生じ難くなる。上記式(1A)中、b/(a+b+c)は、好ましくは0.75以上、より好ましくは0.80以上である。 In the above formula (1A), the lower limit of b / (a + b + c) is 0.70, and the upper limit is 1.0. When b / (a + b + c) is not less than the above lower limit, the cured product does not become too hard, and cracks hardly occur in the cured product. In the above formula (1A), b / (a + b + c) is preferably 0.75 or more, more preferably 0.80 or more.
 上記式(1A)中、c/(a+b+c)の下限は0、上限は0.10である。c/(a+b+c)が上記上限以下であると、硬化性組成物の適正な粘度を維持することが容易であり、硬化物の密着性がより一層高くなる。上記式(1A)中、c/(a+b+c)は、好ましくは0.05以下である。なお、cが0であり、c/(a+b+c)が0である場合、上記式(1A)中、(R6SiO3/2)の構造単位は存在しない。 In the above formula (1A), the lower limit of c / (a + b + c) is 0, and the upper limit is 0.10. When c / (a + b + c) is not more than the above upper limit, it is easy to maintain an appropriate viscosity of the curable composition, and the adhesiveness of the cured product is further enhanced. In the above formula (1A), c / (a + b + c) is preferably 0.05 or less. In addition, when c is 0 and c / (a + b + c) is 0, the structural unit of (R6SiO 3/2 ) does not exist in the above formula (1A).
 上記式(1A)中のc/(a+b+c)は、0であることが好ましい。すなわち、上記式(1A)で表される第1のオルガノポリシロキサンは、下記式(1Aa)で表される第1のオルガノポリシロキサンであることが好ましい。これにより、硬化物にクラックがより一層生じ難くなり、かつ硬化物がハウジング材等からより一層剥離し難くなる。 C / (a + b + c) in the above formula (1A) is preferably 0. That is, the first organopolysiloxane represented by the above formula (1A) is preferably the first organopolysiloxane represented by the following formula (1Aa). As a result, cracks are less likely to occur in the cured product, and the cured product is more difficult to peel from the housing material or the like.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記式(1Aa)中、a及びbは、a/(a+b)=0~0.30及びb/(a+b)=0.70~1.0を満たし、R1~R5は、少なくとも1個がアルケニル基を表し、少なくとも1個がメチル基を表し、アルケニル基及びメチル基以外のR1~R5は、炭素数2~8の炭化水素基を表す。 In the above formula (1Aa), a and b satisfy a / (a + b) = 0 to 0.30 and b / (a + b) = 0.70 to 1.0, and at least one of R1 to R5 is alkenyl And at least one of them represents a methyl group, and R1 to R5 other than an alkenyl group and a methyl group represent a hydrocarbon group having 2 to 8 carbon atoms.
 上記式(1Aa)中、a/(a+b)は好ましくは0.25以下、より好ましくは0.20以下、更に好ましくは0.15以下である。上記式(1Aa)中、b/(a+b)は好ましくは0.75以上、より好ましくは0.80以上、更に好ましくは0.85以上である。 In the above formula (1Aa), a / (a + b) is preferably 0.25 or less, more preferably 0.20 or less, and still more preferably 0.15 or less. In the above formula (1Aa), b / (a + b) is preferably 0.75 or more, more preferably 0.80 or more, and further preferably 0.85 or more.
 上記式(1B)中、a/(a+b+c)は0以上、0.50以下である。a/(a+b+c)が上記上限以下であると、硬化物の耐熱性がより一層高くなり、かつ硬化物の剥離をより一層抑制できる。上記式(1B)中、a/(a+b+c)は好ましくは0.45以下、より好ましくは0.40以下である。なお、aが0であり、a/(a+b+c)が0である場合、上記式(1B)中、(R1R2R3SiO1/2)の構造単位は存在しない。 In the above formula (1B), a / (a + b + c) is 0 or more and 0.50 or less. When a / (a + b + c) is less than or equal to the above upper limit, the heat resistance of the cured product is further increased, and peeling of the cured product can be further suppressed. In the above formula (1B), a / (a + b + c) is preferably 0.45 or less, more preferably 0.40 or less. When a is 0 and a / (a + b + c) is 0, there is no structural unit of (R1R2R3SiO 1/2 ) in the above formula (1B).
 上記式(1B)中、b/(a+b+c)は0.40以上、1.0以下である。b/(a+b+c)が上記下限以上であると、硬化物が硬くなりすぎず、硬化物にクラックが生じ難くなる。上記式(1B)中、b/(a+b+c)は好ましくは0.50以上である。 In the above formula (1B), b / (a + b + c) is 0.40 or more and 1.0 or less. When b / (a + b + c) is not less than the above lower limit, the cured product does not become too hard, and cracks hardly occur in the cured product. In the above formula (1B), b / (a + b + c) is preferably 0.50 or more.
 上記式(1B)中、c/(a+b+c)は0以上、0.50以下である。c/(a+b+c)が上記上限以下であると、硬化性組成物の適正な粘度を維持することが容易であり、硬化物の密着性がより一層高くなる。上記式(1B)中、c/(a+b+c)は好ましくは0.45以下、より好ましくは0.40以下、更に好ましくは0.35以下である。なお、cが0であり、c/(a+b+c)が0である場合、上記式(1B)中、(R6SiO3/2)の構造単位は存在しない。 In the above formula (1B), c / (a + b + c) is 0 or more and 0.50 or less. When c / (a + b + c) is not more than the above upper limit, it is easy to maintain an appropriate viscosity of the curable composition, and the adhesiveness of the cured product is further enhanced. In the above formula (1B), c / (a + b + c) is preferably 0.45 or less, more preferably 0.40 or less, and still more preferably 0.35 or less. In addition, when c is 0 and c / (a + b + c) is 0, the structural unit of (R6SiO 3/2 ) does not exist in the above formula (1B).
 上記式(1B)中のc/(a+b+c)は0であることが好ましい。すなわち、上記式(1B)で表される第1のオルガノポリシロキサンは、下記式(1Bb)で表される第1のオルガノポリシロキサンであることが好ましい。これにより、硬化物にクラックがより一層生じ難くなり、かつ硬化物の剥離がより一層生じ難くなる。 C / (a + b + c) in the above formula (1B) is preferably 0. That is, the first organopolysiloxane represented by the above formula (1B) is preferably the first organopolysiloxane represented by the following formula (1Bb). As a result, cracks are less likely to occur in the cured product, and peeling of the cured product is further less likely to occur.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記式(1Bb)中、a及びbは、a/(a+b)=0~0.50及びb/(a+b)=0.50~1.0を満たし、R1~R5は、少なくとも1個がアリール基を表し、少なくとも1個がアルケニル基を表し、アリール基及びアルケニル基以外のR1~R5は、炭素数1~8の炭化水素基を表す。 In the above formula (1Bb), a and b satisfy a / (a + b) = 0 to 0.50 and b / (a + b) = 0.50 to 1.0, and at least one of R1 to R5 is aryl And at least one represents an alkenyl group, and R1 to R5 other than the aryl group and alkenyl group represent a hydrocarbon group having 1 to 8 carbon atoms.
 上記式(1Bb)中のa/(a+b)は好ましくは0.45以下、より好ましくは0.40以下である。上記式(1Bb)中のb/(a+b)は好ましくは0.55以上、より好ましくは0.60以上である。 A / (a + b) in the above formula (1Bb) is preferably 0.45 or less, more preferably 0.40 or less. In the above formula (1Bb), b / (a + b) is preferably 0.55 or more, more preferably 0.60 or more.
 上記第1のオルガノポリシロキサンについて、テトラメチルシラン(以下、TMS)を基準に29Si-核磁気共鳴分析(以下、NMR)を行うと、置換基の種類によって若干の変動は見られるものの、上記式(1A)及び上記式(1B)中の(R1R2R3SiO1/2)で表される構造単位に相当するピークは+10~-5ppm付近に現れ、上記式(1A)及び上記式(1B)中の(R4R5SiO2/2)で表される構造単位及び上記式(1-2)の二官能構造単位に相当する各ピークは-10~-50ppm付近に現れ、上記式(1A)及び上記式(1B)中の(R6SiO3/2)で表される構造単位、並びに上記式(1-3)及び式(1-4)の三官能構造単位に相当する各ピークは-50~-80ppm付近に現れる。 When the first organopolysiloxane was subjected to 29 Si-nuclear magnetic resonance analysis (hereinafter referred to as NMR) based on tetramethylsilane (hereinafter referred to as TMS), although some variation was observed depending on the type of substituent, A peak corresponding to the structural unit represented by (R1R2R3SiO 1/2 ) in the formula (1A) and the above formula (1B) appears in the vicinity of +10 to −5 ppm, and in the above formula (1A) and the above formula (1B) Each peak corresponding to the structural unit represented by (R4R5SiO 2/2 ) and the bifunctional structural unit of the above formula (1-2) appears in the vicinity of −10 to −50 ppm, and the above formula (1A) and the above formula (1B ), The peaks corresponding to the structural unit represented by (R6SiO 3/2 ) and the trifunctional structural units of the above formulas (1-3) and (1-4) appear in the vicinity of −50 to −80 ppm. .
 従って、29Si-NMRを測定し、それぞれのシグナルのピーク面積を比較することによって上記式(1A)及び上記式(1B)中の各構造単位の比率を測定できる。 Therefore, the ratio of each structural unit in the above formula (1A) and the above formula (1B) can be measured by measuring 29 Si-NMR and comparing the peak areas of the respective signals.
 但し、上記TMSを基準にした29Si-NMRの測定で上記式(1A)及び上記式(1B)中の構造単位の見分けがつかない場合は、29Si-NMRの測定結果だけではなく、H-NMRの測定結果を必要に応じて用いることにより、上記式(1A)及び上記式(1B)中の各構造単位の比率を見分けることができる。 However, in the case where the structural unit in the above formula (1A) and the above formula (1B) cannot be distinguished by the 29 Si-NMR measurement based on the TMS, not only the 29 Si-NMR measurement result but also 1 By using the measurement results of H-NMR as necessary, the ratio of each structural unit in the above formula (1A) and the above formula (1B) can be distinguished.
 (第2のオルガノポリシロキサン)
 本発明に係る光半導体装置用硬化性組成物に含まれている第2のオルガノポリシロキサンは、珪素原子に結合した水素原子を2個以上有する。水素原子は、珪素原子に直接結合している。上記第2のオルガノポリシロキサンは、1種のみが用いられてもよく、2種以上が併用されてもよい。また、上記第2のオルガノポリシロキサンは、1つの珪素原子に、3つの酸素原子が結合した構造単位を含んでいてもよい。この場合に、3つの酸素原子が結合した珪素原子には、1つの水素原子が結合しいてもよく、1つの炭素数1~8の炭化水素基(メチル基又は炭素数2~8の炭化水素基)が結合していてもよい。
(Second organopolysiloxane)
The second organopolysiloxane contained in the curable composition for optical semiconductor devices according to the present invention has two or more hydrogen atoms bonded to silicon atoms. The hydrogen atom is directly bonded to the silicon atom. As for said 2nd organopolysiloxane, only 1 type may be used and 2 or more types may be used together. The second organopolysiloxane may contain a structural unit in which three oxygen atoms are bonded to one silicon atom. In this case, one hydrogen atom may be bonded to the silicon atom to which three oxygen atoms are bonded, and one hydrocarbon group having 1 to 8 carbon atoms (methyl group or hydrocarbon having 2 to 8 carbon atoms). Group) may be bonded.
 耐熱性により一層優れた硬化物を得る観点からは、上記第2のオルガノポリシロキサンは、下記式(51A)で表され、珪素原子に結合した水素原子と珪素原子に結合したメチル基とを有する第2のオルガノポリシロキサン(以下、第2のオルガノポリシロキサンAと記載することがある)であることが好ましい。 From the viewpoint of obtaining a cured product that is more excellent in heat resistance, the second organopolysiloxane is represented by the following formula (51A) and has a hydrogen atom bonded to a silicon atom and a methyl group bonded to the silicon atom. A second organopolysiloxane (hereinafter sometimes referred to as a second organopolysiloxane A) is preferred.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記式(51A)中、p、q及びrは、p/(p+q+r)=0.10~0.50、q/(p+q+r)=0~0.40及びr/(p+q+r)=0.40~0.90を満たし、R51~R56は、少なくとも1個が水素原子を表し、少なくとも1個がメチル基を表し、水素原子及びメチル基以外のR51~R56は、炭素数2~8の炭化水素基を表す。 In the above formula (51A), p, q and r are p / (p + q + r) = 0.10 to 0.50, q / (p + q + r) = 0 to 0.40 and r / (p + q + r) = 0.40 to 0.90 is satisfied, R51 to R56 each represents at least one hydrogen atom, at least one represents a methyl group, and R51 to R56 other than the hydrogen atom and the methyl group are hydrocarbon groups having 2 to 8 carbon atoms. Represents.
 ガスバリア性により一層優れた硬化物を得る観点からは、上記第2のオルガノポリシロキサンは、下記式(51B)で表され、アリール基と珪素原子に結合した水素原子とを有する第2のオルガノポリシロキサン(以下、第2のオルガノポリシロキサンBと記載することがある)であることが好ましい。該アリール基としては、無置換のフェニル基及び置換フェニル基が挙げられる。 From the viewpoint of obtaining a cured product that is more excellent in gas barrier properties, the second organopolysiloxane is represented by the following formula (51B), and includes a second organopolysiloxane having an aryl group and a hydrogen atom bonded to a silicon atom. Siloxane (hereinafter sometimes referred to as second organopolysiloxane B) is preferred. Examples of the aryl group include an unsubstituted phenyl group and a substituted phenyl group.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記式(51B)中、p、q及びrは、p/(p+q+r)=0.05~0.50、q/(p+q+r)=0.05~0.50及びr/(p+q+r)=0.20~0.80を満たし、R51~R56は、少なくとも1個がアリール基を表し、少なくとも1個が水素原子を表し、アリール基及び水素原子以外のR51~R56は、炭素数1~8の炭化水素基を表す。 In the above formula (51B), p, q and r are p / (p + q + r) = 0.05 to 0.50, q / (p + q + r) = 0.05 to 0.50 and r / (p + q + r) = 0. 20 to 0.80 are satisfied, at least one of R51 to R56 represents an aryl group, at least one represents a hydrogen atom, and R51 to R56 other than the aryl group and the hydrogen atom are carbon atoms having 1 to 8 carbon atoms. Represents a hydrogen group.
 なお、上記式(51A)及び上記式(51B)中、(R54R55SiO2/2)で表される構造単位及び(R56SiO3/2)で表される構造単位はそれぞれ、アルコキシ基を有していてもよく、ヒドロキシ基を有していてもよい。 In the above formula (51A) and the above formula (51B), the structural unit represented by (R54R55SiO 2/2 ) and the structural unit represented by (R56SiO 3/2 ) each have an alkoxy group. It may have a hydroxy group.
 上記式(51A)及び上記式(51B)は平均組成式を示す。上記式(51A)及び上記式(51B)における炭化水素基は、直鎖状であってもよく、分岐状であってもよい。上記式(51A)及び上記式(51B)中のR51~R56は同一であってもよく、異なっていてもよい。 The above formula (51A) and the above formula (51B) show the average composition formula. The hydrocarbon group in the above formula (51A) and the above formula (51B) may be linear or branched. R51 to R56 in the above formula (51A) and the above formula (51B) may be the same or different.
 上記式(51A)及び上記式(51B)中、(R54R55SiO2/2)で表される構造単位における酸素原子部分、(R56SiO3/2)で表される構造単位における酸素原子部分はそれぞれ、シロキサン結合を形成している酸素原子部分、アルコキシ基の酸素原子部分、又はヒドロキシ基の酸素原子部分を示す。 In the formula (51A) and the formula (51B), the oxygen atom part in the structural unit represented by (R54R55SiO 2/2 ) and the oxygen atom part in the structural unit represented by (R56SiO 3/2 ) are respectively siloxane. An oxygen atom part forming a bond, an oxygen atom part of an alkoxy group, or an oxygen atom part of a hydroxy group is shown.
 上記式(51A)における炭素数2~8の炭化水素基としては特に限定されず、例えば、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、イソへキシル基、シクロヘキシル基、ビニル基、アリル基及びアリール基が挙げられる。上記式(51B)における炭素数1~8の炭化水素基としては、上記式(51A)における炭素数2~8の炭化水素基と同様の基が挙げられ、更にメチル基が挙げられる。 The hydrocarbon group having 2 to 8 carbon atoms in the formula (51A) is not particularly limited, and examples thereof include an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, and an n-heptyl group. Group, n-octyl group, isopropyl group, isobutyl group, sec-butyl group, t-butyl group, isopentyl group, neopentyl group, t-pentyl group, isohexyl group, cyclohexyl group, vinyl group, allyl group and aryl group Is mentioned. Examples of the hydrocarbon group having 1 to 8 carbon atoms in the above formula (51B) include the same groups as the hydrocarbon group having 2 to 8 carbon atoms in the above formula (51A), and further includes a methyl group.
 硬化性組成物の硬化性を高め、熱サイクルでのクラック及び剥離をより一層抑制する観点からは、上記第2のオルガノポリシロキサンは、1つの珪素原子に、1つの水素原子と2つの炭素数1~8の炭化水素基(メチル基又は炭素数2~8の炭化水素基)とが結合した構造単位を含むことが好ましく、上記式(51A)及び上記式(51B)中、(R51R52R53SiO1/2)で表される構造単位は、R51が水素原子を表し、R52及びR53が炭素数1~8の炭化水素基(メチル基又は炭素数2~8の炭化水素基)を表す構造単位を含むことが好ましい。すなわち、硬化性組成物の硬化性を高め、熱サイクルでのクラック及び剥離をより一層抑制する観点からは、上記第2のオルガノポリシロキサンは、(HR52R53SiO1/2)で表される構造単位を有することが好ましく、すなわち下記式(51-a)で表される構造単位を有することが好ましい。(R51R52R53SiO1/2)で表される構造単位は、下記式(51-a)で表される構造単位のみを含んでいてもよく、下記式(51-a)で表される構造単位と下記式(51-a)で表される構造単位以外の構造単位とを含んでいてもよい。下記式(51-a)で表される構造単位の存在により、末端に水素原子を存在させることができる。末端に水素原子が存在することによって反応機会が多くなり、硬化性組成物の硬化性をより一層高めることができる。なお、下記式(51-a)で表される構造単位において、末端の酸素原子は、一般に隣接する珪素原子とシロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、末端の1つの酸素原子を「O1/2」とする。 From the viewpoint of enhancing the curability of the curable composition and further suppressing cracking and peeling during thermal cycling, the second organopolysiloxane contains one hydrogen atom and two carbon atoms in one silicon atom. It preferably contains a structural unit bonded to a hydrocarbon group of 1 to 8 (methyl group or hydrocarbon group of 2 to 8 carbon atoms). In the above formula (51A) and the above formula (51B), (R51R52R53SiO 1 / The structural unit represented by 2 ) includes a structural unit in which R51 represents a hydrogen atom, and R52 and R53 represent a hydrocarbon group having 1 to 8 carbon atoms (a methyl group or a hydrocarbon group having 2 to 8 carbon atoms). It is preferable. That is, from the viewpoint of enhancing the curability of the curable composition and further suppressing cracking and peeling in the thermal cycle, the second organopolysiloxane has a structural unit represented by (HR52R53SiO 1/2 ). In other words, it preferably has a structural unit represented by the following formula (51-a). The structural unit represented by (R51R52R53SiO 1/2 ) may contain only the structural unit represented by the following formula (51-a), and the structural unit represented by the following formula (51-a) And a structural unit other than the structural unit represented by the formula (51-a). Due to the presence of the structural unit represented by the following formula (51-a), a hydrogen atom can be present at the terminal. The presence of a hydrogen atom at the end increases the opportunity for reaction and can further enhance the curability of the curable composition. In the structural unit represented by the following formula (51-a), the terminal oxygen atom generally forms a siloxane bond with an adjacent silicon atom, and shares an oxygen atom with the adjacent structural unit. Therefore, one oxygen atom at the terminal is defined as “O 1/2 ”.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 上記式(51-a)中、R52及びR53はそれぞれ、メチル基又は炭素数2~8の炭化水素基を示す。 In the above formula (51-a), R52 and R53 each represent a methyl group or a hydrocarbon group having 2 to 8 carbon atoms.
 硬化性組成物の硬化性をより一層高め、熱サイクルでのクラック及び剥離をさらに一層抑制する観点からは、上記第1のオルガノポリシロキサンが、上記式(1-a)で表される構造単位を有し、かつ上記第2のオルガノポリシロキサンが、上記式(51-a)で表される構造単位を有することが特に好ましい。 From the viewpoint of further improving the curability of the curable composition and further suppressing cracking and peeling during thermal cycling, the first organopolysiloxane is a structural unit represented by the above formula (1-a). It is particularly preferable that the second organopolysiloxane has a structural unit represented by the above formula (51-a).
 硬化性組成物の硬化性をより一層高める観点からは、上記第2のオルガノポリシロキサンは、アルケニル基を有することが好ましく、ビニル基を有することがより好ましい。この場合には、上記式(51A)中、R51~R56は、少なくとも1個が珪素原子を表し、少なくとも1個がメチル基を表し、少なくとも1個がアルケニル基を表し、水素原子、メチル基及びアルケニル基以外のR51~R56は、炭素数2~8の炭化水素基を表す。上記式(51B)中、R51~R56は、少なくとも1個がアリール基を表し、少なくとも1個が珪素原子を表し、少なくとも1個がアルケニル基を表し、アリール基、水素原子、及びアルケニル基以外のR51~R56は、炭素数2~8の炭化水素基を表す。 From the viewpoint of further improving the curability of the curable composition, the second organopolysiloxane preferably has an alkenyl group, and more preferably has a vinyl group. In this case, in the formula (51A), at least one of R51 to R56 represents a silicon atom, at least one represents a methyl group, at least one represents an alkenyl group, a hydrogen atom, a methyl group, and R51 to R56 other than the alkenyl group represent a hydrocarbon group having 2 to 8 carbon atoms. In the above formula (51B), at least one of R51 to R56 represents an aryl group, at least one represents a silicon atom, at least one represents an alkenyl group, and other than an aryl group, a hydrogen atom, and an alkenyl group R51 to R56 each represents a hydrocarbon group having 2 to 8 carbon atoms.
 上記第2のオルガノポリシロキサンAにおける珪素原子に結合したメチル基の含有比率は80モル%以上であることが好ましい。この珪素原子に結合したメチル基の含有比率は下記式(X51)より求められる。このメチル基の含有比率が80モル%以上であると、硬化物の耐熱性がかなり高くなり、更に光半導体装置が高温高湿下での過酷な環境で通電した状態で使用されても、光度が低下し難くなりかつ硬化物の変色が生じ難くなる。上記第2のオルガノポリシロキサンにおける上記珪素原子に結合したメチル基の含有比率は、好ましくは85モル%以上、好ましくは99.9モル%以下、より好ましくは99モル%以下、更に好ましくは98モル%以下である。上記メチル基の含有比率が好ましい上記下限以上であると、硬化物の耐熱性がより一層高くなる。上記メチル基の含有比率が上記上限以下であると、珪素原子に結合した水素原子を充分に導入でき、硬化性組成物の硬化性を高めることが容易である。 The content ratio of methyl groups bonded to silicon atoms in the second organopolysiloxane A is preferably 80 mol% or more. The content ratio of the methyl group bonded to the silicon atom is obtained from the following formula (X51). When the content ratio of the methyl group is 80 mol% or more, the heat resistance of the cured product becomes considerably high, and even if the optical semiconductor device is used in a harsh environment under high temperature and high humidity, Is difficult to decrease and discoloration of the cured product is difficult to occur. The content ratio of the methyl group bonded to the silicon atom in the second organopolysiloxane is preferably 85 mol% or more, preferably 99.9 mol% or less, more preferably 99 mol% or less, and still more preferably 98 mol%. % Or less. When the content ratio of the methyl group is not less than the preferable lower limit, the heat resistance of the cured product is further enhanced. When the content ratio of the methyl group is not more than the above upper limit, hydrogen atoms bonded to silicon atoms can be sufficiently introduced, and it is easy to improve the curability of the curable composition.
 珪素原子に結合したメチル基の含有比率(モル%)={(上記第2のオルガノポリシロキサンの1分子あたりに含まれる珪素原子に結合したメチル基の平均個数×メチル基の分子量)/(上記第2のオルガノポリシロキサンの1分子あたりに含まれる珪素原子に結合した官能基の平均個数×官能基の分子量の平均)}×100 ・・・式(X51) Content ratio (mol%) of methyl groups bonded to silicon atoms = {(average number of methyl groups bonded to silicon atoms contained in one molecule of the second organopolysiloxane × molecular weight of methyl groups) / (above Average number of functional groups bonded to silicon atoms contained in one molecule of the second organopolysiloxane × average molecular weight of functional groups)} × 100 Formula (X51)
 上記第2のオルガノポリシロキサンBにおけるアリール基の含有比率は好ましくは30モル%以上、好ましくは85モル%以下である。このアリール基の含有比率は、下記式(Y51)より求められる。このアリール基の含有比率が30モル%以上であると、硬化物のガスバリア性がより一層高くなり、硬化物にクラック及び剥離がより一層生じ難くなる。上記アリール基の含有比率が85モル%以下であると、硬化物の剥離がより一層生じ難くなる。ガスバリア性を更に一層高める観点からは、上記第2のオルガノポリシロキサンBにおける上記アリール基の含有比率は35モル%以上であることがより好ましい。剥離をより一層生じ難くする観点からは、上記第2のオルガノポリシロキサンBにおける上記アリール基の含有比率は、より好ましくは80モル%以下、更に好ましくは75モル%以下、特に好ましくは70モル%以下、最も好ましくは65モル%以下である。 The content ratio of the aryl group in the second organopolysiloxane B is preferably 30 mol% or more, and preferably 85 mol% or less. The content ratio of this aryl group is calculated | required from a following formula (Y51). When the content ratio of the aryl group is 30 mol% or more, the gas barrier property of the cured product is further enhanced, and cracks and peeling are less likely to occur in the cured product. When the content ratio of the aryl group is 85 mol% or less, peeling of the cured product is more difficult to occur. From the viewpoint of further enhancing the gas barrier properties, the content ratio of the aryl group in the second organopolysiloxane B is more preferably 35 mol% or more. From the viewpoint of making peeling more difficult, the content ratio of the aryl group in the second organopolysiloxane B is more preferably 80 mol% or less, still more preferably 75 mol% or less, and particularly preferably 70 mol%. Hereinafter, it is most preferably 65 mol% or less.
 アリール基の含有比率(モル%)=(上記第2のオルガノポリシロキサンの1分子あたりに含まれるアリール基の平均個数×アリール基の分子量/上記第2のオルガノポリシロキサンの1分子あたりに含まれる珪素原子に結合した官能基の平均個数×官能基の分子量の平均)×100 ・・・式(Y51) Aryl group content (mol%) = (average number of aryl groups contained in one molecule of the second organopolysiloxane × molecular weight of aryl group / included in one molecule of the second organopolysiloxane) Average number of functional groups bonded to silicon atoms × average molecular weight of functional groups) × 100 Formula (Y51)
 硬化性組成物の保存安定性をより一層高める観点からは、上記第2のオルガノポリシロキサンAは、アリール基を有することが好ましい。該アリール基としては、無置換のフェニル基及び置換フェニル基が挙げられる。上記第2のオルガノポリシロキサンAにおける上記アリール基の含有比率は好ましくは0.5モル%以上、好ましくは10モル%以下、より好ましくは5モル%以下である。上記第2のオルガノポリシロキサンAにおける上記アリール基の含有比率が上記上限以下であると、硬化物の耐熱性がより一層良好になる。 From the viewpoint of further improving the storage stability of the curable composition, the second organopolysiloxane A preferably has an aryl group. Examples of the aryl group include an unsubstituted phenyl group and a substituted phenyl group. The content ratio of the aryl group in the second organopolysiloxane A is preferably 0.5 mol% or more, preferably 10 mol% or less, more preferably 5 mol% or less. When the content ratio of the aryl group in the second organopolysiloxane A is not more than the above upper limit, the heat resistance of the cured product is further improved.
 上記式(51A)及び上記式(51B)で表される第2のオルガノポリシロキサンにおいて、(R54R55SiO2/2)で表される構造単位(以下、二官能構造単位ともいう)は、下記式(51-2)で表される構造、すなわち、二官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基又はアルコキシ基を構成する構造を含んでいてもよい。 In the second organopolysiloxane represented by the above formula (51A) and the above formula (51B), the structural unit represented by (R54R55SiO 2/2 ) (hereinafter also referred to as a bifunctional structural unit) has the following formula ( 51-2), that is, a structure in which one of oxygen atoms bonded to a silicon atom in the bifunctional structural unit constitutes a hydroxy group or an alkoxy group may be included.
 (R54R55SiXO1/2) ・・・式(51-2) (R54R55SiXO 1/2 ) Formula (51-2)
 (R54R55SiO2/2)で表される構造単位は、下記式(51-b)で表される構造単位の破線で囲まれた部分を含み、更に下記式(51-2-b)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R54及びR55で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R54R55SiO2/2)で表される構造単位に含まれる。 The structural unit represented by (R54R55SiO 2/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula (51-b), and is further represented by the following formula (51-2-b). A portion surrounded by a broken line of the structural unit may be included. That is, a structural unit having a group represented by R54 and R55 and having an alkoxy group or a hydroxy group remaining at the terminal is also included in the structural unit represented by (R54R55SiO 2/2 ).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 上記式(51-2)及び式(51-2-b)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1~4のアルコキシ基を表す。上記式(51-b)、式(51-2)及び式(51-2-b)中のR54及びR55は、上記式(51A)及び上記式(51B)中のR54及びR55と同様の基である。 In the above formulas (51-2) and (51-2-b), X represents OH or OR, and OR represents a linear or branched alkoxy group having 1 to 4 carbon atoms. R54 and R55 in the formula (51-b), formula (51-2) and formula (51-2-b) are the same groups as R54 and R55 in the formula (51A) and the formula (51B). It is.
 上記式(51A)及び上記式(51B)で表される第2のオルガノポリシロキサンにおいて、(R56SiO3/2)で表される構造単位(以下、三官能構造単位ともいう)は、下記式(51-3)又は式(51-4)で表される構造、すなわち、三官能構造単位中の珪素原子に結合した酸素原子の2つがそれぞれヒドロキシ基若しくはアルコキシ基を構成する構造、又は、三官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基若しくはアルコキシ基を構成する構造を含んでいてもよい。 In the second organopolysiloxane represented by the above formula (51A) and the above formula (51B), the structural unit represented by (R56SiO 3/2 ) (hereinafter also referred to as trifunctional structural unit) has the following formula ( 51-3) or a structure represented by formula (51-4), that is, a structure in which two oxygen atoms bonded to a silicon atom in a trifunctional structural unit each constitute a hydroxy group or an alkoxy group, or a trifunctional One of the oxygen atoms bonded to the silicon atom in the structural unit may include a structure constituting a hydroxy group or an alkoxy group.
 (R56SiX1/2) ・・・式(51-3) (R56SiX 2 O 1/2 ) Formula (51-3)
 (R56SiXO2/2) ・・・式(51-4) (R56SiXO 2/2 ) Formula (51-4)
 (R56SiO3/2)で表される構造単位は、下記式(51-c)で表される構造単位の破線で囲まれた部分を含み、更に下記式(51-3-c)又は式(51-4-c)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R56で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R56SiO3/2)で表される構造単位に含まれる。 The structural unit represented by (R56SiO 3/2 ) includes a portion surrounded by a broken line of the structural unit represented by the following formula (51-c), and further includes the following formula (51-3-c) or formula ( A part surrounded by a broken line of the structural unit represented by 51-4-c) may be included. That is, a structural unit having a group represented by R56 and having an alkoxy group or a hydroxy group remaining at the terminal is also included in the structural unit represented by (R56SiO 3/2 ).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 上記式(51-3)、式(51-3-c)、式(51-4)及び式(51-4-c)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1~4のアルコキシ基を表す。上記式(51-c)、式(51-3)、式(51-3-c)、式(51-4)及び式(51-4-c)中のR56は、上記式(51A)及び上記式(51B)中のR56と同様の基である。 In the above formula (51-3), formula (51-3-c), formula (51-4) and formula (51-4-c), X represents OH or OR, and OR represents a linear or A branched alkoxy group having 1 to 4 carbon atoms is represented. R56 in the above formula (51-c), formula (51-3), formula (51-3-c), formula (51-4) and formula (51-4-c) represents the above formula (51A) and It is the same group as R56 in the above formula (51B).
 上記式(51-b)及び式(51-c)、式(51-2)~(51-4)、並びに式(51-2-b)、式(51-3-c)及び式(51-4-c)において、直鎖状又は分岐状の炭素数1~4のアルコキシ基としては特に限定されず、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、イソプロポキシ基、イソブトキシ基、sec-ブトキシ基及びt-ブトキシ基が挙げられる。 Formula (51-b) and Formula (51-c), Formulas (51-2) to (51-4), Formula (51-2-b), Formula (51-3-c) and Formula (51) In -4-c), the linear or branched alkoxy group having 1 to 4 carbon atoms is not particularly limited. For example, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, isopropoxy group , Isobutoxy group, sec-butoxy group and t-butoxy group.
 上記式(51A)中、p/(p+q+r)の下限は0.10、上限は0.50である。p/(p+q+r)が上記上限以下であると、硬化物の硬度が上がり、傷及びゴミの付着を防止でき、硬化物の耐熱性がより一層高くなり、かつ硬化物の剥離をより一層抑制できる。上記式(51A)中、p/(p+q+r)は、好ましくは0.45以下、より好ましくは0.40以下である。 In the above formula (51A), the lower limit of p / (p + q + r) is 0.10 and the upper limit is 0.50. When p / (p + q + r) is less than or equal to the above upper limit, the hardness of the cured product is increased, adhesion of scratches and dust can be prevented, the heat resistance of the cured product is further increased, and peeling of the cured product can be further suppressed. . In said formula (51A), p / (p + q + r) becomes like this. Preferably it is 0.45 or less, More preferably, it is 0.40 or less.
 上記式(51A)中、q/(p+q+r)の下限は0、上限は0.40である。q/(p+q+r)が0を超えると、硬化物が硬くなりすぎず、硬化物にクラックが生じ難くなる。上記式(51A)中、q/(p+q+r)は、好ましくは0.10以上、より好ましくは0.15以上である。なお、qが0であり、q/(p+q+r)が0である場合、上記式(51A)中、(R54R55SiO2/2)の構造単位は存在しない。 In the above formula (51A), the lower limit of q / (p + q + r) is 0, and the upper limit is 0.40. When q / (p + q + r) exceeds 0, the cured product does not become too hard and cracks are hardly generated in the cured product. In said formula (51A), q / (p + q + r) becomes like this. Preferably it is 0.10 or more, More preferably, it is 0.15 or more. In addition, when q is 0 and q / (p + q + r) is 0, the structural unit of (R54R55SiO 2/2 ) does not exist in the above formula (51A).
 上記式(51A)中、r/(p+q+r)の下限は0.40、上限は0.90である。r/(p+q+r)が上記下限以上であると、硬化物の硬度が上がり、傷及びゴミの付着を防止できる。r/(p+q+r)が上記上限以下であると、硬化性組成物の適正な粘度を維持することが容易であり、硬化物の密着性がより一層高くなる。 In the above formula (51A), the lower limit of r / (p + q + r) is 0.40, and the upper limit is 0.90. When r / (p + q + r) is not less than the above lower limit, the hardness of the cured product is increased, and scratches and dust can be prevented from adhering. When r / (p + q + r) is not more than the above upper limit, it is easy to maintain an appropriate viscosity of the curable composition, and the adhesiveness of the cured product is further enhanced.
 上記式(51B)中、p/(p+q+r)は0.05以上、0.50以下である。p/(p+q+r)が上記上限以下であると、硬化物の耐熱性がより一層高くなり、かつ硬化物の剥離をより一層抑制できる。上記式(51B)中、p/(p+q+r)は好ましくは0.10以上、好ましくは0.45以下である。 In the above formula (51B), p / (p + q + r) is 0.05 or more and 0.50 or less. When p / (p + q + r) is less than or equal to the above upper limit, the heat resistance of the cured product is further increased, and peeling of the cured product can be further suppressed. In said formula (51B), p / (p + q + r) becomes like this. Preferably it is 0.10 or more, Preferably it is 0.45 or less.
 上記式(51B)中、q/(p+q+r)は0.05以上、0.50以下である。q/(p+q+r)が上記下限以上であると、硬化物が硬くなりすぎず、硬化物にクラックが生じ難くなる。q/(p+q+r)が上記上限以下であると、硬化物のガスバリア性がより一層高くなる。上記式(51B)中、q/(p+q+r)は好ましくは0.10以上、好ましくは0.45以下である。 In the above formula (51B), q / (p + q + r) is 0.05 or more and 0.50 or less. When q / (p + q + r) is not less than the above lower limit, the cured product does not become too hard and cracks are hardly generated in the cured product. When q / (p + q + r) is not more than the above upper limit, the gas barrier property of the cured product is further enhanced. In the above formula (51B), q / (p + q + r) is preferably 0.10 or more, and preferably 0.45 or less.
 上記式(51B)中、r/(p+q+r)は0.20以上、0.80以下である。r/(p+q+r)が上記下限以上であると、硬化物の硬度が上がり、傷及びゴミの付着を防止でき、硬化物の耐熱性が高くなり、高温環境下で硬化物の厚みが減少し難くなる。r/(p+q+r)が上記上限以下であると、硬化性組成物の適正な粘度を維持することが容易であり、硬化物の密着性がより一層高くなる。 In the above formula (51B), r / (p + q + r) is 0.20 or more and 0.80 or less. When r / (p + q + r) is equal to or greater than the above lower limit, the hardness of the cured product is increased, scratches and dust can be prevented, the heat resistance of the cured product is increased, and the thickness of the cured product is less likely to decrease in a high temperature environment. Become. When r / (p + q + r) is not more than the above upper limit, it is easy to maintain an appropriate viscosity of the curable composition, and the adhesiveness of the cured product is further enhanced.
 上記第2のオルガノポリシロキサンについて、テトラメチルシラン(以下、TMS)を基準に29Si-核磁気共鳴分析(以下、NMR)を行うと、置換基の種類によって若干の変動は見られるものの、上記式(51A)及び上記式(51B)中の(R51R52R53SiO1/2)で表される構造単位に相当するピークは+10~-5ppm付近に現れ、上記式(51A)及び上記式(51B)中の(R54R55SiO2/2)で表される構造単位及び上記式(51-2)の二官能構造単位に相当する各ピークは-10~-50ppm付近に現れ、上記式(51A)及び上記式(51B)中の(R56SiO3/2)で表される構造単位、並びに上記式(51-3)及び式(51-4)の三官能構造単位に相当する各ピークは-50~-80ppm付近に現れる。 When the second organopolysiloxane was subjected to 29 Si-nuclear magnetic resonance analysis (hereinafter referred to as NMR) based on tetramethylsilane (hereinafter referred to as TMS), although some variation was observed depending on the type of substituent, The peak corresponding to the structural unit represented by (R51R52R53SiO 1/2 ) in the formula (51A) and the above formula (51B) appears in the vicinity of +10 to −5 ppm, and in the above formula (51A) and the above formula (51B) Each peak corresponding to the structural unit represented by (R54R55SiO 2/2 ) and the bifunctional structural unit of the above formula (51-2) appears in the vicinity of −10 to −50 ppm, and the above formula (51A) and the above formula (51B ), The peak corresponding to the structural unit represented by (R56SiO 3/2 ) and the trifunctional structural unit of the above formulas (51-3) and (51-4) is −5 Appears around 0 to -80 ppm.
 従って、29Si-NMRを測定し、それぞれのシグナルのピーク面積を比較することによって上記式(51A)及び上記式(51B)中の各構造単位の比率を測定できる。 Therefore, the ratio of each structural unit in the above formula (51A) and the above formula (51B) can be measured by measuring 29 Si-NMR and comparing the peak areas of the respective signals.
 但し、上記TMSを基準にした29Si-NMRの測定で上記式(51A)及び上記式(51B)中の構造単位の見分けがつかない場合は、29Si-NMRの測定結果だけではなく、H-NMRの測定結果を必要に応じて用いることにより、上記式(51A)及び上記式(51B)中の各構造単位の比率を見分けることができる。 However, in the case where the structural unit in the formula (51A) and the formula (51B) cannot be distinguished by the 29 Si-NMR measurement based on the TMS, not only the 29 Si-NMR measurement result but also 1 By using the measurement results of H-NMR as necessary, the ratio of each structural unit in the above formula (51A) and the above formula (51B) can be distinguished.
 上記第1のオルガノポリシロキサン100重量部に対して、上記第2のオルガノポリシロキサンの含有量は好ましくは10重量部以上、より好ましくは15重量部以上、更に好ましくは20重量部以上、好ましくは400重量部以下、より好ましくは300重量部以下、更に好ましくは200重量部以下である。上記第1,第2のオルガノポリシロキサンの含有量が上記下限以上及び上記上限以下であると、硬化性により一層優れた硬化性組成物が得られる。 The content of the second organopolysiloxane is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, still more preferably 20 parts by weight or more, preferably 100 parts by weight of the first organopolysiloxane. 400 parts by weight or less, more preferably 300 parts by weight or less, still more preferably 200 parts by weight or less. When the content of the first and second organopolysiloxanes is not less than the above lower limit and not more than the above upper limit, a curable composition more excellent in curability can be obtained.
 (第1,第2のオルガノポリシロキサンの他の性質及びその合成方法)
 上記第1のオルガノポリシロキサンの数平均分子量(Mn)は、好ましくは500以上、より好ましくは1000以上、更に好ましくは5000以上、好ましくは200000以下、より好ましくは100000以下、更に好ましくは60000以下、特に好ましくは10000以下、最も好ましくは8000以下である。上記式(1A)で表される第1のオルガノポリシロキサンの数平均分子量(Mn)は、好ましくは500以上、より好ましくは1000以上、更に好ましくは5000以上、好ましくは200000以下、より好ましくは100000以下、更に好ましくは60000以下である。上記式(1B)で表される第1のオルガノポリシロキサンの数平均分子量(Mn)は、好ましくは500以上、より好ましくは1000以上、好ましくは10000以下、より好ましくは8000以下である。上記第2のオルガノポリシロキサン、上記式(51A)で表される第2のオルガノポリシロキサン及び上記式(51B)で表される第2のオルガノポリシロキサンの数平均分子量(Mn)はそれぞれ、好ましくは500以上、より好ましくは1000以上、好ましくは20000以下、より好ましくは10000以下である。数平均分子量が上記下限以上であると、熱硬化時に揮発成分が少なくなり、高温環境下で硬化物の厚みが減少しにくくなる。数平均分子量が上記上限以下であると、粘度調節が容易である。
(Other properties of the first and second organopolysiloxanes and synthesis methods thereof)
The number average molecular weight (Mn) of the first organopolysiloxane is preferably 500 or more, more preferably 1000 or more, still more preferably 5000 or more, preferably 200000 or less, more preferably 100000 or less, still more preferably 60000 or less, Particularly preferred is 10,000 or less, and most preferred is 8000 or less. The number average molecular weight (Mn) of the first organopolysiloxane represented by the above formula (1A) is preferably 500 or more, more preferably 1000 or more, further preferably 5000 or more, preferably 200000 or less, more preferably 100000. Hereinafter, it is more preferably 60000 or less. The number average molecular weight (Mn) of the first organopolysiloxane represented by the above formula (1B) is preferably 500 or more, more preferably 1000 or more, preferably 10,000 or less, more preferably 8000 or less. The number average molecular weights (Mn) of the second organopolysiloxane, the second organopolysiloxane represented by the formula (51A), and the second organopolysiloxane represented by the formula (51B) are each preferably Is 500 or more, more preferably 1000 or more, preferably 20000 or less, more preferably 10,000 or less. When the number average molecular weight is not less than the above lower limit, the volatile components are reduced at the time of thermosetting, and the thickness of the cured product is hardly reduced under a high temperature environment. When the number average molecular weight is not more than the above upper limit, viscosity adjustment is easy.
 上記数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレンを標準物質として求めた値である。上記数平均分子量(Mn)は、Waters社製の測定装置(カラム:昭和電工社製 Shodex GPC LF-804(長さ300mm)を2本、測定温度:40℃、流速:1mL/分、溶媒:テトラヒドロフラン、標準物質:ポリスチレン)を用いて測定された値を意味する。 The number average molecular weight (Mn) is a value obtained by using polystyrene as a standard substance using gel permeation chromatography (GPC). The number average molecular weight (Mn) is determined by two measuring devices manufactured by Waters (column: Shodex GPC LF-804 (length: 300 mm) manufactured by Showa Denko KK), measuring temperature: 40 ° C., flow rate: 1 mL / min, solvent: Tetrahydrofuran, standard substance: polystyrene) means a value measured.
 上記第1,第2のオルガノポリシロキサンを合成する方法としては特に限定されず、アルコキシシラン化合物を加水分解し縮合反応させる方法、及びクロロシラン化合物を加水分解し縮合させる方法が挙げられる。なかでも、反応の制御の観点からアルコキシシラン化合物を加水分解し縮合させる方法が好ましい。 The method for synthesizing the first and second organopolysiloxanes is not particularly limited, and examples thereof include a method in which an alkoxysilane compound is hydrolyzed and subjected to a condensation reaction, and a method in which a chlorosilane compound is hydrolyzed and condensed. Especially, the method of hydrolyzing and condensing an alkoxysilane compound from a viewpoint of reaction control is preferable.
 アルコキシシラン化合物を加水分解し縮合させる方法としては、例えば、アルコキシシラン化合物を、水と酸性触媒又は塩基性触媒との存在下で反応させる方法が挙げられる。また、ジシロキサン化合物を加水分解して用いてもよい。 Examples of the method of hydrolyzing and condensing the alkoxysilane compound include a method of reacting an alkoxysilane compound in the presence of water and an acidic catalyst or a basic catalyst. Further, the disiloxane compound may be hydrolyzed and used.
 上記第1のオルガノポリシロキサンにアルケニル基を導入するための有機珪素化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、メトキシジメチルビニルシラン、ビニルジメチルエトキシシラン及び1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン等が挙げられる。 Examples of the organosilicon compound for introducing an alkenyl group into the first organopolysiloxane include vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, methoxydimethylvinylsilane, vinyldimethylethoxysilane, and 1,3-divinyl. -1,1,3,3-tetramethyldisiloxane and the like.
 上記第2のオルガノポリシロキサンに珪素原子に結合した水素原子を導入するための有機珪素化合物としては、トリメトキシシラン、トリエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、及び1,1,3,3-テトラメチルジシロキサン等が挙げられる。 Examples of the organosilicon compound for introducing a hydrogen atom bonded to a silicon atom into the second organopolysiloxane include trimethoxysilane, triethoxysilane, methyldimethoxysilane, methyldiethoxysilane, and 1,1,3, Examples include 3-tetramethyldisiloxane.
 上記第1,第2のオルガノポリシロキサンに必要に応じてアリール基を導入するための有機珪素化合物としては、トリフェニルメトキシシラン、トリフェニルエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチル(フェニル)ジメトキシシラン、及びフェニルトリメトキシシラン等が挙げられる。 Examples of the organosilicon compound for introducing an aryl group into the first and second organopolysiloxanes as necessary include triphenylmethoxysilane, triphenylethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methyl (phenyl) ) Dimethoxysilane, phenyltrimethoxysilane and the like.
 上記第1,第2のオルガノポリシロキサンを得るために用いることができる他の有機珪素化合物としては、例えば、トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、イソプロピル(メチル)ジメトキシシラン、シクロヘキシル(メチル)ジメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン及びオクチルトリメトキシシラン等が挙げられる。 Examples of other organosilicon compounds that can be used to obtain the first and second organopolysiloxanes include trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and isopropyl (methyl) dimethoxy. Examples include silane, cyclohexyl (methyl) dimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, hexyltrimethoxysilane, and octyltrimethoxysilane.
 上記酸性触媒としては、例えば、無機酸、有機酸、無機酸の酸無水物及びその誘導体、並びに有機酸の酸無水物及びその誘導体が挙げられる。 Examples of the acidic catalyst include inorganic acids, organic acids, acid anhydrides of inorganic acids and derivatives thereof, and acid anhydrides of organic acids and derivatives thereof.
 上記無機酸としては、例えば、塩酸、リン酸、ホウ酸及び炭酸が挙げられる。上記有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、乳酸、リンゴ酸、酒石酸、クエン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸及びオレイン酸が挙げられる。 Examples of the inorganic acid include hydrochloric acid, phosphoric acid, boric acid, and carbonic acid. Examples of the organic acid include formic acid, acetic acid, propionic acid, butyric acid, lactic acid, malic acid, tartaric acid, citric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid and oleic acid. Is mentioned.
 上記塩基性触媒としては、例えば、アルカリ金属の水酸化物、アルカリ金属のアルコキシド及びアルカリ金属のシラノール化合物が挙げられる。 Examples of the basic catalyst include alkali metal hydroxides, alkali metal alkoxides, and alkali metal silanol compounds.
 上記アルカリ金属の水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム及び水酸化セシウムが挙げられる。上記アルカリ金属のアルコキシドとしては、例えば、ナトリウム-t-ブトキシド、カリウム-t-ブトキシド及びセシウム-t-ブトキシドが挙げられる。 Examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide and cesium hydroxide. Examples of the alkali metal alkoxide include sodium-t-butoxide, potassium-t-butoxide, and cesium-t-butoxide.
 上記アルカリ金属のシラノール化合物としては、例えば、ナトリウムシラノレート化合物、カリウムシラノレート化合物及びセシウムシラノレート化合物が挙げられる。なかでも、カリウム系触媒又はセシウム系触媒が好ましい。 Examples of the alkali metal silanol compound include a sodium silanolate compound, a potassium silanolate compound, and a cesium silanolate compound. Among these, a potassium catalyst or a cesium catalyst is preferable.
 (ヒドロシリル化反応用触媒)
 本発明に係る光半導体装置用硬化性組成物に含まれているヒドロシリル化反応用触媒は、上記第1のオルガノポリシロキサン中のアルケニル基と、上記第2のオルガノポリシロキサン中の珪素原子に結合した水素原子とをヒドロシリル化反応させる触媒である。
(Catalyst for hydrosilylation reaction)
The hydrosilylation reaction catalyst contained in the curable composition for optical semiconductor devices according to the present invention is bonded to an alkenyl group in the first organopolysiloxane and a silicon atom in the second organopolysiloxane. It is a catalyst for the hydrosilylation reaction between the hydrogen atom.
 上記ヒドロシリル化反応用触媒として、ヒドロシリル化反応を進行させる各種の触媒を用いることができる。上記ヒドロシリル化反応用触媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。 As the hydrosilylation reaction catalyst, various catalysts that cause the hydrosilylation reaction to proceed can be used. As for the said catalyst for hydrosilylation reaction, only 1 type may be used and 2 or more types may be used together.
 上記ヒドロシリル化反応用触媒としては、例えば、白金系触媒、ロジウム系触媒及びパラジウム系触媒等が挙げられる。硬化物の透明性が高くなるため、白金系触媒が好ましい。 Examples of the hydrosilylation reaction catalyst include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Since the transparency of the cured product is increased, a platinum-based catalyst is preferable.
 上記白金系触媒としては、白金粉末、塩化白金酸、白金-アルケニルシロキサン錯体、白金-オレフィン錯体及び白金-カルボニル錯体が挙げられる。特に、白金-アルケニルシロキサン錯体又は白金-オレフィン錯体が好ましい。 Examples of the platinum-based catalyst include platinum powder, chloroplatinic acid, platinum-alkenylsiloxane complex, platinum-olefin complex, and platinum-carbonyl complex. In particular, a platinum-alkenylsiloxane complex or a platinum-olefin complex is preferred.
 上記白金-アルケニルシロキサン錯体におけるアルケニルシロキサンとしては、例えば、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、及び1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等が挙げられる。上記白金-オレフィン錯体におけるオレフィンとしては、例えば、アリルエーテル及び1,6-ヘプタジエン等が挙げられる。 Examples of the alkenylsiloxane in the platinum-alkenylsiloxane complex include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane and 1,3,5,7-tetramethyl-1,3,5. , 7-tetravinylcyclotetrasiloxane and the like. Examples of the olefin in the platinum-olefin complex include allyl ether and 1,6-heptadiene.
 上記白金-アルケニルシロキサン錯体及び白金-オレフィン錯体の安定性が向上するため、上記白金-アルケニルシロキサン錯体又は白金-オレフィン錯体に、アルケニルシロキサン、オルガノシロキサンオリゴマー、アリルエーテル又はオレフィンを添加することが好ましい。上記アルケニルシロキサンは、好ましくは1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンである。上記オルガノシロキサンオリゴマーは、好ましくはジメチルシロキサンオリゴマーである。上記オレフィンは、好ましくは1,6-ヘプタジエンである。 In order to improve the stability of the platinum-alkenylsiloxane complex and the platinum-olefin complex, it is preferable to add alkenylsiloxane, organosiloxane oligomer, allyl ether or olefin to the platinum-alkenylsiloxane complex or platinum-olefin complex. The alkenylsiloxane is preferably 1,3-divinyl-1,1,3,3-tetramethyldisiloxane. The organosiloxane oligomer is preferably a dimethylsiloxane oligomer. The olefin is preferably 1,6-heptadiene.
 硬化性組成物中で、上記ヒドロシリル化反応用触媒の含有量は、金属原子(白金のアルケニル錯体の場合には白金原子)の重量単位で好ましくは0.01ppm以上、より好ましくは1ppm以上、好ましくは1000ppm以下、より好ましくは500ppm以下である。上記ヒドロシリル化反応用触媒の含有量が上記下限以上であると、硬化性組成物を十分に硬化させることが容易である。上記ヒドロシリル化反応用触媒の含有量が上記上限以下であると、硬化物の着色の問題が生じ難い。 In the curable composition, the content of the catalyst for hydrosilylation reaction is preferably 0.01 ppm or more, more preferably 1 ppm or more, preferably in terms of weight units of metal atoms (platinum atoms in the case of platinum alkenyl complexes). Is 1000 ppm or less, more preferably 500 ppm or less. When the content of the hydrosilylation reaction catalyst is not less than the above lower limit, it is easy to sufficiently cure the curable composition. When the content of the catalyst for hydrosilylation reaction is not more than the above upper limit, the problem of coloring of the cured product hardly occurs.
 (第1のシラン化合物)
 本発明に係る光半導体装置用硬化性組成物は、ウレイド基又はイソシアネート基を有する第1のシラン化合物を含む。この特定の基を有する該第1のシラン化合物の使用により、光半導体装置が高温高湿下での過酷な環境で使用されても、硬化性組成物が硬化した硬化物の接着対象物からの剥離が生じ難くなる。上記第1のシラン化合物は、ウレイド基を有していてもよく、イソシアネート基を有していてもよい。
(First silane compound)
The curable composition for optical semiconductor devices according to the present invention includes a first silane compound having a ureido group or an isocyanate group. By using the first silane compound having this specific group, even if the optical semiconductor device is used in a harsh environment under high temperature and high humidity, the curable composition is cured from the bonded object of the cured product. Peeling is less likely to occur. The first silane compound may have a ureido group or an isocyanate group.
 さらに、アルケニル基を有する第1のオルガノポリシロキサンと、珪素原子に結合した水素原子を有する第2のオルガノポリシロキサンと、ヒドロシリル化反応用触媒とを含む組成において、ウレイド基又はイソシアネート基を有する第1のシラン化合物を用いることにより、光半導体装置用硬化性組成物の粘度が変化し難くなり、光半導体装置用硬化性組成物のポットライフが良好になる。 Further, in the composition comprising the first organopolysiloxane having an alkenyl group, the second organopolysiloxane having a hydrogen atom bonded to a silicon atom, and a catalyst for hydrosilylation reaction, the second organopolysiloxane having an ureido group or an isocyanate group. By using 1 silane compound, the viscosity of the curable composition for optical semiconductor devices hardly changes, and the pot life of the curable composition for optical semiconductor devices is improved.
 上記第1のシラン化合物は、ウレイド基を有していてもよく、イソシアネート基を有していてもよい。硬化物の接着対象物に対する接着性をより一層高くする観点からは、上記第1のシラン化合物は、ウレイド基を有することが好ましい。また、ウレイド基を有する第1のシラン化合物の使用により、光半導体装置において大気中の含硫黄ガスによる電極変色をより一層抑制することができる。 The first silane compound may have a ureido group or an isocyanate group. From the viewpoint of further increasing the adhesiveness of the cured product to the object to be bonded, the first silane compound preferably has a ureido group. In addition, the use of the first silane compound having a ureido group can further suppress electrode discoloration due to sulfur-containing gas in the atmosphere in the optical semiconductor device.
 硬化物の接着対象物からの剥離をより一層抑制する観点からは、上記第1のシラン化合物は、下記式(S1)又は下記式(S2)で表される第1のシラン化合物であることが好ましい。硬化物の接着対象物に対する接着性がより一層高め、光半導体装置において大気中の含硫黄ガスによる電極変色を更に一層抑制する観点からは、上記第1のシラン化合物は、下記式(S1)で表される第1のシラン化合物であることが好ましい。 From the viewpoint of further suppressing the peeling of the cured product from the object to be bonded, the first silane compound is a first silane compound represented by the following formula (S1) or the following formula (S2). preferable. From the viewpoint of further improving the adhesion of the cured product to the object to be bonded and further suppressing electrode discoloration due to sulfur-containing gas in the atmosphere in the optical semiconductor device, the first silane compound is represented by the following formula (S1). It is preferable that it is the 1st silane compound represented.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 上記式(S1)中、X1はアルコキシ基を表し、X2及びX3はそれぞれアルコキシ基又は炭素数1~8の炭化水素基を表し、R4は窒素原子と珪素原子とを直接結合している単結合を表すか又は炭素数1~8の炭化水素基を表す。 In the above formula (S1), X1 represents an alkoxy group, X2 and X3 each represents an alkoxy group or a hydrocarbon group having 1 to 8 carbon atoms, and R4 is a single bond directly bonding a nitrogen atom and a silicon atom. Or a hydrocarbon group having 1 to 8 carbon atoms.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記式(S2)中、X1はアルコキシ基を表し、X2及びX3はそれぞれアルコキシ基又は炭素数1~8の炭化水素基を表し、R4は、窒素原子と珪素原子とを直接結合している単結合を表すか又は炭素数1~8の炭化水素基を表す。上記式(S1)及び上記式(S2)中のX1におけるアルコキシ基の炭素数は1~8であることが好ましい。上記式(S1)及び上記式(S2)中のX2及びX3がアルコキシ基である場合に、X2及びX3におけるアルコキシ基の炭素数は1~8であることが好ましい。 In the above formula (S2), X1 represents an alkoxy group, X2 and X3 each represents an alkoxy group or a hydrocarbon group having 1 to 8 carbon atoms, and R4 represents a single bond directly connecting a nitrogen atom and a silicon atom. It represents a bond or a hydrocarbon group having 1 to 8 carbon atoms. The number of carbon atoms of the alkoxy group in X1 in the formula (S1) and the formula (S2) is preferably 1-8. When X2 and X3 in the formula (S1) and the formula (S2) are alkoxy groups, the alkoxy group in X2 and X3 preferably has 1 to 8 carbon atoms.
 上記式(S1)で表される第1のシラン化合物は、下記式(S1-1)で表される第1のシラン化合物であることが好ましい。下記式(S1-1)で表される第1のシラン化合物の使用により、硬化物の接着対象物に対する接着性がより一層高くなる。 The first silane compound represented by the above formula (S1) is preferably the first silane compound represented by the following formula (S1-1). By using the first silane compound represented by the following formula (S1-1), the adhesion of the cured product to the object to be bonded is further enhanced.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記式(S1-1)中、R1~R3はそれぞれ炭素数1~8の炭化水素基を表し、R4は窒素原子と珪素原子とを直接結合している単結合を表すか又は炭素数1~8の炭化水素基を表す。 In the above formula (S1-1), R1 to R3 each represent a hydrocarbon group having 1 to 8 carbon atoms, and R4 represents a single bond directly bonding a nitrogen atom and a silicon atom, or 1 to 8 hydrocarbon groups are represented.
 上記式(S2)で表される第1のシラン化合物は、下記式(S2-1)で表される第1のシラン化合物であることが好ましい。下記式(S2-1)で表される第1のシラン化合物の使用により、硬化物の接着対象物に対する接着性がより一層高くなる。 The first silane compound represented by the above formula (S2) is preferably the first silane compound represented by the following formula (S2-1). By using the first silane compound represented by the following formula (S2-1), the adhesion of the cured product to the object to be bonded is further enhanced.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上記式(S2-1)中、R1~R3はそれぞれ炭素数1~8の炭化水素基を表し、R4は、窒素原子と珪素原子とを直接結合している単結合を表すか又は炭素数1~8の炭化水素基を表す。 In the above formula (S2-1), R1 to R3 each represent a hydrocarbon group having 1 to 8 carbon atoms, and R4 represents a single bond directly bonding a nitrogen atom and a silicon atom, or 1 carbon atom. Represents 8 to 8 hydrocarbon groups.
 上記第1,第2のオルガノポリシロキサンの合計100重量部に対して、上記第1のシラン化合物の含有量は好ましくは0.01重量部以上、より好ましくは0.1重量部以上、好ましくは5重量部以下、より好ましくは3重量部以下である。上記第1のシラン化合物の含有量が上記下限以上であると、硬化物の接着対象物からの剥離をより一層抑制できる。上記第1のシラン化合物の含有量が上記上限以下であると、余剰の上記第1のシランカップリング剤による封止剤の表面のべたつきの悪化を防ぐことができる。 The content of the first silane compound is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 100 parts by weight in total for the first and second organopolysiloxanes. 5 parts by weight or less, more preferably 3 parts by weight or less. When the content of the first silane compound is equal to or higher than the lower limit, peeling of the cured product from the adhesion target can be further suppressed. When the content of the first silane compound is not more than the above upper limit, it is possible to prevent the surface stickiness of the sealing agent from being deteriorated due to the excessive first silane coupling agent.
 (第2のシラン化合物)
 本発明に係る光半導体装置用硬化性組成物は、ウレイド基又はイソシアネート基を有する第1のシラン化合物とは異なる第2のシラン化合物を含むことが好ましい。上記第2のシラン化合物は、ウレイド基とイソシアネート基とを有さない。上記第1のシラン化合物とともに上記第2のシラン化合物を用いることにより、硬化物の接着対象物からの剥離をより一層抑制できる。上記第2のシラン化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
(Second silane compound)
The curable composition for optical semiconductor devices according to the present invention preferably contains a second silane compound different from the first silane compound having a ureido group or an isocyanate group. The second silane compound does not have a ureido group and an isocyanate group. By using the second silane compound together with the first silane compound, peeling of the cured product from the object to be bonded can be further suppressed. As for the said 2nd silane compound, only 1 type may be used and 2 or more types may be used together.
 上記第2のシラン化合物としては特に限定されず、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、及びN-フェニル-3-アミノプロピルトリメトキシシラン等が挙げられる。 The second silane compound is not particularly limited, and examples thereof include vinyltriethoxysilane, vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, Examples include 3- (meth) acryloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane.
 上記「(メタ)アクリロイル」は、アクリロイルとメタクリロイルとを示す。上記「(メタ)アクリロキシ」は、アクリロキシとメタクリロキシとを示す。 The above “(meth) acryloyl” indicates acryloyl and methacryloyl. The “(meth) acryloxy” refers to acryloxy and methacryloxy.
 硬化物の接着対象物からの剥離をより一層抑制する観点からは、上記第2のシラン化合物は、エポキシ基、ビニル基又は(メタ)アクリロイル基を有することが好ましい。 From the viewpoint of further suppressing peeling of the cured product from the object to be bonded, the second silane compound preferably has an epoxy group, a vinyl group or a (meth) acryloyl group.
 硬化物の接着対象物からの剥離を更に一層抑制する観点からは、上記第2のシラン化合物は、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリメトキシシラン又は3-(メタ)アクリロキシプロピルトリメトキシシランであることが好ましい。 From the viewpoint of further suppressing peeling of the cured product from the object to be bonded, the second silane compound is 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Vinyltrimethoxysilane or 3- (meth) acryloxypropyltrimethoxysilane is preferable.
 上記第1,第2のオルガノポリシロキサンの合計100重量部に対して、上記第2のシラン化合物の含有量は好ましくは0.01重量部以上、より好ましくは0.1重量部以上、好ましくは5重量部以下、より好ましくは3重量部以下である。上記第2のシラン化合物の含有量が上記下限以上であると、硬化物の接着対象物からの剥離をより一層抑制できる。上記第2のシラン化合物の含有量が上記上限以下であると、余剰の上記第2のシランカップリング剤による封止剤の表面のべたつきの悪化を防ぐことができる。 The content of the second silane compound is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 100 parts by weight based on the total of the first and second organopolysiloxanes. 5 parts by weight or less, more preferably 3 parts by weight or less. When the content of the second silane compound is equal to or more than the lower limit, peeling of the cured product from the adhesion target can be further suppressed. When the content of the second silane compound is not more than the above upper limit, it is possible to prevent the surface stickiness of the sealing agent from being deteriorated due to an excessive second silane coupling agent.
 (酸化珪素粒子)
 本発明に係る光半導体装置用硬化性組成物は、酸化珪素粒子をさらに含むことが好ましい。本発明に係る光半導体装置用硬化性組成物が光半導体装置用封止剤である場合に、該封止剤が酸化珪素粒子をさらに含むことが好ましい。該酸化珪素粒子の使用により、硬化物の耐熱性及び耐光性を損なうことなく、硬化性組成物の粘度を適当な範囲に調整できる。従って、硬化性組成物の取り扱い性を高めることができる。
(Silicon oxide particles)
The curable composition for optical semiconductor devices according to the present invention preferably further contains silicon oxide particles. When the curable composition for optical semiconductor devices according to the present invention is an encapsulant for optical semiconductor devices, the encapsulant preferably further contains silicon oxide particles. By using the silicon oxide particles, the viscosity of the curable composition can be adjusted to an appropriate range without impairing the heat resistance and light resistance of the cured product. Therefore, the handleability of the curable composition can be improved.
 上記酸化珪素粒子の一次粒子径は、好ましくは5nm以上、より好ましくは8nm以上、好ましくは200nm以下、より好ましくは150nm以下である。上記酸化珪素粒子の一次粒子径が上記下限以上であると、酸化珪素粒子の分散性がより一層高くなり、硬化物の透明性がより一層高くなる。上記酸化珪素粒子の一次粒子径が上記上限以下であると、25℃における粘度の上昇効果を充分に得ることができ、かつ温度上昇における粘度の低下を抑制できる。 The primary particle diameter of the silicon oxide particles is preferably 5 nm or more, more preferably 8 nm or more, preferably 200 nm or less, more preferably 150 nm or less. When the primary particle diameter of the silicon oxide particles is not less than the above lower limit, the dispersibility of the silicon oxide particles is further increased, and the transparency of the cured product is further increased. When the primary particle diameter of the silicon oxide particles is not more than the above upper limit, it is possible to sufficiently obtain the effect of increasing the viscosity at 25 ° C. and to suppress the decrease in the viscosity due to the temperature increase.
 上記酸化珪素粒子の一次粒子径は、以下のようにして測定される。光半導体装置用硬化性組成物の硬化物を透過型電子顕微鏡(日本電子社製「JEM-2100」)を用いて観察する。視野中の100個の酸化珪素粒子の一次粒子の大きさをそれぞれ測定し、測定値の平均値を一次粒子径とする。上記一次粒子径は、上記酸化珪素粒子が球形である場合には酸化珪素粒子の直径の平均値を意味し、非球形である場合には酸化珪素粒子の長径の平均値を意味する。 The primary particle diameter of the silicon oxide particles is measured as follows. The cured product of the curable composition for optical semiconductor devices is observed using a transmission electron microscope (“JEM-2100” manufactured by JEOL Ltd.). The size of the primary particles of 100 silicon oxide particles in the visual field is measured, and the average value of the measured values is defined as the primary particle diameter. The primary particle diameter means an average value of the diameters of the silicon oxide particles when the silicon oxide particles are spherical, and an average value of the major diameters of the silicon oxide particles when the silicon oxide particles are non-spherical.
 上記酸化珪素粒子のBET比表面積は、好ましくは30m/g以上、好ましくは400m/g以下である。上記酸化珪素粒子のBET比表面積が30m/g以上であると、硬化性組成物の25℃における粘度を好適な範囲に制御でき、温度上昇における粘度の低下を抑制できる。上記酸化珪素粒子のBET比表面積が400m/g以下であると、酸化珪素粒子の凝集が生じ難くなり、分散性を高くすることができ、更に硬化物の透明性をより一層高くすることができる。 The BET specific surface area of the silicon oxide particles is preferably 30 m 2 / g or more, and preferably 400 m 2 / g or less. When the BET specific surface area of the silicon oxide particles is 30 m 2 / g or more, the viscosity at 25 ° C. of the curable composition can be controlled within a suitable range, and the decrease in the viscosity due to a temperature rise can be suppressed. When the BET specific surface area of the silicon oxide particles is 400 m 2 / g or less, the aggregation of the silicon oxide particles hardly occurs, the dispersibility can be increased, and the transparency of the cured product can be further increased. it can.
 上記酸化珪素粒子としては特に限定されず、例えば、フュームドシリカ、溶融シリカ等の乾式法で製造されたシリカ、並びにコロイダルシリカ、ゾルゲルシリカ、沈殿シリカ等の湿式法で製造されたシリカ等が挙げられる。なかでも、揮発成分が少なく、かつ透明性がより一層高い硬化物を得る観点からは、上記酸化珪素粒子として、フュームドシリカが好適に用いられる。 The silicon oxide particles are not particularly limited, and examples thereof include silica produced by a dry method such as fumed silica and fused silica, and silica produced by a wet method such as colloidal silica, sol-gel silica and precipitated silica. It is done. Among these, fumed silica is suitably used as the silicon oxide particles from the viewpoint of obtaining a cured product with less volatile components and higher transparency.
 上記フュームドシリカとしては、例えば、Aerosil 50(比表面積:50m/g)、Aerosil 90(比表面積:90m/g)、Aerosil 130(比表面積:130m/g)、Aerosil 200(比表面積:200m/g)、Aerosil 300(比表面積:300m/g)、及びAerosil 380(比表面積:380m/g)(いずれも日本アエロジル社製)等が挙げられる。 Examples of the fumed silica include Aerosil 50 (specific surface area: 50 m 2 / g), Aerosil 90 (specific surface area: 90 m 2 / g), Aerosil 130 (specific surface area: 130 m 2 / g), Aerosil 200 (specific surface area). : 200 m 2 / g), Aerosil 300 (specific surface area: 300 m 2 / g), Aerosil 380 (specific surface area: 380 m 2 / g) (all manufactured by Nippon Aerosil Co., Ltd.) and the like.
 上記酸化珪素粒子は、有機珪素化合物により表面処理されていることが好ましい。この表面処理により、酸化珪素粒子の分散性が非常に高くなり、硬化性組成物の温度上昇による粘度の低下をより一層抑制できる。 The silicon oxide particles are preferably surface-treated with an organosilicon compound. By this surface treatment, the dispersibility of the silicon oxide particles becomes very high, and it is possible to further suppress the decrease in the viscosity due to the temperature rise of the curable composition.
 上記第1のオルガノポリシロキサンと上記第2のオルガノポリシロキサンとの合計100重量部に対して、上記酸化珪素粒子の含有量は好ましくは0.1重量部以上、より好ましくは0.5重量部以上、更に好ましくは1重量部以上、好ましくは40重量部以下、より好ましくは35重量部以下、更に好ましくは20重量部以下である。上記酸化珪素粒子の含有量が上記下限以上であると、硬化時の粘度低下を抑制することが可能になる。上記酸化珪素粒子の含有量が上記上限以下であると、硬化性組成物の粘度をより一層適正な範囲に制御でき、かつ硬化物の透明性がより一層高くなる。 The content of the silicon oxide particles is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight with respect to a total of 100 parts by weight of the first organopolysiloxane and the second organopolysiloxane. More preferably, it is 1 part by weight or more, preferably 40 parts by weight or less, more preferably 35 parts by weight or less, and still more preferably 20 parts by weight or less. When the content of the silicon oxide particles is equal to or higher than the lower limit, it is possible to suppress a decrease in viscosity at the time of curing. When the content of the silicon oxide particles is not more than the above upper limit, the viscosity of the curable composition can be controlled to a more appropriate range, and the transparency of the cured product is further enhanced.
 (蛍光体)
 本発明に係る光半導体装置用硬化性組成物は、蛍光体をさらに含んでいてもよい。本発明に係る光半導体装置用硬化性組成物が光半導体装置用封止剤である場合に、該封止剤が蛍光体をさらに含むことが好ましい。また、本発明に係る光半導体装置用硬化性組成物は、蛍光体を含んでいなくてもよい。この場合には、硬化性組成物の使用時に蛍光体が添加されてもよい。
(Phosphor)
The curable composition for optical semiconductor devices according to the present invention may further contain a phosphor. When the curable composition for optical semiconductor devices according to the present invention is an encapsulant for optical semiconductor devices, the encapsulant preferably further contains a phosphor. Moreover, the curable composition for optical semiconductor devices which concerns on this invention does not need to contain fluorescent substance. In this case, a phosphor may be added when the curable composition is used.
 上記蛍光体は、例えば、光半導体装置用硬化性組成物を用いて封止する発光素子が発する光を吸収し、蛍光を発生することによって、最終的に所望の色の光を得ることができるように作用する。上記蛍光体は、発光素子が発する光によって励起され、蛍光を発し、発光素子が発する光と蛍光体が発する蛍光との組み合わせによって、所望の色の光が得られる。 For example, the phosphor absorbs light emitted from a light-emitting element that is sealed using the curable composition for optical semiconductor devices, and generates fluorescence to finally obtain light of a desired color. Acts as follows. The phosphor is excited by light emitted from the light emitting element to emit fluorescence, and light of a desired color is obtained by a combination of light emitted from the light emitting element and fluorescence emitted from the phosphor.
 例えば、発光素子として紫外線LEDチップを使用して最終的に白色光を得ることを目的とする場合には、青色蛍光体、赤色蛍光体及び緑色蛍光体を組み合わせて用いることが好ましい。発光素子として青色LEDチップを使用して最終的に白色光を得ることを目的とする場合には、緑色蛍光体及び赤色蛍光体を組み合わせて用いるか、又は、黄色蛍光体を用いることが好ましい。上記蛍光体は、1種のみが用いられてもよく、2種以上が併用されてもよい。 For example, when it is intended to finally obtain white light using an ultraviolet LED chip as a light emitting element, it is preferable to use a combination of a blue phosphor, a red phosphor and a green phosphor. When it is intended to finally obtain white light using a blue LED chip as a light emitting element, it is preferable to use a combination of a green phosphor and a red phosphor, or a yellow phosphor. As for the said fluorescent substance, only 1 type may be used and 2 or more types may be used together.
 所望の色の光を得るように、上記蛍光体の含有量は適宜調整でき、特に限定されない。本発明に係る光半導体装置用硬化性組成物100重量部に対して、上記蛍光体の含有量は、好ましくは0.1重量部以上、好ましくは40重量部以下である。光半導体装置用硬化性組成物の蛍光体を除く全成分100重量部に対して、上記蛍光体の含有量は好ましくは0.1重量部以上、好ましくは40重量部以下である。 The content of the phosphor can be adjusted as appropriate so as to obtain light of a desired color, and is not particularly limited. The content of the phosphor is preferably 0.1 parts by weight or more and preferably 40 parts by weight or less with respect to 100 parts by weight of the curable composition for optical semiconductor devices according to the present invention. The content of the phosphor is preferably 0.1 parts by weight or more and preferably 40 parts by weight or less with respect to 100 parts by weight of all components excluding the phosphor of the curable composition for optical semiconductor devices.
 (他の成分)
 本発明に係る光半導体装置用硬化性組成物は、必要に応じて、分散剤、酸化防止剤、消泡剤、着色剤、変性剤、レベリング剤、光拡散剤、熱伝導性フィラー又は難燃剤等の添加剤をさらに含んでいてもよい。
(Other ingredients)
The curable composition for an optical semiconductor device according to the present invention includes a dispersant, an antioxidant, an antifoaming agent, a colorant, a modifier, a leveling agent, a light diffusing agent, a heat conductive filler, or a flame retardant as necessary. Etc. may further be included.
 なお、上記第1のオルガノポリシロキサンと、上記第2のオルガノポリシロキサンと、上記ヒドロシリル化反応用触媒と、上記第1のシラン化合物とは、これらを1種又は2種以上含む液を別々に調製しておき、使用直前に複数の液を混合して、本発明に係る光半導体装置用硬化性組成物を調製してもよい。例えば、上記第1のオルガノポリシロキサンを含む第1の液と、上記第2のオルガノポリシロキサンを含む第2の液とを別々に調製しておき、使用直前に第1の液と第2の液とを混合して、本発明に係る光半導体装置用硬化性組成物を調製してもよい。上記第1の液及び上記第2の液の少なくとも一方が、上記ヒドロシリル化反応用触媒を含む。上記第1の液がヒドロシリル化反応用触媒を含むことが好ましい。なお、上記第1のシラン化合物は、上記第1の液に添加してもよく、上記第2の液に添加してもよい。上記第1の液及び上記第2の液の少なくとも一方が、上記第1のシラン化合物を含む。上記第2のシラン化合物、上記酸化珪素粒子又は上記蛍光体が用いられる場合には、上記第2のシラン化合物、上記酸化珪素粒子又は上記蛍光体はそれぞれ、上記第1の液に添加してもよく、上記第2の液に添加してもよい。上記第1の液及び上記第2の液の少なくとも一方が、上記第2のシラン化合物を含むことが好ましい。このように上記第1のオルガノポリシロキサンと上記第2のオルガノポリシロキサンとを別々に、第1の液と第2の液との2液にすることによって保存安定性が向上する。 In addition, said 1st organopolysiloxane, said 2nd organopolysiloxane, said hydrosilylation reaction catalyst, and said 1st silane compound are the liquids containing these 1 type, or 2 or more types separately. The curable composition for optical semiconductor devices according to the present invention may be prepared by preparing and mixing a plurality of liquids immediately before use. For example, the first liquid containing the first organopolysiloxane and the second liquid containing the second organopolysiloxane are prepared separately, and the first liquid and the second liquid are prepared just before use. The curable composition for optical semiconductor devices according to the present invention may be prepared by mixing with a liquid. At least one of the first liquid and the second liquid contains the hydrosilylation reaction catalyst. The first liquid preferably contains a hydrosilylation reaction catalyst. The first silane compound may be added to the first liquid or may be added to the second liquid. At least one of the first liquid and the second liquid contains the first silane compound. When the second silane compound, the silicon oxide particles, or the phosphor is used, the second silane compound, the silicon oxide particles, or the phosphor may be added to the first liquid, respectively. It may be added to the second liquid. It is preferable that at least one of the first liquid and the second liquid contains the second silane compound. Thus, storage stability improves by making said 1st organopolysiloxane and said 2nd organopolysiloxane into 2 liquids of a 1st liquid and a 2nd liquid separately.
 (光半導体装置用硬化性組成物の詳細及び用途)
 本発明に係る光半導体装置用硬化性組成物の硬化温度は特に限定されない。光半導体装置用硬化性組成物の硬化温度は、好ましくは80℃以上、より好ましくは100℃以上、好ましくは180℃以下、より好ましくは150℃以下である。硬化温度が上記下限以上であると、硬化性組成物の硬化が充分に進行する。硬化温度が上記上限以下であると、パッケージの熱劣化が起こり難い。
(Details and applications of curable composition for optical semiconductor devices)
The curing temperature of the curable composition for optical semiconductor devices according to the present invention is not particularly limited. The curing temperature of the curable composition for optical semiconductor devices is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 180 ° C. or lower, more preferably 150 ° C. or lower. When the curing temperature is not less than the above lower limit, curing of the curable composition proceeds sufficiently. When the curing temperature is not more than the above upper limit, the package is unlikely to be thermally deteriorated.
 硬化方式は特に限定されないが、ステップキュア方式を用いることが好ましい。ステップキュア方式は、一旦低温で仮硬化させておき、その後に高温で硬化させる方法である。ステップキュア方式の使用により、硬化物の硬化収縮が抑えられる。 The curing method is not particularly limited, but it is preferable to use a step cure method. The step cure method is a method in which the resin is temporarily cured at a low temperature and then cured at a high temperature. By using the step cure method, curing shrinkage of the cured product can be suppressed.
 本発明に係る光半導体装置用硬化性組成物の製造方法としては特に限定されず、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリウムミキサー、ニーダー、三本ロール又はビーズミル等の混合機を用いて、常温又は加温下で、上記第1のオルガノポリシロキサン、上記第2のオルガノポリシロキサン、上記ヒドロシリル化反応用触媒、上記第1のシラン化合物及び必要に応じて配合される他の成分を混合する方法等が挙げられる。 It does not specifically limit as a manufacturing method of the curable composition for optical semiconductor devices which concerns on this invention, For example, using mixers, such as a homodisper, a homomixer, a universal mixer, a planetarium mixer, a kneader, a triple roll, or a bead mill. Mixing the first organopolysiloxane, the second organopolysiloxane, the hydrosilylation catalyst, the first silane compound, and other components blended as necessary at room temperature or under heating And the like.
 上記発光素子としては、半導体を用いた発光素子であれば特に限定されず、例えば、上記発光素子が発光ダイオードである場合、例えば、基板上にLED形式用半導体材料を積層した構造が挙げられる。この場合、半導体材料としては、例えば、GaAs、GaP、GaAlAs、GaAsP、AlGaInP、GaN、InN、AlN、InGaAlN、及びSiC等が挙げられる。 The light-emitting element is not particularly limited as long as it is a light-emitting element using a semiconductor. For example, when the light-emitting element is a light-emitting diode, a structure in which an LED-type semiconductor material is stacked on a substrate is exemplified. In this case, examples of the semiconductor material include GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaAlN, and SiC.
 上記基板の材料としては、例えば、サファイア、スピネル、SiC、Si、ZnO、及びGaN単結晶等が挙げられる。また、必要に応じ基板と半導体材料との間にバッファー層が形成されていてもよい。上記バッファー層の材料としては、例えば、GaN及びAlN等が挙げられる。 Examples of the material of the substrate include sapphire, spinel, SiC, Si, ZnO, and GaN single crystal. Further, a buffer layer may be formed between the substrate and the semiconductor material as necessary. Examples of the material of the buffer layer include GaN and AlN.
 本発明に係る光半導体装置としては、具体的には、例えば、発光ダイオード装置、半導体レーザー装置及びフォトカプラ等が挙げられる。このような光半導体装置は、例えば、液晶ディスプレイ等のバックライト、照明、各種センサー、プリンター及びコピー機等の光源、車両用計測器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライト並びにスイッチング素子等に好適に用いられる。 Specific examples of the optical semiconductor device according to the present invention include a light emitting diode device, a semiconductor laser device, and a photocoupler. Such optical semiconductor devices include, for example, backlights such as liquid crystal displays, illumination, various sensors, light sources such as printers and copiers, vehicle measuring instrument light sources, signal lights, indicator lights, display devices, and light sources for planar light emitters. It is suitably used for displays, decorations, various lights and switching elements.
 本発明に係る光半導体装置用硬化性組成物は、光半導体装置用封止剤又は光半導体装置用レンズ材料であることが好ましい。本発明に係る光半導体装置用硬化性組成物は、光半導体装置用封止剤であってもよく、光半導体装置用レンズ材料であってもよい。また、本発明に係る光半導体装置用硬化性組成物は、光半導体素子の表面上にコーティング層を形成するための光半導体装置用コーティング材料としても用いられる。 The curable composition for optical semiconductor devices according to the present invention is preferably an encapsulant for optical semiconductor devices or a lens material for optical semiconductor devices. The curable composition for optical semiconductor devices according to the present invention may be an encapsulant for optical semiconductor devices or a lens material for optical semiconductor devices. The curable composition for optical semiconductor devices according to the present invention is also used as a coating material for optical semiconductor devices for forming a coating layer on the surface of an optical semiconductor element.
 本発明に係る光半導体装置は、光半導体素子と、該光半導体素子を封止するように配置された封止剤、又は該光半導体素子上に配置されたレンズとを備える。上記封止剤又は上記レンズが、上述した光半導体装置用硬化性組成物を硬化させることにより形成されている。LEDなどの光半導体により形成された発光素子を封止するように、光半導体装置用硬化性組成物の硬化物が配置されている場合には、硬化物のハウジング等からの剥離を効果的に抑制できる。上記レンズは、光半導体素子上に直接積層されていてもよく、光半導体素子を封止するように配置されている封止剤等を介して光半導体素子上に配置されていてもよい。すなわち、上記レンズは、封止剤の表面上に配置されてもよい。 An optical semiconductor device according to the present invention includes an optical semiconductor element and a sealing agent disposed so as to seal the optical semiconductor element or a lens disposed on the optical semiconductor element. The sealing agent or the lens is formed by curing the above-described curable composition for optical semiconductor devices. When a cured product of the curable composition for an optical semiconductor device is disposed so as to seal a light emitting element formed of an optical semiconductor such as an LED, the cured product is effectively peeled from the housing or the like. Can be suppressed. The lens may be directly laminated on the optical semiconductor element, or may be disposed on the optical semiconductor element via a sealant or the like disposed so as to seal the optical semiconductor element. That is, the lens may be disposed on the surface of the sealant.
 上記レンズの形状は特に限定されない。光半導体装置における光の出射方向を制御し、かつ正面輝度が高くなりすぎるのをより一層抑制する観点からは、上記レンズの形状は、球体の一部又は回転楕円体の一部であることが好ましい。 The shape of the lens is not particularly limited. From the viewpoint of controlling the light emission direction in the optical semiconductor device and further suppressing the front luminance from becoming too high, the shape of the lens may be a part of a sphere or a part of a spheroid. preferable.
 (光半導体装置の実施形態)
 図1は、本発明の第1の実施形態に係る光半導体装置を示す正面断面図である。
(Embodiment of optical semiconductor device)
FIG. 1 is a front sectional view showing an optical semiconductor device according to the first embodiment of the present invention.
 本実施形態の光半導体装置1は、ハウジング2を有する。ハウジング2内に光半導体素子3が配置されている。この光半導体素子3の周囲を、ハウジング2の光反射性を有する内面2aが取り囲んでいる。光半導体素子3は、LEDなどの発光素子である。 The optical semiconductor device 1 of this embodiment has a housing 2. An optical semiconductor element 3 is disposed in the housing 2. The optical semiconductor element 3 is surrounded by an inner surface 2 a having light reflectivity of the housing 2. The optical semiconductor element 3 is a light emitting element such as an LED.
 内面2aは、内面2aの径が開口端に向かうにつれて大きくなるように形成されている。従って、光半導体素子3から発せられた光のうち、内面2aに到達した光が内面2aにより反射され、光半導体素子3の前方側に進行する。光半導体素子3を封止するように、内面2aで囲まれた領域内には、光半導体装置用硬化性組成物の硬化物である封止剤4が充填されている。封止剤4は、本発明に係る光半導体装置用硬化性組成物である封止剤を硬化させることにより形成されており、該封止剤の硬化物である。 The inner surface 2a is formed such that the diameter of the inner surface 2a increases toward the opening end. Therefore, of the light emitted from the optical semiconductor element 3, the light that has reached the inner surface 2 a is reflected by the inner surface 2 a and travels forward of the optical semiconductor element 3. In a region surrounded by the inner surface 2 a so as to seal the optical semiconductor element 3, a sealing agent 4 that is a cured product of the curable composition for optical semiconductor devices is filled. The sealant 4 is formed by curing the sealant that is the curable composition for optical semiconductor devices according to the present invention, and is a cured product of the sealant.
 図2は、本発明の第2の実施形態に係る光半導体装置を示す正面断面図である。 FIG. 2 is a front sectional view showing an optical semiconductor device according to the second embodiment of the present invention.
 図2に示す光半導体装置11は、ハウジング2を有する。ハウジング2内に光半導体素子3が配置されている。光半導体素子3を封止するように、ハウジング2の内面2aで囲まれた領域内には、封止剤12が充填されている。すなわち、ハウジング2内で光半導体素子3が封止剤12により封止されている。光半導体装置11では、光半導体素子3を封止するように、封止剤12が配置されている。 The optical semiconductor device 11 shown in FIG. An optical semiconductor element 3 is disposed in the housing 2. A sealing agent 12 is filled in a region surrounded by the inner surface 2 a of the housing 2 so as to seal the optical semiconductor element 3. That is, the optical semiconductor element 3 is sealed with the sealant 12 in the housing 2. In the optical semiconductor device 11, a sealing agent 12 is disposed so as to seal the optical semiconductor element 3.
 さらに、光半導体装置11では、封止剤12の表面12a上に、レンズ13が配置されている。レンズ13は、本発明に係る光半導体装置用硬化性組成物であるレンズ材料を硬化させることにより形成されており、該レンズ材料の硬化物である。 Furthermore, in the optical semiconductor device 11, a lens 13 is disposed on the surface 12 a of the sealant 12. The lens 13 is formed by curing a lens material that is a curable composition for optical semiconductor devices according to the present invention, and is a cured product of the lens material.
 図3に、本発明の第3の実施形態に係る光半導体装置を示す正面断面図である。 FIG. 3 is a front sectional view showing an optical semiconductor device according to the third embodiment of the present invention.
 図3に示す光半導体装置21は、端子22aが上面に設けられた基板22上に、光半導体素子23が配置されている。光半導体素子23の上面に設けられた電極23aと、基板22の上面に設けられた端子22aとが、ボンディングワイヤー24により電気的に接続されている。さらに、光半導体装置21では、光半導体素子23上に、レンズ25が配置されている。レンズ25は、光半導体素子23の表面とボンディングワイヤー24とを覆っている。レンズ25は、本発明に係る光半導体装置用硬化性組成物であるレンズ材料を硬化させることにより形成されており、該レンズ材料の硬化物である。 In the optical semiconductor device 21 shown in FIG. 3, an optical semiconductor element 23 is arranged on a substrate 22 on which a terminal 22a is provided. An electrode 23 a provided on the upper surface of the optical semiconductor element 23 and a terminal 22 a provided on the upper surface of the substrate 22 are electrically connected by a bonding wire 24. Further, in the optical semiconductor device 21, a lens 25 is disposed on the optical semiconductor element 23. The lens 25 covers the surface of the optical semiconductor element 23 and the bonding wire 24. The lens 25 is formed by curing a lens material that is a curable composition for optical semiconductor devices according to the present invention, and is a cured product of the lens material.
 なお、図1~3に示す構造は、本発明に係る光半導体装置の一例にすぎず、光半導体装置の実装構造等は適宜変形され得る。 The structures shown in FIGS. 1 to 3 are merely examples of the optical semiconductor device according to the present invention, and the mounting structure of the optical semiconductor device can be modified as appropriate.
 以下に、実施例を挙げて本発明をより詳細に説明する。本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
 (合成例1)第1のオルガノポリシロキサンの合成
 温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルジメトキシシラン486g、及び1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン2.7gを入れ、50℃で攪拌した。その中に、水酸化カリウム2.2gを水144gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去し、反応液に酢酸2.4gを加え、減圧下で加熱した。その後、酢酸カリウムをろ過により除去して、ポリマー(A)を得た。
(Synthesis Example 1) Synthesis of first organopolysiloxane In a 1000 mL separable flask equipped with a thermometer, a dropping device and a stirrer, 486 g of dimethyldimethoxysilane and 1,3-divinyl-1,1,3,3- 2.7 g of tetramethyldisiloxane was added and stirred at 50 ° C. A solution prepared by dissolving 2.2 g of potassium hydroxide in 144 g of water was slowly added dropwise thereto, and after the addition, the mixture was stirred at 50 ° C. for 6 hours and reacted to obtain a reaction solution. Next, volatile components were removed under reduced pressure, 2.4 g of acetic acid was added to the reaction solution, and the mixture was heated under reduced pressure. Thereafter, potassium acetate was removed by filtration to obtain a polymer (A).
 得られたポリマー(A)の数平均分子量は37400であった。29Si-NMRより化学構造を同定した結果、ポリマー(A)は、下記の平均組成式(A1)を有していた。 The number average molecular weight of the obtained polymer (A) was 37400. As a result of identifying the chemical structure by 29 Si-NMR, the polymer (A) had the following average composition formula (A1).
 (MeSiO2/20.992(ViMeSiO1/20.008 …式(A1) (Me 2 SiO 2/2 ) 0.992 (ViMe 2 SiO 1/2 ) 0.008 Formula (A1)
 上記式(A1)中、Meはメチル基、Viはビニル基を示す。得られたポリマー(A)のメチル基の含有比率は99モル%であった。 In the above formula (A1), Me represents a methyl group, and Vi represents a vinyl group. The content ratio of the methyl group of the obtained polymer (A) was 99 mol%.
 なお、合成例1及び合成例2~6で得られた各ポリマーの分子量は、10mgにテトラヒドロフラン1mLを加え、溶解するまで攪拌し、GPC測定により測定した。GPC測定では、Waters社製の測定装置(カラム:昭和電工社製 Shodex GPC LF-804(長さ300mm)×2本、測定温度:40℃、流速:1mL/min、溶媒:テトラヒドロフラン、標準物質:ポリスチレン)を用いた。 The molecular weight of each polymer obtained in Synthesis Example 1 and Synthesis Examples 2 to 6 was measured by GPC measurement by adding 1 mL of tetrahydrofuran to 10 mg, stirring until dissolved. For GPC measurement, a measuring device manufactured by Waters (column: Shodex GPC LF-804 (length: 300 mm) x 2 manufactured by Showa Denko KK), measuring temperature: 40 ° C., flow rate: 1 mL / min, solvent: tetrahydrofuran, standard substance: Polystyrene) was used.
 (合成例2)第1のオルガノポリシロキサンの合成
 温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジビニルテトラメチルジシロキサン56g、ジメチルジメトキシシラン122g及びジフェニルジメトキシシラン366gを入れ、50℃で攪拌した。その中に、水酸化カリウム0.8gを水114gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、反応液に酢酸0.9gを加え、減圧して揮発成分を除去し、酢酸カリウムをろ過により除去して、ポリマー(B)を得た。
(Synthesis Example 2) Synthesis of First Organopolysiloxane In a 1000 mL separable flask equipped with a thermometer, a dropping device and a stirrer, 56 g of divinyltetramethyldisiloxane, 122 g of dimethyldimethoxysilane, and 366 g of diphenyldimethoxysilane were added, and 50 Stir at ° C. A solution obtained by dissolving 0.8 g of potassium hydroxide in 114 g of water was slowly dropped therein, and after the dropwise addition, the mixture was stirred at 50 ° C. for 6 hours and reacted to obtain a reaction solution. Next, 0.9 g of acetic acid was added to the reaction solution, the pressure was reduced to remove volatile components, and potassium acetate was removed by filtration to obtain a polymer (B).
 得られたポリマー(B)の数平均分子量(Mn)は1700であった。29Si-NMRより化学構造を同定した結果、ポリマー(B)は、下記の平均組成式(B1)を有していた。 The number average molecular weight (Mn) of the obtained polymer (B) was 1700. As a result of identifying the chemical structure by 29 Si-NMR, the polymer (B) had the following average composition formula (B1).
 (ViMeSiO1/20.07(MeSiO2/20.45(PhSiO2/20.48 …式(B1) (ViMe 2 SiO 1/2 ) 0.07 (Me 2 SiO 2/2 ) 0.45 (Ph 2 SiO 2/2 ) 0.48 ... Formula (B1)
 上記式(B1)中、Meはメチル基、Phはフェニル基、Viはビニル基を示す。得られたポリマー(B)のフェニル基の含有比率は80.8モル%であった。 In the above formula (B1), Me represents a methyl group, Ph represents a phenyl group, and Vi represents a vinyl group. The content ratio of the phenyl group of the obtained polymer (B) was 80.8 mol%.
 (合成例3)第2のオルガノポリシロキサンの合成
 温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルジメトキシシラン90.2g、メチルトリメトキシシラン217g、ビニルトリメトキシシラン31g、1,1,3,3-テトラメチルジシロキサン40g、及びトリメチルメトキシシラン16gを入れ、50℃で攪拌した。その中に、塩酸2.0gと水134gの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(C)を得た。
(Synthesis Example 3) Synthesis of Second Organopolysiloxane In a 1000 mL separable flask equipped with a thermometer, a dropping device and a stirrer, 90.2 g of dimethyldimethoxysilane, 217 g of methyltrimethoxysilane, 31 g of vinyltrimethoxysilane, 1 , 1,3,3-tetramethyldisiloxane and 16 g of trimethylmethoxysilane were added and stirred at 50 ° C. Into this, a solution of 2.0 g of hydrochloric acid and 134 g of water was slowly added dropwise. After the addition, the mixture was stirred at 50 ° C. for 6 hours and reacted to obtain a reaction solution. Next, the polymer was obtained by removing the volatile component under reduced pressure. To the obtained polymer, 150 g of hexane and 150 g of ethyl acetate were added, washed 10 times with 300 g of ion-exchanged water, reduced in pressure to remove volatile components, and polymer (C) was obtained.
 得られたポリマー(C)の数平均分子量は3420であった。29Si-NMRより化学構造を同定した結果、ポリマー(C)は、下記の平均組成式(C1)を有していた。 The number average molecular weight of the obtained polymer (C) was 3420. As a result of identifying the chemical structure by 29 Si-NMR, the polymer (C) had the following average composition formula (C1).
 (MeSiO2/20.25(MeSiO3/20.52(ViSiO3/20.07(HMeSiO1/20.10(MeSiO1/20.06 …式(C1) (Me 2 SiO 2/2 ) 0.25 (MeSiO 3/2 ) 0.52 (ViSiO 3/2 ) 0.07 (HMe 2 SiO 1/2 ) 0.10 (Me 3 SiO 1/2 ) 0. 06 Formula (C1)
 上記式(C1)中、Meはメチル基、Viはビニル基を示す。得られたポリマー(C)のメチル基の含有比率は90モル%であった。 In the above formula (C1), Me represents a methyl group, and Vi represents a vinyl group. The content ratio of methyl groups of the obtained polymer (C) was 90 mol%.
 (合成例4)第2のオルガノポリシロキサンの合成
 温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、トリメチルメトキシシラン31g、1,1,3,3-テトラメチルジシロキサン40g、ジフェニルジメトキシシラン110g、フェニルトリメトキシシラン268g、及びビニルトリメトキシシラン45gを入れ、50℃で攪拌した。その中に、塩酸1.4gと水116gの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(D)を得た。
Synthesis Example 4 Synthesis of Second Organopolysiloxane A 1000 mL separable flask equipped with a thermometer, a dropping device and a stirrer was charged with 31 g of trimethylmethoxysilane, 40 g of 1,1,3,3-tetramethyldisiloxane, diphenyl. 110 g of dimethoxysilane, 268 g of phenyltrimethoxysilane, and 45 g of vinyltrimethoxysilane were added and stirred at 50 ° C. Into this, a solution of 1.4 g of hydrochloric acid and 116 g of water was slowly added dropwise, and after the addition, the mixture was stirred at 50 ° C. for 6 hours and reacted to obtain a reaction solution. Next, the polymer was obtained by removing the volatile component under reduced pressure. To the obtained polymer, 150 g of hexane and 150 g of ethyl acetate were added, washed 10 times with 300 g of ion-exchanged water, reduced in pressure to remove volatile components, and polymer (D) was obtained.
 得られたポリマー(D)の数平均分子量(Mn)は1100であった。29Si-NMRより化学構造を同定した結果、ポリマー(D)は、下記の平均組成式(D1)を有していた。 The number average molecular weight (Mn) of the obtained polymer (D) was 1100. As a result of identifying the chemical structure by 29 Si-NMR, the polymer (D) had the following average composition formula (D1).
 (MeSiO1/20.09(HMeSiO1/20.19(PhSiO2/20.16(PhSiO3/20.46(ViSiO3/20.10 …式(D1) (Me 3 SiO 1/2 ) 0.09 (HMe 2 SiO 1/2 ) 0.19 (Ph 2 SiO 2/2 ) 0.16 (PhSiO 3/2 ) 0.46 (ViSiO 3/2 ) 0. 10 : Formula (D1)
 上記式(D1)中、Meはメチル基、Phはフェニル基、Viはビニル基を示す。得られたポリマー(D)のフェニル基の含有比率は82.5モル%であった。 In the above formula (D1), Me represents a methyl group, Ph represents a phenyl group, and Vi represents a vinyl group. The content ratio of the phenyl group of the obtained polymer (D) was 82.5 mol%.
 (合成例5)第1のオルガノポリシロキサンの合成
 温度計、滴下装置及び攪拌機を備えた1Lのセパラブルフラスコに、ジメチルジメトキシシラン474g、ジフェニルジメトキシシラン10g、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン1.2g、及びジメチルホルムアミド200gを入れ、50℃で攪拌した。その中に、水酸化カリウム2.2gを水144gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で2時間攪拌して反応させ、さらに85℃に昇温して2時間、105℃に昇温して2時間と反応温度を昇温しながら反応を行なって反応液を得た。次に、減圧して揮発成分を除去し、反応液に酢酸2.4gを加え、減圧下で加熱した。その後、酢酸カリウムをろ過により除去して、ポリマー(E)を得た。
Synthesis Example 5 Synthesis of First Organopolysiloxane A 1 L separable flask equipped with a thermometer, a dropping device and a stirrer was charged with 474 g of dimethyldimethoxysilane, 10 g of diphenyldimethoxysilane, 1,3-divinyl-1,1, 1.2 g of 3,3-tetramethyldisiloxane and 200 g of dimethylformamide were added and stirred at 50 ° C. A solution prepared by dissolving 2.2 g of potassium hydroxide in 144 g of water was slowly added dropwise thereto, and after the dropwise addition, the mixture was stirred at 50 ° C. for 2 hours to react, further heated to 85 ° C. and heated to 105 ° C. for 2 hours. The reaction was carried out while raising the temperature and raising the reaction temperature for 2 hours to obtain a reaction solution. Next, volatile components were removed under reduced pressure, 2.4 g of acetic acid was added to the reaction solution, and the mixture was heated under reduced pressure. Thereafter, potassium acetate was removed by filtration to obtain a polymer (E).
 得られたポリマー(E)の数平均分子量は52300であった。29Si-NMRより化学構造を同定した結果、ポリマー(E)は、下記の平均組成式(E1)を有していた。 The number average molecular weight of the obtained polymer (E) was 52300. As a result of identifying the chemical structure by 29 Si-NMR, the polymer (E) had the following average composition formula (E1).
 (MeSiO2/20.987(PhSiO2/20.010(ViMeSiO1/20.003 …式(E1) (Me 2 SiO 2/2 ) 0.987 (Ph 2 SiO 2/2 ) 0.010 (ViMe 2 SiO 1/2 ) 0.003 Formula (E1)
 上記式(E1)中、Meはメチル基、Phはフェニル基、Viはビニル基を示す。得られたポリマー(E)のメチル基の含有比率は99モル%であった。 In the above formula (E1), Me represents a methyl group, Ph represents a phenyl group, and Vi represents a vinyl group. The content ratio of the methyl group of the obtained polymer (E) was 99 mol%.
 (合成例6)第2のオルガノポリシロキサンの合成
 温度計、滴下装置及び攪拌機を備えた1Lのセパラブルフラスコに、ジメチルジメトキシシラン150g、メチルトリメトキシシラン360g、ビニルトリメトキシシラン52g、1,1,3,3-テトラメチルジシロキサン67g、及びトリメチルメトキシシラン21gを入れ、50℃で攪拌した。その中に、塩酸2.6gと水220gの溶液をゆっくりと滴下し、滴下後に50℃で8時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(F)を得た。
(Synthesis Example 6) Synthesis of Second Organopolysiloxane Into a 1 L separable flask equipped with a thermometer, a dropping device and a stirrer, 150 g of dimethyldimethoxysilane, 360 g of methyltrimethoxysilane, 52 g of vinyltrimethoxysilane, 1,1 , 3,3-tetramethyldisiloxane (67 g) and trimethylmethoxysilane (21 g) were added and stirred at 50 ° C. Into this, a solution of 2.6 g of hydrochloric acid and 220 g of water was slowly added dropwise. After the addition, the solution was stirred at 50 ° C. for 8 hours and reacted to obtain a reaction solution. Next, the polymer was obtained by removing the volatile component under reduced pressure. To the obtained polymer, 150 g of hexane and 150 g of ethyl acetate were added, washed 10 times with 300 g of ion-exchanged water, reduced in pressure to remove volatile components, and polymer (F) was obtained.
 得られたポリマー(F)の数平均分子量は5480であった。29Si-NMRより化学構造を同定した結果、ポリマー(F)は、下記の平均組成式(F1)を有していた。 The number average molecular weight of the obtained polymer (F) was 5480. As a result of identifying the chemical structure by 29 Si-NMR, the polymer (F) had the following average composition formula (F1).
 (MeSiO2/20.20(MeSiO3/20.59(ViSiO3/20.07(HMeSiO1/20.10(MeSiO1/20.04 …式(F1) (Me 2 SiO 2/2 ) 0.20 (MeSiO 3/2 ) 0.59 (ViSiO 3/2 ) 0.07 (HMe 2 SiO 1/2 ) 0.10 (Me 3 SiO 1/2 ) 0. 04 ... Formula (F1)
 上記式(F1)中、Meはメチル基、Viはビニル基を示す。得られたポリマー(F)のメチル基の含有比率は90モル%であった。 In the above formula (F1), Me represents a methyl group, and Vi represents a vinyl group. The content ratio of the methyl group of the obtained polymer (F) was 90 mol%.
 (実施例1)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及び3-ウレイドプロピルトリエトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
Example 1
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-ureidopropyltriethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例2)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及び3-イソシアネートプロピルトリエトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 2)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-isocyanatopropyltriethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例3)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-ウレイドプロピルトリエトキシシラン(0.15g)、及び3-グリシドキシプロピルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 3)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) 2), 3-ureidopropyltriethoxysilane (0.15 g), and 3-glycidoxypropyltrimethoxysilane (0.15 g) are mixed and defoamed to obtain a curable composition for optical semiconductor devices. Obtained.
 (実施例4)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-ウレイドプロピルトリエトキシシラン(0.15g)、及び2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 4)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-ureidopropyltriethoxysilane (0.15 g), and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (0.15 g) are mixed and degassed for use in an optical semiconductor device. A curable composition was obtained.
 (実施例5)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-ウレイドプロピルトリエトキシシラン(0.15g)、及びビニルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 5)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-ureidopropyltriethoxysilane (0.15 g), and vinyltrimethoxysilane (0.15 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例6)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-ウレイドプロピルトリエトキシシラン(0.15g)、及び3―メタクリロキシプロピルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 6)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) 2), 3-ureidopropyltriethoxysilane (0.15 g), and 3-methacryloxypropyltrimethoxysilane (0.15 g) are mixed and degassed to obtain a curable composition for an optical semiconductor device. It was.
 (実施例7)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-ウレイドプロピルトリエトキシシラン(0.10g)、3-グリシドキシプロピルトリメトキシシラン(0.10g)、及びビニルトリメトキシシラン(0.10g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 7)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-ureidopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed. A curable composition for an optical semiconductor device was obtained.
 (実施例8)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-イソシアネートプロピルトリエトキシシラン(0.15g)、及び3-グリシドキシプロピルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 8)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-isocyanatopropyltriethoxysilane (0.15 g), and 3-glycidoxypropyltrimethoxysilane (0.15 g) are mixed and degassed to obtain a curable composition for optical semiconductor devices. Obtained.
 (実施例9)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-イソシアネートプロピルトリエトキシシラン(0.15g)、及び2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
Example 9
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-isocyanatopropyltriethoxysilane (0.15 g), and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (0.15 g) are mixed and degassed for use in an optical semiconductor device. A curable composition was obtained.
 (実施例10)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-イソシアネートプロピルトリエトキシシラン(0.15g)、及びビニルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 10)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-isocyanatopropyltriethoxysilane (0.15 g), and vinyltrimethoxysilane (0.15 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例11)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-イソシアネートプロピルトリエトキシシラン(0.15g)、及び3―メタクリロキシプロピルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 11)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) 2), 3-isocyanatopropyltriethoxysilane (0.15 g), and 3-methacryloxypropyltrimethoxysilane (0.15 g) are mixed and defoamed to obtain a curable composition for optical semiconductor devices. It was.
 (実施例12)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-イソシアネートプロピルトリエトキシシラン(0.10g)、3-グリシドキシプロピルトリメトキシシラン(0.10g)、及びビニルトリメトキシシラン(0.10g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
Example 12
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-isocyanatopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed. A curable composition for an optical semiconductor device was obtained.
 (実施例13)
 ポリマーB(10g)、ポリマーD(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及び3-ウレイドプロピルトリエトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 13)
Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-ureidopropyltriethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例14)
 ポリマーB(10g)、ポリマーD(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及び3-イソシアネートプロピルトリエトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 14)
Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-isocyanatopropyltriethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例15)
 ポリマーB(10g)、ポリマーD(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-ウレイドプロピルトリエトキシシラン(0.15g)、及び3-グリシドキシプロピルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 15)
Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) 2), 3-ureidopropyltriethoxysilane (0.15 g), and 3-glycidoxypropyltrimethoxysilane (0.15 g) are mixed and defoamed to obtain a curable composition for optical semiconductor devices. Obtained.
 (実施例16)
 ポリマーB(10g)、ポリマーD(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-ウレイドプロピルトリエトキシシラン(0.15g)、及びビニルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 16)
Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-ureidopropyltriethoxysilane (0.15 g), and vinyltrimethoxysilane (0.15 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例17)
 ポリマーB(10g)、ポリマーD(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-ウレイドプロピルトリエトキシシラン(0.10g)、3-グリシドキシプロピルトリメトキシシラン(0.10g)、及びビニルトリメトキシシラン(0.10g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 17)
Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-ureidopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed. A curable composition for an optical semiconductor device was obtained.
 (実施例18)
 ポリマーB(10g)、ポリマーD(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-イソシアネートプロピルトリエトキシシラン(0.15g)、及び3-グリシドキシプロピルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 18)
Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-isocyanatopropyltriethoxysilane (0.15 g), and 3-glycidoxypropyltrimethoxysilane (0.15 g) are mixed and degassed to obtain a curable composition for optical semiconductor devices. Obtained.
 (実施例19)
 ポリマーB(10g)、ポリマーD(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-イソシアネートプロピルトリエトキシシラン(0.15g)、及びビニルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 19)
Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-isocyanatopropyltriethoxysilane (0.15 g), and vinyltrimethoxysilane (0.15 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例20)
 ポリマーB(10g)、ポリマーD(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-イソシアネートプロピルトリエトキシシラン(0.10g)、3-グリシドキシプロピルトリメトキシシラン(0.10g)、及びビニルトリメトキシシラン(0.10g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 20)
Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-isocyanatopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed. A curable composition for an optical semiconductor device was obtained.
 (比較例1)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及び3-グリシドキシプロピルトリメトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Comparative Example 1)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-glycidoxypropyltrimethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (比較例2)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及び2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Comparative Example 2)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) And 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (比較例3)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及びビニルトリメトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Comparative Example 3)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) And vinyltrimethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (比較例4)
 ポリマーA(10g)、ポリマーC(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及び3―メタクリロキシプロピルトリメトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Comparative Example 4)
Polymer A (10 g), Polymer C (10 g), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-methacryloxypropyltrimethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (比較例5)
 ポリマーB(10g)、ポリマーD(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及び3-グリシドキシプロピルトリメトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Comparative Example 5)
Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-glycidoxypropyltrimethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (比較例6)
 ポリマーB(10g)、ポリマーD(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及びビニルトリメトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Comparative Example 6)
Polymer B (10 g), Polymer D (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) And vinyltrimethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例21)
 ポリマーE(10g)、ポリマーF(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及び3-ウレイドプロピルトリエトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 21)
Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-ureidopropyltriethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例22)
 ポリマーE(10g)、ポリマーF(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及び3-イソシアネートプロピルトリエトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 22)
Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-isocyanatopropyltriethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例23)
 ポリマーE(10g)、ポリマーF(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-ウレイドプロピルトリエトキシシラン(0.15g)、及び3-グリシドキシプロピルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 23)
Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) 2), 3-ureidopropyltriethoxysilane (0.15 g), and 3-glycidoxypropyltrimethoxysilane (0.15 g) are mixed and defoamed to obtain a curable composition for optical semiconductor devices. Obtained.
 (実施例24)
 ポリマーE(10g)、ポリマーF(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-ウレイドプロピルトリエトキシシラン(0.15g)、及びビニルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 24)
Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-ureidopropyltriethoxysilane (0.15 g), and vinyltrimethoxysilane (0.15 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例25)
 ポリマーE(10g)、ポリマーF(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-ウレイドプロピルトリエトキシシラン(0.10g)、3-グリシドキシプロピルトリメトキシシラン(0.10g)、及びビニルトリメトキシシラン(0.10g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 25)
Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-ureidopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed. A curable composition for an optical semiconductor device was obtained.
 (実施例26)
 ポリマーE(10g)、ポリマーF(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-イソシアネートプロピルトリエトキシシラン(0.15g)、及び3-グリシドキシプロピルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 26)
Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-isocyanatopropyltriethoxysilane (0.15 g), and 3-glycidoxypropyltrimethoxysilane (0.15 g) are mixed and degassed to obtain a curable composition for optical semiconductor devices. Obtained.
 (実施例27)
 ポリマーE(10g)、ポリマーF(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-イソシアネートプロピルトリエトキシシラン(0.15g)、及びビニルトリメトキシシラン(0.15g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 27)
Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) ), 3-isocyanatopropyltriethoxysilane (0.15 g), and vinyltrimethoxysilane (0.15 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (実施例28)
 ポリマーE(10g)、ポリマーF(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、3-イソシアネートプロピルトリエトキシシラン(0.10g)、3-グリシドキシプロピルトリメトキシシラン(0.10g)、及びビニルトリメトキシシラン(0.10g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Example 28)
Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) 3), 3-isocyanatopropyltriethoxysilane (0.10 g), 3-glycidoxypropyltrimethoxysilane (0.10 g), and vinyltrimethoxysilane (0.10 g) are mixed and defoamed. A curable composition for an optical semiconductor device was obtained.
 (比較例7)
 ポリマーE(10g)、ポリマーF(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及び3-グリシドキシプロピルトリメトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Comparative Example 7)
Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) And 3-glycidoxypropyltrimethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (比較例8)
 ポリマーE(10g)、ポリマーF(10g)、白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(硬化性組成物全体に対して白金金属が重量単位で10ppmとなる量)、及びビニルトリメトキシシラン(0.2g)を混合し、脱泡を行い、光半導体装置用硬化性組成物を得た。
(Comparative Example 8)
Polymer E (10 g), Polymer F (10 g), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum metal is 10 ppm by weight with respect to the entire curable composition) And vinyltrimethoxysilane (0.2 g) were mixed and defoamed to obtain a curable composition for optical semiconductor devices.
 (評価)
 銀めっきされたリード電極付きポリフタルアミド製ハウジング材に、ダイボンド材によって主発光ピークが460nmの発光素子が実装されており、発光素子とリード電極とが金ワイヤーで接続されている構造において、得られた光半導体装置用硬化性組成物を注入し、150℃で2時間加熱して硬化させ、光半導体装置を作製した。この光半導体装置を用いて、下記のガス腐食試験、熱衝撃試験及び通電試験を実施した。
(Evaluation)
In a structure in which a light emitting element having a main emission peak of 460 nm is mounted on a silver-plated polyphthalamide housing material with a lead electrode by a die bond material, and the light emitting element and the lead electrode are connected by a gold wire. The obtained curable composition for optical semiconductor devices was poured and cured by heating at 150 ° C. for 2 hours to produce an optical semiconductor device. Using this optical semiconductor device, the following gas corrosion test, thermal shock test and energization test were carried out.
 (ガス腐食試験1)
 得られた光半導体装置を、40℃及び相対湿度90%RH雰囲気下のチャンバー内に入れ、硫化水素ガスの濃度が5ppm、二酸化硫黄ガスの濃度が15ppmとなるようにチャンバー内にガスを充填した。ガスの充填から、24時間後、48時間後、96時間後、168時間後及び500時間後にそれぞれ、銀めっきされたリード電極を目視で観察した。
(Gas corrosion test 1)
The obtained optical semiconductor device was placed in a chamber at 40 ° C. and a relative humidity of 90% RH, and the chamber was filled with gas so that the concentration of hydrogen sulfide gas was 5 ppm and the concentration of sulfur dioxide gas was 15 ppm. . From the gas filling, the lead electrodes plated with silver were visually observed after 24 hours, 48 hours, 96 hours, 168 hours and 500 hours.
 銀めっきに変色が見られない場合を「○○」、銀めっきに茶褐色に変色した箇所が少しみられる場合を「○」、銀めっきのほとんどすべてが茶色に変色した場合を「△」、銀めっきのほとんどすべてが黒色に変色した場合を「×」と判定した。 “○○” indicates no discoloration in the silver plating, “○” indicates that the silver plating is slightly browned, “△” indicates that almost all of the silver plating has changed to brown, The case where almost all of the plating changed to black was judged as “x”.
 (熱衝撃試験)
 得られた光半導体装置を用いて、かつ液槽式熱衝撃試験機(ESPEC社製「TSB-51」)を用いて、-50℃で5分間保持した後、135℃まで昇温し、135℃で5分間保持した後-50℃まで降温する過程を1サイクルとする冷熱サイクル試験を実施した。500サイクル後、1000サイクル後、1500サイクル後、2000サイクル後及び3000サイクル後にそれぞれ20個のサンプルを取り出した。
(Thermal shock test)
Using the obtained optical semiconductor device and using a liquid bath thermal shock tester (“TSB-51” manufactured by ESPEC), the temperature was maintained at −50 ° C. for 5 minutes, and then the temperature was increased to 135 ° C. A cold cycle test was conducted in which the process of holding at 5 ° C. for 5 minutes and then lowering the temperature to −50 ° C. was 1 cycle. 20 samples were taken out after 500 cycles, 1000 cycles, 1500 cycles, 2000 cycles and 3000 cycles, respectively.
 実体顕微鏡(ニコン社製「SMZ-10」)にてサンプルを観察した。20個のサンプルの光半導体装置用硬化性組成物が硬化した硬化物にそれぞれクラックが生じているか否か、又は硬化物がパッケージ又は電極から剥離しているか否かを観察し、クラック又は剥離が生じたサンプルの数(NG数)を数えた。 The sample was observed with a stereomicroscope ("SMZ-10" manufactured by Nikon Corporation). It is observed whether cracks are generated in the cured products obtained by curing 20 samples of the curable composition for optical semiconductor devices, or whether the cured products are separated from the package or the electrode. The number of samples produced (NG number) was counted.
 (粘度比)
 作製直後の光半導体装置用硬化性組成物(作製直後の硬化性組成物)を用意した。さらに、作製直後の硬化性組成物を3時間室温(23℃)で放置して、3時間後の硬化性組成物を用意した。粘度測定装置(東機産業社製「VISCOMETER TV-22」)を用いて、作製直後の硬化性組成物の23℃及び10rpmでの粘度と、3時間後の硬化性組成物の23℃及び10rpmでの粘度とを測定した。3時間後の硬化性組成物における粘度値の作製直後の硬化性組成物における粘度値に対する粘度比(3時間後粘度値/初期粘度値)を求めた。
(Viscosity ratio)
A curable composition for optical semiconductor devices immediately after fabrication (a curable composition immediately after fabrication) was prepared. Furthermore, the curable composition immediately after preparation was allowed to stand at room temperature (23 ° C.) for 3 hours to prepare a curable composition after 3 hours. Using a viscosity measuring device (“VISCOMETER TV-22” manufactured by Toki Sangyo Co., Ltd.), the viscosity of the curable composition immediately after preparation at 23 ° C. and 10 rpm, and the temperature of the curable composition after 3 hours at 23 ° C. and 10 rpm And the viscosity was measured. The viscosity ratio (viscosity value after 3 hours / initial viscosity value) to the viscosity value in the curable composition immediately after production of the viscosity value in the curable composition after 3 hours was determined.
 (高温・高湿通電試験)
 得られた光半導体装置について、23℃の温度下、光度測定装置(オプトロニックラボラトリーズ社製「OL770」)を用いて発光素子に20mAの電流を流した時の光度を測定した(以下、「初期光度」と称する)。
(High temperature and high humidity energization test)
About the obtained optical semiconductor device, the luminous intensity when a current of 20 mA was passed through the light emitting element was measured using a photometric measuring device (“OL770” manufactured by Optronic Laboratories) at a temperature of 23 ° C. (hereinafter, “initial” Called “luminosity”).
 次いで、発光素子に20mAの電流を流した状態で光半導体装置を85℃及び相対湿度85RH%雰囲気下のチャンバー内に入れて、1000時間放置した。1000時間後、23℃の温度下、光度測定装置(オプトロニックラボラトリーズ社製「OL770」)を用いて発光素子に20mAの電流を流した時の光度を測定し、初期光度対する光度の低下率を算出した。光度の低下率が5%未満の場合を「○○」、5%以上、10%未満の場合を「○」、10%以上、20%未満の場合を「△」、20%以上の場合を「×」と判定した。 Next, the optical semiconductor device was placed in a chamber under an atmosphere of 85 ° C. and a relative humidity of 85 RH% with a current of 20 mA flowing through the light emitting element, and left for 1000 hours. After 1000 hours, at a temperature of 23 ° C., the light intensity when a current of 20 mA was passed through the light emitting element was measured using a light intensity measuring device (“OL770” manufactured by Optronic Laboratories), and the rate of decrease in light intensity relative to the initial light intensity Calculated. When the rate of decrease in luminous intensity is less than 5%, it is “◯◯”, when it is 5% or more and less than 10%, “◯”, when it is 10% or more and less than 20%, “△”, when it is 20% or more It was determined as “x”.
 結果を下記の表1,2に示す。 The results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 (ガス腐食試験2)
 得られた光半導体装置を、発光面を上にしてスライドグラス上に両面テープで固定した。次に、容量120mLの蓋付きガラス容器に硫黄0.2gを入れ、光半導体装置を固定したスライドグラスを、光半導体装置と硫黄とが直接接触しないようにガラス容器内に配置した。その後、ガラス容器を密封して、80℃のオーブン内に入れた。オーブン内に入れてから、4時間後、8時間後、16時間後、24時間後及び48時間後にそれぞれ、銀めっきされたリード電極の変化を目視で観察した。ガス腐食試験2を下記の基準で判定した。なお、硬化物の接着対象物に対する接着性が低いと、銀電極が変色しやすくなる。
(Gas corrosion test 2)
The obtained optical semiconductor device was fixed with a double-sided tape on a slide glass with the light emitting surface facing up. Next, 0.2 g of sulfur was placed in a glass container with a lid having a capacity of 120 mL, and a slide glass on which the optical semiconductor device was fixed was placed in the glass container so that the optical semiconductor device and sulfur were not in direct contact. Thereafter, the glass container was sealed and placed in an oven at 80 ° C. After being placed in the oven, changes in the silver-plated lead electrode were visually observed after 4 hours, 8 hours, 16 hours, 24 hours and 48 hours, respectively. The gas corrosion test 2 was determined according to the following criteria. In addition, when the adhesiveness with respect to the adhesion target object of hardened | cured material is low, a silver electrode will become easy to discolor.
  [ガス腐食試験2の判定基準]
 ○○:銀電極に変化が見られない
 ○:銀電極の面積の10%程度が黒色に変色、もしくは、全面がうっすらと変色
 △:銀電極の面積の半分程度が黒色に変色、もしくは、全面が茶色に変色
 ×:銀電極のほぼ全面が黒色に変色
[Criteria for gas corrosion test 2]
○○: No change in the silver electrode ○: About 10% of the area of the silver electrode changes to black, or the entire surface changes slightly △: About half of the area of the silver electrode changes to black, or the entire surface Changes to brown ×: almost the entire surface of the silver electrode changes to black
  結果を下記の表3に示す。 The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
  1…光半導体装置
  2…ハウジング
  2a…内面
  3…光半導体素子
  4…封止剤
  11…光半導体装置
  12…封止剤
  12a…表面
  13…レンズ
  21…光半導体装置
  22…基板
  22a…端子
  23…光半導体素子
  23a…電極
  24…ボンディングワイヤー
  25…レンズ
DESCRIPTION OF SYMBOLS 1 ... Optical semiconductor device 2 ... Housing 2a ... Inner surface 3 ... Optical semiconductor element 4 ... Sealing agent 11 ... Optical semiconductor device 12 ... Sealing agent 12a ... Surface 13 ... Lens 21 ... Optical semiconductor device 22 ... Substrate 22a ... Terminal 23 ... Optical semiconductor element 23a ... Electrode 24 ... Bonding wire 25 ... Lens

Claims (17)

  1.  アルケニル基を2個以上有する第1のオルガノポリシロキサンと、
     珪素原子に結合した水素原子を2個以上有する第2のオルガノポリシロキサンと、
     ヒドロシリル化反応用触媒と、
     ウレイド基又はイソシアネート基を有する第1のシラン化合物とを含む、光半導体装置用硬化性組成物。
    A first organopolysiloxane having two or more alkenyl groups;
    A second organopolysiloxane having two or more hydrogen atoms bonded to silicon atoms;
    A catalyst for hydrosilylation reaction;
    A curable composition for optical semiconductor devices, comprising a first silane compound having a ureido group or an isocyanate group.
  2.  光半導体装置用封止剤又は光半導体装置用レンズ材料である、請求項1に記載の光半導体装置用硬化性組成物。 The curable composition for optical semiconductor devices according to claim 1, which is a sealant for optical semiconductor devices or a lens material for optical semiconductor devices.
  3.  前記第1のシラン化合物が、ウレイド基を有する、請求項1又は2に記載の光半導体装置用硬化性組成物。 The curable composition for optical semiconductor devices according to claim 1, wherein the first silane compound has a ureido group.
  4.  前記第1のシラン化合物が、下記式(S1)又は下記式(S2)で表される第1のシラン化合物である、請求項1又は2に記載の光半導体装置用硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
     前記式(S1)中、X1はアルコキシ基を表し、X2及びX3はそれぞれアルコキシ基又は炭素数1~8の炭化水素基を表し、R4は窒素原子と珪素原子とを直接結合している単結合を表すか又は炭素数1~8の炭化水素基を表す。
    Figure JPOXMLDOC01-appb-C000002
     前記式(S2)中、X1はアルコキシ基を表し、X2及びX3はそれぞれアルコキシ基又は炭素数1~8の炭化水素基を表し、R4は、窒素原子と珪素原子とを直接結合している単結合を表すか又は炭素数1~8の炭化水素基を表す。
    The curable composition for optical semiconductor devices according to claim 1 or 2, wherein the first silane compound is a first silane compound represented by the following formula (S1) or the following formula (S2).
    Figure JPOXMLDOC01-appb-C000001
    In the formula (S1), X1 represents an alkoxy group, X2 and X3 each represents an alkoxy group or a hydrocarbon group having 1 to 8 carbon atoms, and R4 is a single bond directly bonding a nitrogen atom and a silicon atom. Or a hydrocarbon group having 1 to 8 carbon atoms.
    Figure JPOXMLDOC01-appb-C000002
    In the formula (S2), X1 represents an alkoxy group, X2 and X3 each represents an alkoxy group or a hydrocarbon group having 1 to 8 carbon atoms, and R4 represents a single bond directly connecting a nitrogen atom and a silicon atom. It represents a bond or a hydrocarbon group having 1 to 8 carbon atoms.
  5.  前記第1のシラン化合物が、前記式(S1)で表される第1のシラン化合物である、請求項4に記載の光半導体装置用硬化性組成物。 The curable composition for optical semiconductor devices according to claim 4, wherein the first silane compound is a first silane compound represented by the formula (S1).
  6.  前記式(S1)で表される第1のシラン化合物が、下記式(S1-1)で表される第1のシラン化合物である、請求項4又は5に記載の光半導体装置用硬化性組成物。
    Figure JPOXMLDOC01-appb-C000003
     前記式(S1-1)中、R1~R3はそれぞれ炭素数1~8の炭化水素基を表し、R4は窒素原子と珪素原子とを直接結合している単結合を表すか又は炭素数1~8の炭化水素基を表す。
    The curable composition for optical semiconductor devices according to claim 4 or 5, wherein the first silane compound represented by the formula (S1) is a first silane compound represented by the following formula (S1-1). object.
    Figure JPOXMLDOC01-appb-C000003
    In the formula (S1-1), R1 to R3 each represent a hydrocarbon group having 1 to 8 carbon atoms, and R4 represents a single bond directly bonding a nitrogen atom and a silicon atom, or 1 to 8 hydrocarbon groups are represented.
  7.  前記第1のオルガノポリシロキサンの数平均分子量が、500以上、200000以下であり、
     前記第2のオルガノポリシロキサンの数平均分子量が、500以上、20000以下である、請求項1~6のいずれか1項に記載の光半導体装置用硬化性組成物。
    The number average molecular weight of the first organopolysiloxane is 500 or more and 200000 or less,
    The curable composition for optical semiconductor devices according to any one of claims 1 to 6, wherein the number average molecular weight of the second organopolysiloxane is 500 or more and 20000 or less.
  8.  エポキシ基、ビニル基又は(メタ)アクリロイル基を有する第2のシラン化合物をさらに含む、請求項1~7のいずれか1項に記載の光半導体装置用硬化性組成物。 The curable composition for optical semiconductor devices according to any one of claims 1 to 7, further comprising a second silane compound having an epoxy group, a vinyl group or a (meth) acryloyl group.
  9.  前記第2のシラン化合物が、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリメトキシシラン又は3-(メタ)アクリロキシプロピルトリメトキシシランである、請求項8に記載の光半導体装置用硬化性組成物。 The second silane compound is 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrimethoxysilane or 3- (meth) acryloxypropyltrimethoxysilane. The curable composition for optical semiconductor devices according to claim 8.
  10.  前記第1,第2のオルガノポリシロキサンの合計100重量部に対して、前記第2のシラン化合物の含有量が0.01重量部以上、5重量部以下である、請求項8又は9に記載の光半導体装置用硬化性組成物。 The content of the second silane compound is 0.01 parts by weight or more and 5 parts by weight or less with respect to a total of 100 parts by weight of the first and second organopolysiloxanes. Curable composition for optical semiconductor devices.
  11.  前記第1のオルガノポリシロキサンが珪素原子に結合した水素原子を有さず、
     前記第2のオルガノポリシロキサンが、アルケニル基を有する、請求項1~10のいずれか1項に記載の光半導体装置用硬化性組成物。
    The first organopolysiloxane does not have a hydrogen atom bonded to a silicon atom;
    The curable composition for optical semiconductor devices according to any one of claims 1 to 10, wherein the second organopolysiloxane has an alkenyl group.
  12.  前記第1のオルガノポリシロキサンが、下記式(1A)で表され、アルケニル基及び珪素原子に結合したメチル基を有する第1のオルガノポリシロキサンであり、かつ前記第2のオルガノポリシロキサンが、下記式(51A)で表され、珪素原子に結合した水素原子及び珪素原子に結合したメチル基を有する第2のオルガノポリシロキサンであるか、又は、
     前記第1のオルガノポリシロキサンが、下記式(1B)で表され、アリール基及びアルケニル基を有する第1のオルガノポリシロキサンであり、かつ前記第2のオルガノポリシロキサンが、下記式(51B)で表され、アリール基及び珪素原子に結合した水素原子を有する第2のオルガノポリシロキサンである、請求項1~11のいずれか1項に記載の光半導体装置用硬化性組成物。
    Figure JPOXMLDOC01-appb-C000004
     前記式(1A)中、a、b及びcは、a/(a+b+c)=0~0.30、b/(a+b+c)=0.70~1.0及びc/(a+b+c)=0~0.10を満たし、R1~R6は、少なくとも1個がアルケニル基を表し、少なくとも1個がメチル基を表し、アルケニル基及びメチル基以外のR1~R6は、炭素数2~8の炭化水素基を表す。
    Figure JPOXMLDOC01-appb-C000005
     前記式(51A)中、p、q及びrは、p/(p+q+r)=0.10~0.50、q/(p+q+r)=0~0.40及びr/(p+q+r)=0.40~0.90を満たし、R51~R56は、少なくとも1個が水素原子を表し、少なくとも1個がメチル基を表し、水素原子及びメチル基以外のR51~R56は、炭素数2~8の炭化水素基を表す。
    Figure JPOXMLDOC01-appb-C000006
     前記式(1B)中、a、b及びcは、a/(a+b+c)=0~0.50、b/(a+b+c)=0.40~1.0及びc/(a+b+c)=0~0.50を満たし、R1~R6は、少なくとも1個がアリール基を表し、少なくとも1個がアルケニル基を表し、アリール基及びアルケニル基以外のR1~R6は、炭素数1~8の炭化水素基を表す。
    Figure JPOXMLDOC01-appb-C000007
     前記式(51B)中、p、q及びrは、p/(p+q+r)=0.05~0.50、q/(p+q+r)=0.05~0.50及びr/(p+q+r)=0.20~0.80を満たし、R51~R56は、少なくとも1個がアリール基を表し、少なくとも1個が水素原子を表し、アリール基及び水素原子以外のR51~R56は、炭素数1~8の炭化水素基を表す。
    The first organopolysiloxane is represented by the following formula (1A), is a first organopolysiloxane having an alkenyl group and a methyl group bonded to a silicon atom, and the second organopolysiloxane is: A second organopolysiloxane represented by formula (51A) and having a hydrogen atom bonded to a silicon atom and a methyl group bonded to the silicon atom, or
    The first organopolysiloxane is represented by the following formula (1B), is a first organopolysiloxane having an aryl group and an alkenyl group, and the second organopolysiloxane is represented by the following formula (51B). The curable composition for optical semiconductor devices according to any one of claims 1 to 11, which is a second organopolysiloxane represented by an aryl group and having a hydrogen atom bonded to a silicon atom.
    Figure JPOXMLDOC01-appb-C000004
    In the formula (1A), a, b and c are a / (a + b + c) = 0 to 0.30, b / (a + b + c) = 0.70 to 1.0 and c / (a + b + c) = 0 to 0. 10, R1 to R6 each represents at least one alkenyl group, at least one represents a methyl group, and R1 to R6 other than the alkenyl group and the methyl group represent a hydrocarbon group having 2 to 8 carbon atoms. .
    Figure JPOXMLDOC01-appb-C000005
    In the formula (51A), p, q and r are p / (p + q + r) = 0.10 to 0.50, q / (p + q + r) = 0 to 0.40 and r / (p + q + r) = 0.40 to 0.90 is satisfied, R51 to R56 each represents at least one hydrogen atom, at least one represents a methyl group, and R51 to R56 other than the hydrogen atom and the methyl group are hydrocarbon groups having 2 to 8 carbon atoms. Represents.
    Figure JPOXMLDOC01-appb-C000006
    In the formula (1B), a, b and c are a / (a + b + c) = 0 to 0.50, b / (a + b + c) = 0.40 to 1.0 and c / (a + b + c) = 0 to 0. 50, R1 to R6 each represents at least one aryl group, at least one represents an alkenyl group, and R1 to R6 other than the aryl group and the alkenyl group represent a hydrocarbon group having 1 to 8 carbon atoms. .
    Figure JPOXMLDOC01-appb-C000007
    In the formula (51B), p, q and r are p / (p + q + r) = 0.05 to 0.50, q / (p + q + r) = 0.05 to 0.50 and r / (p + q + r) = 0. 20 to 0.80 are satisfied, at least one of R51 to R56 represents an aryl group, at least one represents a hydrogen atom, and R51 to R56 other than the aryl group and the hydrogen atom are carbon atoms having 1 to 8 carbon atoms. Represents a hydrogen group.
  13.  前記式(1A)又は前記式(1B)で表される第1のオルガノポリシロキサンが、珪素原子に結合した水素原子を有さず、
     前記式(51A)又は前記式(51B)で表される第2のオルガノポリシロキサンが、アルケニル基を有し、
     前記式(51A)中、R51~R56は、少なくとも1個が水素原子を表し、少なくとも1個がメチル基を表し、少なくとも1個がアルケニル基を表し、水素原子、メチル基及びアルケニル基以外のR51~R56は、炭素数2~8の炭化水素基を表し、
     前記式(51B)中、R51~R56は、少なくとも1個がアリール基を表し、少なくとも1個が水素原子を表し、少なくとも1個がアルケニル基を表し、アリール基、水素原子及びアルケニル基以外のR51~R56は、炭素数1~8の炭化水素基を表す、請求項12に記載の光半導体装置用硬化性組成物。
    The first organopolysiloxane represented by the formula (1A) or the formula (1B) does not have a hydrogen atom bonded to a silicon atom,
    The second organopolysiloxane represented by the formula (51A) or the formula (51B) has an alkenyl group,
    In the formula (51A), at least one of R51 to R56 represents a hydrogen atom, at least one represents a methyl group, at least one represents an alkenyl group, and R51 other than a hydrogen atom, a methyl group, and an alkenyl group ~ R56 represents a hydrocarbon group having 2 to 8 carbon atoms,
    In the formula (51B), at least one of R51 to R56 represents an aryl group, at least one represents a hydrogen atom, at least one represents an alkenyl group, and R51 other than an aryl group, a hydrogen atom and an alkenyl group 13. The curable composition for optical semiconductor devices according to claim 12, wherein -R56 represents a hydrocarbon group having 1 to 8 carbon atoms.
  14.  前記式(51A)又は前記式(51B)で表される第2のオルガノポリシロキサンが、下記式(51-a)で表される構造単位を有する、請求項12又は13に記載の光半導体装置用硬化性組成物。
    Figure JPOXMLDOC01-appb-C000008
     前記式(51-a)中、R52及びR53はそれぞれ、炭素数1~8の炭化水素基を表す。
    The optical semiconductor device according to claim 12 or 13, wherein the second organopolysiloxane represented by the formula (51A) or the formula (51B) has a structural unit represented by the following formula (51-a). Curable composition.
    Figure JPOXMLDOC01-appb-C000008
    In the formula (51-a), R52 and R53 each represent a hydrocarbon group having 1 to 8 carbon atoms.
  15.  前記第1のオルガノポリシロキサンが前記式(1A)で表され、かつ前記第2のオルガノポリシロキサンが前記式(51A)で表される、請求項12~14のいずれか1項に記載の光半導体装置用硬化性組成物。 The light according to any one of claims 12 to 14, wherein the first organopolysiloxane is represented by the formula (1A), and the second organopolysiloxane is represented by the formula (51A). Curable composition for semiconductor devices.
  16.  前記第1のオルガノポリシロキサンが前記式(1B)で表され、かつ前記第2のオルガノポリシロキサンが前記式(51B)で表される、請求項12~14のいずれか1項に記載の光半導体装置用硬化性組成物。 The light according to any one of claims 12 to 14, wherein the first organopolysiloxane is represented by the formula (1B) and the second organopolysiloxane is represented by the formula (51B). Curable composition for semiconductor devices.
  17.  前記第1のオルガノポリシロキサン100重量部に対して、前記第2のオルガノポリシロキサンの含有量が10重量部以上、400重量部以下であり、
     硬化性組成物中で、前記ヒドロシリル化反応用触媒の含有量は、金属原子の重量単位で0.01ppm以上、1000ppm以下であり、
     前記第1,第2のオルガノポリシロキサンの合計100重量部に対して、前記第1のシラン化合物の含有量が0.01重量部以上、5重量部以下である、請求項1~16のいずれか1項に記載の光半導体装置用硬化性組成物。
    The content of the second organopolysiloxane is 10 parts by weight or more and 400 parts by weight or less with respect to 100 parts by weight of the first organopolysiloxane.
    In the curable composition, the content of the hydrosilylation reaction catalyst is 0.01 ppm or more and 1000 ppm or less in terms of weight units of metal atoms,
    The content of the first silane compound is 0.01 parts by weight or more and 5 parts by weight or less with respect to a total of 100 parts by weight of the first and second organopolysiloxanes. The curable composition for optical semiconductor devices of Claim 1.
PCT/JP2012/072603 2011-09-08 2012-09-05 Curable composition for optical semiconductor device WO2013035736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137029657A KR20140071961A (en) 2011-09-08 2012-09-05 Curable composition for optical semiconductor device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-196538 2011-09-08
JP2011196538 2011-09-08
JP2011240844 2011-11-02
JP2011-240844 2011-11-02
JP2012108706 2012-05-10
JP2012-108706 2012-05-10

Publications (1)

Publication Number Publication Date
WO2013035736A1 true WO2013035736A1 (en) 2013-03-14

Family

ID=47832181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072603 WO2013035736A1 (en) 2011-09-08 2012-09-05 Curable composition for optical semiconductor device

Country Status (4)

Country Link
JP (1) JPWO2013035736A1 (en)
KR (1) KR20140071961A (en)
TW (1) TW201319169A (en)
WO (1) WO2013035736A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103694709A (en) * 2013-12-09 2014-04-02 华南理工大学 Creepage-resistant tracking agent for addition-type liquid silicon rubber and preparation method and application thereof
EP3162864A1 (en) * 2015-11-02 2017-05-03 Shin-Etsu Chemical Co., Ltd. Adhesion promoter, addition curable organopolysiloxane resin composition and semiconductor apparatus
JP2020070391A (en) * 2018-11-01 2020-05-07 株式会社ダイセル Curable epoxy resin composition
JP2020070390A (en) * 2018-11-01 2020-05-07 株式会社ダイセル Curable epoxy resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223362A (en) * 1989-12-05 1991-10-02 Shin Etsu Chem Co Ltd Self-adhering silicone rubber composition and silicone rubber-coated fabric
JP2000017042A (en) * 1998-06-30 2000-01-18 Ge Toshiba Silicones Co Ltd Curable composition
JP2004519544A (en) * 2001-01-03 2004-07-02 ヘンケル ロックタイト コーポレイション Low temperature and high speed curing silicone composition
JP2007246842A (en) * 2006-03-17 2007-09-27 Shin Etsu Chem Co Ltd Thermosetting composition and film provided with layer obtained from the same
JP2011099090A (en) * 2009-10-05 2011-05-19 Shin-Etsu Chemical Co Ltd Addition curable type self-adhesive silicone rubber composition
JP4951147B1 (en) * 2011-09-08 2012-06-13 積水化学工業株式会社 Curable composition for optical semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223362A (en) * 1989-12-05 1991-10-02 Shin Etsu Chem Co Ltd Self-adhering silicone rubber composition and silicone rubber-coated fabric
JP2000017042A (en) * 1998-06-30 2000-01-18 Ge Toshiba Silicones Co Ltd Curable composition
JP2004519544A (en) * 2001-01-03 2004-07-02 ヘンケル ロックタイト コーポレイション Low temperature and high speed curing silicone composition
JP2007246842A (en) * 2006-03-17 2007-09-27 Shin Etsu Chem Co Ltd Thermosetting composition and film provided with layer obtained from the same
JP2011099090A (en) * 2009-10-05 2011-05-19 Shin-Etsu Chemical Co Ltd Addition curable type self-adhesive silicone rubber composition
JP4951147B1 (en) * 2011-09-08 2012-06-13 積水化学工業株式会社 Curable composition for optical semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103694709A (en) * 2013-12-09 2014-04-02 华南理工大学 Creepage-resistant tracking agent for addition-type liquid silicon rubber and preparation method and application thereof
CN103694709B (en) * 2013-12-09 2016-04-13 华南理工大学 Add-on type liquid silicon rubber anti creepage trace agent and its preparation method and application
EP3162864A1 (en) * 2015-11-02 2017-05-03 Shin-Etsu Chemical Co., Ltd. Adhesion promoter, addition curable organopolysiloxane resin composition and semiconductor apparatus
US10040924B2 (en) 2015-11-02 2018-08-07 Shin-Etsu Chemical Co., Ltd. Adhesion promoter, addition curable organopolysiloxane resin composition and semiconductor apparatus
JP2020070391A (en) * 2018-11-01 2020-05-07 株式会社ダイセル Curable epoxy resin composition
JP2020070390A (en) * 2018-11-01 2020-05-07 株式会社ダイセル Curable epoxy resin composition
JP7329320B2 (en) 2018-11-01 2023-08-18 株式会社ダイセル Curable epoxy resin composition
JP7329319B2 (en) 2018-11-01 2023-08-18 株式会社ダイセル Curable epoxy resin composition

Also Published As

Publication number Publication date
TW201319169A (en) 2013-05-16
JPWO2013035736A1 (en) 2015-03-23
KR20140071961A (en) 2014-06-12

Similar Documents

Publication Publication Date Title
JP5060654B2 (en) Sealant for optical semiconductor device and optical semiconductor device
JP5066286B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
JP5167419B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
WO2013008842A1 (en) Sealing agent for optical semiconductor devices, and optical semiconductor device
JP4951147B1 (en) Curable composition for optical semiconductor device
JP5693063B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
WO2013035736A1 (en) Curable composition for optical semiconductor device
JP2012111836A (en) Sealing agent for optical semiconductor device, and optical semiconductor device using the same
JP2012007136A (en) Sealing agent for optical semiconductor device and optical semiconductor device using the same
JP2013253210A (en) Curable composition for optical semiconductor device, optical semiconductor device and method for manufacturing the optical semiconductor device
JP5323037B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
JP2013122037A (en) Curable composition for optical semiconductor device, and optical semiconductor device
JP5323038B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
JP2012199345A (en) Lens material for optical semiconductor device, optical semiconductor device and manufacturing method therefor
WO2012157330A1 (en) Sealing agent for optical semiconductor device, and optical semiconductor device
JP2012197409A (en) Sealant for photosemiconductor device and photosemiconductor device using the same
JP2014189789A (en) Curable composition for optical semiconductor device, and optical semiconductor device using the same
JP2012241051A (en) Sealant for optical semiconductor device and optical semiconductor device
JP2013181061A (en) Lens material for optical semiconductor apparatus, optical semiconductor apparatus, and method for producing optical semiconductor apparatus
JP2013064062A (en) Sealing agent for optical semiconductor device, and optical semiconductor device using the same
JP2013018900A (en) Sealant for optical semiconductor device and optical semiconductor device using the same
JP2012193235A (en) Coating material for optical semiconductor device and optical semiconductor device using the same
JP2012059868A (en) Sealant for optical semiconductor device and optical semiconductor device using it
JP2012188627A (en) Lens material for optical semiconductor apparatus, optical semiconductor apparatus, and method for manufacturing optical semiconductor apparatus
JP2012190952A (en) Sealant for optical semiconductor device, cured sealant for optical semiconductor device, and optical semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013510420

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137029657

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829914

Country of ref document: EP

Kind code of ref document: A1