WO2013030641A1 - Charging device for electric vehicle and charging system for electric vehicle - Google Patents

Charging device for electric vehicle and charging system for electric vehicle Download PDF

Info

Publication number
WO2013030641A1
WO2013030641A1 PCT/IB2012/001612 IB2012001612W WO2013030641A1 WO 2013030641 A1 WO2013030641 A1 WO 2013030641A1 IB 2012001612 W IB2012001612 W IB 2012001612W WO 2013030641 A1 WO2013030641 A1 WO 2013030641A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
electric vehicle
current
upper limit
limit value
Prior art date
Application number
PCT/IB2012/001612
Other languages
French (fr)
Japanese (ja)
Inventor
尚紀 福尾
哲 上野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280026209.4A priority Critical patent/CN103597705B/en
Publication of WO2013030641A1 publication Critical patent/WO2013030641A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00038Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an electric vehicle charging device and an electric vehicle charging system for charging an electric vehicle such as an electric vehicle.
  • This charging device is for charging a battery-type forklift, and has a power cord connected to a power outlet connected to a facility power source in a factory via a breaker.
  • the charging device is equipped with a communication function, and transmits / receives information regarding the charging state to / from other charging devices connected to the facility power supply via a communication line.
  • the total current limit value which is a current value that can be used by the entire charging device connected to the facility power supply, is set to an arbitrary current value, and the current used in each charging device is based on this value.
  • the charging device is automatically set after confirming the charging status of other charging devices.
  • An electric vehicle charging device is an electric vehicle charging device that is inserted between a breaker and an electric vehicle, and instructs an upper limit value of a charging current to the electric vehicle.
  • the electric vehicle charging system of the present invention monitors the electric current flowing through the electric vehicle charging device and the breaker, and the adjusting means reduces the upper limit when the current exceeds the rated current of the breaker. And a power monitoring device for instructing Effect of the Invention
  • the charging device for an electric vehicle and the charging system for an electric vehicle according to the present invention has an effect that the charging current can be adjusted to an appropriate value while avoiding the trip of the breaker regardless of the type of the electric vehicle. .
  • FIG. 1 is a block diagram and a system configuration diagram showing an embodiment of a charging device for an electric vehicle and a charging system for an electric vehicle according to the present invention.
  • (A), (b) is operation
  • an electric vehicle charging device (hereinafter referred to as a charging device) that is installed in a detached house and uses an electric power supplied from an electric power system to charge an electric vehicle and a system therefor.
  • a charging device an electric vehicle charging device that is installed in a detached house and uses an electric power supplied from an electric power system to charge an electric vehicle and a system therefor.
  • an electric vehicle is not limited to an electric vehicle, and may be, for example, a battery-type forklift as described in the related art.
  • single-phase, three-wire AC power is supplied from a power system 100 to a house via a residential distribution board (housing board) 4.
  • the housing board 4 has a main breaker 40 whose primary side is connected to the power system 100 and a plurality of branch breakers 41 branched and connected to the secondary side of the main breaker 40.
  • a limiter current limiter
  • an outlet and load are connected to the secondary side of each branch breaker 41 via an indoor wiring.
  • the electric vehicle charging system of the present embodiment includes a charging device 1 and a power monitoring device 2 as shown in FIG.
  • the power monitoring device 2 includes a control unit 20, a current measurement unit 21, a communication unit 22, and the like.
  • the current measuring unit 21 measures the currents flowing through two wires other than the neutral wire among the three wires connected to the primary side of the main breaker 40 using current sensors 210 and 211, respectively. Is output to the control unit 20.
  • the control unit 20 includes a microcomputer as a main component, and based on the current value measured by the current measurement unit 21 and the measured value (voltage value) of the primary side voltage (input voltage) of the main breaker 40, the power system 100 The instantaneous value or integrated value of the power supplied from the power supply (supply power) is calculated.
  • the communication unit 22 communicates with the charging device 1 and performs, for example, serial communication conforming to the RS485 standard.
  • the charging device 1 includes a signal processing unit (transmission unit) 10, a zero-phase current transformer 11, a leakage detection unit 12, an opening / closing unit 13, a communication control unit (adjustment unit) 14, a charging cable 15, a charging connector 16, and the like.
  • the charging device 1 is installed near a parking space (garage) of the electric vehicle 200 and is one of branch circuits branched by the branch breaker 41 of the housing board 4 (in the example of FIG. 1, the branch breaker 41 at the lower right end). ).
  • the charging cable 15 is formed by covering a power supply line 150 through which a supply current (charging current) to the electric vehicle 200 flows and a transmission line 151 through which a pilot signal to be described later is transmitted with an insulating sheath. Is provided.
  • the charging connector 16 is inserted and connected to an insertion port (inlet) provided in the vehicle body of the electric vehicle 200 so as to be freely inserted and removed. Then, when the charging connector 16 is plugged into the insertion port, power (charging power) is supplied from the power system 100 via the housing panel 4 and the charging device 1, and the signal processing unit 10 of the charging device 1 and the electricity
  • the pilot signal can be transmitted to and from the charging ECU (electronic control unit) (not shown) of the automobile 200.
  • the opening / closing unit 13 has an electromagnetic relay (not shown) inserted in the power supply path from the branch breaker 41 to the power supply line 150, and turns on / off the electromagnetic relay according to an instruction from the signal processing unit 10. Open and close the feeding path.
  • the leakage detection unit 12 detects the unbalanced current flowing in the power supply path with the zero-phase current transformer 11, determines that a leakage has occurred when the detection level of the unbalanced current exceeds a threshold,
  • the power supply path is opened by controlling the unit 13.
  • the communication control unit 14 adjusts a function (communication function) for performing communication (RS485 standard serial communication) with the communication unit 22 of the power monitoring device 2 and a charging current supplied to the electric vehicle 200 as described later. Function (adjustment function).
  • Such a communication control unit 14 includes a microcomputer and an integrated circuit for serial communication.
  • a current (charging current) supplied to the electric vehicle 200 via the charging device 1 is measured by the current sensor 212.
  • the voltage applied to the transmission line 151 serves as a transmission medium for a control pilot (CPLT) signal (hereinafter abbreviated as a pilot signal).
  • CPLT control pilot
  • the signal processing unit 10 outputs a pulsed pilot signal having a predetermined frequency (for example, 1 kilohertz) (from time t2).
  • the signal level of the pilot signal is ⁇ V1, but the upper limit level is stepped down to V2.
  • the duty ratio of the pilot signal indicates an upper limit value of the charging current (current capacity of the charging device 1), and is set in advance for each charging device 1. For example, when the current capacity is 12 amperes, the duty ratio is set to 20%, and when the current capacity is 30 amperes, the duty ratio is set to 50%.
  • the charging ECU detects the duty ratio of the pilot signal and recognizes the current capacity, the charging ECU reduces the voltage level of the pilot signal from V2 to V3 (for example, 6V) (time t3).
  • the signal processing unit 10 detects that the signal level of the pilot signal has decreased from V2 to V3, the signal processing unit 10 closes the opening / closing unit 13 and starts supplying charging power.
  • the charging ECU sets a current value ( ⁇ current capacity) for charging the storage battery to the target level based on the current capacity, and instructs a charger (not shown) mounted on the electric vehicle 200 to charge the battery. Is output.
  • the charger that has received the charging command charges the storage battery while adjusting the charging current so as not to exceed the current value set by the charging ECU (from time t3).
  • the charging ECU outputs a charging end command to the charger to end the charging of the storage battery, and returns the voltage level of the pilot signal from V3 to V2 (time t4).
  • the charger receives the charging end command, the charger ends the charging of the storage battery.
  • the signal processing unit 10 When the signal processing unit 10 detects that the pilot signal has changed from V3 to V2, the signal processing unit 10 opens the opening / closing unit 13 and stops the supply of AC power.
  • the charging ECU returns the voltage level of the pilot signal to the original V1 (time t5).
  • the signal processing unit 10 stops oscillation at a predetermined frequency, maintains the voltage level of the pilot signal at V1, and returns to the standby state (time t6).
  • the charging device 1 is mounted on the electric vehicle 200 by turning on / off the supply of charging power to the electric vehicle 200 and instructing the charging ECU of the electric vehicle 200 to the upper limit value of the charging current. The charging of the storage battery is controlled.
  • charging the electric vehicle 200 usually requires a large charging current of about several tens of amperes to several tens of amperes.
  • the rated current of the main breaker 40 (limiter and main breaker 40 when the limiter is installed) is set to about 30 to 60 amperes. Therefore, when charging the electric vehicle 200 when a load device with large current consumption such as an electromagnetic cooker or an air conditioner is used, the charging current flows up to an upper limit value set in advance in the charging device 1.
  • the main breaker 40 and the limiter may trip.
  • the control unit 20 of the power monitoring device 2 sets the upper limit value of the charging current from the current value of the current charging current to the total current consumption and the rated current.
  • a command (adjustment command) for making a current value obtained by subtracting the current difference is transmitted from the communication unit 22.
  • the total consumption current is the sum of the charging current and the consumption current of the load device (load consumption current).
  • the control unit 20 of the power monitoring apparatus 2 transmits a command for increasing the upper limit value of the charging current from the communication unit 22 within a limit where the total current consumption does not exceed the rated current. It can also be made.
  • the upper limit value of the charging current is increased within the limit of the current capacity of the charging device 1 preset for each charging device 1.
  • the control unit 20 determines that the electric vehicle 200 is not charged when the charging current measured by the current measuring unit 21 (current detected by the current sensor 212) can be regarded as almost zero, and the upper limit value.
  • the adjustment command is not notified.
  • the communication control unit 14 that has received the adjustment command transmitted from the power monitoring device 2 sets the upper limit value of the charging current to the signal processing unit 10 below the upper limit value specified by the adjustment command.
  • the signal processing unit 10 decreases the duty ratio of the pilot signal.
  • the duty ratio which was 50% at the beginning is reduced to 40% to 20%, and as a result, the upper limit value of the charging current is lower than the initial 20 amperes. (For example, 10 amperes).
  • the charging ECU of the electric vehicle 200 sets the current value of the charging current again based on the adjusted upper limit value, and outputs a charging command to the charger.
  • the charger that has received the charging command charges the storage battery while adjusting the charging current so as not to exceed the new current value set by the charging ECU. As a result, since the charging current supplied to the electric vehicle 200 decreases, it can be avoided that the total current consumption exceeds the rated current of the main breaker 40.
  • the time T3 required for the electric vehicle 200 to reduce the charging current in accordance with the pilot signal is often different depending on the type of the electric vehicle 200. Therefore, in the present embodiment, when the signal processing unit 10 changes (decreases) the pilot signal duty ratio according to the adjustment command, the pilot signal is temporarily stopped by setting the signal voltage to zero volts (T5 time elapses). Later, the pilot signal is transmitted to the charging ECU of the electric vehicle 200 with the changed duty ratio (see FIG. 2A). When the pilot signal stops, the charging ECU of the electric vehicle 200 causes the charger to stop charging. When the pilot signal is received after the elapse of T5 time, the charging ECU sets the charging current value again based on the adjusted upper limit value. Output a charge command to the charger.
  • the charger that has received the charging command charges the storage battery while adjusting the charging current so as not to exceed the new current value set by the charging ECU. In this case, it takes T6 time from when the charging ECU receives the pilot signal to restart the charging current.
  • the time when the total current consumption exceeds the rated current is only the time T4 required for the signal processing unit 10 to stop the pilot signal, and the processing in the electric vehicle 200 is performed. Unaffected by time T3. Therefore, according to the charging device 1 of the present embodiment, the charging current can be adjusted to an appropriate value while avoiding tripping of the main breaker 40 regardless of the type of the electric vehicle 200.
  • the upper limit value of the charging current is set to a value determined from the current capacity of the charging device 1 (hereinafter referred to as a basic upper limit value).
  • a basic upper limit value a value determined from the current capacity of the charging device 1
  • the signal processor 10 increases the duty ratio of the pilot signal at a constant ratio so that the upper limit value is gradually increased from the upper limit value lower than the basic upper limit value to the basic upper limit value.
  • the signal processing unit 10 sets the duty ratio of the pilot signal so as to decrease the upper limit value in response to an instruction from the power monitoring device 2. adjust.
  • the upper limit value is determined by a voltage signal with the electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 In the present invention, if a signal processing unit (10) changes the duty ratio of a pilot signal, the pilot signal is transmitted at the changed duty ratio after stopping the pilot signal by setting the signal voltage to zero volts. If the pilot signal is stopped, the time which the total current consumption exceeds the rated current becomes only the time required for the signal processing unit to stop the pilot signal, and this time is not affected by the processing time in the electric vehicle (200). It is therefore possible to adjust the charging current to an appropriate value whilst avoiding tripping the main circuit breaker (40), regardless of the type of electric vehicle (200).

Description

電気車両用充電装置及び電気車両用充電システムElectric vehicle charging device and electric vehicle charging system
 本発明は、電気自動車などの電気車両に充電するための電気車両用充電装置及び電気車両用充電システムに関する。 The present invention relates to an electric vehicle charging device and an electric vehicle charging system for charging an electric vehicle such as an electric vehicle.
 従来例として、例えば、特許文献1に記載されている充電装置がある。この充電装置は、バッテリ式フォークリフトを充電するためのものであり、ブレーカを介して工場内の設備電源に接続された電源コンセントに接続される電源コードを有している。また、充電装置には通信機能が搭載されており、設備電源に接続する他の充電装置との間で通信線を介して充電状態に関する情報を送受している。
 この従来例では、設備電源に繋がれる充電装置全体で用いることが可能な電流値であるトータル電流制限値を任意の電流値に設定し、この値を基に各充電装置で使用する電流は各々の充電装置が自動的に、他の充電装置の充電状況を確認したうえで設定するようになっている。このため、電気車両(バッテリ式フォークリフト)の充電時に充電装置で消費される電力が、充電装置に電源供給を行う設備電源の電源容量を考慮することなく、適切に設定される。故に、使用者は、設備電源の電源容量を増設することなく、また電源に繋がれる充電装置で使用中の電流量を気にすることなく、電気車両への充電を良好に行うことが可能となる。
特開2003−333706号公報
As a conventional example, for example, there is a charging device described in Patent Document 1. This charging device is for charging a battery-type forklift, and has a power cord connected to a power outlet connected to a facility power source in a factory via a breaker. In addition, the charging device is equipped with a communication function, and transmits / receives information regarding the charging state to / from other charging devices connected to the facility power supply via a communication line.
In this conventional example, the total current limit value, which is a current value that can be used by the entire charging device connected to the facility power supply, is set to an arbitrary current value, and the current used in each charging device is based on this value. The charging device is automatically set after confirming the charging status of other charging devices. For this reason, the electric power consumed by the charging device when charging the electric vehicle (battery-type forklift) is appropriately set without considering the power supply capacity of the facility power source that supplies power to the charging device. Therefore, the user can charge the electric vehicle satisfactorily without increasing the power capacity of the equipment power source and without worrying about the amount of current in use with the charging device connected to the power source. Become.
JP 2003-333706 A
 ところで、ブレーカは、通常、過負荷電流(<短絡電流)が流れると直ちにトリップ(引き外し動作)するのではなく、過負荷電流が継続して所定時間(引き外し動作時間)以上流れ続けた場合にトリップするように構成されている。したがって、特許文献1記載の従来例のように、トータルの電流値が常時制限値を越えないように制御することは、ブレーカをトリップさせないための必須条件ではない。
 つまり、引き外し動作時間未満であれば、過負荷電流が流れてもブレーカはトリップしないので、過負荷電流が流れた時点から引き外し動作時間が経過するまでに充電電流を減らせば、ブレーカのトリップを回避することができる。
 しかしながら、電気自動車のように充電電流の制御を電気車両側で行う場合、充電装置が充電電流を減らすように電気車両に指示してから、実際に電気車両側で充電電流を減少させるまでに相当の遅延時間が生じる。しかも、この遅延時間は電気車両の種類(電気自動車の車種)毎に異なっている場合が多いので、あらゆる種類の電気車両に対して、ブレーカのトリップを回避するように充電電流を調整させることは非常に難しい。
By the way, when the overload current (<short circuit current) flows, the breaker normally does not immediately trip (tripping operation), but the overload current continues to flow for a predetermined time (tripping operation time) or longer. Is configured to trip. Therefore, as in the conventional example described in Patent Document 1, it is not an indispensable condition for preventing the breaker from tripping, so that the total current value does not always exceed the limit value.
In other words, if it is less than the trip operation time, the breaker will not trip even if overload current flows, so if the charge current is reduced from the time when the overload current flows until the trip operation time elapses, the breaker trips Can be avoided.
However, when the charging current is controlled on the electric vehicle side as in an electric vehicle, this corresponds to the period from when the charging device instructs the electric vehicle to reduce the charging current until the charging current is actually reduced on the electric vehicle side. Delay time occurs. Moreover, since this delay time is often different for each type of electric vehicle (electric vehicle type), it is not possible to adjust the charging current so that all types of electric vehicles avoid tripping the breaker. very difficult.
 本発明は、上記課題に鑑みて為されたものであり、電気車両の種類に関わらず、ブレーカのトリップを回避しつつ充電電流を適切な値に調整することを目的とする。
 本発明の電気車両用充電装置は、ブレーカと電気車両との間に挿入され、前記電気車両に対して充電電流の上限値を指示する電気車両用充電装置において、前記電気車両との間で電圧信号によって前記上限値の情報を伝送する伝送手段と、前記ブレーカに流れる電流の電流値に応じて前記上限値の調整を前記伝送手段に指示する調整手段とを備え、前記伝送手段は、前記上限値を下げる場合、前記電圧信号を一旦停止した後に、調整後の前記上限値の情報を前記電気車両に伝送することを特徴とする。
 本発明の電気車両用充電システムは、前記電気車両用充電装置と、前記ブレーカに流れる電流を監視し、前記電流が前記ブレーカの定格電流を越えた場合に前記上限値を下げるように前記調整手段に指示する電力監視装置とを有することを特徴とする。
発明の効果
 本発明の電気車両用充電装置及び電気車両用充電システムは、電気車両の種類に関わらず、ブレーカのトリップを回避しつつ充電電流を適切な値に調整することができるという効果がある。
The present invention has been made in view of the above problems, and an object thereof is to adjust a charging current to an appropriate value while avoiding a trip of a breaker regardless of the type of an electric vehicle.
An electric vehicle charging device according to the present invention is an electric vehicle charging device that is inserted between a breaker and an electric vehicle, and instructs an upper limit value of a charging current to the electric vehicle. Transmission means for transmitting information on the upper limit value by a signal, and adjustment means for instructing the transmission means to adjust the upper limit value according to a current value of a current flowing through the breaker, wherein the transmission means includes the upper limit value. When the value is lowered, after the voltage signal is temporarily stopped, the adjusted upper limit information is transmitted to the electric vehicle.
The electric vehicle charging system of the present invention monitors the electric current flowing through the electric vehicle charging device and the breaker, and the adjusting means reduces the upper limit when the current exceeds the rated current of the breaker. And a power monitoring device for instructing
Effect of the Invention The charging device for an electric vehicle and the charging system for an electric vehicle according to the present invention has an effect that the charging current can be adjusted to an appropriate value while avoiding the trip of the breaker regardless of the type of the electric vehicle. .
 本発明の目的及び特徴は以下のような添付図面と好ましい実施例の説明により明確になる。
本発明に係る電気車両用充電装置及び電気車両用充電システムの実施形態を示すブロック図及びシステム構成図である。 (a),(b)は同上における動作説明図である。 同上における電気車両用充電装置の基本的な充電動作を説明するためのタイムチャートである。 同上の別の動作説明図である。
The objects and features of the present invention will become apparent from the following drawings and description of preferred embodiments.
1 is a block diagram and a system configuration diagram showing an embodiment of a charging device for an electric vehicle and a charging system for an electric vehicle according to the present invention. (A), (b) is operation | movement explanatory drawing in the same as the above. It is a time chart for demonstrating the basic charging operation of the charging device for electric vehicles same as the above. It is another operation explanatory drawing same as the above.
 以下、戸建の住宅に設置され、電力系統から供給される電力を利用して電気自動車に充電するための電気車両用充電装置(以下、充電装置と略す。)及びそのシステムに本発明の技術思想を適用した実施形態について、図面を参照して詳細に説明する。図面全体において同一又は類似する部分については同一参照符号を付して説明を省略する。ただし、電気車両は電気自動車に限定されず、例えば、従来技術で説明したようなバッテリ式フォークリフトなどであっても構わない。
 図1に示すように、住宅には電力系統100から単相3線式の交流電力が住宅用分電盤(住宅盤)4を介して供給される。住宅盤4は1次側が電力系統100と接続される主幹ブレーカ40と、主幹ブレーカ40の2次側に分岐接続される複数の分岐ブレーカ41とを有している。ただし、主幹ブレーカ40の1次側にリミッタ(電流制限器)が挿入される場合もある。なお、図示は省略するが、各分岐ブレーカ41の2次側に屋内配線を介してコンセントや負荷(照明器具や電磁調理器、エアコンディショナなど)が接続される。
 本実施形態の電気車両用充電システムは、図1に示すように充電装置1と電力監視装置2を有している。
 電力監視装置2は、制御部20、電流計測部21、通信部22などを備える。電流計測部21は、主幹ブレーカ40の1次側に接続される3本の電線のうちの中性線以外の2本の電線に流れる電流をそれぞれ電流センサ210,211を用いて計測し、それぞれの計測値を制御部20に出力する。制御部20はマイクロコンピュータを主構成要素とし、電流計測部21で計測される電流値と主幹ブレーカ40の1次側電圧(入力電圧)の計測値(電圧値)とに基づいて、電力系統100から供給される電力(供給電力)の瞬時値や積算値などを演算している。また通信部22は充電装置1との間で通信を行うものであって、例えば、RS485規格に準拠したシリアル通信を行う。ただし、通信部22の通信方式はRS485規格に限定されるものではなく、電力線搬送通信や無線通信(例えば、小電力無線通信等)などであっても構わない。
 充電装置1は、信号処理部(伝送手段)10、零相変流器11、漏電検出部12、開閉部13、通信制御部(調整手段)14、充電ケーブル15、充電コネクタ16などを備える。また充電装置1は、電気自動車200の駐車スペース(車庫)に近い場所に設置され、住宅盤4の分岐ブレーカ41で分岐された分岐回路の一つ(図1の例では右下端の分岐ブレーカ41)に接続される。充電ケーブル15は、電気自動車200への供給電流(充電電流)が流れる給電線150と、後述するパイロット信号が伝送される伝送線151とが絶縁シースで被覆されてなり、先端部分に充電コネクタ16が設けられている。充電コネクタ16は、電気自動車200の車体に設けられている差込口(インレット)に挿抜自在に差込接続される。そして、充電コネクタ16が差込口に差込接続されると、電力系統100から住宅盤4及び充電装置1を介した電力(充電電力)の供給と、充電装置1の信号処理部10と電気自動車200の充電用ECU(電子制御ユニット)(図示せず)との間のパイロット信号の伝送とが可能になる。
 開閉部13は、分岐ブレーカ41から給電線150までの給電路に挿入される電磁リレー(図示せず)を有し、信号処理部10からの指示に応じて電磁リレーをオン・オフすることで前記給電路を開閉する。漏電検出部12は、給電路に流れる不平衡電流を零相変流器11で検出し、当該不平衡電流の検出レベルがしきい値を超えた場合に漏電が生じていると判断し、開閉部13を制御して給電路を開成させる。通信制御部14は、電力監視装置2の通信部22との間で通信(RS485規格のシリアル通信)を行う機能(通信機能)と、後述するように電気自動車200に供給される充電電流を調整する機能(調整機能)とを有している。このような通信制御部14は、マイクロコンピュータ及びシリアル通信用の集積回路などで構成される。なお、電力監視装置2では、充電装置1を介して電気自動車200に供給される電流(充電電流)を電流センサ212で計測している。
 ここで、図3のタイムチャートを参照して充電装置1の基本的な充電動作を説明する。まず、時刻t0に充電コネクタ16が電気自動車200の差込口に接続されると、信号処理部10から所定の電圧V1(例えば、V1=12ボルト)が伝送線151に印加される。そして、伝送線151に印加される電圧がコントロールパイロット(CPLT)信号(以下、パイロット信号と略す。)の伝送媒体となり、その電圧レベル及びデューティ比に応じて、後述するように充電用ECUと信号処理部10との間で種々の情報が授受される。
 充電用ECUは、電圧V1のパイロット信号を検知すると、パイロット信号の電圧レベルをV1からV2(例えば、V2=9ボルト)に降圧する(時刻t1~t2)。信号処理部10は、パイロット信号がV1からV2に低下したことを検出すると、所定周波数(例えば1キロヘルツ)のパルス状のパイロット信号を出力する(時刻t2~)。当該パイロット信号の信号レベルは±V1であるが、上限レベルはV2に降圧されている。パイロット信号のデューティ比は、充電電流の上限値(充電装置1の電流容量)を示し、充電装置1毎に予め設定されている。例えば、電流容量が12アンペアの場合にはデューティ比が20%、電流容量が30アンペアの場合にはデューティ比が50%に設定される。充電用ECUは、パイロット信号のデューティ比を検知して電流容量を認識すると、パイロット信号の電圧レベルをV2からV3(例えば、6V)に降圧する(時刻t3)。信号処理部10は、パイロット信号の信号レベルがV2からV3に低下したことを検知すると、開閉部13を閉成して充電電力の供給を開始する。
 充電用ECUは電流容量に基づいて蓄電池の充電レベルを目標レベルまで充電するための電流値(≦電流容量)を設定し、電気自動車200に搭載されている充電器(図示せず)に充電指令を出力する。充電指令を受けた充電器は、充電用ECUが設定した電流値を超えないように充電電流を調整しながら蓄電池を充電する(時刻t3~)。充電用ECUは、蓄電池の充電レベルが目標レベルに達すると、充電器に充電終了指令を出力して蓄電池への充電を終了し、パイロット信号の電圧レベルをV3からV2に復帰させる(時刻t4)。充電器は、充電終了指令を受信すると蓄電池の充電を終了する。
 信号処理部10は、パイロット信号がV3からV2に変化したことを検出すると、開閉部13を開成して交流電力の供給を停止する。充電用ECUは、パイロット信号の電圧レベルを当初のV1に復帰させる(時刻t5)。信号処理部10は、パイロット信号の電圧レベルがV1に復帰すると、所定周波数の発振を停止してパイロット信号の電圧レベルをV1に維持して待機状態に戻る(時刻t6)。
 上述のように充電装置1は、電気自動車200への充電電力の供給を入切するとともに電気自動車200の充電用ECUに対して充電電流の上限値を指示することで電気自動車200に搭載されている蓄電池の充電を制御している。
 ところで、電気自動車200の充電には、通常、十数アンペア~数十アンペア程度の大きな充電電流が必要とされる。一方、通常の住宅では、主幹ブレーカ40(リミッタが設置されている場合はリミッタと主幹ブレーカ40)の定格電流が30アンペア~60アンペア程度に設定されている。したがって、電磁調理器やエアコンディショナのように消費電流の大きい負荷機器が使用されているときに電気自動車200を充電する場合、充電装置1に予め設定されている上限値まで充電電流が流れると、主幹ブレーカ40やリミッタがトリップしてしまう虞がある。
 そこで電力監視装置2の制御部20は、主幹ブレーカ40に流れる電流(全消費電流)が定格電流を超えた場合、充電電流の上限値を、現在の充電電流の電流値から全消費電流と定格電流の差を差し引いた電流値とする指令(調整指令)を通信部22から送信させる。なお、全消費電流は、充電電流と負荷機器の消費電流(負荷消費電流)の総和である。続いて、電力監視装置2の制御部20は、全消費電流が定格電流を下回る場合、全消費電流が定格電流を超えない限度内で、充電電流の上限値を高める指令を通信部22から送信させることもできる。ここで、充電電流の上限値を高めるのは、充電装置1毎に予め設定されている充電装置1の電流容量の限度内で行われる。ただし、制御部20は、電流計測部21で計測される充電電流(電流センサ212で検出される電流)がほぼゼロとみなせる場合、電気自動車200で充電が行われていないと判断して上限値の調整指令の通知を行わない。
 充電装置1においては、電力監視装置2から送信される前記調整指令を受信した通信制御部14が、信号処理部10に対して充電電流の上限値を調整指令で指示された上限値以下とするように指示する。そして、信号処理部10は通信制御部14からの指示を受けると、パイロット信号のデューティ比を減少させる。例えば、充電ケーブル15の電流容量が20アンペアである場合、当初50%であったデューティ比が40%~20%に減少され、結果的に充電電流の上限値が当初の20アンペアよりも低い値(例えば、10アンペア)に調整されることになる。
 電気自動車200の充電用ECUは、調整後の上限値に基づいて再度充電電流の電流値を設定して充電器に充電指令を出力する。当該充電指令を受けた充電器は、充電用ECUが設定した新たな電流値を超えないように充電電流を調整しながら蓄電池を充電する。その結果、電気自動車200に供給される充電電流が減少するので、全消費電流が主幹ブレーカ40の定格電流を超えてしまうことが回避できる。
 しかしながら、従来技術で説明したように、充電装置1が充電電流を減らすように電気自動車200に指示してから、実際に電気自動車200側で充電電流を減少させるまでに相当の遅延時間が生じる。例えば、図2(b)に示すように通信制御部14が調整指令を受信してからパイロット信号のデューティ比を変更するまでにT2時間を要し、電気自動車200がパイロット信号に応じて充電電流を減少させるまでにT3時間を要するとすれば、T1時間(=T2+T3)の遅延が生じる。その結果、主幹ブレーカ40には少なくともT1時間継続して過負荷電流が流れるので、遅延時間T1が引き外し動作時間を越えると主幹ブレーカ40がトリップしてしまう虞がある。しかも、電気自動車200の車種によって電気自動車200がパイロット信号に応じて充電電流を減少させるまでに要する時間T3が異なっている場合が多い。
 そこで本実施形態では、調整指令に応じて信号処理部10がパイロット信号のデューティ比を変更する場合(減少させる場合)、信号電圧をゼロボルトにすることでパイロット信号を一旦停止した後(T5時間経過後)に、パイロット信号を変更したデューティ比で電気自動車200の充電用ECUに送信する(図2(a)参照)。電気自動車200の充電用ECUは、パイロット信号が停止すると直ちに充電器に充電を中止させ、T5時間経過後にパイロット信号を受信すると、調整後の上限値に基づいて再度充電電流の電流値を設定して充電器に充電指令を出力する。当該充電指令を受けた充電器は、充電用ECUが設定した新たな電流値を超えないように充電電流を調整しながら蓄電池を充電する。この場合、充電用ECUがパイロット信号を受信してから充電電流を再開するまでにT6時間を要する。
 而して、上述のようにパイロット信号が一旦停止された場合、全消費電流が定格電流を超える時間は信号処理部10がパイロット信号を停止するまでに要する時間T4のみとなり、電気自動車200における処理時間T3の影響を受けない。故に、本実施形態の充電装置1によれば、電気自動車200の種類に関わらず、主幹ブレーカ40のトリップを回避しつつ充電電流を適切な値に調整することができる。
 ところで、充電装置1から電気自動車200への充電を開始する際、充電電流の上限値が充電装置1の電流容量から決められた値(以下、基本上限値と呼ぶ。)に設定された場合、負荷消費電流の電流値によっては、充電開始直後に全消費電流が定格電流を超えてしまう虞がある。そこで、充電開始時においては、基本上限値よりも低い上限値から基本上限値まで徐々に上限値を上げるように、信号処理部10がパイロット信号のデューティ比を一定の比率で増加させることが好ましい(図4参照)。そして、上限値の上昇途中で全消費電流が定格電流を超えてしまった場合、信号処理部10は、電力監視装置2からの指示に応じて、上限値を下げるようにパイロット信号のデューティ比を調整する。
 上述のようにブレーカと電気車両との間に挿入され、前記電気車両に対して充電電流の上限値を指示する電気車両用充電装置において、前記電気車両との間で電圧信号によって前記上限値の情報を伝送する伝送手段と、前記ブレーカに流れる電流の電流値に応じて前記上限値の調整を前記伝送手段に指示する調整手段とを備え、前記伝送手段は、充電開始時において前記上限値を徐々に上昇させることが好ましい。このようにすれば、充電開始時におけるブレーカ(主幹ブレーカ40)のトリップを確実に回避することができる。
 ここで、上述の実施形態の内容は互いに組み合わせて行うことができる。
 以上、本発明の好ましい実施形態が説明されているが、本発明はこれらの特定の実施形態に限られるものではなく、請求範囲の範疇から離脱しない多様な変更及び変形が可能であり、それも本発明の範疇内に属する。
Hereinafter, an electric vehicle charging device (hereinafter referred to as a charging device) that is installed in a detached house and uses an electric power supplied from an electric power system to charge an electric vehicle and a system therefor. An embodiment to which the idea is applied will be described in detail with reference to the drawings. The same or similar parts throughout the drawings are denoted by the same reference numerals, and the description thereof is omitted. However, the electric vehicle is not limited to an electric vehicle, and may be, for example, a battery-type forklift as described in the related art.
As shown in FIG. 1, single-phase, three-wire AC power is supplied from a power system 100 to a house via a residential distribution board (housing board) 4. The housing board 4 has a main breaker 40 whose primary side is connected to the power system 100 and a plurality of branch breakers 41 branched and connected to the secondary side of the main breaker 40. However, a limiter (current limiter) may be inserted on the primary side of the main breaker 40. In addition, although illustration is abbreviate | omitted, an outlet and load (a lighting fixture, an electromagnetic cooker, an air conditioner etc.) are connected to the secondary side of each branch breaker 41 via an indoor wiring.
The electric vehicle charging system of the present embodiment includes a charging device 1 and a power monitoring device 2 as shown in FIG.
The power monitoring device 2 includes a control unit 20, a current measurement unit 21, a communication unit 22, and the like. The current measuring unit 21 measures the currents flowing through two wires other than the neutral wire among the three wires connected to the primary side of the main breaker 40 using current sensors 210 and 211, respectively. Is output to the control unit 20. The control unit 20 includes a microcomputer as a main component, and based on the current value measured by the current measurement unit 21 and the measured value (voltage value) of the primary side voltage (input voltage) of the main breaker 40, the power system 100 The instantaneous value or integrated value of the power supplied from the power supply (supply power) is calculated. The communication unit 22 communicates with the charging device 1 and performs, for example, serial communication conforming to the RS485 standard. However, the communication method of the communication unit 22 is not limited to the RS485 standard, and may be power line carrier communication or wireless communication (for example, low power wireless communication).
The charging device 1 includes a signal processing unit (transmission unit) 10, a zero-phase current transformer 11, a leakage detection unit 12, an opening / closing unit 13, a communication control unit (adjustment unit) 14, a charging cable 15, a charging connector 16, and the like. The charging device 1 is installed near a parking space (garage) of the electric vehicle 200 and is one of branch circuits branched by the branch breaker 41 of the housing board 4 (in the example of FIG. 1, the branch breaker 41 at the lower right end). ). The charging cable 15 is formed by covering a power supply line 150 through which a supply current (charging current) to the electric vehicle 200 flows and a transmission line 151 through which a pilot signal to be described later is transmitted with an insulating sheath. Is provided. The charging connector 16 is inserted and connected to an insertion port (inlet) provided in the vehicle body of the electric vehicle 200 so as to be freely inserted and removed. Then, when the charging connector 16 is plugged into the insertion port, power (charging power) is supplied from the power system 100 via the housing panel 4 and the charging device 1, and the signal processing unit 10 of the charging device 1 and the electricity The pilot signal can be transmitted to and from the charging ECU (electronic control unit) (not shown) of the automobile 200.
The opening / closing unit 13 has an electromagnetic relay (not shown) inserted in the power supply path from the branch breaker 41 to the power supply line 150, and turns on / off the electromagnetic relay according to an instruction from the signal processing unit 10. Open and close the feeding path. The leakage detection unit 12 detects the unbalanced current flowing in the power supply path with the zero-phase current transformer 11, determines that a leakage has occurred when the detection level of the unbalanced current exceeds a threshold, The power supply path is opened by controlling the unit 13. The communication control unit 14 adjusts a function (communication function) for performing communication (RS485 standard serial communication) with the communication unit 22 of the power monitoring device 2 and a charging current supplied to the electric vehicle 200 as described later. Function (adjustment function). Such a communication control unit 14 includes a microcomputer and an integrated circuit for serial communication. In the power monitoring device 2, a current (charging current) supplied to the electric vehicle 200 via the charging device 1 is measured by the current sensor 212.
Here, the basic charging operation of the charging apparatus 1 will be described with reference to the time chart of FIG. First, when the charging connector 16 is connected to the insertion port of the electric vehicle 200 at time t <b> 0, a predetermined voltage V <b> 1 (for example, V <b> 1 = 12 volts) is applied to the transmission line 151 from the signal processing unit 10. The voltage applied to the transmission line 151 serves as a transmission medium for a control pilot (CPLT) signal (hereinafter abbreviated as a pilot signal). Depending on the voltage level and the duty ratio, the charging ECU and the signal will be described later. Various information is exchanged with the processing unit 10.
When the charging ECU detects the pilot signal of voltage V1, it lowers the voltage level of the pilot signal from V1 to V2 (for example, V2 = 9 volts) (time t1 to t2). When detecting that the pilot signal has decreased from V1 to V2, the signal processing unit 10 outputs a pulsed pilot signal having a predetermined frequency (for example, 1 kilohertz) (from time t2). The signal level of the pilot signal is ± V1, but the upper limit level is stepped down to V2. The duty ratio of the pilot signal indicates an upper limit value of the charging current (current capacity of the charging device 1), and is set in advance for each charging device 1. For example, when the current capacity is 12 amperes, the duty ratio is set to 20%, and when the current capacity is 30 amperes, the duty ratio is set to 50%. When the charging ECU detects the duty ratio of the pilot signal and recognizes the current capacity, the charging ECU reduces the voltage level of the pilot signal from V2 to V3 (for example, 6V) (time t3). When the signal processing unit 10 detects that the signal level of the pilot signal has decreased from V2 to V3, the signal processing unit 10 closes the opening / closing unit 13 and starts supplying charging power.
The charging ECU sets a current value (≦ current capacity) for charging the storage battery to the target level based on the current capacity, and instructs a charger (not shown) mounted on the electric vehicle 200 to charge the battery. Is output. The charger that has received the charging command charges the storage battery while adjusting the charging current so as not to exceed the current value set by the charging ECU (from time t3). When the charging level of the storage battery reaches the target level, the charging ECU outputs a charging end command to the charger to end the charging of the storage battery, and returns the voltage level of the pilot signal from V3 to V2 (time t4). . When the charger receives the charging end command, the charger ends the charging of the storage battery.
When the signal processing unit 10 detects that the pilot signal has changed from V3 to V2, the signal processing unit 10 opens the opening / closing unit 13 and stops the supply of AC power. The charging ECU returns the voltage level of the pilot signal to the original V1 (time t5). When the voltage level of the pilot signal returns to V1, the signal processing unit 10 stops oscillation at a predetermined frequency, maintains the voltage level of the pilot signal at V1, and returns to the standby state (time t6).
As described above, the charging device 1 is mounted on the electric vehicle 200 by turning on / off the supply of charging power to the electric vehicle 200 and instructing the charging ECU of the electric vehicle 200 to the upper limit value of the charging current. The charging of the storage battery is controlled.
By the way, charging the electric vehicle 200 usually requires a large charging current of about several tens of amperes to several tens of amperes. On the other hand, in a normal house, the rated current of the main breaker 40 (limiter and main breaker 40 when the limiter is installed) is set to about 30 to 60 amperes. Therefore, when charging the electric vehicle 200 when a load device with large current consumption such as an electromagnetic cooker or an air conditioner is used, the charging current flows up to an upper limit value set in advance in the charging device 1. The main breaker 40 and the limiter may trip.
Therefore, when the current (total current consumption) flowing through the main breaker 40 exceeds the rated current, the control unit 20 of the power monitoring device 2 sets the upper limit value of the charging current from the current value of the current charging current to the total current consumption and the rated current. A command (adjustment command) for making a current value obtained by subtracting the current difference is transmitted from the communication unit 22. The total consumption current is the sum of the charging current and the consumption current of the load device (load consumption current). Subsequently, when the total current consumption is lower than the rated current, the control unit 20 of the power monitoring apparatus 2 transmits a command for increasing the upper limit value of the charging current from the communication unit 22 within a limit where the total current consumption does not exceed the rated current. It can also be made. Here, the upper limit value of the charging current is increased within the limit of the current capacity of the charging device 1 preset for each charging device 1. However, the control unit 20 determines that the electric vehicle 200 is not charged when the charging current measured by the current measuring unit 21 (current detected by the current sensor 212) can be regarded as almost zero, and the upper limit value. The adjustment command is not notified.
In the charging device 1, the communication control unit 14 that has received the adjustment command transmitted from the power monitoring device 2 sets the upper limit value of the charging current to the signal processing unit 10 below the upper limit value specified by the adjustment command. To instruct. When receiving an instruction from the communication control unit 14, the signal processing unit 10 decreases the duty ratio of the pilot signal. For example, when the current capacity of the charging cable 15 is 20 amperes, the duty ratio which was 50% at the beginning is reduced to 40% to 20%, and as a result, the upper limit value of the charging current is lower than the initial 20 amperes. (For example, 10 amperes).
The charging ECU of the electric vehicle 200 sets the current value of the charging current again based on the adjusted upper limit value, and outputs a charging command to the charger. The charger that has received the charging command charges the storage battery while adjusting the charging current so as not to exceed the new current value set by the charging ECU. As a result, since the charging current supplied to the electric vehicle 200 decreases, it can be avoided that the total current consumption exceeds the rated current of the main breaker 40.
However, as described in the related art, there is a considerable delay time from when the charging apparatus 1 instructs the electric vehicle 200 to reduce the charging current until the charging current is actually reduced on the electric vehicle 200 side. For example, as shown in FIG. 2B, it takes T2 time from when the communication control unit 14 receives the adjustment command until the duty ratio of the pilot signal is changed, and the electric vehicle 200 is charged according to the pilot signal. If it takes T3 time to decrease, a delay of T1 time (= T2 + T3) occurs. As a result, since the overload current continues to flow through the main breaker 40 for at least T1, the main breaker 40 may trip when the delay time T1 exceeds the trip time. In addition, the time T3 required for the electric vehicle 200 to reduce the charging current in accordance with the pilot signal is often different depending on the type of the electric vehicle 200.
Therefore, in the present embodiment, when the signal processing unit 10 changes (decreases) the pilot signal duty ratio according to the adjustment command, the pilot signal is temporarily stopped by setting the signal voltage to zero volts (T5 time elapses). Later, the pilot signal is transmitted to the charging ECU of the electric vehicle 200 with the changed duty ratio (see FIG. 2A). When the pilot signal stops, the charging ECU of the electric vehicle 200 causes the charger to stop charging. When the pilot signal is received after the elapse of T5 time, the charging ECU sets the charging current value again based on the adjusted upper limit value. Output a charge command to the charger. The charger that has received the charging command charges the storage battery while adjusting the charging current so as not to exceed the new current value set by the charging ECU. In this case, it takes T6 time from when the charging ECU receives the pilot signal to restart the charging current.
Thus, when the pilot signal is temporarily stopped as described above, the time when the total current consumption exceeds the rated current is only the time T4 required for the signal processing unit 10 to stop the pilot signal, and the processing in the electric vehicle 200 is performed. Unaffected by time T3. Therefore, according to the charging device 1 of the present embodiment, the charging current can be adjusted to an appropriate value while avoiding tripping of the main breaker 40 regardless of the type of the electric vehicle 200.
By the way, when charging from the charging device 1 to the electric vehicle 200 is started, the upper limit value of the charging current is set to a value determined from the current capacity of the charging device 1 (hereinafter referred to as a basic upper limit value). Depending on the current value of the load current consumption, the total current consumption may exceed the rated current immediately after the start of charging. Therefore, at the start of charging, it is preferable that the signal processor 10 increases the duty ratio of the pilot signal at a constant ratio so that the upper limit value is gradually increased from the upper limit value lower than the basic upper limit value to the basic upper limit value. (See FIG. 4). If the total current consumption exceeds the rated current while the upper limit value is increasing, the signal processing unit 10 sets the duty ratio of the pilot signal so as to decrease the upper limit value in response to an instruction from the power monitoring device 2. adjust.
In the charging device for an electric vehicle that is inserted between the breaker and the electric vehicle as described above and instructs the upper limit value of the charging current to the electric vehicle, the upper limit value is determined by a voltage signal with the electric vehicle. Transmission means for transmitting information; and adjustment means for instructing the transmission means to adjust the upper limit value in accordance with a current value of a current flowing through the breaker, wherein the transmission means sets the upper limit value at the start of charging. It is preferable to raise gradually. In this way, tripping of the breaker (main breaker 40) at the start of charging can be reliably avoided.
Here, the contents of the above-described embodiments can be combined with each other.
The preferred embodiments of the present invention have been described above, but the present invention is not limited to these specific embodiments, and various modifications and variations that do not depart from the scope of the claims are possible. It belongs to the category of the present invention.

Claims (3)

  1.  ブレーカと電気車両との間に挿入され、前記電気車両に対して充電電流の上限値を指示する電気車両用充電装置において、
     前記電気車両との間で電圧信号によって前記上限値の情報を伝送する伝送手段と、
     前記ブレーカに流れる電流の電流値に応じて前記上限値の調整を前記伝送手段に指示する調整手段とを備え、
     前記伝送手段は、前記上限値を下げる場合、前記電圧信号を一旦停止した後に、調整後の前記上限値の情報を前記伝送手段から前記電気車両に伝送することを特徴とする電気車両用充電装置。
    In the charging device for an electric vehicle, which is inserted between the breaker and the electric vehicle and instructs the upper limit value of the charging current to the electric vehicle.
    Transmission means for transmitting the information on the upper limit value with a voltage signal to and from the electric vehicle;
    Adjusting means for instructing the transmission means to adjust the upper limit value according to the current value of the current flowing through the breaker;
    When the transmission means lowers the upper limit value, the voltage signal is temporarily stopped, and then the adjusted upper limit value information is transmitted from the transmission means to the electric vehicle. .
  2.  前記伝送手段は、充電開始時の充電電流を基本上限値よりも低い値から前記基本上限値まで徐々に上げることを特徴とする請求項1に記載の電気車両用充電装置。 The charging device for an electric vehicle according to claim 1, wherein the transmission means gradually increases a charging current at the start of charging from a value lower than a basic upper limit value to the basic upper limit value.
  3.  請求項1の電気車両用充電装置と、
     前記ブレーカに流れる電流を監視し、前記電流が前記ブレーカの定格電流を越えた場合に前記上限値を下げるように前記調整手段に指示する電力監視装置とを有することを特徴とする電気車両用充電システム。
    An electric vehicle charging device according to claim 1;
    And a power monitoring device that monitors the current flowing through the breaker and instructs the adjusting means to lower the upper limit when the current exceeds a rated current of the breaker. system.
PCT/IB2012/001612 2011-08-31 2012-08-22 Charging device for electric vehicle and charging system for electric vehicle WO2013030641A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280026209.4A CN103597705B (en) 2011-08-31 2012-08-22 Electric vehicles charging device and electric vehicles charging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011189156A JP5793672B2 (en) 2011-08-31 2011-08-31 Electric vehicle charging device and electric vehicle charging system
JP2011-189156 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013030641A1 true WO2013030641A1 (en) 2013-03-07

Family

ID=47755399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/001612 WO2013030641A1 (en) 2011-08-31 2012-08-22 Charging device for electric vehicle and charging system for electric vehicle

Country Status (5)

Country Link
JP (1) JP5793672B2 (en)
CN (1) CN103597705B (en)
MY (1) MY163747A (en)
TW (1) TWI486271B (en)
WO (1) WO2013030641A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3625868A4 (en) * 2017-05-16 2020-11-18 Hubbell Incorporated Electric vehicle charger with load shedding
CN112311076A (en) * 2019-08-02 2021-02-02 松下知识产权经营株式会社 Power supply device, power supply system, power supply method, and recording medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156124B2 (en) * 2013-12-19 2017-07-05 トヨタ自動車株式会社 In-vehicle communication control device
CN105932739A (en) * 2016-06-01 2016-09-07 肇庆高新区凯盈顺汽车设计有限公司 Charging device for electric automobile
JP2020115723A (en) * 2019-01-18 2020-07-30 日東工業株式会社 Vehicle charging system
DE102020109932A1 (en) * 2020-04-09 2021-10-14 Aesculap Ag Adaptive tool operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141924A (en) * 2006-12-05 2008-06-19 Hitachi Ltd On-vehicle battery charger, on-vehicle battery apparatus and on-vehicle battery charging method
JP2010004674A (en) * 2008-06-20 2010-01-07 Fujitsu Ten Ltd Electronic control device
JP2010124538A (en) * 2008-11-17 2010-06-03 Toyota Motor Corp Charging cable for electric vehicle and method of controlling charging cable
JP2010187453A (en) * 2009-02-11 2010-08-26 Chubu Electric Power Co Inc Charging system for collective housing, and charging control device
JP2011019363A (en) * 2009-07-10 2011-01-27 Panasonic Corp Electrical apparatus with charging means, power supply optional device, control method for the electrical apparatus with charging means, and program for the control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037020A (en) * 1989-06-02 1991-01-14 Toshiba Corp Power supply controller
JPH0622454A (en) * 1992-06-30 1994-01-28 Matsushita Electric Works Ltd Power supply controller
JP2732213B2 (en) * 1993-12-28 1998-03-25 東京瓦斯株式会社 Power supply cutoff system
KR100421094B1 (en) * 2001-07-27 2004-03-04 발레오만도전장시스템스코리아 주식회사 An outward form Regulator of Alternator for car
JP5491847B2 (en) * 2009-12-21 2014-05-14 パナソニック株式会社 Electric vehicle power supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141924A (en) * 2006-12-05 2008-06-19 Hitachi Ltd On-vehicle battery charger, on-vehicle battery apparatus and on-vehicle battery charging method
JP2010004674A (en) * 2008-06-20 2010-01-07 Fujitsu Ten Ltd Electronic control device
JP2010124538A (en) * 2008-11-17 2010-06-03 Toyota Motor Corp Charging cable for electric vehicle and method of controlling charging cable
JP2010187453A (en) * 2009-02-11 2010-08-26 Chubu Electric Power Co Inc Charging system for collective housing, and charging control device
JP2011019363A (en) * 2009-07-10 2011-01-27 Panasonic Corp Electrical apparatus with charging means, power supply optional device, control method for the electrical apparatus with charging means, and program for the control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3625868A4 (en) * 2017-05-16 2020-11-18 Hubbell Incorporated Electric vehicle charger with load shedding
US11376984B2 (en) 2017-05-16 2022-07-05 Hubbell Incorporated Electric vehicle charger with load shedding
CN112311076A (en) * 2019-08-02 2021-02-02 松下知识产权经营株式会社 Power supply device, power supply system, power supply method, and recording medium
CN112311076B (en) * 2019-08-02 2024-03-15 松下知识产权经营株式会社 Power supply device, power supply system, power supply method, and recording medium

Also Published As

Publication number Publication date
TW201318898A (en) 2013-05-16
JP5793672B2 (en) 2015-10-14
JP2013051846A (en) 2013-03-14
CN103597705B (en) 2016-01-20
MY163747A (en) 2017-10-31
CN103597705A (en) 2014-02-19
TWI486271B (en) 2015-06-01

Similar Documents

Publication Publication Date Title
TWI429546B (en) Electrical power feeding system for electrical vehicle
WO2013030641A1 (en) Charging device for electric vehicle and charging system for electric vehicle
US8633678B2 (en) Electric vehicle supply equipment with over-current protection
JP6012144B2 (en) Charge control system
JP6083553B2 (en) Electric vehicle charging device
JP5877370B2 (en) Electric vehicle charging device and electric vehicle charging system
CN102163872B (en) Method and apparatus for providing uninterruptible power
US20170057369A1 (en) Power supply system for charging electric vehicles
US20160075246A1 (en) Method of branch circuit capacity utilization for electric vehicle charging
KR101821007B1 (en) Recharging device and recharging method for vehicle
JP2015173592A (en) Distribution board device
JP2013138535A (en) Charge control system
JP2014128181A (en) Network type charge system and charge facility
WO2012132459A1 (en) Vehicle charging device
EP2498361A1 (en) Power distribution system for building and protection method for main line thereof
WO2023205430A1 (en) Electric vehicle charging station having advanced metering system
JP5834245B2 (en) Charge control device and charge control system
JP5906471B2 (en) Power monitoring apparatus and charging control system
JP2021005938A (en) Power storage device and power storage system having the same
JP2010086791A (en) Wiring apparatus
WO2013020575A1 (en) An electronic protection device for an electric vehicle charging device.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828723

Country of ref document: EP

Kind code of ref document: A1