WO2013031002A1 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
WO2013031002A1
WO2013031002A1 PCT/JP2011/069883 JP2011069883W WO2013031002A1 WO 2013031002 A1 WO2013031002 A1 WO 2013031002A1 JP 2011069883 W JP2011069883 W JP 2011069883W WO 2013031002 A1 WO2013031002 A1 WO 2013031002A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
insulator
determination
base material
catalyst
Prior art date
Application number
PCT/JP2011/069883
Other languages
English (en)
French (fr)
Inventor
浩司 勝田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/236,401 priority Critical patent/US9109489B2/en
Priority to JP2013530978A priority patent/JP5673835B2/ja
Priority to PCT/JP2011/069883 priority patent/WO2013031002A1/ja
Priority to EP11871517.6A priority patent/EP2746547B1/en
Priority to CN201180072885.0A priority patent/CN103732874B/zh
Publication of WO2013031002A1 publication Critical patent/WO2013031002A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/47Engine emissions
    • B60Y2300/474Catalyst warm up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/11Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/905Combustion engine

Definitions

  • the present invention relates to a vehicle equipped with an electrically heatable catalytic device (hereinafter also referred to as “EHC”) that purifies engine exhaust.
  • EHC electrically heatable catalytic device
  • Patent Document 1 in a vehicle equipped with an EHC, the temperature of the EHC is estimated from the engine stop time, and according to the deviation between the estimated EHC temperature and the target heating temperature.
  • Patent Document 2 A technique for determining the energization time of EHC is disclosed.
  • JP-A-9-250333 JP 2010-223159 A JP-A-9-158718 Japanese Patent Laid-Open No. 8-170524
  • Patent Document 1 does not mention any protection control when the catalyst is at a high temperature, and there is a possibility that insulation cannot be ensured.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to energize the EHC while ensuring the insulation of the EHC.
  • the vehicle according to the present invention is a vehicle capable of traveling with at least one of a motor and an engine, and a power storage device for storing electric power for driving the motor, and a catalyst to which a catalyst for purifying engine exhaust is fixed
  • a catalyst device configured such that the base material can be electrically heated using the electric power of the power storage device, an insulator provided between the catalyst device and the casing housing the catalyst device, and a control for controlling energization of the catalyst device Device.
  • the control device determines whether to allow the catalyst device to be energized according to the temperature of the insulator.
  • the control device estimates the temperature of the insulator immediately after the vehicle is switched from the unmovable state to the travelable state as the determination insulator temperature, and the determination insulator temperature is less than the insulator threshold temperature When the temperature of the insulator for determination is equal to or higher than the insulator threshold temperature, the catalyst device is not allowed to be energized.
  • the insulator threshold temperature is set to be lower than the temperature obtained by subtracting the amount of increase in the temperature of the insulator when the catalyst device is energized for a predetermined time from the allowable temperature of the insulator that can ensure the insulation of the insulator.
  • the control device estimates the temperature of the catalyst base material immediately after the vehicle is switched from the unmovable state to the travelable state as the determination base material temperature, and the determination insulator temperature is less than the insulator threshold temperature.
  • the temperature of the substrate for determination is lower than the threshold temperature of the substrate, energization of the catalyst device is permitted, and when the temperature of the insulator for determination is equal to or higher than the threshold temperature of the insulator, The energization of the catalyst device is not permitted in at least one of cases where the temperature is equal to or higher than the material threshold temperature.
  • the base material threshold temperature is set to a temperature obtained by subtracting the amount of increase in the temperature of the catalyst base material when the catalyst device is energized for a predetermined time from a base material allowable temperature at which damage to the catalyst base material can be prevented.
  • the control device stores the temperature of the insulator and the temperature of the catalyst base material immediately before the vehicle is switched from the travelable state to the travelless state as the initial insulator temperature and the initial substrate temperature, respectively.
  • the control device measures a stop time from when the vehicle is switched to the travel-disabled state to when the vehicle is switched to the travel-enabled state next.
  • the controller estimates the insulator temperature for determination using the initial insulator temperature and the stop time immediately after the vehicle is switched to the next runnable state, and uses the base substrate initial temperature and stop time to determine the determination base. Estimate the material temperature.
  • the EHC can be energized while ensuring the insulation of the EHC.
  • 1 is an overall block diagram of a vehicle. It is a circuit block diagram of 1st MG, 2nd MG, PCU, a battery, and EHC. It is a figure which shows an example of the EHC electricity supply method by ECU. It is a functional block diagram of ECU. It is a figure which shows an example of the time change of base material temperature THc and insulator temperature THi. It is a flowchart (the 1) which shows the process sequence of ECU. It is a flowchart (the 2) which shows the process sequence of ECU.
  • FIG. 1 is an overall block diagram of a vehicle 1 according to the present embodiment.
  • the vehicle 1 includes an engine 10, a first MG (Motor Generator) 20, a second MG 30, a power split device 40, a speed reducer 50, a power control unit (Power Control Unit, hereinafter referred to as “PCU”) 60, a battery. 70, a drive wheel 80, and an electronic control unit (Electronic Control Unit, hereinafter referred to as “ECU”) 200.
  • PCU Power Control Unit
  • ECU Electronic Control Unit
  • the engine 10 is an internal combustion engine that generates a driving force for rotating a crankshaft by combustion energy generated when an air-fuel mixture is combusted.
  • First MG 20 and second MG 30 are motor generators driven by alternating current.
  • the vehicle 1 travels by power output from at least one of the engine 10 and the second MG 30.
  • the driving force generated by the engine 10 is divided into two paths by the power split device 40. That is, one is a path transmitted to the drive wheel 80 via the speed reducer 50 and the other is a path transmitted to the first MG 20.
  • the power split device 40 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 10.
  • the sun gear is connected to the rotation shaft of the first MG 20.
  • the ring gear is connected to the rotation shaft of second MG 30 and speed reducer 50.
  • the PCU 60 is controlled by a control signal from the ECU 200.
  • PCU 60 converts the DC power supplied from battery 70 into AC power that can drive first MG 20 and second MG 30.
  • PCU 60 outputs the converted AC power to first MG 20 and second MG 30, respectively.
  • first MG 20 and second MG 30 are driven by the electric power stored in battery 70.
  • the PCU 60 can also convert AC power generated by the first MG 20 and the second MG 30 into DC power and charge the battery 70 with the converted DC power.
  • the battery 70 is a direct current power source that stores electric power for driving the first MG 20 and the second MG 30, and includes, for example, a secondary battery such as nickel hydride or lithium ion.
  • the output voltage of the battery 70 is a high voltage of about 200V, for example. Note that a large-capacity capacitor may be used instead of the battery 70.
  • the vehicle 1 includes an ignition switch (hereinafter referred to as “IG switch”) 2.
  • the IG switch 2 is a switch for the user to switch the state of the vehicle 1 between a runnable state (hereinafter also referred to as “Ready-ON state”) and a runnable state (hereinafter also referred to as “Ready-OFF state”). is there.
  • the SMR 71 In the Ready-ON state, the SMR 71 (see FIG. 2) is closed and the battery 70 and the PCU 60 are electrically connected. On the other hand, in the Ready-OFF state, the SMR 71 is opened and the battery 70 and the PCU 60 are disconnected.
  • an IG on signal is output from the IG switch 2 to the ECU 200.
  • an IG off signal is output from the IG switch 2 to the ECU 200.
  • ECU 200 performs switching between the Ready-ON state and the Ready-OFF state in response to a signal from IG switch 2.
  • the vehicle 1 includes an exhaust passage 130. Exhaust gas discharged from the engine 10 passes through the exhaust passage 130 and is discharged to the atmosphere.
  • an electrically heated catalyst device (Electric Heated Catalyst, hereinafter referred to as “EHC”) 140 is provided.
  • the EHC 140 includes a catalyst base on which a catalyst made of a noble metal that purifies the exhaust gas of the engine 10 is fixed (supported), and an electric heater that electrically heats the catalyst base when energized.
  • the EHC 140 consumes a large amount of electric power (high voltage electric power) supplied from the battery 70 via the PCU 60 and raises the temperature of the catalyst to the activation temperature.
  • Various known ones can be applied to the EHC 140.
  • the EHC 140 is housed in a muffler case (housing) 150.
  • the insulator 160 that insulates the EHC 140 from the outside is provided between the EHC 140 and the housing 150.
  • the insulator 160 is disposed so as to cover the EHC 140. When the EHC 140 is heated, the insulator 160 is also heated by the heat transmitted from the EHC 140.
  • the ECU 200 includes a CPU (Central Processing Unit) (not shown) and a memory, and is configured to execute a predetermined calculation process based on information stored in the memory.
  • a CPU Central Processing Unit
  • FIG. 2 is a circuit configuration diagram of the first MG 20, the second MG 30, the PCU 60, the battery 70, and the EHC 140.
  • a system main relay (SMR) 71 is provided between the PCU 60 and the battery 70.
  • SMR 71 is controlled by a control signal from ECU 200 and switches between connection and non-connection of battery 70 and PCU 60.
  • the PCU 60 includes a converter 61, inverters 62 and 63, smoothing capacitors 64 and 65, and a discharge resistor 66.
  • Converter 61 is connected to battery 70 via positive line PL1 and negative line NL1.
  • Converter 61 is connected to inverters 62 and 63 via positive line PL2 and negative line NL1.
  • Converter 61 includes a reactor, two switching elements, and two diodes. Converter 61 is controlled by a control signal from ECU 200 and performs voltage conversion between battery 70 and inverters 62 and 63.
  • the inverter 62 is provided between the converter 61 and the first MG 20.
  • Inverter 63 is provided between converter 61 and second MG 30. Inverters 62 and 63 are connected to converter 61 in parallel.
  • Each of inverters 62 and 63 includes a three-phase upper and lower arm (switching element) and a diode connected in antiparallel to each switching element.
  • Each of the upper and lower arms of the inverters 62 and 63 is controlled by a control signal from the ECU 200, converts the DC power converted by the converter 61 into AC power, and outputs the AC power to the first MG 20 and the second MG 30, respectively.
  • the smoothing capacitor 64 is connected between the positive electrode line PL1 and the negative electrode line NL1, and smoothes the AC component of the voltage fluctuation between the positive electrode line PL1 and the negative electrode line NL1.
  • Smoothing capacitor 65 is connected between positive electrode line PL2 and negative electrode line NL1, and smoothes an AC component of voltage fluctuation between positive electrode line PL2 and negative electrode line NL1.
  • the discharge resistor 66 is connected between the positive electrode line PL2 and the negative electrode line NL1.
  • the discharge resistor 66 is used to remove residual charges from the smoothing capacitors 64 and 65.
  • the EHC 140 is connected to a power line (positive line PL2, negative line NL1) between the converter 61 and the inverters 62 and 63 inside the PCU 60. More specifically, EHC 140 has one end connected to positive branch line PLehc that branches from positive line PL2, and the other end connected to negative branch line NLehc that branches from negative line NL1.
  • a switching device 100 is provided between the EHC 140 and the PCU 60.
  • the switching device 100 includes an EHC relay R1 provided on the positive branch line PLehc, an EHC relay R2 provided on the negative branch line NLehc, and a monitoring sensor 120 inside. Opening and closing of each EHC relay R1, R2 is controlled by a control signal from ECU 200.
  • the monitoring sensor 120 monitors the energization state (applied voltage, energization current, energization time, etc.) of the EHC 140. Note that the monitoring sensor 120 may be outside the switching device 100. In addition, the monitoring sensor 120 may be omitted as long as other existing sensors can monitor the energization state of the EHC 140.
  • EHC relays R1 and R2 When the EHC relays R1 and R2 are closed, high voltage power after boosting the output voltage of the battery 70 by the converter 61 is supplied to the electric heater of the EHC 140.
  • EHC energization By this EHC energization, the catalyst base material of EHC 140 is electrically heated.
  • the EHC relays R1 and R2 are opened, the EHC 140 is disconnected from the PCU 60 and the EHC energization is cut off.
  • FIG. 3 is a diagram illustrating an example of an EHC energization method by the ECU 200.
  • ECU 200 energizes EHC by closing EHC relays R1 and R2 for a predetermined time from time t1 to time t2 in order to raise the catalyst of EHC 140 to the activation temperature in advance.
  • the substrate temperature of the EHC 140 (hereinafter simply referred to as “substrate temperature THc”) increases by a predetermined temperature ⁇ TH1.
  • the engine 10 is started at a subsequent time t3.
  • the high-temperature battery 70 that stores electric power for driving the first MG 20 and the second MG 30 is shared as the power source of the EHC 140, so that an early temperature increase of the catalyst can be realized at a low cost.
  • the In such a configuration since high-voltage power is supplied to the EHC 140, it is necessary to provide the insulator 160 that insulates the EHC 140 from the outside as described above. However, the electrical resistance value of the insulator 160 tends to decrease due to overheating. Therefore, for example, if the EHC 140 is reheated in a state where the temperature of the EHC 140 is maintained at a higher temperature due to the residual heat, the insulator 160 may be overheated and the insulation thereof may be degraded.
  • the temperature of the insulator 160 (hereinafter referred to as “insulator temperature THi”) is accurately estimated, and whether or not the EHC energization is permitted is determined according to the estimated insulator temperature THi. 160 insulation is ensured. This is the most characteristic point of this embodiment.
  • FIG. 4 is a functional block diagram of the ECU 200 when determining whether or not to allow EHC energization. Each functional block shown in FIG. 4 may be realized by hardware or software.
  • ECU 200 includes an estimation unit 210, a storage unit 220, a measurement unit 230, an estimation unit 240, and a determination unit 250.
  • the estimation unit 210 estimates the base material temperature THc and the insulator temperature THi in the Ready-ON state from the detection result of the monitoring sensor 120, for example.
  • the storage unit 220 When receiving the IG OFF signal from the IG switch 2 in the Ready-ON state, the storage unit 220 receives the IG OFF signal (ie, immediately before switching from the Ready-ON state to the Ready-OFF state) and the substrate temperature THc and the insulator temperature.
  • THi is acquired from the estimation unit 210 and stored as “base material initial temperature THcpre” and “insulator initial temperature THipre”, respectively.
  • the measurement unit 230 When the measurement unit 230 receives the IG OFF signal from the IG switch 2, the measurement unit 230 measures the time from when the Ready-ON state is switched to the Ready-OFF state until the next is switched to the Ready-ON state as “stop time Tdead”.
  • each of the base material temperature THc and the insulator temperature THi immediately after receiving the IG ON signal (that is, immediately after switching from the Ready-OFF state to the Ready-ON state) Estimated as “determination base material temperature THcpost” and “determination insulator temperature THipost”.
  • the estimation unit 240 acquires the stop time Tdead from the measurement unit 230, and uses a map or the like indicating the cooling characteristics (temperature decrease characteristics) of the EHC 140 and the insulator 160 obtained in advance through experiments or the like.
  • the material temperature drop amount ⁇ THc and the insulator temperature drop amount ⁇ THi are estimated.
  • the estimation part 240 estimates the base material temperature THcpost for determination and the insulator temperature THipost for determination using the following formula
  • the determination unit 250 determines whether or not EHC energization is permitted using the determination base material temperature THcpost and the determination insulator temperature THipost. Specifically, the determination unit 250 performs EHC energization when the determination base material temperature THcpost is lower than the base material threshold temperature THcth and when the determination insulator temperature THipost is lower than the insulator threshold temperature THith. Tolerate.
  • EHC relays R1 and R2 are closed and EHC energization is performed when a predetermined energization condition is satisfied. Further, in this embodiment, it is assumed that one EHC energization is performed during one trip (a period from switching to the Ready-ON state to switching to the Ready-OFF state).
  • the determination unit 250 includes the EHC Prohibit without allowing energization.
  • the base material threshold temperature THcth is obtained by subtracting the base material temperature increase ⁇ TH1 by one EHC energization from the upper limit temperature (hereinafter referred to as “base material allowable temperature THcmax”) that can prevent damage to the catalyst base material. Set below the temperature. In other words, a margin is set between the substrate threshold temperature THcth and the substrate allowable temperature THcmax that exceeds the substrate temperature increase amount ⁇ TH1 due to one EHC energization. Therefore, even if one EHC energization is performed when the substrate temperature THc is lower than the substrate threshold temperature THcth, the substrate temperature THc does not reach the substrate allowable temperature THcmax.
  • the insulator threshold temperature THith is obtained by subtracting the amount of increase in insulator temperature ⁇ TH2 caused by one EHC energization from the upper limit temperature (hereinafter referred to as “insulator allowable temperature THimax”) that can ensure the insulation of the insulator 160. Is set to less than the specified temperature. In other words, a margin is set between the insulator threshold temperature THith and the insulator allowable temperature THimax that exceeds the insulator temperature increase amount ⁇ TH2 due to one EHC energization. Therefore, even if one EHC energization is performed when the insulator temperature THi is lower than the insulator threshold temperature THith, the insulator temperature THi does not reach the insulator allowable temperature THimax.
  • FIG. 5 is a diagram showing an example of temporal changes in the substrate temperature THc and the insulator temperature THi. With reference to FIG. 5, a method for determining whether or not the EHC is energized by the ECU 200 will be described.
  • ECU 200 when receiving the IG OFF signal at time t11 in the Ready-ON state, stores base material temperature THc and insulator temperature THi at time t11 as base material initial temperature THcpre and insulator initial temperature THipre, respectively.
  • the substrate temperature THc and the insulator temperature THi gradually decrease.
  • the insulator temperature THi becomes less than the insulator threshold temperature THith after time t13, and the insulation can be ensured even if the ECU is energized once (the insulator temperature THi is acceptable for the base material). State in which the temperature THcmax is not exceeded).
  • the base material temperature THc further becomes lower than the base material threshold temperature THcth, and the catalyst base material can be protected even if the ECU is energized once (the base material temperature THc is the base material allowable temperature THcmax). Is not exceeded). Therefore, after time t14, it is possible to achieve both insulation and substrate protection even after one EHC energization. In the present embodiment, such a state is a state in which EHC energization is possible.
  • the ECU 200 determines the base material temperature for determination using the above-described equations (1) and (2) from the base material initial temperature THcpre, the insulator initial temperature THipre, and the stop time Tdead.
  • the TH cpost and the determination insulator temperature THipost are estimated.
  • EHC energization is allowed. Is done.
  • FIG. 6 is a flowchart showing a processing procedure of the ECU 200 for realizing the functions of the estimation unit 210, the storage unit 220, and the measurement unit 230 described above.
  • the flowchart shown in FIG. 6 is repeatedly executed at a predetermined cycle in the Ready-ON state.
  • step (hereinafter, step is abbreviated as “S”) 10 ECU 200 determines whether or not an IG off signal has been received.
  • ECU 200 estimates base material temperature THc and insulator temperature THi in the Ready-ON state, for example, from the detection result of monitoring sensor 120 in S11.
  • ECU 200 determines the base material temperature THc and the insulator temperature THi at the time of receiving the IG off signal as the base material initial temperature THcpre and the initial insulator in S12, respectively. Stored as temperature THipre.
  • the ECU 200 opens the SMR 71 in S13 to be in a Ready-OFF state, and starts measuring the stop time Tdead in S14. Note that the measurement of the stop time Tdead is continued until it is next switched to the Ready-ON state.
  • FIG. 7 is a flowchart showing a processing procedure of the ECU 200 for realizing the functions of the estimation unit 240 and the determination unit 250 described above. The flowchart shown in FIG. 7 is executed when ECU 200 is started (when switching from the Ready-OFF state to the Ready-ON state).
  • ECU 200 estimates base material temperature decrease amount ⁇ THc and insulator temperature decrease amount ⁇ THi corresponding to stop time Tdead, respectively.
  • ECU 200 estimates base material temperature for determination THcpost and insulator temperature for determination THipost using equations (1) and (2) described above.
  • ECU 200 determines whether or not determination substrate temperature THcpost is lower than substrate threshold temperature THcth.
  • ECU 200 determines whether or not determination insulator temperature THipost is lower than insulator threshold temperature THith.
  • the ECU 200 shifts to the Ready-ON state from the insulator initial temperature THipre immediately before switching to the Ready-OFF state and the stop time Tdead that is the duration of the Ready-OFF state.
  • the insulator temperature for determination THipost immediately after the switching is estimated.
  • ECU 200 permits EHC energization when determination insulator temperature THipost is lower than insulator threshold temperature THith, and prohibits EHC energization otherwise. Therefore, EHC energization can be performed with high-voltage power from the battery 70 while ensuring the insulation of the EHC 140.
  • the ECU 200 applies the EHC energization when the determination insulator temperature THipost is lower than the insulator threshold temperature THith and when the determination substrate temperature THcpost is lower than the substrate threshold temperature THcth. If not, EHC energization is prohibited. Therefore, not only insulation of EHC140 but also protection of the catalyst base material is realized.
  • EHC energization is determined based on both the base material temperature THc and the insulator temperature THi. However, whether or not EHC energization is permitted may be determined based only on the insulator temperature THi. .

Abstract

 触媒基材を含むEHCとEHCを外部から絶縁する絶縁体とを備えた車両において、ECUは、車両の状態がReady-OFF状態からReady-ON状態に切り替わった直後の触媒基材の温度および絶縁体の温度をそれぞれ判定用基材温度THcpostおよび判定用絶縁体温度THipostとして推定する(240)。そして、ECUは、判定用基材温度THcpostが基材しきい温度THcth未満である場合でかつ判定用絶縁体温度THipostが絶縁体しきい温度THith未満である場合にEHC通電を許容し、そうでない場合にはEHC通電を許容せず禁止する(250)。

Description

車両
 本発明は、エンジンの排気を浄化する電気加熱可能な触媒装置(Electrical Heated Catalyst、以下、「EHC」ともいう)を備えた車両に関する。
 特開平9-250333号公報(特許文献1)には、EHCを備えた車両において、エンジンの停止時間からEHCの温度を推定し、推定されたEHCの温度と加熱目標温度との偏差に応じて、EHCの通電時間を決定する技術が開示されている。
特開平9-250333号公報 特開2010-223159号公報 特開平9-158718号公報 特開平8-170524号公報
 ところで、EHCを高電圧の電力で加熱する場合、EHCを外部から絶縁する絶縁体を設ける必要がある。ところが、EHCが高温である場合、絶縁体の電気抵抗値が過熱によって低下し絶縁性が低下するおそれがある。しかしながら、特許文献1には、触媒が高温である場合の保護制御について何ら言及されておらず、絶縁性を確保できないおそれがある。
 本発明は、上述の課題を解決するためになされたものであって、その目的は、EHCの絶縁性を確保しつつEHCの通電を行なうことである。
 この発明に係る車両は、モータおよびエンジンの少なくともいずれかの動力で走行可能な車両であって、モータを駆動するための電力を蓄える蓄電装置と、エンジンの排気を浄化する触媒が固定された触媒基材を蓄電装置の電力を用いて電気加熱可能に構成された触媒装置と、触媒装置と触媒装置を収容する筐体との間に設けられた絶縁体と、触媒装置の通電を制御する制御装置とを備える。制御装置は、絶縁体の温度に応じて触媒装置の通電の許否を決定する。
 好ましくは、制御装置は、車両が走行不能状態から走行可能状態に切り替わった直後の絶縁体の温度を判定用絶縁体温度として推定し、判定用絶縁体温度が絶縁体しきい温度未満である場合に触媒装置の通電を許容し、判定用絶縁体温度が絶縁体しきい温度以上である場合に触媒装置の通電を許容しない。
 好ましくは、絶縁体しきい温度は、触媒装置を所定時間通電したときの絶縁体の温度増加量を絶縁体の絶縁性を確保可能な絶縁体許容温度から減じた温度未満に設定される。
 好ましくは、制御装置は、車両が走行不能状態から走行可能状態に切り替わった直後の触媒基材の温度を判定用基材温度として推定し、判定用絶縁体温度が絶縁体しきい温度未満である場合でかつ判定用基材温度が基材しきい温度未満である場合に触媒装置の通電を許容し、判定用絶縁体温度が絶縁体しきい温度以上である場合および判定用基材温度が基材しきい温度以上である場合の少なくともいずれかの場合に触媒装置の通電を許容しない。
 好ましくは、基材しきい温度は、触媒装置を所定時間通電したときの触媒基材の温度増加量を触媒基材の損傷を防止可能な基材許容温度から減じた温度未満に設定される。
 好ましくは、制御装置は、車両が走行可能状態から走行不能状態に切り替わる直前の絶縁体の温度および触媒基材の温度をそれぞれ絶縁体初期温度および基材初期温度として記憶する。制御装置は、車両が走行不能状態に切り替わってから次に走行可能状態に切り替わるまでの停止時間を計測する。制御装置は、車両が次に走行可能状態に切り替わった直後に絶縁体初期温度と停止時間とを用いて判定用絶縁体温度を推定するとともに基材初期温度と停止時間とを用いて判定用基材温度を推定する。
 本発明によれば、EHCの絶縁性を確保しつつEHCの通電を行なうことができる。
車両の全体ブロック図である。 第1MG、第2MG、PCU、バッテリ、EHCの回路構成図である。 ECUによるEHC通電手法の一例を示す図である。 ECUの機能ブロック図である。 基材温度THcおよび絶縁体温度THiの時間変化の一例を示す図である。 ECUの処理手順を示すフローチャート(その1)である。 ECUの処理手順を示すフローチャート(その2)である。
 以下、本発明の実施例について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 図1は、本実施例に従う車両1の全体ブロック図である。車両1は、エンジン10と、第1MG(Motor Generator)20と、第2MG30と、動力分割装置40と、減速機50と、パワーコントロールユニット(Power Control Unit、以下「PCU」という)60と、バッテリ70と、駆動輪80と、電子制御ユニット(Electronic Control Unit、以下「ECU」という)200と、を備える。
 エンジン10は、空気と燃料との混合気を燃焼させたときに生じる燃焼エネルギによってクランクシャフトを回転させる駆動力を発生する内燃機関である。第1MG20および第2MG30は、交流で駆動されるモータジェネレータである。
 車両1は、エンジン10および第2MG30の少なくとも一方から出力される動力によって走行する。エンジン10が発生する駆動力は、動力分割装置40によって2経路に分割される。すなわち、一方は減速機50を介して駆動輪80へ伝達される経路であり、もう一方は第1MG20へ伝達される経路である。
 動力分割装置40は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から成る。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン10のクランクシャフトに連結される。サンギヤは、第1MG20の回転軸に連結される。リングギヤは第2MG30の回転軸および減速機50に連結される。
 PCU60は、ECU200からの制御信号によって制御される。PCU60は、バッテリ70から供給された直流電力を第1MG20および第2MG30を駆動可能な交流電力に変換する。PCU60は、変換された交流電力をそれぞれ第1MG20,第2MG30に出力する。これにより、バッテリ70に蓄えられた電力で第1MG20,第2MG30が駆動される。なお、PCU60は、第1MG20,第2MG30によって発電された交流電力を直流電力に変換し、変換された直流電力でバッテリ70を充電することも可能である。
 バッテリ70は、第1MG20,第2MG30を駆動するための電力を蓄える直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池から成る。バッテリ70の出力電圧は、たとえば200V程度の高い電圧である。なお、バッテリ70に代えて、大容量のキャパシタも採用可能である。
 さらに、車両1は、イグニッションスイッチ(以下「IGスイッチ」という)2を備える。IGスイッチ2は、ユーザが車両1の状態を走行可能状態(以下「Ready-ON状態」ともいう)と走行不能状態(以下「Ready-OFF状態」ともいう)との間で切り替えるためのスイッチである。
 なお、Ready-ON状態では、SMR71(図2参照)が閉じられバッテリ70とPCU60とが電気的に接続される。一方、Ready-OFF状態では、SMR71が開かれてバッテリ70とPCU60とが切り離される。
 Ready-OFF状態でユーザがIGスイッチ2を押すと、IGスイッチ2からIGオン信号がECU200に出力される。一方、Ready-ON状態でユーザがIGスイッチ2を押すと、IGスイッチ2からIGオフ信号がECU200に出力される。ECU200は、IGスイッチ2からの信号に応じてReady-ON状態とReady-OFF状態との間の切替を行なう。
 さらに、車両1は、排気通路130を備える。エンジン10から排出される排気ガスは、排気通路130を通って大気に排出される。
 排気通路130の途中には、電気加熱式触媒装置(Electrical Heated Catalyst、以下、「EHC」という)140が設けられる。EHC140は、エンジン10の排気ガスを浄化する貴金属から成る触媒が固定(担持)された触媒基材と、通電されることにより触媒基材を電気加熱する電気ヒータとで構成される。EHC140は、PCU60を介してバッテリ70から供給される大容量の電力(高電圧の電力)を消費して触媒を活性温度まで昇温させる。なお、EHC140には、種々の公知のものを適用することができる。
 EHC140は、マフラーケース(筐体)150に収容される。上述のように、EHC140には高電圧の電力が供給されるため、EHC140と筐体150との間には、EHC140を外部から絶縁する絶縁体160が設けられる。絶縁体160は、EHC140を覆うように配置される。EHC140が加熱されると、EHC140から伝達される熱で絶縁体160も加熱される。
 ECU200は、図示しないCPU(Central Processing Unit)およびメモリを内蔵し、当該メモリに記憶された情報に基づいて、所定の演算処理を実行するように構成される。
 図2は、第1MG20、第2MG30、PCU60、バッテリ70、EHC140の回路構成図である。
 PCU60とバッテリ70との間には、システムメインリレー(SMR)71が設けられる。SMR71は、ECU200からの制御信号によって制御され、バッテリ70とPCU60との接続および非接続を切り替える。
 PCU60は、コンバータ61、インバータ62,63、平滑コンデンサ64,65、放電抵抗66を含む。
 コンバータ61は、正極線PL1および負極線NL1を介してバッテリ70に接続される。また、コンバータ61は、正極線PL2および負極線NL1を介してインバータ62,63に接続される。
 コンバータ61は、リアクトルと、2つのスイッチング素子と、2つのダイオードとを含む。コンバータ61は、ECU200からの制御信号によって制御され、バッテリ70とインバータ62,63との間で電圧変換を行なう。
 インバータ62は、コンバータ61と第1MG20との間に設けられる。インバータ63は、コンバータ61と第2MG30との間に設けられる。インバータ62,63は、コンバータ61に対して互いに並列に接続される。
 インバータ62,63の各々は、三相の上下アーム(スイッチング素子)と、各スイッチング素子に逆並列に接続されたダイオードとを含む。インバータ62,63の各上下アームは、ECU200からの制御信号によって制御され、コンバータ61で電圧変換された直流電力を交流電力に変換してそれぞれ第1MG20、第2MG30に出力する。
 平滑コンデンサ64は、正極線PL1と負極線NL1との間に接続され、正極線PL1および負極線NL1間の電圧変動の交流成分を平滑化する。平滑コンデンサ65は、正極線PL2と負極線NL1との間に接続され、正極線PL2および負極線NL1間の電圧変動の交流成分を平滑化する。
 放電抵抗66は、正極線PL2と負極線NL1との間に接続される。放電抵抗66は、平滑コンデンサ64,65の残留電荷を抜くことを用途とする。
 EHC140は、PCU60の内部におけるコンバータ61とインバータ62,63との間の電力線(正極線PL2、負極線NL1)に接続される。より具体的には、EHC140は、一方の端部が正極線PL2から分岐する正極分岐線PLehcに接続され、他方の端部が負極線NL1から分岐する負極分岐線NLehcに接続される。
 EHC140とPCU60との間には、切替装置100が設けられる。切替装置100は、正極分岐線PLehc上に設けられたEHCリレーR1と、負極分岐線NLehc上に設けられたEHCリレーR2と、監視センサ120とを内部に備える。各EHCリレーR1,R2の開閉は、ECU200からの制御信号によって制御される。監視センサ120は、EHC140の通電状態(印加電圧、通電電流、通電時間など)を監視する。なお、監視センサ120は、切替装置100の外部にあってもよい。また、他の既存のセンサでEHC140の通電状態を監視可能であれば、監視センサ120を省略してもよい。
 EHCリレーR1,R2が閉じられると、バッテリ70の出力電圧をコンバータ61で昇圧した後の高電圧の電力がEHC140の電気ヒータに供給される。以下、このような状態を「EHC通電」ともいう。このEHC通電によってEHC140の触媒基材が電気加熱される。一方、EHCリレーR1,R2が開かれると、EHC140がPCU60から切り離され、EHC通電が遮断される。
 図3は、ECU200によるEHC通電手法の一例を示す図である。ECU200は、エンジン10を始動する際、事前にEHC140の触媒を活性温度に昇温しておくために、時刻t1から時刻t2までの所定時間、EHCリレーR1,R2を閉じることによってEHC通電を行なう。この1回(1ショット)のEHC通電によって、EHC140の基材温度(以下、単に「基材温度THc」という)は、所定温度ΔTH1だけ増加する。そして、その後の時刻t3でエンジン10が始動される。
 以上のような構造を有する車両1においては、第1MG20および第2MG30を駆動するための電力を蓄える高圧のバッテリ70をEHC140の電源として共用することにより、触媒の早期昇温が低コストで実現される。このような構成ではEHC140に高電圧の電力が供給されるため、上述のように、EHC140を外部から絶縁する絶縁体160を設ける必要がある。しかしながら、絶縁体160の電気抵抗値は過熱によって低下する傾向にある。したがって、たとえばEHC140の温度が余熱により高い温度に維持されている状態でEHC140が再加熱されると、絶縁体160が過熱状態となりその絶縁性が低下してしまうおそれがある。
 そこで、本実施例では、絶縁体160の温度(以下「絶縁体温度THi」という)を精度よく推定し、推定された絶縁体温度THiに応じてEHC通電の許否を決定することで、絶縁体160の絶縁性を確保する。この点が本実施例の最も特徴的な点である。
 図4は、EHC通電の許否を決定する際のECU200の機能ブロック図である。図4に示した各機能ブロックは、ハードウェアによって実現してもよいし、ソフトウェアによって実現してもよい。
 ECU200は、推定部210、記憶部220、計測部230、推定部240、判定部250を含む。
 推定部210は、たとえば監視センサ120の検出結果から、Ready-ON状態における基材温度THcおよび絶縁体温度THiを推定する。
 記憶部220は、Ready-ON状態でIGスイッチ2からIGオフ信号を受信すると、IGオフ信号受信時(すなわちReady-ON状態からReady-OFF状態に切り替わる直前)の基材温度THcおよび絶縁体温度THiを推定部210から取得して、それぞれ「基材初期温度THcpre」および「絶縁体初期温度THipre」として記憶する。
 計測部230は、IGスイッチ2からIGオフ信号を受信すると、Ready-ON状態からReady-OFF状態に切り替わってから次にReady-ON状態に切り替わるまでの時間を「停止時間Tdead」として計測する。
 推定部240は、IGスイッチ2からIGオン信号を受信すると、IGオン信号受信直後(すなわちReady-OFF状態からReady-ON状態に切り替わった直後)の基材温度THcおよび絶縁体温度THiを、それぞれ「判定用基材温度THcpost」および「判定用絶縁体温度THipost」として推定する。
 推定部240は、計測部230から停止時間Tdeadを取得し、予め実験等で求めたEHC140および絶縁体160の冷却特性(温度低下特性)を示すマップなどを用いて、停止時間Tdeadに対応する基材温度低下量ΔTHcおよび絶縁体温度低下量ΔTHiをそれぞれ推定する。そして、推定部240は、下記の式(1)、(2)を用いて判定用基材温度THcpostおよび判定用絶縁体温度THipostを推定する。
 THcpost=THcpre-ΔTHc …(1)
 THcpost=THipre-ΔTHi …(2)
 判定部250は、判定用基材温度THcpostおよび判定用絶縁体温度THipostを用いて、EHC通電の許否を決定する。具体的には、判定部250は、判定用基材温度THcpostが基材しきい温度THcth未満である場合でかつ判定用絶縁体温度THipostが絶縁体しきい温度THith未満である場合、EHC通電を許容する。
 なお、EHC通電が許容された場合、所定の通電条件が成立した時点でEHCリレーR1,R2が閉じられてEHC通電が行なわれる。また、本実施例では、1回のトリップ(Ready-ON状態に切り替えられてから次にReady-OFF状態に切り替えられるまでの期間)中には1回のEHC通電が行なわれるものとする。
 一方、判定用基材温度THcpostが基材しきい温度THcth以上である場合および判定用絶縁体温度THipostが絶縁体しきい温度THith以上である場合の少なくともいずれかの場合、判定部250は、EHC通電を許容せず禁止する。
 なお、EHC通電が禁止された場合、そのトリップが終了するまで、または、少なくとも基材温度THcおよび絶縁体温度THiがそれぞれ基材しきい温度THcthおよび絶縁体しきい温度THith未満となるまで、EHCリレーR1,R2が開かれた状態に維持されEHC通電は行なわれない。
 ここで、基材しきい温度THcthは、触媒基材の損傷を防止可能な上限温度(以下、「基材許容温度THcmax」という)から1回のEHC通電による基材温度増加量ΔTH1を減じた温度未満に設定される。言い換えれば、基材しきい温度THcthと基材許容温度THcmaxとの間には、1回のEHC通電による基材温度増加量ΔTH1を超えるマージンが設定される。したがって、基材温度THcが基材しきい温度THcth未満である時に1回のEHC通電を行なっても、基材温度THcは基材許容温度THcmaxには達しない。
 同様に、絶縁体しきい温度THithは、絶縁体160の絶縁性を確保可能な上限温度(以下、「絶縁体許容温度THimax」という)から1回のEHC通電による絶縁体温度増加量ΔTH2を減じた温度未満に設定される。言い換えれば、絶縁体しきい温度THithと絶縁体許容温度THimaxとの間には、1回のEHC通電による絶縁体温度増加量ΔTH2を超えるマージンが設定される。したがって、絶縁体温度THiが絶縁体しきい温度THith未満である時に1回のEHC通電を行なっても、絶縁体温度THiは絶縁体許容温度THimaxには達しない。
 図5は、基材温度THcおよび絶縁体温度THiの時間変化の一例を示す図である。図5を用いて、ECU200によるEHC通電許否の決定手法を説明する。
 ECU200は、Ready-ON状態である時刻t11においてIGオフ信号を受信すると、時刻t11における基材温度THcおよび絶縁体温度THiをそれぞれ基材初期温度THcpreおよび絶縁体初期温度THipreとして記憶する。
 その後の時刻t12にてReady-OFF状態に切り替えられると、停止時間Tdeadの計測が開始される。
 時間の経過ともに、基材温度THcおよび絶縁体温度THiは徐々に低下しいく。図5に示す例では、時刻t13以降で絶縁体温度THiが絶縁体しきい温度THith未満となり、1回のECU通電を行なっても絶縁性を確保可能な状態(絶縁体温度THiが基材許容温度THcmaxを超えない状態)となる。そして、時刻t14以降では、さらに基材温度THcが基材しきい温度THcth未満となり、1回のECU通電を行なっても触媒基材を保護可能な状態(基材温度THcが基材許容温度THcmaxを超えない状態)となる。したがって、時刻t14以降であれば、1回のEHC通電を行なっても絶縁確保と基材保護との双方を図ることが可能となる。本実施例では、このような状態をEHC通電が可能な状態としている。
 時刻t15においてECU200がIGオン信号を受信すると、ECU200は、基材初期温度THcpre、絶縁体初期温度THipre、停止時間Tdeadから、上述した式(1)、(2)を用いて判定用基材温度THcpostおよび判定用絶縁体温度THipostを推定する。そして、図5に示す例では、時刻t15において判定用基材温度THcpostが基材しきい温度THcth未満でかつ判定用絶縁体温度THipostが絶縁体しきい温度THith未満であるため、EHC通電が許容される。
 図6は、上述の推定部210、記憶部220、計測部230の機能を実現するためのECU200の処理手順を示すフローチャートである。図6に示すフローチャートは、Ready-ON状態のときに所定周期で繰り返し実行される。
 ステップ(以下、ステップを「S」と略す)10にて、ECU200は、IGオフ信号を受信したか否かを判定する。
 IGオフ信号を受信しない場合(S10にてNO)、ECU200は、S11にて、たとえば監視センサ120の検出結果から、Ready-ON状態における基材温度THcおよび絶縁体温度THiを推定する。
 一方、IGオフ信号を受信した場合(S10にてYES)、ECU200は、S12にて、IGオフ信号受信時の基材温度THcおよび絶縁体温度THiを、それぞれ基材初期温度THcpreおよび絶縁体初期温度THipreとして記憶する。
 その後、ECU200は、S13にてSMR71を開いてReady-OFF状態にするとともに、S14にて停止時間Tdeadの計測を開始する。なお、停止時間Tdeadの計測は、次にReady-ON状態に切り替えられるまで継続される。
 図7は、上述の推定部240、判定部250の機能を実現するためのECU200の処理手順を示すフローチャートである。図7に示すフローチャートは、ECU200の起動時(Ready-OFF状態からReady-ON状態への切替時)に実行される。
 S20にて、ECU200は、停止時間Tdeadに対応する基材温度低下量ΔTHcおよび絶縁体温度低下量ΔTHiをそれぞれ推定する。
 S21にて、ECU200は、上述した式(1)、(2)を用いて判定用基材温度THcpostおよび判定用絶縁体温度THipostを推定する。
 S22にて、ECU200は、判定用基材温度THcpostが基材しきい温度THcth未満であるか否かを判定する。
 S23にて、ECU200は、判定用絶縁体温度THipostが絶縁体しきい温度THith未満であるか否かを判定する。
 判定用基材温度THcpostが基材しきい温度THcth未満である場合(S22にてYES)でかつ判定用絶縁体温度THipostが絶縁体しきい温度THith未満である場合(S23にてYES)、ECU200は、EHC通電を許容する。
 一方、判定用基材温度THcpostが基材しきい温度THcth以上である場合(S22にてNO)および判定用絶縁体温度THipostが絶縁体しきい温度THith以上である場合(S23にてNO)の少なくともいずれかの場合、ECU200は、EHC通電を許容せずに禁止する。
 以上のように、本実施例によるECU200は、Ready-OFF状態への切替直前の絶縁体初期温度THipreと、Ready-OFF状態の継続時間である停止時間Tdeadとから、次にReady-ON状態へ切り替えられた直後の判定用絶縁体温度THipostを推定する。そして、ECU200は、判定用絶縁体温度THipostが絶縁体しきい温度THith未満である場合にEHC通電を許容し、そうでない場合にはEHC通電を禁止する。そのため、EHC140の絶縁性を確保しつつ、バッテリ70からの高電圧の電力でEHC通電を行なうことができる。また、本発明の適用により絶縁体160として許容温度が比較的低いものを採用することが可能となるため、絶縁体160の低コスト化も可能となる。
 さらに、本実施例では、EHC140の絶縁性確保だけでなく、触媒基材の保護も可能である。すなわち、本実施例によるECU200は、判定用絶縁体温度THipostが絶縁体しきい温度THith未満である場合で、かつ判定用基材温度THcpostが基材しきい温度THcth未満である場合に、EHC通電を許容し、そうでない場合は、EHC通電を禁止する。そのため、EHC140の絶縁性確保だけでなく、触媒基材の保護も実現される。
 なお、本実施例では、基材温度THcおよび絶縁体温度THiの双方に基づいてEHC通電の許否を決定したが、絶縁体温度THiのみに基づいてEHC通電の許否を決定するようにしてもよい。
 今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 車両、2 IGスイッチ、10 エンジン、20 第1MG、30 第2MG、40 動力分割装置、50 減速機、60 PCU、61 コンバータ、62,63 インバータ、64,65 平滑コンデンサ、66 放電抵抗、70 バッテリ、80 駆動輪、100 切替装置、120 監視センサ、130 排気通路、150 筐体、160 絶縁体、200 EUC、210,240 推定部、220 記憶部、230 計測部、250 判定部、NL1 負極線、NLehc 負極分岐線、PL1,PL2 正極線、PLehc 正極分岐線、R1,R1 EHCリレー。

Claims (6)

  1.  モータ(30)およびエンジン(10)の少なくともいずれかの動力で走行可能な車両であって、
     前記モータを駆動するための電力を蓄える蓄電装置(70)と、
     前記エンジンの排気を浄化する触媒が固定された触媒基材を前記蓄電装置の電力を用いて電気加熱可能に構成された触媒装置(140)と、
     前記触媒装置と前記触媒装置を収容する筐体(150)との間に設けられた絶縁体(160)と、
     前記触媒装置の通電を制御する制御装置(200)とを備え、
     前記制御装置は、前記絶縁体の温度に応じて前記触媒装置の通電の許否を決定する、車両。
  2.  前記制御装置は、前記車両が走行不能状態から走行可能状態に切り替わった直後の前記絶縁体の温度を判定用絶縁体温度として推定し、前記判定用絶縁体温度が絶縁体しきい温度未満である場合に前記触媒装置の通電を許容し、前記判定用絶縁体温度が前記絶縁体しきい温度以上である場合に前記触媒装置の通電を許容しない、請求項1に記載の車両。
  3.  前記絶縁体しきい温度は、前記触媒装置を所定時間通電したときの前記絶縁体の温度増加量を前記絶縁体の絶縁性を確保可能な絶縁体許容温度から減じた温度未満に設定される、請求項2に記載の車両。
  4.  前記制御装置は、前記車両が前記走行不能状態から前記走行可能状態に切り替わった直後の前記触媒基材の温度を判定用基材温度として推定し、前記判定用絶縁体温度が前記絶縁体しきい温度未満である場合でかつ前記判定用基材温度が基材しきい温度未満である場合に前記触媒装置の通電を許容し、前記判定用絶縁体温度が前記絶縁体しきい温度以上である場合および前記判定用基材温度が前記基材しきい温度以上である場合の少なくともいずれかの場合に前記触媒装置の通電を許容しない、請求項2に記載の車両。
  5.  前記基材しきい温度は、前記触媒装置を所定時間通電したときの前記触媒基材の温度増加量を前記触媒基材の損傷を防止可能な基材許容温度から減じた温度未満に設定される、請求項4に記載の車両。
  6.  前記制御装置は、
     前記車両が前記走行可能状態から前記走行不能状態に切り替わる直前の前記絶縁体の温度および前記触媒基材の温度をそれぞれ絶縁体初期温度および基材初期温度として記憶し、
     前記車両が前記走行不能状態に切り替わってから次に前記走行可能状態に切り替わるまでの停止時間を計測し、
     前記車両が次に前記走行可能状態に切り替わった直後に前記絶縁体初期温度と前記停止時間とを用いて前記判定用絶縁体温度を推定するとともに前記基材初期温度と前記停止時間とを用いて前記判定用基材温度を推定する、請求項4に記載の車両。
PCT/JP2011/069883 2011-09-01 2011-09-01 車両 WO2013031002A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/236,401 US9109489B2 (en) 2011-09-01 2011-09-01 Vehicle
JP2013530978A JP5673835B2 (ja) 2011-09-01 2011-09-01 車両
PCT/JP2011/069883 WO2013031002A1 (ja) 2011-09-01 2011-09-01 車両
EP11871517.6A EP2746547B1 (en) 2011-09-01 2011-09-01 Vehicle
CN201180072885.0A CN103732874B (zh) 2011-09-01 2011-09-01 车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069883 WO2013031002A1 (ja) 2011-09-01 2011-09-01 車両

Publications (1)

Publication Number Publication Date
WO2013031002A1 true WO2013031002A1 (ja) 2013-03-07

Family

ID=47755551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069883 WO2013031002A1 (ja) 2011-09-01 2011-09-01 車両

Country Status (5)

Country Link
US (1) US9109489B2 (ja)
EP (1) EP2746547B1 (ja)
JP (1) JP5673835B2 (ja)
CN (1) CN103732874B (ja)
WO (1) WO2013031002A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932876B2 (en) 2015-11-11 2018-04-03 Ford Global Technologies, Llc Systems and method for exhaust warm-up strategy
JP7234916B2 (ja) * 2019-12-24 2023-03-08 トヨタ自動車株式会社 車両の制御装置
US11879370B2 (en) 2020-12-15 2024-01-23 Ford Global Technologies, Llc Integrated power converter to support power outputs at different potential for vehicles with a heated catalyst
US11708065B2 (en) * 2021-02-19 2023-07-25 Ford Global Technologies, Llc Electrical power control method
FR3127459B1 (fr) * 2021-09-27 2023-08-18 Vitesco Technologies Procédé d’alimentation d’un dispositif de chauffage pour catalyseur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170524A (ja) 1994-12-15 1996-07-02 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JPH09158718A (ja) 1995-12-08 1997-06-17 Toyota Motor Corp 電気加熱式触媒の通電制御装置
JPH09250333A (ja) 1996-03-12 1997-09-22 Nissan Motor Co Ltd 内燃機関の触媒暖機装置
JP2010223159A (ja) 2009-03-25 2010-10-07 Toyota Motor Corp 車両の制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710028Y2 (ja) * 1989-03-13 1995-03-08 日産ディーゼル工業株式会社 パーティキュレート・トラップフィルタ再生装置
US7829048B1 (en) * 2009-08-07 2010-11-09 Gm Global Technology Operations, Inc. Electrically heated catalyst control system and method
WO2011111176A1 (ja) * 2010-03-10 2011-09-15 トヨタ自動車株式会社 車両および触媒装置に通電する方法
US8997470B2 (en) * 2010-03-17 2015-04-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying device for internal combustion engine
WO2011114451A1 (ja) * 2010-03-17 2011-09-22 トヨタ自動車株式会社 車両の制御装置
EP2549071B1 (en) * 2010-03-19 2015-08-19 Toyota Jidosha Kabushiki Kaisha Vehicle control device
WO2011128996A1 (ja) * 2010-04-14 2011-10-20 トヨタ自動車株式会社 電気加熱式触媒及びその製造方法
JP5673852B2 (ja) * 2011-11-02 2015-02-18 トヨタ自動車株式会社 電気加熱式触媒の制御装置
EP2796683A4 (en) * 2011-12-20 2015-05-20 Toyota Motor Co Ltd ERROR DETECTION DEVICE FOR AN ELECTRICALLY HEATABLE CATALYST

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170524A (ja) 1994-12-15 1996-07-02 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JPH09158718A (ja) 1995-12-08 1997-06-17 Toyota Motor Corp 電気加熱式触媒の通電制御装置
JPH09250333A (ja) 1996-03-12 1997-09-22 Nissan Motor Co Ltd 内燃機関の触媒暖機装置
JP2010223159A (ja) 2009-03-25 2010-10-07 Toyota Motor Corp 車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2746547A4

Also Published As

Publication number Publication date
JP5673835B2 (ja) 2015-02-18
CN103732874B (zh) 2015-09-16
EP2746547A1 (en) 2014-06-25
EP2746547A4 (en) 2015-01-14
US9109489B2 (en) 2015-08-18
EP2746547B1 (en) 2016-08-10
JPWO2013031002A1 (ja) 2015-03-23
CN103732874A (zh) 2014-04-16
US20140174059A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5626368B2 (ja) 車両および触媒装置の温度制御方法
US9771848B2 (en) Vehicle and vehicular control method
US9469293B2 (en) Vehicle and control method for vehicle
JP5288057B2 (ja) ハイブリッド車両の排気浄化システムおよびその制御方法
JP5673835B2 (ja) 車両
JP5660104B2 (ja) 車両
JP5626309B2 (ja) ハイブリッド車両
JP5257550B2 (ja) 車両および触媒装置に通電する方法
JP5661121B2 (ja) 車両および車両の制御方法
EP2563633A1 (en) Control apparatus for vehicle
JP2013141893A (ja) 車両および車両の制御方法
US10464550B2 (en) Abnormality detection of current sensor for electrically heated catalyst device in hybrid vehicle
JP5641145B2 (ja) 車両および車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013530978

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14236401

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011871517

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011871517

Country of ref document: EP