WO2013032253A2 - 이산화티타늄 제조방법 - Google Patents

이산화티타늄 제조방법 Download PDF

Info

Publication number
WO2013032253A2
WO2013032253A2 PCT/KR2012/006956 KR2012006956W WO2013032253A2 WO 2013032253 A2 WO2013032253 A2 WO 2013032253A2 KR 2012006956 W KR2012006956 W KR 2012006956W WO 2013032253 A2 WO2013032253 A2 WO 2013032253A2
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
transition metal
tio
dioxide powder
titanium
Prior art date
Application number
PCT/KR2012/006956
Other languages
English (en)
French (fr)
Other versions
WO2013032253A9 (ko
WO2013032253A3 (ko
Inventor
마평수
Original Assignee
주식회사 현대단조
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 현대단조 filed Critical 주식회사 현대단조
Publication of WO2013032253A2 publication Critical patent/WO2013032253A2/ko
Publication of WO2013032253A9 publication Critical patent/WO2013032253A9/ko
Publication of WO2013032253A3 publication Critical patent/WO2013032253A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants

Definitions

  • the present invention relates to a method for producing titanium dioxide, and more particularly, to a method for producing titanium dioxide by applying heat and pressure to titanium metal to make titanium dioxide.
  • the titanium dioxide (TiO 2 ) powder which is an overcatalyst, functions to quickly and effectively remove substances which have a harmful effect on the human body or the environment, such as organic halogen compounds, odor gases, oils, bacteria, fungi and algae.
  • photocatalysts are used in the Advanced Oxidation Process (AOP), where photocatalysts act as an aid to decompose environmental pollutants by absorbing sunlight in a specific wavelength band to completely decompose environmental pollutants at room temperature. do.
  • AOP Advanced Oxidation Process
  • the treatment efficiency is high, and the reaction product does not cause incidental environmental pollution, and there is an advantage that the reaction process is simple and can quickly decompose the environmental pollutants.
  • Titanium dioxide powder can be classified into rutile structure and anatase structure according to its crystal structure.
  • anatase-type titanium dioxide has a relatively high photoactivity and is known as a photocatalyst in a system for photodegrading trichloroethene and a solar energy change system.
  • the sulfuric acid method is a method of producing a liquid TiO 2 from a solid state that is dissolved completely in sulfuric acid after pulverizing ilmenite, which is a titanium gemstone, and hydrolyzing it.
  • hydrolysis of the titanium dioxide powder requires a calcination / crushing process of the hydrate, there is a problem in that the quality of the final product is greatly reduced due to the incorporation of many impurities in the process.
  • the chlorine method is a method of producing anatase titanium dioxide (TiO 2 ) by reacting chlorine gas with ilmenite to produce titanium tetrachloride (TiCl 4 ), and then reacting it with oxygen gas.
  • this method generates high-risk corrosive gases (HCl, Cl 2 ) during the reaction, requires a protective device for this, there is a problem that the production cost is high because the raw material is not abundant.
  • P-25 of Degussa, Germany known as an excellent photocatalyst, is produced by such a chlorine method, but is known to have a problem of low photoactivation.
  • the sol-gel method has the advantage of being able to manufacture titanium dioxide for high-purity photocatalyst, its quality is fine and its properties can be easily controlled in the process, but it is a starting material of titanium alkoxide (Ti (OC 3 H 7 )). 4 ), Ti (OC 2 H 5 ) 4 ) is expensive, its toxicity and stability is a problem.
  • the conventional titanium dioxide (TiO 2 ) manufacturing process for photocatalysts has a problem of being complicated and costly, or handling materials and processes. Therefore, there is a need in the art for a method for producing titanium dioxide powder having excellent photoactivity and light efficiency through a simpler process.
  • the present invention has been made to solve the above problems, and its object is to provide a method for producing titanium dioxide by a forging process safely and simply.
  • the present invention for achieving the above object, relates to a method for producing titanium dioxide powder, the first step of forming a rutile titanium dioxide (TiO 2 ) by heat-treating and pressurizing Ti, and grinding the titanium dioxide powder A second step, a third step of mixing and doping the titanium dioxide (TiO 2 ) and the transition metal (M) so that the transition metal (M) is contained in 0.01 ⁇ 0.1mol%, and the transition metal (M) is And a fourth step of forming doped titanium dioxide (Ti 1- xM x O 2 ), wherein x is 0.01 ⁇ x ⁇ 0.1.
  • the transition metal (M) is characterized in that it is composed of any one of Pt, Pd, Ru, Cr, Ni, Mo, V, Nb, Mn, Si and Al.
  • the heating is characterized in that it is maintained at 500 to 1300 at 0.1 to 100 / min in an atmospheric pressure furnace.
  • the pressurization is characterized in that for 100 to 1000 seconds maintained at a pressure of 10 to 500.
  • the TiO 2 powder doped with the desired metal may be manufactured by using a direct oxidation method in the process of applying heat to titanium, the stability and practicality of the process is superior to other conventional manufacturing methods.
  • the titanium dioxide powder obtained in the present invention is capable of acting in visible light through the doping effect of the transition metal, there is an effect that can be utilized as a photocatalyst having excellent light activation and light efficiency.
  • FIG. 1 is a flow chart showing a process for producing titanium dioxide powder according to the present invention.
  • Figure 2 is a graph showing the results of X-ray diffraction analysis of the titanium dioxide powder prepared according to the present invention titanium dioxide powder manufacturing process.
  • Figure 3 is a photograph taken with a scanning electron microscope (SEM) of titanium dioxide powder prepared according to the inventors titanium dioxide powder manufacturing process.
  • Figure 4 is a graph showing the results of the thermal analysis (TG / DSC) of titanium dioxide powder prepared according to the present invention titanium dioxide powder manufacturing process.
  • the manufacturing process of the titanium dioxide powder of the present invention as shown in FIG. 1, the first step of forming a rutile titanium dioxide (TiO 2 ) by heat-treating and pressurizing Ti, and the first step of grinding the titanium dioxide Step 2 , a third step of mixing and doping the titanium dioxide (TiO 2 ) and the transition metal (M) so that the transition metal (M) is contained in 0.01 ⁇ 0.1mol%, and the transition metal (M) is doped And a fourth step of forming the prepared titanium dioxide (Ti 1 -xM x O 2 ).
  • the range of x is preferably 0.01 ⁇ x ⁇ 0.1.
  • titanium for preparing the titanium dioxide powder of the present invention is provided.
  • the pressurization is performed by maintaining the preheated titanium at a pressure of 10 to 500 MPa for 100 to 1000 seconds.
  • titanium dioxide is spontaneously generated on the surface of titanium under each condition (S2).
  • air may be added to blow air.
  • the titanium dioxide powder produced here varies in crystalline phase, size, distribution, and shape of the powder depending on the conditions.
  • the titanium dioxide is ground (S3).
  • the produced titanium dioxide powder is collected and ground by a ball mill and classified for each size.
  • the ground titanium dioxide is mixed with a transition metal (S4).
  • a mechanical alloying method may be applied to the mixture of titanium dioxide (TiO 2 ) and the transition metal (M) to form titanium dioxide (Ti 1 -xM x O 2 ) doped with the transition metal (M).
  • the mechanical alloying method it is preferable to perform a ball milling process.
  • the ball milling process is preferably carried out under the condition that the weight ratio of the mixture and the ball is 13: 1 to 25: 1, the ball milling process employed in the present invention is carried out for at least 8 hours at a rotational speed of 100 ⁇ 300rpm It is desirable to. Furthermore, it is preferable to use a grinding ball made of STS 313 material and a ball having a diameter of 2 to 16 inches (JIS standard).
  • the transition metal (M) may be at least one selected from the group consisting of Fe, Cr, V, Nb, Sb, Sn, Si, and Al.
  • the mixing ratio of the TiO 2 powder and the transition metal (M) is preferably such that the transition metal is 0.01 to 1 mol% in the whole mixture.
  • the transition metal when the transition metal is less than 0.01 mol%, there is almost no doping effect, and when it exceeds 1 mol%, the crystal structure of the final titanium dioxide oxide itself is damaged.
  • titanium dioxide doped with transition metal (M) (Ti 1 -xM x O 2 ) can be obtained.
  • the energy bandgap of the conventional titanium dioxide that is not doped with a transition metal is limited to only the ultraviolet band ( ⁇ 380) to react to sunlight.
  • the energy bandgap of TiO 2 is formed by doping the transition metal.
  • Titanium dioxide powder (Ti 1- xMxO 2 ) doped with the completed transition metal was collected and subjected to phase analysis through XRD, as shown in FIG. 2.
  • Compositional analysis was performed by inductively coupled plasma-atomic emission spectrometry (ICP), and the specific surface area was measured by a Brunauer-Emmett-Teller surface area analyzer.
  • ICP inductively coupled plasma-atomic emission spectrometry
  • the doped transition metal content was 6.445wt%
  • the BET result showed that the specific surface area was about 160m 2 / g.
  • FIG 3 is a SEM photograph of a titanium dioxide powder doped with a metal prepared according to the present embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 이산화티타늄분말 제조방법에 관한 것으로, 그 구성은 Ti을 열처리하고 가압하여 루타일상의 이산화티타늄(TiO2)을 형성하는 제 1단계와, 상기 이산화티타늄분말을 분쇄하는 제 2단계와, 상기 전이금속(M)이 0.01~0.1mol%로 포함되도록 상기 이산화티타늄(TiO2)과 전이금속(M)을 혼합하여 도핑하는 제 3단계와, 상기 전이금속(M)이 도핑된 이산화티타늄(Ti1-xMxO2)을 형성하는 제 4단계를 포함하고, 상기 x는 0.01≤x≤0.1인 것을 특징으로 한다.

Description

이산화티타늄 제조방법
본 발명은 이산화티타늄 제조방법에 관한 것으로, 더욱 상세하게는 티타늄 금속에 열과 압력을 가하여 이산화티탄을 만드는 이산화티타늄 제조방법에 관한 것이다.
일반적으로, 과촉매제인 이산화티타늄(TiO2)분말은 인체 또는 환경에 유해한 영향을 주는 물질, 예컨대 유기 할로겐 화합물, 악취 가스, 오일류, 세균류, 균류 및 조류 등을 신속하게 효과적으로 제거하는 작용을 한다.
따라서, 오폐수, 매립지 침수 등 난분해서 유기물을 포함한 폐수의 수질정화, 배기가스 및 실내 공기정화, 조명기구, 위생도기 등의 항균, 방취 등의 환경제품으로서 각광을 받고 있다.
특히, 광촉매제는 고도산화처리방식(AOP: Advanced Oxidation Process)에 사용되는데, 이 때에 광촉매제는 환경오염물을 상온에서 완전히 분해하기 위해 특정 파장대의 태양광을 흡수하여 환경오염물을 분해시키는 보조물로서 작용한다. 또한, 그 처리효율이 높고 반응생성물이 부수적인 환경오염을 유발시키지 않을 뿐만 아니라, 반응공정이 간소하여 환경오염물을 신속하게 분해시킬 수 있다는 장점이 있다.
이산화티타늄 분말은 그 결정구조에 따라 크게 루타일(rutile)구조와 아나타제(anatase)구조로 구분할 수 있다. 특히, 아나타제상 이산화티타늄은 비교적 광활성도가 높아 트리클로로에텐을 광분해시키는 시스템과 태양에너지 변화시스템 등에서 광촉매제로 알려져 있다.
종래의 광촉매용 이산화티타늄 분말 제조방법으로는, 염소법(chloride process), 황산법(sulfate process) 및 졸-겔법(sol-gel process)이 있다. 우선, 황산법은, 티타늄원석인 일메나이트(ilmenite)를 분쇄한 후에 황산에 용해시켜 완전히 녹지 않은 고체상태로부터 액상의 TiO2를 얻고 이를 가수분해하여 제조하는 방법이다. 하지만, 이산화티타늄 분말을 가수분해 후에 수한화물을 하소/분쇄과정을 많은 공정을 거쳐야 하므로, 그 과정에서 많은 불순물들의 혼입으로 인해 최종 제품의 품질이 크게 저하되는 문제점이 있다.
이와 달리, 염소법은, 일메나이트에 염소가스를 반응시켜 사염화티타늄(TiCl4)를 생성하고, 이를 다시 산소가스와 반응시킴으로써 아나타제상의 이산화티타늄(TiO2)을 제조하는 방법이다. 하지만, 이 방법은 반응 중에 위험성이 높은 부식성가스(HCl, Cl2)가 발생되어, 이에 대한 보호설비가 요구되며, 원료가 풍부하지 못해, 생산단가가 높다는 문제점이 있다.
우수한 광촉매제로 알려진 독일 데구사(Degussa)의 P-25는 이러한 염소법으로 제조된 것이나, 광활성화도가 낮다는 문제가 있는 것으로 알려져 있다.
또한, 졸-젤법은 고순도 광촉매용 이산화티타늄을 제조할 수 있는 이점에도 불구하고, 그 품질이 정교하고 공정상 물성제어가 용이하다는 장점이 있으나, 출발물질인 티타늄알콕사이드(Ti(OC3H7)4), Ti(OC2H5)4)가 고가이며, 그 독성과 안정성이 문제된다.
이와 같이, 종래의 광촉매용 이산화티타늄(TiO2)제조공정은 복잡하면서 큰 비용이 소모되거나, 취급물질과 공정이 위험하다는 문제가 있다. 따라서, 당 기술분야에서는 우수한 광활성도와 광효율을 갖는 이산화티타늄 분말을 보다 간소한 공정을 통해 제조할 수 있는 방법이 요구되어 왔다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 그 목적은 안전하고 간단하게 티타늄 단조공정에 의한 이산화티타늄 제조방법을 제공하는 것이다.
상술한 목적을 달성하기 위한 본 발명은, 이산화티타늄분말 제조방법에 관한 것으로서, Ti을 열처리하고 가압하여 루타일상의 이산화티타늄(TiO2)을 형성하는 제 1단계와, 상기 이산화티타늄분말을 분쇄하는 제 2단계와, 상기 전이금속(M)이 0.01~0.1mol%로 포함되도록 상기 이산화티타늄(TiO2)과 전이금속(M)을 혼합하여 도핑하는 제 3단계와, 상기 전이금속(M)이 도핑된 이산화티타늄(Ti1-xMxO2)을 형성하는 제 4단계를 포함하고, 상기 x는 0.01≤x≤0.1인 것을 특징으로 한다.
상기 전이금속(M)은 Pt, Pd, Ru, Cr, Ni, Mo, V, Nb, Mn, Si 및 Al 중 어느 하나로 구성되는 것을 특징으로 한다.
상기 제 1단계에서, 가열은 상압로에서 0.1 내지 100/min으로 500 내지 1300에서 유지하는 것을 특징으로 한다.
상기 제 1단계에서, 가압은 10 내지 500의 압력으로 100 내지 1000초 동안 유지하는 것을 특징으로 한다.
본 발명에 의한 티타늄 단조공정에 의한 이산화티타늄 제조방법에서는 다음과 같은 효과가 있다.
티타늄에 열을 가하는 공정 상에서 직접산화법을 이용하여 원하는 금속이 도핑된 TiO2분말을 제조할 수 있으므로, 다른 종래의 제조방법에 비해 공정의 안정성과 실용성이 우수한 효과가 있다.
또한, 본 발명에서 얻어진 이산화티탄늄 분말은 전이금속의 도핑효과를 통해 가시광선에서도 작용이 가능하므로, 우수한 광활성화도와 광효율을 갖는 광촉매제로서도 활용될 수 있는 효과가 있다.
도 1은 본 발명에 따른 이산화티타늄분말 제조과정을 보인 순서도.
도 2는 본 발명인 이산화티타늄분말 제조과정에 따라 제조된 이산화티타늄분말을 X-ray 회절분석한 결과를 보인 그래프.
도 3은 본 발명인 이산화티타늄분말 제조과정에 따라 제조된 이산화티타늄분말을 주사전자현미경(SEM)으로 촬영한 도면.
도 4는 본 발명인 이산화티타늄분말 제조과정에 따라 제조된 이산화티타늄분말을 열분석(TG/DSC)한 결과를 보인 그래프.
이하, 본 발명에 의한 이산화티타늄분말 제조과정의 바람직한 실시예가 첨부된 도면을 참고하여 상세하게 설명한다.
먼저, 본 발명인 이산화티타늄분말의 제조과정은, 도 1에 도시된 바와 같이, Ti을 열처리하고 가압하여 루타일상의 이산화티타늄(TiO2)을 형성하는 제 1단계와, 상기 이산화티타늄을 분쇄하는 제 2단계와, 상기 전이금속(M)이 0.01~0.1mol%로 포함되도록 상기 이산화티타늄(TiO2)과 전이금속(M)을 혼합하여 도핑하는 제 3단계와, 상기 전이금속(M)이 도핑된 이산화티타늄(Ti1-xMxO2)을 형성하는 제 4단계를 포함하여 구성될 수 있다.
여기서, 상기 x의 범위는 0.01≤x≤0.1인 것이 바람직하다.
먼저, 본 발명인 이산화티타늄분말을 제조하기 위한 티타늄이 마련된다. 상기 티타늄을 열처리하고 가압한다(S1). 보다 구체적으로, 상기 열처리는 상기 티타늄을 상압로에서 승온온도 0.1 내지 100℃/min으로 500 내지 1300℃에서 유지하여 처리한다.
그리고, 상기 가압은 상기 예열된 티타늄을 10 내지 500MPa의 압력으로 100 내지 1000초 동안 유지하여 처리한다.
이렇게 하면, 각 조건에서 티타늄이 표면에서 산화반응이 자발적으로 발생하게 되어 이산화티타늄이 만들어진다(S2). 또한, 상기 산화반응을 촉진하기 위해, 공기압을 가하여 공기를 불어줄 수 있다. 여기서 제조되는 이산화티타늄분말은 각 조건에 따라서 분말의 결정상, 크기 및 분포, 모양이 달라진다.
그리고, 상기 이산화티타늄을 분쇄한다(S3). 이때, 제조된 이산화티탄분말을 회수하여 볼밀로 분쇄하여 각 크기별로 분급한다.
그리고, 상기 분쇄된 이산화티타늄을 전이금속과 혼합한다(S4). 이때, 상기 이산화티타늄(TiO2)과 전이금속(M)의 혼합물에 기계적 합금법을 적용하여, 전이금속(M)이 도핑된 이산화티타늄(Ti1-xMxO2)을 형성할 수 있다.
상기 기계적 합금법을 구현하기 위해, 볼밀링공정을 실시하는 것이 바람직하다. 상기 볼밀링공정은 바람직하게는 상기 혼합물과 볼의 중량비를 13:1~25:1로 하는 조건에서 실시하며, 본 발명에 채용되는 볼밀링 공정은 100~300rpm의 회전속도로 적어도 8시간이상 실시하는 것이 바람직하다. 나아가, 볼밀링에 사용되는 볼로는 STS 313 물질로 이루어지고 2~16인치(JIS규격)인 연마볼을 사용하는 것이 바람직하다.
상기 전이금속(M)은 Fe, Cr, V, Nb, Sb, Sn, Si 및 Al로 이루어진 그룹에서 선택된 적어도 하나일 수 있다. 그리고, 본 발명에서, TiO2분말과 전이금속(M)의 혼합비율은 전체 혼합물에서 전이금속이 0.01 ~ 1mol%가 되도록 하는 것이 바람직하다.
여기서, 전이금속이 0.01mol% 미만일 경우에는 도핑효과가 거의 없으며, 1mol%를 초과하는 경우에는 최종 이산화티탄늄 산화물의 결정구조 자체가 손상되는 문제가 있다.
이와 같은 전이금속 도핑공정을 통해, 전이금속(M)이 도핑된 이산화티타늄(Ti1-xMxO2)을 얻을 수 있다. 전이금속이 도핑되지 않은 통상의 이산화티타늄의 에너지밴드갭은 자외선대역(~380)에만 한정되어 태양광에 대한 반응하는 문제가 있었으나, 본 발명과 같이 전이금속을 도핑하여 TiO2의 에너지밴드갭을 낮춤으로써 가시광선대역의 파장도 흡수할 수 있는 광효율성이 대폭 개선된 새로운 형태의 이산화티타늄(Ti1-xMxO2)을 제공할 수 있다.
완료된 전이금속이 도핑된 이산화티타늄 분말(Ti1-xMxO2)을 수거하여, 도 2에 도시된 바와 같이, XRD를 통하여 상분석을 실시하였다. ICP(Inductively Coupled Plasma-Atomic Emission Spectrometry)를 통해 조성분석을 실시하였으며, BET(Brunauer-Emmett-Teller) 표면적 분석기를 통하여 비표면적을 측정하였다. ICP 조성분석결과, 도핑된 전이금속함량은 6.445wt%로 나타났으며, BET측정결과가 비표면적이 약 160m2/g으로 높게 나타났다.
그리고, 도 3은 본 실시예를 통해 제조된 금속이 도핑된 이산화티타늄분말을 촬영한 SEM 사진이다.
본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.

Claims (4)

  1. Ti을 열처리하고 가압하여 루타일상의 이산화티타늄(TiO2)을 형성하는 제 1단계;
    상기 이산화티타늄분말을 분쇄하는 제 2단계;
    상기 전이금속(M)이 0.01~0.1mol%로 포함되도록 상기 이산화티타늄(TiO2)과 전이금속(M)을 혼합하여 도핑하는 제 3단계; 그리고,
    상기 전이금속(M)이 도핑된 이산화티타늄(Ti1-xMxO2)을 형성하는 제 4단계를 포함하고, 상기 x는 0.01=x=0.1인 것을 특징으로 하는 이산화티타늄분말 제조방법.
  2. 제 1항에 있어서,
    상기 전이금속(M)은 Pt, Pd, Ru, Cr, Ni, Mo, V, Nb, Mn, Si 및 Al 중 어느 하나로 구성되는 것을 특징으로 하는 이산화티타늄분말 제조방법.
  3. 제 1항에 있어서,
    상기 제 1단계에서, 가열은 상압로에서 0.1 내지 100/min으로 500 내지 1300에서 유지하는 것을 특징으로 하는 이산화티타늄분말 제조방법.
  4. 제 1항에 있어서,
    상기 제 1단계에서, 가압은 10 내지 500의 압력으로 100 내지 1000초 동안 유지하는 것을 특징으로 하는 이산화티타늄분말 제조방법.
PCT/KR2012/006956 2011-09-02 2012-08-30 이산화티타늄 제조방법 WO2013032253A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110088902A KR20130025536A (ko) 2011-09-02 2011-09-02 이산화티타늄 제조방법
KR10-2011-0088902 2011-09-02

Publications (3)

Publication Number Publication Date
WO2013032253A2 true WO2013032253A2 (ko) 2013-03-07
WO2013032253A9 WO2013032253A9 (ko) 2013-04-25
WO2013032253A3 WO2013032253A3 (ko) 2013-06-06

Family

ID=47757065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006956 WO2013032253A2 (ko) 2011-09-02 2012-08-30 이산화티타늄 제조방법

Country Status (2)

Country Link
KR (1) KR20130025536A (ko)
WO (1) WO2013032253A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101930714B1 (ko) * 2018-06-19 2018-12-19 (주)카리스가드레일 질소산화물 제거 가능한 광촉매 및 가드레일

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539613B1 (ko) * 2003-08-28 2005-12-29 학교법인 한양학원 광촉매제용 이산화티타늄 분말 제조방법 및 그로부터 제조된 이산화티타늄 분말
WO2006044495A1 (en) * 2004-10-14 2006-04-27 Tokusen U.S.A., Inc. Method for synthesizing nano-sized titanium dioxide particles
KR100803738B1 (ko) * 2006-08-31 2008-02-15 오한준 티타늄-페르옥시겔을 이용한 산화티타늄 광촉매 제조방법
KR101015911B1 (ko) * 2003-05-20 2011-02-23 하진욱 티타늄 금속판을 산화처리한 이산화티타늄판

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101015911B1 (ko) * 2003-05-20 2011-02-23 하진욱 티타늄 금속판을 산화처리한 이산화티타늄판
KR100539613B1 (ko) * 2003-08-28 2005-12-29 학교법인 한양학원 광촉매제용 이산화티타늄 분말 제조방법 및 그로부터 제조된 이산화티타늄 분말
WO2006044495A1 (en) * 2004-10-14 2006-04-27 Tokusen U.S.A., Inc. Method for synthesizing nano-sized titanium dioxide particles
KR100803738B1 (ko) * 2006-08-31 2008-02-15 오한준 티타늄-페르옥시겔을 이용한 산화티타늄 광촉매 제조방법

Also Published As

Publication number Publication date
WO2013032253A9 (ko) 2013-04-25
KR20130025536A (ko) 2013-03-12
WO2013032253A3 (ko) 2013-06-06

Similar Documents

Publication Publication Date Title
Xu et al. Improved photocatalytic activity of nanocrystalline ZnO by coupling with CuO
Senasu et al. Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics
Zaleska Doped-TiO2: a review
Valencia et al. Sol–gel and low-temperature solvothermal synthesis of photoactive nano-titanium dioxide
EP2519348B1 (en) Method of production of photocatalytic powder comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
Matsumoto et al. High visible-light photocatalytic activity of nitrogen-doped titania prepared from layered titania/isostearate nanocomposite
Cui et al. Facile synthesis and catalytic properties of single crystalline β-MnO2 nanorods
Wang et al. Preparation and characterization of TiO2 nanoparticles by two different precipitation methods
Wang et al. Modification of the antibacterial activity of Zn/TiO2 nano-materials through different anions doped
Konyar et al. Sintering temperature effect on photocatalytic efficiencies of ZnO/TiO2 composite plates
WO2006064799A1 (ja) 可視光応答性を有する複合金属酸化物光触媒
Shad et al. Synthesis of flake-like bismuth tungstate (Bi2WO6) for photocatalytic degradation of coomassie brilliant blue (CBB)
Fakhrzad et al. Synthesis of Zn2SnO4 nanoparticles used for photocatalytic purposes
JP2006335619A (ja) 酸化チタン粒子、その製造方法及び応用
He et al. Preparation and photocatalytic activity of anatase TiO2 nanocrystallites with high thermal stability
Orlikowski et al. A new method for preparation of rutile phase titania photoactive under visible light
WO2010030098A2 (ko) 균일한 아나타제형 이산화티탄 나노입자의 제조방법
Kamaraj et al. Photocatalytic degradation of endocrine disruptor Bisphenol-A in the presence of prepared CexZn1− xO nanocomposites under irradiation of sunlight
Phuruangrat et al. Hydrothermal synthesis, characterization, and optical properties of Ce doped Bi 2 MoO 6 nanoplates
CN108545773B (zh) 一种纳米二氧化钛/三氧化钨复合材料粉末的制备方法
Fu et al. Synthesis of Mn-intercalated layered titanate by exfoliation–flocculation approach and its efficient photocatalytic activity under visible–light
Ravi et al. Synthesis of Y 2 Ti 2 O 7-x N y with visible light responsive photocatalytic activity
KR20110064130A (ko) 광촉매로 유용한 축광체-이산화티타늄 복합 나노입자 및 이의 제조방법
WO2013032253A2 (ko) 이산화티타늄 제조방법
WO2009082989A1 (en) Method for production of photocatalytically active titanium oxide for uv and visible region o light spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828149

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12828149

Country of ref document: EP

Kind code of ref document: A2