WO2013035359A1 - 白金錯体 - Google Patents

白金錯体 Download PDF

Info

Publication number
WO2013035359A1
WO2013035359A1 PCT/JP2012/056098 JP2012056098W WO2013035359A1 WO 2013035359 A1 WO2013035359 A1 WO 2013035359A1 JP 2012056098 W JP2012056098 W JP 2012056098W WO 2013035359 A1 WO2013035359 A1 WO 2013035359A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
platinum
saturated
platinum complex
Prior art date
Application number
PCT/JP2012/056098
Other languages
English (en)
French (fr)
Inventor
直田健
小宮成義
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2013532466A priority Critical patent/JP5967663B2/ja
Publication of WO2013035359A1 publication Critical patent/WO2013035359A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/24Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/323Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a platinum complex and a luminescent material containing the platinum complex.
  • phosphorescent EL devices can achieve a quantum efficiency that is theoretically higher than that of fluorescent devices, development of phosphorescent light-emitting materials directed to organic EL displays and illumination is desired.
  • Many conventional phosphorescent metal complexes have been reported to be highly luminescent in dilute solutions or low-concentration thin films, but few are highly luminescent in a highly integrated state like crystals.
  • organic platinum complexes have been attracting attention as phosphorescent materials as organometallic complexes.
  • an organic platinum complex containing a platinum atom coordinated with two NN type bidentate ligands or two NO type bidentate ligands is known (for example, Patent Document 1).
  • An organic platinum complex containing a platinum atom coordinated by a tetradentate ligand is also known (for example, Patent Document 2).
  • platinum complexes (porphyrin, phenylpyridine, bipyridine, terpyridine, salen, etc.) have high planarity and upper and lower coordination planes, so intermolecular energy transfer due to self-assembly in crystals. It is known that light emission is deactivated by taking a packing that is liable to be deactivated.
  • platinum complex A coordinated by ppy (phenylpyridine) and acacac (acetylacetonate) (Patent Document 3, Non-Patent Document 1) is known. It has been. These platinum complexes have been reported to emit light in solution or in a low concentration dispersion state. However, since these platinum complexes are molecules with high planarity, they emit light in a high density state like crystals. The strength is considered weak.
  • an object of the present invention is to provide a light emitting material that is solid and has a high light emitting property.
  • two bidentate ligands coordinate to platinum, each of the two bidentate ligands has an imino site, and the nitrogen atoms of the imino site coordinate to platinum in a trans position relative to each other.
  • the two bidentate ligands are a first platinum complex having a different structure from each other, or a tetradentate ligand is coordinated to platinum, and the bidentate ligand is linked by two bridges.
  • Each of the two bidentate ligands has an imino moiety, the nitrogen atoms of the imino moiety are coordinated to platinum in a trans position, and the two bidentate ligands are , Any one of the second platinum complexes having different structures.
  • the light emitting material containing the platinum complex of the present invention is solid and has an advantage of high light emission.
  • FIG. 1A shows the HOMO and LUMO of the compound (1) of Example 1.
  • FIG. 1B shows the structural formula of the compound (1) of Example 1.
  • FIG. 2 is an X-ray crystal structure diagram of the compound (3) of Example 3.
  • FIG. 3 is a packing diagram in the crystal of the compound (3) of Example 3.
  • the present inventors coordinated two types of bidentate ligands containing an imino moiety in a trans form with respect to platinum, or tetradentate coordination in which these two types of bidentate ligands were passed through a spacer. It has been found that a platinum complex in which a child is coordinated to platinum in a trans form exhibits strong luminescence in a solid state such as a crystal. Based on such knowledge, the present inventors have completed the present invention.
  • the present inventors have found that the two types of bidentate ligands contained in the platinum complex are based on computational chemistry, and that the HOMO of the platinum complex is compared with the other bidentate ligand. It has also been found that a platinum complex in which the contribution of the other element is large and the LUMO of the platinum complex has a larger contribution of the other bidentate ligand than the bidentate ligand can control the emission wavelength. That is, the present inventors appropriately introduce a functional group of an electron withdrawing group and / or an electron donating group at an appropriate position of any one of the two types of bidentate ligands of such a platinum complex. It was also found that the emission wavelength of the platinum complex can be controlled.
  • the HOMO of the platinum complex is compared with one bidentate site of the other.
  • the platinum moiety has a large contribution, and the LUMO of the platinum complex can control the emission wavelength of the platinum complex in which the contribution of the other bidentate ligand moiety is larger than that of the one bidentate ligand moiety.
  • the electron donor group is substituted at the position that affects HOMO of the bidentate ligand (or the bidentate ligand part of the tetradentate ligand) that contributes to HOMO, and the energy of HOMO is increased.
  • the energy difference between HOMO and LUMO is narrowed, and the emission wavelength of the platinum complex can be shifted to the longer wavelength side.
  • the emission wavelength of the platinum complex of the present invention can be controlled.
  • the nitrogen atom of the imino moiety that binds to platinum of one bidentate ligand and the nitrogen atom of the imino moiety that binds to platinum of the other bidentate ligand each independently have a substituent. It is preferable to have.
  • the nitrogen atom of the imino site that binds to platinum of one bidentate ligand and the nitrogen atom of the imino site that binds to platinum of the other bidentate ligand are bridged to form a tetradentate. It is a ligand.
  • crosslinking is arrange
  • FIG. 2 shows the chemical structure and X-ray crystallographic analysis of the compound (3) of the present invention described later.
  • the nitrogen substituent (pentyl group) at the imino site of the left ligand is from a four-coordinate platinum coordination plane, It extends in the vertical direction.
  • the platinum complex of the present invention has an effect that the emission intensity is strong in the crystalline state.
  • the platinum complex of the present invention has an excellent effect that the emission intensity is strong not only in a crystalline state but also in an amorphous state, a glass state, and a mixture state.
  • the substituent is, for example, selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a cycloalkyl group, a saturated or unsaturated heterocyclic group, and a saturated or unsaturated heterocyclic alkyl group. A substituent is mentioned.
  • Examples of the bridge include a group represented by the formula — (CH 2 ) k — (wherein K is an integer of 7 to 20), a formula — (CH 2 ) L —Y— (CH 2 ) M A group represented by — (wherein —Y— is —COO—, —OCO—, —CO—, —NH—, —NR—, —O—, wherein R is an alkyl group; L is an integer of 2 to 6, and M is an integer of 2 to 6.), or a group represented by the formula — (CH 2 ) 2 — (OCH 2 CH 2 ) Q — (wherein Q is an integer of 2 to 6).
  • the quantum yield often decreases when the material enters a crystalline state. Since the light emitting material of the present invention has a high quantum yield in the crystalline state, it is advantageous in that the usage form of the light emitting material of the present invention is widened and useful.
  • two bidentate ligands coordinate to platinum, each of the two bidentate ligands has an imino moiety, and the nitrogen atoms of the imino moiety are mutually transpositioned to platinum.
  • a bidentate ligand, the two bidentate ligands each have an imino moiety, and the nitrogen atoms of the imino moiety are coordinated to platinum in a trans position relative to each other;
  • the child is a second platinum complex having a different structure.
  • two bidentate ligands coordinate to platinum, each of the two bidentate ligands has an imino moiety, and the nitrogen atoms of the imino moiety are mutually transpositioned to platinum.
  • a bidentate ligand, the two bidentate ligands each have an imino moiety, and the nitrogen atoms of the imino moiety are coordinated to platinum in a trans position relative to each other;
  • the child is a light emitting material containing a second platinum complex having a structure different from each other.
  • Examples of the two bidentate ligands of the first platinum complex of the present invention include the following formula (a) and formula (b), formula (a) and formula (c), formula (a) and formula ( d), the formula (b) and the formula (c), the formula (b) and the formula (d), and the combination of the formula (c) and the formula (d).
  • X is an atom marked with a and b
  • X ′ is an atom marked with c and d
  • X ′′ is an atom marked with e and f.
  • R 11 , R 21 , R 31 and R 41 are composed of an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a cycloalkyl group, a saturated or unsaturated heterocyclic group, and a saturated or unsaturated heterocyclic alkyl group.
  • R 12 , R 22 , R 32 and R 42 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a cycloalkyl group, a saturated or unsaturated heterocyclic group, and a saturated or unsaturated heterocyclic alkyl group.
  • R 43 and R 44 are hydrogen atom, alkyl group, alkenyl group, alkoxy group, halogen atom, aryl group, aralkyl group, cycloalkyl group, hydroxy group, amino group, alkylamino group, nitro group, sulfonyl group, sulfinyl group.
  • Examples of the two bidentate ligands of the first platinum complex include the following formula (a1) and formula (b1), formula (a1) and formula (c1), formula (a1) and formula (d1), It is preferably selected from the combinations of formula (b1) and formula (c1), formula (b1) and formula (d1), and formula (c1) and formula (d1).
  • R 11 , R 21 , R 31 and R 41 are composed of an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a cycloalkyl group, a saturated or unsaturated heterocyclic group, and a saturated or unsaturated heterocyclic alkyl group.
  • R 12 , R 22 , R 32 and R 42 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a cycloalkyl group, a saturated or unsaturated heterocyclic group, and a saturated or unsaturated heterocyclic alkyl group.
  • R 13 , R 14 , R 15 , R 16 , R 23 , R 24 , R 25 , R 26 , R 33 , R 34 , R 35 , R 43 and R 44 are a hydrogen atom, alkyl group, alkenyl group, alkoxy Group, halogen atom, aryl group, aralkyl group, cycloalkyl group, hydroxy group, amino group, alkylamino group, nitro group, sulfonyl group, sulfinyl group, carboxy group, alkoxycarbonyl group, cyano group, saturated or unsaturated complex It is independently selected from the group consisting of a cyclic group and a saturated or unsaturated heterocyclic alkyl group.
  • the two bidentate ligands are the formulas (a) and (b), the formulas (a) and (c), the formulas (a) and (d).
  • any ligand contributes to the HOMO of the platinum complex Can be accurately determined by calculating the molecular orbitals by the density functional method.
  • the following relationship is often applicable.
  • the left side has a larger contribution to HOMO
  • the right side has a larger contribution to LUMO.
  • the formula (c) has a large contribution to HOMO
  • the formula (a) has a large contribution to LUMO.
  • the formula (c) has a large contribution to HOMO
  • the formula (b) has a large contribution to LUMO.
  • the formula (d) has a large contribution to HOMO
  • the formula (b) has a large contribution to LUMO.
  • Such a first platinum complex of the present invention is represented by the following formula, for example.
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 31 , R 32 , R 33 , R 34 and R 35 are the same as defined in Formula (a1), Formula (b1), and Formula (c1).
  • the first platinum complex of the present invention is more preferably a compound represented by the following formulas (1) to (7) and (10) to (14).
  • the second platinum complex of the present invention is selected from the group consisting of, for example, the following formula (I), formula (II), formula (III), formula (IV), formula (V) and formula (VI): It is expressed by the formula.
  • X is an atom marked with a and b
  • X ′ is an atom marked with c and d
  • X ′′ is an atom marked with e and f.
  • R 12 , R 22 , R 32 and R 42 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a cycloalkyl group, a saturated or unsaturated heterocyclic group, and a saturated or unsaturated heterocyclic alkyl group.
  • R 43 and R 44 are hydrogen atom, alkyl group, alkenyl group, alkoxy group, halogen atom, aryl group, aralkyl group, cycloalkyl group, hydroxy group, amino group, alkylamino group, nitro group, sulfonyl group, sulfinyl group.
  • Z is a group represented by the formula — (CH 2 ) k — (wherein K is an integer of 7 to 20), represented by the formula — (CH 2 ) L —Y— (CH 2 ) M —.
  • —Y— is —COO—, —OCO—, —CO—, —NH—, —NR—, —O—, wherein R is an alkyl group, and L is An integer of 2 to 6, and M is an integer of 2 to 6), or a group represented by the formula — (CH 2 ) 2 — (OCH 2 CH 2 ) Q — (wherein Q is It is an integer of 2 to 6.).
  • the second platinum complex is represented by the formula selected from the group consisting of the following formula (Ia), formula (IIa), formula (IIIa), formula (IVa), formula (Va) and formula (VIa). Preferably it is done.
  • R 12 , R 22 , R 32 and R 42 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a cycloalkyl group, a saturated or unsaturated heterocyclic group, and a saturated or unsaturated heterocyclic alkyl group.
  • R 13 , R 14 , R 15 , R 16 , R 23 , R 24 , R 25 , R 26 , R 33 , R 34 , R 35 , R 43 and R 44 are hydrogen atom, alkyl group, alkenyl group, alkoxy group, halogen atom, aryl group, aralkyl group, cycloalkyl group, hydroxy group, amino group, alkylamino group, nitro group, sulfonyl group, sulfinyl group.
  • Z is a group represented by the formula — (CH 2 ) k — (wherein K is an integer of 7 to 20), represented by the formula — (CH 2 ) L —Y— (CH 2 ) M —.
  • —Y— is —COO—, —OCO—, —CO—, —NH—, —NR—, —O—, wherein R is an alkyl group, and L is An integer of 2 to 6, and M is an integer of 2 to 6), or a group represented by the formula — (CH 2 ) 2 — (OCH 2 CH 2 ) Q — (wherein Q is It is an integer of 2 to 6.).
  • the second platinum complex of the present invention is represented by formula (I), formula (II), formula (III), formula (IV), formula (V) and formula (VI), and (Ia), formula (IIa).
  • formula (IIIa), Formula (IVa), Formula (Va), and Formula (VIa) any part of the two bidentate ligands included in the tetradentate ligand is Whether the platinum complex contributes greatly to HOMO or LUMO can be accurately determined by calculating the molecular orbital by the density functional theory. In addition, as a result of the calculation, the following relationship is often applicable.
  • the left side has a larger contribution to HOMO
  • the right side has a larger contribution to LUMO.
  • the bidentate ligand contained in the tetradentate ligand is a combination of formula (c) and formula (a).
  • the expression (c) has a large contribution to HOMO
  • the expression (a) has a large contribution to LUMO.
  • a tetradentate ligand when a tetradentate ligand is a formula (IV) or a formula (IVa), it becomes a combination of a formula (c) and a formula (b) as a bidentate ligand contained in a tetradentate ligand. In this case, the expression (c) has a large contribution to HOMO, and the expression (b) has a large contribution to LUMO.
  • a tetradentate ligand when a tetradentate ligand is a formula (V) or a formula (Va), it becomes a combination of a formula (d) and a formula (b) as a bidentate ligand contained in a tetradentate ligand. In this case, equation (d) contributes significantly to HOMO, and equation (b) contributes significantly to LUMO.
  • the second platinum complex of the present invention is more preferably a compound represented by the following formulas (8) and (9).
  • examples of the alkyl group include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and the like.
  • the alkyl group may be linear or branched.
  • the upper limit of the carbon number is not limited, the alkyl group is, for example, an alkyl group having 1 to 12 carbon atoms, preferably 5 to 10 carbon atoms, and more preferably 5 to 8 carbon atoms.
  • the alkoxy group is an alkyloxy group.
  • the alkyl part of the alkyloxy group is the same as the alkyl group.
  • Examples of the alkoxyl group include methoxy, ethoxy, propyloxy, butyloxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy and the like.
  • the upper limit of the carbon number is not limited, the alkoxy group is, for example, an alkoxy group having 1 to 12 carbon atoms, preferably 5 to 10 carbon atoms, more preferably 5 to 8 carbon atoms.
  • the alkoxy moiety of the alkoxylcarbonyl group is the same as the alkoxy group.
  • the alkoxylcarbonyl group include methoxycarbonyl, ethoxycarbonyl, propyloxycarbonyl, butyloxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl, heptyloxycarbonyl, octyloxycarbonyl, nonyloxycarbonyl, decyloxycarbonyl, undecyloxycarbonyl , Dodecyloxycarbonyl and the like.
  • the alkoxycarbonyl group is, for example, an alkoxycarbonyl group having 2 to 13 carbon atoms, preferably 6 to 11 carbon atoms, and more preferably 6 to 9 carbon atoms.
  • the alkylamino group includes a monoalkylamino group and a dialkylamino group.
  • the alkyl moieties may be the same or different.
  • the alkyl part of the alkylamine is the same as the alkyl group.
  • alkylamino group examples include methylamino, ethylamino, propylamino, butylamino, pentylamino, hexylamino, heptylamino, octylamino, nonylamino, decylamino, undecylamino, dodecylamino, dimethylamino, diethylamino, dipropyl
  • Examples include amino, dibutylamino, dipentylamino, dihexylamino, diheptylamino, dioctylamino, dinonylamino, didecylamino, diundecylamino, didodecylamino, methylethylamino and the like.
  • the upper limit of the carbon number is not limited, but the alkylamino group is, for example, an alkylamino group having 1 to 13 carbon atoms, preferably 5 to 11 carbon atoms, and
  • an alkenyl group is a carbon number such as vinyl, allyl, isopropenyl, 1 or 2 or 3-butenyl, 1 or 2 or 3 or 4-pentenyl, 1 or 2 or 3 or 4 or 5-hexenyl.
  • a straight chain or branched chain alkenyl group having 2 or more is exemplified.
  • the upper limit of the carbon number is not limited, and examples of the alkenyl group include alkenyl having 2 to 13 carbon atoms, preferably 5 to 11 carbon atoms, and more preferably 5 to 9 carbon atoms.
  • examples of the aryl group include a phenyl group and a naphthyl group.
  • the aralkyl group means an arylalkyl group
  • the alkyl part of the aralkyl group is the same as the alkyl group
  • the aryl part of the aralkyl group is the same as the aryl group.
  • aralkyl group examples include benzyl group, 1-phenylethyl group, 2-phenylethyl group, phenylpropyl group, phenylbutyl group, phenylpentyl group, phenylhexyl group, naphthylmethyl group, naphthylethyl group, naphthylpropyl group, A naphthyl butyl group, a naphthyl pentyl group, a naphthyl hexyl group, etc. are mentioned.
  • examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group, and a cycloalkyl group having 3 to 7 carbon atoms is preferable.
  • the saturated or unsaturated heterocyclic group means, for example, an unsaturated 3- to 8-membered heterocyclic monocyclic group containing 1 to 4 nitrogen atoms, such as pyrrolyl, pyrrolinyl, imidazolyl, etc .; Saturated 3- to 8-membered heterocyclic monocyclic groups containing 1 to 4 nitrogen atoms, such as pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl and the like; unsaturated condensed heterocyclic groups containing 1 to 4 nitrogen atoms, such as indolyl, isoindolyl and the like; 1 Unsaturated 3- to 8-membered heteromonocyclic groups containing 2 oxygen atoms and 1 to 3 nitrogen atoms, such as oxazolyl, isoxazolyl, etc .; 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms A saturated 3- to 8-membered heterocyclic monocyclic group containing 1
  • the saturated or unsaturated heterocyclic portion of the saturated or unsaturated heterocyclic alkyl group is the same as the saturated or unsaturated heterocyclic group.
  • the alkyl portion of the saturated or unsaturated heterocyclic alkyl group is the same as the above alkyl group.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, preferably a fluorine atom, a chlorine atom, or a bromine atom.
  • the heteroaromatic ring is a ring containing one or more heteroatoms selected from a carbon atom and sulfur, oxygen and nitrogen, and has aromaticity.
  • the heteroaromatic ring include thiophene, furan, pyrrole, imidazole, pyrazole, isothiazole, isoxazole, pyridine, pyrazine, pyrimidine, pyridazine and the like.
  • examples of the aromatic condensed ring in which one or more benzene rings are condensed include naphthalene, phenalene, phenanthrene, anthracene, and triphenylene.
  • heteroaromatic condensed ring in which one or more heteroaromatic rings are condensed examples include purine and pteridine.
  • a mixed condensed polycycle in which one or more benzene rings and one or more heteroaromatic rings are condensed includes, for example, isobenzofuran, indoline, indole, indazole, purine, isoquinoline, quinoline, phthalazine, naphthyridine, Examples include quinoxaline, quinazoline, cinnoline, pteridine, phenanthridine, acridine, perimidine, phenanthroline, phenazine, phenothiazine, and phenoxazine.
  • the benzene ring, heteroaromatic ring, aromatic condensed ring, heteroaromatic condensed ring, and mixed condensed polycycle may have one or more substituents.
  • substituents include alkyl groups, alkenyl groups, alkoxy groups, halogen atoms, aryl groups, aralkyl groups, cycloalkyl groups, hydroxy groups, amino groups, alkylamino groups, nitro groups, sulfonyl groups, sulfinyl groups, carboxy groups, An alkoxycarbonyl group, a cyano group, etc. are mentioned.
  • the platinum complex of the present invention can be produced, for example, as follows. For example, when the atom bonded to platinum of the bidentate ligand and the atom bonded to platinum of the bidentate ligand independently have a substituent, first, the first bidentate ligand and platinum To form an intermediate complex, and the intermediate complex is reacted with a second bidentate ligand. As a result, a first platinum complex containing the two bidentate ligands as described above can be obtained.
  • the two bidentate ligands of the first platinum complex of the present invention are represented by the following formula (a) and formula (b), formula (a) and formula (c), formula (a) and formula (d), formula A platinum complex represented by a formula selected from a combination of (b) and formula (c), formula (b) and formula (d), and formula (c) and formula (d) is a method described herein.
  • a platinum complex represented by the formula (D-11) having a ligand represented by the formula (a) and a ligand represented by the formula (b) should be produced as follows. Can do.
  • a compound of formula (A-11) is reacted with a platinum compound to obtain a compound of formula (B-11).
  • An example of this platinum compound is K 2 PtCl 4 .
  • This reaction is carried out, for example, at 20 to 80 ° C. for 1 to 48 hours.
  • the solvent for this reaction include, but are not limited to, a mixture of dimethylformamide (DMF) and methanol, dimethyl sulfoxide (DMSO), and the like.
  • the obtained compound of formula (B-11) is reacted with a compound of formula (C-11) to obtain a compound of formula (D-11).
  • a base such as NaH or triethylamine may be used.
  • the base may be used in an amount of 1 to 3 equivalents of the compound of formula (B-11).
  • This reaction is carried out, for example, at 20 to 80 ° C. for 1 to 48 hours.
  • the solvent for this reaction include, but are not limited to, tetrahydrofuran (THF), dioxane and the like.
  • the compound represented by the formula (A-11) and the compound represented by the formula (C-11) may be obtained commercially, or prepared in-house with reference to known literatures. Also good.
  • the 2nd platinum complex of this invention can be manufactured as follows, for example.
  • the atom that binds to the platinum of the first bidentate ligand and the atom that binds to the platinum of the second bidentate ligand are bridged and linked tetradentate ligands
  • crosslinked the 1st bidentate ligand and the 2nd bidentate ligand is formed, and a complex is formed with the intermediate body and platinum.
  • a platinum complex containing a tetradentate ligand in which the first bidentate ligand and the second bidentate ligand are linked as described above can be obtained.
  • the platinum complex represented by the formula (II) in which the ligand represented by the formula (a) and the ligand represented by the formula (c) are cross-linked should be produced as follows. Can do.
  • the compound of formula (E-11) is reacted with a platinum compound (for example, K 2 PtCl 4 , PtCl 2 (CH 3 CN) 2, etc.) to obtain a compound of formula (II).
  • a platinum compound for example, K 2 PtCl 4 , PtCl 2 (CH 3 CN) 2, etc.
  • the compound represented by the formula (E-11) may be obtained commercially, or made in-house with reference to known literature.
  • the platinum complex of the present invention can shift the emission wavelength to the long wavelength side.
  • any one of the two bidentate ligands contributes to the HOMO of the platinum complex, and affects the HOMO of the bidentate ligand that contributes to the HOMO.
  • an electron donating group at a position (for example, the 5-position in formula (a1) and formula (b1))
  • the emission wavelength of the platinum complex can be shifted to the longer wavelength side.
  • the energy difference between HOMO and LUMO of the platinum complex is reduced, and as a result, the emission wavelength of the platinum complex can be shifted to the longer wavelength side.
  • the platinum complex of the present invention can shift the emission wavelength to the short wavelength side.
  • either one of the two bidentate ligands contributes to the LUMO of the platinum complex and affects the LUMO of the bidentate ligand that contributes to the LUMO.
  • an electron donating group at a position (for example, 4-position in formula (a1) and formula (b1))
  • the emission wavelength of the platinum complex can be shifted to the short wavelength side.
  • the light emitting material of the present invention contains the first platinum complex or the second platinum complex of the present invention.
  • the light emitting material of the present invention can be used as a light emitting material of an organic EL element, specifically, a material of a light emitting layer.
  • an organic EL element for example, a substrate, an anode, a hole transport layer, a light emitting layer containing the light emitting material of the present invention, an electron transport layer, and a cathode are laminated in this order.
  • the substrate, the anode, the hole transport layer, the electron transport layer, and the cathode may be formed by a conventionally known manufacturing method using a conventionally known material.
  • the light emitting layer may contain a host material in addition to the light emitting material of the present invention.
  • the host material include those having a diarylamine skeleton, those having a pyridine skeleton, those having a pyrazine skeleton, those having a triazine skeleton, and those having an arylsilane skeleton.
  • the quantum yield was measured using a fluorometer FP-6500N, a low-temperature medium integrating sphere system INK-533 for phosphorescence measurement, and a liquid sample cell LPH-120 (all manufactured by JASCO Corporation).
  • the molecular orbitals were calculated by the density functional method (DFT method). Spartan 10W was used as software, b3lyp was used as a functional, and LACVP * was used as a basis function.
  • DFT method density functional method
  • Compound (3) was synthesized according to Scheme 5. First, 5-methylsalicylaldehyde and 1 equivalent of pentylamine were heated to reflux in ethanol to obtain compound (C-3). Compound (3) was obtained in the same manner as in Example 1 except that Compound (C-3) (0.14 g) was used instead of Compound (C-1) (0.046 g) (orange powder, 68 mg ).
  • the platinum complex of the present invention exhibited phosphorescence emission with high quantum efficiency at room temperature in the crystalline state.
  • the compounds of Examples 3 to 4 have an electron donating group on the ligand contributing to HOMO (formula (a)), and thus do not have such an electron donating group. It was confirmed that the phosphorescence absorption wavelength was shifted to a longer wavelength as compared with the compound (1).
  • the compounds of Example 4 and Example 5 are both shifted by a long wavelength by introducing an electron donating group at the 5-position. In particular, electrons are located at positions that affect the HOMO of the ligand that contributes to HOMO.
  • the compound (4) (Example 4) in which the donating ligand is substituted has a larger long wavelength shift.
  • the compounds of Example 10 and Example 11 are both shifted by a short wavelength by introducing an electron donating group at the 4-position. In particular, the electrons are located at positions that affect the LUMO of the ligand that contributes to the LUMO.
  • the compound (11) (Example 11) in which the donor ligand is substituted has a larger short wavelength shift.
  • the HOMO and LUMO energy levels of the compound (1) of Example 1 were calculated by the DFT (density functional theory) method.
  • the distribution of energy levels of the obtained HOMO and LUMO is shown in FIG. 1A.
  • FIG. 1A it was confirmed that the HOMO of the compound (1) has a large contribution of the salicylaluminine type ligand and the LUMO has a large contribution of the iminophenyl type ligand. That is, the HOMO of the compound of the present invention is greatly contributed by the first bidentate ligand (salicylaluminine type ligand) compared to the second bidentate ligand (iminophenyl type ligand).
  • LUMO confirmed that the contribution of the second bidentate ligand (iminophenyl type ligand) was larger than that of the first bidentate ligand (salicylaluminine type ligand).
  • the structural formula of the compound (1) is shown in FIG. 1B for reference.
  • the distance between the benzene ring in the bidentate ligand of one compound (3) and the benzene ring in the bidentate ligand of another compound (3) parallel thereto is 9 mm or more. It is.
  • Such an arrangement is such that the atom that binds to the platinum of the first bidentate ligand and the atom that binds to the platinum of the second bidentate ligand in the molecule of the compound (3) have a steric structure called n-pentyl. I think that it is realized by having a large functional group. If such an arrangement is adopted, the molecules of the compound (3) do not quench each other, so that it is considered that strong intensity phosphorescence can be realized.
  • the light emitting material of the present invention is excellent in light emission efficiency, it is possible to obtain a light emission intensity sufficient for practical use. Therefore, the light-emitting material of the present invention is useful as a material for organic light-emitting elements that are the next generation technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 2つの二座配位子が白金に配位し、前記2つの二座配位子が、それぞれイミノ部位を有し、前記イミノ部位の窒素原子は互いにトランス位で白金に配位し、前記2つの二座配位子が、互いに構造が異なる第1の白金錯体、または 四座配位子が白金に配位し、前記四座配位子が、架橋により連結された2つの二座配位子を有し、前記2つの二座配位子が、それぞれイミノ部位を有し、前記イミノ部位の窒素原子は互いにトランス位で白金に配位し、前記2つの二座配位子が、互いに構造が異なる第2の白金錯体。

Description

白金錯体
 本発明は、白金錯体およびその白金錯体を含む発光材料に関する。
 燐光性ELデバイスは、蛍光性のものより理論的に高い量子効率を達成可能なため、有機ELディスプレイや照明などを指向した燐光性発光材料の開発が望まれている。従来の燐光性金属錯体は、希薄溶液あるいは低濃度薄膜で強発光性のものが多く報告されているが、結晶のような高集積状態で強発光性のものは、ほとんど知られていない。
 近年、有機金属錯体として有機白金錯体が燐光発光材料として着目されてきている。例えば、2個のNN型二座配位子または2個のNO型二座配位子が配位した白金原子を含む有機白金錯体が知られている(例えば、特許文献1)。また、四座配位子が配位した白金原子を含む有機白金錯体も知られている(例えば、特許文献2)。
 また、従来の白金錯体(ポルフィリン、フェニルピリジン、ビピリジン、タ―ピリジン、サレン等)は、平面性が高く、上下の配位平面があいているため、結晶中では自己集積により、分子間エネルギー移動による失活を起こしやすいパッキングをとることで、発光失活することが知られている。
Figure JPOXMLDOC01-appb-C000003
 
 また、白金に2種類の配位子を有する非対称型錯体として、たとえば、ppy(フェニルピリジン), acac(アセチルアセトナート)が配位した白金錯体A(特許文献3、非特許文献1)が知られている。これらの白金錯体は、溶液や低濃度分散状態で発光することが報告されているが、しかし、これらの白金錯体は、平面性の高い分子であることから、結晶のような高密度状態では発光強度は弱いと考えられる。
特開2007-535807号公報 特開2009-224763号公報 特開2007-161886号公報
Thompsonら、Inorg. Chem., 2002, 41, 3055.
 そこで、本発明は、固体であって、発光性が強い発光材料を提供することを目的とする。
 本発明は、2つの二座配位子が白金に配位し、前記2つの二座配位子が、それぞれイミノ部位を有し、前記イミノ部位の窒素原子は互いにトランス位で白金に配位し、前記2つの二座配位子が、互いに構造が異なる第1の白金錯体、または
 四座配位子が白金に配位し、前記四座配位子が、架橋により連結された2つの二座配位子を有し、前記2つの二座配位子が、それぞれイミノ部位を有し、前記イミノ部位の窒素原子は互いにトランス位で白金に配位し、前記2つの二座配位子が、互いに構造が異なる第2の白金錯体のいずれかの白金錯体である。
 本発明の白金錯体を含む発光材料は、固体であって、発光性が強いという利点がある。
図1Aは、実施例1の化合物(1)のHOMOおよびLUMOを示す。 図1Bは、実施例1の化合物(1)の構造式を示す。 図2は、実施例3の化合物(3)のX線結晶構造の図である。 図3は、実施例3の化合物(3)の結晶中におけるパッキング図である。
 本発明者らは、イミノ部位を含む二座配位子2種類を白金に対しトランス型に配位させるか、またはこれらの2種類の二座配位子をスペーサーで渡環した4座配位子を白金に対しトランス型に配位させた白金錯体は、結晶のような高密度の固体状態で強い発光性を示すことを見出した。このような知見に基づき、本発明者らは、本発明を完成した。
 また、本発明者らは、前記白金錯体に含まれる2種類の二座配位子は、計算化学により、白金錯体のHOMOは、一方の二座配位子と比べて他方の二座配位子の寄与が大きく、白金錯体のLUMOは、一方の二座配位子と比べて他方の二座配位子の寄与が大きい白金錯体は、発光波長を制御可能であることも見出した。すなわち、本発明者らは、このような白金錯体の2種類の二座配位子のいずれか一方の適切な位置に、電子求引基および/または電子供与基の官能基を適宜導入することにより、白金錯体の発光波長を制御可能なことも見出した。なお、2種類の二座配位子をスペーサーで渡環した四座配位子が配位した白金錯体の場合、白金錯体のHOMOは、一方の二座配位子部位比べて他方の二座配位子部位の寄与が大きく、白金錯体のLUMOは、一方の二座配位子部位と比べて他方の二座配位子部位の寄与が大きい白金錯体は、同様に発光波長を制御可能である。
 具体的には、HOMOに寄与するほうの二座配位子(または四座配位子の二座配位子部分)のHOMOに影響を与える位置に電子供与基を置換させ、HOMOのエネルギーを上昇させると、HOMOとLUMOのエネルギー差が狭まり、白金錯体の発光波長を長波長側にシフトさせることができる。または、LUMOに寄与するほうの二座配位子(または四座配位子の二座配位子部分)のLUMOに影響を与える位置に電子供与基を置換させ、LUMOのエネルギーを上昇させると、HOMOとLUMOのエネルギー差が広がり、白金錯体の発光波長を短波長側にシフトさせることができる。このようにして、本発明の白金錯体は、その発光波長が制御可能である。
 本発明の白金錯体は、一方の二座配位子の白金と結合するイミノ部位の窒素原子および他方の二座配位子の白金と結合するイミノ部位の窒素原子が、置換基をそれぞれ独立して有するのが好ましい。または、本発明の白金錯体は、一方の二座配位子の白金と結合するイミノ部位の窒素原子および他方の二座配位子の白金と結合するイミノ部位の窒素原子が、架橋されて四座配位子である。このような置換基または架橋は、白金と配位する一方の二座配位子と他方の二座配位子との形成する平面に対して、非同一平面上に配置される。そうすると、このような置換基または架橋により、三次元立体構造において、ある白金錯体と他の白金錯体とが、重なることを妨げることができる。例えば、後記する本発明の化合物(3)の化学構造とX線結晶解析を図2に示す。図2に示すように、左側の配位子のイミノ部位の窒素の置換基(ペンチル基)が、右側の配位子との立体障害を避けるために、四配位の白金配位平面から、垂直方向に延びている。一般に、ある平面性の高い白金錯体と他の平面性の高い白金錯体が平行に重なりあって集積すると、三重項-三重項失活が生じ、その結果、発光が弱められてしまう。しかしながら、本発明のように、この重なりを防止すると、発光は弱められることが無い。従って、このような本発明の白金錯体は、結晶状態において、発光強度が強いという効果を奏する。また、本発明の白金錯体は、結晶状態のみならず、アモルファス状態、ガラス状態、混合物での状態においても、発光強度は強いという優れた効果を奏する。前記置換基としては、例えば、アルキル基、アルケニル基、アリール基、アラルキル基、シクロアルキル基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から選択される置換基が挙げられる。架橋としては、例えば、式-(CH-で表される基(式中、Kは、7~20の整数である)、式-(CH-Y-(CH-で表される基(式中、-Y-は、-COO-、-OCO-、-CO-、-NH-、-NR-、-O-であり、前記Rは、アルキル基であり、Lは、2~6の整数であり、Mは、2~6の整数である。)、または式-(CH-(OCHCH-で表される基(式中、Qは、2~6の整数である。)により架橋されることが挙げられる。なお、一般に、溶液状態において量子収率が高いことが知られている材料であっても、結晶状態になると、量子収率が低下する場合が多い。本発明の発光材料は、結晶状態において量子収率が高いため、本発明の発光材料の使用形態が広がり、有用性が高くなる点で有利である。
 すなわち、本発明は、2つの二座配位子が白金に配位し、前記2つの二座配位子が、それぞれイミノ部位を有し、前記イミノ部位の窒素原子は互いにトランス位で白金に配位し、前記2つの二座配位子が、互いに構造が異なる第1の白金錯体、または
 四座配位子が白金に配位し、前記四座配位子が、架橋により連結された2つの二座配位子を有し、前記2つの二座配位子が、それぞれイミノ部位を有し、前記イミノ部位の窒素原子は互いにトランス位で白金に配位し、前記2つの二座配位子が、互いに構造が異なる第2の白金錯体である。
 また、本発明は、2つの二座配位子が白金に配位し、前記2つの二座配位子が、それぞれイミノ部位を有し、前記イミノ部位の窒素原子は互いにトランス位で白金に配位し、前記2つの二座配位子が、互いに構造が異なる第1の白金錯体、または
 四座配位子が白金に配位し、前記四座配位子が、架橋により連結された2つの二座配位子を有し、前記2つの二座配位子が、それぞれイミノ部位を有し、前記イミノ部位の窒素原子は互いにトランス位で白金に配位し、前記2つの二座配位子が、互いに構造が異なる第2の白金錯体を含む発光材料である。
 本発明の前記第1の白金錯体の2つの二座配位子としては、例えば、下記式(a)と式(b)、式(a)と式(c)、式(a)と式(d)、式(b)と式(c)、式(b)と式(d)および式(c)と式(d)の組み合わせから選択される。
Figure JPOXMLDOC01-appb-C000004
 
 前記式(a)、式(b)、式(c)および式(d)において、
 Xは、aおよびbで印を付けた原子と共に、X’は、cおよびdで印をつけた原子と共に、またはX’’は、eおよびfで印をつけた原子と共に、1つのベンゼン環、1つの複素芳香族環、1つ以上のベンゼン環が縮合した芳香族縮合環、1つ以上の複素芳香族環が縮合した複素芳香族縮合環、1つ以上のベンゼン環と1つ以上の複素芳香族環が縮合した混合縮合多環を形成し、前記環は、置換基を1以上有してもよく、
 R11、R21、R31およびR41は、アルキル基、アルケニル基、アリール基、アラルキル基、シクロアルキル基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から選択され、
 R12、R22、R32およびR42は、水素原子、アルキル基、アルケニル基、アリール基、アラルキル基、シクロアルキル基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から選択され、
 R43およびR44は、水素原子、アルキル基、アルケニル基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基、シクロアルキル基、ヒドロキシ基、アミノ基、アルキルアミノ基、ニトロ基、スルホニル基、スルフィニル基、カルボキシ基、アルコキシカルボニル基、シアノ基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から独立して選択される。
 前記第1の白金錯体の2つの二座配位子としては、例えば、下記式(a1)と式(b1)、式(a1)と式(c1)、式(a1)と式(d1)、式(b1)と式(c1)、式(b1)と式(d1)および式(c1)と式(d1)の組み合わせから選択されるのが好ましい。
Figure JPOXMLDOC01-appb-C000005
 
 前記式(a1)、式(b1)、式(c1)および式(d1)において、
 R11、R21、R31およびR41は、アルキル基、アルケニル基、アリール基、アラルキル基、シクロアルキル基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から選択され、
 R12、R22、R32およびR42は、水素原子、アルキル基、アルケニル基、アリール基、アラルキル基、シクロアルキル基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から選択され、
 R13、R14、R15、R16、R23、R24、R25、R26、R33、R34、R35、R43およびR44は、水素原子、アルキル基、アルケニル基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基、シクロアルキル基、ヒドロキシ基、アミノ基、アルキルアミノ基、ニトロ基、スルホニル基、スルフィニル基、カルボキシ基、アルコキシカルボニル基、シアノ基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から独立して選択される。
 本発明の第1の白金錯体において、前記2つの二座配位子が、前記式(a)と式(b)、式(a)と式(c)、式(a)と式(d)、式(b)と式(c)、式(b)と式(d)および式(c)と式(d)の組み合わせから選択される場合、いずれの配位子が白金錯体のHOMOに寄与が大きいのか、またはLUMOに寄与が大きいのかは、分子軌道を密度汎関数法により計算すれば、正確に判断できる。なお、計算の結果、以下のような関係が多くの場合、当てはまる。
Figure JPOXMLDOC01-appb-M000006
 
 前記関係式のうち、左のほうがHOMOに寄与が大きく、右のほうがLUMOに寄与が大きい。例えば、2つの二座配位子が式(c)と式(a)の組み合わせの場合、式(c)はHOMOに寄与が大きく、式(a)はLUMOに寄与が大きい。または、2つの二座配位子が式(c)と式(b)の組み合わせの場合、式(c)はHOMOに寄与が大きく、式(b)はLUMOに寄与が大きい。または、2つの二座配位子が式(d)と式(b)の組み合わせの場合、式(d)はHOMOに寄与が大きく、式(b)はLUMOに寄与が大きい。
 このような本発明の第1の白金錯体は、例えば、以下の式で表される。
Figure JPOXMLDOC01-appb-C000007
 
 前記式中、R11、R12、R13、R14,R15、R16、R21、R22、R23、R24、R25、R26、R31、R32、R33、R34およびR35は、式(a1)、式(b1)および式(c1)における定義と同様である。
 本発明の第1の白金錯体は、以下の式(1)~(7)、(10)~(14)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000008
 
 また、本発明の第2の白金錯体は、例えば、以下の式(I)、式(II)、式(III)、式(IV)、式(V)および式(VI)からなる群から選択される式で表される。
Figure JPOXMLDOC01-appb-C000009
 
 前記式式(I)、式(II)、式(III)、式(IV)、式(V)および式(VI)中、
 Xは、aおよびbで印を付けた原子と共に、X’は、cおよびdで印をつけた原子と共に、またはX’’は、eおよびfで印をつけた原子と共に、1つのベンゼン環、1つの複素芳香族環、1つ以上のベンゼン環が縮合した芳香族縮合環、1つ以上の複素芳香族環が縮合した複素芳香族縮合環、1つ以上のベンゼン環と1つ以上の複素芳香族環が縮合した混合縮合多環を形成し、前記環は、置換基を1以上有してもよく、
 R12、R22、R32およびR42は、水素原子、アルキル基、アルケニル基、アリール基、アラルキル基、シクロアルキル基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から選択され、
 R43およびR44は、水素原子、アルキル基、アルケニル基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基、シクロアルキル基、ヒドロキシ基、アミノ基、アルキルアミノ基、ニトロ基、スルホニル基、スルフィニル基、カルボキシ基、アルコキシカルボニル基、シアノ基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から独立して選択され、
 Zは、式-(CH-で表される基(式中、Kは、7~20の整数である)、式-(CH-Y-(CH-で表される基(式中、-Y-は、-COO-、-OCO-、-CO-、-NH-、-NR-、-O-であり、前記Rは、アルキル基であり、Lは、2~6の整数であり、Mは、2~6の整数である。)、または式-(CH-(OCHCH-で表される基(式中、Qは、2~6の整数である。)である。
 前記第2の白金錯体としては、以下の式(Ia)、式(IIa)、式(IIIa)、式(IVa)、式(Va)および式(VIa)からなる群から選択される式で表されるのが好ましい。
Figure JPOXMLDOC01-appb-C000010
 
 前記式(Ia)、式(IIa)、式(IIIa)、式(IVa)、式(Va)および式(VIa)中、
 R12、R22、R32およびR42は、水素原子、アルキル基、アルケニル基、アリール基、アラルキル基、シクロアルキル基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から選択され、
 R13、R14、R15、R16、R23、R24、R25、R26、R33、R34、R35
43およびR44は、水素原子、アルキル基、アルケニル基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基、シクロアルキル基、ヒドロキシ基、アミノ基、アルキルアミノ基、ニトロ基、スルホニル基、スルフィニル基、カルボキシ基、アルコキシカルボニル基、シアノ基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から独立して選択され、
 Zは、式-(CH-で表される基(式中、Kは、7~20の整数である)、式-(CH-Y-(CH-で表される基(式中、-Y-は、-COO-、-OCO-、-CO-、-NH-、-NR-、-O-であり、前記Rは、アルキル基であり、Lは、2~6の整数であり、Mは、2~6の整数である。)、または式-(CH-(OCHCH-で表される基(式中、Qは、2~6の整数である。)である。
 本発明の前記第2の白金錯体が、式(I)、式(II)、式(III)、式(IV)、式(V)および式(VI)、ならびに(Ia)、式(IIa)、式(IIIa)、式(IVa)、式(Va)および式(VIa)からなる群から選択される場合、前記四座配位子に含まれる2つの二座配位子のいずれの部分が、白金錯体のHOMOに寄与が大きいのか、またはLUMOに寄与が大きいのかは、分子軌道を密度汎関数法により計算すれば、正確に判断できる。なお、計算の結果、以下のような関係が多くの場合、当てはまる。
Figure JPOXMLDOC01-appb-M000011
 
 前記関係式のうち、左のほうがHOMOに寄与が大きく、右のほうがLUMOに寄与が大きい。例えば、四座配位子が式(II)や式(IIa)の場合、四座配位子に含まれる二座配位子としては、式(c)と式(a)の組み合わせになる。この場合、式(c)はHOMOに寄与が大きく、式(a)はLUMOに寄与が大きい。または、四座配位子が式(IV)や式(IVa)の場合、四座配位子に含まれる二座配位子としては、式(c)と式(b)の組み合わせになる。この場合、式(c)はHOMOに寄与が大きく、式(b)はLUMOに寄与が大きい。または、四座配位子が式(V)や式(Va)の場合、四座配位子に含まれる二座配位子としては式(d)と式(b)の組み合わせになる。この場合、式(d)はHOMOに寄与が大きく、式(b)はLUMOに寄与が大きい。
 本発明の第2の白金錯体は、以下の式(8)および(9)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000012
 
 本発明において、アルキル基とは、例えば、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル等が挙げられる。アルキル基としては、直鎖状または分岐状であってもよい。炭素数の上限は限定されないが、アルキル基としては、例えば、炭素数1~12、好ましくは炭素数5~10、より好ましくは炭素数5~8のアルキル基である。
 本発明において、アルコキシ基とは、アルキルオキシ基である。このアルキルオキシ基のアルキル部分は、前記アルキル基と同様である。アルコキシル基としては、例えば、メトキシ、エトキシ、プロピルオキシ、ブチルオキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ウンデシルオキシ、ドデシルオキシ等が挙げられる。炭素数の上限は限定されないが、アルコキシ基としては、例えば、炭素数1~12、好ましくは炭素数5~10、より好ましくは炭素数5~8のアルコキシ基である。
 本発明においてアルコキシルカルボニル基のアルコキシ部分は、前記アルコキシ基と同様である。アルコキシルカルボニル基としては、例えば、メトキシカルボニル、エトキシカルボニル、プロピルオキシカルボニル、ブチルオキシカルボニル、ペンチルオキシカルボニル、ヘキシルオキシカルボニル、ヘプチルオキシカルボニル、オクチルオキシカルボニル、ノニルオキシカルボニル、デシルオキシカルボニル、ウンデシルオキシカルボニル、ドデシルオキシカルボニル等が挙げられる。炭素数の上限は限定されないが、アルコキシカルボニル基としては、例えば、炭素数2~13、好ましくは炭素数6~11、より好ましくは炭素数6~9のアルコキシカルボニル基である。
 本発明において、アルキルアミノ基とは、モノアルキルアミノ基とジアルキルアミノ基とを含む。ジアルキルアミノ基の場合、アルキル部分は同一であっても異なっていてもよい。アルキルアミンのアルキル部分は、前記アルキル基と同様である。アルキルアミノ基としては、例えば、メチルアミノ、エチルアミノ、プロピルアミノ、ブチルアミノ、ペンチルアミノ、ヘキシルアミノ、ヘプチルアミノ、オクチルアミノ、ノニルアミノ、デシルアミノ、ウンデシルアミノ、ドデシルアミノ、ジメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジペンチルアミノ、ジヘキシルアミノ、ジヘプチルアミノ、ジオクチルアミノ、ジノニルアミノ、ジデシルアミノ、ジウンデシルアミノ、ジドデシルアミノ、メチルエチルアミノ等が挙げられる。炭素数の上限は限定されないが、アルキルアミノ基としては、例えば、炭素数1~13、好ましくは炭素数5~11、より好ましくは炭素数5~9のアルキルアミノ基である。
 本発明において、アルケニル基とは、ビニル、アリル、イソプロペニル、1もしくは2もしくは3-ブテニル、1もしくは2もしくは3もしくは4-ペンテニル、1もしくは2もしくは3もしくは4もしくは5-へキセニル等の炭素数2個以上を有する直鎖もしくは分枝鎖アルケニル基が挙げられる。炭素数の上限は限定されないが、アルケニル基としては、例えば、炭素数2~13、好ましくは炭素数5~11、より好ましくは炭素数5~9のアルケニルである。
 本発明において、アリール基とは、例えば、フェニル基、ナフチル基等が挙げられる。
 本発明において、アラルキル基とは、アリールアルキル基を意味し、このアラルキル基のアルキル部分は、前記アルキル基と同様であり、このアラルキル基のアリール部分は、前記アリール基と同様である。アラルキル基としては、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、ナフチルメチル基、ナフチルエチル基、ナフチルプロピル基、ナフチルブチル基、ナフチルペンチル基、ナフチルヘキシル基等が挙げられる。
 本発明において、シクロアルキル基とは、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、およびシクロヘプチル基等が挙げられ、炭素数3~7のシクロアルキル基が好ましい。
 本発明において、飽和もしくは不飽和な複素環基とは、例えば、1~4個の窒素原子を含有する不飽和3~8員複素単環基、例えばピロリル、ピロリニル、イミダゾリル等;1~4個の窒素原子を含有する飽和3~8員複素単環基、例えばピロリジニル、イミダゾリジニル、ピペリジル、ピペラジニル等;1~4個の窒素原子を含有する不飽和縮合複素環基、例えばインドリル、イソインドリル等;1~2個の酸素原子と1~3個の窒素原子とを含有する不飽和3~8員複素単環基、例えばオキサゾリル、イソオキサゾリル等;1~2個の酸素原子と1~3個の窒素原子とを含有する飽和3~8員複素単環基、例えばオキサゾリジニル、モルホリニル等;1~2個の酸素原子と1~3個の窒素原子とを含有する不飽和縮合複素環基、例えばベンゾオキサゾリル、ベンゾオキサジアゾリル等;1~2個の硫黄原子と1~3個の窒素原子とを含有する不飽和3~8員複素単環基、例えばチアゾリル、イソチアゾリル等;1~2個の硫黄原子と1~3個の窒素原子とを含有する飽和3~8員複素単環基、例えばチアゾリジニル等;1~2個の硫黄原子を含有する不飽和3~8員複素単環基、例えばチエニル等;1~2個の硫黄原子と1~3個の窒素原子とを含有する不飽和縮合複素環基、例えばベンゾチアゾリル等;1個の酸素原子を含有する不飽和3~8員複素単環基、例えばフリル等;1個の酸素原子と1~2個の硫黄原子とを含有する不飽和3~8員複素単環基、例えばジヒドロオキサチイニル等;1~2個の硫黄原子を含有する不飽和縮合複素環基、例えばベンゾチエニル等;1個の酸素原子と1~2個の硫黄原子と含有する不飽和縮合複素環基、例えばベンゾオキサチイニル等;等が挙げられる。
 本発明において、飽和もしくは不飽和な複素環アルキル基の飽和もしくは不飽和な複素環部分は、前記飽和もしくは不飽和な複素環基と同様である。また、飽和もしくは不飽和な複素環アルキル基のアルキル部分は、前記アルキル基と同様である。
 本発明において、ハロゲン原子とは、フッ素原子、塩素原子、臭素原子、およびヨウ素原子であり、フッ素原子、塩素原子および臭素原子が好ましい。
 本発明において、複素芳香族環とは、炭素原子と硫黄、酸素および窒素から選択されるヘテロ原子を1以上含む環であって、芳香族性を有するものである。前記複素芳香族環としては、例えば、チオフェン、フラン、ピロール、イミダゾール、ピラゾール、イソチアゾール、イソオキサゾール、ピリジン、ピラジン、ピリミジン、ピリダジン等が挙げられる。
 本発明において、1つ以上のベンゼン環が縮合した芳香族縮合環とは、例えば、ナフタレン、フェナレン、フェナントレン、アントラセン、トリフェニレン等が挙げられる。
 本発明において、1つ以上の複素芳香族環が縮合した複素芳香族縮合環とは、例えば、プリン、プテリジン等が挙げられる。
 本発明において、1つ以上のベンゼン環と1つ以上の複素芳香族環が縮合した混合縮合多環とは、例えば、イソベンゾフラン、インドリン、インドール、インダゾール、プリン、イソキノリン、キノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、フェノチアジン、フェノキサジン等が挙げられる。
 本発明において、ベンゼン環、複素芳香族環、芳香族縮合環、複素芳香族縮合環、および混合縮合多環は、置換基を1以上有してもよい。前記置換基としては、アルキル基、アルケニル基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基、シクロアルキル基、ヒドロキシ基、アミノ基、アルキルアミノ基、ニトロ基、スルホニル基、スルフィニル基、カルボキシ基、アルコキシカルボニル基、シアノ基等が挙げられる。
 本発明の白金錯体は、例えば、以下のようにして製造することができる。例えば、前記二座配位子の白金と結合する原子および前記二座配位子の白金と結合する原子が、置換基を独立して有する場合、まず、第1の二座配位子と白金で中間体錯体を形成させ、その中間体錯体に、第2の二座配位子を反応させる。その結果、前記のような2つの二座配位子を含む第1の白金錯体を得ることができる。
 本発明の第1の白金錯体の2つの二座配位子が、下記式(a)と式(b)、式(a)と式(c)、式(a)と式(d)、式(b)と式(c)、式(b)と式(d)および式(c)と式(d)の組み合わせから選択される式で表される白金錯体は、本明細書に記載の方法を利用し、製造することができる。例えば、式(a)で表される配位子と式(b)で表される配位子とを有する式(D-11)で表される白金錯体は、以下のようにして製造することができる。
Figure JPOXMLDOC01-appb-C000013
                  
 前記式中、X、X’、R11、R12、R21およびR22は、式(a)および式(b)における定義と同様である。
 まず、式(A-11)の化合物と、白金化合物とを、反応させて式(B-11)の化合物を得る。この白金化合物としては、例えば、KPtClが挙げられる。この反応は、例えば20~80℃で、1時間~48時間、行う。この反応の溶媒としては、限定されないが、例えば、ジメチルホルムアミド(DMF)とメタノールの混合物、ジメチルスルホキシド(DMSO)等が挙げられる。
 得られた式(B-11)の化合物を、式(C-11)の化合物と反応させて、式(D-11)の化合物を得る。この反応では、塩基、例えばNaH、トリエチルアミン等を用いてもよい。前記塩基は、式(B-11)の化合物の1~3当量用いてもよい。この反応は、例えば20~80℃で、1時間~48時間、行う。この反応の溶媒としては、限定されないが、例えば、テトラヒドロフラン(THF)、ジオキサン等が挙げられる。
 前記製造方法において、前記式(A-11)で表される化合物と式(C-11)で表される化合物は、市販で入手してもよいし、公知文献を参照して自家製造してもよい。
 また、本発明の第2の白金錯体は、例えば、以下のようにして製造することができる。例えば、前記第1の二座配位子の白金と結合する原子および前記第2の二座配位子の白金と結合する原子が、架橋されて連結された四座配位子である場合、まず、第1の二座配位子と第2の二座配位子とを架橋した中間体を形成し、その中間体と白金とで錯体を形成させる。その結果、前記のような第1の二座配位子と第2の二座配位子とが連結された四座配位子を含む白金錯体を得ることができる。
 例えば、式(a)で表される配位子と式(c)で表される配位子とが架橋された式(II)で表される白金錯体は、以下のようにして製造することができる。
Figure JPOXMLDOC01-appb-C000014
                  
 前記式中、X、X’’、Z、R12、R32は、式(I)~式(VI)における定義と同様である。
 式(E-11)の化合物と、白金化合物(例えば、KPtCl、PtCl(CHCN)等)とを反応させ、式(II)の化合物を得る。
 前記製造方法において、前記式(E-11)で表される化合物は、市販で入手してもよいし、公知文献を参照して自家製造してもよい。
 また、本発明の白金錯体は、その発光波長を長波長側へシフトさせることが可能である。本発明の白金錯体であって、2つの二座配位子のいずれか一方が、前記白金錯体のHOMOに寄与し、そのHOMOに寄与するほうの二座配位子の、HOMOに影響を与える位置(例えば、式(a1)および式(b1)における5位)に、電子供与基を置換させることにより、前記白金錯体の発光波長を長波長側へシフトさせることができる。このように置換基を導入することにより、白金錯体のHOMOとLUMOのエネルギー差が縮まり、その結果、白金錯体の発光波長を長波長側へシフトさせることができる。
 また、本発明の白金錯体は、その発光波長を短波長側へシフトさせることが可能である。本発明の白金錯体であって、2つの二座配位子のいずれか一方が、前記白金錯体のLUMOに寄与し、そのLUMOに寄与するほうの二座配位子の、LUMOに影響を与える位置(例えば、式(a1)および式(b1)における4位)に、電子供与基を置換させることにより、前記白金錯体の発光波長を短波長側へシフトさせることができる。このように置換基を導入することにより、白金錯体のHOMOとLUMOのエネルギー差が広がり、その結果、白金錯体の発光波長を短波長側へシフトさせることができる。
 本発明の発光材料は、本発明の第1の白金錯体または第2の白金錯体を含む。
 本発明の発光材料は、有機EL素子の発光材料、具体的には発光層の材料として用いることができる。そのような有機EL素子としては、例えば、基板、陽極、正孔輸送層、本発明の発光材料を含む発光層、電子輸送層、および陰極をこの順に積層して構成される。前記基板、陽極、正孔輸送層、電子輸送層、および陰極については、従来公知の材料を用い、従来公知の製造方法により形成されていてもよい。
 前記発光層は、本発明の発光材料のほかに、ホスト材料を含んでいてもよい。このホスト材料としては、例えば、ジアリールアミン骨格を有するもの、ピリジン骨格を有するもの、ピラジン骨格を有するもの、トリアジン骨格を有するもの、アリールシラン骨格を有するものが挙げられる。
 以下に本発明を実施例によりさらに具体的に説明するが、本発明の範囲は、以下の実施例により限定されない。
 種々のスペクトルは、以下の機器を用いて測定した。
 核磁気共鳴(NMR)スペクトルはバリアン社製UNITY-INOVA核磁気共鳴装置(500MHz)を用いて測定し、測定溶媒の残存シグナルを内部基準として使用した。
 量子収率は、蛍光光度計FP-6500N、燐光測定対応低温中積分球システムINK-533、および、液体試料用セルLPH-120(全て日本分光株式会社製)を用いて測定した。
 分子軌道の計算は、密度汎関数法(DFT法)により行った。使用ソフトとしてスパルタン10Wを用い、汎関数としてb3lyp、基底関数としてLACVPを用いた。
 本明細書の記載において、以下の略語を使用する。
 DMF:ジメチルホルムアミド
 THF:テトラヒドロフラン
 DMSO:ジメチルスルホキシド
 化合物(1)の製造
Figure JPOXMLDOC01-appb-C000015
                  
 化合物(1)をスキーム3に従い、合成した。まず、ベンズアルデヒドと1当量のペンチルアミンをエタノール中で加熱還流することで、化合物(A-1)を得た。また、サリチルアルデヒドと1当量のペンチルアミンをエタノール中で加熱還流して化合物(C-1)を得た。
 化合物(A-1)(0.88g)およびKPtCl(1.04g)を、メタノールとDMFの混合溶媒中(88mL,メタノール:DMF=10:1)で、70℃で24時間反応させた。反応液を減圧濃縮し、得られた残渣をトルエン(80mL)に溶解した。水(40mL×3)で洗浄後、トルエン溶液にアセトン(10mL)を加え、生じた固体を濾取して、中間体化合物(B-1)(オレンジ色、0.250g)を得た。
 化合物(C-1)(0.046g)を1当量のNaHとエタノール中(3mL)、室温で0.5時間反応させた後、溶媒を減圧留去した。得られた黄色固体にTHF(4mL)および、前記中間体化合物(B-1)(0.081g)を加え、得られた混合物を室温で24時間反応させた。混合物の有機層を濃縮後、得られた粗成物をシリカゲルカラムクロマトグラフィ(溶出液;トルエン)にて精製することで、化合物(1)を得た(橙色粉末、27mg)。
 1H NMR (CDCl3, 500 MHz) δ 0.85 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.1 Hz, 3H), 1.26-1.42 (m, 8H), 1.84-1.93 (m, 4H), 3.82 (t, J = 7.0 Hz, 2H), 4.27 (t, J = 7.5 Hz, 2H), 6.52 (ddd, J = 8.0, 6.8, 1.1 Hz, 1H), 6.88 (d, J = 8.5 Hz, 1H), 7.00 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H), 7.09 (ddd, J = 7.5, 7.5, 1.5 Hz, 1H), 7.19 (dd, J = 8.0, 1.8 Hz, 1H), 7.27 (dd, J = 7.5, 1.5 Hz, 1H), 7.34 (ddd, J = 8.5, 6.8, 1.5 Hz 1H), 7.42 (d, J = 7.5 Hz, 1H), 7.90 (s, 1H), 8.13 (s, 1H). 
 化合物(2)の製造
Figure JPOXMLDOC01-appb-C000016
                  
 化合物(2)をスキーム4に従い、合成した。まず、5-フルオロサリチルアルデヒドと1当量のペンチルアミンをエタノール中で加熱還流して化合物(C-2)を得た。化合物(C-1)(0.046g)の代わりに化合物(C-2)(0.17g)を用いた以外は、実施例1と同様にして化合物(2)を得た(赤橙色粉末、57mg)。
 1H NMR (CDCl3, 500 MHz) δ 0.85 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.1 Hz, 3H), 1.26-1.43 (m, 8H), 1.83-1.94 (m, 4H), 3.79 (t, J = 7.2 Hz, 2H), 4.28 (t, J = 7.4 Hz, 2H), 6.80 (dd, J = 9.3, 4.8 Hz, 2H), 6.87 (dd, J = 9.0, 3.3 Hz, 2H), 7.00 (ddd, J = 7.4, 7.4, 0.9 Hz, 1H), 7.06-7.12 (m, 4H), 7.28 (dd, J = 7.4, 1.5 Hz, 2H), 7.39 (d, J = 7.6 Hz, 2H), 7.83 (s, 1H), 8.12 (s, 1H).
 化合物(3)の製造
Figure JPOXMLDOC01-appb-C000017
 
 化合物(3)をスキーム5に従い、合成した。まず、5-メチルサリチルアルデヒドと1当量のペンチルアミンをエタノール中で加熱還流して化合物(C-3)を得た。化合物(C-1)(0.046g)の代わりに化合物(C-3)(0.14g)を用いた以外は、実施例1と同様にして化合物(3)を得た(橙色粉末、68mg)。
 1H NMR (CDCl3, 500 MHz) δ 0.84 (t, J = 7.0 Hz, 3H), 0.90 (t, J = 7.0 Hz, 3H), 1.26-1.41 (m, 8H), 1.82-1.92 (m, 4H), 2.24 (s, 3H), 3.81 (t, J = 7.4 Hz, 2H), 4.27 (t, J = 7.4 Hz, 2H), 6.80 (ddd, J = 8.3 Hz, 1H), 6.97 (d, J = 1.1 Hz, 1H), 7.00 (ddd, J = 7.3, 7.3, 0.9 Hz, 1H), 7.09 (ddd, J = 7.0, 7.0, 1.4 Hz, 1H), 7.17 (dd, J = 8.3, 1.1 Hz, 1H), 7.27 (dd, J = 7.3, 1.4 Hz, 1H), 7.42 (d, J = 7.8 Hz, 1H), 7.85 (s, 1H), 8.13 (s, 1H).  
 化合物(4)の製造
Figure JPOXMLDOC01-appb-C000018
 
 化合物(4)をスキーム6に従い、合成した。まず、5-メトキシサリチルアルデヒドと1当量のペンチルアミンをエタノール中で加熱還流して化合物(C-4)を得た。化合物(C-1)(0.046g)の代わりに化合物(C-4)(0.18g)を用いた以外は、実施例1と同様にして化合物(4)を得た(赤色粉末、57mg)。
 1H NMR (CDCl3, 500 MHz) δ 0.85 (t, J = 6.5 Hz, 3H), 0.90 (t, J = 7.0 Hz, 3H), 1.28-1.40 (m, 8H), 1.85-1.92 (m, 4H), 3.75 (s, 3H), 3.81 (t, J = 7.0 Hz, 2H), 4.28 (t, J = 8.0 Hz, 2H), 6.66 (d, J = 3.3 Hz, 1H), 6.83 (d, J = 9.5 Hz, 1H), 7.00 (ddd, J = 7.3, 7.3, 1..0 Hz, 1H), 7.05 (dd, J = 7.5, 7.5, 1.5 Hz, 1H), 7.19 (dd, J = 8.0, 1.8 Hz, 1H), 7.27 (dd, J = 9.5, 3.3 Hz, 1H), 7.09 (ddd, 7.3, 7.3, 1.5 Hz, 1H), 7.28 (dd, J = 7.3, 1.5 Hz 1H), 7.42 (d, J = 7.3 Hz, 1H), 7.86 (s, 1H), 8.13 (s, 1H).
 化合物(5)の製造
Figure JPOXMLDOC01-appb-C000019
 
  化合物(5)をスキーム7に従い、合成した。まず、5-メトキシベンズアルデヒドと1当量のペンチルアミンをエタノール中で加熱還流することで、化合物(A-2)を得た。
 化合物(A-2)(1.53g)およびKPtCl(1.56g)を、メタノールとDMFの混合溶媒中(88mL,メタノール:DMF=10:1)で、70℃で24時間反応させたた。反応液を減圧濃縮し、得られた残渣をトルエン(80mL)に溶解した。水(40mL×3)で洗浄後、トルエン溶液にアセトン(10mL)を加え、生じた固体を濾取して、中間体化合物(B-2)(赤橙色、0.36g)を得た。
 化合物(C-1)(0.15g)を1当量のNaHとエタノール中(3mL)、室温で0.5時間反応させた後、溶媒を減圧留去した。得られた黄色固体にTHF(4mL)および、前記中間体化合物(B-2)(0.36g)を加え、得られた混合物を室温で24時間反応させた。混合物の有機層を濃縮後、得られた粗成物をシリカゲルカラムクロマトグラフィ(溶出液;トルエン)にて精製することで、化合物(5)を得た(赤橙色粉末、78mg)。
 1H NMR (CDCl3, 500 MHz) δ0.85 (t, J = 7.1 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H), 1.26-1.41 (m, 8H), 1.83-1.92 (m, 4H), 3.77 (s, 3H), 3.81 (t, J = 7.4 Hz, 2H), 4.24 (t, J = 7.4 Hz, 2H), 6.51 (ddd, J = 7.8, 6.8, 1.0 Hz, 1H), 6.77 (dd, J = 8.5, 2.9 Hz, 1H), 6.87 (d, J = 8.5 Hz, 1H), 6.88 (d, J = 2.9 Hz, 1H), 7.18 (dd, J = 7.8, 1.9 Hz, 1H), 7.29 (d, J = 8.5 Hz, 1H), 7.34 (ddd, J = 8.5, 6.8, 1.9 Hz 1H), 7.88 (s, 1H), 8.11 (s, 1H). 
 化合物(6)の製造
Figure JPOXMLDOC01-appb-C000020
 
 化合物(6)をスキーム8に従い、合成した。まず、4-メトキシベンズアルデヒドと1当量のペンチルアミンをエタノール中で加熱還流することにより、化合物(A-3)を得た。また、4-メトキシサリチルアルデヒドと1当量のペンチルアミンをエタノール中で加熱還流して化合物(C-5)を得た。
 化合物(A-3)(1.03g)およびKPtCl(1.04g)を、メタノールとDMFの混合溶媒中(88mL,メタノール:DMF=10:1)で、70℃で24時間反応させた。反応液を減圧濃縮し、得られた残渣をトルエン(80mL)に溶解した。水(40mL×3)で洗浄後、トルエン溶液にアセトン(10mL)を加え、生じた固体を濾取して、中間体化合物(B-3)(黄色、0.359g)を得た。
 中間体化合物(B-3)(0.13g)を化合物(C-5)(0.083g)、KCO(0.104g)とトルエン中(12mL)、70℃で16時間反応させた後、溶媒を減圧留去した。得られた混合物を濃縮後、シリカゲルカラムクロマトグラフィ(溶出液;酢酸エチル)にて精製することで、化合物(6)を得た(黄粉末、0.038g)。酢酸エチルから再結晶したものを発光特性の評価に使用した。
 1H NMR (CDCl3, 500 MHz) δ 0.85 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.1 Hz, 3H), 1.26-1.34 (m, 4H), 1.37-1.42 (m, 4H), 1.82-1.92 (m, 4H), 3.76 (t, J = 7.3 Hz, 2H), 3.79 (s, 3H), 3.82 (s, 3H), 4.21 (t, J = 7.4 Hz, 2H), 6.17 (dd, J = 8.8, 2.5 Hz, 1H), 6.34 (d, J = 2.5 Hz, 1H), 6.54 (dd, J = 8.3, 2.4 Hz, 1H), 6.94 (d, J = 2.4 Hz, 1H), 7.07 (d, J = 8.8 Hz, 1H), 7.23 (d, J = 8.3 Hz, 1H), 7.77 (s, 3H), 8.03 (s, 3H).
 化合物(7)の製造
Figure JPOXMLDOC01-appb-C000021
 
 化合物(7)をスキーム9に従い、合成した。まず、ベンズアルデヒドと1当量のメチルアミンをメタノール中で加熱還流することで、化合物(A-4)を得た。また、サリチルアルデヒドと1当量のメチルアミンをメタノール中で加熱還流して化合物(C-6)を得た。
 化合物(A-4)(0.596g)およびKPtCl(1.04g)を、メタノールとDMFの混合溶媒中(88mL,メタノール:DMF=10:1)で、70℃で24時間反応させた。反応液を減圧濃縮し、得られた残渣をトルエン(120mL)に溶解した。水(40mL×3)で洗浄後、トルエン溶液にアセトン(20mL)を加え、生じた固体を濾取して、中間体化合物(B-4)(橙色、0.189g)を得た。
 中間体化合物(B-4)(0.035g)を化合物(C-6)(0.017g)、KCO(0.035g)とトルエン中(4mL)、70℃で16時間反応させた後、溶媒を減圧留去した。得られた混合物を濃縮後、シリカゲルカラムクロマトグラフィ(溶出液;トルエン)にて精製することで、化合物(7)を得た(橙色粉末、0.016g)。酢酸エチルから再結晶したものを発光特性の評価に使用した。
 1H NMR (CDCl3, 500 MHz) δ 3.66 (d, J = 1.1 Hz, 3H), 4.20 (d, J = 1.1 Hz, 3H), 6.54 (ddd, J = 7.9, 6.9, 1.5 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 7.03 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H), 7.13 (ddd, J = 7.5, 7.5, 1.6 Hz, 1H), 7.22 (dd, J = 7.9, 1.8 Hz, 1H), 7.30 (dd, J = 7.5, 1.6 Hz, 1H), 7.39 (ddd, J = 8.6, 6.9, 1.8 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.98 (br s, 3H), 8.18 (q, J = 1.1 Hz, 1H).  
 化合物(8)の製造
Figure JPOXMLDOC01-appb-C000022
                  
 化合物(8)をスキーム10に従い、合成した。4-メトキシサリチルアルデヒドと1,12-ジアミノドデカン、ピロールアルデヒド(1:1:1)をエタノール中で還流することで化合物(B-5)を得た。
 化合物(B-5)(0.43g)、PtCl(dmso)(0.35g)、KCO(0.91g)をDMSOとトルエンの混合溶媒中(300mL,DMSO:トルエン=1:4)、140℃で17時間反応させた。トルエンを減圧留去後、水(200mL)を加え、酢酸エチル(200mL)で抽出した。濃縮後、クロマトグラフィ(NHシリカゲル;溶出液ヘキサン:トルエン=3:2)で精製することで化合物(8)(黄色固体、0.083g)を得た。ベンゼンから再結晶したものを発光特性の評価に使用した。
 1H NMR (CDCl3, 500 MHz) δ 1.02-1.58 (m, 18 H), 2.15-2.36 (m, 2 H), 2.75-2.80 (m, 1 H), 3.53-3.67 (m, 1 H), 3.81 (s, 3 H), 4.28-4.36 (m, 1 H), 4.66-4.74 (m, 1 H), 6.18 (dd, J = 3.9, 2.1 Hz, 1 H), 6.22 (dd, J = 8.8, 2.4 Hz, 1 H), 6.38 (d, J = 2.4 Hz, 1 H), 6.66 (dd, J = 3.9, 1.0 Hz, 1 H), 6.96 (s, 1 H), 7.10 (d, J = 8.8 Hz, 1 H), 7.51 (s, 1 H), 7.65 (s, 1 H).  
 化合物(9)の製造
Figure JPOXMLDOC01-appb-C000023
                  
 化合物(9)をスキーム11に従い、合成した。5-メトキシサリチルアルデヒドと1,12-ジアミノドデカン、ピロールアルデヒド(1:1:1)をエタノール中で還流することで化合物(B-6)を得た。
 化合物(B-6)(0.43g)、PtCl(dmso)(0.35g)、KCO(0.91g)をDMSOとトルエンの混合溶媒中(300mL,DMSO:トルエン=1:4)、140℃で17時間反応させた。トルエンを減圧留去後、水(200mL)を加え、酢酸エチル(200mL)で抽出した。濃縮後、クロマトグラフィ(NHシリカゲル;溶出液ヘキサン:トルエン3:2)で精製することで化合物(9)(黄色固体、0.16g)を得た。ベンゼンから再結晶したものを発光特性の評価に使用した。
 1H NMR (CDCl3, 500 MHz) δ1.02-1.58 (m, 18 H), 2.15-2.25 (m, 1 H), 2.27-2.37 (m, 1 H), 2.75-2.81 (m, 1 H), 3.62-3.68 (m, 1 H), 3.75 (s, 3 H), 4.25-4.31 (m, 1 H), 4.71-4.77 (m, 1 H), 6.18 (dd, J = 3.9, 2.1 Hz, 1 H), 6.65 (dd, J = 3.9, 0.9 Hz, 1 H), 6.67 (d, J = 3.0 Hz, 1 H), 6.88 (d, J = 9.2, 1.0 Hz, 1 H), 6.96 (s, 1 H), 7.05 (dd, J = 9.2, 3.0 Hz, 1 H), 7.49 (s, 1 H), 7.76 (s, 1 H).  
 化合物(10)の製造
Figure JPOXMLDOC01-appb-C000024
                  
 化合物(C-5)(0.089g)を1当量のNaHとエタノール中(3mL)、室温で0.5時間反応させた後、溶媒を減圧留去した。得られた黄色固体にTHF(4mL)および、中間体化合物(B-1)(0.081g)を加え、得られた混合物を室温で24時間反応させた。混合物の有機層を濃縮後、得られた粗成物をシリカゲルカラムクロマトグラフィ(溶出液;トルエン)にて精製することで、化合物(10)を得た(黄色粉末、46mg)。
 1H NMR (CDCl3, 500 MHz) δ 0.85 (t, J = 6.5 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3H), 1.27-1.43 (m, 8H), 1.81-1.94 (m, 4H), 3.79 (s, 3H), 3.83 (t, J = 7.0 Hz, 2H), 4.20 (t, J = 7.5 Hz, 2H), 6.17 (dd, J = 9.0, 2.5 Hz, 1H), 6.35 (d, J = 2.5 Hz, 1H), 7.00 (td, J = 7.5, 1.0 Hz, 1H), 7.07 (d, J = 8.5 Hz, 1H), 7.08 (td, J = 7.5, 1.5 Hz, 1H), 7.27 (dd, J = 7.5, 2.0 Hz, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.77 (s, 1H), 8.14 (s, 1H). 
 化合物(10)の製造
Figure JPOXMLDOC01-appb-C000025
 
 化合物(C-1)(0.15g)を1当量のNaHとエタノール中(4mL)、室温で0.5時間反応させた後、溶媒を減圧留去した。得られた黄色固体にTHF(5mL)および、中間体化合物(B-3)(0.26g)を加え、得られた混合物を室温で24時間反応させた。混合物の有機層を濃縮後、得られた粗成物をシリカゲルカラムクロマトグラフィ(溶出液;トルエン)にて精製することで、化合物(11)を得た(黄色粉末、89mg)。
 1H NMR (CDCl3, 500 MHz) δ0.86 (t, J = 6.0 Hz, 3H), 0.90 (t, J = 7.0 Hz, 3H), 1.27-1.41 (m, 8H), 1.83-1.92 (m, 4H), 3.75 (t, J = 7.0 Hz, 2H), 3.82 (s, 3H), 4.26 (t, J = 6.5 Hz, 2H), 6.51 (ddd, J = 7.0, 7.0, 1.0 Hz, 1H), 6.54 (dd, J = 8.5, 2.5 Hz, 1H), 6.87 (d, J = 8.5 Hz, 1H), 6.92 (d, J = 2.5 Hz, 1H), 7.19 (dd, J = 7.6, 1.5 Hz, 1H), 7.22 (d, J = 8.5 Hz, 1H), 7.33 (ddd, J = 7.0, 7.0, 2.0 Hz, 1H), 7.89 (s, 1H), 8.01 (s, 1H).  
 [固体発光量子収率の測定]
 実施例1~11で得た化合物(1)~(11)について、296Kおよび77Kにおける固体発光量子収率φ(%)を測定した。具体的には、化合物(1)~(11)の結晶状態(粉末)における発光量子収率を、絶対法によりそれぞれ求めた。測定方法は以下の通りである。
 (測定方法)
 測定の際、酸素の影響を除くため、全てのサンプルは、石英セル中に結晶(化合物(1)~(9))をそのまま封入して、アルゴン雰囲気下で測定した。さらに、低温(77K)での測定は、石英製デュワーを用いて、結晶を封入した上記石英セルを液体窒素で冷やしながら測定した。全ての発光スペクトルは、標準光源を利用することにより補正を行った。励起光として420nmまたは450nmの波長の光を用いた。内部量子収率の算出には、固体量子効率計算プログラム(日本分光株式会社製)を用いた。また、各発光性有機白金錯体が発する光の発光極大波長も、併せて測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000026
 
 前記表1に示すように、実施例1~11の結果から、本発明の白金錯体は、結晶状態において、室温において高い量子効率で燐光発光を示すことが確認できた。さらに、実施例3~4の化合物は、HOMOに寄与している配位子(式(a))上に電子供与基を有することにより、そのような電子供与基を有さない実施例1の化合物(1)と比較して燐光吸収波長は長波長へシフトしていることが確認できた。実施例4と実施例5の化合物は、5位に電子供与基を導入することにより、共に長波長シフトしているが、特に、HOMOに寄与する配位子のHOMOに影響を与える位置に電子供与性配位子を置換させた化合物(4)(実施例4)の方が、その長波長シフトが大きい。実施例10と実施例11の化合物は、4位に電子供与基を導入することにより、共に短波長シフトしているが、特に、LUMOに寄与する配位子のLUMOに影響を与える位置に電子供与性配位子を置換させた化合物(11)(実施例11)の方が、その短波長シフトが大きい。
 [HOMOとLUMOのエネルギー準位]
 実施例1の化合物(1)のHOMOとLUMOのエネルギー準位をDFT(密度汎関数理論)法により算出した。得られたHOMOとLUMOのエネルギー準位の分布を、図1Aに示す。図1Aに示すように、化合物(1)のHOMOは、サリチルアルミジン型配位子の寄与が大きく、LUMOは、イミノフェニル型配位子の寄与が大きいことが確認できた。すなわち、本発明の化合物のHOMOは、第2の二座配位子(イミノフェニル型配位子)と比べて第1の二座配位子(サリチルアルミジン型配位子)の寄与が大きく、LUMOは、第1の二座配位子(サリチルアルミジン型配位子)と比べて第2の二座配位子(イミノフェニル型配位子)の寄与が大きいことが確認できた。なお、化合物(1)の構造式を参考のため図1Bに示す。
 [X線結晶解析]
 実施例3の化合物(3)について、株式会社リガク社製イメージングプレート単結晶自動X線構造解析装置PAPID-AUTOを用いてX線結晶解析を行った。X線は、Mo-Ka線(λ=0.71075Å)を用いた。実施例3の化合物(3)は、酢酸エチルにより結晶化した結晶を用いた。結晶解析の結果、得られた結晶中におけるパッキングを図3に示す。
 図3に示すように、1つの化合物(3)の二座配位子中のベンゼン環と、それと平行な別の化合物(3)の二座配位子中のベンゼン環との距離が9Å以上である。このような配置は、化合物(3)の分子における第1の二座配位子の白金と結合する原子と、第2の二座配位子の白金と結合する原子が、n-ペンチルという立体的に大きな官能基を有することにより、実現していると考えている。なお、このような配置を取ると、化合物(3)の分子が分子間で消光しあわないため、強い強度の燐光発光が実現できると考えられる。
 本発明の発光材料は、発光効率に優れるため、実用に足る発光強度を得ることができる。従って、本発明の発光材料は、次世代技術である有機発光素子等の材料として有用である。

Claims (4)

  1.  2つの二座配位子が白金に配位し、前記2つの二座配位子が、それぞれイミノ部位を有し、前記イミノ部位の窒素原子は互いにトランス位で白金に配位し、前記2つの二座配位子が、互いに構造が異なる第1の白金錯体、または
     四座配位子が白金に配位し、前記四座配位子が、架橋により連結された2つの二座配位子を有し、前記2つの二座配位子が、それぞれイミノ部位を有し、前記イミノ部位の窒素原子は互いにトランス位で白金に配位し、前記2つの二座配位子が、互いに構造が異なる第2の白金錯体のいずれかの白金錯体。
  2.  前記第1の白金錯体の2つの二座配位子が、下記式(a)と式(b)、式(a)と式(c)、式(a)と式(d)、式(b)と式(c)、式(b)と式(d)および式(c)と式(d)の組み合わせから選択される式で表される請求項1に記載の白金錯体。
    Figure JPOXMLDOC01-appb-C000001
     
    [前記式(a)、式(b)、式(c)および式(d)において、
     Xは、aおよびbで印を付けた原子と共に、X’は、cおよびdで印をつけた原子と共に、またはX’’は、eおよびfで印をつけた原子と共に、1つのベンゼン環、1つの複素芳香族環、1つ以上のベンゼン環が縮合した芳香族縮合環、1つ以上の複素芳香族環が縮合した複素芳香族縮合環、1つ以上のベンゼン環と1つ以上の複素芳香族環が縮合した混合縮合多環を形成し、前記環は、置換基を1以上有してもよく、
     R11、R21、R31およびR41は、アルキル基、アルケニル基、アリール基、アラルキル基、シクロアルキル基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から選択され、
     R12、R22、R32およびR42は、水素原子、アルキル基、アルケニル基、アリール基、アラルキル基、シクロアルキル基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から選択され、
     R43およびR44は、水素原子、アルキル基、アルケニル基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基、シクロアルキル基、ヒドロキシ基、アミノ基、アルキルアミノ基、ニトロ基、スルホニル基、スルフィニル基、カルボキシ基、アルコキシカルボニル基、シアノ基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から独立して選択される。]
  3.  前記第2の白金錯体が、以下の式(I)、式(II)、式(III)、式(IV)、式(V)および式(VI)からなる群から選択される式で表される請求項1に記載の白金錯体。
    Figure JPOXMLDOC01-appb-C000002
     
    [前記式式(I)、式(II)、式(III)、式(IV)、式(V)および式(VI)中、
     Xは、aおよびbで印を付けた原子と共に、X’は、cおよびdで印をつけた原子と共に、またはX’’は、eおよびfで印をつけた原子と共に、1つのベンゼン環、1つの複素芳香族環、1つ以上のベンゼン環が縮合した芳香族縮合環、1つ以上の複素芳香族環が縮合した複素芳香族縮合環、1つ以上のベンゼン環と1つ以上の複素芳香族環が縮合した混合縮合多環を形成し、前記環は、置換基を1以上有してもよく、
     R12、R22、R32およびR42は、水素原子、アルキル基、アルケニル基、アリール基、アラルキル基、シクロアルキル基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から選択され、
     R43およびR44は、水素原子、アルキル基、アルケニル基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基、シクロアルキル基、ヒドロキシ基、アミノ基、アルキルアミノ基、ニトロ基、スルホニル基、スルフィニル基、カルボキシ基、アルコキシカルボニル基、シアノ基、飽和もしくは不飽和な複素環基、および飽和もしくは不飽和な複素環アルキル基からなる群から独立して選択され、
     Zは、式-(CH-で表される基(式中、Kは、7~20の整数である)、式-(CH-Y-(CH-で表される基(式中、-Y-は、-COO-、-OCO-、-CO-、-NH-、-NR-、-O-であり、前記Rは、アルキル基であり、Lは、2~6の整数であり、Mは、2~6の整数である。)、または式-(CH-(OCHCH-で表される基(式中、Qは、2~6の整数である。)である。]
  4.  請求項1~3のいずれかに記載の白金錯体を含む発光材料。
PCT/JP2012/056098 2011-09-08 2012-03-09 白金錯体 WO2013035359A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013532466A JP5967663B2 (ja) 2011-09-08 2012-03-09 白金錯体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011196274 2011-09-08
JP2011-196274 2011-09-08

Publications (1)

Publication Number Publication Date
WO2013035359A1 true WO2013035359A1 (ja) 2013-03-14

Family

ID=47831826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056098 WO2013035359A1 (ja) 2011-09-08 2012-03-09 白金錯体

Country Status (2)

Country Link
JP (1) JP5967663B2 (ja)
WO (1) WO2013035359A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053291A1 (ja) * 2013-10-11 2015-04-16 国立大学法人大阪大学 白金錯体を含む発光材料
JP2019059694A (ja) * 2017-09-27 2019-04-18 国立大学法人大阪大学 白金錯体およびそれを含む発光材料
CN109980111A (zh) * 2017-12-28 2019-07-05 广东阿格蕾雅光电材料有限公司 一种含四齿铂(ii)配合物的有机电致发光器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535807A (ja) * 2004-04-30 2007-12-06 ザ ユニバーシティ オブ ホンコン 有機発光素子
CN101838291A (zh) * 2010-05-28 2010-09-22 南京邮电大学 具有聚集态诱导磷光发射特性的铂配合物制备和应用
WO2011111497A1 (ja) * 2010-03-11 2011-09-15 国立大学法人大阪大学 発光性有機白金錯体、これを含む発光性材料および機能素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127841A (ja) * 1985-11-29 1987-06-10 Konishiroku Photo Ind Co Ltd 有機着色物質の光褪色防止方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535807A (ja) * 2004-04-30 2007-12-06 ザ ユニバーシティ オブ ホンコン 有機発光素子
WO2011111497A1 (ja) * 2010-03-11 2011-09-15 国立大学法人大阪大学 発光性有機白金錯体、これを含む発光性材料および機能素子
CN101838291A (zh) * 2010-05-28 2010-09-22 南京邮电大学 具有聚集态诱导磷光发射特性的铂配合物制备和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BANDYOPADHYAY ET AL.: "Two novel examples of hydroxylation of aromatic rings in coordination chemistry", J. AM. CHEM. SOC., vol. 105, 1983, pages 6327 - 6329 *
KOMIYA ET AL.: "Highly Phosphorescent Crystals of Vaulted trans-Bis(salicylaldiminato)platinum(II) Complexes", J. AM. CHEM. SOC., vol. 133, 8 April 2011 (2011-04-08), pages 6493 - 6496 *
TAKASHI KASHIWARA ET AL., 91ST ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING KOEN YOKOSHU, 11 March 2011 (2011-03-11), pages 247 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053291A1 (ja) * 2013-10-11 2015-04-16 国立大学法人大阪大学 白金錯体を含む発光材料
JP2019059694A (ja) * 2017-09-27 2019-04-18 国立大学法人大阪大学 白金錯体およびそれを含む発光材料
CN109980111A (zh) * 2017-12-28 2019-07-05 广东阿格蕾雅光电材料有限公司 一种含四齿铂(ii)配合物的有机电致发光器件
CN109980111B (zh) * 2017-12-28 2021-02-19 广东阿格蕾雅光电材料有限公司 一种含四齿铂(ii)配合物的有机电致发光器件

Also Published As

Publication number Publication date
JP5967663B2 (ja) 2016-08-10
JPWO2013035359A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
Huang et al. Simple phenanthroimidazole/carbazole hybrid bipolar host materials for highly efficient green and yellow phosphorescent organic light-emitting diodes
Che et al. Photophysical properties and OLED applications of phosphorescent platinum (II) Schiff base complexes
Kwon et al. Functionalized phenylimidazole-based facial-homoleptic iridium (III) complexes and their excellent performance in blue phosphorescent organic light-emitting diodes
Bejoymohandas et al. Photophysical and electroluminescence properties of bis (2′, 6′-difluoro-2, 3′-bipyridinato-N, C 4′) iridium (picolinate) complexes: effect of electron-withdrawing and electron-donating group substituents at the 4′ position of the pyridyl moiety of the cyclometalated ligand
Zhao et al. Phosphorescent iridium (III) complexes bearing fluorinated aromatic sulfonyl group with nearly unity phosphorescent quantum yields and outstanding electroluminescent properties
Wang et al. Synthesis and photoluminescence properties of rhenium (I) complexes based on 2, 2′: 6′, 2′′-terpyridine derivatives with hole-transporting units
Ragni et al. Iridium (III) complexes with sulfonyl and fluorine substituents: synthesis, stereochemistry and effect of functionalisation on their photophysical properties
Yang et al. Blue Phosphorescence and Hyperluminescence Generated from Imidazo [4, 5‐b] pyridin‐2‐ylidene‐Based Iridium (III) Phosphors
Kim et al. Ancillary ligand-assisted robust deep-red emission in iridium (III) complexes for solution-processable phosphorescent OLEDs
Zhu et al. High Performance NIR OLEDs with Low Efficiency Roll‐Off by Leveraging Os (II) Phosphors and Exciplex Co‐Host
Tatarin et al. Sterically hindered phenanthroimidazole ligands drive the structural flexibility and facile ligand exchange in cyclometalated iridium (III) complexes
US20080064893A1 (en) Emissive monomeric metal complexes
Jin et al. Iridium (III) Phosphors–Bearing Functional 9‐Phenyl‐7, 9‐dihydro‐8H‐purin‐8‐ylidene Chelates and Blue Hyperphosphorescent OLED Devices
Yan et al. Regioselective Syntheses of Imidazo [4, 5-b] pyrazin-2-ylidene-Based Chelates and Blue Emissive Iridium (III) Phosphors for Solution-Processed OLEDs
Graczyk et al. Terpyridine-fused polyaromatic hydrocarbons generated via cyclodehydrogenation and used as ligands in Ru (II) complexes
Zhang et al. New phosphorescent iridium (III) dipyrrinato complexes: synthesis, emission properties and their deep red to near-infrared OLEDs
CN110790766A (zh) 一种tadf化合物、其用途和含有其的电子器件
Yun et al. Homoleptic cyclometalated dibenzothiophene–NHC–iridium (iii) complexes for efficient blue phosphorescent organic light-emitting diodes
JP5967663B2 (ja) 白金錯体
CN117203191A (zh) 用于有机电致发光器件的材料
Liu et al. Efficient red phosphorescent Ir (III) complexes based on rigid ligands with high external quantum efficiency and low efficiency roll-off
TW202223066A (zh) 用於有機電致發光裝置之材料
Liu et al. Efficient narrow green organic light-emitting diodes with low efficiency roll-offs based on iridium (iii) complexes containing indolo [3, 2, 1-jk] carbazole and pyrimidine units
WO2015053291A1 (ja) 白金錯体を含む発光材料
Wang et al. High-efficiency and stable red to near-infrared organic light-emitting diodes using dinuclear platinum (ii) complexes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829444

Country of ref document: EP

Kind code of ref document: A1