WO2013027550A1 - Method for generating master data for substrate inspection - Google Patents

Method for generating master data for substrate inspection Download PDF

Info

Publication number
WO2013027550A1
WO2013027550A1 PCT/JP2012/069592 JP2012069592W WO2013027550A1 WO 2013027550 A1 WO2013027550 A1 WO 2013027550A1 JP 2012069592 W JP2012069592 W JP 2012069592W WO 2013027550 A1 WO2013027550 A1 WO 2013027550A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
image data
inspection
master data
substrate
Prior art date
Application number
PCT/JP2012/069592
Other languages
French (fr)
Japanese (ja)
Inventor
博史 大池
郁夫 鈴木
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Publication of WO2013027550A1 publication Critical patent/WO2013027550A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0007Image acquisition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components

Definitions

  • the present invention relates to a board inspection master data creation method for creating master data used when inspecting a board on which a component is mounted.
  • the board production line is equipped with an electronic component mounting machine and a board visual inspection machine.
  • the electronic component mounter mounts components on a board.
  • the board appearance inspection machine inspects the mounting state of components (for example, the orientation and position of the mounted components), the printed state of solder, and the like.
  • the board appearance inspection machine stores template data for each component type in advance.
  • an inspection area is set in advance for each component type of the component. The inspection area is set so that the reference mark of the part is included in the inspection area when the part is mounted in the correct orientation.
  • an imaging device of the substrate appearance inspection machine images a component mounted on the substrate and acquires image data.
  • the control device of the board appearance inspection machine compares the image data with a plurality of template data. That is, the component type of the component in the image data is determined. Then, the control device inspects the inspection area of the part in the image data. When the reference mark is in the inspection area, the control device determines that the orientation of the component is appropriate. On the other hand, when the reference mark is not included in the inspection area, the control device determines that the orientation of the component is inappropriate.
  • the board appearance inspection machine inspects the board based on the master data for each component type, such as template data and an inspection area.
  • Patent Document 1 discloses a method for creating library data suitable for a part type. According to the method described in this document, first, a sub-part type corresponding to the model is specified by selecting a sub-part type similar in appearance to the part of the model for which library data is to be created. Next, by referring to the image of the representative part, the user inputs the external features that are not specified for the sub part type, and the inspection rule for the sub part type is corrected according to the model. To do. In this way, the library data of the lower variation of the sub part type is registered.
  • hierarchical library data can be created by the method described in this document. This document does not disclose a method for creating master data shared by a plurality of components.
  • the substrate inspection master data creation method of the present invention has been completed in view of the above problems. It is an object of the present invention to provide a board inspection master data creation method capable of easily creating master data having a high degree of fitness.
  • the board inspection master data creation method of the present invention is used when inspecting a board on which a component is mounted, and is data for creating master data shared for a plurality of parts. It has a creation process and a verification process for inspecting the substrate and verifying the validity of the created master data.
  • creating master data includes not only the case of creating master data by editing a part image, but also the case of using the part image as master data as it is.
  • the “plural components” may be mounted on the same board or different boards.
  • master data that is shared by a plurality of parts can be created by the data creation process. Further, according to the substrate inspection master data creation method of the present invention, the validity of the created master data can be verified by the verification process. For this reason, it is possible to easily create master data having a high degree of fitness.
  • the master data is preferably shared by a plurality of components of the same component type. According to this configuration, master data can be created for each component type.
  • the data creation step includes a data collection step of collecting image data of a plurality of the parts, and at least two of the collected image data. It is better to have a screen display step for displaying data on a single screen and an editing step for creating the master data while displaying at least two pieces of the image data.
  • This configuration makes it possible to create master data while comparing multiple image data on a single screen. For this reason, it is possible to easily create master data as compared with a case where only a single image data is displayed on a single screen.
  • the result of editing any image data can be reflected in all remaining image data on a single screen.
  • the editing operation is simpler than the case of editing a plurality of image data one by one on a single screen. Also, the editing operation is simpler than the case where a plurality of image data is displayed on the screen one by one.
  • the verification step is for verification to display at least two of the collected image data on a single screen. It is better to have a configuration including a screen display process and a data comparison process for comparing the displayed plurality of image data with the master data.
  • the validity of the master data can be confirmed on the screen. In other words, the validity of the master data can be confirmed without using the master data on an actual board. Further, according to this configuration, the master data can be used for a plurality of image data on a single screen. For this reason, the validity of the master data can be confirmed from a bird's-eye view.
  • (3-2) Preferably, in the configuration of (3), after the data comparison step, there is a correction step of correcting the master data, and the correction step includes a plurality of the collected image data.
  • the master data when the master data is not valid, the master data can be corrected while comparing the image data and the master data on a single screen. Therefore, it is possible to easily correct the master data as compared with the case where only the image data or the master data is displayed on a single screen.
  • the master data is template data used for determining the identity of a component type when inspecting the board. Better.
  • the master data may be a configuration that is an inspection condition for the component when the substrate is inspected.
  • the inspection conditions such as the size and position of the inspection area can be shared among a plurality of parts.
  • FIG. 1 is a schematic diagram of a production line.
  • FIG. 2 is a block diagram of the server and the board appearance inspection machine.
  • FIG. 3 is a top view of the substrate appearance inspection machine.
  • FIG. 4 is a perspective view of the vicinity of the inspection head of the substrate appearance inspection machine.
  • FIG. 5 is a top view of a substrate on which components for teaching are mounted.
  • FIG. 6 is a schematic diagram of a screen in the screen display process of the substrate inspection master data creation method of the first embodiment.
  • FIG. 7 is a schematic view of a screen in the first stage of the editing process of the substrate inspection master data creation method.
  • FIG. 8 is a schematic diagram of a screen in the second stage of the editing process.
  • FIG. 9 is a schematic diagram of a screen in the third stage of the editing process.
  • FIG. 1 is a schematic diagram of a production line.
  • FIG. 2 is a block diagram of the server and the board appearance inspection machine.
  • FIG. 3 is a top view of the
  • FIG. 10 is a schematic diagram of a screen in the verification screen display step of the substrate inspection master data creation method.
  • FIG. 11 is a schematic diagram of a screen in the first stage of the data comparison process of the substrate inspection master data creation method.
  • FIG. 12 is a schematic diagram of a screen in the second stage of the data comparison process.
  • FIG. 13 is a schematic diagram of a screen in the second stage of the editing process of the substrate inspection master data creation method of the second embodiment.
  • FIG. 14 is a schematic diagram of a screen in the third stage of the editing process.
  • FIG. 15 is a schematic diagram of a screen in the third stage of the editing process of the substrate inspection master data creation method according to another embodiment.
  • B substrate
  • B1 imaging area
  • D1 to D8 image data
  • H background
  • L1 to L4 seek line (template data)
  • Pa1a to Pa4a reference mark
  • Pa1 to Pa8 parts
  • R inspection area ( Inspection conditions)
  • W frame
  • ⁇ D incident angle
  • ⁇ M incident angle
  • ⁇ U incident angle.
  • template data is created by flowing a teaching component-mounted board through a board visual inspection machine.
  • FIG. 1 shows a schematic diagram of a production line.
  • the production line 9 includes a server 1, a plurality of electronic component mounting machines 6, a board appearance inspection machine 7, and a reflow furnace 92.
  • the plurality of electronic component mounting machines 6, the board appearance inspection machine 7, and the reflow furnace 92 are arranged in a line from the left side (upstream side) to the right side (downstream side). A large number of components are mounted in stages on the substrate conveyed through the production line 9 by a plurality of electronic component mounting machines 6.
  • the board appearance inspection machine 7 inspects the mounting state of components on the board.
  • the reflow furnace 92 melts the cream solder interposed between the substrate and the component, and solders the component to the substrate.
  • the server 1 is electrically connected to these devices via a LAN (Local Area Network) cable.
  • LAN Local Area Network
  • Fig. 2 shows a block diagram of the server and board appearance inspection machine.
  • the server 1 includes a keyboard 11, a mouse 12, a monitor 13, and a control device 14.
  • the monitor 13 includes a screen 130.
  • the control device 14 includes an input / output interface 140, a storage unit 141, and a calculation unit 142.
  • the user can input a command to the control device 14 via the input / output interface 140 from any of the keyboard 11, mouse 12, and screen 130.
  • the storage unit 141 stores an editor for executing the substrate inspection master data creation method of the present embodiment.
  • FIG. 3 shows a top view of the substrate appearance inspection machine.
  • the substrate B is hatched.
  • the substrate appearance inspection machine 7 includes a base 72, a substrate transfer device 73, an XY robot 74, an inspection head 75, a control device 76, and an image processing device 77. ing.
  • the control device 76 includes an input / output interface 760, a storage unit 761, and a calculation unit 762.
  • the input / output interface 760 of the control device 76 and the input / output interface 140 of the control device 14 are connected so as to be capable of bidirectional communication.
  • the control device 76 includes a transfer motor 731 of the substrate transfer device 73, an X-axis motor 746 of the XY robot 74, a Y-axis motor 747, an illumination device 2 of the inspection head 75, an imaging device 3, an image processing device 77, and an input / output interface 760. Is connected through.
  • the substrate transfer device 73 is disposed on the upper surface of the base 72.
  • the substrate transfer device 73 includes a pair of front and rear conveyor belts 730f and 730r, and a transfer motor 731.
  • the conveyance motor 731 drives a pair of conveyor belts 730f and 730r.
  • the substrate B is conveyed from the left side to the right side by the conveyor belts 730f and 730r.
  • the X axis corresponds to the left-right direction
  • the Y axis corresponds to the front-rear direction
  • the Z direction corresponds to the up-down direction.
  • the XY robot 74 includes a Y-axis slide 740, an X-axis slide 741, a pair of upper and lower Y-axis lower slides 742, a pair of front and rear X-axis lower slides 743f and 743r, an X-axis ball screw portion 744, and a Y-axis ball.
  • a screw portion 745, an X-axis motor 746, and a Y-axis motor 747 are provided.
  • a pair of front and rear X-axis lower slides 743f and 743r are arranged on the upper surface of the base 72 so as to sandwich the substrate transfer device 73 from the front-rear direction.
  • the X-axis slide 741 is attached to a pair of front and rear X-axis lower slides 743f and 743r so as to be slidable in the left-right direction.
  • the X-axis ball screw portion 744 is attached to the base 72.
  • the X axis ball screw portion 744 drives the X axis slide 741.
  • the X-axis motor 746 is attached to the base 72.
  • the X axis motor 746 drives the X axis ball screw portion 744.
  • the pair of upper and lower Y-axis lower slides 742 are arranged on the X-axis slide 741.
  • the Y-axis slide 740 is attached to a pair of upper and lower Y-axis lower slides 742 so as to be slidable in the front-rear direction.
  • the Y-axis ball screw portion 745 is attached to the X-axis slide 741.
  • the Y-axis ball screw part 745 drives the Y-axis slide 740.
  • the Y axis motor 747 is attached to the X axis slide 741.
  • the Y-axis motor 747 drives the Y-axis ball screw part 745.
  • the inspection head 75 is attached to the Y-axis slide 740 so that the operator can easily attach and detach it. For this reason, for example, it is possible to easily replace a plurality of types of inspection heads 75 having different fields of view and resolution.
  • the replacement work of the inspection head 75 may be performed manually by the operator with one touch.
  • the Y-axis slide 740 may fix or release the inspection head 75 by magnetic force or negative pressure.
  • the inspection head 75 can be automatically replaced by using the X-axis and Y-axis operations of the Y-axis slide 740.
  • the plurality of types of inspection heads 75 to be exchanged are arranged in the movement range of the Y-axis slide 740 on the base 72.
  • FIG. 4 is a perspective view of the vicinity of the inspection head of the substrate visual inspection machine.
  • the inspection head 75 includes a frame 750, the illumination device 2, and the imaging device 3.
  • the frame 750 includes three upper and lower brackets 750U, 750M, and 750D. In the center of each of the brackets 750U, 750M, and 750D, a hole for passing light is formed.
  • the illuminating device 2 includes an epi-illuminator 20U, a side-lighting upper stage illuminator 20M, and a side-lighting lower stage illuminator 20D.
  • the epi-illuminator 20U is attached to the upper bracket 750U.
  • the epi-illuminator 20U includes a light source 200U, a half mirror 201U, and an optical system (not shown).
  • incident light (illumination light) 21U of the light source 200U is converted into parallel light by an optical system having a lens or the like.
  • the incident light 21U travels to the left, turns 90 ° by the half mirror 201U, and travels downward. For this reason, the imaging area B1 on the upper surface of the substrate B is illuminated from directly above by the incident light 21U.
  • the incident angle ⁇ U of the incident light 21U with respect to the imaging area B1 is 90 °.
  • the side elevation upper illuminator 20M is attached to the middle bracket 750M.
  • the side elevation upper stage illuminator 20M includes a ring-shaped light source 200M. As shown by a dotted line in FIG. 4, the imaging area B1 on the upper surface of the substrate B is illuminated from the direction of the incident angle ⁇ M ( ⁇ U) by the side-emission upper stage light (illumination light) 21M from the light source 200M.
  • the side-illumination lower stage illuminator 20D is attached to the lower bracket 750D.
  • the side-illuminated lower stage illuminator 20D includes a ring-shaped light source 200D. As shown by a dotted line in FIG. 4, the imaging area B1 on the upper surface of the substrate B is illuminated from the direction of the incident angle ⁇ D ( ⁇ M) by the side-illuminated lower stage light (illumination light) 21D from the light source 200D.
  • the light sources 200U, 200M, and 200D are all white LEDs (Light-Emitting Diode). For this reason, each of the light sources 200U, 200M, and 200D has all the three primary color components of R (red), G (green), and B (blue).
  • the imaging device 3 is attached to the upper bracket 750U.
  • the imaging device 3 is a CCD (Charge-Coupled Device) area sensor.
  • the imaging device 3 has an imaging surface on which a large number of light receiving elements are two-dimensionally arranged. The imaging device 3 images the imaging area B1 from directly above.
  • the image processing device 77 is connected to the inspection head 75.
  • the image processing device 77 processes the image data captured by the imaging device 3.
  • the image processing device 77 transmits the processed image data to the control device 76.
  • the substrate inspection master data creation method of the present embodiment includes a data creation process and a verification process.
  • the board inspection master data creation method of this embodiment is executed by the editor of the storage unit 141 of the server 1 shown in FIG.
  • the server 1 creates template data using the board appearance inspection machine 7.
  • the template data is used to search for a component to be inspected at the time of board inspection by the board appearance inspection machine 7.
  • Template data is shared for a plurality of parts of the same part type.
  • the data creation process includes a data collection process, a screen display process, and an editing process.
  • FIG. 5 shows a top view of the teaching component-mounted substrate.
  • a large number of components Pa1 to Pa8 and Pb to Pe are mounted on the substrate B. That is, five or more parts Pa1 to Pa8 and Pb to Pe are mounted at predetermined coordinates on the substrate B.
  • template data of eight parts Pa1 to Pa8 of the same part type is created on behalf of five types of parts Pa1 to Pa8 and Pb to Pe.
  • the control device 76 shown in FIG. 2 drives the XY robot 74 to move the inspection head 75 so that the imaging device 3 is arranged right above the parts Pa1 to Pa8 and Pb to Pe that are imaging targets.
  • the control device 76 shown in FIG. 2 drives the illumination device 2 and the imaging device 3, and images the parts Pa1 to Pa8 and Pb to Pe, which are imaging targets.
  • the illuminating device 2 includes an epi-illuminator 20U, a side illuminating upper stage illuminator 20M, and a side illuminating lower stage illuminator 20D.
  • the control device 76 shown in FIG. 2 has (a) incident light 21U, side-emergence upper stage light 21M, side-emergence lower stage light 21D, and (b) incident light, one by one for all components Pa1 to Pa8 and Pb to Pe. Imaging is performed with a total of four patterns of only the incident light 21U, (c) only the upper-side light 21M, and (d) only the lower-stage light 21D. By the imaging, the imaging device 3 acquires (total number of parts ⁇ 4) pieces of image data.
  • the plurality of image data is transmitted to the control device 14 of the server 1 via the image processing device 77 and the control device 76 shown in FIG.
  • a plurality of image data is stored in the storage unit 141.
  • FIG. 6 shows a schematic diagram of a screen in the screen display process of the substrate inspection master data creation method of the present embodiment.
  • the image data D1 of the part Pa1, the image data D2 of the part Pa2, the image data D3 of the part Pa3, and the image data D4 of the part Pa4 are arranged on the screen 130 vertically and horizontally.
  • a background part for example, a resist, a land pattern, adjacent parts, etc.
  • FIG. 7 shows a schematic diagram of a screen in the first stage of the editing process of the substrate inspection master data creation method of the present embodiment.
  • FIG. 8 shows a schematic diagram of a screen in the second stage of the editing process.
  • FIG. 9 shows a schematic diagram of the screen in the third stage of the editing process.
  • the user selects the contrast (brightness difference) between the components Pa1 to Pa4 and the substrate B from the four illumination patterns (a) to (d),
  • the illumination pattern is selected so that the contrast between the parts Pa1 to Pa4 and the background portion H is maximized (that is, the parts Pa1 to Pa4 are most clearly visible).
  • illumination buttons 130a to 130d are arranged corresponding to the above four illumination patterns (a) to (d).
  • the control device 14 refers to the image data D1 to D4 in the storage unit 141, and the illumination pattern of (a), that is, the drop shown in FIG. Image data D1 to D4 obtained by imaging using the incident light 21U, the side-light upper stage light 21M, and the side-light lower stage light 21D are displayed on the screen 130.
  • the control device 14 displays on the screen 130 the image data D1 to D4 that are captured using the illumination patterns (b) to (d).
  • one illumination pattern is selected from the above four illumination patterns (a) to (d). Is done.
  • the control device 14 displays on the screen 130 the image data D1 to D4 when captured using the illumination pattern.
  • the user next instructs the control device 14 to display an edge detection line (hereinafter referred to as “seek line”) as shown in FIG. That is, a seek line display button 131 is arranged on the screen 130.
  • a seek line display button 131 is arranged on the screen 130.
  • seek lines L1 to L4 are arranged for each of the image data D1 to D4. Specifically, the seek lines L1 to L4 are arranged so as to be orthogonal to the outlines of the bodies (portions excluding the leads) of the parts Pa1 to Pa4 of the image data D1 to D4. Further, the seek lines L1 to L4 are arranged so that the center in the longitudinal direction of the seek lines L1 to L4 intersects the outline.
  • the user optimizes the seek lines L1 to L4 so that they can be shared by the four parts Pa1 to Pa4 of the image data D1 to D4.
  • the seek lines L1 of the image data D2 to D4 are also clicked in synchronization.
  • the seek lines L1 of the single image data D1 it is possible to select all the seek lines L1 of the image data D1 to D4.
  • the seek line L1 of the image data D1 When the user drags the seek line L1 of the image data D1 with the mouse 12 shown in FIG. 2, not only the seek line L1 of the image data D1 but also the seek lines L1 of the image data D2 to D4 are dragged synchronously.
  • the length of the seek line L1 of all the image data D1 to D4 can be expanded or contracted by the same amount.
  • the angles of the seek lines L1 of all the image data D1 to D4 can be changed by the same amount.
  • the above editing operation is performed not only on a single seek line L1 but also on a plurality of seek lines L1 to L4 (specifically, a plurality of seek lines L1 to L4 are simultaneously selected with the mouse 12). can do.
  • the editing operation can also be performed on the seek lines L1 to L4 of the image data D2 to D4 other than the image data D1.
  • the user performs editing on the screen 130 so that the seek lines L1 to L4 are orthogonal to the outlines of the bodies of the parts Pa1 to Pa4. Further, the editing operation is performed on the screen 130 so that the center in the longitudinal direction of the seek lines L1 to L4 intersects the outline.
  • the lower edge line (part of the outline) of the part Pa1 overlaps the background portion H. For this reason, it is difficult to set the seek line L2.
  • the lower edge lines (part of the outline) of the parts Pa2 to Pa4 do not overlap the background portion H. For this reason, it is easy to set the seek line L2.
  • the user can set the seek line L2 with reference to the parts Pa2 to Pa4 of the image data D2 to D4 even if it is difficult to set the seek line L2 only with the part Pa1 of the image data D1. Can do.
  • the right edge line of the part Pa2 of the image data D2, the left edge line of the part Pa3 of the image data D3, and the upper edge line of the part Pa4 of the image data D4 are also respectively the background portion H. It overlaps with.
  • the seek lines L1, L3, and L4 can be set with reference to the parts Pa1 to Pa4 of the other image data D1 to D4.
  • the seek lines L1 to L4 are optimized so that they can be shared by the four parts Pa1 to Pa4 of the image data D1 to D4.
  • the optimized seek lines L1 to L4 are template data.
  • the template data is stored in the storage unit 141 of the control device 14 shown in FIG.
  • the verification process includes a verification screen display process and a data comparison process.
  • FIG. 10 shows a schematic diagram of a screen in the verification screen display process of the substrate inspection master data creation method of the present embodiment.
  • the image data D5 of the part Pa5 the image data D6 of the part Pa6, the image data D7 of the part Pa7, and the image data D8 of the part Pa8 are arranged on the screen 130 vertically and horizontally.
  • the component Pa5 is rotated 90 ° to the right, the component Pa7 is 180 °, and the component Pa8 is 90 ° to the left with respect to the direction of the component Pa6.
  • the control device 14 shown in FIG. 2 displays the parts Pa5 to Pa8 (that is, the image data D5 to D8) on the screen 130 in the same direction.
  • the template data is created based on the parts Pa1 to Pa4 of the same part type as the parts Pa5 to Pa8. Therefore, if the template data is valid, the calculation unit 142 determines that “four image data D5 to D8 are suitable for the template data”. On the other hand, if the template data is not valid, the calculation unit 142 determines that “the four pieces of image data D5 to D8 do not match the template data”.
  • FIG. 11 shows a schematic diagram of the screen in the first stage of the data comparison process of the substrate inspection master data creation method of the present embodiment.
  • FIG. 12 shows a schematic diagram of a screen in the second stage of the data comparison process.
  • control device 14 shown in FIG. 2 displays template data (seek lines L1 to L4) on each of the image data D5 to D8 as shown in FIG.
  • the control device 14 shown in FIG. 2 aligns the template data and the parts Pa5 to Pa8. Specifically, as shown in FIG. 12, the control device 14 determines that the parts Pa5 to Pa4 intersect the outlines of the bodies of the parts Pa5 to Pa8 so that the seek lines L1 to L4 intersect as close to orthogonal as possible. Scan template data for Pa8. Further, the control device 14 scans the template data for the parts Pa5 to Pa8 so that the position of the outline of the body of the parts Pa5 to Pa8 intersects with the center in the longitudinal direction of the seek lines L1 to L4 as much as possible. Let
  • the position of the intersection between the seek lines L1 to L4 and the body outlines of the parts Pa5 to Pa8 is determined based on the luminance of the image data D5 to D8. That is, in the image data D5 to D8, the luminance is different between the portion where the body of the parts Pa5 to Pa8 is disposed, the portion where the background portion H is disposed, and the portion where the substrate B is disposed.
  • the luminance changes remarkably between the right part and the left part of the seek line L1 with the left edge line of the body of the part Pa5 as a boundary. Based on the change in luminance, the position of the intersection of the seek line L1 and the left edge line of the body of the part Pa5 is determined.
  • the template data, the parts Pa5 to Pa8, and the seek lines L1 to L4 intersect with the outlines of the bodies of the parts Pa5 to Pa8 in a state that is as orthogonal as possible. Perform position alignment. Further, the template data and the parts Pa5 to Pa8 are aligned so that the positions of the body outlines of the parts Pa5 to Pa8 intersect as close as possible to the longitudinal center of the seek lines L1 to L4.
  • the storage unit 141 shown in FIG. 2 stores criteria for matching the template data with the parts Pa5 to Pa8.
  • the calculation unit 142 compares the determination criterion with the matching state between the template data in the image data D5 to D8 and the parts Pa5 to Pa8. Then, it is determined whether the image data D5 to D8 matches the template data or whether the image data D5 to D8 does not match the template data. That is, the difference between the part type of the template data and the part type of the parts Pa5 to Pa8 is determined.
  • the template data is created based on the parts Pa1 to Pa4 of the same part type as the parts Pa5 to Pa8. For this reason, when it is determined that the component type of the template data is the same as the component types of the components Pa5 to Pa8, the template data has validity with respect to the components Pa1 to Pa8. Become. That is, the template data is appropriate as template data for searching for parts of the same part type as the parts Pa1 to Pa8.
  • the template data is transmitted to the board appearance inspection machine 7 shown in FIG. 2 and stored in the storage unit 761.
  • the board appearance inspection machine 7 inspects the board B using the stored template data.
  • the template data has validity for the parts Pa1 to Pa4.
  • the parts Pa5 to Pa8 have no validity. That is, the template data is inappropriate as template data for searching for parts of the same part type as the parts Pa1 to Pa8.
  • the data creation process is executed again. That is, template data is recreated using, for example, parts Pa3 to Pa6.
  • template data (seek lines L1 to L4) shared by the eight parts Pa1 to Pa8 of the same part type is created by the data creation process. Can do.
  • the validity of the created template data can be verified by the verification process. For this reason, template data having a high degree of matching can be easily created.
  • template data can be created while comparing the four image data D1 to D4 on a single screen 130. Therefore, template data can be created more easily than when only a single image data D1 to D4 is displayed on a single screen 130. Specifically, even if some of the outlines of the parts Pa1 to Pa4 of the image data D1 to D4 are unclear, the seek lines L1 to L4 are based on the other image data D1 to D4 where the same portion is clear. L4 can be set.
  • the result of editing the arbitrary image data D1 is reflected on all the remaining image data D2 to D4 on the single screen 130. be able to. Therefore, the editing operation is simpler than the case where a plurality of image data D1 to D4 are edited one by one on a single screen 130. In addition, the editing operation is simpler than when a plurality of image data D1 to D4 are displayed on the screen 130 one by one.
  • the result of the editing work can be confirmed on a single screen 130. Therefore, the validity of the editing work for all the image data D1 to D4 on the screen 130 can be confirmed from a bird's-eye view.
  • the validity of the template data can be confirmed on the screen 130. That is, the validity of the template data can be confirmed without using the template data on the actual substrate B. Further, according to the verification process of the substrate inspection master data creation method of the present embodiment, template data can be used for a plurality of image data D5 to D8 on a single screen 130. For this reason, the validity of the template data can be confirmed from a bird's-eye view.
  • the data creation process can be executed again to recreate the template data.
  • Second Embodiment The difference between the board inspection master data creation method of the present embodiment and the board inspection master data creation method of the first embodiment is that the master data to be created is not template data but a board inspection. This is a part inspection area. Here, only differences will be described. In addition, FIG. 2 is used for description.
  • FIG. 13 shows a schematic diagram of the screen in the second stage of the editing process of the substrate inspection master data creation method of the present embodiment.
  • FIG. 14 shows a schematic diagram of the screen in the third stage of the editing process. Parts corresponding to those in FIGS. 8 and 9 are denoted by the same reference numerals. The processes up to the first stage of the editing process are the same as in the first embodiment (see FIGS. 5 to 7).
  • the user instructs the control device 14 shown in FIG. 2 to display the inspection area as shown in FIG. That is, the examination area display button 132 is arranged on the screen 130.
  • the control device 14 shown in FIG. 2 displays the examination area R on the screen 130 as shown in FIG. 14.
  • the inspection region R is included in the concept of “inspection conditions” of the present invention.
  • the inspection region R is used for inspecting the orientations of the parts Pa1 to Pa4 during the board inspection.
  • the inspection area R is arranged one by one for each of the image data D1 to D4. Specifically, a rectangular inspection region R is arranged so as to surround the reference marks Pa1a to Pa4a of the parts Pa1 to Pa4 of the image data D1 to D4 as much as possible.
  • the user optimizes the inspection region R so that it can be shared by the four parts Pa1 to Pa4 of the image data D1 to D4. That is, the positions of the reference marks Pa1a to Pa4a of the parts Pa1 to Pa4 of the same part type should be essentially the same. However, the positions of the reference marks Pa1a to Pa4a may be shifted between the parts Pa1 to Pa4. Even in such a case, the inspection region R is edited so that the reference marks Pa1a to Pa4a enter the inspection region R.
  • the editing work of the inspection area R of the four pieces of image data D1 to D4 is associated with each other. For example, when the user clicks the inspection area R of the image data D1 with the mouse 12 shown in FIG. 2, the inspection areas R of the image data D2 to D4 are also clicked in synchronization. As described above, by clicking the inspection region R of the single image data D1, it is possible to select all the inspection regions R of the image data D1 to D4.
  • the inspection area R of the image data D1 When the user clicks and drags and drops the inspection area R of the image data D1 with the mouse 12 shown in FIG. 2, not only the inspection area R of the image data D1, but also the inspection areas R of the image data D2 to D4 are displayed. Clicked, dragged and dropped in sync. In this way, by clicking and dragging and dropping the inspection area R of the single image data D1, all the inspection areas R of the image data D1 to D4 can be moved by the same amount. Note that the above editing operation can also be performed on the inspection region R of the image data D2 to D4 other than the image data D1.
  • the optimized inspection region R is stored in the storage unit 141 of the control device 14 shown in FIG.
  • the orientation of the part is determined based on the average luminance of the inspection region R. That is, the average luminance of the inspection region R differs between when the reference marks Pa1a to Pa4a are arranged in the inspection region R and when they are not arranged. Based on the difference in the average luminance, the orientation of the component is determined.
  • the inspection area R is appropriate as master data. In this case, the inspection area R is transmitted to the board appearance inspection machine 7 shown in FIG. 2 and stored in the storage unit 761.
  • the substrate appearance inspection machine 7 inspects the substrate B using the stored inspection region R.
  • the inspection area R is inappropriate as master data. In this case, the data creation process is executed again. That is, the inspection region R is recreated using parts of the same part type as the parts Pa1 to Pa4.
  • the substrate inspection master data creation method of the present embodiment and the substrate inspection master data creation method of the first embodiment have the same operational effects with respect to the parts having the same configuration.
  • the inspection region R can be shared by a plurality of parts Pa1 to Pa4 of the same part type.
  • the acquisition method of image data is not particularly limited.
  • the image data of the parts Pa1 to Pa8 and Pb to Pe is taken into the server 1 from the teaching board B.
  • the image data of the parts Pa1 to Pa8 and Pb to Pe may be taken into the server 1 from the board B actually being produced.
  • the image data of the components Pa1 to Pa8 and Pb to Pe may be taken into the server 1 from a plurality of substrates B of different substrate types.
  • the 6 may display a plurality of components arranged at the same coordinates on different substrates B of the same substrate type. In this way, on the same screen 130, it is possible to compare the mounting state of the components based on the coordinates. For example, the component at the coordinate ⁇ of the first board B produced, the component at the coordinate ⁇ of the second board B produced, the component at the coordinate ⁇ of the third board B produced, and the fourth board produced It can be compared with the component of the coordinate ⁇ of B. In addition, image data can be edited while comparing.
  • master data (template data (seek lines L1 to L4), inspection region R) determined to be inappropriate in the verification process was recreated.
  • the master data may be corrected.
  • the master data and the image data may be displayed on the screen 130 shown in FIG. 6, and the master data may be corrected while comparing both data. In this way, it is possible to easily correct the master data as compared with the case where only image data or master data is displayed on the single screen 130.
  • the input method for the server 1 is not particularly limited.
  • the keyboard 11, the mouse 12, and the monitor screen 130 (specifically, a touch panel) shown in FIG. 2 may be used.
  • the editor need not be stored in the server 1.
  • the editor may be stored in the storage unit 761 of the board appearance inspection machine 7. In this case, the board inspection master data creation method can be executed without using the server 1.
  • the board inspection master data creation method of the present invention may be executed by the electronic component mounting machine 6.
  • the appearance inspection of the board B may be executed by the electronic component mounting machine 6.
  • two detachable work heads may be mounted on the electronic component mounting machine 6, and one may be used as a mounting head for mounting components and the other as an inspection head for inspecting the substrate B. In this way, it is possible to acquire the image data of the component immediately after mounting. In addition, it is possible to immediately inspect a component immediately after mounting. For this reason, it is possible to reduce the number of defective substrates flowing in the subsequent process, and thus to prevent the yield from deteriorating.
  • the user has edited the master data, but may be performed by the control device 14.
  • the control device 14 may perform only a part of the editing work (for example, selection of an illumination pattern).
  • the type of master data is not particularly limited. For example, it may be data relating to the inspection of the leads of the components Pa1 to Pa8 (inspection of the degree of bending, length, thickness, etc. of the leads). Further, the captured image data D1 to D8 may be used as they are as master data without any processing. For example, although the amount of data increases, the same type of mounted components are sequentially imaged, and the total number of acquired image data including the background may be used as master data. Each image data itself may be master data. Moreover, only the characteristic part of each image data is good also as master data.
  • the acquired image data is displayed side by side on a single screen, and it becomes master data easily from multiple image data, such as those with obvious mounting defects, parts with different parts types, or imaging defects.
  • Image data that can be determined not to be obtained may be deleted. In this way, the data amount can be reduced.
  • the size, the number of arrangements, and the layout of the image data D1 to D8 on the screen 130 are not particularly limited.
  • the number of arrangement of the image data D1 to D8 may be 2, 3, 6, 8, or the like.
  • the number, angle, interval, length, thickness, etc. of the seek lines L1 to L4 are not particularly limited.
  • a plurality of seek lines L1 may be arranged side by side with respect to the left edge line of the part Pa1.
  • FIG. 15 is a schematic diagram of a screen in the third stage of the editing process of the substrate inspection master data creation method according to another embodiment.
  • the left edge line and right edge line (outline) of the bodies of the parts Pa1 to Pa4 do not overlap the background portion H.
  • the server 1 shown in FIG. 2 can reveal the seek lines L1 and L3 of the parts Pa1 to Pa4 using the frame W or the like.

Abstract

The present invention addresses the problem of providing a method for generating master data for substrate inspection that allows highly applicable master data to be generated easily. The method for generating master data for inspecting substrates is used to inspect a substrate (B) on which components (Pa1-Pa8) are mounted. This method comprises: a data generation step in which common master data (L1-L4) to be used for the multiple components (Pa1-Pa8) are generated; and a verification step in which the substrate (B) is inspected in order to verify the validity of the generated master data (L1-L4).

Description

基板検査用マスタデータ作成方法Master data creation method for board inspection
 本発明は、部品を実装した基板を検査する際に用いられるマスタデータを作成する基板検査用マスタデータ作成方法に関する。 The present invention relates to a board inspection master data creation method for creating master data used when inspecting a board on which a component is mounted.
 基板の生産ラインには、電子部品実装機と基板外観検査機とが配置されている。電子部品実装機は、基板に部品を装着する。基板外観検査機は、部品の装着状態(例えば、装着された部品の向き、位置など)、はんだの印刷状態などを検査する。基板外観検査機には、予め、部品の部品種ごとに、テンプレートデータが格納されている。また、基板外観検査機には、予め、部品の部品種ごとに、検査領域が設定されている。検査領域は、部品が正しい向きで装着されている場合に検査領域内に部品の基準マークが含まれるように、設定されている。 The board production line is equipped with an electronic component mounting machine and a board visual inspection machine. The electronic component mounter mounts components on a board. The board appearance inspection machine inspects the mounting state of components (for example, the orientation and position of the mounted components), the printed state of solder, and the like. The board appearance inspection machine stores template data for each component type in advance. In the board appearance inspection machine, an inspection area is set in advance for each component type of the component. The inspection area is set so that the reference mark of the part is included in the inspection area when the part is mounted in the correct orientation.
 基板外観検査機において基板を検査する際は、まず、基板外観検査機の撮像装置が、基板に装着された部品を撮像し、画像データを取得する。次に、基板外観検査機の制御装置が、画像データと、複数のテンプレートデータと、を比較する。すなわち、画像データ内の部品の部品種を判別する。それから、制御装置が、画像データ内の部品の検査領域を検査する。検査領域内に基準マークが入っている場合、制御装置は、部品の向きが適切と判別する。一方、検査領域内に基準マークが入っていない場合、制御装置は、部品の向きが不適切と判別する。このように、基板外観検査機は、テンプレートデータや検査領域などの、部品種ごとのマスタデータを基に、基板の検査を行っている。 When inspecting a substrate with a substrate appearance inspection machine, first, an imaging device of the substrate appearance inspection machine images a component mounted on the substrate and acquires image data. Next, the control device of the board appearance inspection machine compares the image data with a plurality of template data. That is, the component type of the component in the image data is determined. Then, the control device inspects the inspection area of the part in the image data. When the reference mark is in the inspection area, the control device determines that the orientation of the component is appropriate. On the other hand, when the reference mark is not included in the inspection area, the control device determines that the orientation of the component is inappropriate. Thus, the board appearance inspection machine inspects the board based on the master data for each component type, such as template data and an inspection area.
 特許文献1には、部品の型式に適したライブラリデータを作成する方法が開示されている。同文献記載の方法によると、まず、ライブラリデータの作成対象の型式の部品に外観が類似するサブ部品種を選択することにより、当該型式に対応するサブ部品種を特定する。次に、ユーザが、代表部品の画像を参照しながら、サブ部品種には規定されていない外観の特徴を入力することにより、サブ部品種の検査領域の設定ルールを、当該型式に合わせて修正する。このようにして、サブ部品種の下位バリエーションのライブラリデータを登録する。 Patent Document 1 discloses a method for creating library data suitable for a part type. According to the method described in this document, first, a sub-part type corresponding to the model is specified by selecting a sub-part type similar in appearance to the part of the model for which library data is to be created. Next, by referring to the image of the representative part, the user inputs the external features that are not specified for the sub part type, and the inspection rule for the sub part type is corrected according to the model. To do. In this way, the library data of the lower variation of the sub part type is registered.
特開2010-177291号公報JP 2010-177291 A
 同文献記載の方法によると、外観の特徴などに応じて、サブ部品種の下位バリエーションのライブラリデータを増やすことができる。しかしながら、同文献記載の方法により作成できるのは、階層式のライブラリデータである。同文献には、複数の部品に対して共用されるマスタデータを作成する方法については開示されていない。 According to the method described in this document, it is possible to increase the library data of sub-variants of sub-part types according to the appearance characteristics. However, hierarchical library data can be created by the method described in this document. This document does not disclose a method for creating master data shared by a plurality of components.
 本発明の基板検査用マスタデータ作成方法は、上記課題に鑑みて完成されたものである。本発明は、適合度の高いマスタデータを簡単に作成することができる基板検査用マスタデータ作成方法を提供することを目的とする。 The substrate inspection master data creation method of the present invention has been completed in view of the above problems. It is an object of the present invention to provide a board inspection master data creation method capable of easily creating master data having a high degree of fitness.
 (1)上記課題を解決するため、本発明の基板検査用マスタデータ作成方法は、部品を実装した基板を検査する際に用いられ、複数の部品に対して共用されるマスタデータを作成するデータ作成工程と、該基板を検査して、作成した該マスタデータの妥当性を検証する検証工程と、を有することを特徴とする。 (1) In order to solve the above-described problem, the board inspection master data creation method of the present invention is used when inspecting a board on which a component is mounted, and is data for creating master data shared for a plurality of parts. It has a creation process and a verification process for inspecting the substrate and verifying the validity of the created master data.
 ここで、「マスタデータを作成する」とは、部品の画像を編集してマスタデータを作成する場合のみならず、部品の画像をそのままマスタデータとして利用する場合も含まれる。また、「複数の部品」は、同一の基板に装着されていても、異なる基板に装着されていてもよい。 Here, “creating master data” includes not only the case of creating master data by editing a part image, but also the case of using the part image as master data as it is. In addition, the “plural components” may be mounted on the same board or different boards.
 本発明の基板検査用マスタデータ作成方法によると、データ作成工程により、複数の部品に対して共用されるマスタデータを作成することができる。また、本発明の基板検査用マスタデータ作成方法によると、作成したマスタデータの妥当性を、検証工程により、検証することができる。このため、適合度の高いマスタデータを簡単に作成することができる。 According to the substrate inspection master data creation method of the present invention, master data that is shared by a plurality of parts can be created by the data creation process. Further, according to the substrate inspection master data creation method of the present invention, the validity of the created master data can be verified by the verification process. For this reason, it is possible to easily create master data having a high degree of fitness.
 (1-1)好ましくは、上記(1)の構成において、前記マスタデータは、同一の部品種の複数の部品に対して共用される構成とする方がよい。本構成によると、部品種ごとにマスタデータを作成することができる。 (1-1) Preferably, in the configuration of (1) above, the master data is preferably shared by a plurality of components of the same component type. According to this configuration, master data can be created for each component type.
 (1-2)好ましくは、上記(1)の構成において、前記検証工程において、作成した前記マスタデータの妥当性を、基板検査状況をシミュレーションして検証する構成とする方がよい。 (1-2) Preferably, in the configuration of (1) above, it is better to verify the validity of the created master data by simulating a substrate inspection situation in the verification step.
 本構成によると、検証工程により、作成したマスタデータの妥当性を、基板検査状況をシミュレーションして検証することができる。このため、実際に基板を検査することなく、マスタデータの検証を行うことができる。したがって、適合度の高いマスタデータを簡単に作成することができる。 According to this configuration, it is possible to verify the validity of the created master data by simulating the substrate inspection status in the verification process. Therefore, it is possible to verify the master data without actually inspecting the substrate. Therefore, it is possible to easily create master data having a high degree of fitness.
 (2)好ましくは、上記(1)の構成において、前記データ作成工程は、複数の前記部品の画像データを収集するデータ収集工程と、収集した複数の該画像データのうち、少なくとも二つの該画像データを、単一の画面に表示する画面表示工程と、少なくとも二つの該画像データを表示しながら、前記マスタデータを作成する編集工程と、を有する構成とする方がよい。 (2) Preferably, in the configuration of (1), the data creation step includes a data collection step of collecting image data of a plurality of the parts, and at least two of the collected image data. It is better to have a screen display step for displaying data on a single screen and an editing step for creating the master data while displaying at least two pieces of the image data.
 本構成によると、単一の画面において、複数の画像データを見比べながらマスタデータを作成することができる。このため、単一の画面に単一の画像データしか表示されない場合と比較して、マスタデータを簡単に作成することができる。 This configuration makes it possible to create master data while comparing multiple image data on a single screen. For this reason, it is possible to easily create master data as compared with a case where only a single image data is displayed on a single screen.
 (2-1)好ましくは、上記(2)の構成において、前記編集工程において、任意の前記画像データに対する編集作業が他の該画像データに反映されるように、表示された複数の該画像データを連動させながら編集することにより、前記マスタデータを作成する構成とする方がよい。 (2-1) Preferably, in the configuration of the above (2), in the editing step, the plurality of displayed image data displayed so that an editing operation on any of the image data is reflected in the other image data. It is preferable that the master data be created by editing while linking the two.
 本構成によると、単一の画面において、任意の画像データの編集作業の結果を、残りの全ての画像データに反映させることができる。このため、単一の画面において、複数の画像データを一つずつ編集する場合と比較して、編集作業が簡単である。また、複数の画像データを一つずつ画面に表示する場合と比較して、編集作業が簡単である。 に よ る According to this configuration, the result of editing any image data can be reflected in all remaining image data on a single screen. For this reason, the editing operation is simpler than the case of editing a plurality of image data one by one on a single screen. Also, the editing operation is simpler than the case where a plurality of image data is displayed on the screen one by one.
 また、本構成によると、単一の画面において、編集作業の結果を確認することができる。このため、画面の全ての画像データに対する編集作業の妥当性を、俯瞰的に確認することができる。 Also, according to this configuration, it is possible to confirm the result of editing work on a single screen. For this reason, it is possible to confirm the validity of the editing work for all the image data on the screen from a bird's-eye view.
 (3)好ましくは、上記(1)または(2)の構成において、前記検証工程は、収集した複数の前記画像データのうち、少なくとも二つの該画像データを、単一の画面に表示する検証用画面表示工程と、表示された複数の該画像データと、前記マスタデータと、を比較するデータ比較工程と、を有する構成とする方がよい。 (3) Preferably, in the configuration of the above (1) or (2), the verification step is for verification to display at least two of the collected image data on a single screen. It is better to have a configuration including a screen display process and a data comparison process for comparing the displayed plurality of image data with the master data.
 本構成によると、マスタデータの妥当性を、画面において確認することができる。すなわち、実際の基板にマスタデータを試用することなく、マスタデータの妥当性を確認することができる。また、本構成によると、単一の画面において、複数の画像データにマスタデータを試用することができる。このため、マスタデータの妥当性を、俯瞰的に確認することができる。 】 According to this configuration, the validity of the master data can be confirmed on the screen. In other words, the validity of the master data can be confirmed without using the master data on an actual board. Further, according to this configuration, the master data can be used for a plurality of image data on a single screen. For this reason, the validity of the master data can be confirmed from a bird's-eye view.
 (3-1)好ましくは、上記(3)の構成において、前記データ比較工程の後に、前記データ作成工程を有する構成とする方がよい。本構成によると、マスタデータが妥当性を有しない場合、マスタデータを作り直すことができる。 (3-1) Preferably, in the configuration of (3) above, it is better to have the data creation step after the data comparison step. According to this configuration, when the master data is not valid, the master data can be recreated.
 (3-2)好ましくは、上記(3)の構成において、前記データ比較工程の後に、前記マスタデータを補正する補正工程を有し、該補正工程は、収集した複数の前記画像データのうち、少なくとも一つの該画像データと、該マスタデータと、を単一の画面に表示する画面表示工程と、少なくとも一つの該画像データと、該マスタデータと、を表示しながら、該マスタデータを補正する編集工程と、を有する構成とする方がよい。 (3-2) Preferably, in the configuration of (3), after the data comparison step, there is a correction step of correcting the master data, and the correction step includes a plurality of the collected image data. A screen display step of displaying at least one of the image data and the master data on a single screen, and correcting the master data while displaying at least one of the image data and the master data. It is better to have a configuration including an editing step.
 本構成によると、マスタデータが妥当性を有しない場合、単一の画面において、画像データとマスタデータとを見比べながら、マスタデータを補正することができる。このため、単一の画面に画像データまたはマスタデータしか表示されない場合と比較して、マスタデータを簡単に補正することができる。 According to this configuration, when the master data is not valid, the master data can be corrected while comparing the image data and the master data on a single screen. Therefore, it is possible to easily correct the master data as compared with the case where only the image data or the master data is displayed on a single screen.
 (4)好ましくは、上記(1)ないし(3)のいずれかの構成において、前記マスタデータは、前記基板を検査する際に部品種の同一性の判別に用いられるテンプレートデータである構成とする方がよい。 (4) Preferably, in any one of the configurations (1) to (3), the master data is template data used for determining the identity of a component type when inspecting the board. Better.
 本構成によると、基板検査の際に、検査対象である部品を探すことができる。すなわち、部品を探す際に、検査対象である部品と同一の部品種のテンプレートデータを用いることにより、実際の部品の画像データとテンプレートデータとが一致する場合に、当該画像データの部品が検査対象の部品であると判別することができる。一方、実際の部品の画像データとテンプレートデータとが一致しない場合に、当該画像データの部品が検査対象の部品でないと判別することができる。 本 According to this configuration, it is possible to search for a part to be inspected at the time of board inspection. That is, when searching for a part, if the template data of the same part type as the part to be inspected is used, and the image data of the actual part matches the template data, the part of the image data is inspected It can be determined that the part is a part. On the other hand, when the image data of the actual part does not match the template data, it can be determined that the part of the image data is not the part to be inspected.
 (5)好ましくは、上記(1)ないし(3)のいずれかの構成において、前記マスタデータは、前記基板を検査する際の前記部品の検査条件である構成とする方がよい。本構成によると、複数の部品において、例えば検査領域のサイズ、ポジションなどの検査条件を、共用化することができる。 (5) Preferably, in any one of the configurations (1) to (3), the master data may be a configuration that is an inspection condition for the component when the substrate is inspected. According to this configuration, the inspection conditions such as the size and position of the inspection area can be shared among a plurality of parts.
 本発明によると、適合度の高いマスタデータを簡単に作成可能な基板検査用マスタデータ作成方法を提供することができる。 According to the present invention, it is possible to provide a substrate inspection master data creation method that can easily create master data having a high degree of fitness.
図1は、生産ラインの模式図である。FIG. 1 is a schematic diagram of a production line. 図2は、サーバと基板外観検査機とのブロック図である。FIG. 2 is a block diagram of the server and the board appearance inspection machine. 図3は、同基板外観検査機の上面図である。FIG. 3 is a top view of the substrate appearance inspection machine. 図4は、同基板外観検査機の検査ヘッド付近の斜視図である。FIG. 4 is a perspective view of the vicinity of the inspection head of the substrate appearance inspection machine. 図5は、教示用の部品実装済みの基板の上面図である。FIG. 5 is a top view of a substrate on which components for teaching are mounted. 図6は、第一実施形態の基板検査用マスタデータ作成方法の画面表示工程における画面の模式図である。FIG. 6 is a schematic diagram of a screen in the screen display process of the substrate inspection master data creation method of the first embodiment. 図7は、同基板検査用マスタデータ作成方法の編集工程第一段階における画面の模式図である。FIG. 7 is a schematic view of a screen in the first stage of the editing process of the substrate inspection master data creation method. 図8は、同編集工程第二段階における画面の模式図である。FIG. 8 is a schematic diagram of a screen in the second stage of the editing process. 図9は、同編集工程第三段階における画面の模式図である。FIG. 9 is a schematic diagram of a screen in the third stage of the editing process. 図10は、同基板検査用マスタデータ作成方法の検証用画面表示工程における画面の模式図である。FIG. 10 is a schematic diagram of a screen in the verification screen display step of the substrate inspection master data creation method. 図11は、同基板検査用マスタデータ作成方法のデータ比較工程第一段階における画面の模式図である。FIG. 11 is a schematic diagram of a screen in the first stage of the data comparison process of the substrate inspection master data creation method. 図12は、同データ比較工程第二段階における画面の模式図である。FIG. 12 is a schematic diagram of a screen in the second stage of the data comparison process. 図13は、第二実施形態の基板検査用マスタデータ作成方法の編集工程第二段階における画面の模式図である。FIG. 13 is a schematic diagram of a screen in the second stage of the editing process of the substrate inspection master data creation method of the second embodiment. 図14は、同編集工程第三段階における画面の模式図である。FIG. 14 is a schematic diagram of a screen in the third stage of the editing process. 図15は、その他の実施形態の基板検査用マスタデータ作成方法の編集工程第三段階における画面の模式図である。FIG. 15 is a schematic diagram of a screen in the third stage of the editing process of the substrate inspection master data creation method according to another embodiment.
 1:サーバ、2:照明装置、3:撮像装置、6:電子部品実装機、7:基板外観検査機、9:生産ライン。
 11:キーボード、12:マウス、13:モニタ、14:制御装置、20D:側射下段照明器、20M:側射上段照明器、20U:落射照明器、21D:側射下段光、21M:側射上段光、21U:落射光、72:ベース、73:基板搬送装置、74:XYロボット、75:検査ヘッド、76:制御装置、77:画像処理装置、92:リフロー炉。
 130:画面、130a~130d:照明ボタン、131:シークライン表示ボタン、132:検査領域表示ボタン、140:入出力インターフェイス、141:記憶部、142:演算部、200D:光源、200M:光源、200U:光源、201U:ハーフミラー、730f:コンベアベルト、730r:コンベアベルト、731:搬送モータ、740:Y軸スライド、741:X軸スライド、742:Y軸下スライド、743f:X軸下スライド、743r:X軸下スライド、744:X軸ボールねじ部、745:Y軸ボールねじ部、746:X軸モータ、747:Y軸モータ、750:フレーム、750D:ブラケット、750M:ブラケット、750U:ブラケット、760:入出力インターフェイス、761:記憶部、762:演算部。
 B:基板、B1:撮像エリア、D1~D8:画像データ、H:背景部、L1~L4:シークライン(テンプレートデータ)、Pa1a~Pa4a:基準マーク、Pa1~Pa8:部品、R:検査領域(検査条件)、W:枠、θD:入射角、θM:入射角、θU:入射角。
1: Server, 2: Lighting device, 3: Imaging device, 6: Electronic component mounting machine, 7: Substrate visual inspection machine, 9: Production line.
11: Keyboard, 12: Mouse, 13: Monitor, 14: Control device, 20D: Side illumination illuminator, 20M: Side illumination illuminator, 20U: Epi illuminator, 21D: Side illumination, 21M: Side illumination Upper stage light, 21U: incident light, 72: base, 73: substrate transfer device, 74: XY robot, 75: inspection head, 76: control device, 77: image processing device, 92: reflow furnace.
130: screen, 130a to 130d: illumination button, 131: seek line display button, 132: inspection area display button, 140: input / output interface, 141: storage unit, 142: calculation unit, 200D: light source, 200M: light source, 200U : Light source, 201U: Half mirror, 730f: Conveyor belt, 730r: Conveyor belt, 731: Conveyance motor, 740: Y axis slide, 741: X axis slide, 742: Y axis lower slide, 743f: X axis lower slide, 743r : X-axis lower slide, 744: X-axis ball screw, 745: Y-axis ball screw, 746: X-axis motor, 747: Y-axis motor, 750: Frame, 750D: Bracket, 750M: Bracket, 750U: Bracket, 760: Input / output interface, 761: Storage unit, 762: Calculation unit.
B: substrate, B1: imaging area, D1 to D8: image data, H: background, L1 to L4: seek line (template data), Pa1a to Pa4a: reference mark, Pa1 to Pa8: parts, R: inspection area ( Inspection conditions), W: frame, θD: incident angle, θM: incident angle, θU: incident angle.
 以下、本発明の基板検査用マスタデータ作成方法の実施の形態について説明する。 Hereinafter, an embodiment of a master data creation method for substrate inspection according to the present invention will be described.
 <<第一実施形態>>
 本実施形態においては、教示用の部品実装済みの基板を基板外観検査機に流すことにより、テンプレートデータを作成する。
<< First Embodiment >>
In this embodiment, template data is created by flowing a teaching component-mounted board through a board visual inspection machine.
 <生産ライン>
 まず、基板の生産ラインの構成について説明する。図1に、生産ラインの模式図を示す。図1に示すように、生産ライン9は、サーバ1と、複数の電子部品実装機6と、基板外観検査機7と、リフロー炉92と、を備えている。
<Production line>
First, the configuration of the substrate production line will be described. FIG. 1 shows a schematic diagram of a production line. As shown in FIG. 1, the production line 9 includes a server 1, a plurality of electronic component mounting machines 6, a board appearance inspection machine 7, and a reflow furnace 92.
 複数の電子部品実装機6と基板外観検査機7とリフロー炉92とは、左側(上流側)から右側(下流側)に向かって、一列に並んでいる。生産ライン9を搬送される基板には、複数の電子部品実装機6により、段階的に多数の部品が装着される。基板外観検査機7は、基板に対する部品の装着状態を検査する。リフロー炉92は、基板と部品との間に介在するクリームはんだを溶融させ、基板に部品をはんだ付けする。サーバ1は、これらの装置に、LAN(Local Area Network)ケーブルを介して、電気的に接続されている。 The plurality of electronic component mounting machines 6, the board appearance inspection machine 7, and the reflow furnace 92 are arranged in a line from the left side (upstream side) to the right side (downstream side). A large number of components are mounted in stages on the substrate conveyed through the production line 9 by a plurality of electronic component mounting machines 6. The board appearance inspection machine 7 inspects the mounting state of components on the board. The reflow furnace 92 melts the cream solder interposed between the substrate and the component, and solders the component to the substrate. The server 1 is electrically connected to these devices via a LAN (Local Area Network) cable.
 図2に、サーバと基板外観検査機とのブロック図を示す。図2に示すように、サーバ1は、キーボード11と、マウス12と、モニタ13と、制御装置14と、を備えている。モニタ13は、画面130を備えている。制御装置14は、入出力インターフェイス140と、記憶部141と、演算部142と、を備えている。 Fig. 2 shows a block diagram of the server and board appearance inspection machine. As shown in FIG. 2, the server 1 includes a keyboard 11, a mouse 12, a monitor 13, and a control device 14. The monitor 13 includes a screen 130. The control device 14 includes an input / output interface 140, a storage unit 141, and a calculation unit 142.
 ユーザは、キーボード11、マウス12、画面130のいずれからでも、入出力インターフェイス140を介して、制御装置14に指令を入力することができる。記憶部141には、本実施形態の基板検査用マスタデータ作成方法を実行するための、エディタが格納されている。 The user can input a command to the control device 14 via the input / output interface 140 from any of the keyboard 11, mouse 12, and screen 130. The storage unit 141 stores an editor for executing the substrate inspection master data creation method of the present embodiment.
 <基板外観検査機>
 次に、基板外観検査機の構成について説明する。図3に、同基板外観検査機の上面図を示す。なお、説明の便宜上、基板Bにハッチングを施す。図2、図3に示すように、基板外観検査機7は、ベース72と、基板搬送装置73と、XYロボット74と、検査ヘッド75と、制御装置76と、画像処理装置77と、を備えている。
<Board appearance inspection machine>
Next, the configuration of the substrate appearance inspection machine will be described. FIG. 3 shows a top view of the substrate appearance inspection machine. For convenience of explanation, the substrate B is hatched. As shown in FIGS. 2 and 3, the substrate appearance inspection machine 7 includes a base 72, a substrate transfer device 73, an XY robot 74, an inspection head 75, a control device 76, and an image processing device 77. ing.
 制御装置76は、入出力インターフェイス760と、記憶部761と、演算部762と、を備えている。制御装置76の入出力インターフェイス760と制御装置14の入出力インターフェイス140とは、双方向に通信可能に接続されている。制御装置76は、基板搬送装置73の搬送モータ731、XYロボット74のX軸モータ746、Y軸モータ747、検査ヘッド75の照明装置2、撮像装置3、画像処理装置77と、入出力インターフェイス760を介して、接続されている。 The control device 76 includes an input / output interface 760, a storage unit 761, and a calculation unit 762. The input / output interface 760 of the control device 76 and the input / output interface 140 of the control device 14 are connected so as to be capable of bidirectional communication. The control device 76 includes a transfer motor 731 of the substrate transfer device 73, an X-axis motor 746 of the XY robot 74, a Y-axis motor 747, an illumination device 2 of the inspection head 75, an imaging device 3, an image processing device 77, and an input / output interface 760. Is connected through.
 基板搬送装置73は、ベース72の上面に配置されている。基板搬送装置73は、前後一対のコンベアベルト730f、730rと、搬送モータ731と、を備えている。搬送モータ731は、一対のコンベアベルト730f、730rを駆動する。基板Bは、コンベアベルト730f、730rにより、左側から右側に向かって搬送される。 The substrate transfer device 73 is disposed on the upper surface of the base 72. The substrate transfer device 73 includes a pair of front and rear conveyor belts 730f and 730r, and a transfer motor 731. The conveyance motor 731 drives a pair of conveyor belts 730f and 730r. The substrate B is conveyed from the left side to the right side by the conveyor belts 730f and 730r.
 X軸は左右方向に、Y軸は前後方向に、Z方向は上下方向に、各々、対応している。XYロボット74は、Y軸スライド740と、X軸スライド741と、上下一対のY軸下スライド742と、前後一対のX軸下スライド743f、743rと、X軸ボールねじ部744と、Y軸ボールねじ部745と、X軸モータ746と、Y軸モータ747と、を備えている。 The X axis corresponds to the left-right direction, the Y axis corresponds to the front-rear direction, and the Z direction corresponds to the up-down direction. The XY robot 74 includes a Y-axis slide 740, an X-axis slide 741, a pair of upper and lower Y-axis lower slides 742, a pair of front and rear X-axis lower slides 743f and 743r, an X-axis ball screw portion 744, and a Y-axis ball. A screw portion 745, an X-axis motor 746, and a Y-axis motor 747 are provided.
 前後一対のX軸下スライド743f、743rは、基板搬送装置73を前後方向から挟むように、ベース72の上面に配置されている。X軸スライド741は、前後一対のX軸下スライド743f、743rに、左右方向に摺動可能に取り付けられている。X軸ボールねじ部744は、ベース72に取り付けられている。X軸ボールねじ部744は、X軸スライド741を駆動する。X軸モータ746は、ベース72に取り付けられている。X軸モータ746は、X軸ボールねじ部744を駆動する。 A pair of front and rear X-axis lower slides 743f and 743r are arranged on the upper surface of the base 72 so as to sandwich the substrate transfer device 73 from the front-rear direction. The X-axis slide 741 is attached to a pair of front and rear X-axis lower slides 743f and 743r so as to be slidable in the left-right direction. The X-axis ball screw portion 744 is attached to the base 72. The X axis ball screw portion 744 drives the X axis slide 741. The X-axis motor 746 is attached to the base 72. The X axis motor 746 drives the X axis ball screw portion 744.
 上下一対のY軸下スライド742は、X軸スライド741に配置されている。Y軸スライド740は、上下一対のY軸下スライド742に、前後方向に摺動可能に取り付けられている。Y軸ボールねじ部745は、X軸スライド741に取り付けられている。Y軸ボールねじ部745は、Y軸スライド740を駆動する。Y軸モータ747は、X軸スライド741に取り付けられている。Y軸モータ747は、Y軸ボールねじ部745を駆動する。 The pair of upper and lower Y-axis lower slides 742 are arranged on the X-axis slide 741. The Y-axis slide 740 is attached to a pair of upper and lower Y-axis lower slides 742 so as to be slidable in the front-rear direction. The Y-axis ball screw portion 745 is attached to the X-axis slide 741. The Y-axis ball screw part 745 drives the Y-axis slide 740. The Y axis motor 747 is attached to the X axis slide 741. The Y-axis motor 747 drives the Y-axis ball screw part 745.
 検査ヘッド75は、Y軸スライド740に、作業者が容易に着脱可能に取り付けられている。このため、例えば、視野や分解能の異なる複数種類の検査ヘッド75に、容易に交換が可能である。検査ヘッド75の交換作業は、作業者が、手動でワンタッチで行ってもよい。また、磁力や負圧により、Y軸スライド740が検査ヘッド75を固定、解除してもよい。この場合、Y軸スライド740のX軸およびY軸動作を利用することで、検査ヘッド75を自動交換する態様とすることも可能である。この場合、交換対象となる前記複数種類の検査ヘッド75は、ベース72上のY軸スライド740移動範囲に配置されていることとなる。 The inspection head 75 is attached to the Y-axis slide 740 so that the operator can easily attach and detach it. For this reason, for example, it is possible to easily replace a plurality of types of inspection heads 75 having different fields of view and resolution. The replacement work of the inspection head 75 may be performed manually by the operator with one touch. Further, the Y-axis slide 740 may fix or release the inspection head 75 by magnetic force or negative pressure. In this case, the inspection head 75 can be automatically replaced by using the X-axis and Y-axis operations of the Y-axis slide 740. In this case, the plurality of types of inspection heads 75 to be exchanged are arranged in the movement range of the Y-axis slide 740 on the base 72.
 検査ヘッド75は、XYロボット74により、前後左右方向に移動可能である。図4に、同基板外観検査機の検査ヘッド付近の斜視図を示す。図4に示すように、検査ヘッド75は、フレーム750と、照明装置2と、撮像装置3と、を備えている。フレーム750は、上下三段のブラケット750U、750M、750Dを備えている。ブラケット750U、750M、750Dの中央には、各々、通光用の孔が穿設されている。 The inspection head 75 can be moved in the front-rear and left-right directions by the XY robot 74. FIG. 4 is a perspective view of the vicinity of the inspection head of the substrate visual inspection machine. As shown in FIG. 4, the inspection head 75 includes a frame 750, the illumination device 2, and the imaging device 3. The frame 750 includes three upper and lower brackets 750U, 750M, and 750D. In the center of each of the brackets 750U, 750M, and 750D, a hole for passing light is formed.
 照明装置2は、落射照明器20Uと、側射上段照明器20Mと、側射下段照明器20Dと、を備えている。 The illuminating device 2 includes an epi-illuminator 20U, a side-lighting upper stage illuminator 20M, and a side-lighting lower stage illuminator 20D.
 落射照明器20Uは、上段のブラケット750Uに取り付けられている。落射照明器20Uは、光源200Uと、ハーフミラー201Uと、光学系(図略)と、を備えている。図4に点線で示すように、光源200Uの落射光(照明光)21Uは、レンズなどを有する光学系により、平行光に変換される。落射光21Uは、左方に進行し、ハーフミラー201Uで90°方向転換し、下方に進行する。このため、基板Bの上面の撮像エリアB1は、落射光21Uにより、真上方向から照らされる。撮像エリアB1に対する、落射光21Uの入射角θUは90°である。 The epi-illuminator 20U is attached to the upper bracket 750U. The epi-illuminator 20U includes a light source 200U, a half mirror 201U, and an optical system (not shown). As shown by a dotted line in FIG. 4, incident light (illumination light) 21U of the light source 200U is converted into parallel light by an optical system having a lens or the like. The incident light 21U travels to the left, turns 90 ° by the half mirror 201U, and travels downward. For this reason, the imaging area B1 on the upper surface of the substrate B is illuminated from directly above by the incident light 21U. The incident angle θU of the incident light 21U with respect to the imaging area B1 is 90 °.
 側射上段照明器20Mは、中段のブラケット750Mに取り付けられている。側射上段照明器20Mは、リング状の光源200Mを備えている。図4に点線で示すように、基板Bの上面の撮像エリアB1は、光源200Mからの側射上段光(照明光)21Mにより、入射角θM(<θU)の方向から照らされる。 The side elevation upper illuminator 20M is attached to the middle bracket 750M. The side elevation upper stage illuminator 20M includes a ring-shaped light source 200M. As shown by a dotted line in FIG. 4, the imaging area B1 on the upper surface of the substrate B is illuminated from the direction of the incident angle θM (<θU) by the side-emission upper stage light (illumination light) 21M from the light source 200M.
 側射下段照明器20Dは、下段のブラケット750Dに取り付けられている。側射下段照明器20Dは、リング状の光源200Dを備えている。図4に点線で示すように、基板Bの上面の撮像エリアB1は、光源200Dからの側射下段光(照明光)21Dにより、入射角θD(<θM)の方向から照らされる。 The side-illumination lower stage illuminator 20D is attached to the lower bracket 750D. The side-illuminated lower stage illuminator 20D includes a ring-shaped light source 200D. As shown by a dotted line in FIG. 4, the imaging area B1 on the upper surface of the substrate B is illuminated from the direction of the incident angle θD (<θM) by the side-illuminated lower stage light (illumination light) 21D from the light source 200D.
 光源200U、200M、200Dは、いずれも、白色LED(Light-Emitting Diode)である。このため、光源200U、200M、200Dは、いずれも、R(赤)、G(緑)、B(青)の三原色成分を全て有している。撮像装置3は、上段のブラケット750Uに取り付けられている。撮像装置3は、CCD(Charge-Coupled Device)エリアセンサである。撮像装置3は、多数の受光素子が二次元的に配置された撮像面を有している。撮像装置3は、真上方向から、撮像エリアB1を撮像する。 The light sources 200U, 200M, and 200D are all white LEDs (Light-Emitting Diode). For this reason, each of the light sources 200U, 200M, and 200D has all the three primary color components of R (red), G (green), and B (blue). The imaging device 3 is attached to the upper bracket 750U. The imaging device 3 is a CCD (Charge-Coupled Device) area sensor. The imaging device 3 has an imaging surface on which a large number of light receiving elements are two-dimensionally arranged. The imaging device 3 images the imaging area B1 from directly above.
 画像処理装置77は、検査ヘッド75に接続されている。画像処理装置77は、撮像装置3が取り込んだ画像データを処理する。画像処理装置77は、処理した画像データを、制御装置76に伝送する。 The image processing device 77 is connected to the inspection head 75. The image processing device 77 processes the image data captured by the imaging device 3. The image processing device 77 transmits the processed image data to the control device 76.
 <基板検査用マスタデータ作成方法>
 次に、本実施形態の基板検査用マスタデータ作成方法について説明する。本実施形態の基板検査用マスタデータ作成方法は、データ作成工程と、検証工程と、を有している。
<Master data creation method for substrate inspection>
Next, the substrate inspection master data creation method of this embodiment will be described. The substrate inspection master data creation method of the present embodiment includes a data creation process and a verification process.
 本実施形態の基板検査用マスタデータ作成方法は、図2に示すサーバ1の記憶部141のエディタにより実行される。サーバ1は、基板外観検査機7を用いて、テンプレートデータを作成する。テンプレートデータは、基板外観検査機7における基板検査の際に、検査対象である部品を探すために用いられる。テンプレートデータは、同一の部品種の複数の部品に対して共用される。 The board inspection master data creation method of this embodiment is executed by the editor of the storage unit 141 of the server 1 shown in FIG. The server 1 creates template data using the board appearance inspection machine 7. The template data is used to search for a component to be inspected at the time of board inspection by the board appearance inspection machine 7. Template data is shared for a plurality of parts of the same part type.
 [データ作成工程]
 データ作成工程は、データ収集工程と、画面表示工程と、編集工程と、を有している。
[Data creation process]
The data creation process includes a data collection process, a screen display process, and an editing process.
 (データ収集工程)
 本工程においては、教示用の部品実装済みの基板から、複数の部品の画像データを収集する。図5に、教示用の部品実装済みの基板の上面図を示す。図5に示すように、基板Bには、多数の部品Pa1~Pa8、Pb~Peが装着されている。すなわち、5種類の部品Pa1~Pa8、Pb~Peが、複数または単数、基板Bの所定の座標に装着されている。本実施形態においては、5種類の部品Pa1~Pa8、Pb~Peを代表して、同一の部品種の8個の部品Pa1~Pa8のテンプレートデータを作成する場合について説明する。
(Data collection process)
In this step, image data of a plurality of components is collected from the teaching component-mounted substrate. FIG. 5 shows a top view of the teaching component-mounted substrate. As shown in FIG. 5, a large number of components Pa1 to Pa8 and Pb to Pe are mounted on the substrate B. That is, five or more parts Pa1 to Pa8 and Pb to Pe are mounted at predetermined coordinates on the substrate B. In the present embodiment, a case will be described in which template data of eight parts Pa1 to Pa8 of the same part type is created on behalf of five types of parts Pa1 to Pa8 and Pb to Pe.
 まず、図3に示す基板外観検査機7に、図5の基板Bを配置する。次に、図2に示す制御装置76がXYロボット74を駆動して、撮像対象である部品Pa1~Pa8、Pb~Peの真上に撮像装置3が配置されるように、検査ヘッド75を移動させる。続いて、図2に示す制御装置76が、照明装置2および撮像装置3を駆動して、撮像対象である部品Pa1~Pa8、Pb~Peを撮像する。 First, the substrate B shown in FIG. 5 is placed on the substrate appearance inspection machine 7 shown in FIG. Next, the control device 76 shown in FIG. 2 drives the XY robot 74 to move the inspection head 75 so that the imaging device 3 is arranged right above the parts Pa1 to Pa8 and Pb to Pe that are imaging targets. Let Subsequently, the control device 76 shown in FIG. 2 drives the illumination device 2 and the imaging device 3, and images the parts Pa1 to Pa8 and Pb to Pe, which are imaging targets.
 図4に示すように、照明装置2は、落射照明器20U、側射上段照明器20M、側射下段照明器20Dを備えている。図2に示す制御装置76は、全ての部品Pa1~Pa8、Pb~Peに対して、1個ずつ、(a)落射光21Uと側射上段光21Mと側射下段光21D、(b)落射光21Uだけ、(c)側射上段光21Mだけ、(d)側射下段光21Dだけ、の合計4パターンで撮像を行う。当該撮像により、撮像装置3は、(全部品数×4)個の画像データを取得する。複数の画像データは、図2に示す画像処理装置77、制御装置76を介して、サーバ1の制御装置14に伝送される。複数の画像データは、記憶部141に格納される。 As shown in FIG. 4, the illuminating device 2 includes an epi-illuminator 20U, a side illuminating upper stage illuminator 20M, and a side illuminating lower stage illuminator 20D. The control device 76 shown in FIG. 2 has (a) incident light 21U, side-emergence upper stage light 21M, side-emergence lower stage light 21D, and (b) incident light, one by one for all components Pa1 to Pa8 and Pb to Pe. Imaging is performed with a total of four patterns of only the incident light 21U, (c) only the upper-side light 21M, and (d) only the lower-stage light 21D. By the imaging, the imaging device 3 acquires (total number of parts × 4) pieces of image data. The plurality of image data is transmitted to the control device 14 of the server 1 via the image processing device 77 and the control device 76 shown in FIG. A plurality of image data is stored in the storage unit 141.
 (画面表示工程)
 本工程においては、収集した複数の画像データのうち、4個の画像データを、図2に示すモニタ13の画面130に表示する。具体的には、まず、ユーザが、図2に示すキーボード11で、図5に示す部品Pa1~Pa8、Pb~Peの画像データの中から、8個の部品Pa1~Pa8の画像データD1~D8を選択する。図2に示す制御装置14は、画面130に、8個の部品Pa1~Pa8の画像データD1~D8を表示する。次に、ユーザが、図2に示すマウス12で、画像データD1~D8の中から、テンプレートデータの作成に用いたい画像データD1~D4を、クリックする。図2に示す制御装置14は、選択された画像データD1~D4を、画面130に表示する。
(Screen display process)
In this step, four pieces of image data among the collected plurality of image data are displayed on the screen 130 of the monitor 13 shown in FIG. Specifically, first, the user uses the keyboard 11 shown in FIG. 2 to select image data D1 to D8 of eight parts Pa1 to Pa8 from the image data of parts Pa1 to Pa8 and Pb to Pe shown in FIG. Select. The control device 14 shown in FIG. 2 displays the image data D1 to D8 of the eight parts Pa1 to Pa8 on the screen 130. Next, the user clicks on the image data D1 to D4 to be used for creating the template data from the image data D1 to D8 with the mouse 12 shown in FIG. The control device 14 shown in FIG. 2 displays the selected image data D1 to D4 on the screen 130.
 図6に、本実施形態の基板検査用マスタデータ作成方法の画面表示工程における画面の模式図を示す。図6に示すように、画面130には、部品Pa1の画像データD1、部品Pa2の画像データD2、部品Pa3の画像データD3、部品Pa4の画像データD4が縦横に並べて配置されている。画像データD1~D4には、部品Pa1~Pa4の他に、背景部(例えばレジスト、ランドパターン、隣接部品など)Hが配置されている。 FIG. 6 shows a schematic diagram of a screen in the screen display process of the substrate inspection master data creation method of the present embodiment. As shown in FIG. 6, the image data D1 of the part Pa1, the image data D2 of the part Pa2, the image data D3 of the part Pa3, and the image data D4 of the part Pa4 are arranged on the screen 130 vertically and horizontally. In the image data D1 to D4, in addition to the parts Pa1 to Pa4, a background part (for example, a resist, a land pattern, adjacent parts, etc.) H is arranged.
 (編集工程)
 本工程においては、4個の画像データD1~D4から、テンプレートデータを作成する。図7に、本実施形態の基板検査用マスタデータ作成方法の編集工程第一段階における画面の模式図を示す。図8に、同編集工程第二段階における画面の模式図を示す。図9に、同編集工程第三段階における画面の模式図を示す。
(Editing process)
In this step, template data is created from the four pieces of image data D1 to D4. FIG. 7 shows a schematic diagram of a screen in the first stage of the editing process of the substrate inspection master data creation method of the present embodiment. FIG. 8 shows a schematic diagram of a screen in the second stage of the editing process. FIG. 9 shows a schematic diagram of the screen in the third stage of the editing process.
 本工程においては、まず、ユーザが、図7に示すように、上記(a)~(d)の4つの照明パターンの中から、部品Pa1~Pa4と基板Bとのコントラスト(輝度の差)、部品Pa1~Pa4と背景部Hとのコントラストが最も大きくなるような(つまり部品Pa1~Pa4が最も鮮明に見えるような)、照明パターンを選択する。 In this step, first, as shown in FIG. 7, the user selects the contrast (brightness difference) between the components Pa1 to Pa4 and the substrate B from the four illumination patterns (a) to (d), The illumination pattern is selected so that the contrast between the parts Pa1 to Pa4 and the background portion H is maximized (that is, the parts Pa1 to Pa4 are most clearly visible).
 すなわち、画面130には、上記(a)~(d)の4つの照明パターンに対応して、照明ボタン130a~130dが配置されている。例えば、ユーザが、図2に示すマウス12で照明ボタン130aをクリックすると、制御装置14が、記憶部141の画像データD1~D4を参照し、上記(a)の照明パターンつまり図4に示す落射光21Uと側射上段光21Mと側射下段光21Dとを用いて撮像した際の画像データD1~D4を、画面130に表示する。同様に、ユーザが照明ボタン130b~130dを選択すると、制御装置14が上記(b)~(d)の照明パターンを用いて撮像した際の画像データD1~D4を、画面130に表示する。このように、ユーザが、図2に示すマウス12で照明ボタン130a~130dのいずれかをクリックすることにより、上記(a)~(d)の4つの照明パターンの中から一つの照明パターンが選択される。制御装置14は、画面130に、当該照明パターンを用いて撮像した際の画像データD1~D4を表示する。 That is, on the screen 130, illumination buttons 130a to 130d are arranged corresponding to the above four illumination patterns (a) to (d). For example, when the user clicks the illumination button 130a with the mouse 12 shown in FIG. 2, the control device 14 refers to the image data D1 to D4 in the storage unit 141, and the illumination pattern of (a), that is, the drop shown in FIG. Image data D1 to D4 obtained by imaging using the incident light 21U, the side-light upper stage light 21M, and the side-light lower stage light 21D are displayed on the screen 130. Similarly, when the user selects the illumination buttons 130b to 130d, the control device 14 displays on the screen 130 the image data D1 to D4 that are captured using the illumination patterns (b) to (d). As described above, when the user clicks one of the illumination buttons 130a to 130d with the mouse 12 shown in FIG. 2, one illumination pattern is selected from the above four illumination patterns (a) to (d). Is done. The control device 14 displays on the screen 130 the image data D1 to D4 when captured using the illumination pattern.
 本工程においては、次に、ユーザが、図8に示すように、エッジ検出ライン(以下、「シークライン」と称す。)の表示を、制御装置14に指示する。すなわち、画面130には、シークライン表示ボタン131が配置されている。ユーザが、図2に示すマウス12でシークライン表示ボタン131をクリックすることにより、図9に示すように、制御装置14が画面130にシークラインL1~L4を表示する。 In this step, the user next instructs the control device 14 to display an edge detection line (hereinafter referred to as “seek line”) as shown in FIG. That is, a seek line display button 131 is arranged on the screen 130. When the user clicks the seek line display button 131 with the mouse 12 shown in FIG. 2, the control device 14 displays seek lines L1 to L4 on the screen 130 as shown in FIG.
 シークライン(エッジ検出ライン)L1~L4は、画像データD1~D4の各々に対して、4本ずつ配置される。具体的には、シークラインL1~L4は、画像データD1~D4の部品Pa1~Pa4のボディ(リードを除く部分)の外形線に対して、直交するように配置される。また、シークラインL1~L4の長手方向中央が外形線に対して交差するように、シークラインL1~L4は配置される。 Four seek lines (edge detection lines) L1 to L4 are arranged for each of the image data D1 to D4. Specifically, the seek lines L1 to L4 are arranged so as to be orthogonal to the outlines of the bodies (portions excluding the leads) of the parts Pa1 to Pa4 of the image data D1 to D4. Further, the seek lines L1 to L4 are arranged so that the center in the longitudinal direction of the seek lines L1 to L4 intersects the outline.
 本工程においては、続いて、ユーザが、図9に示すように、画像データD1~D4の4個の部品Pa1~Pa4に共用できるように、シークラインL1~L4を最適化させる。 In this step, subsequently, as shown in FIG. 9, the user optimizes the seek lines L1 to L4 so that they can be shared by the four parts Pa1 to Pa4 of the image data D1 to D4.
 すなわち、4個の画像データD1~D4のシークラインL1同士、シークラインL2同士、シークラインL3同士、シークラインL4同士の編集作業は、互いに関連付けられている。 That is, the editing operations of the four image data D1 to D4 between the seek lines L1, the seek lines L2, the seek lines L3, and the seek lines L4 are associated with each other.
 例えば、ユーザが、画像データD1のシークラインL1を、図2に示すマウス12でクリックすると、画像データD2~D4のシークラインL1も同期してクリックされる。このように、単一の画像データD1のシークラインL1をクリックすることにより、画像データD1~D4全てのシークラインL1を選択することができる。 For example, when the user clicks the seek line L1 of the image data D1 with the mouse 12 shown in FIG. 2, the seek lines L1 of the image data D2 to D4 are also clicked in synchronization. In this way, by clicking the seek line L1 of the single image data D1, it is possible to select all the seek lines L1 of the image data D1 to D4.
 また、ユーザが、画像データD1のシークラインL1を、図2に示すマウス12でドラッグすると、画像データD1のシークラインL1だけでなく、画像データD2~D4のシークラインL1も同期してドラッグされる。このように、単一の画像データD1のシークラインL1をドラッグすることにより、画像データD1~D4全てのシークラインL1の長さを、同じだけ伸縮することができる。あるいは、画像データD1~D4全てのシークラインL1の角度を、同じだけ変更することができる。 When the user drags the seek line L1 of the image data D1 with the mouse 12 shown in FIG. 2, not only the seek line L1 of the image data D1 but also the seek lines L1 of the image data D2 to D4 are dragged synchronously. The In this way, by dragging the seek line L1 of the single image data D1, the length of the seek line L1 of all the image data D1 to D4 can be expanded or contracted by the same amount. Alternatively, the angles of the seek lines L1 of all the image data D1 to D4 can be changed by the same amount.
 また、ユーザが、画像データD1のシークラインL1を、図2に示すマウス12でクリックし、ドラッグ&ドロップすると、画像データD1のシークラインL1だけでなく、画像データD2~D4のシークラインL1も同期してクリック、ドラッグ&ドロップされる。このように、単一の画像データD1のシークラインL1をクリックし、ドラッグ&ドロップすることにより、画像データD1~D4全てのシークラインL1を、同じだけ移動させることができる。 When the user clicks on the seek line L1 of the image data D1 with the mouse 12 shown in FIG. 2 and drags and drops it, not only the seek line L1 of the image data D1 but also the seek lines L1 of the image data D2 to D4 are displayed. Clicked, dragged and dropped in sync. In this way, by clicking and dragging and dropping the seek line L1 of the single image data D1, all the seek lines L1 of the image data D1 to D4 can be moved by the same amount.
 なお、上記編集作業は、単一のシークラインL1のみならず、複数のシークラインL1~L4に対して(具体的には複数のシークラインL1~L4をマウス12で同時に選択して)、実行することができる。また、上記編集作業は、画像データD1以外の画像データD2~D4のシークラインL1~L4に対しても実行することができる。 The above editing operation is performed not only on a single seek line L1 but also on a plurality of seek lines L1 to L4 (specifically, a plurality of seek lines L1 to L4 are simultaneously selected with the mouse 12). can do. The editing operation can also be performed on the seek lines L1 to L4 of the image data D2 to D4 other than the image data D1.
 ユーザは、部品Pa1~Pa4のボディの外形線に対して、シークラインL1~L4が直交するように、画面130において編集作業を行う。また、シークラインL1~L4の長手方向中央が外形線に対して交差するように、画面130において編集作業を行う。 The user performs editing on the screen 130 so that the seek lines L1 to L4 are orthogonal to the outlines of the bodies of the parts Pa1 to Pa4. Further, the editing operation is performed on the screen 130 so that the center in the longitudinal direction of the seek lines L1 to L4 intersects the outline.
 ここで、部品Pa1~Pa4の外形線の一部は、各々、背景部Hと重なっている。部品Pa1~Pa4と基板Bとのコントラストと比較して、部品Pa1~Pa4と背景部Hとのコントラストは小さい。このため、部品Pa1~Pa4と背景部Hとが重なる部分については、シークラインL1~L4を設定しにくい。 Here, some of the outlines of the parts Pa1 to Pa4 overlap the background part H, respectively. Compared with the contrast between the components Pa1 to Pa4 and the substrate B, the contrast between the components Pa1 to Pa4 and the background portion H is small. For this reason, it is difficult to set the seek lines L1 to L4 in the portion where the parts Pa1 to Pa4 and the background portion H overlap.
 例えば、画像データD1に着目すると、部品Pa1の下縁線(外形線の一部)は、背景部Hと重なっている。このため、シークラインL2を設定しにくい。しかしながら、画像データD2~D4を見ると、部品Pa2~Pa4の下縁線(外形線の一部)は、背景部Hと重なっていない。このため、シークラインL2を設定しやすい。このように、ユーザは、画像データD1の部品Pa1のみではシークラインL2を設定しにくい場合であっても、画像データD2~D4の部品Pa2~Pa4を参照して、シークラインL2を設定することができる。 For example, when focusing attention on the image data D1, the lower edge line (part of the outline) of the part Pa1 overlaps the background portion H. For this reason, it is difficult to set the seek line L2. However, when viewing the image data D2 to D4, the lower edge lines (part of the outline) of the parts Pa2 to Pa4 do not overlap the background portion H. For this reason, it is easy to set the seek line L2. As described above, the user can set the seek line L2 with reference to the parts Pa2 to Pa4 of the image data D2 to D4 even if it is difficult to set the seek line L2 only with the part Pa1 of the image data D1. Can do.
 同様に、画像データD2の部品Pa2の右縁線、画像データD3の部品Pa3の左縁線、画像データD4の部品Pa4の上縁線(いずれも外形線の一部)も、各々背景部Hと重なっている。しかしながら、他の画像データD1~D4の部品Pa1~Pa4を参照して、シークラインL1、L3、L4を設定することができる。 Similarly, the right edge line of the part Pa2 of the image data D2, the left edge line of the part Pa3 of the image data D3, and the upper edge line of the part Pa4 of the image data D4 (both are part of the outline) are also respectively the background portion H. It overlaps with. However, the seek lines L1, L3, and L4 can be set with reference to the parts Pa1 to Pa4 of the other image data D1 to D4.
 このように、本工程においては、画像データD1~D4の4個の部品Pa1~Pa4に共用できるように、シークラインL1~L4を最適化させる。最適化されたシークラインL1~L4が、テンプレートデータである。テンプレートデータは、図2に示す制御装置14の記憶部141に格納される。 Thus, in this step, the seek lines L1 to L4 are optimized so that they can be shared by the four parts Pa1 to Pa4 of the image data D1 to D4. The optimized seek lines L1 to L4 are template data. The template data is stored in the storage unit 141 of the control device 14 shown in FIG.
 [検証工程]
 検証工程は、検証用画面表示工程と、データ比較工程と、を有している。
[Verification process]
The verification process includes a verification screen display process and a data comparison process.
 (検証用画面表示工程)
 本工程においては、前記データ収集工程において収集した8個の部品Pa1~Pa8の画像データD1~D8の中から、4個の画像データD5~D8を、図2に示すモニタ13の画面130に表示する。具体的には、まず、ユーザが、図2に示すキーボード11で、図5に示す部品Pa1~Pa8、Pb~Peの画像データの中から、8個の部品Pa1~Pa8の画像データD1~D8を選択する。図2に示す制御装置14は、画面130に、8個の部品Pa1~Pa8の画像データD1~D8を表示する。次に、ユーザが、図2に示すマウス12で、画像データD1~D8の中から、テンプレートデータの作成に用いなかった画像データD5~D8を、クリックする。図2に示す制御装置14は、選択された画像データD5~D8を、画面130に表示する。
(Verification screen display process)
In this step, four image data D5 to D8 are displayed on the screen 130 of the monitor 13 shown in FIG. 2 among the image data D1 to D8 of the eight parts Pa1 to Pa8 collected in the data collection step. To do. Specifically, first, the user uses the keyboard 11 shown in FIG. 2 to select image data D1 to D8 of eight parts Pa1 to Pa8 from the image data of parts Pa1 to Pa8 and Pb to Pe shown in FIG. Select. The control device 14 shown in FIG. 2 displays the image data D1 to D8 of the eight parts Pa1 to Pa8 on the screen 130. Next, the user clicks the image data D5 to D8 that were not used for creating the template data from the image data D1 to D8 with the mouse 12 shown in FIG. The control device 14 shown in FIG. 2 displays the selected image data D5 to D8 on the screen 130.
 図10に、本実施形態の基板検査用マスタデータ作成方法の検証用画面表示工程における画面の模式図を示す。図10に示すように、画面130には、部品Pa5の画像データD5、部品Pa6の画像データD6、部品Pa7の画像データD7、部品Pa8の画像データD8が縦横に並べて配置されている。 FIG. 10 shows a schematic diagram of a screen in the verification screen display process of the substrate inspection master data creation method of the present embodiment. As shown in FIG. 10, the image data D5 of the part Pa5, the image data D6 of the part Pa6, the image data D7 of the part Pa7, and the image data D8 of the part Pa8 are arranged on the screen 130 vertically and horizontally.
 図5に示すように、部品Pa6の向きに対して、部品Pa5は右に90°、部品Pa7は180°、部品Pa8は左に90°、各々回転して配置されている。図2に示す制御装置14は、部品Pa5~Pa8(つまり画像データD5~D8)の向きを揃えて、画面130に表示する。 As shown in FIG. 5, the component Pa5 is rotated 90 ° to the right, the component Pa7 is 180 °, and the component Pa8 is 90 ° to the left with respect to the direction of the component Pa6. The control device 14 shown in FIG. 2 displays the parts Pa5 to Pa8 (that is, the image data D5 to D8) on the screen 130 in the same direction.
 (データ比較工程)
 本工程においては、図10に示す画面130に表示された4個の画像データD5~D8と、図2に示す記憶部141に格納されたテンプレートデータと、を比較する。そして、演算部142が、「4個の画像データD5~D8がテンプレートデータに適合する」と判断するか否かを試行する。
(Data comparison process)
In this step, the four pieces of image data D5 to D8 displayed on the screen 130 shown in FIG. 10 are compared with the template data stored in the storage unit 141 shown in FIG. Then, the calculation unit 142 tries to determine whether or not “four image data D5 to D8 match the template data”.
 すなわち、テンプレートデータは、部品Pa5~Pa8と同じ部品種の部品Pa1~Pa4を基に作成されている。このため、テンプレートデータが妥当であれば、演算部142が、「4個の画像データD5~D8がテンプレートデータに適合する」と判断する。一方、テンプレートデータが妥当でなければ、演算部142が、「4個の画像データD5~D8がテンプレートデータに適合しない」と判断する。 That is, the template data is created based on the parts Pa1 to Pa4 of the same part type as the parts Pa5 to Pa8. Therefore, if the template data is valid, the calculation unit 142 determines that “four image data D5 to D8 are suitable for the template data”. On the other hand, if the template data is not valid, the calculation unit 142 determines that “the four pieces of image data D5 to D8 do not match the template data”.
 図11に、本実施形態の基板検査用マスタデータ作成方法のデータ比較工程第一段階における画面の模式図を示す。図12に、同データ比較工程第二段階における画面の模式図を示す。 FIG. 11 shows a schematic diagram of the screen in the first stage of the data comparison process of the substrate inspection master data creation method of the present embodiment. FIG. 12 shows a schematic diagram of a screen in the second stage of the data comparison process.
 本工程においては、まず、図2に示す制御装置14が、図11に示すように、画像データD5~D8の各々に、テンプレートデータ(シークラインL1~L4)を表示する。 In this step, first, the control device 14 shown in FIG. 2 displays template data (seek lines L1 to L4) on each of the image data D5 to D8 as shown in FIG.
 次に、図2に示す制御装置14が、テンプレートデータと、部品Pa5~Pa8と、の位置合わせを行う。具体的には、図12に示すように、制御装置14は、部品Pa5~Pa8のボディの外形線に対して、シークラインL1~L4が、できるだけ直交に近い状態で交差するように、部品Pa5~Pa8に対してテンプレートデータを走査させる。また、制御装置14は、部品Pa5~Pa8のボディの外形線に対して、シークラインL1~L4の長手方向中央にできるだけ近い位置が交差するように、部品Pa5~Pa8に対してテンプレートデータを走査させる。 Next, the control device 14 shown in FIG. 2 aligns the template data and the parts Pa5 to Pa8. Specifically, as shown in FIG. 12, the control device 14 determines that the parts Pa5 to Pa4 intersect the outlines of the bodies of the parts Pa5 to Pa8 so that the seek lines L1 to L4 intersect as close to orthogonal as possible. Scan template data for Pa8. Further, the control device 14 scans the template data for the parts Pa5 to Pa8 so that the position of the outline of the body of the parts Pa5 to Pa8 intersects with the center in the longitudinal direction of the seek lines L1 to L4 as much as possible. Let
 シークラインL1~L4と、部品Pa5~Pa8のボディの外形線と、の交差点の位置の判別は、画像データD5~D8の輝度を基に行われる。すなわち、画像データD5~D8中、部品Pa5~Pa8のボディが配置されている部分と、背景部Hが配置されている部分と、基板Bが配置されている部分と、では輝度が異なる。一例として、画像データD5の部品Pa5のシークラインL1に着目すると、シークラインL1の右部分と左部分とでは、部品Pa5のボディの左縁線を境に、輝度が著しく変化する。当該輝度の変化を基に、シークラインL1と、部品Pa5のボディの左縁線と、の交差点の位置を判別する。 The position of the intersection between the seek lines L1 to L4 and the body outlines of the parts Pa5 to Pa8 is determined based on the luminance of the image data D5 to D8. That is, in the image data D5 to D8, the luminance is different between the portion where the body of the parts Pa5 to Pa8 is disposed, the portion where the background portion H is disposed, and the portion where the substrate B is disposed. As an example, when attention is focused on the seek line L1 of the part Pa5 of the image data D5, the luminance changes remarkably between the right part and the left part of the seek line L1 with the left edge line of the body of the part Pa5 as a boundary. Based on the change in luminance, the position of the intersection of the seek line L1 and the left edge line of the body of the part Pa5 is determined.
 このように、本工程においては、部品Pa5~Pa8のボディの外形線に対して、シークラインL1~L4が、できるだけ直交に近い状態で交差するように、テンプレートデータと、部品Pa5~Pa8と、の位置合わせを行う。また、部品Pa5~Pa8のボディの外形線に対して、シークラインL1~L4の長手方向中央にできるだけ近い位置が交差するように、テンプレートデータと、部品Pa5~Pa8と、の位置合わせを行う。 Thus, in this process, the template data, the parts Pa5 to Pa8, and the seek lines L1 to L4 intersect with the outlines of the bodies of the parts Pa5 to Pa8 in a state that is as orthogonal as possible. Perform position alignment. Further, the template data and the parts Pa5 to Pa8 are aligned so that the positions of the body outlines of the parts Pa5 to Pa8 intersect as close as possible to the longitudinal center of the seek lines L1 to L4.
 図2に示す記憶部141には、テンプレートデータと部品Pa5~Pa8とのマッチングの判定基準が格納されている。演算部142は、当該判定基準と、画像データD5~D8におけるテンプレートデータと部品Pa5~Pa8とのマッチング状態と、を比較する。そして、画像データD5~D8がテンプレートデータに適合するか、画像データD5~D8がテンプレートデータに適合しないか、を判断する。つまり、テンプレートデータの部品種と、部品Pa5~Pa8の部品種と、の異同を判断する。 The storage unit 141 shown in FIG. 2 stores criteria for matching the template data with the parts Pa5 to Pa8. The calculation unit 142 compares the determination criterion with the matching state between the template data in the image data D5 to D8 and the parts Pa5 to Pa8. Then, it is determined whether the image data D5 to D8 matches the template data or whether the image data D5 to D8 does not match the template data. That is, the difference between the part type of the template data and the part type of the parts Pa5 to Pa8 is determined.
 ここで、テンプレートデータは、部品Pa5~Pa8と同じ部品種の部品Pa1~Pa4を基に作成されている。このため、テンプレートデータの部品種と、部品Pa5~Pa8の部品種と、が同一であると判断された場合、テンプレートデータは、部品Pa1~Pa8に対して、妥当性を有していることになる。つまり、当該テンプレートデータは、部品Pa1~Pa8と同じ部品種の部品を探すテンプレートデータとして適当である。この場合は、当該テンプレートデータを、図2に示す基板外観検査機7に伝送し、記憶部761に格納する。基板外観検査機7は、格納されたテンプレートデータを用いて、基板Bの検査を行う。 Here, the template data is created based on the parts Pa1 to Pa4 of the same part type as the parts Pa5 to Pa8. For this reason, when it is determined that the component type of the template data is the same as the component types of the components Pa5 to Pa8, the template data has validity with respect to the components Pa1 to Pa8. Become. That is, the template data is appropriate as template data for searching for parts of the same part type as the parts Pa1 to Pa8. In this case, the template data is transmitted to the board appearance inspection machine 7 shown in FIG. 2 and stored in the storage unit 761. The board appearance inspection machine 7 inspects the board B using the stored template data.
 これに対して、テンプレートデータの部品種と、部品Pa5~Pa8の部品種と、が異なると判断された場合、テンプレートデータは、部品Pa1~Pa4に対しては妥当性を有しているものの、部品Pa5~Pa8に対して、妥当性を有していないことになる。つまり、当該テンプレートデータは、部品Pa1~Pa8と同じ部品種の部品を探すテンプレートデータとして不適当である。この場合は、再度、上記データ作成工程を実行する。すなわち、例えば部品Pa3~Pa6を用いて、テンプレートデータを作り直す。 On the other hand, if it is determined that the part type of the template data is different from the part type of the parts Pa5 to Pa8, the template data has validity for the parts Pa1 to Pa4. The parts Pa5 to Pa8 have no validity. That is, the template data is inappropriate as template data for searching for parts of the same part type as the parts Pa1 to Pa8. In this case, the data creation process is executed again. That is, template data is recreated using, for example, parts Pa3 to Pa6.
 <作用効果>
 次に、本実施形態の基板検査用マスタデータ作成方法の作用効果について説明する。本実施形態の基板検査用マスタデータ作成方法によると、データ作成工程により、同一の部品種の8個の部品Pa1~Pa8に対して共用されるテンプレートデータ(シークラインL1~L4)を作成することができる。
<Effect>
Next, the effect of the board inspection master data creation method of this embodiment will be described. According to the substrate inspection master data creation method of the present embodiment, template data (seek lines L1 to L4) shared by the eight parts Pa1 to Pa8 of the same part type is created by the data creation process. Can do.
 また、本実施形態の基板検査用マスタデータ作成方法によると、作成したテンプレートデータの妥当性を、検証工程により、検証することができる。このため、適合度の高いテンプレートデータを簡単に作成することができる。 Also, according to the substrate inspection master data creation method of the present embodiment, the validity of the created template data can be verified by the verification process. For this reason, template data having a high degree of matching can be easily created.
 また、本実施形態の基板検査用マスタデータ作成方法の編集工程によると、単一の画面130において、4個の画像データD1~D4を見比べながらテンプレートデータを作成することができる。このため、単一の画面130に単一の画像データD1~D4しか表示されない場合と比較して、テンプレートデータを簡単に作成することができる。具体的には、画像データD1~D4の部品Pa1~Pa4の外形線の一部が不鮮明な場合であっても、同じ部分が鮮明な他の画像データD1~D4を基に、シークラインL1~L4を設定することができる。 Further, according to the editing process of the substrate inspection master data creation method of the present embodiment, template data can be created while comparing the four image data D1 to D4 on a single screen 130. Therefore, template data can be created more easily than when only a single image data D1 to D4 is displayed on a single screen 130. Specifically, even if some of the outlines of the parts Pa1 to Pa4 of the image data D1 to D4 are unclear, the seek lines L1 to L4 are based on the other image data D1 to D4 where the same portion is clear. L4 can be set.
 また、本実施形態の基板検査用マスタデータ作成方法の編集工程によると、単一の画面130において、任意の画像データD1の編集作業の結果を、残りの全ての画像データD2~D4に反映させることができる。このため、単一の画面130において、複数の画像データD1~D4を一つずつ編集する場合と比較して、編集作業が簡単である。また、複数の画像データD1~D4を一つずつ画面130に表示する場合と比較して、編集作業が簡単である。 Further, according to the editing process of the substrate inspection master data creation method of the present embodiment, the result of editing the arbitrary image data D1 is reflected on all the remaining image data D2 to D4 on the single screen 130. be able to. Therefore, the editing operation is simpler than the case where a plurality of image data D1 to D4 are edited one by one on a single screen 130. In addition, the editing operation is simpler than when a plurality of image data D1 to D4 are displayed on the screen 130 one by one.
 また、本実施形態の基板検査用マスタデータ作成方法の編集工程によると、単一の画面130において、編集作業の結果を確認することができる。このため、画面130の全ての画像データD1~D4に対する編集作業の妥当性を、俯瞰的に確認することができる。 Further, according to the editing process of the board inspection master data creation method of the present embodiment, the result of the editing work can be confirmed on a single screen 130. Therefore, the validity of the editing work for all the image data D1 to D4 on the screen 130 can be confirmed from a bird's-eye view.
 また、本実施形態の基板検査用マスタデータ作成方法の検証工程によると、テンプレートデータの妥当性を、画面130において確認することができる。すなわち、実際の基板Bにテンプレートデータを試用することなく、テンプレートデータの妥当性を確認することができる。また、本実施形態の基板検査用マスタデータ作成方法の検証工程によると、単一の画面130において、複数の画像データD5~D8にテンプレートデータを試用することができる。このため、テンプレートデータの妥当性を、俯瞰的に確認することができる。 Further, according to the verification process of the substrate inspection master data creation method of the present embodiment, the validity of the template data can be confirmed on the screen 130. That is, the validity of the template data can be confirmed without using the template data on the actual substrate B. Further, according to the verification process of the substrate inspection master data creation method of the present embodiment, template data can be used for a plurality of image data D5 to D8 on a single screen 130. For this reason, the validity of the template data can be confirmed from a bird's-eye view.
 また、本実施形態の基板検査用マスタデータ作成方法によると、データ比較工程においてテンプレートデータが不適当と判断された場合、再度、データ作成工程を実行し、テンプレートデータを作り直すことができる。 Further, according to the substrate inspection master data creation method of the present embodiment, when the template data is determined to be inappropriate in the data comparison process, the data creation process can be executed again to recreate the template data.
 <<第二実施形態>>
 本実施形態の基板検査用マスタデータ作成方法と、第一実施形態の基板検査用マスタデータ作成方法との相違点は、作成対象となるマスタデータが、テンプレートデータではなく、基板を検査する際の部品の検査領域である点である。ここでは、相違点についてのみ説明する。なお、説明には、図2を援用する。
<< Second Embodiment >>
The difference between the board inspection master data creation method of the present embodiment and the board inspection master data creation method of the first embodiment is that the master data to be created is not template data but a board inspection. This is a part inspection area. Here, only differences will be described. In addition, FIG. 2 is used for description.
 図13に、本実施形態の基板検査用マスタデータ作成方法の編集工程第二段階における画面の模式図を示す。図14に、同編集工程第三段階における画面の模式図を示す。なお、図8、図9と対応する部位については、同じ符号で示す。編集工程第一段階までの工程は、第一実施形態(図5~図7参照)と同様である。 FIG. 13 shows a schematic diagram of the screen in the second stage of the editing process of the substrate inspection master data creation method of the present embodiment. FIG. 14 shows a schematic diagram of the screen in the third stage of the editing process. Parts corresponding to those in FIGS. 8 and 9 are denoted by the same reference numerals. The processes up to the first stage of the editing process are the same as in the first embodiment (see FIGS. 5 to 7).
 編集工程においては、ユーザが、図13に示すように、検査領域の表示を、図2に示す制御装置14に指示する。すなわち、画面130には、検査領域表示ボタン132が配置されている。ユーザが、図2に示すマウス12で検査領域表示ボタン132をクリックすることにより、図14に示すように、図2に示す制御装置14が画面130に検査領域Rを表示する。検査領域Rは、本発明の「検査条件」の概念に含まれる。なお、検査領域Rは、基板検査の際、部品Pa1~Pa4の向きを検査するために用いられる。 In the editing process, the user instructs the control device 14 shown in FIG. 2 to display the inspection area as shown in FIG. That is, the examination area display button 132 is arranged on the screen 130. When the user clicks the examination area display button 132 with the mouse 12 shown in FIG. 2, the control device 14 shown in FIG. 2 displays the examination area R on the screen 130 as shown in FIG. 14. The inspection region R is included in the concept of “inspection conditions” of the present invention. The inspection region R is used for inspecting the orientations of the parts Pa1 to Pa4 during the board inspection.
 検査領域Rは、画像データD1~D4の各々に対して、一つずつ配置される。具体的には、画像データD1~D4の部品Pa1~Pa4の基準マークPa1a~Pa4aを、できるだけ囲むように、四角形の検査領域Rが配置される。 The inspection area R is arranged one by one for each of the image data D1 to D4. Specifically, a rectangular inspection region R is arranged so as to surround the reference marks Pa1a to Pa4a of the parts Pa1 to Pa4 of the image data D1 to D4 as much as possible.
 本工程においては、続いて、ユーザが、図14に示すように、画像データD1~D4の4個の部品Pa1~Pa4に共用できるように、検査領域Rを最適化させる。すなわち、同じ部品種の部品Pa1~Pa4の基準マークPa1a~Pa4aの位置は、本来、一致しているはずである。しかしながら、基準マークPa1a~Pa4aの位置が、部品Pa1~Pa4間でずれている場合がある。このような場合であっても、基準マークPa1a~Pa4aが検査領域Rに入るように、検査領域Rを編集する。 In this process, subsequently, as shown in FIG. 14, the user optimizes the inspection region R so that it can be shared by the four parts Pa1 to Pa4 of the image data D1 to D4. That is, the positions of the reference marks Pa1a to Pa4a of the parts Pa1 to Pa4 of the same part type should be essentially the same. However, the positions of the reference marks Pa1a to Pa4a may be shifted between the parts Pa1 to Pa4. Even in such a case, the inspection region R is edited so that the reference marks Pa1a to Pa4a enter the inspection region R.
 4個の画像データD1~D4の検査領域Rの編集作業は、互いに関連付けられている。例えば、ユーザが、画像データD1の検査領域Rを、図2に示すマウス12でクリックすると、画像データD2~D4の検査領域Rも同期してクリックされる。このように、単一の画像データD1の検査領域Rをクリックすることにより、画像データD1~D4全ての検査領域Rを選択することができる。 The editing work of the inspection area R of the four pieces of image data D1 to D4 is associated with each other. For example, when the user clicks the inspection area R of the image data D1 with the mouse 12 shown in FIG. 2, the inspection areas R of the image data D2 to D4 are also clicked in synchronization. As described above, by clicking the inspection region R of the single image data D1, it is possible to select all the inspection regions R of the image data D1 to D4.
 また、ユーザが、画像データD1の検査領域Rを、図2に示すマウス12でドラッグすると、画像データD1の検査領域Rだけでなく、画像データD2~D4の検査領域Rも同期してドラッグされる。このように、単一の画像データD1の検査領域Rをドラッグすることにより、画像データD1~D4全ての検査領域Rのサイズを、同じだけ拡縮することができる。 When the user drags the inspection area R of the image data D1 with the mouse 12 shown in FIG. 2, not only the inspection area R of the image data D1 but also the inspection areas R of the image data D2 to D4 are dragged synchronously. The As described above, by dragging the inspection region R of the single image data D1, the sizes of the inspection regions R of all the image data D1 to D4 can be enlarged or reduced by the same amount.
 また、ユーザが、画像データD1の検査領域Rを、図2に示すマウス12でクリックし、ドラッグ&ドロップすると、画像データD1の検査領域Rだけでなく、画像データD2~D4の検査領域Rも同期してクリック、ドラッグ&ドロップされる。このように、単一の画像データD1の検査領域Rをクリックし、ドラッグ&ドロップすることにより、画像データD1~D4全ての検査領域Rを、同じだけ移動させることができる。なお、上記編集作業は、画像データD1以外の画像データD2~D4の検査領域Rに対しても実行することができる。最適化された検査領域Rは、図2に示す制御装置14の記憶部141に格納される。 When the user clicks and drags and drops the inspection area R of the image data D1 with the mouse 12 shown in FIG. 2, not only the inspection area R of the image data D1, but also the inspection areas R of the image data D2 to D4 are displayed. Clicked, dragged and dropped in sync. In this way, by clicking and dragging and dropping the inspection area R of the single image data D1, all the inspection areas R of the image data D1 to D4 can be moved by the same amount. Note that the above editing operation can also be performed on the inspection region R of the image data D2 to D4 other than the image data D1. The optimized inspection region R is stored in the storage unit 141 of the control device 14 shown in FIG.
 編集工程後の検証工程においては、画面130に、同じ部品種の4個の部品を表示し、検査領域Rの平均輝度を基に、部品の向きを判別する。すなわち、検査領域R内に基準マークPa1a~Pa4aが配置されている場合と、配置されていない場合とでは、検査領域Rの平均輝度が異なる。当該平均輝度の相違を基に、部品の向きを判別する。検査領域Rにより全部品の向きを判別できた場合、当該検査領域Rはマスタデータとして適当であることになる。この場合は、当該検査領域Rを、図2に示す基板外観検査機7に伝送し、記憶部761に格納する。基板外観検査機7は、格納された検査領域Rを用いて、基板Bの検査を行う。 In the verification process after the editing process, four parts of the same part type are displayed on the screen 130, and the orientation of the part is determined based on the average luminance of the inspection region R. That is, the average luminance of the inspection region R differs between when the reference marks Pa1a to Pa4a are arranged in the inspection region R and when they are not arranged. Based on the difference in the average luminance, the orientation of the component is determined. When the orientations of all parts can be determined from the inspection area R, the inspection area R is appropriate as master data. In this case, the inspection area R is transmitted to the board appearance inspection machine 7 shown in FIG. 2 and stored in the storage unit 761. The substrate appearance inspection machine 7 inspects the substrate B using the stored inspection region R.
 これに対して、検査領域Rにより全部品の向きを判別できなかった場合、当該検査領域Rはマスタデータとして不適当であることになる。この場合は、再度、上記データ作成工程を実行する。すなわち、部品Pa1~Pa4と同じ部品種の部品を用いて、検査領域Rを作り直す。 On the other hand, when the orientations of all parts cannot be determined by the inspection area R, the inspection area R is inappropriate as master data. In this case, the data creation process is executed again. That is, the inspection region R is recreated using parts of the same part type as the parts Pa1 to Pa4.
 本実施形態の基板検査用マスタデータ作成方法と、第一実施形態の基板検査用マスタデータ作成方法とは、構成が共通する部分に関しては、同様の作用効果を有する。本実施形態の基板検査用マスタデータ作成方法によると、同じ部品種の複数の部品Pa1~Pa4において、検査領域Rを共用化することができる。 The substrate inspection master data creation method of the present embodiment and the substrate inspection master data creation method of the first embodiment have the same operational effects with respect to the parts having the same configuration. According to the substrate inspection master data creation method of this embodiment, the inspection region R can be shared by a plurality of parts Pa1 to Pa4 of the same part type.
 <<その他>>
 以上、本発明の基板検査用マスタデータ作成方法の実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
<< Other >>
The embodiment of the substrate inspection master data creation method of the present invention has been described above. However, the embodiment is not particularly limited to the above embodiment. Various modifications and improvements that can be made by those skilled in the art are also possible.
 画像データの取得方法は特に限定しない。例えば、上記実施形態においては、図5に示すように、教示用の基板Bから、部品Pa1~Pa8、Pb~Peの画像データをサーバ1に取り込んだ。しかしながら、実際に生産中の基板Bから、部品Pa1~Pa8、Pb~Peの画像データをサーバ1に取り込んでもよい。また、異なる基板種の複数の基板Bから、部品Pa1~Pa8、Pb~Peの画像データをサーバ1に取り込んでもよい。 * The acquisition method of image data is not particularly limited. For example, in the above embodiment, as shown in FIG. 5, the image data of the parts Pa1 to Pa8 and Pb to Pe is taken into the server 1 from the teaching board B. However, the image data of the parts Pa1 to Pa8 and Pb to Pe may be taken into the server 1 from the board B actually being produced. Further, the image data of the components Pa1 to Pa8 and Pb to Pe may be taken into the server 1 from a plurality of substrates B of different substrate types.
 図6に示す画面130に、同じ基板種の異なる基板Bにおいて、同一座標に配置されている複数の部品を表示してもよい。こうすると、同一の画面130において、座標を基準に、部品の装着状態を見比べることができる。例えば、生産1枚目の基板Bの座標αの部品と、生産2枚目の基板Bの座標αの部品と、生産3枚目の基板Bの座標αの部品と、生産4枚目の基板Bの座標αの部品と、を見比べることができる。また、見比べながら画像データを編集することができる。 6 may display a plurality of components arranged at the same coordinates on different substrates B of the same substrate type. In this way, on the same screen 130, it is possible to compare the mounting state of the components based on the coordinates. For example, the component at the coordinate α of the first board B produced, the component at the coordinate α of the second board B produced, the component at the coordinate α of the third board B produced, and the fourth board produced It can be compared with the component of the coordinate α of B. In addition, image data can be edited while comparing.
 上記実施形態においては、検証工程において不適当と判断されたマスタデータ(テンプレートデータ(シークラインL1~L4)、検査領域R)を作り直した。しかしながら、マスタデータを補正してもよい。この場合、図6に示す画面130に、マスタデータと画像データとを表示し、双方のデータを見比べながらマスタデータを補正してもよい。こうすると、単一の画面130に画像データまたはマスタデータしか表示されない場合と比較して、マスタデータを簡単に補正することができる。 In the above embodiment, master data (template data (seek lines L1 to L4), inspection region R) determined to be inappropriate in the verification process was recreated. However, the master data may be corrected. In this case, the master data and the image data may be displayed on the screen 130 shown in FIG. 6, and the master data may be corrected while comparing both data. In this way, it is possible to easily correct the master data as compared with the case where only image data or master data is displayed on the single screen 130.
 サーバ1に対する入力方法は、特に限定しない。図2に示すキーボード11、マウス12、モニタの画面130(具体的にはタッチパネル)を用いればよい。エディタはサーバ1に格納しなくてもよい。例えば、エディタを基板外観検査機7の記憶部761に格納してもよい。この場合、サーバ1を用いずに、基板検査用マスタデータ作成方法を実行することができる。 The input method for the server 1 is not particularly limited. The keyboard 11, the mouse 12, and the monitor screen 130 (specifically, a touch panel) shown in FIG. 2 may be used. The editor need not be stored in the server 1. For example, the editor may be stored in the storage unit 761 of the board appearance inspection machine 7. In this case, the board inspection master data creation method can be executed without using the server 1.
 また、本発明の基板検査用マスタデータ作成方法は、電子部品実装機6で実行してもよい。並びに、基板Bの外観検査は、電子部品実装機6で実行してもよい。この場合、電子部品実装機6に着脱可能な二つの作業ヘッドを装着し、一方を部品を実装するための実装ヘッドとして、他方を基板Bを検査するための検査ヘッドとして用いてもよい。こうすると、実装直後の部品の画像データを取得することができる。また、実装直後の部品を即時検査することができる。このため、後工程に流れる不良基板の数を削減することができ、延いては歩留まりの悪化を防ぐことができる。 Also, the board inspection master data creation method of the present invention may be executed by the electronic component mounting machine 6. In addition, the appearance inspection of the board B may be executed by the electronic component mounting machine 6. In this case, two detachable work heads may be mounted on the electronic component mounting machine 6, and one may be used as a mounting head for mounting components and the other as an inspection head for inspecting the substrate B. In this way, it is possible to acquire the image data of the component immediately after mounting. In addition, it is possible to immediately inspect a component immediately after mounting. For this reason, it is possible to reduce the number of defective substrates flowing in the subsequent process, and thus to prevent the yield from deteriorating.
 上記実施形態においては、ユーザがマスタデータの編集作業を行ったが、制御装置14が行ってもよい。また、編集作業の一部(例えば、照明パターンの選択など)だけを、制御装置14が行ってもよい。 In the above embodiment, the user has edited the master data, but may be performed by the control device 14. In addition, the control device 14 may perform only a part of the editing work (for example, selection of an illumination pattern).
 また、マスタデータの種類は特に限定しない。例えば、部品Pa1~Pa8のリードの検査(リードの湾曲程度、長さ、太さなどの検査)に関するデータであってもよい。また、取り込んだ画像データD1~D8を何等加工せずに、そのままマスタデータとして用いてもよい。例えば、データ量は多くなるものの、実装された同一種の部品を順次撮像し、背景も含む取得した画像データの全数をマスタデータとしてもよい。また、各々の画像データ自体をマスタデータとしてもよい。また、各画像データの特徴部分だけをマスタデータとしてもよい。また、取得した画像データを一画面上に並べて表示し、複数の画像データの中から、明らかに装着不良であるもの、部品種が異なるもの、撮像不良であるものなど、容易にマスタデータになり得ないと判断可能な画像データを、削除してもよい。こうすると、データ量を削減することができる。 Also, the type of master data is not particularly limited. For example, it may be data relating to the inspection of the leads of the components Pa1 to Pa8 (inspection of the degree of bending, length, thickness, etc. of the leads). Further, the captured image data D1 to D8 may be used as they are as master data without any processing. For example, although the amount of data increases, the same type of mounted components are sequentially imaged, and the total number of acquired image data including the background may be used as master data. Each image data itself may be master data. Moreover, only the characteristic part of each image data is good also as master data. Also, the acquired image data is displayed side by side on a single screen, and it becomes master data easily from multiple image data, such as those with obvious mounting defects, parts with different parts types, or imaging defects. Image data that can be determined not to be obtained may be deleted. In this way, the data amount can be reduced.
 また、画面130における画像データD1~D8のサイズ、配置数、レイアウトは特に限定しない。画像データD1~D8の配置数は、2個、3個、6個、8個などであってもよい。また、シークラインL1~L4の本数、角度、間隔、長さ、太さなどは特に限定しない。例えば、部品Pa1の左縁線に対して、複数のシークラインL1を並べて配置してもよい。 Further, the size, the number of arrangements, and the layout of the image data D1 to D8 on the screen 130 are not particularly limited. The number of arrangement of the image data D1 to D8 may be 2, 3, 6, 8, or the like. Further, the number, angle, interval, length, thickness, etc. of the seek lines L1 to L4 are not particularly limited. For example, a plurality of seek lines L1 may be arranged side by side with respect to the left edge line of the part Pa1.
 また、図9に示すように、シークラインL1~L4を設定する場合、背景部Hや隣接部品やリードなどの影響を受けずに設定可能であって、かつ複数の画像データD1~D4において共用可能なシークラインL1~L4を選定することもできる。図15に、その他の実施形態の基板検査用マスタデータ作成方法の編集工程第三段階における画面の模式図を示す。なお、図9と対応する部位については、同じ符号で示す。図15に示すように、画像データD1~D4において、部品Pa1~Pa4のボディの左縁線、右縁線(外形線)は、背景部Hと重なっていない。また、部品Pa1~Pa4のボディの左縁線、右縁線付近には、隣接部品が配置されていない。また、部品Pa1~Pa4のボディの左縁線、右縁線には、リードが配置されていない。このため、部品Pa1~Pa4に共通して、左縁線、右縁線のシークラインL1、L3は、鮮明である。したがって、部品Pa1~Pa4に共通して、左縁線、右縁線のシークラインL1、L3は、テンプレートデータ作成用として好適である。この場合、図2に示すサーバ1は、部品Pa1~Pa4のシークラインL1、L3を、枠Wなどを用いて、顕在化させることができる。 Further, as shown in FIG. 9, when setting the seek lines L1 to L4, they can be set without being affected by the background portion H, adjacent parts, leads, etc., and are shared by a plurality of image data D1 to D4. Possible seek lines L1 to L4 can also be selected. FIG. 15 is a schematic diagram of a screen in the third stage of the editing process of the substrate inspection master data creation method according to another embodiment. In addition, about the site | part corresponding to FIG. 9, it shows with the same code | symbol. As shown in FIG. 15, in the image data D1 to D4, the left edge line and right edge line (outline) of the bodies of the parts Pa1 to Pa4 do not overlap the background portion H. Further, no adjacent parts are arranged in the vicinity of the left and right edge lines of the bodies of the parts Pa1 to Pa4. Further, no leads are arranged on the left and right edge lines of the bodies of the parts Pa1 to Pa4. For this reason, in common with the parts Pa1 to Pa4, the seek lines L1 and L3 of the left edge line and the right edge line are clear. Therefore, in common with the parts Pa1 to Pa4, the seek lines L1 and L3 of the left edge line and the right edge line are suitable for creating template data. In this case, the server 1 shown in FIG. 2 can reveal the seek lines L1 and L3 of the parts Pa1 to Pa4 using the frame W or the like.

Claims (5)

  1.  部品を実装した基板を検査する際に用いられ、複数の部品に対して共用されるマスタデータを作成するデータ作成工程と、
     該基板を検査して、作成した該マスタデータの妥当性を検証する検証工程と、
    を有する基板検査用マスタデータ作成方法。
    A data creation process for creating master data that is used when inspecting a board on which a component is mounted and is shared for a plurality of components;
    A verification process for inspecting the substrate and verifying the validity of the created master data;
    A method for creating master data for substrate inspection, comprising:
  2.  前記データ作成工程は、
     複数の前記部品の画像データを収集するデータ収集工程と、
     収集した複数の該画像データのうち、少なくとも二つの該画像データを、単一の画面に表示する画面表示工程と、
     少なくとも二つの該画像データを表示しながら、前記マスタデータを作成する編集工程と、
    を有する請求項1に記載の基板検査用マスタデータ作成方法。
    The data creation process includes:
    A data collection step for collecting image data of a plurality of the parts;
    A screen display step of displaying at least two of the collected image data on a single screen; and
    An editing step of creating the master data while displaying at least two of the image data;
    The master data creation method for substrate inspection according to claim 1, comprising:
  3.  前記検証工程は、
     収集した複数の前記画像データのうち、少なくとも二つの該画像データを、単一の画面に表示する検証用画面表示工程と、
     表示された複数の該画像データと、前記マスタデータと、を比較するデータ比較工程と、
    を有する請求項1または請求項2に記載の基板検査用マスタデータ作成方法。
    The verification step includes
    A verification screen display step of displaying at least two of the collected image data on a single screen; and
    A data comparison step for comparing the plurality of displayed image data with the master data;
    The method for creating master data for substrate inspection according to claim 1, wherein:
  4.  前記マスタデータは、前記基板を検査する際に部品種の同一性の判別に用いられるテンプレートデータである請求項1ないし請求項3のいずれかに記載の基板検査用マスタデータ作成方法。 4. The method of creating master data for substrate inspection according to claim 1, wherein the master data is template data used for determining the identity of component types when inspecting the substrate.
  5.  前記マスタデータは、前記基板を検査する際の前記部品の検査条件である請求項1ないし請求項3のいずれかに記載の基板検査用マスタデータ作成方法。 4. The board inspection master data creation method according to claim 1, wherein the master data is an inspection condition of the component when the board is inspected.
PCT/JP2012/069592 2011-08-25 2012-08-01 Method for generating master data for substrate inspection WO2013027550A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-183594 2011-08-25
JP2011183594A JP5913866B2 (en) 2011-08-25 2011-08-25 Master data creation method for board inspection

Publications (1)

Publication Number Publication Date
WO2013027550A1 true WO2013027550A1 (en) 2013-02-28

Family

ID=47746301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069592 WO2013027550A1 (en) 2011-08-25 2012-08-01 Method for generating master data for substrate inspection

Country Status (2)

Country Link
JP (1) JP5913866B2 (en)
WO (1) WO2013027550A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264071A4 (en) * 2015-02-26 2018-08-01 Fuji Machine Mfg. Co., Ltd. Inspection device and inspection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050786A (en) * 1996-07-29 1998-02-20 Nec Corp Apparatus and method for judging quality of lead
JPH11304426A (en) * 1998-04-16 1999-11-05 Hitachi Denshi Ltd Measuring device of image by pattern matching
JP2002062112A (en) * 2000-08-21 2002-02-28 Sony Corp Positioning device and method
JP2005249615A (en) * 2004-03-04 2005-09-15 Denso Corp Different material inclusion-inspecting method
JP2007292488A (en) * 2006-04-21 2007-11-08 Hitachi Ltd Visual inspection device and inspection method of printed wiring board using the same
JP2009250707A (en) * 2008-04-03 2009-10-29 Toyota Motor Corp Master image selection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051781A (en) * 2006-08-28 2008-03-06 I-Pulse Co Ltd Visual examination method of substrate and visual examination device of substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050786A (en) * 1996-07-29 1998-02-20 Nec Corp Apparatus and method for judging quality of lead
JPH11304426A (en) * 1998-04-16 1999-11-05 Hitachi Denshi Ltd Measuring device of image by pattern matching
JP2002062112A (en) * 2000-08-21 2002-02-28 Sony Corp Positioning device and method
JP2005249615A (en) * 2004-03-04 2005-09-15 Denso Corp Different material inclusion-inspecting method
JP2007292488A (en) * 2006-04-21 2007-11-08 Hitachi Ltd Visual inspection device and inspection method of printed wiring board using the same
JP2009250707A (en) * 2008-04-03 2009-10-29 Toyota Motor Corp Master image selection method

Also Published As

Publication number Publication date
JP5913866B2 (en) 2016-04-27
JP2013044663A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
EP0706027B1 (en) Visual inspection apparatus for printed circuit boards and use thereof for solder control and correction
US9970745B2 (en) Measurement target measuring program, measurement target measuring method, and magnifying observation device
US9474195B2 (en) Image generating apparatus and image generating method
JP5861462B2 (en) Inspection standard registration method for solder inspection and board inspection apparatus using the method
JP5399205B2 (en) Inspection device for inspection object and position correction device for electronic substrate
US8302291B2 (en) Component mounting system
KR101802843B1 (en) Automated Vision Inspection System
US10070566B2 (en) Support pin arrangement determination assisting method
CN109564173A (en) Image testing device, production system, image checking method, program and storage medium
JP5913866B2 (en) Master data creation method for board inspection
JP6055241B2 (en) Imaging condition optimization method and imaging condition optimization system
TW202122789A (en) Inspection device and inspection method
JP2023100956A (en) image synthesizer
JP4369158B2 (en) Display panel inspection method
JP2014062887A (en) Defect detection apparatus, defect correction apparatus, defect detection method
JP5740082B2 (en) Board production line consisting of multiple surface mount devices
JPH04166709A (en) Surface-state observing apparatus
US11971367B2 (en) Inspection device and inspection method
JP5947168B2 (en) Appearance inspection apparatus, control method and program for appearance inspection apparatus
JP2014102206A (en) Solder inspection method
JP2014055914A (en) Appearance inspection device, appearance inspection method, and program
JPH10197399A (en) Defect locator for thin display
JPH06235699A (en) Inspection method for mounted component
JP2000183493A (en) Printed board inspection supporting apparatus and method for inspecting printed board
TWI755460B (en) Appearance inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826347

Country of ref document: EP

Kind code of ref document: A1