WO2013030470A1 - Système de fabrication d'un matériau cristallin par cristallisation dirigée muni d'une source de chaleur additionnelle latérale - Google Patents

Système de fabrication d'un matériau cristallin par cristallisation dirigée muni d'une source de chaleur additionnelle latérale Download PDF

Info

Publication number
WO2013030470A1
WO2013030470A1 PCT/FR2012/000346 FR2012000346W WO2013030470A1 WO 2013030470 A1 WO2013030470 A1 WO 2013030470A1 FR 2012000346 W FR2012000346 W FR 2012000346W WO 2013030470 A1 WO2013030470 A1 WO 2013030470A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
heating device
liquid
additional
thermal gradient
Prior art date
Application number
PCT/FR2012/000346
Other languages
English (en)
Other versions
WO2013030470A8 (fr
Inventor
Jean-Paul Garandet
Anis Jouini
David Pelletier
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to CN201280052983.2A priority Critical patent/CN103890240B/zh
Priority to KR1020147008215A priority patent/KR20140062093A/ko
Priority to CA2845068A priority patent/CA2845068A1/fr
Priority to BR112014003988A priority patent/BR112014003988A2/pt
Priority to JP2014527714A priority patent/JP6121422B2/ja
Priority to US14/240,818 priority patent/US9938633B2/en
Priority to EP12762324.7A priority patent/EP2751309A1/fr
Publication of WO2013030470A1 publication Critical patent/WO2013030470A1/fr
Publication of WO2013030470A8 publication Critical patent/WO2013030470A8/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/007Mechanisms for moving either the charge or the heater
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/008Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method using centrifugal force to the charge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • C30B28/06Production of homogeneous polycrystalline material with defined structure from liquids by normal freezing or freezing under temperature gradient
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1092Shape defined by a solid member other than seed or product [e.g., Bridgman-Stockbarger]

Definitions

  • the invention relates to a system and a method for producing crystalline material by directed crystallization.
  • the invention applies in particular to semiconductor materials whose electrical conductivity in the liquid phase is higher than in solid phase.
  • the silicon used in the photovoltaic industry is mainly crystalline silicon of multi-crystalline structure, that is to say with monocrystalline grains without fixed orientation relative to each other and surrounded by grain boundaries. There is also a die using monocrystalline silicon, that is to say that a single grain forms the silicon ingot.
  • the growth of this type of material is carried out, for example, inside a crucible in a Bridgman type crystallization furnace or by means of the Czochralski growth technique.
  • the Bridgman technology makes it possible to define the shape of the ingot as a function of the shape of the crucible containing the molten material.
  • the ingots are crystallized in solidification furnaces directed within which the cooling of the bath of molten material is controlled by a mechanical drawing device, and alternatively, in the so-called "Gradient Freeze" technology, the cooling is controlled by decreasing the power delivered to the liquid phase.
  • the displacement of the liquid / solid interface in the crucible comes from the modulation of the heat delivered and the heat extracted in the different parts of the crucible.
  • WO2009 / 014961 discloses a device for manufacturing silicon in a crucible from a seed. In addition to a primary heating for heating the material present in the crucible, this document teaches the use of additional heating placed around the crucible in order to modify the shape of the solid / liquid interface.
  • Crystalline defects degrade the crystallographic quality of the materials used in photovoltaic panels, which results in a reduction in the energy conversion efficiency of the final photovoltaic device.
  • Another technique consists in defining an air gap between the material to be crystallized and the crucible, for example by means of an electromagnetic field coming from inductive coils. Such teaching is present in US2010 / 0148403. Object of the invention
  • crucible provided with a bottom and side walls for containing the material to be solidified
  • an additional inductive heating device disposed at the level of the side walls of the crucible and mounted to move relative to the crucible in the direction perpendicular to the bottom of the crucible, and configured to heat a portion of the material located near the triple line between the liquid material , the solidified material and the crucible so that the interface between the liquid material and the solidified material forms in the vicinity of said triple line a convex meniscus.
  • FIG. 1 shows schematically a cross section of a particular embodiment of a directed crystallization system
  • FIG. 2 schematically shows a cross section of a particular embodiment of a melting / crystallization device.
  • the directed crystallization system illustrated in Figure 1 comprises a crucible 1 provided with a bottom 2 and side walls 3.
  • the shape of the bottom of the crucible 1 is arbitrary.
  • the section that is to say the shape drawn by the bottom 2 of the crucible 1 may be square, rectangular or cylindrical.
  • the crucible 1 has a rectangular section or square to facilitate the realization of photovoltaic panels having a good occupation of the available surface by the crystalline substrate.
  • the side walls 3 are perpendicular to the bottom 2 of the crucible 1 or substantially perpendicular to the bottom 2.
  • the crucible 1 is made of a material resistant to the high temperatures experienced during the melting and solidification phases.
  • the crucible 1 is made of silica, but it can also be made of graphite, silicon carbide or a mixture of these materials.
  • the crucible 1 is impervious to the material to be solidified, that is to say that the bottom 2 and the side walls 3 do not allow the output of the molten material.
  • the crucible can be monobloc, even monolithic that is to say made of the same material.
  • the directed crystallization system comprises a device for generating a main thermal gradient in a direction perpendicular or substantially perpendicular to the bottom 2 of the crucible 1, that is to say deviating a few degrees from the perpendicular direction.
  • the gradient is represented by an arrow X in FIG.
  • the device for generating the main thermal gradient is configured to begin solidification from the bottom 2 of the crucible 1.
  • the interface "liquid material / solidified material” that is to say the interface between the liquid phase and the solid phase of the material moves from the bottom 2 of the crucible 1 to the top of the crucible 1 in the direction of the X arrow.
  • the device for generating the thermal gradient can be formed by any means adapted, for example, by a main heating device 4 placed above the crucible 1 and associated with a cooling device 5 placed under the bottom 2 of the crucible 1. It is still possible to use a lateral heating device 4 which faces the side walls 3 of the crucible 1. The The heating device is then capable of delivering different powers according to the height in the crucible 1. By way of example, during the crystallization phase, a greater power is delivered in the upper part of the crucible 1 in comparison with the power delivered for the bottom 2 of the crucible 1.
  • the main heating device may also be associated with a cooling device 5 placed under the crucible 1.
  • the heating device 4 is fixed and oriented vertically and defines a thermal gradient according to the height.
  • the crucible is movably mounted and moves in the thermal gradient imposed by the heater. Such an embodiment is illustrated in FIG.
  • the main heating device 4 is, for example, made in a resistive technology, a radiative technology or in an inductive technology.
  • the crucible 1 and the device for generating the main thermal gradient in the crucible are also configured to allow displacement of the liquid / solid interface inside the crucible 1.
  • the displacement of the liquid / solid interface takes place according to the direction X or substantially in the direction X perpendicular to the bottom 2 of the crucible 1. As indicated above, during crystallization, the liquid / solid interface moves away from the bottom 2 of the crucible 1.
  • the directed crystallization system comprises an additional inductive heating device 6 arranged facing at least one of the sidewalls 3 of the crucible 1 and configured to heat a portion of the localized crystalline material in contact with the side wall 3.
  • the directed crystallization system comprises an additional inductive heating device 6 disposed at the side walls 3 of the crucible 1 and configured to heat a portion of the crystalline material located in the vicinity of the triple line "liquid material / solidified material / crucible",
  • triple line is meant the line formed by the intersection between the interface "liquid material / solidified material” and the crucible.
  • the triple line is represented in the various figures by a point representative of the intersection between the crucible, the liquid phase and the solidified material.
  • the triple line runs along the lateral faces of the crucible.
  • the additional heating device is mounted to move relative to the crucible 1 in a direction perpendicular to the bottom 2 of the crucible 1. It is advantageously fixedly mounted relative to the main heating device 4.
  • the inductive heating device 6 is configured so that the heating of the portion of the material located in the vicinity of the triple line causes the formation by the liquid / solid interface, in the vicinity of the triple line of a convex meniscus.
  • the additional device 6 thus makes it possible to bend locally, towards the bottom of the crucible, the liquid / solid interface of the material at the level of the triple line.
  • Meniscus means a curved portion of the liquid / solid interface of the material considered localized near the triple line.
  • the meniscus is said to be convex when the interface has a positive curvature, that is to say when the center of curvature is located in the solid phase of the material.
  • the meniscus is then oriented downwards, that is to say towards the bottom of the crucible.
  • a concave meniscus is defined by a negative curvature, the center of curvature being located outside the solid phase of the material, especially in the liquid phase thereof.
  • a concave meniscus is then oriented upwards, that is to say in a direction opposite to the bottom of the crucible.
  • the inductive heating device 6 is configured to make the liquid / solid interface convex close to the side wall, that is to say to have a liquid / solid interface further from the bottom 2 of the crucible 1 in the center in comparison edge when the bottom 2 of the crucible 1 is plane. In other words, the height of the liquid / solid interface along the X axis is greater as one moves away from the side walls 3 in the meniscus. The inductive heating device 6 tends to bring the liquid / solid interface of the bottom of the crucible closer as one approaches the side wall.
  • the inductive heating device 6 is produced by at least one turn, for example made of graphite or silicon carbide.
  • the device 6 generates an additional thermal gradient that locally changes the main thermal gradient. This additional thermal gradient is perpendicular or substantially perpendicular to the side walls 3.
  • the inductive heater 6 may be disposed facing the solid phase, facing the liquid phase of the material and / or facing the liquid / solid interface of the material so as to obtain the modification of the temperature field in the crucible and thus obtain the desired curvature of the liquid / solid interface in the immediate vicinity of the side wall 3.
  • the heating device 6 is preferably facing the liquid part of the crystalline material, which makes it possible to limit the influence of the heat input in the crucible 1. It is particularly interesting to place the inductive coil facing the liquid phase material because the inductive influence characterized by the electromagnetic skin thickness is also smaller which makes it possible to better control the thickness of the heated zone and therefore the extent of the additional thermal gradient.
  • the positioning of the heating device facing the liquid phase takes advantage of the fact that the semiconductor materials have a greater electrical conductivity in the liquid phase than in the solid phase.
  • the solid phase is devoid of overlap by the heating device in order to reduce the influence of this additional heating on the main thermal gradient and therefore to limit the influence of this additional gradient on the formation of crystal defects of the type dislocations.
  • the inventors have observed that the localized heating of the liquid phase has a smaller influence than the localized heating of the solid phase.
  • the temperature field in the crucible is slightly disturbed because mainly the liquid portion of the material facing the coil is heated. This effect is all the more marked as the heating is arranged near the liquid / solid interface.
  • the inductive heating device 6 is associated with a device for displacing the heating device that is advantageously configured to place the heating device 6 facing the liquid material and the interface solid / liquid throughout the duration of the crystallization phase.
  • the distance separating the heating device 6 from the liquid / solid interface is defined so as to have an effect on the liquid and at the interface in order to obtain the desired curvature.
  • the distance depends on the depth of introduction of the heat into the crystalline material and thus on the feed conditions of the turn and the electrical properties of the heated material.
  • the displacement device of the additional heating device 6 is configured to place an inductive coil at a distance of between 1 and 20 mm with the triple line of the liquid interface. solid in the perpendicular direction X at the bottom 2 of the crucible 1.
  • the displacement device of the additional heating device 6 is configured to position the inductive coil, in operation, at a distance of between 1 and 10 mm from the triple line, to maintain the convex shape. meniscus.
  • the distance can be measured between the center of the inductive turn and the triple line, for example in the direction perpendicular to the bottom of the crucible.
  • the liquid / solid interface of the material may present locally in the vicinity of the triple line a form of concave meniscus, that is to say oriented upwards.
  • the inductive turn of the additional device 6 is then initially positioned facing the solid phase of the material, at a distance of between 1 and 20 mm from the triple line.
  • the inductive turn once activated, heats the part of the solid material that forms the concave meniscus and causes it to melt.
  • the curvature of the liquid / solid interface of the material in the vicinity of the triple line is then modified and becomes positive.
  • the interface thus forms a convex meniscus, that is to say, oriented downwards.
  • the inductive coil of the additional device 6 is then positioned facing the liquid phase of material. It is advantageously located at a distance of between 1 and 20 mm from the triple line, and preferably at a distance of between 1 and 10 mm from the latter in the X direction.
  • the inductive heating device 6 makes it possible to directly heat the material without first heating the crucible 1 in an electrically insulating crucible, as is the case with other heating techniques, for example resistive techniques. The influence on the main thermal gradient is then reduced.
  • the amount of heat provided in the crystalline material and the extent of this heat input into the crucible 1 are defined by means of the intensity of the current delivered, the frequency and the power flowing in the turn.
  • the location of the heat input in the crystalline material is related to the electromagnetic skin thickness.
  • the skin thickness varies according to (r 1 /) "1 ' 2 with ⁇ the electrical conductivity of the material considered and / the frequency of the electromagnetic field applied by the inductive coil.
  • the skin thickness is substantially equal to 1 cm for a frequency of 1 kHz and it is of the order of 1 mm for a frequency of 100 kHz.
  • the directed crystallization system comprises a circuit for applying a current in the heating device with a frequency of between 1 kHz and 100 kHz when the crystalline material is silicon.
  • the frequency range can be adapted according to the electrical conductivity of the materials and so as to work on a heat delivery in the crucible so that the skin thickness remains between 1 mm and 1 cm.
  • the inductive turns used are uncooled turns. This configuration avoids the introduction of a cold point near the crucible and avoids more difficult management of a cold point in a hot zone of the device.
  • the directed crystallization furnace comprises a device 8 for distributing the power delivered in the additional heating device 6 with respect to the device for creating the main thermal gradient.
  • This distribution device 8 is configured so that the additional heating device 6 receives between 5% and 35% of the power delivered in the device for creating the main thermal gradient.
  • the ratio between the power delivered in the inductive heating 6 and the power delivered in the main heating device 4 of the device for generating the thermal gradient is between 5% and 35%.
  • the effect of the additional thermal gradient is limited relative to the main thermal gradient while being large enough to significantly reduce the problems of parasitic germination from the side faces.
  • the power delivered in the inductive heating 6 represents between 10% and 20% of the power delivered in the main heating device 4 of the device for generating the thermal gradient in order to have an almost complete reduction of the parasite germination while maintaining a good control of crystal growth according to the thermal gradient.
  • the power delivered in the inductive heater 6 represents 15% of the power delivered in the main heating device 4 of the device for generating the thermal gradient.
  • the main heating device 4 is powerful enough to generate a main thermal gradient suitable for orienting the crystalline growth of the molten material in the case of monocrystalline or multicrystalline growth throughout the volume of the crucible.
  • the additional thermal gradient is also important enough to reduce the generation of equiaxial crystals on the edges or even to prevent the propagation of any equiaxial crystals having germinated on the edges of the crucible, because of the local curvature of the interface.
  • the inductive heating 6 mobile with the liquid / solid interface
  • the feed device of the different turns is configured to provide a variable power to the different turns so as to simulate the movement of the moving coil with the liquid / solid interface.
  • the additional inductive heating device 6 is fixedly mounted relative to the device for creating a main thermal gradient inside the crucible.
  • the position of the additional heating device is fixed within the thermal gradient.
  • the device for creating the main thermal gradient and the additional inductive heating device advantageously move identically relative to the crucible.
  • the device for generating the gradient is fixed just like the inductive heating device 6.
  • the heating device 6 is placed at a given isotherm, which imposes the position of the inductive heating compared to the liquid / solid interface.
  • the distance is fixed between the liquid / solid interface and the device 6 for a given crystalline material. In this case, it is the crucible that moves as shown in Figure 2 which facilitates the implementation.
  • the directed crystallization system is particularly advantageous when the crucible 1 has an edge between two successive side walls, for example in the case of a square or rectangular crucible.
  • the probability of obtaining parasitic grains is diminished on the edges and especially in the edges.
  • the turn of the device 6 it is preferable to modify the turn of the device 6 to modulate the power delivered by the turn in the crucible 1.
  • the section of the turn is reduced in the vicinity of the corners of the crucible 1 in comparison with the section which faces the flat or slightly curved parts of the lateral faces. In this way, the current density is increased which has the effect of increasing the curvature of the liquid / solid interface in the corners of the crucible 1.
  • the parasitic effects of crystallization related to the corners are lessened.
  • the inductive heater introduces a lateral thermal gradient from the walls of the crucible.
  • the lateral thermal gradient must generate stresses which results in the formation of crystallographic defects such as dislocations.
  • the inventors have observed that, contrary to commonly accepted ideas, the few existing defects are located at the extreme periphery of the ingot in a zone that is in any case unusable because it is systematically contaminated chemically by the impurities in the crucible.
  • the introduction of additional inductive heating thus makes it possible to improve the overall crystallographic quality of the ingot while locating defects on the periphery of the ingot in an unusable area. In the end, the crystallographic quality of the actual ingot is increased.
  • the directed crystallization system comprises a vertical furnace illustrated in FIG. 2.
  • the furnace comprises three zones, a hot zone at 1480 ° C., a cold zone at 1300 ° C. and the intermediate zone defining the gradient. thermal.
  • the main heating is obtained by means of a resistive device.
  • the power required to obtain the thermal gradient between the hot and cold zones is equal to 10kW.
  • the temperature control is carried out by means of type C thermocouples.
  • the distance separating the hot zone from the cold zone is equal to 10cm.
  • the crucible is square section type 35 * 35cm 2 .
  • the height of the side walls is equal to 80cm.
  • the drawing speed of the ingot is equal to 25mm / h.
  • the inductive heating device 6 is formed by a graphite coil having a diameter equal to 1 cm. The turn has a circular section. The center of the disc is placed 5mm above the liquid / solid interface. The coil is connected to a current generator which delivers a power equal to 1.5 kW. The frequency of the current is equal to 10kHz. In an alternative embodiment, the diameter of the coil is reduced to 8 mm in front of the four corners of the crucible over a distance of 1 cm.
  • the crucible provided with a bottom and side walls is at least partially filled with a material in the liquid phase 9.
  • the material may be melted in the device or in another device and then decanted.
  • a main thermal gradient is generated inside the crucible in the X direction perpendicular to the bottom 2 of the crucible 1 so as to have a displacement of the liquid / solid interface from the bottom 2 of the crucible 1.
  • An additional lateral thermal gradient is generated in the crucible in a direction parallel to the bottom 2 of the crucible 1.
  • the additional thermal gradient comes from at least one turn of the heating device 6.
  • the turn faces the liquid / solid interface and to the liquid phase to effectively bend the interface 9 by limiting the changes of the main thermal gradient in the rest of the material.
  • the lateral thermal gradient is located immediately after the side walls and moves with the liquid / solid interface so as to be disposed at the liquid / solid interface and in the liquid phase 9.
  • the amount of solid phase 11 increases in the crucible 1.
  • This type of process is compatible for producing monocrystalline or polycrystalline ingots. It can be used to form silicon ingots or other semiconductor materials.
  • the reduction of the crystallographic defects is obtained by means of the additional inductive heating 6 which can be placed on an edge of the crucible, on several edges of the crucible or on all the edges of the crucible according to the needs of the user. It is also very simple to change the shape of the ingot between two stages of crystallization, it is enough to change the crucible and if necessary the shape of the inductive coil of the heater 6.
  • the manufacturing method is particularly suitable for semiconductor materials which have a higher electrical conductivity in the liquid phase than in solid phase which limits the effect of inductive heating on the solidified material.
  • the solid / liquid interface is observed in order to determine its shape. If the latter is concave, the coil approaches the liquid / solid interface or is placed at the level of the triple line so that upon activation of the additional heating device, the solid / liquid interface becomes convex and the inductive coil is facing the liquid material without recovery with the solid phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

Le système de cristallisation comporte un creuset (1) muni d'un fond (2) et de parois latérales (3) destiné à contenir le matériau à solidifier et un dispositif (4) de création d'un gradient thermique principal à l'intérieur du creuset (1) dans une direction perpendiculaire au fond (2) du creuset (1). Un dispositif de chauffage inductif (6) additionnel est disposé au niveau des parois latérales (3) du creuset (1 ) face au matériau liquide et sans recouvrement avec la phase solide. Ce dispositif de chauffage inductif (6) additionnel est configuré pour chauffer une partie du matériau cristallin localisée au voisinage de la ligne triple entre le matériau liquide, le matériau solidifié et le creuset (1) de manière à ce que l'interface (10) entre le matériau liquide et le matériau solidifié forme un ménisque convexe au voisinage de la ligne triple.

Description

Système de fabrication d'un matériau cristallin par cristallisation dirigée muni d'une source de chaleur additionnelle latérale
Domaine technique de l'invention
L'invention concerne un système et un procédé de fabrication d'un matériau cristallin par cristallisation dirigée. L'invention s'applique en particulier aux matériaux semi-conducteurs dont la conductivité électrique en phase liquide est plus élevée qu'en phase solide.
État de la technique
Le silicium utilisé dans l'industrie photovoltaïque est majoritairement du silicium cristallisé de structure multi-cristalline, c'est-à-dire avec des grains monocristallins sans orientation fixe les uns par rapport aux autres et entourés par des joints de grains. Il existe également une filière utilisant du silicium monocristallin, c'est-à-dire qu'un seul grain forme le lingot de silicium. La croissance de ce type de matériau est réalisée, par exemple, à l'intérieur d'un creuset dans un four de cristallisation de type Bridgman ou au moyen de la technique de croissance Czochralski.
Une partie importante du silicium utilisé dans l'industrie photovoltaïque provient de la filière Czochralski. Cependant, il est important de constater que la technique de croissance Czochralski est habituellement limitée à la formation de lingots cylindriques ce qui est particulièrement problématique pour une utilisation dans le domaine du photovoltaïque où il est important d'augmenter la surface efficace du panneau photovoltaïque.
En revanche la technologie Bridgman permet de définir la forme du lingot en fonction de la forme du creuset contenant le matériau fondu. Dans la technologie Bridgman, les lingots sont cristallisés dans des fours de solidification dirigée à l'intérieur desquels le refroidissement du bain de matériau fondu est piloté par un dispositif de tirage mécanique, et alternativement, dans le technologie dite « Gradient Freeze », le refroidissement est piloté par la diminution de la puissance délivrée à la phase liquide. Le déplacement de l'interface liquide/solide dans le creuset provient de la modulation de la chaleur délivrée et de la chaleur extraite dans les différentes parties du creuset.
Le document WO2009/014961 décrit un dispositif de fabrication de silicium dans un creuset à partir d'un germe. En plus d'un chauffage primaire pour chauffer le matériau présent dans le creuset, ce document enseigne l'utilisation d'un chauffage additionnel placé autour du creuset afin de modifier la forme de l'interface solide/liquide.
Cependant, l'utilisation d'un creuset se traduit par une difficulté accrue dans la gestion des flux de chaleur à l'intérieur du four. Les parois latérales du creuset augmentent les risques de germination de défauts (cristaux parasites, macles) dans le lingot final. On observe régulièrement la présence de défauts cristallins qui proviennent d'un environnement physico-chimique particulier à la ligne triple creuset/matériau solide/matériau liquide.
Les défauts cristallins dégradent la qualité cristallographique des matériaux utilisés dans les panneaux photovoltaïques ce qui se traduit par une diminution du rendement de conversion énergétique du dispositif photovoltaïque final.
Une autre technique consiste à définir un entrefer entre le matériau à cristalliser et le creuset, par exemple au moyen d'un champ électromagnétique provenant de bobines inductives. Un tel enseignement est présent dans le document US2010/0148403. Objet de l'invention
On constate qu'il existe un besoin pour réaliser des lingots de matériau cristallin qui présentent une moins grande quantité de défauts cristallographiques.
On tend à combler ce besoin au moyen d'un système de fabrication d'un matériau cristallin par cristallisation dirigée comportant :
- un creuset muni d'un fond et de parois latérales destiné à contenir le matériau à solidifier,
- un dispositif de création d'un gradient thermique principal à l'intérieur du creuset dans une direction perpendiculaire au fond du creuset,
- un dispositif de chauffage inductif additionnel disposé au niveau des parois latérales du creuset et monté mobile par rapport au creuset selon la direction perpendiculaire au fond du creuset, et configuré pour chauffer une partie du matériau localisée au voisinage de la ligne triple entre le matériau liquide, le matériau solidifié et le creuset de manière à ce que l'interface entre le matériau liquide et le matériau solidifié forme au voisinage de ladite ligne triple un ménisque convexe.
On constate également qu'il existe un besoin de prévoir un procédé qui facilite la réalisation de lingots cristallins avec une faible concentration de défauts cristallographiques. On tend à combler ce besoin au moyen d'un procédé de fabrication d'un matériau cristallin par cristallisation dirigée comportant les étapes suivantes:
- prévoir un creuset muni d'un fond et une paroi latérale et au moins partiellement rempli par le matériau cristallin en phase liquide,
- générer un gradient thermique principal à l'intérieur du creuset dans une direction perpendiculaire au fond du creuset de manière à obtenir une solidification progressive du matériau suivant la direction perpendiculaire depuis le fond du creuset,
- chauffer, à l'aide d'un dispositif de chauffage inductif additionnel disposé au niveau des parois latérales du creuset et monté mobile par rapport au creuset selon ladite direction perpendiculaire, une partie du matériau localisée au voisinage de la ligne triple entre le matériau liquide, le matériau solidifié et le creuset, de manière à ce que l'interface entre le matériau liquide et le matériau solidifié forme au voisinage de ladite ligne triple un ménisque convexe.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre des modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- la figure 1 représente schématiquement une coupe transversale d'un mode particulier de réalisation d'un système de cristallisation dirigée;
- la figure 2 représente schématiquement une coupe transversale d'une variante particulière de réalisation d'un dispositif de fusion/cristallisation.
Description de modes particuliers de réalisation
Le système de cristallisation dirigée illustré à la figure 1 comporte un creuset 1 muni d'un fond 2 et de parois latérales 3. La forme du fond du creuset 1 est quelconque. A titre d'exemple, la section (c'est-à-dire la forme dessinée par le fond 2 du creuset 1 ) peut être carrée, rectangulaire ou cylindrique. De manière préférentielle, le creuset 1 présente une section rectangulaire ou carrée afin de faciliter la réalisation panneaux photovoltaïques présentant une bonne occupation de la surface disponible par le substrat cristallin.
Les parois latérales 3 sont perpendiculaires au fond 2 du creuset 1 ou sensiblement perpendiculaires au fond 2. Le creuset 1 est réalisé dans un matériau résistant aux fortes températures subies lors des phases de fusion et de solidification. De manière préférentielle, le creuset 1 est réalisé en silice, mais il peut également être réalisé en graphite, en carbure de silicium ou dans un mélange de ces matériaux.
Le creuset 1 est étanche au matériau à solidifier c'est-à-dire que le fond 2 et les parois latérales 3 ne permettent pas la sortie du matériau fondu. Le creuset peut être monobloc, voire monolithique c'est-à-dire réalisé en un même matériau.
Le système de cristallisation dirigée comporte un dispositif de génération d'un gradient thermique principal selon une direction perpendiculaire ou sensiblement perpendiculaire au fond 2 du creuset 1 , c'est-à-dire s'écartant de quelques degrés de la direction perpendiculaire. Le gradient est représenté par une flèche X sur la figure 1 . Le dispositif de génération du gradient thermique principal est configuré pour commencer la solidification depuis le fond 2 du creuset 1 . L'interface « matériau liquide / matériau solidifié » c'est-à-dire l'interface entre la phase liquide et la phase solide du matériau se déplace depuis le fond 2 du creuset 1 vers le haut du creuset 1 dans le sens de la flèche X.
Le dispositif de génération du gradient thermique peut être formé par tout moyen adapté, par exemple, par un dispositif de chauffage principal 4 placé au-dessus du creuset 1 et associé à un dispositif de refroidissement 5 placé sous le fond 2 du creuset 1 . Il est encore possible d'utiliser un dispositif de chauffage 4 latéral qui fait face aux parois latérales 3 du creuset 1 . Le dispositif de chauffage est alors capable de délivrer différentes puissances selon la hauteur dans le creuset 1. A titre d'exemple, lors de la phase de cristallisation une puissance plus importante est délivrée dans la partie supérieure du creuset 1 en comparaison de la puissance délivrée pour le fond 2 du creuset 1. Le dispositif de chauffage principal peut également être associé à un dispositif de refroidissement 5 disposé sous le creuset 1.
Dans encore un autre mode de réalisation, le dispositif de chauffage 4 est fixe et orienté verticalement et il définit un gradient thermique selon la hauteur. Le creuset est monté mobile et se déplace dans le gradient thermique imposé par le dispositif de chauffage. Un tel mode de réalisation est illustré à la figure 2.
Le dispositif de chauffage principal 4 est, par exemple, réalisé dans une technologie résistive, une technologie radiative ou dans une technologie inductive.
Le creuset 1 et le dispositif de génération du gradient thermique principal dans le creuset sont également configurés pour permettre un déplacement de l'interface liquide/solide à l'intérieur du creuset 1. Le déplacement de l'interface liquide/solide a lieu selon la direction X ou sensiblement selon la direction X perpendiculaire au fond 2 du creuset 1. Comme indiqué plus haut, lors de la cristallisation, l'interface liquide/solide s'éloigne du fond 2 du creuset 1.
Afin de réduire voire d'éviter la germination de cristaux parasites et plus particulièrement de monocristaux parasites depuis les parois latérales du creuset, le système de cristallisation dirigée comporte un dispositif de chauffage additionnel 6 inductif disposé face à au moins une des parois latérales 3 du creuset 1 et configuré pour chauffer une partie du matériau cristallin localisée en contact avec la paroi latérale 3. En d'autres termes, le système de cristallisation dirigée comporte un dispositif de chauffage additionnel 6 inductif disposé au niveau des parois latérales 3 du creuset 1 et configuré pour chauffer une partie du matériau cristallin localisée au voisinage de la ligne triple « matériau liquide/matériau solidifié/creuset »,
Par ligne triple, on entend la ligne formée par l'intersection entre l'interface « matériau liquide/matériau solidifié » et le creuset. La ligne triple est représentée sur les différentes figures par un point représentatif de l'intersection entre le creuset, la phase liquide et le matériau solidifié. La ligne triple court le long des faces latérales du creuset.
Afin de pouvoir suivre le déplacement de l'interface liquide/solide du matériau au fur et à mesure de la solidification de celui-ci, le dispositif de chauffage additionnel est monté mobile par rapport au creuset 1 selon une direction perpendiculaire au fond 2 du creuset 1. Il est avantageusement monté fixe par rapport au dispositif de chauffage principal 4.
Le dispositif de chauffage 6 inductif est configuré pour que le chauffage de la partie du matériau localisée au voisinage de la ligne triple entraine la formation par l'interface liquide/solide, au voisinage de la ligne triple d'un ménisque convexe. Le dispositif additionnel 6 permet ainsi de courber localement, vers le fond du creuset, l'interface liquide/solide du matériau au niveau de la ligne triple. Par ménisque, on entend une partie courbe de l'interface liquide/solide du matériau considéré localisée au voisinage de la ligne triple.
Le ménisque est dit convexe lorsque l'interface présente une courbure positive, c'est-à-dire lorsque le centre de courbure est situé dans la phase solide du matériau. Le ménisque est alors orienté vers le bas, c'est-à-dire vers le fond du creuset. A l'inverse un ménisque concave est défini par une courbure négative, le centre de courbure étant situé en dehors de la phase solide du matériau, notamment dans la phase liquide de celui-ci. Un ménisque concave est alors orienté vers le haut, c'est-à-dire dans une direction opposée au fond du creuset.
Le dispositif de chauffage 6 inductif est configuré pour rendre l'interface liquide/solide convexe à proximité de la paroi latérale, c'est-à-dire pour avoir une interface liquide/solide plus éloignée du fond 2 du creuset 1 au centre en comparaison du bord lorsque le fond 2 du creuset 1 est plan. En d'autres termes, la hauteur de l'interface liquide/solide selon l'axe X est plus importante au fur et à mesure que l'on s'éloigne des parois latérales 3 dans le ménisque. Le dispositif de chauffage 6 inductif tend à rapprocher l'interface liquide/solide du fond du creuset au fur et à mesure que l'on se rapproche de la paroi latérale.
Le dispositif de chauffage 6 inductif est réalisé par au moins une spire, par exemple en graphite ou en carbure de silicium. Le dispositif 6 génère un gradient thermique additionnel qui vient localement modifier le gradient thermique principal. Ce gradient thermique additionnel est perpendiculaire ou sensiblement perpendiculaire aux parois latérales 3.
Le dispositif de chauffage 6 inductif peut être disposé face à la phase solide, face à la phase liquide du matériau et/ou face à l'interface liquide/solide du matériau de manière à obtenir la modification du champ de température dans le creuset et ainsi obtenir la courbure recherchée de l'interface liquide/solide à proximité immédiate de la paroi latérale 3.
Le dispositif de chauffage 6 est préférentiellement face à la partie liquide du matériau cristallin, ce qui permet de limiter l'influence de l'apport de chaleur dans le creuset 1 . Il est particulièrement intéressant de placer la spire inductive face au matériau en phase liquide car l'influence inductive caractérisée par l'épaisseur de peau électromagnétique est également plus réduite ce qui permet de mieux maîtriser l'épaisseur de la zone chauffée et donc l'étendue du gradient thermique additionnel. Le positionnement du dispositif de chauffage face à la phase liquide profite du fait que les matériaux semi-conducteurs présentent une conductivité électrique plus importante en phase liquide qu'en phase solide. De manière préférentielle, la phase solide est dépourvue de recouvrement par le dispositif de chauffage afin de réduire l'influence de ce chauffage additionnel sur le gradient thermique principal et donc de limiter l'influence de ce gradient additionnel sur la formation des défauts cristallins de type dislocations.
Bien que la convection n'existe que dans la phase liquide, les inventeurs ont observé que le chauffage localisé de la phase liquide a une influence plus réduite que le chauffage localisé de la phase solide. Pour le cas de creusets en silice, électriquement isolants, le champ de température dans le creuset est peu perturbé car principalement la partie liquide du matériau face à la spire est chauffée. Cet effet est d'autant plus marqué que le chauffage est disposé près de l'interface liquide/solide. Afin de suivre la position de l'interface liquide/solide, le dispositif de chauffage 6 inductif est associé à un dispositif de déplacement du dispositif de chauffage configuré, avantageusement, pour placer le dispositif de chauffage 6 face au matériau liquide et à l'interface solide/liquide durant toute la durée de la phase de cristallisation.
La distance séparant le dispositif de chauffage 6 de l'interface liquide/solide est définie de manière à avoir un effet sur le liquide et au niveau de l'interface afin d'obtenir la courbure recherchée. La distance dépend de la profondeur d'introduction de la chaleur dans le matériau cristallin et donc des conditions d'alimentation de la spire et des propriétés électriques du matériau chauffé. Dans un mode de réalisation préférentiel, pouvant être combiné avec les modes précédents, le dispositif de déplacement du dispositif de chauffage additionnel 6 est configuré pour placer une spire inductive à une distance comprise entre 1 et 20mm avec la ligne triple de l'interface liquide/solide 10 dans la direction perpendiculaire X au fond 2 du creuset 1.
Dans un mode de réalisation encore plus avantageux, le dispositif de déplacement du dispositif de chauffage additionnel 6 est configuré pour positionner la spire inductive, en fonctionnement, à une distance comprise entre 1 et 10mm par rapport à la ligne triple, pour maintenir la forme convexe du ménisque. La distance peut être mesurée entre le centre de la spire inductive et la ligne triple, par exemple suivant la direction perpendiculaire au fond du creuset. II est ainsi à noter que, sans chauffage additionnel inductif, l'interface liquide/solide du matériau peut présenter localement au voisinage de la ligne triple une forme de ménisque concave, c'est-à-dire orienté vers le haut. De manière préférentielle, la spire inductive du dispositif additionnel 6 est alors initialement positionnée face à la phase solide du matériau, à une distance comprise entre 1 et 20mm par rapport à la ligne triple. La spire inductive, une fois activée, chauffe la partie du solide de matériau qui forme le ménisque concave et provoque la fusion de celle-ci. La courbure de l'interface liquide/solide du matériau au voisinage de la ligne triple est alors modifiée et devient positive. Bien entendu, la position de la ligne triple est modifiée et descend vers le bas. L'interface forme donc un ménisque convexe, c'est-à- dire orienté vers le bas. La spire inductive du dispositif additionnel 6 est alors positionné face à la phase liquide de matériau. Elle se trouve avantageusement située à une distance comprise entre 1 et 20mm de la ligne triple, et de préférence à une distance comprise entre 1 et 10mm de celle-ci selon la direction X. Le dispositif de chauffage 6 inductif permet de chauffer directement le matériau sans chauffer préalablement le creuset 1 , dans un creuset isolant électriquement, comme cela est le cas avec les autres techniques de chauffages, par exemple résistives. L'influence sur le gradient thermique principal est alors réduite.
La quantité de chaleur apportée dans le matériau cristallin ainsi que l'étendue de cet apport de chaleur à l'intérieur du creuset 1 sont définies au moyen de l'intensité du courant délivré, de la fréquence et de la puissance circulant dans la spire. La localisation de l'apport de chaleur dans le matériau cristallin est liée à l'épaisseur de peau électromagnétique. L'épaisseur de peau varie selon ( r./)"1'2 avec σ la conductivité électrique du matériau considéré et / la fréquence du champ électromagnétique appliqué par la spire inductive.
A titre d'exemple, pour le silicium liquide, l'épaisseur de peau est sensiblement égale à 1 cm pour une fréquence de 1 kHz et elle est de l'ordre de 1 mm pour une fréquence de 100kHz. De cette manière, en modulant la fréquence du champ électrique parcourant la spire inductive, il est possible de moduler la répartition spatiale de l'apport de chaleur. Dans les mêmes conditions, l'épaisseur de peau est six fois plus importante dans la phase solide ce qui complique les conditions d'alimentation de la spire inductive. Dans ce cas, le système de cristallisation dirigée comporte un circuit d'application d'un courant dans le dispositif de chauffage avec une fréquence comprise entre 1 kHz et 100kHz lorsque le matériau cristallin est du silicium. Cependant, la plage fréquentielle peut être adaptée en fonction de la conductivité électrique des matériaux et de manière à travailler sur une délivrance de chaleur dans le creuset de sorte que l'épaisseur de peau reste entre 1 mm et 1 cm. De manière particulièrement avantageuse, la ou les spires inductives utilisées sont des spires non refroidies. Cette configuration permet d'éviter l'introduction d'un point froid à proximité du creuset et évite une gestion plus difficile d'un point froid dans une zone chaude du dispositif.
Dans un mode de réalisation préférentiel, le four de cristallisation dirigée comporte un dispositif 8 de répartition de la puissance délivrée dans le dispositif de chauffage additionnel 6 par rapport au dispositif de création du gradient thermique principal. Ce dispositif 8 de répartition est configuré pour que le dispositif de chauffage additionnel 6 reçoive entre 5% et 35% de la puissance délivrée dans le dispositif de création du gradient thermique principal.
Le rapport entre la puissance délivrée dans le chauffage 6 inductif et la puissance délivrée dans le dispositif de chauffage principal 4 du dispositif de génération du gradient thermique est compris entre 5% et 35%. Dans cette gamme particulière, l'effet du gradient thermique additionnel est limité par rapport au gradient thermique principal tout en étant suffisamment important pour réduire considérablement les problèmes de germination parasite depuis les faces latérales. De manière encore plus préférentielle, la puissance délivrée dans le chauffage inductif 6 représente entre 10% et 20% de la puissance délivrée dans le dispositif de chauffage 4 principal du dispositif de génération du gradient thermique afin d'avoir une réduction quasi-complète de la germination parasite tout en conservant une bonne maîtrise de la croissance cristalline selon le gradient thermique.
Dans un mode de réalisation particulièrement préféré, la puissance délivrée dans le chauffage inductif 6 représente 15% de la puissance délivrée dans le dispositif de chauffage principal 4 du dispositif de génération du gradient thermique. Dans ces conditions, le dispositif de chauffage principal 4 est suffisamment puissant pour générer un gradient thermique principal apte à orienter la croissance cristalline du matériau fondu dans le cas d'une croissance monocristalline ou multicristalline dans tout le volume du creuset. En parallèle, le gradient thermique additionnel est également suffisamment important pour réduire la génération de cristaux équiaxes sur les bords voire empêcher la propagation d'éventuels cristaux équiaxes ayant germinés sur les bords du creuset, du fait de la courbure locale de l'interface.
Afin d'avoir le déplacement du chauffage inductif 6 mobile avec l'interface liquide/solide, il est possible dans un premier mode de réalisation d'utiliser une ou plusieurs spires qui sont toutes déplacées selon l'axe perpendiculaire au fond 2 du creuset 1 en fonction des températures mesurées dans le creuset 1 et donc en fonction de la position de l'interface liquide/solide (figure D- Dans une variante de réalisation, il est également envisageable d'avoir un jeu de spires fixes faisant faces aux parois latérales. Dans ce cas, le dispositif d'alimentation des différentes spires est configuré pour fournir une puissance variable aux différentes spires de manière à simuler le déplacement de la spire mobile avec l'interface liquide/solide.
Dans un mode de réalisation particulier, le dispositif de chauffage inductif 6 additionnel est monté fixe par rapport au dispositif de création d'un gradient thermique principal à l'intérieur du creuset. La position du dispositif de chauffage additionnel est fixe à l'intérieur du gradient thermique. Le dispositif de création du gradient thermique principal et le dispositif de chauffage inductif additionnel se déplacent avantageusement de manière identique par rapport au creuset.
Dans une autre variante de réalisation, le dispositif de génération du gradient est fixe tout comme le dispositif de chauffage inductif 6. Le dispositif de chauffage 6 est placé à une isotherme donnée ce qui impose la position du chauffage inductif par rapport à l'interface liquide/solide. La distance est fixe entre l'interface liquide/solide et le dispositif 6 pour un matériau cristallin donné. Dans ce cas, c'est le creuset qui se déplace comme cela est illustré à la figure 2 ce qui facilite la mise en œuvre.
Le système de cristallisation dirigée est particulièrement intéressant lorsque le creuset 1 présente une arête entre deux parois latérales successives, par exemple dans le cas d'un creuset à section carrée ou rectangulaire. La probabilité d'obtenir des grains parasites est diminuée sur les bords et surtout dans les arêtes.
Pour ce type d'architecture, il est préférable de modifier la spire du dispositif 6 afin de moduler la puissance délivrée par la spire dans le creuset 1. La section de la spire est réduite au voisinage des coins du creuset 1 en comparaison de la section qui fait face aux parties planes ou légèrement courbées des faces latérales. De cette manière, la densité de courant est augmentée ce qui a pour effet d'accroître la courbure de l'interface liquide/solide dans les coins du creuset 1. Les effets parasites de cristallisation liés aux coins sont amoindris.
Le dispositif de chauffage inductif introduit un gradient thermique latéral depuis les parois du creuset. D'après les différentes études menées dans ce domaine, le gradient thermique latéral doit générer des contraintes ce qui aboutit à la formation de défauts cristallographiques tels que des dislocations. Les inventeurs ont observé que, contrairement aux idées communément acceptées, les quelques défauts existants sont localisés à l'extrême périphérie du lingot dans une zone de toute façon inutilisable car elle se trouve systématiquement contaminée chimiquement par les impuretés du creuset. L'introduction du chauffage additionnel inductif permet donc d'améliorer la qualité cristallographique générale du lingot tout en localisant les défauts sur la périphérie du lingot dans une zone non utilisable. Au final, la qualité cristallographique du lingot effectif est augmentée.
Dans un mode de réalisation particulier, le système de cristallisation dirigée comporte un four vertical illustré à la figure 2. Le four comporte trois zones, une zone chaude à 1480°C, une zone froide à 1300°C et la zone intermédiaire définissant le gradient thermique.
Le chauffage principal est obtenu au moyen d'un dispositif résistif. La puissance nécessaire à l'obtention du gradient thermique entre les zones chaude et froide est égale à 10kW. Le contrôle en température est réalisé au moyen de thermocouples de type C. La distance séparant la zone chaude de la zone froide est égale à 10cm. Le creuset est à section carrée de type 35*35cm2. La hauteur des parois latérales est égale à 80cm. La vitesse de tirage du lingot est égale à 25mm/h.
Le dispositif de chauffage inductif 6 est formé par une spire en graphite dont le diamètre est égal à 1cm. La spire à une section circulaire. Le centre du disque est disposé à 5mm au dessus de l'interface liquide/solide. La spire est connectée à un générateur de courant qui délivre une puissance égale 1 ,5kW. La fréquence du courant est égale à 10kHz. Dans une variante de réalisation, le diamètre de la spire est réduit à 8mm en face des quatre coins du creuset sur une distance de 1cm.
Ainsi, au moyen de ce type de creuset, il est possible de réaliser la cristallisation d'un bain de matériau fondu en réduisant la quantité de défauts cristallins. Le creuset muni d'un fond et de parois latérales est rempli au moins partiellement par un matériau en phase liquide 9. Le matériau peut être fondu dans le dispositif ou dans un autre dispositif puis transvasé. Un gradient thermique principal est généré à l'intérieur du creuset dans la direction X perpendiculaire au fond 2 du creuset 1 de manière à avoir un déplacement de l'interface 10 liquide/solide depuis le fond 2 du creuset 1.
Un gradient thermique additionnel latéral est généré dans le creuset selon une direction parallèle au fond 2 du creuset 1. Le gradient thermique additionnel provient d'au moins une spire du dispositif de chauffage 6. La spire fait face à l'interface liquide/solide et à la phase liquide pour courber efficacement l'interface 9 en limitant les modifications du gradient thermique principal dans le reste du matériau. Le gradient thermique latéral est localisé immédiatement après les parois latérales et se déplace avec l'interface 10 liquide/solide de manière à être disposé à l'interface liquide/solide et dans la phase liquide 9.
Au fur et à mesure de la cristallisation, la quantité de phase solide 11 augmente dans le creuset 1.
Ce type de procédé est compatible pour la réalisation de lingots monocristallins ou polycristallins. Il peut être utilisé pour former des lingots de silicium ou d'autres matériaux semi-conducteurs. La réduction des défauts cristallographiques est obtenue au moyen du chauffage additionnel 6 inductif qui peut être placé sur un bord du creuset, sur plusieurs bords du creuset ou sur tous les bords du creuset selon les besoins de l'utilisateur. Il est également très simple de changer la forme du lingot entre deux étapes de cristallisation, il suffit de changer le creuset et si nécessaire la forme de la spire inductive du chauffage 6. Le procédé de fabrication est particulièrement adapté aux matériaux semiconducteurs qui présentent un conductivité électrique plus élevée en phase liquide qu'en phase solide ce qui limite l'effet du chauffage inductif sur le matériau solidifié.
Dans un mode de réalisation particulier, lors du processus de solidication de solidification, l'interface solide/liquide est observée afin de déterminée sa forme. Si cette dernière est concave, la spire se rapproche de l'interface liquide/solide voire se place au niveau de la ligne triple de sorte que dès la mise en route du dispositif de chauffage additionnel, l'interface solide/liquide devient convexe et la spire inductive se trouve face au matériau liquide sans recouvrement avec la phase solide.

Claims

Revendications
1. Système de fabrication d'un matériau cristallin par cristallisation dirigée comportant :
- un creuset (1 ) muni d'un fond (2) et de parois latérales (3) destiné à contenir le matériau à solidifier,
- un dispositif de création d'un gradient thermique principal à l'intérieur du creuset (1 ) dans une direction sensiblement perpendiculaire (X) au fond (2) du creuset (1 ),
- un dispositif de chauffage inductif (6) additionnel disposé au niveau des parois latérales (3) du creuset (1 ) et configuré pour chauffer une partie du matériau localisée au voisinage de la ligne triple entre le matériau liquide, le matériau solidifié et le creuset (1 ) de manière à ce que l'interface (10) entre le matériau liquide et le matériau solidifié forme au voisinage de ladite ligne triple un ménisque convexe,
système caractérisé en ce qu'il comporte un dispositif de déplacement du dispositif de chauffage additionnel (6) selon la direction sensiblement perpendiculaire (X) au fond (2) du creuset (1 ) et configuré pour placer le dispositif de chauffage additionnel (6) face au matériau liquide et sans recouvrement avec la phase solide durant toute la durée de cristallisation.
2. Système selon la revendication 1 , caractérisé en ce que le dispositif de déplacement du dispositif de chauffage additionnel (6) est configuré pour placer le dispositif de chauffage additionnel (6) près de l'interface (10) solide/liquide.
3. Système selon la revendication 2, caractérisé en ce que le dispositif de déplacement du dispositif de chauffage additionnel (6) est configuré pour placer une spire inductive a une distance comprise entre 1 et 20mm par rapport à ladite ligne triple selon la direction perpendiculaire (X).
4. Système selon la revendication 3, caractérisé en ce que le dispositif de déplacement du dispositif de chauffage additionnel (6) est configuré pour positionner la spire inductive a une distance comprise entre 1 et 10mm par rapport à ladite ligne triple.
5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comporte un dispositif (8) de répartition de la puissance délivrée dans le dispositif de chauffage additionnel (6) par rapport au dispositif de création du gradient thermique principal configuré pour que le dispositif de chauffage additionnel (6) reçoive entre 5% et 35% de la puissance délivrée dans le dispositif de création du gradient thermique principal.
6. Système selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le creuset (1 ) présente une forme telle que deux faces latérales (3) successives définissent une arête.
7. Système selon la revendication 6, caractérisé en ce que le creuset (1 ) est à section carré ou rectangulaire.
8. Système selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comporte un circuit d'application d'un courant dans le dispositif de chauffage avec une fréquence comprise entre 1 kHz et 100kHz lorsque le matériau cristallin est du silicium.
9. Système selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le dispositif de chauffage inductif (6) additionnel est monté fixe par rapport au dispositif de création d'un gradient thermique principal à l'intérieur du creuset (1 ).
10. Procédé de fabrication d'un matériau cristallin par cristallisation dirigée comportant les étapes suivantes :
- prévoir un creuset (1 ) muni d'un fond (2) et une paroi latérale (3) et au moins partiellement rempli par le matériau cristallin en phase liquide,
- générer un gradient thermique principal à l'intérieur du creuset dans une direction sensiblement perpendiculaire (X) au fond (2) du creuset (1 ) de manière à obtenir une solidification progressive du matériau suivant la direction sensiblement perpendiculaire (X) depuis le fond (2) du creuset
(1 ).
- chauffer, à l'aide d'un dispositif de chauffage inductif additionnel (6) disposé au niveau des parois latérales (3) du creuset (1 ) et monté mobile par rapport au creuset (1 ) selon ladite direction sensiblement perpendiculaire (X), une partie du matériau localisée au voisinage de la ligne triple entre le matériau liquide, le matériau solidifié et le creuset (1 ), de manière à ce que l'interface entre le matériau liquide et le matériau solidifié forme au voisinage de ladite ligne triple un ménisque convexe, le dispositif de chauffage additionnel (6) étant disposé face au matériau liquide et sans recouvrement avec la phase solide.
11. Procédé selon la revendication 10, caractérisé en ce que le rapport entre la puissance délivrée dans le dispositif de chauffage additionnel (6) et la puissance délivrée dans un dispositif de chauffage principal (4) générant le gradient thermique principal est compris entre 5% et 35%.
12. Procédé selon l'une des revendications 10 et 1 1 , caractérisé en ce que le dispositif de chauffage additionnel (6) est réalisé par une spire inductive (6) positionnée au niveau de l'interface (10) liquide/solide et face à la phase liquide (9) lorsque l'interface entre le matériau liquide et le matériau solidifié forme au voisinage de ladite ligne triple un ménisque convexe.
13. Procédé selon la revendication 12, caractérisé en ce que la spire inductive (6) est positionnée à une distance comprise entre 1 et 20mm par rapport à ladite ligne triple selon la direction perpendiculaire (X).
14. Procédé selon la revendication 12, caractérisé en ce que ledit matériau cristallin est un matériau semi-conducteur qui présente une conductivité électrique plus élevée en phase liquide qu'en phase solide.
PCT/FR2012/000346 2011-08-31 2012-08-31 Système de fabrication d'un matériau cristallin par cristallisation dirigée muni d'une source de chaleur additionnelle latérale WO2013030470A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201280052983.2A CN103890240B (zh) 2011-08-31 2012-08-31 设置有附加横向热源的通过定向固化制造晶体材料的设备
KR1020147008215A KR20140062093A (ko) 2011-08-31 2012-08-31 추가 측방 열원이 구비된 방향성 결정화에 의한 결정질 재료의 제조를 위한 시스템
CA2845068A CA2845068A1 (fr) 2011-08-31 2012-08-31 Methode de fabrication d'un materiau cristallin par solidification directionnelle fournie par une source de chaleur laterale supplementaire
BR112014003988A BR112014003988A2 (pt) 2011-08-31 2012-08-31 sistema de fabricação de um material cristalino por cristalização dirigida munido de uma fonte de calor adicional lateral
JP2014527714A JP6121422B2 (ja) 2011-08-31 2012-08-31 方向性凝固によって結晶性材料を作製するための、追加の側方熱源が備わったシステム
US14/240,818 US9938633B2 (en) 2011-08-31 2012-08-31 System for manufacturing a crystalline material by directional crystallization provided with an additional lateral heat source
EP12762324.7A EP2751309A1 (fr) 2011-08-31 2012-08-31 Système de fabrication d'un matériau cristallin par cristallisation dirigée muni d'une source de chaleur additionnelle latérale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1102644 2011-08-31
FR1102644A FR2979357B1 (fr) 2011-08-31 2011-08-31 Systeme de fabrication d'un materiau cristallin par cristallisation dirigee muni d'une source de chaleur additionnelle laterale

Publications (2)

Publication Number Publication Date
WO2013030470A1 true WO2013030470A1 (fr) 2013-03-07
WO2013030470A8 WO2013030470A8 (fr) 2014-04-24

Family

ID=46889323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000346 WO2013030470A1 (fr) 2011-08-31 2012-08-31 Système de fabrication d'un matériau cristallin par cristallisation dirigée muni d'une source de chaleur additionnelle latérale

Country Status (9)

Country Link
US (1) US9938633B2 (fr)
EP (1) EP2751309A1 (fr)
JP (1) JP6121422B2 (fr)
KR (1) KR20140062093A (fr)
CN (1) CN103890240B (fr)
BR (1) BR112014003988A2 (fr)
CA (1) CA2845068A1 (fr)
FR (1) FR2979357B1 (fr)
WO (1) WO2013030470A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9406547B2 (en) * 2013-12-24 2016-08-02 Intel Corporation Techniques for trench isolation using flowable dielectric materials
CN106222746A (zh) * 2016-10-17 2016-12-14 宁夏协鑫晶体科技发展有限公司 单晶炉熔料时间缩短装置及方法
CN109280962A (zh) * 2018-11-09 2019-01-29 中国电子科技集团公司第十研究所 一种vgf单晶炉、加热方法及存储介质
CN113174626B (zh) * 2021-04-25 2024-07-23 合肥天曜新材料科技有限公司 一种碲锌镉单晶体的生长方法及装置
WO2024053095A1 (fr) * 2022-09-09 2024-03-14 京セラ株式会社 Dispositif de commande et système de production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014961A1 (fr) 2007-07-20 2009-01-29 Bp Corporation North America Inc. Procédés et appareils destinés à fabriquer du silicium coulé à partir de germes cristallins
US20100148403A1 (en) 2008-12-16 2010-06-17 Bp Corporation North America Inc. Systems and Methods For Manufacturing Cast Silicon

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2758038B2 (ja) * 1989-08-24 1998-05-25 三菱化学株式会社 単結晶製造装置
JP2000327487A (ja) * 1999-05-24 2000-11-28 Mitsubishi Materials Corp 結晶シリコンの製造方法及びそれに用いる結晶シリコン製造装置
EP1254861B1 (fr) * 2000-12-28 2008-01-30 Sumco Corporation Procede de moulage en continu de silicium
CN201133765Y (zh) * 2007-11-30 2008-10-15 上海普罗新能源有限公司 一种多晶硅分凝铸锭炉
IT1396761B1 (it) * 2009-10-21 2012-12-14 Saet Spa Metodo e dispositivo per l'ottenimento di un materiale semiconduttore multicristallino, in particolare silicio
CN102021643B (zh) * 2010-09-21 2012-08-15 上海大学 基于交变磁场调制定向凝固液固界面的方法与装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014961A1 (fr) 2007-07-20 2009-01-29 Bp Corporation North America Inc. Procédés et appareils destinés à fabriquer du silicium coulé à partir de germes cristallins
US20100148403A1 (en) 2008-12-16 2010-06-17 Bp Corporation North America Inc. Systems and Methods For Manufacturing Cast Silicon

Also Published As

Publication number Publication date
CN103890240B (zh) 2018-04-17
CN103890240A (zh) 2014-06-25
FR2979357A1 (fr) 2013-03-01
US20140190398A1 (en) 2014-07-10
JP2014525385A (ja) 2014-09-29
BR112014003988A2 (pt) 2017-03-07
WO2013030470A8 (fr) 2014-04-24
KR20140062093A (ko) 2014-05-22
CA2845068A1 (fr) 2013-03-07
JP6121422B2 (ja) 2017-04-26
US9938633B2 (en) 2018-04-10
EP2751309A1 (fr) 2014-07-09
FR2979357B1 (fr) 2015-04-24

Similar Documents

Publication Publication Date Title
EP2376679B1 (fr) Four de fusion-solidification comportant une modulation des échanges thermiques par les parois latérales
EP2014803B1 (fr) Dispositif de fabrication d'un bloc de matériau cristallin avec modulation de la conductivité thermique
EP2751309A1 (fr) Système de fabrication d'un matériau cristallin par cristallisation dirigée muni d'une source de chaleur additionnelle latérale
EP2089319B1 (fr) Procede de purification de silicium metallurgique par solidification dirigee
EP2646604B1 (fr) Echangeur thermique d'un systeme de solidification et/ou de cristallisation d'un materiau semi-conducteur
US8242033B2 (en) High throughput recrystallization of semiconducting materials
JP6629886B2 (ja) 単結晶製造装置
FR2918080A1 (fr) Dispositif et procede d'elaboration de plaquettes en materiau semi-conducteur par moulage et cristallisation dirigee
WO2007048904A1 (fr) Dispositif de fabrication d'un ruban de silicium ou autres materiaux cristallins et procede de fabrication
EP1969163B1 (fr) Dispositif et procede de fabrication d'un bloc de materiau cristallin
FR2853913A1 (fr) Creuset pour un dispositif de fabrication d'un bloc de materiau cristallin et procede de fabrication
CA2569755C (fr) Installation d'affinage de silicium
JP2007015905A (ja) 多結晶シリコンインゴット、多結晶シリコン基板、並びに太陽電池素子および多結晶シリコンインゴットの鋳造方法。
WO2008132323A2 (fr) Dispositif et procédé de fabrication de plaques autosupportées de silicium ou autres matériaux cristallins
FR2909990A1 (fr) Procede et installation de fabrication de blocs d'un materiau semiconducteur
WO2008104702A2 (fr) Installation d'affinage de silicium
US20090297395A1 (en) Methods of treating semiconducting materials and treated semiconducting materials
EP1702085B1 (fr) Dispositif pour deposer une couche de silicium polycristallin sur un support
FR2927910A1 (fr) Procede de cristallogenese d'un materiau electriquement conducteur a l'etat fondu.
EP3926078A1 (fr) Procédé de fabrication d'un cristal semi-conducteur
JP2000286209A (ja) 薄膜半導体結晶の溶融再結晶化方法
FR2466856A1 (fr) Procede de formation d'une couche de silicium polycristallin sur son substrat
JP2007022860A (ja) シリコンインゴット製造装置
JP2012012277A (ja) 消波構造付容器、およびそれを用いた板状半導体の製造方法
JP2003267716A (ja) 多結晶半導体基板製造装置およびその装置を用いる多結晶半導体基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2845068

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14240818

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014527714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147008215

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014003988

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014003988

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140220