WO2013024853A1 - 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 - Google Patents

無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2013024853A1
WO2013024853A1 PCT/JP2012/070696 JP2012070696W WO2013024853A1 WO 2013024853 A1 WO2013024853 A1 WO 2013024853A1 JP 2012070696 W JP2012070696 W JP 2012070696W WO 2013024853 A1 WO2013024853 A1 WO 2013024853A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radio base
station apparatus
signal
user terminal
Prior art date
Application number
PCT/JP2012/070696
Other languages
English (en)
French (fr)
Inventor
井上 祐樹
哲士 阿部
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to EP12824405.0A priority Critical patent/EP2747327A4/en
Priority to US14/238,264 priority patent/US9379793B2/en
Priority to CN201280039738.8A priority patent/CN103733553B/zh
Publication of WO2013024853A1 publication Critical patent/WO2013024853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a next generation radio communication system, a radio base station apparatus, a user terminal, and a radio communication method.
  • UMTS Universal Mobile Telecommunications System
  • WSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • CDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a maximum transmission rate of about 300 Mbps on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE Advanced
  • LTE-A LTE Advanced
  • LTE-A it is planned to expand 4 antennas, which is the maximum number of transmission antennas of LTE specifications, to 8 antennas.
  • a MIMO (Multi Input Multi Output) system has been proposed as a wireless communication technology that improves data rate (frequency utilization efficiency) by transmitting and receiving data with a plurality of antennas (for example, non-patented).
  • Reference 1 a MIMO system, a plurality of transmission / reception antennas are prepared in a transmitter / receiver, and different transmission information sequences are transmitted simultaneously from different transmission antennas.
  • the data rate frequency utilization efficiency
  • the data rate is increased by separating and detecting simultaneously transmitted information sequences using the fact that different fading fluctuations occur between transmission / reception antennas. Is possible.
  • transmission information sequences transmitted simultaneously from different transmission antennas are all transmitted from a single user MIMO (SU-MIMO (Single User MIMO)), which is for the same user, and multi-users, which are for different users.
  • SU-MIMO Single User MIMO
  • MU-MIMO Multiple User MIMO
  • the phase / amplitude control amount (precoding matrix (precoding weight or precoding vector)) to be set in the antenna of the transmitter on the receiver side, and this precoding
  • An optimum PMI is selected from a code book in which a plurality of PMIs (Precoding Matrix Indicators) associated with the matrix are determined, and this is fed back to the transmitter as channel information (CSI: Channel State Information).
  • CSI Channel State Information
  • MIMO transmission using 8 antennas is being studied.
  • MIMO transmission for example, SU-MIMO transmission using two antennas or MU-MIMO transmission using four antennas
  • installation of eight antennas is being studied. From the viewpoint of miniaturization of the transceiver, it is also required to reduce the installation space for these antennas.
  • the present invention has been made in view of such a point, and a radio communication system and a radio base station apparatus capable of increasing a system capacity regardless of a distribution state of user terminals in a cell while reducing an antenna installation space.
  • An object is to provide a user terminal and a wireless communication method.
  • a radio communication system is a radio communication system including a radio base station apparatus forming a cell and a user terminal wirelessly connected to the radio base station apparatus, wherein the radio base station apparatus is unidirectional Based on an array antenna having a plurality of arrayed antenna elements and communication quality information fed back from user terminals in the cell, a pre-set from a codebook set in advance non-uniformly in the array direction of the antenna elements.
  • a selection unit that selects a coding vector, a precoding multiplication unit that multiplies the selected precoding vector by a signal supplied to each antenna element, and a signal that is multiplied by the precoding vector is transmitted to a user terminal
  • the user terminal receives a signal from the radio base station apparatus.
  • a channel quality measurement unit that extracts a reference signal from the received signal and measures channel quality, and a transmission unit that feeds back a communication quality feedback signal including the measured channel quality to the radio base station apparatus via an uplink It is characterized by comprising.
  • a radio base station apparatus is a radio base station apparatus in a radio communication system including a radio base station apparatus forming a cell and a user terminal wirelessly connected to the radio base station apparatus, and is arranged in one direction
  • a precoding vector is selected from a non-uniformly preconfigured codebook based on the communication quality information of the array antenna having a plurality of antenna elements and the user terminals in the cell.
  • a selection unit that performs multiplication, a precoding multiplication unit that multiplies the selected precoding vector by a signal supplied to each antenna element, and a transmission unit that transmits a signal multiplied by the precoding vector to a user terminal. It is characterized by comprising.
  • a user terminal is a user terminal in a radio communication system including a radio base station apparatus that forms a cell and a user terminal that is wirelessly connected to the radio base station apparatus, wherein the cell in the radio base station apparatus
  • a receiving unit that receives a signal transmitted from the radio base station apparatus using a codebook set in advance non-uniformly with respect to the arrangement direction of the antenna elements based on communication quality information of the user terminal
  • a channel quality measurement unit that extracts a reference signal from the received signal and measures the channel quality
  • a transmission unit that feeds back a communication quality feedback signal including the measured channel quality to the radio base station apparatus via the uplink. It is characterized by doing.
  • the radio communication method of the present invention is a radio communication method in a radio communication system comprising a radio base station device forming a cell and a user terminal wirelessly connected to the radio base station device, wherein the radio base station device Selecting a precoding vector from a codebook preset in a non-uniform manner with respect to the arrangement direction of the antenna elements based on communication quality information of user terminals in the cell, and selecting the selected precoding vector, A step of multiplying a signal supplied to each antenna element, a step of transmitting a signal multiplied by the precoding vector to a user terminal, and receiving a signal from the radio base station apparatus in the user terminal A step of extracting a reference signal from the received signal and measuring a channel quality, and a measured channel product Communication quality feedback signal including via uplink and characterized by comprising the steps of feeding back to the radio base station apparatus.
  • the system capacity can be increased regardless of the distribution state of the user terminals in the cell while reducing the installation space of the antenna.
  • a plurality of antennas used in MIMO transmission are installed at the same height in the radio base station apparatus.
  • a precoding weight (hereinafter referred to as “weight”) is selected so that the data rate of a user terminal located in each cell is most improved, and a transmission beam whose directivity can be set mainly in the horizontal direction.
  • weight a precoding weight
  • an installation space for up to eight antennas is required.
  • the radio communication system according to the present embodiment includes a radio base station apparatus (hereinafter referred to as “radio base station apparatus”) that can form a transmission beam whose directivity can be set in the vertical direction.
  • This radio base station apparatus includes an array antenna composed of a plurality of antenna elements divided into at least one group corresponding to each of N communication types, where N is an integer of 2 or more.
  • N communication types provided by the array antenna included in the radio base station apparatus will be described with reference to FIG.
  • FIG. 1 is a schematic diagram for explaining N communication types provided by an array antenna provided in the radio base station apparatus according to the present embodiment.
  • the array antenna 10 is composed of a plurality of antenna elements 11 arranged in a line in one direction, for example, the vertical direction (FIG. 1A illustrates 16 antenna elements 11). ing).
  • array antenna 10 is configured by a polarization antenna that is a combination of vertical polarization antenna 10a and horizontal polarization antenna 10b.
  • FIG. 1B is a conceptual diagram showing the vertically polarized antenna 10a alone
  • FIG. 1C is a conceptual diagram showing the horizontally polarized antenna 10b alone.
  • each antenna element 11 is composed of a set of a vertical polarization element 11V and a horizontal polarization element 11H.
  • the array antenna 10 of the radio base station is vertically installed will be described.
  • the array antenna 10 may be arranged obliquely (including laterally) depending on the environment.
  • the first communication type is a type in which the antenna elements 11 constituting the array antenna 10 form one group A and the antennas constitute one antenna branch.
  • the second communication type is a type in which the antenna element 11 constituting the array antenna 10 is divided into two vertically and the antenna element 11 is divided into two groups B1 and B2 to constitute two antenna branches.
  • the third communication type is a type in which the antenna element 11 constituting the array antenna 10 is vertically divided into four, and the antenna element 11 is divided into four groups C1, C2, C3, and C4 to form four antenna branches. .
  • the first to third communication types are exemplified, but an arbitrary arbitrary number is appropriately selected according to the number of divisions in the vertical direction of the antenna elements 11 constituting the array antenna 10.
  • a number of communication types can be set.
  • the maximum number of branches can be appropriately selected according to the antenna element 11.
  • the first communication type has the longest antenna length (number of antenna elements) constituting one branch. As the number of antenna branches increases, the antenna length per branch decreases. In general, when beam forming is performed using an array antenna, the antenna gain increases and the beam width can be reduced as the number of antenna elements per branch increases. Therefore, in the first communication type, since the entire antenna is configured by one antenna branch, a sharp beam directed toward the cell edge can be formed.
  • the array antenna 10 receives a transmission signal weighted for each group and inputs it to the antenna element 11.
  • Arbitrary antenna branches can be configured by the array antenna 10 by controlling the weight.
  • FIG. 2 shows a configuration in which two transmission signals S1 and S2 can be synthesized, the maximum number of synthesis is not limited to this. For example, when providing 8 multiplexed MIMO, the structure which can synthesize
  • the array antenna 10 can simultaneously form a number of beams corresponding to the number of transmission signals ⁇ the number of constituent branches.
  • the transmission signal S1 input to the horizontally polarized antenna 10b is omitted for convenience of explanation. Since the vertical polarization antenna 10a and the horizontal polarization antenna 10b each form one beam, the array antenna 10 forms two beams. Therefore, the first communication type can provide 2-multiplex MIMO transmission. If the receiver supports 2 ⁇ 2 MIMO transmission, 2 ⁇ 2 MIMO transmission can be realized. Further, if the receiver has a single antenna configuration, spatial frequency transmission diversity by SFBC (Space-Frequency Block Coding) using two antennas can be realized. SFBC is encoded in the antenna / frequency domain.
  • SFBC Space-Frequency Block Coding
  • the transmission signals S1 and S2 input to the horizontally polarized antenna 10b are omitted for convenience of explanation.
  • the array antenna 10 can form a total of four beams in parallel. By directing four beams formed in parallel to the same area in the cell, four multiplexed MIMO transmission is provided.
  • the beams 1 to 4 can be formed by the four antenna branches corresponding to the groups C1 to C4.
  • the beams 1 to 4 can be formed by the four antenna branches corresponding to the groups C1 to C4.
  • the transmission signals S1 to S4 input to the horizontally polarized antenna 10b are omitted for convenience of explanation. Since the vertically polarized antenna 10a forms 4 beams and the horizontally polarized antenna 10b forms 4 beams at the same time, the array antenna 10 can form a total of 8 beams in parallel. By directing the 8 beams formed in parallel to the same area in the cell, 8 multiplexed MIMO transmission is provided.
  • the array antenna 10 can be divided into one or a plurality of groups by controlling the weight for the transmission signal input to the antenna element 11. Thereby, it becomes possible to perform signal transmission with respect to the user terminal UE by switching a desired communication type.
  • LTE and LTE-A systems include CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information-Reference Signal), user-specific DM-RS (Demodulation-Reference Signal), etc. as downlink reference signals. Is stipulated.
  • the CRS is transmitted in all downlink subframes and is arranged across the entire downlink frequency band.
  • CRS is used for channel estimation for downlink synchronous detection.
  • CSI-RS is a reference signal for channel information measurement, and is used for measuring CSI (CQI, PMI, rank number).
  • User-specific DM-RSs are transmitted in resource blocks that are allocated for downlink shared channel (DL-SCH) transmission to individual user terminals UE.
  • the user-specific DM-RS is a user-specific demodulation reference signal that can be used for channel estimation for synchronous detection of the downlink shared channel.
  • the LTE system and the LTE-A system include a synchronization signal (SS) used for a cell search for detecting a cell to which the user terminal UE is connected, system information (SIB (System Information Block), It defines the physical broadcast channel (PBCH) for transmitting MIB (Master Information Block). Furthermore, the LTE and LTE-A systems specify PDCCH (Physical Downlink Control Channel) for transmission of downlink control signals and PUCCH (Physical Uplink Control Channel) for transmission of uplink control signals. . Furthermore, LTE and LTE-A systems define PDSCH (Physical Uplink Control Channel) for transmission of downlink data (including some control signals), and uplink data (including some control signals). ) Specifies PUSCH (Physical Uplink Shared Channel) for transmission.
  • SS synchronization signal
  • SIB System Information Block
  • PBCH Physical Broadcast channel
  • MIB Master Information Block
  • the LTE and LTE-A systems specify PDCCH (Physical Downlink Control Channel) for transmission of downlink
  • the radio base station apparatus configuring the radio communication system according to the present embodiment switches the communication type according to the type of signal transmitted to the user terminal UE and the function of the user terminal UE.
  • the user terminal UE performs Release 8 (Rel. 8), Release 9 (Rel. 9), Release 10 (Rel. 10), or Release 11 (Rel. 11). ) Of LTE-compatible terminals.
  • the radio base station apparatus uses Rel. 8, Rel. 9, Rel. 10 or Rel. CRS and PDCCH for user terminals corresponding to 11 LTE, and MIB / SIB / paging information are transmitted. Since the user terminal UE that desires cell connection must always receive the synchronization signal (SS) and the physical broadcast channel (PBCH), the synchronization signal (SS) and the physical broadcast channel (PBCH) cover all within the area. Is required. For this reason, the radio base station apparatus transmits these signals using a beam corresponding to communication type 1. In addition, the radio base station apparatus uses Rel. In response to 8 LTE, PDSCH for user terminals that support 2 ⁇ 2 MIMO transmission is transmitted.
  • SS synchronization signal
  • PBCH physical broadcast channel
  • the radio base station apparatus uses Rel.
  • the CSI-RS corresponding to four antenna ports for user terminals that support 10 LTE and support transmission mode 9 is transmitted.
  • the radio base station apparatus uses Rel.
  • PDSCH and DM-RS for user terminals that support 10 LTE and support transmission mode 9 are transmitted.
  • the radio base station apparatus may use Rel. CSI-RS corresponding to 8 antenna ports for user terminals that support 10 LTE and support 8 ⁇ 8 MIMO transmission is transmitted.
  • the radio base station apparatus uses Rel. PDSCH and DM-RS for user terminals that support 10 LTE and support transmission mode 9 are transmitted.
  • a radio base station apparatus capable of forming a plurality of transmission beams whose directivities can be set in the horizontal direction
  • codebooks for example, M
  • the process of selecting each precoding vector from the codebook CODEVOOKV [0,1, ..., M-1] and performing precoding is associated with communication with the user terminal using M directional beams. Can think. At this time, the user terminal selects an optimal precoding vector for each.
  • user terminals that communicate using different precoding vectors are unlikely to receive signal interference due to different directional beams (transmission beams). That is, as the number of user terminals that communicate using different precoding vectors increases, the capacity of the system increases because data can be spatially multiplexed between different user terminals.
  • setting the precoding vector non-uniformly with respect to the arrangement direction of the antenna elements means that the angle of the transmission beam corresponding to the precoding vector with respect to the arrangement direction of the antenna elements is not a fixed angular interval but a distribution of user terminals. Is to use precoding vectors selected at angular intervals that take into account the bias of
  • a code book that sets a plurality of phase / amplitude control amounts (precoding matrix) and PMI (Precoding Matrix Indicator) associated with the precoding matrix is set.
  • This code book takes into account the uneven distribution of user terminals, and is set differently for each radio base station apparatus depending on the distribution state of user terminals in the cell.
  • the distribution state of the user terminals in the cell is preliminarily assumed or predicted in the cell design.
  • a code book is determined based on the distribution state thus obtained. That is, the distribution state of the user terminal is predicted in advance, one distribution state is determined, and a code book corresponding to the distribution state is determined.
  • the precoding vector in this codebook is set to be uniform with the reciprocal of the density of the user terminals.
  • ⁇ (L) is a distribution function of user terminals according to the distance from the radio base station apparatus
  • L [m] is a distance from the radio base station apparatus
  • CODEBOOKV [0,1, ... M-1] exp (2 ⁇ d ⁇ jcos ( ⁇ + ⁇ / 2) ⁇ [0,1,2 ,, ..., N-1])
  • atan (h / ( ⁇ (L ⁇ [0,1, ... M-1]))
  • h is the height of the radio base station apparatus
  • d is the branch interval
  • is the tilt angle of the transmission beam toward the user terminal UE with respect to the horizontal direction
  • N is the number of branches.
  • is the tilt angle of the transmission beam directed toward the cell edge with respect to the horizontal direction.
  • the user terminals are uniformly distributed according to the distance from the radio base station apparatus (equal)
  • the case where a user terminal is distributed by the square multiplication according to the distance from a wireless base station apparatus (cell edge density) is mentioned.
  • the code book is configured by a plurality of precoding vectors set non-uniformly with respect to the arrangement direction of the antenna elements.
  • the codebook (precoding vector group) in such a case is as follows.
  • Such a plurality of precoding vectors are set as appropriate precoding vectors according to the distance from the radio base station apparatus, as shown in FIG.
  • the optimal precoding vector PV # 1 is set for the user terminal UE # 1 closest to the radio base station apparatus, and the optimal precoding for the user terminal UE # 2 next closest to the radio base station apparatus is set.
  • Vector PV # 2 is set.
  • optimal precoding vectors PV # 3 to PV # 10 are set for user terminals UE # 3 to UE # 10 next closest to the radio base station apparatus.
  • the number M of precoding vectors is not particularly limited.
  • the number M of precoding vectors may be determined so that a null is directed to an area corresponding to an adjacent precoding vector according to the beam width of the directivity of the antenna of the radio base station apparatus.
  • the distribution state of user terminals in a cell may be obtained using an uplink signal.
  • a radio base station estimated using an uplink signal for example, a radio base station estimated using an uplink signal (PUCCH (Physical Uplink Control Channel) or PUSCH (Physical Uplink Shard Channel)) of each user terminal
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shard Channel
  • the distance from the apparatus, the angle with respect to the user terminal from the radio base station apparatus estimated using the uplink signal (PUCCH or PUSCH), and the position information estimated separately by GPS or the like at the user terminal are acquired, and the uplink signal (PUCCH) is obtained.
  • the distance from the radio base station apparatus calculated by using a method such as a distance from the radio base station apparatus determined from the position information acquired by PUSCH) or a signal delay time is obtained.
  • this code book is a code book that takes into account the uneven distribution of user terminals
  • ⁇ (L) is a distribution function of user terminals according to the distance from the radio base station apparatus
  • L [m] is a radio base station.
  • the user terminal performs SIR (Signal to Interference Ratio) based on reference signals (CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information-Reference Signal)) sent from the radio base station apparatus.
  • An estimated value H ′ of the channel matrix is calculated.
  • CQI Channel Quality Indicator
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • M precoding vectors the plurality of precoding vectors defined as a plurality of phase / amplitude control amounts (precoding matrix) and PMIs associated with the precoding matrix. The one closest to 'is selected.
  • the user terminal notifies the communication quality information CSI (CQI, PMI, RI) to the radio base station apparatus.
  • the radio base station apparatus allocates resources for transmitting a data signal (PDSCH (Physical Downlink Shard Channel)) of the user terminal based on the communication quality information CSI notified from the user terminal, and a layer for MIMO transmission
  • a data signal PDSCH (Physical Downlink Shard Channel)
  • CSI Physical Downlink Shard Channel
  • DM-RS Demodulation-Reference Signal
  • the radio base station apparatus extracts the PMI from the CSI information fed back from the user terminal, and based on this PMI, the optimum pre-set from the codebook set in advance based on the distribution state of the user terminals in the cell. Select a coding vector.
  • an optimal precoding vector may be selected from a codebook set in advance based on the distribution state of user terminals in the cell.
  • the radio base station apparatus updates the resource allocation for transmitting the data signal (PDSCH) of the user terminal, the number of MIMO transmission layers, the precoding setting, the encoding rate, etc., as necessary, and reflects them to the antenna apparatus. Then, the radio base station apparatus adds the reference signal (DM-RS) to the data signal (PDSCH) using the selected precoding vector together with the information, and transmits the data signal (PDSCH).
  • DM-RS reference signal
  • a precoding vector is generated. This precoding vector is multiplied for each resource element (RE). Therefore, precoding vectors for transmitting system information (SS (Synchronized Signal), PBCH (Primary Broadcast Channel)) and reference signals (CRS, CSI-RS), control signals (PDCCH, PCFICH (Physical Control Format Indicator Channel) ), By changing the precoding vector when transmitting PHICH (Physical Hybrid-ARQ Indicator Channel)), it is possible to change the transmission area of each signal.
  • SS Synchrom Signal
  • PBCH Primary Broadcast Channel
  • CRS Channel
  • CSI-RS Physical Control Format Indicator Channel
  • CRS, CSI-RS, and PDCCH use a precoding vector of a codebook of exp (2 ⁇ d ⁇ j ⁇ cos ( ⁇ + ⁇ / 2) ⁇ [0,1,2 ,, ..., N-1]), and DM -For RS and PDSCH, a PMI is selected on the user terminal side using CSI-RS, and a precoding vector of a codebook selected by the notified PMI can be used.
  • FIG. 9 is a diagram for explaining a configuration of a radio communication system 1 having a user 100 and a radio base station apparatus 200 according to an embodiment of the present invention.
  • the wireless communication system 1 illustrated in FIG. 9 is a system including, for example, an LTE system or SUPER 3G.
  • the mobile communication system 1 may be called IMT-Advanced or 4G.
  • the radio communication system 1 includes a radio base station device 200 and a plurality of mobile stations 100 (100 1 , 100 2 , 100 3 ,... 100 n , which communicate with the radio base station device 200.
  • n is an integer of n> 0).
  • the radio base station apparatus 200 is connected to the higher station apparatus 300, and the higher station apparatus 300 is connected to the core network 400.
  • User terminal 100 communicates with radio base station apparatus 200 in cell 500.
  • the upper station apparatus 300 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each mobile station (100 1 , 100 2 , 100 3 ,... 100 n ) has the same configuration, function, and state, the following description will be given as the mobile station 100 unless otherwise specified.
  • the mobile station device 100 performs radio communication with the radio base station device 200, but more generally, user equipment (UE: User Equipment) including both a mobile terminal device and a fixed terminal device. )
  • UE User Equipment
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission method that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands. .
  • PDSCH shared by each mobile station 10 and downlink L1 / L2 control channels (PDCCH, PCFICH, PHICH) are used.
  • User data that is, a normal data signal is transmitted by this PDSCH. Transmission data is included in this user data.
  • the component carrier (CC) assigned to mobile station 100 by radio base station apparatus 200 and scheduling information are reported to mobile station 100 through the L1 / L2 control channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • User data is transmitted by this PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • CQI Channel Quality Indicator
  • FIG. 10 is a block diagram showing a configuration of radio base station apparatus 200 according to the present embodiment.
  • FIG. 11 is a block diagram showing a configuration of mobile station 100 according to the present embodiment. Note that the configurations of the radio base station apparatus 200 and the mobile station 100 shown in FIG. 10 and FIG. 11 are simplified for explaining the present invention, and the configurations of the normal radio base station apparatus and the mobile station are respectively It shall be provided.
  • a scheduler determines the number of users to be multiplexed (the number of multiplexed users) based on channel estimation values given from channel estimation sections 215 # 1 to 215 # K described later. . Then, uplink / downlink resource allocation contents (scheduling information) for each user are determined, and transmission data # 1 to #K for users # 1 to #K are transmitted to corresponding channel coding sections 201 # 1 to 201 # K. .
  • Transmission data # 1 to #K are channel-encoded by channel encoders 201 # 1 to 201 # K, then output to data modulators 202 # 1 to 202 # K, and data modulated. At this time, channel coding and data modulation are performed based on channel coding rates and modulation schemes provided from MIMO switching sections 221 # 1 to 221 # K described later. Transmission data # 1 to #K data-modulated by data modulators 202 # 1 to 202 # K are subjected to inverse Fourier transform by a discrete Fourier transform unit (not shown) and converted from a time-series signal to a frequency domain signal. It is output to the subcarrier mapping unit 203.
  • the subcarrier mapping unit 203 maps the transmission data # 1 to #K to subcarriers according to resource allocation information given from the resource allocation control unit 220 described later. At this time, subcarrier mapping section 203 transmits reference signals # 1 to #K input from a reference signal generation section (not shown), broadcast information and system information input from broadcast information generation section and system information generation section. Mapping (multiplexing) onto subcarriers together with data # 1 to #K. Transmission data # 1 to #K mapped to subcarriers in this way are output to precoding multiplication sections 204 # 1 to 204 #K.
  • Precoding multiplication sections 204 # 1 to 204 # K phase transmit data # 1 to #K for each of antennas TX # 1 to TX # N based on a precoding vector given from precoding vector generation section 219 described later. And / or amplitude shift (weighting of antenna TX # 1 to antenna TX # N by precoding).
  • the transmission data # 1 to #K whose phases and / or amplitudes have been shifted by the precoding multipliers 204 # 1 to 204 # K are output to the multiplexer (MUX) 205.
  • the precoding vector is selected from a codebook set in advance in consideration of the distribution state of user terminals in the cell.
  • the multiplexer (MUX) 205 combines the transmission data # 1 to #K whose phase and / or amplitude has been shifted, and generates transmission signals for the antennas TX # 1 to TX # N.
  • the transmission signal generated by the multiplexer (MUX) 205 is subjected to inverse fast Fourier transform by inverse fast Fourier transform units (IFFT units) 206 # 1 to 206 # N to be converted from a frequency domain signal to a time domain signal. .
  • IFFT units inverse fast Fourier transform units
  • CP cyclic prefix
  • the antennas TX # 1 to TX # N are passed through the duplexers 209 # 1 to 209 # N. And transmitted from the antennas TX # 1 to TX # N to the mobile station 100 on the downlink.
  • transmission signals transmitted from the mobile station 100 in the uplink are received by the antennas TX # 1 to TX # N, and are electrically transmitted to the transmission path and the reception path by the duplexers 209 # 1 to 209 # N.
  • frequency conversion processing for converting the radio frequency signal into the baseband signal is performed in the RF receiving circuits 210 # 1 to 210 # N.
  • the baseband signal subjected to the frequency conversion process is output to the fast Fourier transform units (FFT units) 212 # 1 to 212 # N after the CPs are removed by the CP removal units 211 # 1 to 211 # N. .
  • FFT units fast Fourier transform units
  • Reception timing estimation section 213 estimates the reception timing from the reference signal included in the reception signal, and notifies the CP removal sections 211 # 1 to 211 # N of the estimation result.
  • the FFT units 212 # 1 to 212 # N perform Fourier transform on the input received signals, and convert the time series signals into frequency domain signals.
  • the received signals converted into these frequency domain signals are output to data channel signal demultiplexing sections 214 # 1 to 214 # K.
  • the data channel signal separation units 214 # 1 to 214 # K receive signals input from the FFT units 212 # 1 to 212 # N, for example, mean square error minimum (MMSE: Minimum Mean Squared Error) or maximum likelihood estimation. It separates by the detection (MLD: Maximum Likelihood Detection) signal separation method. As a result, the received signal coming from mobile station 100 is separated into received signals related to user # 1 to user #K.
  • Channel estimation sections 215 # 1 to 215 # K estimate channel states from the reference signals included in the received signals separated by data channel signal separation sections 214 # 1 to 214 # K, and control channel demodulation is performed on the estimated channel states. Sections 216 # 1 to 216 # K are notified.
  • the received signals related to user # 1 to user #K separated by data channel signal separation sections 214 # 1 to 214 # K are de-mapped by a subcarrier demapping section (not shown) and returned to a time-series signal. Thereafter, the data demodulation sections 217 # 1 to 217 # K demodulate the data. Received data is obtained by performing channel decoding processing in channel decoding sections # 1 to #K (not shown).
  • Control channel demodulation sections 216 # 1 to 216 # K demodulate control channel signals (for example, PDCCH) included in the reception signals separated by data channel signal separation sections 214 # 1 to 214 # K. At this time, control channel demodulation sections 216 # 1 to 216 # K control channels corresponding to user # 1 to user #K, respectively, based on the channel states notified from channel estimation sections 215 # 1 to 215 # K. Demodulate the signal. The control channel signals demodulated by control channel demodulation sections 216 # 1 to 216 # K are output to CSI information update sections 218 # 1 to 218 # K.
  • control channel demodulation sections 216 # 1 to 216 # K demodulate control channel signals (for example, PDCCH) included in the reception signals separated by data channel signal separation sections 214 # 1 to 214 # K. At this time, control channel demodulation sections 216 # 1 to 216 # K control channels corresponding to user # 1 to user #K, respectively, based on the channel states notified from channel estimation sections 2
  • CSI information updating sections 218 # 1 to 218 # K extract channel state information (CSI) included in each control channel signal (for example, PUCCH) input from control channel demodulation sections 216 # 1 to 216 # K, Always update the CSI to the latest state.
  • CSI includes PMI, RI, and CQI.
  • the CSI updated to the CSI information updating units 218 # 1 to 218 # K is output to the precoding vector generation unit 219, the resource allocation control unit 220, the MIMO switching units 221 # 1 to 221 # K, and the codebook selection unit 222, respectively. Is done.
  • the code book selection unit 222 extracts the PMI from the CSI information from the CSI information update units 218 # 1 to 218 # K, and in the code book set non-uniformly with respect to the arrangement direction of the antenna elements based on the PMI An optimum precoding vector is selected from among the M types of precoding vectors.
  • the codebook set non-uniformly with respect to the arrangement direction of the antenna elements set in advance has ⁇ (L) as a distribution function of user terminals according to the distance from the radio base station apparatus, and L [m] Is a distance from the radio base station apparatus, it is obtained by the following equation (set to be uniform by the reciprocal of the density of user terminals).
  • h the height of the radio base station apparatus
  • d the branch interval
  • the tilt angle of the transmission beam toward the user terminal UE with respect to the horizontal direction
  • N the number of branches.
  • the distribution function ⁇ (L) of the user terminal according to the distance from the radio base station apparatus is, for example, from the radio base station apparatus estimated using the uplink signal (PUCCH or PUSCH) signal of each user terminal.
  • Obtain the distance, the angle with respect to the user terminal from the radio base station apparatus estimated using the uplink signal (PUCCH or PUSCH), or the position information estimated separately by GPS or the like at the user terminal, and use it as the uplink signal (PUCCH or PUSCH) Can be obtained from the distance from the radio base station apparatus determined from the distance from the radio base station apparatus determined from the position information acquired in (1) or the signal delay time.
  • Precoding vector generation section 219 generates a precoding vector indicating the phase and / or amplitude shift amount for transmission data # 1 to #K based on CSI input from CSI information update sections 218 # 1 to 218 # K To do.
  • This precoding vector is generated from the code book selected by the code book selection unit 222.
  • Each generated precoding vector is output to precoding multiplication sections 204 # 1 to 204 # K and used for precoding transmission data # 1 to transmission data #K.
  • the resource allocation control unit 220 determines resource allocation information to be allocated to each user based on the CSI input from the CSI information update units 218 # 1 to 218 # K.
  • the resource allocation information determined by the resource allocation control unit 220 is output to the subcarrier mapping unit 203 and used for mapping transmission data # 1 to transmission data #K.
  • MIMO switching sections 221 # 1 to 221 # K select a MIMO transmission scheme to be used for transmission data # 1 to transmission data #K based on CSI input from CSI information update sections 218 # 1 to 218 # K. Then, channel coding rates and modulation schemes for transmission data # 1 to transmission data #K according to the selected MIMO transmission scheme are determined. The determined channel coding rates are output to channel coding sections 201 # 1 to 201 # K, respectively, and the determined modulation schemes are output to data modulation sections 202 # 1 to 202 # K, respectively.
  • transmission signals transmitted from radio base station apparatus 200 are received by antennas RX # 1 to RX # N and transmitted by duplexers 101 # 1 to 101 # N. After being electrically separated into a path and a receiving path, the signals are output to the RF receiving circuits 102 # 1 to 102 # N. Then, the RF receiving circuits 102 # 1 to 102 # N perform frequency conversion processing for converting radio frequency signals into baseband signals.
  • the baseband signal subjected to the frequency conversion processing is subjected to cyclic prefix (CP) removal units 103 # 1 to 103 # N after the CP is removed, and then to a fast Fourier transform unit (FFT unit) 104 # 1 to 104.
  • CP cyclic prefix
  • FFT unit fast Fourier transform unit
  • Reception timing estimation section 105 estimates the reception timing from the reference signal included in the reception signal and notifies the estimation results to CP removal sections 103 # 1 to 103 # N.
  • the FFT units 104 # 1 to 104 # N perform a Fourier transform on the input received signals, and convert the time series signals into frequency domain signals.
  • the received signal converted into the frequency domain signal is output to data channel signal separation section 106.
  • the data channel signal separation unit 106 uses, for example, the mean square error minimum (MMSE: Minimum Mean Squared Error) or maximum likelihood estimation detection (MLD: Maximum Likelihood) for the received signals input from the FFT units 104 # 1 to 104 # N. Detection) Separation by signal separation method. As a result, the received signal arriving from radio base station apparatus 200 is separated into received signals related to user # 1 to user #K, and the received signal related to the user of mobile station 100 (here, user K) is extracted. . The channel estimation unit 107 estimates the channel state from the reference signal included in the reception signal separated by the data channel signal separation unit 106 and notifies the control channel demodulation unit 108 of the estimated channel state.
  • MMSE Minimum Mean Squared Error
  • MLD Maximum Likelihood
  • the received signal related to user #K separated by data channel signal separation section 106 is demapped by a subcarrier demapping section (not shown) and returned to a time-series signal, and then demodulated by data demodulation section 109. .
  • Received data is obtained by performing channel decoding processing in a channel decoding unit (not shown).
  • the control channel demodulation unit 108 demodulates a control channel signal (for example, PDCCH) included in the reception signal separated by the data channel signal separation unit 106. At this time, control channel demodulation section 108 demodulates the control channel signal corresponding to user #K based on the channel state notified from channel estimation section 107. Each control channel signal demodulated by the control channel demodulation unit 108 is output to the channel quality measurement unit 110.
  • a control channel signal for example, PDCCH
  • the channel quality measurement unit 110 measures the channel quality (CQI) based on the control channel signal input from the control channel demodulation unit 108. Further, the channel quality measurement unit 110 selects PMI and RI based on the measured CQI. At this time, the PMI is selected from a code book set in advance based on the distribution state of the user terminals in the cell. Then, CQI, PMI and RI are notified to CSI feedback signal generation section 111 and MIMO switching section 112.
  • CQI channel quality
  • CSI feedback signal generation section 111 a CSI feedback signal (for example, PUCCH) to be fed back to radio base station apparatus 200 is generated.
  • the CSI feedback signal includes CQI, PMI, and RI notified from the channel quality measurement unit 110.
  • the CSI feedback signal generated by the CSI feedback signal generation unit 111 is output to the multiplexer (MUX) 113.
  • MUX multiplexer
  • MIMO switching section 112 selects a MIMO transmission scheme to be used for transmission data #K based on CQI, PMI, and RI input from channel quality measurement section 110. Then, the channel coding rate and modulation scheme for transmission data #K corresponding to the selected MIMO transmission scheme are determined. The determined channel coding rate is output to channel encoding section 114, and the determined modulation scheme is output to data modulation section 115.
  • transmission data #K related to user #K transmitted from the upper layer is channel-encoded by channel encoder 114 and then data-modulated by data modulator 115.
  • Transmission data #K data-modulated by data modulation section 115 is converted from a time-series signal to a frequency domain signal by a serial-parallel conversion section (not shown) and output to subcarrier mapping section 116.
  • the subcarrier mapping unit 116 maps the transmission data #K to subcarriers according to the schedule information instructed from the radio base station apparatus 200. At this time, subcarrier mapping section 116 maps (multiplexes) reference signal #K generated by a reference signal generation section (not shown) to subcarrier together with transmission data #K. Transmission data #K mapped to subcarriers in this way is output to precoding multiplication section 117.
  • the precoding multiplication unit 117 shifts the phase and / or amplitude of the transmission data #K for each of the antennas RX # 1 to RX # N. At this time, the precoding multiplier 117 performs phase and / or amplitude shift according to the precoding vector corresponding to the PMI specified by the control channel signal demodulated by the control channel demodulator 108. The transmission data #K whose phase and / or amplitude has been shifted by the precoding multiplier 117 is output to the multiplexer (MUX) 113.
  • MUX multiplexer
  • the transmission data #K that has been phase and / or amplitude shifted and the control signal generated by the CSI feedback signal generator 111 are combined and transmitted for each of the antennas RX # 1 to RX # N. Generate a signal.
  • the transmission signal generated by the multiplexer (MUX) 113 is converted from a frequency domain signal to a time domain signal by inverse fast Fourier transform in inverse fast Fourier transform sections (IFFT sections) 118 # 1 to 118 # N. Thereafter, CPs are added by CP adding sections 119 # 1 to 119 # N and output to RF transmission circuits 120 # 1 to 120 # N.
  • the antennas RX # 1 to RX # N are passed through the duplexers 101 # 1 to 101 # N. And transmitted from the antennas RX # 1 to RX # N to the radio base station apparatus 200 in the uplink.
  • the radio base station apparatus uses an uplink signal. Then, a precoding vector is selected from a codebook set in advance based on the distribution state of user terminals in the cell, and the selected precoding vector is multiplied by the signal supplied to each antenna element. Then, a signal multiplied by the precoding vector is transmitted to the user terminal.
  • the user terminal receives the beam from the radio base station apparatus, extracts the reference signal from the received beam, measures the channel quality, and transmits the communication quality feedback signal including the measured channel quality via the uplink. Feedback to the base station apparatus.
  • the present invention has been described in detail using the above-described embodiments. However, it is obvious for those skilled in the art that the present invention is not limited to the embodiments described in the present specification.
  • the number of users and the number of processing units in the apparatus are not limited to this, and can be appropriately changed according to the apparatus configuration.
  • the present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 アンテナの設置スペースを低減しつつ、セル内におけるユーザ端末の分布状態に拘わらずシステム容量を増加すること。本発明の無線通信方法は、無線基地局装置において、前記セル内のユーザ端末の通信品質情報に基づいて、アンテナ素子の配列方向に対して非均一に予め設定されたコードブックからプリコーディングベクトルを選択し、選択されたプリコーディングベクトルを、前記各アンテナ素子へ供給する信号に対して乗算し、前記プリコーディングベクトルが乗算された信号をユーザ端末に送信し、前記ユーザ端末において、前記無線基地局装置からの信号を受信し、受信した信号から参照信号を取り出してチャネル品質を測定し、測定されたチャネル品質を含む通信品質フィードバック信号を上りリンクを介して前記無線基地局装置にフィードバックする。

Description

無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
 本発明は、次世代の無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が検討されている。
 第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTE方式のシステムにおいては、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる広帯域化及び高速化を目的として、LTEの後継のシステムも検討されている(例えば、LTEアドバンスト(LTE-A))。例えば、LTE-Aにおいては、LTE仕様の最大システム帯域である20MHzを、100MHz程度まで拡張することが予定されている。また、LTE-Aにおいては、LTE仕様の最大送信アンテナ数である4アンテナを、8アンテナまで拡張することが予定されている。
 また、LTE方式のシステムにおいては、複数のアンテナでデータを送受信し、データレート(周波数利用効率)を向上させる無線通信技術としてMIMO(Multi Input Multi Output)システムが提案されている(例えば、非特許文献1参照)。MIMOシステムにおいては、送受信機に複数の送信/受信アンテナを用意し、異なる送信アンテナから同時に異なる送信情報系列を送信する。一方、受信機側では、送信/受信アンテナ間で異なるフェージング変動が生じることを利用して、同時に送信された情報系列を分離して検出することにより、データレート(周波数利用効率)を増大することが可能である。
 LTE方式のシステムにおいては、異なる送信アンテナから同時に送信する送信情報系列が、全て同一のユーザのものであるシングルユーザMIMO(SU-MIMO(Single User MIMO))伝送と、異なるユーザのものであるマルチユーザMIMO(MU-MIMO(Multiple User MIMO))伝送とが規定されている。これらのSU-MIMO伝送及びMU-MIMO伝送においては、受信機側で送信機のアンテナに設定すべき位相・振幅制御量(プリコーディング行列(プリコーディングウェイトあるいはプリコーディングベクトル))と、このプリコーディング行列に対応づけられるPMI(Precoding Matrix Indicator)とを複数定めたコードブックから最適なPMIを選択し、これをチャネル情報(CSI:Channel State Information)として送信機にフィードバックする。送信機側では、受信機からフィードバックされたPMIに基づいて各送信アンテナに対するプリコーディングを行って送信情報系列を送信する。
 LTEの後継システムとして検討されているLTE-A方式のシステムにおいては、8アンテナを用いたMIMO伝送が検討されている。一方で、LTE方式のシステムで採用されるMIMO伝送(例えば、2アンテナを用いたSU-MIMO伝送や4アンテナを用いたMU-MIMO伝送等)にも対応することが要請される。このため、次世代無線通信システムのMIMO伝送では、利用されるアンテナ数が異なる複数の通信タイプに対応することが必要となる。一方、LTE-A方式に代表される次世代無線通信システムにおいては、8アンテナの設置が検討されている。送受信機の小型化の観点から、これらのアンテナの設置スペースを低減することも要請される。
 一方で、複数のアンテナを水平方向に並設した構成のアンテナ装置を用いた場合においては、ユーザが密集したセルに対してMIMO伝送すると、ユーザ端末の密集の程度(分布状態)によってはシステム容量を増加できないことが考えられる。
 本発明はかかる点に鑑みてなされたものであり、アンテナの設置スペースを低減しつつ、セル内におけるユーザ端末の分布状態に拘わらずシステム容量を増加することができる無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法を提供することを目的とする。
 本発明の無線通信システムは、セルを形成する無線基地局装置と、前記無線基地局装置に無線接続するユーザ端末とを備えた無線通信システムであって、前記無線基地局装置は、一方向に配列された複数のアンテナ素子を有するアレーアンテナと、前記セル内のユーザ端末からフィードバックされた通信品質情報に基づいて、前記アンテナ素子の配列方向に対して非均一に予め設定されたコードブックからプリコーディングベクトルを選択する選択部と、選択されたプリコーディングベクトルを、前記各アンテナ素子へ供給する信号に対して乗算するプリコーディング乗算部と、前記プリコーディングベクトルが乗算された信号をユーザ端末に送信する送信部と、を具備し、前記ユーザ端末は、前記無線基地局装置からの信号を受信する受信部と、受信した信号から参照信号を取り出してチャネル品質を測定するチャネル品質測定部と、測定されたチャネル品質を含む通信品質フィードバック信号を上りリンクを介して前記無線基地局装置にフィードバックする送信部と、を具備することを特徴とする。
 本発明の無線基地局装置は、セルを形成する無線基地局装置と、前記無線基地局装置に無線接続するユーザ端末とを備えた無線通信システムにおける無線基地局装置であって、一方向に配列された複数のアンテナ素子を有するアレーアンテナと、前記セル内のユーザ端末の通信品質情報に基づいて、前記アンテナ素子の配列方向に対して非均一に予め設定されたコードブックからプリコーディングベクトルを選択する選択部と、選択されたプリコーディングベクトルを、前記各アンテナ素子へ供給する信号に対して乗算するプリコーディング乗算部と、前記プリコーディングベクトルが乗算された信号をユーザ端末に送信する送信部と、を具備することを特徴とする。
 本発明のユーザ端末は、セルを形成する無線基地局装置と、前記無線基地局装置に無線接続するユーザ端末とを備えた無線通信システムにおけるユーザ端末であって、前記無線基地局装置において前記セル内のユーザ端末の通信品質情報に基づいて、アンテナ素子の配列方向に対して非均一に予め設定されたコードブックを用いて前記無線基地局装置から送信された信号を受信する受信部と、受信した信号から参照信号を取り出してチャネル品質を測定するチャネル品質測定部と、測定されたチャネル品質を含む通信品質フィードバック信号を上りリンクを介して前記無線基地局装置にフィードバックする送信部と、を具備することを特徴とする。
 本発明の無線通信方法は、セルを形成する無線基地局装置と、前記無線基地局装置に無線接続するユーザ端末とを備えた無線通信システムにおける無線通信方法であって、前記無線基地局装置において、前記セル内のユーザ端末の通信品質情報に基づいて、アンテナ素子の配列方向に対して非均一に予め設定されたコードブックからプリコーディングベクトルを選択する工程と、選択されたプリコーディングベクトルを、前記各アンテナ素子へ供給する信号に対して乗算する工程と、前記プリコーディングベクトルが乗算された信号をユーザ端末に送信する工程と、前記ユーザ端末において、前記無線基地局装置からの信号を受信する工程と、受信した信号から参照信号を取り出してチャネル品質を測定する工程と、測定されたチャネル品質を含む通信品質フィードバック信号を上りリンクを介して前記無線基地局装置にフィードバックする工程と、を具備することを特徴とする。
 本発明によれば、アンテナの設置スペースを低減しつつ、セル内におけるユーザ端末の分布状態に拘わらずシステム容量を増加することができる。
本発明に係る無線基地局装置が備えるアレーアンテナによって提供されるN個の通信タイプを説明するための模式図である。 アレーアンテナを構成するアンテナ素子に対するウェイト制御を説明するための模式図である。 第1の通信タイプのためのウェイト制御を説明するための模式図である。 第2の通信タイプのためのウェイト制御を説明するための模式図である。 第3の通信タイプのためのウェイト制御を説明するための模式図である。 実施の形態に係る無線通信システムにおけるウェイト制御を説明するための模式図である。 実施の形態に係る無線通信システムにおける複数のプリコーディングベクトルを説明するための図である。 ユーザ端末の分布状態を説明するための図である。 実施の形態に係る無線通信システムのネットワーク構成を示す図である。 実施の形態に係る無線基地局装置の構成を示すブロック図である。 実施の形態に係る移動局の構成を示すブロック図である。
 一般に、MIMO伝送で用いられる複数のアンテナは、無線基地局装置における同一の高さの位置に設置されている。そして、MIMO伝送では、各セルに位置するユーザ端末のデータレートが最も向上するようにプリコーディングウェイト(以下、「ウェイト」という)を選択し、主に水平方向に指向性を設定可能な送信ビームを形成する。複数のアンテナが同一の高さの位置に設置されることから、例えば、LTE-A方式のシステムにおいては、最大で8本分のアンテナの設置スペースが必要となる。一方、複数のアンテナの設置スペースの低減という観点からは、主に垂直方向に指向性を設定可能な送信ビームを採用することが考えられる。この場合には、複数のアンテナを無線基地局装置における同一の高さの位置に設置する必要がなくなる。このため、複数のアンテナを上下に配置でき、アンテナの設置スペースを低減できる。
 以下、本発明の一実施の形態に係る無線通信システムの構成について説明する。
 本実施の形態に係る無線通信システムは、垂直方向に指向性を設定可能な送信ビームを形成できる無線基地局装置(以下、「無線基地局装置」という)を備える。この無線基地局装置は、Nを2以上の整数として、N個の通信タイプのそれぞれに対応して少なくとも1つのグループに分けられる複数のアンテナ素子から構成されるアレーアンテナを備える。以下、この無線基地局装置が備えるアレーアンテナによって提供されるN個の通信タイプについて図1を用いて説明する。図1は、本実施の形態に係る無線基地局装置が備えるアレーアンテナによって提供されるN個の通信タイプを説明するための模式図である。
 図1Aに示すように、アレーアンテナ10は、一方向、例えば、垂直方向に1列に配列された複数のアンテナ素子11から構成されている(図1Aには16個のアンテナ素子11が例示されている)。本実施の形態では、アレーアンテナ10は、垂直偏波アンテナ10aと水平偏波アンテナ10bとを組み合わせた偏波アンテナで構成される。ただし、本発明は偏波アンテナ構成に限定されない。図1Bは、垂直偏波アンテナ10aを単独で示した概念図であり、図1Cは、水平偏波アンテナ10bを単独で示した概念図である。偏波アンテナが適用される場合、個々のアンテナ素子11は、それぞれ垂直偏波素子11Vと水平偏波素子11Hのセットで構成される。以下の説明では、無線基地局のアレーアンテナ10が、垂直に立設されている場合について説明するが、環境によってはアレーアンテナ10が斜め(横向きを含む)に配置されてもよい。
 第1の通信タイプは、アレーアンテナ10を構成するアンテナ素子11の全体で1つのグループAを形成し、アンテナ全体で1つのアンテナブランチを構成するタイプである。第2の通信タイプは、アレーアンテナ10を構成するアンテナ素子11を上下に2分割し、アンテナ素子11を2つのグループB1,B2に分けて2つのアンテナブランチを構成するタイプである。第3の通信タイプは、アレーアンテナ10を構成するアンテナ素子11を上下に4分割し、アンテナ素子11を4つのグループC1,C2,C3,C4に分けて4つのアンテナブランチを構成するタイプである。本実施の形態では、第1から第3の通信タイプ(アンテナブランチ数と呼ぶこともできる)を例示するが、アレーアンテナ10を構成するアンテナ素子11の垂直方向の分割数に応じて適宜任意の数の通信タイプを設定可能である。また、最大ブランチ数はアンテナ素子11に応じて適宜選択可能である。
 第1から第3の通信タイプの中では、第1の通信タイプが1ブランチを構成するアンテナ長(アンテナ素子数)が最も長い。アンテナブランチ数が増えるのに従って1ブランチ当たりのアンテナ長が短くなる。一般的に、アレーアンテナを用いてビーム形成する場合、1ブランチ当たりのアンテナ素子数が多くなるのに従って、アンテナ利得が増大し、かつビーム幅を小さくできる。したがって、第1の通信タイプは、アンテナ全体を1アンテナブランチで構成するので、セル端に向けたシャープなビームを形成できる。
 アレーアンテナ10にはグループ毎にウェイトが掛けられた送信信号がアンテナ素子11に入力される。ウェイトを制御することによってアレーアンテナ10で任意のアンテナブランチを構成できる。図2に示すように、アレーアンテナ10を構成する16個のアンテナ素子11は、最小アンテナブランチ単位(アンテナ素子数=4)で、同一のウェイトが掛けられた送信信号が供給される。図2には2つの送信信号S1,S2を合成可能な構成が示されているが、最大合成数はこれに限定されない。例えば、8多重MIMOを提供する場合は、4つの送信信号S1,S2,S3,S4を合成可能な構成が望ましい(図5参照)。アレーアンテナ10は、送信信号数×構成ブランチ数に相当する数のビームを同時に形成できる。
 第1の通信タイプでは、図3に示すように、アレーアンテナ10は、1つのグループAを構成する各アンテナ素子11に入力する送信信号S1に同一のウェイトW(例えば、W11、W12、W13、W14=1,1,1,1)を掛ける。これにより、高いアンテナ利得で、かつビーム幅の小さい1つのビームを形成することができる。なお、図3においては、説明の便宜上、水平偏波アンテナ10bに入力される送信信号S1を省略している。垂直偏波アンテナ10aと水平偏波アンテナ10bとでそれぞれ1つのビームを形成するので、アレーアンテナ10としては2つのビームが形成される。したがって、第1の通信タイプは、2多重MIMO伝送を提供できる。受信機が2×2のMIMO伝送をサポートしていれば、2×2のMIMO伝送が実現できる。また、1アンテナ構成の受信機であれば、2アンテナによるSFBC(Space-Frequency Block Coding)による空間周波数送信ダイバーシチを実現できる。なお、SFBCは、アンテナ/周波数領域で符号化が行われる。
 第2の通信タイプでは、図4に示すように、アレーアンテナ10は、グループB1を構成するアンテナ素子11に入力する送信信号S1にウェイトW(例えば、W11、W12、W13、W14=1,1,0,0)を掛け、かつ、グループB2を構成するアンテナ素子11に入力する送信信号S2にウェイトW(例えば、W21、W22、W23、W24=0,0,1,1)を掛ける。これにより、グループB1及びB2に対応した2つのアンテナブランチによりビーム1、ビーム2を形成できる。なお、図4においては、説明の便宜上、水平偏波アンテナ10bに入力される送信信号S1、S2を省略している。垂直偏波アンテナ10aがビーム1、ビーム2を形成し、同時に水平偏波アンテナ10bがビーム1、ビーム2を形成するので、アレーアンテナ10は合計で4つのビームを並列に形成することができる。並列に形成される4つのビームをセル内の同一エリアに向けることにより、4多重MIMO伝送が提供される。
 第3の通信タイプでは、図5に示すように、アレーアンテナ10は、グループC1を構成するアンテナ素子11に入力する送信信号S1にウェイトW(例えば、W11、W12、W13、W14=1,0,0,0)を掛け、かつ、グループC2を構成するアンテナ素子11に入力する送信信号S2にウェイトW(例えば、W21、W22、W23、W24=0,1,0,0)を掛ける。さらに、アレーアンテナ10は、グループC3を構成するアンテナ素子11に入力する送信信号S3にウェイトW(例えば、W31、W32、W33、W34=0,0,1,0)を掛け、かつ、グループC4を構成するアンテナ素子11に入力する送信信号S4にウェイトW(例えば、W41、W42、W43、W44=0,0,0,1)を掛ける。これにより、グループC1~C4に対応した4つのアンテナブランチによりビーム1~ビーム4を形成できる。なお、図5においては、説明の便宜上、水平偏波アンテナ10bに入力される送信信号S1~S4を省略している。垂直偏波アンテナ10aが4ビームを形成し、同時に水平偏波アンテナ10bが4ビームを形成するので、アレーアンテナ10は合計で8つのビームを並列に形成することができる。並列に形成される8つのビームをセル内の同一エリアに向けることにより、8多重MIMO伝送が提供される。
 本実施の形態に係る無線通信システムにおいては、アンテナ素子11に入力される送信信号に対するウェイトを制御することにより、アレーアンテナ10を1又は複数のグループに分割できる。これにより、所望の通信タイプを切り替えてユーザ端末UEに対して信号送信を行うことが可能となる。
 次に、本実施の形態に係る無線通信システムにおけるシグナリングについて説明する。LTE方式及びLTE-A方式のシステムは、下り参照信号として、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information-Reference Signal)、ユーザ固有のDM-RS(Demodulation-Reference Signal)等を規定している。CRSは、全ての下りリンクサブフレームで送信され、下りリンクの周波数帯域全体にまたがって配置される。CRSは、下りリンクの同期検波用のチャネル推定に用いられる。CSI-RSは、チャネル情報測定用の参照信号であり、CSI(CQI,PMI,ランク数)の測定に用いられる。ユーザ固有のDM-RSは、個別のユーザ端末UEへの下り共用チャネル(DL-SCH)伝送に割り当てられるリソースブロックで送信される。ユーザ固有のDM-RSは、下り共用チャネルの同期検波用チャネル推定に用いることができるユーザ固有の復調用の参照信号である。
 また、LTE方式及びLTE-A方式のシステムは、ユーザ端末UEが接続すべきセルを検出するセルサーチに使用する同期信号(SS)、セルサーチ後に必要なシステム情報(SIB(System Information Block),MIB(Master Information Block))を送信する物理報知チャネル(PBCH)を規定している。さらに、LTE方式及びLTE-A方式のシステムは、下り制御信号の送信用にPDCCH(Physical Downlink Control Channel)を規定し、上り制御信号の送信用にPUCCH(Physical Uplink Control Channel)を規定している。さらに、LTE方式及びLTE-A方式のシステムは、下りのデータ(一部の制御信号を含む)送信用にPDSCH(Physical Uplink Control Channel)を規定し、上りのデータ(一部の制御信号を含む)送信用にPUSCH(Physical Uplink Shared Channel)を規定している。
 本実施の形態に係る無線通信システムを構成する無線基地局装置は、これらのようなユーザ端末UEに対して送信する信号の種別、並びに、ユーザ端末UEの機能に応じて通信タイプを切り替える。通信タイプを切り替える際に判定されるユーザ端末UEの機能については、例えば、ユーザ端末UEが、Release8(Rel.8)、Release9(Rel.9)、Release10(Rel.10)又はRelease11(Rel.11)のLTE対応の端末か否かなどが該当する。
 例えば、無線基地局装置は、第1の通信タイプにより、Rel.8、Rel.9、Rel.10又はRel.11のLTEに対応するユーザ端末向けのCRS及びPDCCH、並びに、MIB/SIB/ページング情報を送信する。セル接続を希望するユーザ端末UEは、必ず同期信号(SS)及び物理報知チャネル(PBCH)を受信する必要が有るので、同期信号(SS)及び物理報知チャネル(PBCH)はエリア内の全てをカバレッジとすることが求められる。このため、無線基地局装置は、これらの信号を通信タイプ1に対応したビームにより送信する。また、無線基地局装置は、第1の通信タイプにより、Rel.8のLTEに対応し、2×2のMIMO伝送をサポートするユーザ端末向けのPDSCHを送信する。
 また、無線基地局装置は、第2の通信タイプにより、Rel.10のLTEに対応し、トランスミッションモード9をサポートするユーザ端末向けの4つのアンテナポートに対応するCSI-RSを送信する。また、無線基地局装置は、第2の通信タイプにより、Rel.10のLTEに対応し、トランスミッションモード9をサポートするユーザ端末向けのPDSCH及びDM-RSを送信する。
 さらに、無線基地局装置は、第3の通信タイプにより、例えば、Rel.10のLTEに対応し、8×8のMIMO伝送をサポートするユーザ端末向けの8つのアンテナポートに対応するCSI-RSを送信する。また、無線基地局装置は、第3の通信タイプにより、Rel.10のLTEに対応し、トランスミッションモード9をサポートするユーザ端末向けのPDSCH及びDM-RSを送信する。
 同一の素子指向性を持つアレーを用いた既存のシステム(水平方向に指向性を設定可能な複数の送信ビームを形成できる無線基地局装置)では、コードブックは空間内を複数(例えば、M個)に均一に分割するようなプリコーディングベクトル(プリコーディングウェイト)で構成されることが一般的である(3GPP TS36.211 ver10.1.0 6.3.4.2.3)。コードブックCODEVOOKV[0,1,...,M-1]から、それぞれのプリコーディングベクトルを選んでプリコーディングを行う処理は、M通りの指向性ビームを用いてユーザ端末と通信することと関連付けて考えることができる。このとき、ユーザ端末は、それぞれに最適なプリコーディングベクトルを選択する。この場合においては、異なるプリコーディングベクトルを用いて通信するユーザ端末同士は、指向性ビーム(送信ビーム)が異なることから信号の干渉を受けにくい。つまり、異なるプリコーディングベクトルを用いて通信するユーザ端末が多いほど、異なるユーザ端末間で空間的にデータを多重できるためシステムの容量が増加する。
 しかしながら、垂直方向のアレーアンテナ構成を用いた場合(垂直セクタ化が可能な複数の送信ビームを形成できる無線基地局装置を用いた場合)には、ユーザ端末がサービスされるエリア(セル)内に偏りをもって存在するために、同一のプリコーディングベクトルを選択する確率が高くなり、上記空間内を複数(例えば、M個)に均一に分割するようなコードブックは最適にはならない。本発明者らは、この問題を解決するために新たなコードブックを提案する。この提案は、アンテナ素子の配列方向に対して非均一に設定されたプリコーディングベクトルを含むコードブックを用いることでシステム容量を増加するものである。これによれば、ユーザ端末の密度が大きいところのプリコーディングベクトルの密度を増やすことができ、空間的にデータを多重できる効率が高くなる。ここで、プリコーディングベクトルを、アンテナ素子の配列方向に対して非均一に設定するとは、プリコーディングベクトルに対応する送信ビームのアンテナ素子の配列方向に対する角度を、一定角度間隔ではなくユーザ端末の分布の偏り等を考慮した角度間隔で選択したプリコーディングベクトルを用いることである。
 本発明においては、アレーアンテナを含む無線通信システムにおいて、位相・振幅制御量(プリコーディング行列)と、このプリコーディング行列に対応づけられるPMI(Precoding Matrix Indicator)とを複数定めたコードブックを設定する。このコードブックは、ユーザ端末の分布の偏りを考慮したものであり、セル内のユーザ端末の分布の状態により無線基地局装置毎に異なるように設定される。
 なお、セル内のユーザ端末の分布状態は、セル設計の際に予め仮定したり、予測して求める。そのように求められた分布状態に基づいてコードブックを決定する。すなわち、ユーザ端末の分布状態を予め予測して、一つの分布状態を決定し、その分布状態に対応するコードブックを決定する。
 この場合において、カバーエリア(セル)内のユーザ端末の分布の偏りを考慮した具体的なコードブックとしては以下のようなものが考えられる。このコードブックにおけるプリコーディングベクトルは、ユーザ端末の密度の逆数で均一になるように設定されている。
 ρ(L)を無線基地局装置からの距離に応じたユーザ端末の分布関数とし、L[m]を無線基地局装置からの距離としたときに、
CODEBOOKV[0,1,...M-1]=exp(2πd・jcos(α+π/2)・[0,1,2,,...,N-1])
 α=atan(h/(ρ(L・[0,1,...M-1])))
となる。
 ここで、図6に示すように、hは無線基地局装置の高さであり、dはブランチ間隔であり、αは水平方向に対してユーザ端末UEに向けた送信ビームのチルト角であり、Nはブランチ数である。また、θは水平方向に対してセル端に向けた送信ビームのチルト角である。
 具体的なセル内のユーザ端末の分布状態としては、例えば、図7Aに示すように、ユーザ端末が無線基地局装置からの距離に応じて一様に分布している場合(均等)や、図7Bに示すように、ユーザ端末が無線基地局装置からの距離に応じて2乗倍で分布している場合(セル端密)が挙げられる。例えば、図7Bに示す分布状態である場合には、コードブックは、アンテナ素子の配列方向に対して非均一に設定された複数のプリコーディングベクトルで構成される。
 このような場合におけるコードブック(プリコーディングベクトルグループ)は、以下のようになる。
(1)CODEBOOKV[0,1,...M-1]=exp(2πd・jcos(α+π/2)・[0,1,2,,...,N-1])
 α=atan(h/(Lmax/M)・[0,1,...M-1]))
 (ユーザ端末が無線基地局装置からの距離に応じて一様に分布している場合:図7A)
(2)CODEBOOKV[0,1,...M-1]=exp(2πd・jcos(α+π/2)・[0,1,2,,...,N-1])
 α=atan(h/(Lmax/sqrt(2)^[M-1,...1,0]))
 (ユーザ端末が無線基地局装置からの距離に応じて2乗倍で分布している場合:図7B)
 このような複数のプリコーディングベクトルは、図8に示すように、無線基地局装置からの距離に応じてそれぞれ適切なプリコーディングベクトルとして設定される。例えば、図8においては、無線基地局装置から最も近いユーザ端末UE#1に最適なプリコーディングベクトルPV#1が設定され、無線基地局装置から次に近いユーザ端末UE#2に最適なプリコーディングベクトルPV#2が設定される。そして、同様にして、無線基地局装置から次に近いユーザ端末UE#3~UE#10に最適なプリコーディングベクトルPV#3~PV#10がそれぞれ設定される。なお、プリコーディングベクトル数Mには特に制限はない。例えば、無線基地局装置のアンテナの指向性のビーム幅に応じて、隣接するプリコーディングベクトルに該当するエリアへヌルが向くようにプリコーディングベクトル数Mを決定しても良い。
 セル内のユーザ端末の分布状態は、上りリンク信号を用いて求めるようにしても良い。例えば、上りリンク信号を用いて分布状態を求める場合、例えば、各ユーザ端末の上りリンク信号(PUCCH(Physical Uplink Control Channel)あるいはPUSCH(Physical Uplink Shard Channel))の信号を用いて推定した無線基地局装置からの距離や、上り信号(PUCCHあるいはPUSCH)を用いて推定した無線基地局装置からユーザ端末に対する角度や、別途ユーザ端末においてGPS等により推定した位置情報を取得し、それを上り信号(PUCCHあるいはPUSCH)で取得した位置情報から割り出した無線基地局装置からの距離や、信号の遅延時間等の方法を用いて推定した無線基地局装置からの距離を用いて求める。
 このように設定されたコードブックを用いたプリコーディングベクトルの選択について説明する。上述したように、これらのコードブックは無線基地局装置及びユーザ端末で有している。また、このコードブックは、ユーザ端末の分布の偏りを考慮したコードブックであり、ρ(L)を無線基地局装置からの距離に応じたユーザ端末の分布関数とし、L[m]を無線基地局装置からの距離としたときに、
CODEBOOKV[0,1,...M-1]=exp(2πd・jcos(α+π/2)・[0,1,2,,...,N-1])
 α=atan(h/(ρ(L・[0,1,...M-1])))
で示されるM個のプリコーディングベクトルより構成される。
 まず、ユーザ端末は、無線基地局装置より送られてくる参照信号(CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information-Reference Signal))に基づいてSIR(Signal to Interference Ratio)及びチャネル行列の推定値H’を算出する。CQI(Channel Quality Indicator)及びRI(Rank Indicator)は、H’やSIR、RSRQ等の通信品質情報に基づいて、ブロックエラーレートが所定の誤り率を超えないように選択される。PMI(Precoding Matrix Indicator)は、位相・振幅制御量(プリコーディング行列)と、このプリコーディング行列に対応づけられるPMIとを複数定めたM個のプリコーディングベクトル(上記複数のプリコーディングベクトル)からH’に最も近いものが選択される。ユーザ端末は、これらの通信品質情報CSI(CQI、PMI、RI)を無線基地局装置へ通知する。
 次いで、無線基地局装置は、ユーザ端末より通知された通信品質情報CSIに基づいて、そのユーザ端末のデータ信号(PDSCH(Physical Downlink Shard Channel))を送信するためのリソース割り当て、及びMIMO伝送のレイヤ数やプリコーディングの設定、符号化レートなどを随時更新し、その情報とともにデータ信号(PDSCH)に参照信号(DM-RS(Demodulation-Reference Signal))を付与して送信する。したがって、無線基地局装置においては、ユーザ端末からフィードバックされたCSI情報からPMIを抽出し、このPMIに基づいて、セル内のユーザ端末の分布状態に基づいて予め設定されたコードブックから最適なプリコーディングベクトルを選択する。
 あるいは、無線基地局装置において、ユーザ端末からのシグナリングがない状態で、上りリンク信号のRSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)といった通信品質情報を用いて、セル内のユーザ端末の分布状態に基づいて予め設定されたコードブックから最適なプリコーディングベクトルを選択しても良い。
 次いで、無線基地局装置は、ユーザ端末のデータ信号(PDSCH)を送信するためのリソース割り当て、MIMO伝送のレイヤ数やプリコーディングの設定、符号化レート等を随時更新し、アンテナ装置へ反映する。そして、無線基地局装置は、これらの情報とともに、選択されたプリコーディングベクトルを用いてデータ信号(PDSCH)に参照信号(DM-RS)を付与して送信する。
 このように、サービスエリア内でのユーザ端末の偏りを考慮したコードブックを設定し、ユーザ端末の通信品質情報に基づいてプリコーディングベクトルを選択するので、システムの容量が増加する。
 無線基地局装置においてMIMO送信する場合には、プリコーディングベクトルが生成される。このプリコーディングベクトルは、リソースエレメント(RE)毎に乗算する。したがって、システム情報(SS(Synchronized Signal)、PBCH(Primary Broadcast Channel))や参照信号(CRS、CSI-RS)を送信するときのプリコーディングベクトルと、制御信号(PDCCH、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel))を送信するときのプリコーディングベクトルとを変えることにより、それぞれの信号の送信エリアを変えることが可能である。
 例えば、CRS、CSI-RS、PDCCHは、exp(2πd・j・cos(θ+π/2)・[0,1,2,,…,N-1])のコードブックのプリコーディングベクトルを用い、DM-RS、PDSCHは、CSI-RSを用いてユーザ端末側でPMIを選択し、通知されたそのPMIで選択されたコードブックのプリコーディングベクトルを用いることができる。
 上記説明においては、垂直方向のコードブックCODEBOOKVのみを用いる場合について説明しているが、本発明はこれに限定されず、ユーザ端末の分布状態を考慮して、従来の水平方向のコードブックCODEBOOKHと垂直方向のコードブックCODEBOOKVとを組み合わせて新たなコードブックCODEBOOK3Dを用いても良い。
CODEBOOK3D[0,1,...M×P-1]
=CODEBOOKV[0,1,...M-1]×CODEBOOKH[0,1,...P-1]
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。ここでは、LTE-Aシステムに対応する無線基地局装置及び移動局装置を用いる場合について説明する。
 図9を参照しながら、本発明の一実施の形態に係るユーザ端末としての移動局装置(以下、「移動局」という)100及び無線基地局装置(eNodeB)200を有する無線通信システム1について説明する。図9は、本発明の一実施の形態に係るユーザ100及び無線基地局装置200を有する無線通信システム1の構成を説明するための図である。なお、図9に示す無線通信システム1は、例えば、LTEシステム又はSUPER 3Gが包含されるシステムである。また、この移動通信システム1は、IMT-Advancedと呼ばれても良いし、4Gと呼ばれても良い。
 図9に示すように、無線通信システム1は、無線基地局装置200と、この無線基地局装置200と通信する複数の移動局100(100、100、100、・・・100、nはn>0の整数)とを含んで構成されている。無線基地局装置200は、上位局装置300と接続され、この上位局装置300は、コアネットワーク400と接続される。ユーザ端末100は、セル500において無線基地局装置200と通信を行っている。なお、上位局装置300には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。
 各移動局(100、100、100、・・・100)は、同一の構成、機能、状態を有するので、以下においては、特段の断りがない限り移動局100として説明を進める。また、説明の便宜上、無線基地局装置200と無線通信するのは移動局装置100であるものとして説明するが、より一般的には移動端末装置も固定端末装置も含むユーザ装置(UE:User Equipment)でよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 ここで、LTEシステムにおける通信チャネルについて説明する。下りリンクについては、各移動局10で共有されるPDSCHと、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH)とが用いられる。このPDSCHにより、ユーザデータ、すなわち、通常のデータ信号が伝送される。送信データは、このユーザデータに含まれる。なお、無線基地局装置200で移動局100に割り当てたコンポーネントキャリア(CC)」やスケジューリング情報は、L1/L2制御チャネルにより移動局100に通知される。
 上りリンクについては、各移動局100で共有して使用されるPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とが用いられる。このPUSCHにより、ユーザデータが伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)等が伝送される。
 図10は、本実施の形態に係る無線基地局装置200の構成を示すブロック図である。図11は、本実施の形態に係る移動局100の構成を示すブロック図である。なお、図10及び図11に示す無線基地局装置200及び移動局100の構成は、本発明を説明するために簡略化したものであり、それぞれ通常の無線基地局装置及び移動局が有する構成は備えているものとする。
 図10に示す無線基地局装置200において、不図示のスケジューラは、後述するチャネル推定部215#1~215#Kから与えられるチャネル推定値に基づいて多重するユーザ数(多重ユーザ数)を決定する。そして、各ユーザに対する上下リンクのリソース割り当て内容(スケジューリング情報)を決定し、ユーザ#1~#Kに対する送信データ#1~#Kを対応するチャネル符号化部201#1~201#Kに送出する。
 送信データ#1~#Kは、チャネル符号化部201#1~201#Kでチャネル符号化された後、データ変調部202#1~202#Kに出力され、データ変調される。この際、チャネル符号化及びデータ変調は、後述するMIMO切替部221#1~221#Kから与えられるチャネル符号化率及び変調方式に基づいて行われる。データ変調部202#1~202#Kでデータ変調された送信データ#1~#Kは、不図示の離散フーリエ変換部で逆フーリエ変換され、時系列の信号から周波数領域の信号に変換されてサブキャリアマッピング部203に出力される。
 サブキャリアマッピング部203においては、送信データ#1~#Kを、後述するリソース割当制御部220から与えられるリソース割当情報に応じてサブキャリアにマッピングする。このとき、サブキャリアマッピング部203は、不図示の参照信号生成部から入力される参照信号#1~#K、報知情報生成部及びシステム情報生成部から入力される報知情報及びシステム情報を、送信データ#1~#Kと共にサブキャリアにマッピング(多重)する。このようにしてサブキャリアにマッピングされた送信データ#1~#Kがプリコーディング乗算部204#1~204#Kに出力される。
 プリコーディング乗算部204#1~204#Kは、後述するプリコーディングベクトル生成部219から与えられるプリコーディングベクトルに基づいて、アンテナTX#1~TX#N毎に送信データ#1~#Kを位相及び/又は振幅シフトする(プリコーディングによるアンテナTX#1~アンテナTX#Nの重み付け)。プリコーディング乗算部204#1~204#Kにより位相及び/又は振幅シフトされた送信データ#1~#Kは、マルチプレクサ(MUX)205に出力される。なお、このプリコーディングベクトルは、セル内のユーザ端末の分布状態を考慮して予め設定されたコードブックから選択されたものである。
 マルチプレクサ(MUX)205においては、位相及び/又は振幅シフトされた送信データ#1~#Kを合成し、アンテナTX#1~TX#N毎の送信信号を生成する。マルチプレクサ(MUX)205により生成された送信信号は、逆高速フーリエ変換部(IFFT部)206#1~206#Nにて逆高速フーリエ変換して周波数領域の信号から時間領域の信号に変換される。そして、サイクリックプレフィクス(CP)付加部207#1~207#NにてCPが付加された後、RF送信回路208#1~208#Nへ出力される。そして、RF送信回路208#1~208#Nで無線周波数帯に変換する周波数変換処理が施された後、デュプレクサ(Duplexer)209#1~209#Nを介してアンテナTX#1~TX#Nに出力され、アンテナTX#1~TX#Nから下りリンクで移動局100に送出される。
 一方、移動局100から上りリンクで送出された送信信号は、アンテナTX#1~TX#Nにより受信され、デュプレクサ(Duplexer)209#1~209#Nにて送信経路と受信経路とに電気的に分離された後、RF受信回路210#1~210#Nに出力される。そして、RF受信回路210#1~210#Nにて、無線周波数信号からベースバンド信号に変換する周波数変換処理が施される。周波数変換処理が施されたベースバンド信号は、CP除去部211#1~211#NにてCPが除去された後、高速フーリエ変換部(FFT部)212#1~212#Nに出力される。受信タイミング推定部213は、受信信号に含まれるリファレンス信号から受信タイミングを推定し、その推定結果をCP除去部211#1~211#Nに通知する。FFT部212#1~212#Nは、入力された受信信号にフーリエ変換を施し、時系列の信号から周波数領域の信号に変換する。これらの周波数領域の信号に変換された受信信号は、データチャネル信号分離部214#1~214#Kに出力される。
 データチャネル信号分離部214#1~214#Kは、FFT部212#1~212#Nから入力された受信信号を、例えば、平均2乗誤差最小(MMSE:Minimum Mean Squared Error)や最尤推定検出(MLD:Maximum Likelihood Detection)信号分離法により分離する。これにより、移動局100から到来した受信信号は、ユーザ#1~ユーザ#Kに関する受信信号に分離される。チャネル推定部215#1~215#Kは、データチャネル信号分離部214#1~214#Kで分離された受信信号に含まれるリファレンス信号からチャネル状態を推定し、推定したチャネル状態を制御チャネル復調部216#1~216#Kに通知する。
 データチャネル信号分離部214#1~214#Kにより分離されたユーザ#1~ユーザ#Kに関する受信信号は、不図示のサブキャリアデマッピング部にてデマッピングされて時系列の信号に戻された後、データ復調部217#1~217#Kでデータ復調される。そして、図示しないチャネル復号部#1~#Kにてチャネル復号処理が施されることで受信データが得られる。
 制御チャネル復調部216#1~216#Kは、データチャネル信号分離部214#1~214#Kで分離された受信信号に含まれる制御チャネル信号(例えば、PDCCH)を復調する。この際、制御チャネル復調部216#1~216#Kにおいては、チャネル推定部215#1~215#Kから通知されたチャネル状態に基づいて、それぞれユーザ#1~ユーザ#Kに対応する制御チャネル信号を復調する。制御チャネル復調部216#1~216#Kにより復調された各制御チャネル信号は、CSI情報更新部218#1~218#Kに出力される。
 CSI情報更新部218#1~218#Kは、制御チャネル復調部216#1~216#Kから入力された各制御チャネル信号(例えば、PUCCH)に含まれるチャネル状態情報(CSI)を抽出し、常にCSIを最新の状態に更新する。例えば、CSIには、PMI、RI及びCQIが含まれる。CSI情報更新部218#1~218#Kに更新されるCSIは、それぞれプリコーディングベクトル生成部219、リソース割当制御部220、MIMO切替部221#1~221#K及びコードブック選択部222に出力される。
 コードブック選択部222は、CSI情報更新部218#1~218#KからのCSI情報からPMIを抽出し、そのPMIに基づいてアンテナ素子の配列方向に対して非均一に設定されたコードブック中のM種類のプリコーディングベクトルの中からのうちの最適なプリコーディングベクトルを選択する。なお、予め設定されるアンテナ素子の配列方向に対して非均一に設定されたコードブックは、ρ(L)を無線基地局装置からの距離に応じたユーザ端末の分布関数とし、L[m]を無線基地局装置からの距離としたときに、以下の式により求められる(ユーザ端末の密度の逆数で均一になるように設定される)。
CODEBOOKV[0,1,...M-1]=exp(2πd・jcos(α+π/2)・[0,1,2,,...,N-1])
 α=atan(h/(ρ(L・[0,1,...M-1])))
 ここで、hは無線基地局装置の高さであり、dはブランチ間隔であり、αは水平方向に対してユーザ端末UEに向けた送信ビームのチルト角であり、Nはブランチ数である。
 また、無線基地局装置からの距離に応じたユーザ端末の分布関数ρ(L)は、例えば、各ユーザ端末の上りリンク信号(PUCCHあるいはPUSCH)の信号を用いて推定した無線基地局装置からの距離や、上り信号(PUCCHあるいはPUSCH)を用いて推定した無線基地局装置からユーザ端末に対する角度や、別途ユーザ端末においてGPS等により推定した位置情報を取得し、それを上り信号(PUCCHあるいはPUSCH)で取得した位置情報から割り出した無線基地局装置からの距離や、信号の遅延時間等の方法を用いて推定した無線基地局装置からの距離により求めることができる。
 プリコーディングベクトル生成部219は、CSI情報更新部218#1~218#Kから入力されたCSIに基づいて、送信データ#1~#Kに対する位相及び/又は振幅シフト量を示すプリコーディングベクトルを生成する。このプリコーディングベクトルは、コードブック選択部222で選択されたコードブックから生成される。生成された各プリコーディングベクトルは、プリコーディング乗算部204#1~204#Kに出力され、送信データ#1~送信データ#Kのプリコーディングに利用される。
 リソース割当制御部220は、CSI情報更新部218#1~218#Kから入力されたCSIに基づいて、各ユーザに割り当てるリソース割当情報を決定する。リソース割当制御部220により決定されたリソース割当情報は、サブキャリアマッピング部203に出力され、送信データ#1~送信データ#Kのマッピングに利用される。
 MIMO切替部221#1~221#Kは、CSI情報更新部218#1~218#Kから入力されたCSIに基づいて、送信データ#1~送信データ#Kに用いるMIMO伝送方式を選択する。そして、選択したMIMO伝送方式に応じた送信データ#1~送信データ#Kに対するチャネル符号化率及び変調方式を決定する。決定されたチャネル符号化率は、それぞれチャネル符号化部201#1~201#Kに出力され、決定された変調方式は、それぞれデータ変調部202#1~202#Kに出力される。
 一方、図11に示す移動局100において、無線基地局装置200から送出された送信信号は、アンテナRX#1~RX#Nにより受信され、デュプレクサ(Duplexer)101#1~101#Nにて送信経路と受信経路とに電気的に分離された後、RF受信回路102#1~102#Nに出力される。そして、RF受信回路102#1~102#Nにて、無線周波数信号からベースバンド信号に変換する周波数変換処理が施される。周波数変換処理が施されたベースバンド信号は、サイクリックプレフィクス(CP)除去部103#1~103#NにてCPが除去された後、高速フーリエ変換部(FFT部)104#1~104#Nに出力される。受信タイミング推定部105は、受信信号に含まれるリファレンス信号から受信タイミングを推定し、その推定結果をCP除去部103#1~103#Nに通知する。FFT部104#1~104#Nは、入力された受信信号にフーリエ変換を施し、時系列の信号から周波数領域の信号に変換する。周波数領域の信号に変換された受信信号は、データチャネル信号分離部106に出力される。
 データチャネル信号分離部106は、FFT部104#1~104#Nから入力された受信信号を、例えば、平均2乗誤差最小(MMSE:Minimum Mean Squared Error)や最尤推定検出(MLD:Maximum Likelihood Detection)信号分離法により分離する。これにより、無線基地局装置200から到来した受信信号は、ユーザ#1~ユーザ#Kに関する受信信号に分離され、移動局100のユーザ(ここでは、ユーザKとする)に関する受信信号が抽出される。チャネル推定部107は、データチャネル信号分離部106で分離された受信信号に含まれるリファレンス信号からチャネル状態を推定し、推定したチャネル状態を制御チャネル復調部108に通知する。
 データチャネル信号分離部106により分離されたユーザ#Kに関する受信信号は、不図示のサブキャリアデマッピング部にてデマッピングされて時系列の信号に戻された後、データ復調部109で復調される。そして、図示しないチャネル復号部にてチャネル復号処理が施されることで受信データが得られる。
 制御チャネル復調部108は、データチャネル信号分離部106で分離された受信信号に含まれる制御チャネル信号(例えば、PDCCH)を復調する。この際、制御チャネル復調部108においては、チャネル推定部107から通知されたチャネル状態に基づいて、ユーザ#Kに対応する制御チャネル信号を復調する。制御チャネル復調部108により復調された各制御チャネル信号は、チャネル品質測定部110に出力される。
 チャネル品質測定部110は、制御チャネル復調部108から入力された制御チャネル信号に基づいてチャネル品質(CQI)を測定する。また、チャネル品質測定部110は、測定したCQIに基づいてPMI及びRIを選択する。このとき、PMIは、セル内のユーザ端末の分布状態に基づいて予め設定されたコードブックから選択される。そして、CQI、PMI及びRIをCSIフィードバック信号生成部111及びMIMO切替部112に通知する。
 CSIフィードバック信号生成部111においては、無線基地局装置200にフィードバックするCSIフィードバック信号(例えば、PUCCH)が生成される。この場合、CSIフィードバック信号には、チャネル品質測定部110から通知されたCQI、PMI及びRIが含まれる。CSIフィードバック信号生成部111で生成されたCSIフィードバック信号は、マルチプレクサ(MUX)113に出力される。
 MIMO切替部112は、チャネル品質測定部110から入力されたCQI、PMI及びRIに基づいて、送信データ#Kに用いるMIMO伝送方式を選択する。そして、選択したMIMO伝送方式に応じた送信データ#Kに対するチャネル符号化率及び変調方式を決定する。決定されたチャネル符号化率は、それぞれチャネル符号化部114に出力され、決定された変調方式は、それぞれデータ変調部115に出力される。
 一方、上位レイヤから送出されたユーザ#Kに関する送信データ#Kは、チャネル符号化部114によりチャネル符号化された後、データ変調部115にてデータ変調される。データ変調部115にてデータ変調された送信データ#Kは、不図示の直並列変換部で、時系列の信号から周波数領域の信号に変換されてサブキャリアマッピング部116に出力される。
 サブキャリアマッピング部116においては、送信データ#Kを、無線基地局装置200から指示されたスケジュール情報に応じてサブキャリアにマッピングする。このとき、サブキャリアマッピング部116は、不図示の参照信号生成部により生成された参照信号#Kを、送信データ#Kと共にサブキャリアにマッピング(多重)する。このようにしてサブキャリアにマッピングされた送信データ#Kがプリコーディング乗算部117に出力される。
 プリコーディング乗算部117は、アンテナRX#1~RX#N毎に送信データ#Kを位相及び/又は振幅シフトする。このとき、プリコーディング乗算部117は、制御チャネル復調部108で復調された制御チャネル信号で指定されるPMIに対応するプリコーディングベクトルに応じて位相及び/又は振幅シフトする。プリコーディング乗算部117により位相及び/又は振幅シフトされた送信データ#Kは、マルチプレクサ(MUX)113に出力される。
 マルチプレクサ(MUX)113においては、位相及び/又は振幅シフトされた送信データ#Kと、CSIフィードバック信号生成部111により生成された制御信号とを合成し、アンテナRX#1~RX#N毎の送信信号を生成する。マルチプレクサ(MUX)113により生成された送信信号は、逆高速フーリエ変換部(IFFT部)118#1~118#Nにて逆高速フーリエ変換して周波数領域の信号から時間領域の信号に変換された後、CP付加部119#1~119#NでCPが付加されてRF送信回路120#1~120#Nへ出力される。そして、RF送信回路120#1~120#Nで無線周波数帯に変換する周波数変換処理が施された後、デュプレクサ(Duplexer)101#1~101#Nを介してアンテナRX#1~RX#Nに出力され、アンテナRX#1~RX#Nから上りリンクで無線基地局装置200に送出される。
 このようなセルを形成する無線基地局装置と、この無線基地局装置に無線接続するユーザ端末とを備えた無線通信システムにおける無線通信方法においては、無線基地局装置で、上りリンク信号を用いて、前記セル内のユーザ端末の分布状態に基づいて予め設定されたコードブックからプリコーディングベクトルを選択し、選択されたプリコーディングベクトルを、前記各アンテナ素子へ供給する信号に対して乗算する。そして、プリコーディングベクトルが乗算された信号がユーザ端末に送信される。
 ユーザ端末においては、無線基地局装置からのビームを受信し、受信したビームから参照信号を取り出してチャネル品質を測定し、測定されたチャネル品質を含む通信品質フィードバック信号を上りリンクを介して前記無線基地局装置にフィードバックする。
 このように、サービスエリア内でのユーザ端末の偏りを考慮したコードブックを設定し、ユーザ端末からフィードバックされた通信品質情報、あるいは、無線基地局装置において上りリンク信号から求められた通信品質情報に基づいてコードブック内のプリコーディングベクトルを選択するので、システムの容量が増加する。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の実施形態において、ユーザ数や装置における処理部数については、これに限定されず、装置構成に応じて適宜変更することが可能である。また、本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2011年8月15日出願の特願2011-177605に基づく。この内容は、全てここに含めておく。

Claims (8)

  1.  セルを形成する無線基地局装置と、前記無線基地局装置に無線接続するユーザ端末とを備えた無線通信システムであって、
     前記無線基地局装置は、
      一方向に配列された複数のアンテナ素子を有するアレーアンテナと、
      前記セル内のユーザ端末からフィードバックされた通信品質情報に基づいて、前記アンテナ素子の配列方向に対して非均一に予め設定されたコードブックからプリコーディングベクトルを選択する選択部と、
      選択されたプリコーディングベクトルを、前記各アンテナ素子へ供給する信号に対して乗算するプリコーディング乗算部と、
      前記プリコーディングベクトルが乗算された信号をユーザ端末に送信する送信部と、
    を具備し、
     前記ユーザ端末は、
      前記無線基地局装置からの信号を受信する受信部と、
      受信した信号から参照信号を取り出してチャネル品質を測定するチャネル品質測定部と、
      測定されたチャネル品質を含む通信品質フィードバック信号を上りリンクを介して前記無線基地局装置にフィードバックする送信部と、を具備することを特徴とする無線通信システム。
  2.  前記コードブックは、ユーザ端末の密度の逆数が均一になるようなプリコーディングベクトルで構成されたことを特徴とする請求項1記載の無線通信システム。
  3.  前記コードブックは、ρ(L)を無線基地局装置からの距離に応じたユーザ端末の分布関数とし、L[m]を無線基地局装置からの距離としたときに、以下の式により求められるなプリコーディングベクトルで構成されることを特徴とする請求項1又は請求項2記載の無線通信システム。
    CODEBOOKV[0,1,...M-1]=exp(2πd・jcos(α+π/2)・[0,1,2,,...,N-1])
     α=atan(h/(ρ(L・[0,1,...M-1])))
     ここで、hは無線基地局装置の高さであり、dは複数のアンテナ素子グループであるブランチの間隔であり、αは水平方向に対してユーザ端末UEに向けた送信ビームのチルト角であり、Nはブランチ数である。
  4.  ユーザ端末が無線基地局装置からの距離に応じて一様に分布している場合に、前記コードブックは、以下の式により求められるプリコーディングベクトルで構成されることを特徴とする請求項3記載の無線通信システム。
    CODEBOOKV[0,1,...M-1]=exp(2πd・jcos(α+π/2)・[0,1,2,,...,N-1])
     α=atan(h/(Lmax/M)・[0,1,...M-1]))
  5.  ユーザ端末が無線基地局装置からの距離に応じて2乗倍で分布している場合に、前記コードブックは、以下の式により求められるプリコーディングベクトルで構成されることを特徴とする請求項3記載の無線通信システム。
    CODEBOOKV[0,1,...M-1]=exp(2πd・jcos(α+π/2)・[0,1,2,,...,N-1])
     α=atan(h/(Lmax/sqrt(2)^[M-1,...1,0]))
  6.  セルを形成する無線基地局装置と、前記無線基地局装置に無線接続するユーザ端末とを備えた無線通信システムにおける無線基地局装置であって、
     一方向に配列された複数のアンテナ素子を有するアレーアンテナと、
     前記セル内のユーザ端末の通信品質情報に基づいて、前記アンテナ素子の配列方向に対して非均一に予め設定されたコードブックからプリコーディングベクトルを選択する選択部と、
     選択されたプリコーディングベクトルを、前記各アンテナ素子へ供給する信号に対して乗算するプリコーディング乗算部と、
     前記プリコーディングベクトルが乗算された信号をユーザ端末に送信する送信部と、
    を具備することを特徴とする無線基地局装置。
  7.  セルを形成する無線基地局装置と、前記無線基地局装置に無線接続するユーザ端末とを備えた無線通信システムにおけるユーザ端末であって、
     前記無線基地局装置において前記セル内のユーザ端末の通信品質情報に基づいて、アンテナ素子の配列方向に対して非均一に予め設定されたコードブックを用いて前記無線基地局装置から送信された信号を受信する受信部と、
     受信した信号から参照信号を取り出してチャネル品質を測定するチャネル品質測定部と、
     測定されたチャネル品質を含む通信品質フィードバック信号を上りリンクを介して前記無線基地局装置にフィードバックする送信部と、を具備することを特徴とするユーザ端末。
  8.  セルを形成する無線基地局装置と、前記無線基地局装置に無線接続するユーザ端末とを備えた無線通信システムにおける無線通信方法であって、
     前記無線基地局装置において、前記セル内のユーザ端末の通信品質情報に基づいて、アンテナ素子の配列方向に対して非均一に予め設定されたコードブックからプリコーディングベクトルを選択する工程と、選択されたプリコーディングベクトルを、前記各アンテナ素子へ供給する信号に対して乗算する工程と、前記プリコーディングベクトルが乗算された信号をユーザ端末に送信する工程と、
     前記ユーザ端末において、前記無線基地局装置からの信号を受信する工程と、受信した信号から参照信号を取り出してチャネル品質を測定する工程と、測定されたチャネル品質を含む通信品質フィードバック信号を上りリンクを介して前記無線基地局装置にフィードバックする工程と、を具備することを特徴とする無線通信方法。
PCT/JP2012/070696 2011-08-15 2012-08-14 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 WO2013024853A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12824405.0A EP2747327A4 (en) 2011-08-15 2012-08-14 WIRELESS COMMUNICATION SYSTEM, WIRELESS BASISSTATION DEVICE, USER DEVICE AND WIRELESS COMMUNICATION PROCESS
US14/238,264 US9379793B2 (en) 2011-08-15 2012-08-14 Radio communication system, radio base station apparatus, user terminal and radio communication method
CN201280039738.8A CN103733553B (zh) 2011-08-15 2012-08-14 无线通信系统、无线基站装置、用户终端以及无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-177605 2011-08-15
JP2011177605A JP5753022B2 (ja) 2011-08-15 2011-08-15 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2013024853A1 true WO2013024853A1 (ja) 2013-02-21

Family

ID=47715170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070696 WO2013024853A1 (ja) 2011-08-15 2012-08-14 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法

Country Status (5)

Country Link
US (1) US9379793B2 (ja)
EP (1) EP2747327A4 (ja)
JP (1) JP5753022B2 (ja)
CN (1) CN103733553B (ja)
WO (1) WO2013024853A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015078001A1 (zh) * 2013-11-29 2015-06-04 华为技术有限公司 预编码向量的确定方法、预编码处理方法及基站
WO2015149250A1 (zh) * 2014-03-31 2015-10-08 富士通株式会社 码书确定装置、信息反馈装置和通信系统
CN105453465A (zh) * 2013-08-06 2016-03-30 株式会社Ntt都科摩 无线基站装置以及调度方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10209771B2 (en) * 2016-09-30 2019-02-19 Sony Interactive Entertainment Inc. Predictive RF beamforming for head mounted display
US8995592B2 (en) * 2012-05-10 2015-03-31 Futurewei Technologies, Inc. Signaling to support advanced wireless receivers and related devices and methods
WO2014088003A1 (ja) * 2012-12-06 2014-06-12 シャープ株式会社 基地局装置、端末装置、無線通信システムおよび集積回路
JP2015076700A (ja) * 2013-10-08 2015-04-20 株式会社Nttドコモ 無線装置、無線制御装置及び通信制御方法
JP6438203B2 (ja) * 2014-03-20 2018-12-12 株式会社Nttドコモ 基地局及びユーザ装置
WO2015190357A1 (ja) * 2014-06-09 2015-12-17 京セラ株式会社 無線通信装置および信号処理の制御方法
US9425875B2 (en) 2014-09-25 2016-08-23 Intel IP Corporation Codebook for full-dimension multiple input multiple output communications
US9654195B2 (en) * 2014-11-17 2017-05-16 Samsung Electronics Co., Ltd. Methods to calculate linear combination pre-coders for MIMO wireless communication systems
US10172140B2 (en) 2014-11-20 2019-01-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and radio network for managing precoder reports
CN106160824A (zh) * 2015-04-08 2016-11-23 中国移动通信集团公司 一种信道信息反馈方法及装置
EP3322110A4 (en) * 2015-07-06 2018-06-27 Samsung Electronics Co., Ltd. Method and apparatus for measuring channel in mobile communication system
CN106357314A (zh) * 2015-07-14 2017-01-25 株式会社Ntt都科摩 一种下行预编码方法及基站
JP2018152728A (ja) * 2017-03-13 2018-09-27 富士通株式会社 無線基地局、無線通信方法、及び無線通信システム
JPWO2018173891A1 (ja) 2017-03-22 2019-12-19 日本電気株式会社 第1の通信装置、第2の通信装置、方法、プログラム、記録媒体及びシステム
CN109586863B (zh) * 2017-09-28 2021-02-02 上海诺基亚贝尔股份有限公司 通信网络中用于信号发送和接收的方法、装置和计算机存储介质
JP7463309B2 (ja) * 2021-02-12 2024-04-08 ソフトバンク株式会社 ユーザ装置の角度情報に基づくHAPS向けMassive MIMO
CN113364494B (zh) * 2021-05-06 2022-08-16 西安交通大学 一种针对硬件失真的irs辅助miso系统性能优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004370A1 (en) * 2002-06-28 2004-01-08 Interdigital Technology Corporation System for efficiently providing coverage of a sectorized cell
JP2007028091A (ja) * 2005-07-14 2007-02-01 Ntt Docomo Inc Cdmaシステムにおける基地局および送受信方法
US20100054114A1 (en) * 2008-09-02 2010-03-04 Qinghua Li MIMO beamforming method and method of constructing a differential codebook for a wireless network

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014455B2 (en) * 2006-03-27 2011-09-06 Qualcomm Incorporated Feedback of differentially encoded channel state information for multiple-input multiple-output (MIMO) and subband scheduling in a wireless communication system
JP4652420B2 (ja) * 2008-01-08 2011-03-16 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、送信方法、および移動通信システム
JP5189460B2 (ja) * 2008-10-30 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局装置、ユーザ装置及び方法
KR101619446B1 (ko) * 2008-12-02 2016-05-10 엘지전자 주식회사 하향링크 mimo시스템에 있어서 rs 전송 방법
WO2011005576A2 (en) * 2009-06-24 2011-01-13 Research In Motion Limited Methods and apparatus to perform antenna management
US8891647B2 (en) * 2009-10-30 2014-11-18 Futurewei Technologies, Inc. System and method for user specific antenna down tilt in wireless cellular networks
MX2012013881A (es) * 2010-07-06 2013-01-24 Ericsson Telefon Ab L M Metodo y arreglo para reducir la interferencia y mejorar la cobertura.
US8615052B2 (en) * 2010-10-06 2013-12-24 Marvell World Trade Ltd. Enhanced channel feedback for multi-user MIMO
WO2013004283A1 (en) * 2011-07-04 2013-01-10 Telefonaktiebolaget L M Ericsson (Publ) Enchanced use of frequency spectrum in a wireless communication network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004370A1 (en) * 2002-06-28 2004-01-08 Interdigital Technology Corporation System for efficiently providing coverage of a sectorized cell
JP2007028091A (ja) * 2005-07-14 2007-02-01 Ntt Docomo Inc Cdmaシステムにおける基地局および送受信方法
US20100054114A1 (en) * 2008-09-02 2010-03-04 Qinghua Li MIMO beamforming method and method of constructing a differential codebook for a wireless network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3RD GENERATION PARTNERSHIP PROJECT: "3GPP TR 25.913 "Requirements for Evolved UTRA and Evolved UTRAN"", 3RD GENERATION PARTNERSHIP PROJECT
MARVELL: "Successive Codebook Refinement: Further details and evaluation", 3GPP TSG-RAN WG1#61 R1-103211, XP050420373 *
See also references of EP2747327A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453465A (zh) * 2013-08-06 2016-03-30 株式会社Ntt都科摩 无线基站装置以及调度方法
CN105453465B (zh) * 2013-08-06 2018-07-06 株式会社Ntt都科摩 无线基站装置以及调度方法
US10070453B2 (en) 2013-08-06 2018-09-04 Ntt Docomo, Inc. Radio base station apparatus and scheduling method
WO2015078001A1 (zh) * 2013-11-29 2015-06-04 华为技术有限公司 预编码向量的确定方法、预编码处理方法及基站
CN105359428B (zh) * 2013-11-29 2018-10-12 华为技术有限公司 预编码向量的确定方法、预编码处理方法及基站
WO2015149250A1 (zh) * 2014-03-31 2015-10-08 富士通株式会社 码书确定装置、信息反馈装置和通信系统

Also Published As

Publication number Publication date
CN103733553B (zh) 2017-02-08
US20140192761A1 (en) 2014-07-10
JP5753022B2 (ja) 2015-07-22
US9379793B2 (en) 2016-06-28
EP2747327A4 (en) 2015-01-21
EP2747327A1 (en) 2014-06-25
JP2013042340A (ja) 2013-02-28
CN103733553A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5753022B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
US10594377B2 (en) Beamforming in a MU-MIMO wireless communication system
JP5706528B2 (ja) 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
JP5809482B2 (ja) 無線通信システム、無線基地局及び無線通信方法
WO2014021008A1 (ja) 基地局装置、ユーザ端末、通信システム及び通信制御方法
US10070453B2 (en) Radio base station apparatus and scheduling method
EP3032863B1 (en) Wireless communication system, and method for determining antenna configuration
JP6224880B2 (ja) 基地局装置、ユーザ端末、通信システム及び通信制御方法
WO2013145885A1 (ja) 無線基地局、無線通信システム及び無線通信方法
JP5291663B2 (ja) データ送信方法、基地局装置及び移動局装置
KR20150043368A (ko) 하이브리드 빔포밍을 이용하는 통신 시스템을 위한 다중 사용자 및 단일 사용자 mimo
US9125074B2 (en) Coordinated multi-point transmission and multi-user MIMO
WO2011136113A1 (ja) データ送信方法、基地局装置及び移動局装置
US20230088818A1 (en) Downlink multi-antenna transmission in wireless communication system
JP2018078593A (ja) 基地局装置、ユーザ端末及び無線通信方法
JP2018029375A (ja) 基地局装置、ユーザ端末及び通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824405

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14238264

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE