WO2013031520A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2013031520A1
WO2013031520A1 PCT/JP2012/070466 JP2012070466W WO2013031520A1 WO 2013031520 A1 WO2013031520 A1 WO 2013031520A1 JP 2012070466 W JP2012070466 W JP 2012070466W WO 2013031520 A1 WO2013031520 A1 WO 2013031520A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
organic
layer
aromatic hydrocarbon
Prior art date
Application number
PCT/JP2012/070466
Other languages
English (en)
French (fr)
Inventor
井上 暁
寛人 伊藤
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to US14/239,723 priority Critical patent/US9437833B2/en
Priority to EP12827092.3A priority patent/EP2752901A4/en
Priority to JP2013531198A priority patent/JP5987830B2/ja
Publication of WO2013031520A1 publication Critical patent/WO2013031520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/008Dyes containing a substituent, which contains a silicium atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to an organic electroluminescence element.
  • An organic electroluminescence element (hereinafter also referred to as an organic EL element) has a structure in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode, and by applying an electric field, holes injected from the anode and This is a light emitting device utilizing the emission of light (fluorescence / phosphorescence) when electrons injected from the cathode are recombined in the light emitting layer to generate excitons (excitons) and the excitons are deactivated.
  • this is an all-solid-state device composed of an organic material film with a thickness of only a submicron between the electrodes, and can emit light at a voltage of several volts to several tens of volts. It is expected to be used for next generation flat display and lighting.
  • Non-Patent Document 1 As for development of organic EL elements for practical use, Princeton University has reported organic EL elements that use phosphorescence emission from excited triplets (see, for example, Non-Patent Document 1), and since then phosphorescence at room temperature. Research on materials exhibiting the above has become active (see, for example, Patent Document 1 and Non-Patent Document 2). In addition, recently discovered organic EL devices that use phosphorescence can realize a luminous efficiency that is approximately four times that of previous devices that use fluorescence. Research and development of light-emitting element layer configurations and electrodes are performed all over the world. For example, many compounds have been studied for synthesis centering on heavy metal complexes such as iridium complexes (see, for example, Non-Patent Document 3).
  • the organic EL device using phosphorescence emission is greatly different from the organic EL device using fluorescence emission, and the method for controlling the position of the emission center, particularly the emission layer, is particularly different.
  • An important technical issue in capturing the efficiency and lifetime of the device is how to recombine inside to stably emit light. Therefore, in recent years, multilayer multilayer devices having a hole transport layer (located on the anode side of the light emitting layer) and an electron transport layer (located on the cathode side of the light emitting layer) adjacent to the light emitting layer are well known. (For example, refer to Patent Document 2).
  • a mixed layer using a host compound and a phosphorescent compound as dopants is often used for the light emitting layer.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an organic electroluminescence element with improved external extraction efficiency and a long lifetime.
  • an organic electroluminescent element which has at least a light emitting layer between an anode and a cathode,
  • the light-emitting layer includes a phosphorescent organometallic complex and at least one host compound;
  • the difference between the relative dielectric constant of the host compound and the phosphorescent organometallic complex is 0 to -0.5, and the bipolar of the host compound and the phosphorescent organometallic complex
  • an organic electroluminescence device characterized in that the child moment difference is 0 to ⁇ 5.5 debye.
  • the organic electroluminescence device according to claim 1, wherein the dipole moment difference between the host compound and the phosphorescent organometallic complex is 0 to -4 Debye. Is provided.
  • the organic electroluminescence device according to claim 1 or 2, wherein the emission wavelength of the phosphorescent organometallic complex is 480 nm or less.
  • the phosphorescent organometallic complex is coordinated by a ligand having a partial structure represented by the following general formula (1).
  • the organic electroluminescence device according to any one of claims 1 to 3, wherein the organic electroluminescence device is provided.
  • R 1 is optionally substituted hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic Represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group.
  • Ring A represents a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle
  • Ra and Rb each independently represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkenyl group, which may be substituted.
  • na represents 1 or 2
  • nb Represents an integer of 1 to 4.
  • the phosphorescent organometallic complex is coordinated by a ligand having a partial structure represented by the following general formula (2).
  • the organic electroluminescence device according to any one of claims 1 to 4, wherein the organic electroluminescence device is provided.
  • Ring B represent a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring
  • Ar represents a 5- or 6-membered aromatic hydrocarbon ring, aromatic heterocyclic ring or non-aromatic hydrocarbon.
  • R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, It represents a silyl group, an arylalkyl group, an aryl group, a heteroaryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group.
  • Ra, Rb and Rc are each independently an optionally substituted hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, It represents a heteroaryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, na and nc represent 1 or 2, and nb represents an integer of 1 to 4. ]
  • the phosphorescent organometallic complex is an organometallic complex represented by the following general formula (3):
  • the organic electroluminescent element as described in 1. is provided.
  • Ring B represent a 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocyclic ring
  • Ar represents a 5- or 6-membered aromatic hydrocarbon ring, aromatic heterocycle, non-aromatic hydrocarbon ring or non-aromatic heterocycle
  • R 2 and R 3 are each independently an optionally substituted hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, It represents a heteroaryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group.
  • Ra, Rb and Rc are each independently an optionally substituted hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, It represents a heteroaryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, na and nc represent 1 or 2, and nb represents an integer of 1 to 4.
  • L is one or more of monoanionic bidentate ligands coordinated to M
  • M represents a transition metal atom having an atomic number of 40 or more and a group 8 to 10 in the periodic table
  • m is Represents an integer of 1 to 3
  • n is at least 1
  • m + n is 2 or 3.
  • the organic electroluminescence device according to claim 5 or 6, wherein at least one of R 2 and R 3 are alkyl groups it is provided.
  • the organic electroluminescent device according to the seventh aspect, wherein at least one of R 2 and R 3 is an alkyl group having 2 or more carbon atoms.
  • the organic electroluminescent device according to any one of the fifth to eighth aspects, wherein R 2 and R 3 are both alkyl groups.
  • the organic electroluminescence device according to claim 5 or 6 is provided, wherein the ring A is a benzene ring.
  • the organic electroluminescent element according to the sixth aspect, wherein the general formula (3) is represented by the following general formula (3-1).
  • Ar of [Ar in the general formula (3-1), R 2, R 3, Ra, Rb, Rc, na, nb, nc, M, L, m and n are the general formula (3), R 2, R 3 , Ra, Rb, Rc, na, nb, nc, M, L, m, and n are synonymous. ]
  • the host compound is a host compound having a partial structure represented by the following general formula (4).
  • An organic electroluminescent device is provided.
  • A is an O atom, S atom, NR 1 group, and A 11 to A 18 are N atoms or CR 2 .
  • R 1 and R 2 is a bond, represents a hydrogen atom or a substituent, and when CR 2 there are a plurality, each CR 2 may be the same or different.
  • FIG. 4 is a schematic diagram of a display unit A.
  • FIG. It is a schematic diagram of a pixel. It is a schematic diagram of a passive matrix type full-color display device. It is the schematic of an illuminating device. It is a schematic diagram of an illuminating device.
  • the present inventors have determined that a host compound and a phosphorescent organometallic complex, which are two or more kinds of materials contained in the light emitting layer, By setting the dipole moment difference of the phosphorescent organometallic complex to 0 to ⁇ 5.5 debye, it is possible to prevent aggregation of the above materials immediately after film formation and to further prevent aggregation during driving. I understood that I could do it. In particular, it was found that the dipole moment difference is preferably 0 to ⁇ 4 Debye.
  • the dipole moment in the present invention represents a bias of charge of a compound, and can be obtained by the AM1 method or the like using a semi-empirical molecular orbital method program (MOPAC).
  • MOPAC semi-empirical molecular orbital method program
  • R 1 is an optionally substituted hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, It represents a heteroaryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group.
  • ring A represents a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocycle.
  • Ra and Rb are each independently an optionally substituted hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl.
  • examples of the 5-membered or 6-membered aromatic hydrocarbon ring represented by the ring A and the ring B include a benzene ring.
  • examples of the 5-membered or 6-membered aromatic hydrocarbon ring represented by the ring A and the ring B include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, Examples include a pyrimidine ring, a pyrazine ring, a triazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, a pyrazole ring, and a thiazole ring.
  • ring B is a benzene ring
  • ring A is a benzene ring
  • examples of the aromatic hydrocarbon ring represented by Ar include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, and triphenylene.
  • examples of the aromatic heterocycle represented by Ar include a silole ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring.
  • Oxadiazole ring triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, aza A carbazole ring (representing any one or more of the carbon atoms constituting the carbazole ring replaced by a nitrogen atom), a dibenzosilole ring, a dibenzofuran ring, a dibenzothiophene ring, a benzothiophene ring or a dibenzofuran ring.
  • examples of the non-aromatic hydrocarbon ring represented by Ar include cycloalkane (for example, cyclopentane ring, cyclohexane ring, etc.), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group, etc.) ), A cycloalkylthio group (for example, a cyclopentylthio group, a cyclohexylthio group, etc.), a cyclohexylaminosulfonyl group, a tetrahydronaphthalene ring, a 9,10-dihydroanthracene ring, a biphenylene ring, and the like.
  • cycloalkane for example, cyclopentane ring, cyclohexane ring, etc.
  • cycloalkoxy group for example, cyclopentyloxy group, cyclohexyloxy group, etc.
  • examples of the non-aromatic heterocycle represented by Ar include an epoxy ring, an aziridine ring, a thiirane ring, an oxetane ring, an azetidine ring, a thietane ring, a tetrahydrofuran ring, a dioxolane ring, a pyrrolidine ring, and a pyrazolidine.
  • These rings represented by Ar in the general formula (2) may further have the following substituents (hereinafter referred to as substituent Rx), and the substituents are bonded to each other to form a ring. It may be formed.
  • substituent Rx include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group).
  • alkenyl group eg vinyl group, aryl group etc.
  • alkynyl group eg ethynyl group, propargyl group etc.
  • non-aromatic hydrocarbon ring group eg cycloalkyl group (eg cyclopentyl group, cyclohexyl group etc.) Etc.
  • cycloalkoxy groups eg, cyclopentyloxy group, cyclohexyloxy group, etc.
  • cycloalkylthio groups eg, cyclopentylthio group, cyclohexylthio group, etc.
  • tetrahydronaphthalene ring 9,10-dihydroanthracene ring, biphenylene ring, etc.
  • Non-aromatic heterocyclic group for example, epoxy ring, aziridine ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, Sulfolane ring, thiazolidine ring, ⁇ -caprolactone ring, ⁇ -caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine ring, tetrahydropyran ring, 1,3-dioxane ring, 1,4- Dioxane ring, trioxane ring, tetrahydropyran ring
  • R 2 and R 3 are each independently a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, a silyl group, an arylalkyl group, an aryl group.
  • the aryl group and heteroaryl group represented by R 2 and R 3 are derived from the aromatic hydrocarbon ring and aromatic heterocycle represented by Ar in the general formula (2). And a monovalent group.
  • the non-aromatic hydrocarbon ring group and non-aromatic heterocyclic group represented by R 2 and R 3 are the non-aromatic carbon groups represented by Ar in the general formula (2).
  • both R 2 and R 3 are alkyl groups or cycloalkyl groups having 2 or more carbon atoms, and it is also preferable that at least one of R 2 and R 3 is a branched alkyl group having 3 or more carbon atoms. . More preferably, R 2 and R 3 are both branched alkyl groups having 3 or more carbon atoms.
  • Ra, Rb and Rc are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group.
  • the aryl group and heteroaryl group represented by Ra, Rb and Rc are derived from the aromatic hydrocarbon ring and aromatic heterocycle represented by Ar in the general formula (2). And monovalent groups.
  • na and nc represent 1 or 2
  • nb represents an integer of 1 to 4.
  • the phosphorescent dopant compounds represented by the general formula (3) or the general formula (3-1) are preferable.
  • Ar, R 2 , R 3 , Ra, Rb, Rc, na, nb, and nc are Ar, R 2 , R 3 , Ra in the general formula (2).
  • ring A and ring B have the same meanings as ring A and ring B in general formula (2).
  • Rd ′, Rd ′′ and Rd ′ ′′ represent a hydrogen atom or a substituent
  • the substituent represented by Rd ′, Rd ′′ and Rd ′ ′′ is represented by Ar in the above general formula (2).
  • M is an atomic number of 40 or more and a transition metal atom of group 8 to 10 in the periodic table of elements. Of these, Os, Ir, and Pt are preferable, and Ir is more preferable. .
  • n represents an integer of 0 to 2
  • n is at least 1
  • m + n represents 2 or 3.
  • n is 3 or 2
  • m is 0.
  • the compounds represented by the general formulas (2), (3) and (3-1) according to the present invention can be synthesized by referring to known methods described in International Publication No. 2006-121811, etc.
  • phosphorescent dopant compound that can be preferably used in the present invention are listed below, but the present invention is not limited thereto.
  • A is an O atom, S atom, NR 1 group, and A 11 to A 18 are N atoms or CR 2 .
  • the R 1 and R 2 is a bond, represents a hydrogen atom or a substituent, and when CR 2 there are a plurality, each CR 2 may be the same or different.
  • an organic layer including a light emitting layer excluding an anode and a cathode can be used as one light emitting unit, and a plurality of light emitting units can be stacked.
  • the plurality of stacked light emitting units may have a non-light emitting intermediate layer between the light emitting units, and the intermediate layer may further include a charge generation layer.
  • the organic EL element of the present invention is preferably a white light emitting layer, and is preferably a lighting device using these. Each layer which comprises the organic EL element of this invention is demonstrated.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
  • the total thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing the application of unnecessary high voltage during light emission, and improving the stability of the emission color against the drive current.
  • a light emitting dopant or a host compound described later is used, for example, a vacuum deposition method, a wet method (also referred to as a wet process, for example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, An ink-jet method, a printing method, a spray coating method, a curtain coating method, an LB method (including Langmuir-Blodgett method)) and the like can be formed.
  • a wet method also referred to as a wet process, for example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method
  • An ink-jet method, a printing method, a spray coating method, a curtain coating method, an LB method (including Langmuir-Blodgett method)) and the like can be formed.
  • the light emitting layer of the organic EL device of the present invention contains a light emitting dopant (phosphorescent dopant (also referred to as a phosphorescent dopant or phosphorescent dopant group) or fluorescent dopant) compound and a host compound.
  • a light emitting dopant phosphorescent dopant (also referred to as a phosphorescent dopant or phosphorescent dopant group) or fluorescent dopant) compound and a host compound.
  • the difference between the relative dielectric constant of the host compound and the relative dielectric constant of the phosphorescent organometallic complex which is a phosphorescent dopant is 0 to ⁇ 0.5 debye
  • the host compound And the phosphorescent organometallic complex have a dipole moment difference of 0 to -5.5 debye. More preferably, the dipole moment difference is 0-4.
  • the at least one phosphorescent organometallic complex is a phosphorescent organometallic complex represented by the above general formula (2) (a configuration having a structure represented by the general formula (1)).
  • a phosphorescent organometallic complex whose ligand is coordinated to a metal atom), and the host compound are compounds represented by the general formula (4).
  • Luminescent dopant compound A light-emitting dopant compound (also referred to as a light-emitting dopant) will be described.
  • a fluorescent dopant also referred to as a fluorescent compound
  • a phosphorescent dopant also referred to as a phosphorescent dopant compound, a phosphorescent emitter, a phosphorescent compound, a phosphorescent compound, or the like
  • a fluorescent dopant also referred to as a fluorescent compound
  • a phosphorescent dopant also referred to as a phosphorescent dopant compound, a phosphorescent emitter, a phosphorescent compound, a phosphorescent compound, or the like
  • the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield is 25 ° C.
  • the phosphorescence quantum yield is preferably 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition.
  • the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
  • the energy transfer type in which light emission from the phosphorescent dopant is obtained by moving to the other, and the other is that the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant compound occurs.
  • the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.
  • the phosphorescent dopant according to the present invention preferably has an emission wavelength of 480 nm or less.
  • the phosphorescent dopant according to the present invention is a phosphorescent organometallic complex represented by the general formula (2) (a ligand having a structure represented by the general formula (1) is arranged on a metal atom.
  • Phosphorescent organic metal complexes compounds described in the following patent publications and the like may be used in combination.
  • fluorescent dopant also called fluorescent compound
  • fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes , Polythiophene dyes, rare earth complex phosphors, and the like, and compounds having a high fluorescence quantum yield such as laser dyes.
  • the light-emitting dopant according to the present invention may be used in combination of a plurality of types of compounds, or may be a combination of phosphorescent dopants having different structures, or a combination of a phosphorescent dopant and a fluorescent dopant.
  • the host compound has a mass ratio of 20% or more in the layer, and the phosphorescence quantum yield of phosphorescence emission is 0 at room temperature (25 ° C.). Defined as less than 1 compound.
  • the phosphorescence quantum yield is preferably less than 0.01.
  • the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • the host compound that can be used in the present invention is a compound represented by the general formula (4) described above.
  • a conventionally known compound may be used in combination with the compound represented by the general formula (4) described above.
  • the compound that may be used in combination typically has a basic skeleton such as a carbazole derivative, triarylamine derivative, aromatic derivative, nitrogen-containing heterocyclic compound, thiophene derivative, furan derivative, oligoarylene compound, or Carboline derivatives and diazacarbazole derivatives (herein, diazacarbazole derivatives are those in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom). Can be mentioned.
  • a known light-emitting host that can be used in the present invention is preferably a compound that has a hole-transporting ability and an electron-transporting ability, prevents the emission of light from becoming longer, and has a high Tg (glass transition temperature). More preferably, Tg is 100 ° C. or higher.
  • Tg glass transition temperature
  • the movement of charges can be adjusted, and the organic EL element can be made highly efficient.
  • the phosphorescent dopant it is possible to mix different light emissions, thereby obtaining an arbitrary emission color.
  • the light emitting host used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emitting host). Of course, one or more of such compounds may be used.
  • Injection layer hole injection layer (anode buffer layer), electron injection layer (cathode buffer layer) >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • phthalocyanine buffer layer oxide buffer layer typified by vanadium oxide, amorphous carbon buffer layer, polymer buffer layer using conductive polymer such as polyaniline (emeraldine) or polythiophene, tris (2-phenylpyridine) )
  • conductive polymer such as polyaniline (emeraldine) or polythiophene, tris (2-phenylpyridine)
  • Orthometalated complex layers represented by iridium complexes and the like.
  • azatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as the hole injection material.
  • the details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • metal buffer layer typified by, alkali metal compound buffer layer typified by lithium fluoride, sodium fluoride and potassium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, and aluminum oxide And an oxide buffer layer.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
  • the materials used for the anode buffer layer and the cathode buffer layer can be used in combination with other materials. For example, the materials can be mixed in the hole transport layer or the electron transport layer.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives,
  • stilbene derivatives silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • azatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as the hole transport material.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • cyclometalated complexes and orthometalated complexes such as copper phthalocyanine and tris (2-phenylpyridine) iridium complex can also be used as the hole transport material.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided with a single layer or a plurality of layers.
  • An electron transport material (including a hole blocking material and an electron injection material) used for the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • electron transport materials examples include heterocyclic tetracarboxylic acid anhydrides such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, And azacarbazole derivatives including carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, carboline derivatives, and the like.
  • the azacarbazole derivative refers to one in which one or more carbon atoms constituting the carbazole ring are replaced with nitrogen atoms.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material. It is also possible to use a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can also be used as the electron transport material.
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5000 nm, preferably 5 nm to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials, or may have a stacked structure in which a plurality of layers are stacked.
  • an electron transport layer having a high n property doped with impurities can also be used.
  • examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is composed of a hole blocking material that has a function of transporting electrons and has a very small ability to transport holes, and transports holes while transporting electrons. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the above-mentioned electron carrying layer can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer contains carbazole derivatives, azacarbazole derivatives (where azacarbazole derivatives are those in which one or more carbon atoms constituting the carbazole ring are replaced by nitrogen atoms), pyridine derivatives, and the like. It is preferable to contain a nitrogen compound.
  • the light emitting layer having the shortest emission maximum wavelength is preferably closest to the anode among all the light emitting layers.
  • the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
  • the ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied orbital) level of the compound to the vacuum level, and can be determined by, for example, the following method.
  • Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), a molecular orbital calculation software manufactured by Gaussian, USA.
  • the ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes while having a very small ability to transport electrons, and transporting electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the above-mentioned hole transport layer can be used as an electron blocking layer as needed.
  • the thickness of the hole blocking layer and electron blocking layer according to the present invention is preferably 3 nm to 100 nm, more preferably 3 nm to 30 nm.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more)
  • a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the film thickness is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992. And a relative humidity (90 ⁇ 2)% RH) of 0.01 g / (m 2 ⁇ 24 h) or less is preferable, and oxygen measured by a method according to JIS K 7126-1987 A high barrier film having a permeability of 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ MPa) or less and a water vapor permeability of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
  • any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, and ceramic substrates.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • a method for producing an organic EL element a method for producing an element comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode Will be described.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate so as to have a thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm, thereby producing an anode.
  • an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, or a cathode buffer layer, which is an element material
  • Wet methods include spin coating, casting, die coating, blade coating, roll coating, ink jet, printing, spray coating, curtain coating, and LB, but precise thin films can be formed.
  • a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, and a spray coating method is preferable.
  • Different film forming methods may be applied for each layer.
  • the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
  • a dispersion method it can disperse
  • a thin film made of a cathode material is formed thereon so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm, and a desired organic EL device can be obtained by providing a cathode. .
  • the order can be reversed, and the cathode, cathode buffer layer, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be formed in this order.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the organic EL device of the present invention is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
  • a sealing means used for this invention the method of adhere
  • a sealing member it should just be arrange
  • Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ MPa) or less, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured in (1) is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sandblasting, chemical etching, or the like is used for processing the sealing member into a concave shape.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable. Further, a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • the method for forming these films is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum is also possible.
  • a hygroscopic compound can also be enclosed inside. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, etc.
  • sulfates, metal halides and perchloric acids are preferably anhydrous salts.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light undergoes total reflection between the light and the light, and the light is guided through the transparent electrode or the light emitting layer.
  • a method of improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an element (Japanese Patent Laid-Open No. 1-220394), light emission from a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less. The thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.
  • the introduced diffraction grating preferably has a two-dimensional periodic refractive index.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface.
  • a specific direction for example, the device light emitting surface.
  • the luminance in a specific direction can be increased.
  • the microlens array quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 ⁇ m to 100 ⁇ m.
  • the condensing sheet for example, a sheet that has been put into practical use for an LED backlight of a liquid crystal display device can be used.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • the shape of the prism sheet for example, the base material may be formed with a triangle stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusing plate and a film with a condensing sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation.
  • the electrode In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the display device of the present invention comprises the organic EL element of the present invention.
  • the display device of the present invention may be single color or multicolor, the multicolor display device will be described here.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • the method is not limited. However, the vapor deposition method, the ink jet method, the spin coating method, and the printing method are preferable.
  • the configuration of the organic EL element provided in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown to the one aspect
  • the multicolor display device can be used as a display device, a display, and various light emission sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in an automobile.
  • the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light emitting sources include household lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc.
  • the present invention is not limited to these examples.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside, and the pixels for each scanning line respond to the image data signal by the scanning signal.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • symbol L indicates light, and the same applies to FIGS. 5 and 6 described later.
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not) When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data. Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 through the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied.
  • the light emission of the organic EL element 10 continues.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light. That is, the light emission of the organic EL element 10 is performed by providing the switching transistor 11 and the drive transistor 12 which are active elements with respect to the organic EL element 10 of each of the plurality of pixels. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 4 is a schematic diagram of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
  • the pixel 3 has no active element, and the manufacturing cost can be reduced.
  • the lighting device of the present invention has the said organic EL element.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • the purpose of use of the organic EL element having such a resonator structure is as follows.
  • the light source of a machine, the light source of an optical communication processing machine, the light source of an optical sensor, etc. are mentioned, However It is not limited to these. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a display for directly viewing a still image or a moving image. It may be used as a device (display).
  • the driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full color display device can be produced by using two or more organic EL elements of the present invention having different emission colors.
  • the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device. A plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc.
  • the thing containing the light emission maximum wavelength may be used.
  • the combination of luminescent materials for obtaining multiple luminescent colors is a combination of multiple phosphorescent or fluorescent materials, a luminescent material that emits fluorescence or phosphorescence, and excitation of light from the luminescent material. Any combination with a dye material that emits light as light may be used, but in the white organic EL device according to the present invention, it is only necessary to mix and mix a plurality of light emitting dopants.
  • an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, etc., and productivity is also improved. According to this method, unlike the white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • a luminescent material used for a light emitting layer For example, if it is a backlight in a liquid crystal display element, the metal complex which concerns on this invention so that it may suit the wavelength range corresponding to CF (color filter) characteristic, Any one of known light emitting materials may be selected and combined to be whitened.
  • CF color filter
  • One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
  • the non-light-emitting surface of the organic EL device of the present invention is covered with a glass case, a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate, and an epoxy-based photocurable adhesive (LUX TRACK manufactured by Toagosei Co., Ltd.) is used as a sealing material around.
  • LC0629B is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, and as shown in FIG. 5 and FIG. Can be formed.
  • FIG. 5 shows a schematic diagram of a lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover, the organic EL element 101 is brought into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
  • 6 shows a cross-sectional view of the lighting device.
  • reference numeral 105 denotes a cathode
  • 106 denotes an organic EL layer including at least a light emitting layer
  • 107 denotes a glass substrate with a transparent electrode (anode).
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • Example 1 [Production of organic EL element] ⁇ Production of Organic EL Element 100 >> An organic EL element was produced as follows. Transparent support provided with this ITO transparent electrode after patterning a substrate (NA45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate as an anode The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a substrate NA45 manufactured by NH Techno Glass Co., Ltd.
  • ITO indium tin oxide
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of a hole injection material (HT-30) is placed in a molybdenum resistance heating boat, and a hole transport material (HT) is placed in another molybdenum resistance heating boat.
  • a hole injection material HT-30
  • a hole transport material HT
  • -2 200 mg of host compound 1 (Host-1) is put in another molybdenum resistance heating boat
  • 200 mg of dopant compound 1 (Dopant-1) is put in another molybdenum resistance heating boat
  • another molybdenum 200 mg of an electron transport material (ET-7) was put in a resistance heating boat and attached to a vacuum deposition apparatus.
  • the pressure in the vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, and the heating boat containing the hole injection material (HT-30) is energized and heated, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. Then, a 20 nm hole injection layer was provided. Further, the heating boat containing the hole transport material (HT-2) was heated by energization, and was deposited on the hole injection layer at a deposition rate of 0.1 nm / second to provide a 20 nm hole transport layer.
  • the heating boat containing the hole transport material HT-2
  • the hole-transporting layer is heated at a deposition rate of 0.1 nm / second and 0.006 nm / second respectively by heating the heating boat containing host compound 1 (Host-1) and dopant compound 1 (Dopant-1).
  • a 20 nm light emitting layer was provided by co-evaporation.
  • the heating boat containing the electron transporting material (ET-7) was heated by energization, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide an electron transporting layer of 20 nm.
  • 0.5 nm of lithium fluoride was vapor-deposited as a cathode buffer layer, and also aluminum 110nm was vapor-deposited, the cathode was formed, and the organic EL element 100 was produced.
  • Organic EL elements 101 to 107 and 113 to 120 were prepared in the same manner as in the preparation of the organic EL element 100 except that the host compound and dopant compound in the light emitting layer were replaced with the compounds shown in Tables 1 and 2.
  • Tables 1 and 2 show the dipole moment, relative dielectric constant, dipole moment difference, and relative dielectric constant difference of the dopant compound and host compound used.
  • a thin film is formed on this light emitting layer by spin coating using a solution obtained by dissolving 50 mg of an electron transport material (ET-16) in 10 ml of hexafluoroisopropanol (HFIP) at 1000 rpm for 30 seconds. did. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer with a film thickness of about 30 nm. Subsequently, this substrate was fixed to a substrate holder of a vacuum deposition apparatus, the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, potassium fluoride 0.4 nm was deposited as a cathode buffer layer, and aluminum 110 nm was further deposited. Thus, a cathode was formed, and an organic EL element 108 was produced.
  • E-16 electron transport material
  • HFIP hexafluoroisopropanol
  • Organic EL elements 109 to 112 and 121 to 126 were prepared in the same manner as in the production of the organic EL element 108 except that the host compound and dopant compound in the light emitting layer were replaced with the compounds shown in Tables 1 and 2.
  • Tables 1 and 2 show the dipole moment, relative dielectric constant, dipole moment difference, and relative dielectric constant difference of the dopant compound and host compound used.
  • the organic EL device continuously emitted light at a constant current of 2.5 mA / cm 2 at room temperature, and the time ( ⁇ 1 / 2) required to reach half the initial luminance was measured.
  • the light emission lifetime was represented by the relative value which sets the organic EL element 100 to 100.
  • Luminescent color The color of light emitted when continuous light emission was performed under a constant current condition of 2.5 mA / cm 2 was visually evaluated.
  • the organic EL element is allowed to emit light at room temperature (about 23 ° C. to 25 ° C.) at a constant current of 2.5 mA / cm 2.
  • CS-1000 manufactured by Konica Minolta Sensing was used for measurement of light emission luminance.
  • the difference between the relative dielectric constant of the host compound and the relative dielectric constant of the phosphorescent dopant (phosphorescent organometallic complex) is 0 to ⁇ 0.5
  • the host compound And the organic EL elements 113 to 126 having a dipole moment difference between 0 and -5.5 debye are superior in the external extraction efficiency and the light emission lifetime as compared with the organic EL elements 100 to 112. Is recognized.
  • the organic electroluminescence element of the present invention has improved external extraction efficiency and long life, and can be suitably used for lighting devices and display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 陽極と陰極との間に、少なくとも発光層を有する有機エレクトロルミネッセンス素子であって、発光層がリン光発光性の有機金属錯体と、少なくとも一つのホスト化合物とを含み、ホスト化合物の比誘電率と、リン光発光性の有機金属錯体の比誘電率の差が0~-0.5であり、かつホスト化合物とリン光発光性の有機金属錯体の双極子モーメント差が0~-5.5デバイである。

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、電界を印加することにより、陽極から注入された正孔と陰極から注入された電子が発光層内で再結合させること励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用した発光素子である。電極と電極の間を厚さわずかサブミクロン程度の有機材料の膜で構成する全固体素子であり、且つ、その発光が数V~数十V程度の電圧で発光が可能であることから、次世代の平面ディスプレイや照明への利用が期待されている。
 実用化に向けた有機EL素子の開発としては、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告がされ(例えば、非特許文献1参照)、以来、室温でリン光を示す材料の研究が活発になってきている(例えば、特許文献1、非特許文献2参照)。
 更に、最近発見されたリン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。例えば多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討がなされている(例えば、非特許文献3参照)。
 このように大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、蛍光発光を利用する有機ELデバイスとは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命を捕らえる上で重要な技術的な課題となっている。
 そこで近年、発光層に隣接する形で、(発光層の陽極側に位置する)正孔輸送層と(発光層の陰極側に位置する)電子輸送層を備えた多層積層型の素子が良く知られている(例えば、特許文献2参照)。また、発光層にはホスト化合物とリン光発光性化合物をドーパントとして用いた混合層が多く用いられている。
 このようなホスト化合物とリン光発光性化合物をドーパントとして用いた混合層において、近年、ホスト化合物やドーパント化合物の双極子モーメントの値を規定し、ホスト化合物やドーパント化合物を適切に選定することによって、輝度効率の高い有機EL素子を得る技術が知られている(例えば、特許文献3、4参照)。
米国特許6,097,147号明細書 特開2005-112765号公報 特開2009-081424号公報 特許第4299028号 特許第4105434号
M.A.Baldo et al.,nature、395巻、151~154ページ(1998年) M.A.Baldo et al.,nature、403巻、17号、750~753頁(2000年) S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)
 しかしながら、上述のようにホスト化合物やドーパント化合物といった2種以上の材料を含む混合層からなる発光層を形成する場合、ホスト化合物やドーパント化合物の種類によっては、ホスト化合物毎やドーパント化合物毎に凝集してしまうことがある。その結果、外部取り出し効率や有機EL素子寿命が低下してしまい、有機EL素子の品質を低下させてしまうという問題がある。
 本発明では、上記事情に鑑みてなされたもので、外部取り出し効率の向上及び長寿命の有機エレクトロルミネッセンス素子を提供することを目的としている。
 請求項1の発明によれば、陽極と陰極との間に、少なくとも発光層を有する有機エレクトロルミネッセンス素子であって、
 前記発光層がリン光発光性の有機金属錯体と、少なくとも一つのホスト化合物とを含み、
 前記ホスト化合物の比誘電率と前記リン光発光性の有機金属錯体の比誘電率の差が0~-0.5であり、かつ、前記ホスト化合物と前記リン光発光性の有機金属錯体の双極子モーメント差が0~-5.5デバイであることを特徴とする有機エレクトロルミネッセンス素子が提供される。
 請求項2の発明によれば、前記ホスト化合物と前記リン光発光性の有機金属錯体の双極子モーメント差が0~-4デバイであることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子が提供される。
 請求項3の発明によれば、前記リン光発光性の有機金属錯体の発光波長が480nm以下であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子が提供される。
 請求項4の発明によれば、前記リン光発光性の有機金属錯体が、下記一般式(1)で表される部分構造を有する配位子が配位した、リン光発光性の有機金属錯体であることを特徴とする請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子が提供される。
Figure JPOXMLDOC01-appb-C000006
〔Rは置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表す。
 環Aは5員または6員の芳香族炭化水素環または芳香族複素環を表し、Ra及びRbはそれぞれ独立に、置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、naは1または2を表し、nbは1~4の整数を表す。〕
 請求項5の発明によれば、前記リン光発光性の有機金属錯体が、下記一般式(2)で表される部分構造を有する配位子が配位した、リン光発光性の有機金属錯体であることを特徴とする請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子が提供される。
Figure JPOXMLDOC01-appb-C000007
〔環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表し、Arは5員または6員の芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環または非芳香族複素環を表し、R及びRはそれぞれ独立に、置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表す。
 Ra、Rb及びRcはそれぞれ独立に、置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、na及びncは1または2を表し、nbは1~4の整数を表す。〕
 請求項6の発明によれば、前記リン光発光性の有機金属錯体が、下記一般式(3)で表される有機金属錯体であることを特徴とする請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子が提供される。
Figure JPOXMLDOC01-appb-C000008
〔環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表し、
Arは5員または6員の芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環または非芳香族複素環を表し、
 R及びRはそれぞれ独立に、置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表す。
 Ra、Rb及びRcはそれぞれ独立に、置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、na及びncは1または2を表し、nbは1~4の整数を表す。
 LはMに配位したモノアニオン性の二座配位子のうちの1つまたは複数であり、Mは原子番号40以上且つ元素周期表における8~10族の遷移金属原子を表し、mは1~3の整数を表し、nは少なくとも1であり、m+nは2または3である。〕
 請求項7の発明によれば、R及びRの少なくとも一方がアルキル基であることを特徴とする請求項5又は6に記載の有機エレクトロルミネッセンス素子が提供される。
 請求項8の発明によれば、R及びRの少なくとも一方が炭素原子数2以上のアルキル基であることを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子が提供される。
 請求項9の発明によれば、R及びRが共にアルキル基であることを特徴とする請求項5~8のいずれか一項に記載の有機エレクトロルミネッセンス素子が提供される。
 請求項10の発明によれば、R及びRが共に炭素原子数2以上のアルキル基であることを特徴とする請求項9に記載の有機エレクトロルミネッセンス素子が提供される。
 請求項11の発明によれば、環Aがベンゼン環であることを特徴とする請求項5又は6に記載の有機エレクトロルミネッセンス素子が提供される。
 請求項12の発明によれば、Arがベンゼン環であることを特徴とする請求項5~11のいずれか一項に記載の有機エレクトロルミネッセンス素子が提供される。
 請求項13の発明によれば、前記一般式(3)が下記一般式(3-1)で表されることを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子が提供される。
Figure JPOXMLDOC01-appb-C000009
〔一般式(3-1)におけるAr、R、R、Ra、Rb、Rc、na、nb、nc、M、L、m及びnは前記一般式(3)のAr、R、R、Ra、Rb、Rc、na、nb、nc、M、L、m及びnと同義である。〕
 請求項14の発明によれば、MがIrであることを特徴とする請求項13に記載の有機エレクトロルミネッセンス素子が提供される。
 請求項15の発明によれば、前記ホスト化合物が、下記一般式(4)で表される部分構造を有するホスト化合物であることを特徴とする請求項1~14のいずれか一項に記載の有機エレクトロルミネッセンス素子が提供される。
Figure JPOXMLDOC01-appb-C000010
〔AはO原子、S原子、NR基、A11~A18はN原子またはCR。R及びRは結合手、水素原子または置換基を表し、CRが複数ある場合、各々のCRは同じでも異なっていても良い。〕
 本発明によれば、外部取り出し効率の向上及び長寿命の有機エレクトロルミネッセンス素子を提供することができる。
有機EL素子から構成される表示装置の一例を示した模式図である。 表示部Aの模式図である。 画素の模式図である。 パッシブマトリクス方式フルカラー表示装置の模式図である。 照明装置の概略図である。 照明装置の模式図である。
 以下、本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、発光層に含まれる2種以上の材料であるホスト化合物とリン光発光性の有機金属錯体に対して、ホスト化合物とリン光発光性の有機金属錯体の双極子モーメント差を0~-5.5デバイにすることによって、成膜直後の上記材料の凝集を防止し、かつ、さらに駆動時の凝集を防止することができることが分かった。特に、上記双極子モーメント差を0~-4デバイとすることが好ましいことも分かった。
 また、双極子モーメント差が小さいだけでなく、ホスト化合物の比誘電率とリン光発光性の有機金属錯体との比誘電率の差を0~-0.5デバイとすることで、駆動時の凝集がより防止され、品質を向上させることができることが分かった。
〔双極子モーメント〕
 本発明における双極子モーメントとは、化合物の電荷の偏りを表すものであり、半経験的分子軌道法プログラム(MOPAC)を用い、AM1法等によって求めることが出来る。
〔誘電率〕
 文献Organic Electronics 10 (2009) 532-535記載の密度汎関数理論に基づく汎関数を用いる計算によって求めることが出来る。
 以下、本発明に係る化合物について説明する。
〔一般式(1)で表される構造を有する配位子が金属原子に配位した、リン光発光性有機金属錯体〕
 一般式(1)において、Rは置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表す。
 一般式(1)において、環Aは5員または6員の芳香族炭化水素環または芳香族複素環を表す。
 一般式(1)において、Ra及びRbはそれぞれ独立に、置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、naは1または2を表し、nbは1~4の整数を表す。
〔一般式(2)で表されるリン光発光性ドーパント化合物〕
 一般式(2)において、環A及び環Bで表される5員または6員の芳香族炭化水素環としては、例えばベンゼン環が挙げられる。
 一般式(2)において、環A及び環Bで表される5員または6員の芳香族炭化水素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、等が挙げられる。より好ましくは環Bがベンゼン環であり、さらに好ましくは環Aがベンゼン環である。
 一般式(2)において、Arで表される芳香族炭化水素環としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
 一般式(2)において、Arで表される芳香族複素環としては、例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等が挙げられる。
 一般式(2)において、Arで表される非芳香族炭化水素環としては、例えば、シクロアルカン(例えばシクロペンタン環、シクロヘキサン環等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、シクロヘキシルアミノスルホニル基、テトラヒドロナフタレン環、9,10-ジヒドロアントラセン環、ビフェニレン環等が挙げられる。
 一般式(2)において、Arで表される非芳香族複素環としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環、フェノキサジン環、フェノチアジン環、オキサントレン環、チオキサンテン環、フェノキサチイン環等が挙げられる。
 一般式(2)においてArで表されるこれらの環は、更に、以下の置換基(以下、置換基Rxと言う)を有していてもよく、さらに置換基同士が互いに結合して環を形成してもよい。
 上記置換基Rxとしては、例えばアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリール基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、非芳香族炭化水素環基(例えば、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、テトラヒドロナフタレン環、9,10-ジヒドロアントラセン環、ビフェニレン環等から導出される一価の基)、非芳香族複素環基(例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環、フェノキサジン環、フェノチアジン環、オキサントレン環、チオキサンテン環、フェノキサチイン環等から導出される一価の基)、芳香族炭化水素基(例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等から導出される一価の基)、芳香族複素環基(例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等から導出される一価の基)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
 好ましくは、Arは芳香族炭化水素環または芳香族複素環であり、より好ましくは芳香族炭化水素環であり、さらに好ましくはベンゼン環である。
 一般式(2)において、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよく、R及びRの少なくとも一方は炭素原子数2以上のアルキル基またはシクロアルキル基である。
 一般式(2)において、R及びRで表されるアリール基及びヘテロアリール基としては、前述の一般式(2)においてArで表される芳香族炭化水素環及び芳香族複素環から導出される1価の基が挙げられる。
 一般式(2)において、R及びRで表される非芳香族炭化水素環基及び非芳香族複素環基としては、前述の一般式(2)においてArで表される非芳香族炭化水素環及び非芳香族複素環から導出される1価の基が挙げられる。
 好ましくは、R及びRが共に炭素原子数2以上のアルキル基またはシクロアルキル基であり、また、R及びRの少なくとも一方が炭素原子数3以上の分岐アルキル基であることも好ましい。さらに好ましくはR及びRが共に炭素原子数3以上の分岐アルキル基である。
 一般式(2)において、Ra、Rb及びRcはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよい。
 一般式(2)において、Ra、Rb及びRcで表されるアリール基及びヘテロアリール基としては、前述の一般式(2)においてArで表される芳香族炭化水素環及び芳香族複素環から導出される1価の基が挙げられる。
 一般式(2)において、Ra、Rb及びRcで表される非芳香族炭化水素環基及び非芳香族複素環基としては、前述の一般式(2)においてArで表される非芳香族炭化水素環及び非芳香族複素環から導出される1価の基が挙げられる。
 一般式(2)において、na及びncは1または2を表し、nbは1~4の整数を表す。
 本発明に係る一般式(2)で表されるリン光発光性ドーパント化合物の中でも、一般式(3)または一般式(3-1)で表されるリン光発光性ドーパント化合物が好ましい。
〔一般式(3)、一般式(3-1)で表されるリン光発光性ドーパント化合物(有機金属錯体)〕
 一般式(3)及び(3-1)において、Ar、R、R、Ra、Rb、Rc、na、nb及びncは、上記一般式(2)のAr、R、R、Ra、Rb、Rc、na、nb及びncと同義である。一般式(3)において環A及び環Bは、上記一般式(2)の環A及び環Bと同義である。
 一般式(3)及び(3-1)において、Lで表されるMに配位したモノアニオン性の二座配位子の具体例としては、下記式の配位子等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式中、Rd’、Rd”及びRd’”は水素原子または置換基を表し、Rd’、Rd”及びRd’”で表される置換基としては、上述の一般式(2)においてArで表される置換基Rxと同様のものが挙げられる。
 一般式(3)及び(3-1)において、Mは原子番号40以上且つ元素周期表における8~10族の遷移金属原子が用いられるが、中でもOs、Ir、Ptが好ましく、さらにIrが好ましい。
 一般式(3)及び(3-1)において、mは0~2の整数を表し、nは少なくとも1であり、m+nは2または3を表す。好ましくはnが3又は2、且つmが0である。
 本発明に係る一般式(2)、(3)及び(3-1)で各々表される化合物は、国際公開2006-121811号等に記載の公知の方法を参照することにより合成可能である。
 以下に、本発明において、好ましく用いることのできるリン光発光性ドーパント化合物の具体例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
〔一般式(4)で表されるホスト化合物〕
 一般式(4)において、AはO原子、S原子、NR基、A11~A18はN原子またはCRである。
 一般式(4)において、上記R及びRは結合手、水素原子または置換基を表し、CRが複数ある場合、各々のCRは同じでも異なっていても良い。
 以下に、一般式(4)で表されるホスト化合物の具体例を挙げるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
〔有機EL素子の構成層〕
 本発明の有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
 (i)陽極/発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (vi)陽極//正孔輸送層/陽極バッファー層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (vii)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極
 複数の発光層が含まれる場合、該発光層間に非発光性の中間層を有してもよい。また、上記層構成の内、陽極及び陰極を除く発光層を含む有機層を1つの発光ユニットとし、複数の発光ユニットを積層することが可能である。該複数の積層された発光ユニットにおいては、発光ユニット間に非発光性の中間層を有していてもよく、更に中間層は電荷発生層を含んでいてもよい。
 本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
 本発明の有機EL素子を構成する各層について説明する。
 《発光層》
 本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、更に好ましくは2nm~200nmの範囲に調整され、特に好ましくは、5nm~100nmの範囲である。
 発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、湿式法(ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。))等により製膜して形成することができる。
 本発明の有機EL素子の発光層には、発光ドーパント(リン光発光性ドーパント(リン光ドーパント、リン光発光性ドーパント基ともいう)や蛍光ドーパント等)化合物と、ホスト化合物とを含有する。そして、本発明では、ホスト化合物の比誘電率と、リン光発光性ドーパントであるリン光発光性の有機金属錯体の比誘電率の差が0~-0.5デバイであり、かつ、ホスト化合物とリン光発光性の有機金属錯体の双極子モーメント差が0~-5.5デバイである。より好ましくは双極子モーメント差が0~4である。
 具体的には、少なくとも1つのリン光発光性有機金属錯体は前述の一般式(2)で表されるリン光発光性有機金属錯体であり(一般式(1)で表される構造を有する配位子が金属原子に配位したリン光発光性の有機金属錯体)、ホスト化合物は前述の一般式(4)で表される化合物である。
 (発光性ドーパント化合物)
 発光性ドーパント化合物(発光性ドーパントともいう)について説明する。
 発光性ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光ドーパント(リン光発光性ドーパント化合物、リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができる。
 (リン光ドーパント(リン光発光性ドーパント化合物ともいう))
 本発明に係るリン光ドーパントについて説明する。
 本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光ドーパントの発光は原理としては2種挙げられ、1つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こって発光性ホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型、もう1つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパント化合物からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
 本発明に係るリン光ドーパントは、発光波長が480nm以下であることが好ましい。
 また、本発明に係るリン光ドーパントは、前述の一般式(2)で表されるリン光発光性有機金属錯体(一般式(1)で表される構造を有する配位子が金属原子に配位したリン光発光性有機金属錯体)であるが、以下の特許公報に記載されている化合物等を併用してもよい。
 例えば、国際公開第00/70655号、特開2002-280178号公報、特開2001-181616号公報、特開2002-280179号公報、特開2001-181617号公報、特開2002-280180号公報、特開2001-247859号公報、特開2002-299060号公報、特開2001-313178号公報、特開2002-302671号公報、特開2001-345183号公報、特開2002-324679号公報、国際公開第02/15645号、特開2002-332291号公報、特開2002-50484号公報、特開2002-332292号公報、特開2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、特開2002-338588号公報、特開2002-170684号公報、特開2002-352960号公報、国際公開第01/93642号、特開2002-50483号公報、特開2002-100476号公報、特開2002-173674号公報、特開2002-359082号公報、特開2002-175884号公報、特開2002-363552号公報、特開2002-184582号公報、特開2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、特開2002-226495号公報、特開2002-234894号公報、特開2002-235076号公報、特開2002-241751号公報、特開2001-319779号公報、特開2001-319780号公報、特開2002-62824号公報、特開2002-100474号公報、特開2002-203679号公報、特開2002-343572号公報、特開2002-203678号公報等である。
 (蛍光ドーパント(蛍光性化合物ともいう))
 蛍光ドーパントとしては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。
 また本発明に係る発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。
 以下に、本発明において、好ましく用いることの出来る公知のリン光ドーパント化合物の具体例を挙げる。勿論、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 (発光ホスト化合物(発光ホスト等ともいう))
 本発明においてホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
 具体的に、本発明に用いることができるホスト化合物としては、上述した一般式(4)で表される化合物である。
 さらに、ホスト化合物としては、従来公知の化合物を上述した一般式(4)で表される化合物と併用してもよい。
 併用してもよい化合物としては、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、または、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも1つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。
 本発明に用いることができる公知の発光ホストとしては正孔輸送能、電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。より好ましくはTgが100℃以上である。
 発光ホストを複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
 また、前記リン光ドーパントとして用いられる公知の化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 また、本発明に用いられる発光ホストとしては、低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性発光ホスト)でもよく、このような化合物を一種または複数種用いても良い。
 公知の発光ホストの具体例としては、以下の文献に記載の化合物が挙げられる。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。
 《注入層:正孔注入層(陽極バッファー層)、電子注入層(陰極バッファー層)》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123頁~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体層等が挙げられる。また、特表2003-519432や特開2006-135145等に記載されているようなアザトリフェニレン誘導体も同様に正孔注入材料として用いることができる。
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウム、フッ化ナトリウムやフッ化カリウム等に代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。
 また、陽極バッファー層及び陰極バッファー層に用いられる材料は、他の材料と併用して用いることも可能であり、例えば正孔輸送層や電子輸送層中に混合して用いることも可能である。
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。また、特表2003-519432や特開2006-135145等に記載されているようなアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、銅フタロシアニンやトリス(2-フェニルピリジン)イリジウム錯体等に代表されるシクロメタル化錯体やオルトメタル化錯体等も正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。
 正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。この正孔輸送層は上記材料の一種または2種以上からなる一層構造であってもよい。
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
 以下、本発明の有機EL素子の正孔注入層及び正孔輸送層の形成に好ましく用いられる化合物の具体例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層もしくは複数層を設けることができる。
 電子輸送層に用いられる電子輸送材料(正孔阻止材料、電子注入材料も含む)としては陰極より注入された電子を発光層に伝達する機能を有していればよく、電子輸送層の構成材料としては従来公知の化合物の中から任意のものを選択して、単独または組み合わせて用いることが可能である。
 電子輸送層に用いられる従来公知の材料(以下、電子輸送材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、カルボリン誘導体、を含むアザカルバゾール誘導体等が挙げられる。
 ここで、アザカルバゾール誘導体とは、カルバゾール環を構成する炭素原子の1つ以上が窒素原子で置き換わったものを示す。
 更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。
 これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も電子輸送材料として用いることができる。
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子輸送材料として用いることができる。
 また、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層の膜厚については特に制限はないが、通常は5nm~5000nm程度、好ましくは5nm~200nmである。この電子輸送層は上記材料の一種または二種以上からなる一層構造であってもよく、複数の層が積層した積層構造であってもよい。
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 以下、本発明の白色有機EL素子の電子輸送層の形成に好ましく用いられる従来公知の化合物(電子輸送材料)の具体例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述の電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
 本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
 正孔阻止層には、カルバゾール誘導体、アザカルバゾール誘導体(ここで、アザカルバゾール誘導体とは、カルバゾール環を構成する炭素原子の1つ以上が窒素原子で置き換わったものを示す)、ピリジン誘導体など、含窒素化合物を含有することが好ましい。
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。
 更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
 イオン化ポテンシャルは化合物のHOMO(最高占有軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。
 (1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6-31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)として求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
 (2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC-1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述の正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子阻止層の膜厚としては、好ましくは3nm~100nmであり、更に好ましくは3nm~30nmである。
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。
 また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm~1000nm、好ましくは10nm~200nmの範囲で選ばれる。
 《陰極》
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。
 このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。
 尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。
 好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m・24h・MPa)以下、水蒸気透過度が、10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。
 更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。
 ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
 《有機EL素子の製造方法》
 有機EL素子の製造方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層)/陰極からなる素子の製造方法について説明する。
 まず、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm~200nmの膜厚になるように形成させ、陽極を作製する。
 次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極バッファー層等の有機化合物を含有する薄膜を形成させる。
 本発明のリン光発光性の有機EL素子においては、少なくとも陰極と該陰極に隣接する電子輸送層は、湿式法により塗布・成膜される。
 湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法等があるが、精密な薄膜が形成可能で、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。また、層毎に異なる製膜法を適用してもよい。
 本発明に係る有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50nm~200nmの範囲の膜厚になるように形成させ、陰極を設けることにより所望の有機EL素子が得られる。
 また、順序を逆にして、陰極、陰極バッファー層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。尚、印加する交流の波形は任意でよい。
 本発明の有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
 《封止》
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。
 また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。
 更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・MPa)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。
 更に、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 尚、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。
 この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。
 更に、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。
 これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好ましい。
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。
 これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
 また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を有することが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。
 《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。
 プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。
 《表示装置》
 本発明の表示装置について説明する。本発明の表示装置は、本発明の有機EL素子を具備したものである。
 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
 多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
 得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。尚、印加する交流の波形は任意でよい。
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
 制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
 図2は表示部Aの模式図である。
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
 図においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。図2中、符号Lは光を示し、後述の図5及び図6も同様である。
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
 次に、画素の発光プロセスを説明する。
 図3は画素の模式図である。
 画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
 図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。
 画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。
 しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。
 順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
 即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサ13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
 図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
 《照明装置》
 本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。
 本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
 また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
 また、本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。
 複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。
 発光層、正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
 発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
 《本発明の照明装置の一態様》
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。
 図5は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(尚、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
 図6は、照明装置の断面図を示し、図6において、105は陰極、106は少なくとも発光層を含む有機EL層、107は透明電極(陽極)付きガラス基板を示す。
 尚、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されない。
 また、実施例に用いる化合物の構造を以下に示す。
<ドーパント化合物>
Figure JPOXMLDOC01-appb-C000047
<ホスト化合物>
Figure JPOXMLDOC01-appb-C000048
実施例1
[有機EL素子の作製]
 《有機EL素子100の作製》
 有機EL素子を以下のように作製した。
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボートに正孔注入材料(HT-30)を200mg入れ、別のモリブデン抵抗加熱ボートに正孔輸送材料(HT-2)を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物1(Host-1)を200mg入れ、別のモリブデン製抵抗加熱ボートにドーパント化合物1(Dopant-1)を200mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料(ET-7)を200mg入れ、真空蒸着装置に取り付けた。
 次いで真空槽を4×10-4Paまで減圧した後、正孔注入材料 (HT-30)の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し20nmの正孔注入層を設けた。
 更に正孔輸送材料(HT-2)の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記正孔注入層上に蒸着し20nmの正孔輸送層を設けた。
 更にホスト化合物1(Host-1)とドーパント化合物1(Dopant-1)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.006nm/秒で、前記正孔輸送層上に共蒸着し20nmの発光層を設けた。
 更に電子輸送材料 (ET-7)の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記発光層上に蒸着し20nmの電子輸送層を設けた。
 引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子100を作製した。
 《有機EL素子101~107、113~120の作製》
 有機EL素子100の作製において、発光層のホスト化合物とドーパント化合物を表1、表2に示す化合物に置き換えた以外は同様にして、有機EL素子101~107、113~120を作製した。なお、表1、表2には使用したドーパント化合物及びホスト化合物の双極子モーメント、比誘電率、双極子モーメント差、比誘電率差を示した。
 《有機EL素子108の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚20nmの第1正孔輸送層を設けた。
 この基板を窒素雰囲気下に移し、前記第1正孔輸送層上に、50mgの正孔輸送材料(HT-16)を10mlのトルエンに溶解した溶液を用いて1500rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約20nmの第2正孔輸送層とした。
 この第2正孔輸送層上に、100mgのホスト化合物2(Host-2)と10mgのドーパント化合物2(Dopant-2)とを10mlの酢酸ブチルに溶解した溶液を用いて600rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約70nmの発光層とした。
 次に、この発光層上に、50mgの電子輸送材料(ET-16)を10mlのヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約30nmの電子輸送層とした。
 続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10-4Paまで減圧した後、陰極バッファー層としてフッ化カリウム0.4nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子108を作製した。
 《有機EL素子109~112、121~126の作製》
 有機EL素子108の作製において、発光層のホスト化合物とドーパント化合物を表1、表2に示す化合物に置き換えた以外は同様にして、有機EL素子109~112、121~126を作製した。なお、表1、表2には使用したドーパント化合物及びホスト化合物の双極子モーメント、比誘電率、双極子モーメント差、比誘電率差を示した。
[有機EL素子の評価]
 上記のようにして作製した有機EL素子について下記の評価を行い、その結果を表1に示した。
 得られた有機EL素子を評価するに際しては、作製後の各有機EL素子の非発光面をガラスカバーで覆い、ガラスカバーと有機EL素子が作製されたガラス基板とが接触するガラスカバー側の周囲にシール剤としてエポキシ系光硬化型接着剤(東亞合成社製ラクストラックLC0629B)を適用し、これを上記陰極側に重ねて前記透明支持基板と密着させ、ガラス基板側から有機EL素子を除いた部分にUV光を照射して硬化させ、封止して、図5、6に示すような照明装置を形成して評価した。
 (外部取り出し量子効率(EQE))
 有機EL素子を室温(約23℃~25℃)、2.5mA/cmの定電流条件下で発光させ、発光開始直後の発光輝度(L)[cd/m]を測定することにより、外部取り出し量子効率(η)を算出した。
 ここで、発光輝度の測定はCS-1000(コニカミノルタセンシング製)を用いた。
 外部取り出し量子効率は有機EL素子100を100とする相対値で表した。
 (相対寿命)
 有機EL素子を室温下、2.5mA/cmの定電流条件下による連続発光を行い、初期輝度の半分の輝度になるのに要する時間(τ1/2)を測定した。尚、発光寿命は有機EL素子100を100と設定する相対値で表した。
 (外部取り出し量子効率比)
 有機EL素子を室温(約23℃~25℃)、2.5mA/cmおよび25mA/cmの定電流条件下で発光させ、発光開始直後の発光輝度(L)[cd/m]を測定し、25mA/cm時の外部取り出し量子効率(η)/2.5mA/cm時の外部取り出し量子効率(η)を算出した。製膜直後および、初期輝度の半分まで駆動させた有機EL素子で測定を行った。
 ここで、発光輝度の測定はCS-1000(コニカミノルタセンシング製)を用いた。
 (リン光寿命)
 浜松ホトニクス社製の発光寿命測定装置を用い、室温で窒素レーザー光をパルス照射した。励起パルスが終わった後の発光強度の減衰時間を測定した。初期の発光強度をI0としたとき t時間後の発光強度Iは、発光寿命τを用いて以下の式で定義される。
 I = I0 exp(-t/τ)
 上式に基づいて、得られた減衰曲線をフィッティングし、リン光寿命τを算出した。
 (発光色)
 2.5mA/cmの定電流条件下における連続発光を行った際の発光色を目視で評価した。
 (第一ピーク波長)
 有機EL素子を室温(約23℃~25℃)、2.5mA/cmの定電流条件下で発光させ、発光開始直後の発光スペクトルの極大ピーク波長のうち、最も短波側の極大ピーク波長で定義した。
 ここで、発光輝度の測定はCS-1000(コニカミノルタセンシング製)を用いた。
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
 表1、2の結果より、ホスト化合物の比誘電率とリン光発光性ドーパント(リン光発光性の有機金属錯体)の比誘電率の差が0~-0.5であり、かつ、ホスト化合物とリン光発光性ドーパントの双極子モーメント差が0~-5.5デバイである有機EL素子113~126は、有機EL素子100~112に比べて、外部取り出し効率及び発光寿命に優れていることが認められる。
 本発明の有機エレクトロルミネッセンス素子は、外部取り出し効率の向上及び長寿命であり、照明装置、表示装置に好適に利用できる。
 1 ディスプレイ
 3 画素
 5 走査線
 6 データ線
 7 電源ライン
 10 有機EL素子
 11 スイッチングトランジスタ
 12 駆動トランジスタ
 13 コンデンサ
 A 表示部
 B 制御部
 101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤

Claims (15)

  1.  陽極と陰極との間に、少なくとも発光層を有する有機エレクトロルミネッセンス素子であって、
     前記発光層がリン光発光性の有機金属錯体と、少なくとも一つのホスト化合物とを含み、
     前記ホスト化合物の比誘電率と、前記リン光発光性の有機金属錯体の比誘電率の差が0~-0.5であり、かつ、前記ホスト化合物と前記リン光発光性の有機金属錯体の双極子モーメント差が0~-5.5デバイであることを特徴とする有機エレクトロルミネッセンス素子。
  2.  前記ホスト化合物と前記リン光発光性の有機金属錯体の双極子モーメント差が0~-4デバイであることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記リン光発光性の有機金属錯体の発光波長が480nm以下であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4.  前記リン光発光性の有機金属錯体が、下記一般式(1)で表される部分構造を有する配位子が配位した、リン光発光性の有機金属錯体であることを特徴とする請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    〔Rは置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表す。
     環Aは5員または6員の芳香族炭化水素環または芳香族複素環を表し、Ra及びRbはそれぞれ独立に、置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、naは1または2を表し、nbは1~4の整数を表す。〕
  5.  前記リン光発光性の有機金属錯体が、下記一般式(2)で表される部分構造を有する配位子が配位した、リン光発光性の有機金属錯体であることを特徴とする請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    〔環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表し、Arは5員または6員の芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環または非芳香族複素環を表し、R及びRはそれぞれ独立に、置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表す。
     Ra、Rb及びRcはそれぞれ独立に、置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、na及びncは1または2を表し、nbは1~4の整数を表す。〕
  6.  前記リン光発光性の有機金属錯体が、下記一般式(3)で表される有機金属錯体であることを特徴とする請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
    〔環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表し、Arは5員または6員の芳香族炭化水素環、芳香族複素環、非芳香族炭化水素環または非芳香族複素環を表し、R及びRはそれぞれ独立に、置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表す。
     Ra、Rb及びRcはそれぞれ独立に、置換されていてもよい水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、na及びncは1または2を表し、nbは1~4の整数を表す。
     LはMに配位したモノアニオン性の二座配位子のうちの1つまたは複数であり、Mは原子番号40以上且つ元素周期表における8~10族の遷移金属原子を表し、mは1~3の整数を表し、nは少なくとも1であり、m+nは2または3である。〕
  7.  R及びRの少なくとも一方がアルキル基であることを特徴とする請求項5又は6に記載の有機エレクトロルミネッセンス素子。
  8.  R及びRの少なくとも一方が炭素原子数2以上のアルキル基であることを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子。
  9.  R及びRが共にアルキル基であることを特徴とする請求項5~8のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  10.  R及びRが共に炭素原子数2以上のアルキル基であることを特徴とする請求項9に記載の有機エレクトロルミネッセンス素子。
  11.  環Aがベンゼン環であることを特徴とする請求項5又は6に記載の有機エレクトロルミネッセンス素子。
  12.  Arがベンゼン環であることを特徴とする請求項5~11のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  13.  前記一般式(3)が下記一般式(3-1)で表されることを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
    〔一般式(3-1)におけるAr、R、R、Ra、Rb、Rc、na、nb、nc、M、L、m及びnは前記一般式(3)のAr、R、R、Ra、Rb、Rc、na、nb、nc、M、L、m及びnと同義である。〕
  14.  MがIrであることを特徴とする請求項13に記載の有機エレクトロルミネッセンス素子。
  15.  前記ホスト化合物が、下記一般式(4)で表される部分構造を有するホスト化合物であることを特徴とする請求項1~14のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
    〔AはO原子、S原子、NR基、A11~A18はN原子またはCR。R及びRは結合手、水素原子または置換基を表し、CRが複数ある場合、各々のCRは同じでも異なっていても良い。〕
PCT/JP2012/070466 2011-08-30 2012-08-10 有機エレクトロルミネッセンス素子 WO2013031520A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/239,723 US9437833B2 (en) 2011-08-30 2012-08-10 Organic electroluminescence element
EP12827092.3A EP2752901A4 (en) 2011-08-30 2012-08-10 ORGANIC ELECTROLUMINESCENT ELEMENT
JP2013531198A JP5987830B2 (ja) 2011-08-30 2012-08-10 有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-187070 2011-08-30
JP2011187070 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013031520A1 true WO2013031520A1 (ja) 2013-03-07

Family

ID=47756018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070466 WO2013031520A1 (ja) 2011-08-30 2012-08-10 有機エレクトロルミネッセンス素子

Country Status (4)

Country Link
US (1) US9437833B2 (ja)
EP (1) EP2752901A4 (ja)
JP (1) JP5987830B2 (ja)
WO (1) WO2013031520A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010079678A1 (ja) * 2009-01-09 2012-06-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2018501648A (ja) * 2014-12-02 2018-01-18 ケンブリッジ ディスプレイ テクノロジー リミテッドCambridge Display Technology Ltd 有機発光デバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2906869C (en) * 2013-03-15 2022-08-02 Edward J. Britt Energy conversion device and method for making and using same
US10727430B2 (en) * 2015-09-25 2020-07-28 Lg Chem, Ltd. Organic light emitting diode
JP6834400B2 (ja) * 2016-11-22 2021-02-24 ソニー株式会社 撮像素子、積層型撮像素子、撮像装置及び電子装置
KR102145024B1 (ko) * 2016-12-20 2020-08-14 주식회사 엘지화학 유기 발광 소자
KR20190016867A (ko) * 2017-08-09 2019-02-19 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012984A (ja) * 2005-07-01 2007-01-18 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007020718A1 (ja) * 2005-08-18 2007-02-22 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20070088167A1 (en) * 2005-05-06 2007-04-19 Chun Lin Stability OLED materials and devices
WO2011004639A1 (ja) * 2009-07-07 2011-01-13 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、新規な化合物、照明装置及び表示装置
US20110057559A1 (en) * 2007-12-28 2011-03-10 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
US20110204333A1 (en) * 2010-02-25 2011-08-25 Universal Display Corporation Phosphorescent emitters
US20110233528A1 (en) * 2010-03-24 2011-09-29 Universal Display Corporation Novel oled display architecture

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
US6720090B2 (en) 2001-01-02 2004-04-13 Eastman Kodak Company Organic light emitting diode devices with improved luminance efficiency
JP4299028B2 (ja) 2002-03-11 2009-07-22 Tdk株式会社 有機el素子
JP5112601B2 (ja) 2003-10-07 2013-01-09 三井化学株式会社 複素環化合物および該化合物を含有する有機電界発光素子
US8142909B2 (en) * 2006-02-10 2012-03-27 Universal Display Corporation Blue phosphorescent imidazophenanthridine materials
WO2008090795A1 (ja) * 2007-01-26 2008-07-31 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009081424A (ja) 2007-09-03 2009-04-16 Fujifilm Corp n型有機半導体単結晶を含む電子素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070088167A1 (en) * 2005-05-06 2007-04-19 Chun Lin Stability OLED materials and devices
JP2007012984A (ja) * 2005-07-01 2007-01-18 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007020718A1 (ja) * 2005-08-18 2007-02-22 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20110057559A1 (en) * 2007-12-28 2011-03-10 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
WO2011004639A1 (ja) * 2009-07-07 2011-01-13 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、新規な化合物、照明装置及び表示装置
US20110204333A1 (en) * 2010-02-25 2011-08-25 Universal Display Corporation Phosphorescent emitters
US20110233528A1 (en) * 2010-03-24 2011-09-29 Universal Display Corporation Novel oled display architecture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752901A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010079678A1 (ja) * 2009-01-09 2012-06-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5810529B2 (ja) * 2009-01-09 2015-11-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2018501648A (ja) * 2014-12-02 2018-01-18 ケンブリッジ ディスプレイ テクノロジー リミテッドCambridge Display Technology Ltd 有機発光デバイス
US11024818B2 (en) 2014-12-02 2021-06-01 Cambridge Display Technology Limited Organic light-emitting device

Also Published As

Publication number Publication date
JP5987830B2 (ja) 2016-09-07
JPWO2013031520A1 (ja) 2015-03-23
EP2752901A1 (en) 2014-07-09
US20140191227A1 (en) 2014-07-10
US9437833B2 (en) 2016-09-06
EP2752901A4 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5742586B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6056763B2 (ja) 有機エレクトロルミネッセンス素子
JP6094480B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置及び有機エレクトロルミネッセンス素子の製造方法
JP5652083B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5569531B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP5692082B2 (ja) 有機エレクトロルミネッセンス素子、白色に発光する有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5862117B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2014045101A (ja) 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP5987830B2 (ja) 有機エレクトロルミネッセンス素子
JP2012164731A (ja) 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5919726B2 (ja) 有機エレクトロルミネッセンス素子
JP5760856B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP6098518B2 (ja) 有機エレクトロルミネッセンス素子
JP5987281B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP5817469B2 (ja) 有機エレクトロルミネッセンス素子
JP6011535B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置及び有機エレクトロルミネッセンス素子の製造方法
WO2013031662A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6102740B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5919739B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5790322B2 (ja) 有機エレクトロルミネッセンス素子
JP6468314B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6160685B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6070758B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531198

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012827092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14239723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE