WO2013026225A1 - 冷凝高效燃气热水器 - Google Patents

冷凝高效燃气热水器 Download PDF

Info

Publication number
WO2013026225A1
WO2013026225A1 PCT/CN2011/080542 CN2011080542W WO2013026225A1 WO 2013026225 A1 WO2013026225 A1 WO 2013026225A1 CN 2011080542 W CN2011080542 W CN 2011080542W WO 2013026225 A1 WO2013026225 A1 WO 2013026225A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange pipe
water tank
water heater
pipe
Prior art date
Application number
PCT/CN2011/080542
Other languages
English (en)
French (fr)
Inventor
景洪
Original Assignee
重庆三温暖电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆三温暖电气有限公司 filed Critical 重庆三温暖电气有限公司
Publication of WO2013026225A1 publication Critical patent/WO2013026225A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/20Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
    • F24H1/205Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes with furnace tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to the technical field of gas water heaters, in particular to a condensing high efficiency gas water heater.
  • Preheating the cold water in the inlet pipe is equivalent to preheating before the ordinary gas water heater heats the cold water. It is worth noting that the heat used to preheat the cold water is not obtained by burning the gas, but uses the smoke that could not be recovered. The heat in the gas, so as to achieve energy-saving effect, and environmentally friendly, so that the final exhaust gas temperature is only about 60 ° C, and then transferred to the fuselage, the temperature has been reduced, touched by hand, only a little warm feeling, The hand can stay on the body.
  • one end of the heat exchange pipe of the condensing water heater communicates with the splitting chamber at the top, and the flue gas flowing into the splitting chamber from the upstream heat exchange pipe is flowed down by the descending heat exchange pipe and discharged through the exhaust port.
  • the condensing water heater is atmospheric combustion, the flue gas flows naturally, so a large amount of flue gas is congested in the splitting chamber, which reduces the heat exchange efficiency.
  • the condensing water heater needs to utilize the latent heat in the flue gas, the exhaust gas temperature is inevitably lowered, thereby generating condensed water, and the acid gas in the flue gas is dissolved in the condensed water to form acidic condensed water.
  • the condensing gas water heater adopting the indirect heat exchange method has two technical problems different from the ordinary water heater: one is the problem of generation and discharge of acid condensed water; the other is the corrosion problem of the acid condensate on the surface of the heat exchanger.
  • the condensed water generated by the heat exchange pipe during the heating process of the existing condensing water heater is inevitably dripped/flowed along the inner wall of the heat exchange pipe, and the heat exchange pipe is usually disposed above the burner, and the high temperature flue gas passes upward through the water tank.
  • a heat exchange pipe on the central vertical axis absorbs heat and discharges. The condensed water with corrosion will drip onto the burner and the combustion flame, which will corrode the burner and eventually lead to poor combustion conditions, lower flame temperatures, and thus reduced thermal efficiency.
  • an object of the present invention is to provide a condensing high-efficiency gas water heater that avoids corrosion of the burner by the condensed water having corrosive action and improves heat exchange efficiency.
  • the present invention provides the following technical solutions:
  • a condensing high-efficiency gas water heater includes a water tank, a burner disposed on a lower side of the water tank, a heat exchange pipe in the box, and an insulation layer and an outer casing covering the outside of the exhaust hood, the exhaust hood having An exhaust port communicating with the atmosphere, the heat exchange pipe has at least one upstream heat exchange pipe and one down heat exchange pipe, the upward heat exchange pipe longitudinally runs through the water tank, and the downstream heat exchange pipe And the upstream heat exchange pipe is connected through the communication pipe, and the lower end of the down heat exchange pipe is in communication with the smoke exhaust gap.
  • the upstream heat exchange pipe is located at one end of the bottom of the water tank to avoid the position of the burner.
  • the exhaust hood specifically includes a condensation hood located outside the water tank, and a condensation chamber is formed between the condensation hood and the side wall of the water tank.
  • the condensation chamber is in communication with the downstream heat exchange pipe and the exhaust port, respectively.
  • the exhaust hood further includes a return hood disposed on an upper side of the exhaust port, and a return chamber is formed between the return hood and the condensing cover, and the return chamber respectively It is in communication with the exhaust port and the condensation chamber.
  • an upper end of the upstream heat exchange pipe and the lower heat exchange pipe protrudes from a top of the water tank, and the communication pipe is located at a top of the water tank.
  • the heat exchange pipe is hooked around the burner.
  • the upstream heat exchange pipe and the lower heat exchange pipe are both two, and - corresponding.
  • a lower width of the condensation chamber is greater than an upper width, and the downstream heat exchange tube is in communication with a lower portion of the condensation chamber.
  • a lower width of the condensation chamber is 25 to 35 mm, and an upper width of the condensation chamber is 10 to 15 mm.
  • the lower portion of the condensation chamber has a width of 30 mm, and the upper portion of the condensation chamber has a width of 12 mm.
  • the condensing high-efficiency gas water heater provided by the invention directly communicates the upstream heat exchange pipe and the downstream heat exchange pipe through the communication pipe, and the shunt cover and the split flow cavity are omitted, so that the upward movement is
  • the flue gas rising from the heat exchange pipe can directly enter the downstream heat exchange pipe through the communication pipe, and is discharged through the downstream heat exchange pipe.
  • the invention avoids the disadvantages of flue gas congestion in the splitting cavity, improves the smoothness of the smoke airflow, and improves the heat exchange efficiency.
  • the position distribution of the heat exchange pipe is changed, the central pipe on the vertical central axis of the water tank is eliminated, and two or more heat exchange pipes are added, and the position distribution requirement thereof is Avoid the position of the burner.
  • the heat exchange pipe has at least one upstream heat exchange pipe and one down heat exchange pipe, and the upward heat exchange pipe longitudinally penetrates the water tank, and the one end of the bottom of the water tank avoids the position of the burner, and the upstream heat exchange pipe
  • the upper end of the down heat exchange pipe extends from the top of the water tank, and the lower end of the down heat exchange pipe communicates with the exhaust port.
  • Upstream heat exchange pipe for burning The flue gas discharged from the burner is guided upward, and after the flue gas is introduced into the top of the water tank, the flue gas is further guided by the downward heat exchange flue pipe and discharged by the exhaust port.
  • the invention exchanges heat with the cold water in the water tank through the upstream heat exchange pipe and the downstream heat exchange pipe.
  • the condensation water generated by the heat exchange pipe during the heating process of the condensing high-efficiency gas water heater is inevitably dripped/flowed along the inner wall of the heat exchange pipe.
  • the invention changes the position of the heat exchange pipe, bypasses the burner and the combustion flame. , to ensure that the condensate will no longer drip onto the burner and the combustion flame.
  • the problem of corrosion of the burner by the condensed water is fundamentally solved, the combustion condition caused by the condensed water is deteriorated, the flame temperature and the energy are lowered, and the thermal efficiency is improved.
  • FIG. 1 is a schematic structural view of a condensing high-efficiency gas water heater according to still another embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line A-A of FIG.
  • the invention discloses a condensing high-efficiency gas water heater, which avoids corrosion of the burner by the condensed water having corrosive action and improves heat exchange efficiency.
  • FIG. 1 is a schematic structural view of a condensing high-efficiency gas water heater according to still another embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line A-A of FIG.
  • the condensing high-efficiency gas water heater provided by the embodiment of the invention comprises a water tank 7, a burner 6, and a row A hood, a heat exchange pipe, an insulation layer 12 and a casing 11.
  • the water tank 7 is for holding cold water
  • the burner 6 is disposed on the lower side of the water tank 7 for heating the cold water in the water tank 7.
  • the exhaust hood is disposed outside the water tank 7 and has a smoke exhausting gap with the water tank 7, and the flue gas discharged from the heat exchange flue pipe is exhausted by the exhaust gas gap.
  • the heat exchange pipe is disposed in the water tank 7 for heating the cold water in the water tank 7 by the heat of the flue gas to exchange heat with the cold water.
  • the heat insulating layer 12 and the outer casing 11 are wrapped on the outer side of the exhaust hood, and the exhaust hood has an exhaust port 4 communicating with the atmosphere, and the heat exchange pipe has at least one upstream heat exchange pipe 8 and one downstream heat exchange pipe 5.
  • the upstream heat exchange pipe 8 extends longitudinally through the water tank 7, and the downstream heat exchange pipe 5 and the upstream heat exchange pipe 8 communicate with each other through the communication pipe 1, and the lower end of the downstream heat exchange pipe 5 communicates with the exhaust port 4.
  • the connecting pipe 1 can be connected to the downstream heat exchange pipe 5 and the upstream heat exchange pipe 8 by welding or other sealing connection, respectively.
  • the condensing high-efficiency gas water heater provided by the invention directly communicates the upstream heat exchange pipe 8 and the downstream heat exchange pipe 5 through the communication pipe 1, and the shunt cover and the split flow chamber are omitted, so that the upstream heat exchange pipe 8 is up.
  • the flue gas can enter the downward heat exchange pipe 5 directly through the communication pipe 1 and is discharged through the downstream heat exchange pipe 5.
  • the invention avoids the disadvantages of flue gas congestion in the splitting cavity, improves the smoothness of the smoke airflow, and improves the heat exchange efficiency.
  • the upstream heat exchange pipe 8 is located at the bottom of the bottom of the water tank 7 to avoid the position of the burner 6.
  • the condensing high-efficiency gas water heater provided by the invention changes the position distribution of the heat exchange pipe, cancels the central pipe on the vertical central axis of the water tank, and adds two or more heat exchange pipes, and the position distribution needs to be avoided.
  • the heat exchange pipe has at least one upstream heat exchange pipe 8 and one down heat exchange pipe 5, and the upstream heat exchange pipe 8 extends longitudinally through the water tank 7, and its end located at the bottom of the water tank 7 avoids the position of the burner 6, upward
  • the upper ends of the heat exchange tubes 8 and the downstream heat exchange tubes 5 extend from the top of the water tank 7, and the lower ends of the down heat exchange tubes 5 communicate with the exhaust ports 4.
  • the upstream heat exchange pipe 8 is used to guide the flue gas discharged from the burner 6. After the flue gas is introduced into the top of the water tank 7, the flue gas is further guided by the descending heat exchange pipe 5 and discharged from the exhaust port 4.
  • the present invention exchanges heat with the cold water in the water tank 7 through the upstream heat exchange pipe 8 and the downstream heat exchange pipe 5.
  • the condensed water generated by the heat exchange pipe during the heating process of the condensing high-efficiency gas water heater is inevitably dripped/flowed along the inner wall of the heat exchange pipe.
  • the invention changes the position of the heat exchange pipe, bypasses the burner 6 and burns The flame ensures that the condensate will no longer drip onto the burner 6 and the combustion flame. From The problem of corrosion of the burner 6 by the condensed water is fundamentally solved, the combustion condition caused by the condensed water is deteriorated, the flame temperature and the energy are lowered, and the thermal efficiency is improved.
  • the fume extractor disclosed in the above embodiments may specifically include a condensation cover 3.
  • the condensation cover 3 is located outside the water tank 7, and a condensation chamber 9 is formed between the condensation cover 3 and the side wall of the water tank 7, and the condensation chamber 9 is in communication with the downstream heat exchange pipe 5 and the exhaust port 4, respectively.
  • the flue gas flowing downward from the downstream heat exchange pipe 5 flows upward along the condensation chamber 9 between the condensation hood 3 and the side wall of the water tank 7 until it is discharged by the exhaust port 4.
  • the exhaust hood provided by the present invention may further comprise a return hood 2 disposed on the upper side of the exhaust port 4, and a return chamber 10 is formed between the return hood 2 and the condensing hood 3, and the return chamber 10 and the row are respectively arranged
  • the port 4 is in communication with the condensing chamber 9.
  • the condensing hood 3 extends to the bottommost portion of the condensing chamber 9, and the bottom condensing chamber 9 is formed between the condensing hood 3 and the side wall of the water tank 7, and the top condensing chamber 9 is formed between the return hood 2 and the side wall of the water tank 7.
  • the lower width of the condensation chamber 9 is larger than the upper width, and the downstream heat exchange tube 5 communicates with the lower portion of the condensation chamber 9.
  • the lower portion of the condensation chamber 9 has a width of 25 to 35 mm
  • the upper portion of the condensation chamber 9 has a width of 10 to 15 mm.
  • the invention designs the lower part of the condensation chamber 9 to be wider than the upper part, so that the flow of the flue gas at the outlet of the downstream heat exchange pipe 5 has sufficient space buffer, is less prone to turbulent flow, is favorable for the flow of the flue gas, thereby improving the thermal efficiency and The possibility of extinguishing the burner 6 due to an increase in internal pressure due to poor flow of the flue gas is reduced.
  • the lower width of the condensation chamber 9 is 30 mm and the upper portion of the condensation chamber 9 has a width of 12 mm.
  • the heat energy and high-temperature flue gas released by the burner 6 are first exchanged for the first time through the bottom of the water tank 7, and then passed through the upstream heat exchange pipe 8 and the downstream heat exchange pipe 5 for the second time.
  • the secondary heat exchange, the downwardly reversed flue gas flow through the downstream heat exchange pipe 5 enters the condensation chamber 9, and exchanges heat with the outer wall of the water tank 7 in the condensation chamber 9, the residual heat and the high temperature flue gas are fully absorbed, and the temperature of the flue gas is lowered. Below the water vapor dew point temperature, a certain amount of condensed water will be produced. The condensed water will flow along the inner and outer walls of the condensation chamber 9 to the water tray at the bottom.
  • both the upstream heat exchange pipe 8 and the downstream heat exchange pipe 5 are two, and - corresponding, two downstream heat exchanges
  • the pipe 5 is symmetrically connected to both sides of the condensation chamber 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

一种冷凝高效燃气热水器,包括水箱、设置于水箱下侧的燃烧器、设置于水箱外侧并与水箱具有排烟间隙的排烟罩、设置于水箱内的换热烟管以及包覆于排烟罩外侧的保温层和外壳,排烟罩具有与大气相通的排气口,换热烟管至少具有一个上行换热烟管和一个下行换热烟管,上行换热烟管纵向贯穿水箱,下行换热烟管和上行换热烟管通过连通管相连通,下行换热烟管的下端与排气口相连通。本发明避免了烟气拥堵在分流腔内的弊端,提高了烟气流通的畅通性,提高了换热效率。

Description

冷凝高效燃气热水器 本申请要求于 2011 年 8 月 22 日提交中国专利局、 申请号为 201110241672.8、发明名称为"冷凝高效燃气热水器 "的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及燃气热水器技术领域,特别涉及一种冷凝高效燃气热水器。
背景技术
随着科学技术的不断发展, 人们生活水平的日益改进, 热水在人们日 常生活中的需求量大大增加, 热水器、 燃气热水器被人们广泛使用, 尤其 是燃气容积式热水器逐渐走进了千家万户。
普通的燃气热水器工作的时候, 会排放出大量的烟气, 温度高达 180 °C , 普通的热水器无法利用这部分热量, 被白白地浪费掉, 同时, 在排放 高达 180°C高温烟气的过程中, 热传递使机身明显发烫, 用手触摸, 无法在 机身上停留。 而冷凝技术的关键在于高效冷凝换热器, 热水器的进冷水管 紧贴着冷凝换热器, 排放的高温烟气经过冷凝换热器的时候, 绝大部分热 量被冷凝换热器吸收, 用以预热进水管内的冷水, 相当于在普通燃气热水 器加热冷水之前进行了一次预先加热, 值得注意的是用以预热冷水的热量 不是通过燃烧燃气获得, 而是利用了原本无法回收的烟气中的热量, 从而 达到节能效果, 兼具环保, 这样最终排出的烟气温度只有 60°C左右, 再传 递到机身时, 温度已有所降低, 用手触摸, 只有些微温的感觉, 手完全可 以停留在机身上。
目前的冷凝式热水器的换热烟管一端与顶部的分流腔相通, 由上行换 热烟管流入分流腔内的烟气, 再由下行换热烟管流下并通过排气口排出。 冷凝式热水器由于是大气燃烧, 烟气属自然流动, 因此大量的烟气拥堵在 分流腔内, 降低了换热效率。 另外, 冷凝式热水器由于需要利用烟气中的潜热, 因而必然会降低排 烟温度, 从而会产生冷凝水, 并且烟气中的酸性气体会溶于冷凝水, 从而 形成酸性冷凝水。 因此, 采用间接换热方式的冷凝式燃气热水器有两个不 同于普通热水器的技术问题: 一个是酸性冷凝水的产生和排放问题; 另一 个就是酸性冷凝水对换热器表面的腐蚀问题。
现有冷凝式热水器加热过程中通过换热烟管产生的冷凝水不可避免的 沿换热烟管内壁向下滴 /流, 而换热烟管通常设置于燃烧器上方, 高温烟气 向上通过水箱中央垂直中轴线上的一根换热烟管吸收换热后排出。 具有腐 蚀作用的冷凝水会滴到燃烧器和燃烧火焰上, 冷凝水对燃烧器具有腐蚀作 用, 并最终导致燃烧工况变差、 降低火焰温度, 继而降低热效率。
因此, 如何避免具有腐蚀作用的冷凝水对燃烧器的腐蚀, 并提高换热 效率, 成为本领域技术人员亟待解决的重要技术问题。 发明内容
有鉴于此, 本发明的目的在于提供一种冷凝高效燃气热水器, 避免具 有腐蚀作用的冷凝水对燃烧器的腐蚀, 并提高换热效率。
为实现上述目的, 本发明提供如下技术方案:
一种冷凝高效燃气热水器, 包括水箱、设置于所述水箱下侧的燃烧器、 箱内的换热烟管以及包覆于所述排烟罩外侧的保温层和外壳, 所述排烟罩 具有与大气相通的排气口, 所述换热烟管至少具有一个上行换热烟管和一 个下行换热烟管, 所述上行换热烟管纵向贯穿所述水箱, 所述下行换热烟 管和所述上行换热烟管通过连通管相连通, 所述下行换热烟管的下端与所 述排烟间隙相连通。
优选地, 在上述冷凝高效燃气热水器中, 所述上行换热烟管位于所述 水箱底部的一端避开所述燃烧器的位置。
优选地, 在上述冷凝高效燃气热水器中, 所述排烟罩具体包括位于所 述水箱外侧的冷凝罩, 所述冷凝罩与所述水箱的侧壁之间形成冷凝腔, 所 述冷凝腔分别与所述下行换热烟管和所述排气口相连通。
优选地, 在上述冷凝高效燃气热水器中, 所述排烟罩还包括设置于所 述排气口上侧的回流罩, 所述回流罩与所述冷凝罩之间形成回流腔, 所述 回流腔分别与所述排气口和所述冷凝腔相连通。
优选地, 在上述冷凝高效燃气热水器中, 所述上行换热烟管和所述下 行换热烟管的上端伸出所述水箱的顶部, 且所述连通管位于所述水箱的顶 部。
优选地, 在上述冷凝高效燃气热水器中, 所述换热烟管均勾的布置于 所述燃烧器的周围。
优选地, 在上述冷凝高效燃气热水器中, 所述上行换热烟管和所述下 行换热烟管均为两个, 且——对应。
优选地, 在上述冷凝高效燃气热水器中, 所述冷凝腔的下部宽度大于 上部宽度, 所述下行换热烟管与所述冷凝腔的下部相连通。
优选地, 在上述冷凝高效燃气热水器中, 所述冷凝腔的下部宽度为 25~35mm, 所述冷凝腔的上部宽度为 10~15mm。
优选地, 在上述冷凝高效燃气热水器中, 所述冷凝腔的下部宽度为 30mm, 所述冷凝腔的上部宽度为 12mm。
从上述的技术方案可以看出, 本发明提供的冷凝高效燃气热水器, 通 过将上行换热烟管与下行换热烟管直接通过连通管连通, 并且省去了分流 罩和分流腔, 使得由上行换热烟管上行的烟气可直接通过连通管进入下行 换热烟管, 并通过下行换热烟管排出。 本发明避免了烟气拥堵在分流腔内 的弊端, 提高了烟气流通的畅通性, 提高了换热效率。
另外, 在本发明的一优选方案中, 改变了换热烟管的位置分布, 取消 水箱垂直中轴线上的中心烟管, 增加了二根或二根以上的换热烟管, 其位 置分布要求避开所述燃烧器的位置。 换热烟管至少具有一个上行换热烟管 和一个下行换热烟管, 上行换热烟管纵向贯穿所述水箱, 且其位于水箱底 部的一端避开燃烧器的位置, 上行换热烟管和下行换热烟管的上端伸出水 箱的顶部, 下行换热烟管的下端与排气口相连通。 上行换热烟管用于将燃 烧器排出的烟气上导, 在烟气导入到水箱顶部后, 烟气再由下行换热烟管 导下并由排气口排出。 本发明通过上行换热烟管和下行换热烟管与水箱内 的冷水进行热交换。 冷凝高效燃气热水器加热过程中通过换热烟管产生的 冷凝水不可避免的沿换热烟管内壁向下滴 /流,本发明通过改变了换热烟管 的位置, 绕开燃烧器和燃烧火焰, 保证了冷凝水不再会滴到燃烧器和燃烧 火焰上。 从根本上解决了冷凝水对燃烧器的腐蚀, 由冷凝水导致的燃烧工 况变差、 降低火焰温度和能量的问题, 提高了热效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明再一实施例提供的冷凝高效燃气热水器的结构示意图; 图 2为图 1沿 A-A线的剖视图。
具体实施方式
本发明公开了一种冷凝高效燃气热水器, 避免具有腐蚀作用的冷凝水 对燃烧器的腐蚀, 并提高换热效率。
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
请参阅图 1和图 2, 图 1为本发明再一实施例提供的冷凝高效燃气热 水器的结构示意图; 图 2为图 1沿 A-A线的剖视图。
本发明实施例提供的冷凝高效燃气热水器, 包括水箱 7、 燃烧器 6、排 烟罩、 换热烟管、 保温层 12和外壳 11。 其中, 水箱 7用于盛放冷水, 燃 烧器 6设置于水箱 7的下侧, 用于对水箱 7内的冷水进行加热。 排烟罩设 置于水箱 7的外侧并与水箱 7具有排烟间隙, 由换热烟管排出的烟气由排 烟间隙排走。 换热烟管设置于水箱 7 内, 用于通过烟气的热量加热水箱 7 内的冷水, 与冷水进行热交换。保温层 12和外壳 11包覆于排烟罩的外侧, 排烟罩具有与大气相通的排气口 4,换热烟管至少具有一个上行换热烟管 8 和一个下行换热烟管 5。 上行换热烟管 8纵向贯穿水箱 7, 下行换热烟管 5 和上行换热烟管 8通过连通管 1相连通, 下行换热烟管 5的下端与所述排 气口 4相连通。 连通管 1可通过焊接或其他密封连接的方式分别与下行换 热烟管 5和上行换热烟管 8连接。
本发明提供的冷凝高效燃气热水器, 通过将上行换热烟管 8与下行换 热烟管 5直接通过连通管 1连通, 并且省去了分流罩和分流腔, 使得由上 行换热烟管 8上行的烟气可直接通过连通管 1进入下行换热烟管 5 , 并通 过下行换热烟管 5排出。 本发明避免了烟气拥堵在分流腔内的弊端, 提高 了烟气流通的畅通性, 提高了换热效率。
为了进一步优化上述技术方案, 上行换热烟管 8位于水箱 7底部的一 端避开燃烧器 6的位置。 本发明提供的冷凝高效燃气热水器, 改变了换热 烟管的位置分布, 取消水箱垂直中轴线上的中心烟管, 增加了二根或二根 以上的换热烟管, 其位置分布要求避开燃烧器 6的位置。 换热烟管至少具 有一个上行换热烟管 8和一个下行换热烟管 5 , 上行换热烟管 8纵向贯穿 水箱 7 ,且其位于水箱 7底部的一端避开燃烧器 6的位置,上行换热烟管 8 和下行换热烟管 5的上端伸出水箱 7的顶部, 下行换热烟管 5的下端与排 气口 4相连通。 上行换热烟管 8用于将燃烧器 6排出的烟气上导, 在烟气 导入到水箱 7顶部后, 烟气再由下行换热烟管 5导下并由排气口 4排出。 本发明通过上行换热烟管 8和下行换热烟管 5与水箱 7内的冷水进行热交 换。 冷凝高效燃气热水器加热过程中通过换热烟管产生的冷凝水不可避免 的沿换热烟管内壁向下滴 /流, 本发明通过改变了换热烟管的位置, 绕开燃 烧器 6和燃烧火焰, 保证了冷凝水不再会滴到燃烧器 6和燃烧火焰上。 从 根本上解决了冷凝水对燃烧器 6的腐蚀, 由冷凝水导致的燃烧工况变差、 降低火焰温度和能量的问题, 提高了热效率。
上述实施例公开的排烟罩可具体包括冷凝罩 3。 其中, 冷凝罩 3位于 水箱 7的外侧, 冷凝罩 3与水箱 7的侧壁之间形成冷凝腔 9, 冷凝腔 9分 别与下行换热烟管 5和排气口 4相连通。 由下行换热烟管 5向下流动的烟 气, 沿冷凝罩 3与水箱 7的侧壁之间的冷凝腔 9向上流动, 直至由排气口 4排出。
为了进一步优化上述技术方案, 本发明提供的排烟罩还可包括设置于 排气口 4上侧的回流罩 2, 回流罩 2与冷凝罩 3之间形成回流腔 10, 回流 腔 10分别与排气口 4和冷凝腔 9相连通。冷凝罩 3延伸至冷凝腔 9的最底 部, 底部的冷凝腔 9由冷凝罩 3与水箱 7的侧壁之间形成, 顶部的冷凝腔 9由回流罩 2与水箱 7的侧壁之间形成。
冷凝腔 9的下部宽度大于上部宽度, 下行换热烟管 5与冷凝腔 9的下 部相连通。 在本实施例中, 冷凝腔 9的下部宽度为 25~35mm, 冷凝腔 9的 上部宽度为 10~15mm。 本发明通过将冷凝腔 9的下部设计为比上部宽, 这 样, 下行换热烟管 5出口处的烟气流动有足够的空间緩沖, 不易产生紊流, 有利于烟气流动, 从而提高热效率和减小由于烟气流动不畅而内部压力增 加而使燃烧器 6熄灭的可能性。 在本发明的一优选方案中, 冷凝腔 9的下 部宽度为 30mm, 冷凝腔 9的上部宽度为 12mm。
上行换热烟管 8和下行换热烟管 5的上端伸出水箱 7的顶部, 连通管
1优选地位于水箱 7的顶部, 燃烧器 6释放的热能及高温烟气首先通过水 箱 7的底部进行第一次换热, 然后通过上行换热烟管 8和下行换热烟管 5 进行第二次换热, 通过下行换热烟管 5向下逆转的烟气流入冷凝腔 9内, 在冷凝腔 9中与水箱 7外壁再次进行热交换,余热及高温烟气被充分吸收, 烟气温度降至水蒸气露点温度以下, 此时将产生一定的冷凝水。 冷凝水将 顺着冷凝腔 9的内外壁流至底部的积水盘内。
换热烟管均匀的布置于燃烧器 6的周围。 在本发明的一优选方案中, 上行换热烟管 8和下行换热烟管 5均为两个, 且——对应, 两个下行换热 烟管 5对称的与冷凝腔 9的两侧相连。
本说明书中各个实施例采用递进的方式描述, 每个实施例重点说明的 都是与其他实施例的不同之处, 各个实施例之间相同相似部分互相参见即 可。
对所公开的实施例的上述说明, 使本领域专业技术人员能够实现或使 用本发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显 而易见的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的 情况下, 在其它实施例中实现。 因此, 本发明将不会被限制于本文所示的 这些实施例, 而是要符合与本文所公开的原理和新颖特点相一致的最宽的 范围。

Claims

权 利 要 求
1、 一种冷凝高效燃气热水器, 包括水箱 (7)、 设置于所述水箱 (7) 下侧的燃烧器(6)、 设置于所述水箱 (7)外侧并与所述水箱 (7)具有排 烟间隙的排烟罩、设置于所述水箱(7)内的换热烟管以及包覆于所述排烟 罩外侧的保温层( 12 )和外壳( 11 ), 所述排烟罩具有与大气相通的排气口 (4), 其特征在于, 所述换热烟管至少具有一个上行换热烟管(8)和一个 下行换热烟管(5), 所述上行换热烟管(8)纵向贯穿所述水箱(7), 所述 下行换热烟管( 5 )和所述上行换热烟管( 8 )通过连通管( 1 )相连通, 所 述下行换热烟管 (5) 的下端与所述排烟间隙相连通。
2、 如权利要求 1所述的冷凝高效燃气热水器, 其特征在于, 所述上行 换热烟管( 8 )位于所述水箱( 7 )底部的一端避开所述燃烧器( 6 )的位置。
3、 如权利要求 1所述的冷凝高效燃气热水器, 其特征在于, 所述排烟 罩具体包括位于所述水箱 (7)外侧的冷凝罩 (3), 所述冷凝罩(3) 与所 述水箱 (7) 的侧壁之间形成冷凝腔(9), 所述冷凝腔(9)分别与所述下 行换热烟管 (5)和所述排气口 (4)相连通。
4、 如权利要求 3所述的冷凝高效燃气热水器, 其特征在于, 所述排烟 罩还包括设置于所述排气口 (4)上侧的回流罩(2), 所述回流罩(2)与 所述冷凝罩(3)之间形成回流腔(10), 所述回流腔(10)分别与所述排 气口 (4)和所述冷凝腔(9)相连通。
5、 如权利要求 4所述的冷凝高效燃气热水器, 其特征在于, 所述上行 换热烟管( 8 )和所述下行换热烟管( 5 )的上端伸出所述水箱( 7 )的顶部, 且所述连通管 (1)位于所述水箱 (7) 的顶部。
6、 如权利要求 1-5任一项所述的冷凝高效燃气热水器, 其特征在于, 所述换热烟管均匀的布置于所述燃烧器(6) 的周围。
7、 如权利要求 6所述的冷凝高效燃气热水器, 其特征在于, 所述上行 换热烟管 (8)和所述下行换热烟管 (5) 均为两个, 且——对应。
8、 如权利要求 2-5任一项所述的冷凝高效燃气热水器, 其特征在于, 所述冷凝腔(9) 的下部宽度大于上部宽度, 所述下行换热烟管 (5) 与所 述冷凝腔(9 ) 的下部相连通。
9、 如权利要求 8所述的冷凝高效燃气热水器, 其特征在于, 所述冷凝 腔( 9 )的下部宽度为 25~35mm,所述冷凝腔( 9 )的上部宽度为 10~15mm。
10、 如权利要求 9所述的冷凝高效燃气热水器, 其特征在于, 所述冷 凝腔(9 ) 的下部宽度为 30mm, 所述冷凝腔(9 ) 的上部宽度为 12mm。
PCT/CN2011/080542 2011-08-22 2011-10-08 冷凝高效燃气热水器 WO2013026225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110241672.8 2011-08-22
CN2011102416728A CN102353140A (zh) 2011-08-22 2011-08-22 冷凝高效燃气热水器

Publications (1)

Publication Number Publication Date
WO2013026225A1 true WO2013026225A1 (zh) 2013-02-28

Family

ID=45576761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080542 WO2013026225A1 (zh) 2011-08-22 2011-10-08 冷凝高效燃气热水器

Country Status (2)

Country Link
CN (1) CN102353140A (zh)
WO (1) WO2013026225A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073303B2 (en) * 2018-12-12 2021-07-27 Rheem Manufacturing Company Combustion tube assembly of a water heater

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271063A (ja) * 1986-08-20 1988-11-08 Purosupaa Kk ボイラ
WO2000019153A1 (en) * 1998-09-24 2000-04-06 Southcorp Australia Pty. Ltd. Natural draft water heater
US20070062463A1 (en) * 2005-09-08 2007-03-22 Ozzie Missoum Fuel-fired dual tank water heater having dual pass condensing type heat exchanger
US20070125318A1 (en) * 2005-11-22 2007-06-07 Hubbard Michael J Condensing gas fired water heater
CN201066113Y (zh) * 2007-06-29 2008-05-28 林清泉 一种燃气蒸汽发生器
CN201163017Y (zh) * 2007-11-22 2008-12-10 程石建 高效节能立式蒸汽发生器
CN201652779U (zh) * 2010-04-08 2010-11-24 王全红 一种立式水火管反烧气化炉
CN202204159U (zh) * 2011-08-22 2012-04-25 重庆三温暖电气有限公司 冷凝高效燃气热水器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919854B2 (ja) * 2007-03-27 2012-04-18 シャープ株式会社 給湯システム
CN201078722Y (zh) * 2007-11-13 2008-06-25 景洪 冷凝式高效燃气容积式热水器
CN201508017U (zh) * 2009-05-18 2010-06-16 赵庆义 一种改进的燃气热水器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271063A (ja) * 1986-08-20 1988-11-08 Purosupaa Kk ボイラ
WO2000019153A1 (en) * 1998-09-24 2000-04-06 Southcorp Australia Pty. Ltd. Natural draft water heater
US20070062463A1 (en) * 2005-09-08 2007-03-22 Ozzie Missoum Fuel-fired dual tank water heater having dual pass condensing type heat exchanger
US20070125318A1 (en) * 2005-11-22 2007-06-07 Hubbard Michael J Condensing gas fired water heater
CN201066113Y (zh) * 2007-06-29 2008-05-28 林清泉 一种燃气蒸汽发生器
CN201163017Y (zh) * 2007-11-22 2008-12-10 程石建 高效节能立式蒸汽发生器
CN201652779U (zh) * 2010-04-08 2010-11-24 王全红 一种立式水火管反烧气化炉
CN202204159U (zh) * 2011-08-22 2012-04-25 重庆三温暖电气有限公司 冷凝高效燃气热水器

Also Published As

Publication number Publication date
CN102353140A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2013026224A1 (zh) 冷凝高效燃气热水器
CN105841351B (zh) 一种冷凝式换热器
CN204084860U (zh) 一种冷凝式燃气壁挂炉的排烟热回收结构
CN201310875Y (zh) 一种带吹灰清灰系统的燃油气过热蒸汽发生器
WO2013026225A1 (zh) 冷凝高效燃气热水器
CN201926121U (zh) 卧式冷凝常压热水锅炉
CN207865428U (zh) 一种生物质锅炉烟气余热利用节能装置
CN204574500U (zh) 一种水道内有导流板的扁平型冷凝式热交换器
CN201866750U (zh) 冷凝式单回程烟管锅炉
CN204084834U (zh) 双程家用燃气热水器
CN202209775U (zh) 冷凝高效燃气热水器
WO2013082797A1 (zh) 冷凝高效燃气热水器
CN202204159U (zh) 冷凝高效燃气热水器
CN102278818B (zh) 燃气热水器之冷凝热交换器
CN207716659U (zh) 立式冷凝热水锅炉
CN210070224U (zh) 一种高效节能燃气锅炉
CN101936544A (zh) 多用途采暖炉
CN207540159U (zh) 冷凝式热交换器
CN205807845U (zh) 一种冷凝式换热器
CN204373195U (zh) 一种多循环采暖炉
CN202216406U (zh) 燃气热水器之冷凝热交换器
CN201688712U (zh) 烤箱烤炉余热回收器
CN204574501U (zh) 一种消音的水道内有导流板的扁平型冷凝式热交换器
CN106152516A (zh) 冷凝式燃气热水器
CN215930118U (zh) 分级燃烧式燃气采暖热水炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871224

Country of ref document: EP

Kind code of ref document: A1