WO2013024676A1 - Planetary gear device - Google Patents

Planetary gear device Download PDF

Info

Publication number
WO2013024676A1
WO2013024676A1 PCT/JP2012/068942 JP2012068942W WO2013024676A1 WO 2013024676 A1 WO2013024676 A1 WO 2013024676A1 JP 2012068942 W JP2012068942 W JP 2012068942W WO 2013024676 A1 WO2013024676 A1 WO 2013024676A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
pinion
ball bearing
pinion gear
planetary gear
Prior art date
Application number
PCT/JP2012/068942
Other languages
French (fr)
Japanese (ja)
Inventor
理之 冨加見
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2013024676A1 publication Critical patent/WO2013024676A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0479Gears or bearings on planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H2057/085Bearings for orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • F16H48/11Differential gearings with gears having orbital motion with orbital spur gears having intermeshing planet gears

Definitions

  • the present invention relates to a planetary gear device used in a planetary gear device of an automatic transmission mounted on a vehicle or the like, and a reduction gear differential for a vehicle of an electric vehicle using a motor as a drive source.
  • This type of needle roller bearing is composed of a roller 1 and a cage 2 and is disposed around a pinion shaft 4 attached to the carrier 3 and rotatably supports the pinion gear 5.
  • a bag hole 6 extending along the axis from the right end surface of FIG. 18, and extending radially from the middle of the bag hole 6 so as to face the roller on the peripheral surface of the pinion shaft 4. And the lubricating oil is supplied to the roller 1 from the outside of the pinion shaft 4 through the bag hole 6 and the radial hole 7.
  • a washer 8 is disposed between the carrier 3 and the pinion gear 5.
  • the pinion gear is a helical gear
  • a moment load acts on the bearing, and when the gradient of the contact surface pressure increases, the surface pressure becomes excessively large and the service life may be shortened.
  • the pinion gear has a larger diameter than the width, the moment load applied to the needle roller bearing increases, and the roller edge stress is locally excessive. It tends to be surface pressure.
  • Patent Document 1 has two rows of rollers, but local excessive surface pressure is unavoidable.
  • Patent Document 2 although the sliding surface pressure of the washer is reduced, loss due to sliding cannot be eliminated, and lubricating oil is difficult to be supplied to the bearing portion.
  • Such a problem of poor lubrication can be solved temporarily by using a hydraulic pump because the lubricating oil can be satisfactorily supplied to each part.
  • a hydraulic pump if a hydraulic pump is provided, the device will be increased in size and weight will be increased, and power consumption will be required to operate the hydraulic pump. In particular, it is necessary to increase the travel distance per charge as much as possible. It is not preferable for automobiles.
  • the present invention improves the lubrication of the planetary bearing part of the planetary gear unit of the planetary gear unit used in the automatic transmission of the vehicle and the reduction gear differential for the vehicle without using a hydraulic pump.
  • the problem is to extend the life and reduce the friction loss of the pinion part.
  • the present invention provides a ball bearing disposed around a pinion shaft attached to a carrier, and the pinion gear is rotatably supported by the ball bearing. Position misalignment prevention means is provided.
  • a spacer can be arranged between the inner ring of the ball bearing and the carrier.
  • the outer diameter of the spacer is preferably smaller than the outer diameter of the inner ring of the ball bearing.
  • the carrier can be attached without providing a spacer or increasing the width of the inner ring. It is possible to prevent it from touching. However, there is an inconvenience that requires clearance management at the time of assembly and use. On the other hand, such inconvenience is eliminated by means for providing a spacer or expanding the width of the inner ring.
  • a helical gear can be used, and a spur gear may be used.
  • a rotation prevention means for preventing position deviation in the rotational direction of the ball bearing and the pinion gear
  • a retaining means for preventing position deviation in the axial direction of the ball bearing and the pinion gear
  • the planetary gear device of the present invention can be suitably used for an automatic transmission for a vehicle and a reduction differential for an electric vehicle.
  • Oil bath lubrication can be used as the lubrication mechanism of the planetary gear device of the present invention.
  • edge stress is not generated unlike a needle bearing even when a moment load is applied.
  • the lubricating oil can be supplied from the width surface of the ball bearing, it is not necessary to supply it from the pinion shaft like a needle bearing. In addition, since it is not necessary to provide a hole for lubrication from the pinion shaft to the needle bearing, it can be manufactured at a low cost.
  • the outer diameter of the spacer smaller than the outer diameter of the inner ring of the ball bearing, when the lubricant is to be supplied from the width surface of the ball bearing, the lubricant is smoothly supplied to the balls that are rolling elements.
  • the width of the inner ring of the ball bearing is made larger than that of the pinion gear, so that even if the pinion gear collapses due to moment load or moves in the axial direction, the pinion gear does not contact the carrier, and torque loss due to sliding contact There is no.
  • FIG. 8 It is a partial cross section figure of 1st Embodiment of a planetary gear apparatus. It is a partial sectional view of a 2nd embodiment similarly. Similarly, it is a partial cross-sectional view of Example 1 of the third embodiment. It is a partial sectional view of Example 2 of the third embodiment. Similarly, it is a partial sectional view of Example 3. FIG. Similarly, it is a partial sectional view of Example 4.
  • FIG. It is sectional drawing of embodiment of the deceleration differential device for electric vehicles which uses a planetary gear apparatus. It is a partially expanded sectional view of FIG. It is a partially expanded sectional view of FIG. 8A.
  • FIG. 8 is a cross-sectional view taken along line X1-X1 of FIG.
  • FIG. 10B is a sectional view taken along line X2-X2 in FIG. 10A. It is a front view of the carrier of a reduction gear.
  • FIG. 11B is a cross-sectional view taken along line X3-X3 in FIG. 11A. It is sectional drawing of the X4-X4 line
  • FIG. 14B is a cross-sectional view taken along line X6-X6 of FIG. 14A.
  • FIG. 15B is a cross-sectional view taken along line X7-X7 in FIG. 15A. It is an exploded sectional view of an important section of an embodiment of a reduction differential for electric vehicles which uses a planetary gear device. It is an expansion perspective view which shows a part of gear. It is sectional drawing of the conventional planetary gear apparatus.
  • FIG. 1 is a cross-sectional view showing the periphery of a pinion shaft in a first embodiment of a planetary gear device according to the present invention.
  • the planetary gear device of FIG. 1 rotatably supports a pinion gear 29 composed of a helical gear or the like via a deep groove ball bearing 33 around a pinion shaft 31 having one end attached to a carrier 32.
  • a deep groove ball bearing 33 not only the deep groove ball bearing 33 but also a ball bearing such as an angular ball bearing or a four-point contact ball bearing, that is, a bearing whose rolling element is a ball can be used.
  • a method of pressing the pin against the pinion shaft and fixing the head of the pin with a set screw a method of inserting the pin radially into the pinion shaft and fixing the head of the pin with a set screw, a pinion
  • a method of caulking and fixing the end surface of the shaft 31 a method of press-fitting the pinion shaft 31 into the carrier 32, and the like.
  • the other end of the pinion shaft 31 is integrated with a member (a disk portion 49a of a ring gear 49 described later) that transmits a deceleration output to a subsequent device (a differential device 13 described later).
  • the deep groove ball bearing 33 includes an inner ring 33a, an outer ring 33b, and a ball 33c interposed between the inner ring 33a and the outer ring 33b.
  • a spacer 20 is disposed between the inner ring 33a and the carrier 32 so that the width surface of the pinion gear 29 and the carrier 32 do not come into contact with each other, and loss due to sliding contact between the width surface of the pinion gear 29 and the carrier 32 is eliminated.
  • a similar spacer 20 is also disposed between the inner ring 33 a and the disc portion 49 a of the ring gear 49.
  • the outer diameter dimension of the spacer 20 is set smaller than the outer diameter dimension of the inner ring 33a.
  • the outer diameter R based on the rotation center of the carrier 32 is preferably set to be equal to or smaller than the maximum diameter R1 of the locus of the outer diameter of the inner ring 33a when the pinion gear 29 revolves. . Even when it is larger than the maximum diameter R1, the size is set so as not to exceed the maximum diameter R2 of the trajectory of the PCD of the ball 33c.
  • the spacer 20 is smaller than the outer diameter of the inner ring 33a, and the outer diameter R of the carrier 32 is set equal to or smaller than the maximum diameter R1, so that the lubricating oil by oil bath lubrication (FIG. 1) is obtained. It is possible to avoid an obstacle when the white arrow a) is supplied from the width surface of the bearing. Even when the outer diameter R is larger than the maximum diameter R1, it is desirable to set the size so as not to exceed the maximum diameter R2 of the trajectory of the PCD of the ball 33c.
  • FIG. 2 shows a second embodiment of the present invention.
  • the width of the inner ring 33a is made larger than the width of the pinion gear 29 so that the carrier 32 is not contacted even if the pinion gear 29 is tilted. Further, since the spacer 20 used in the first embodiment is not necessary, it is omitted.
  • FIG. 3 to 6 show Examples 1 to 4 of the third embodiment of the present invention.
  • a misalignment prevention means 88 between the outer ring 33b of the deep groove ball bearing 33 and the pinion gear 29 is added. Similar misalignment prevention means can be added to FIG. 2 (second embodiment).
  • the outer ring 33b of the deep groove ball bearing 33 is press-fitted into the inner surface of the pinion gear 29, so that the outer ring 33b and the pinion gear 29 rotate together.
  • a positional deviation prevention means 88 is provided between the outer ring 33 b and the pinion gear 29.
  • the misalignment prevention means 88 prevents rotation of the deep groove ball bearing 33 and the pinion gear 29 in the rotational direction, and prevents misalignment in the axial direction. It is comprised by the retaining means to do.
  • the retaining means may be omitted.
  • the pin 89 is raised on the outer diameter surface of the outer ring 33 b, while the engagement concave portion 90 is provided on the end surface of the pinion gear 29, and the pinion gear 29 is fitted in the axial direction. It is the structure to engage.
  • the configuration of the retaining means is a configuration in which a retaining ring 92 formed by an elastic split ring is fitted into a circumferential groove 91 provided on the outer diameter surface of the outer ring 33b, while an engaging groove 93 is provided on the inner circumferential surface of the pinion gear 29. It is.
  • the pinion gear 29 is fitted to the outer diameter surface of the outer ring 33b from the axial direction while the retaining ring 92 is reduced in diameter, and further advanced to engage the engaging recess 90 with the pin 89, the retaining ring 92 is restored by its restoring action. The part is engaged with the engaging groove 93.
  • the misalignment prevention means 88 in FIG. 5 prevents the pin 95 from coming off by screwing a set screw 96 reaching the pin 95 from the end face of the pinion gear 29 in the axial direction. ing. Since the pin 95 is prevented from slipping out, the pin 95 can be more reliably prevented from rotating. Also in this case, the anti-rotation function and the retaining function are performed at the same time. In this case, the pin 95 may not be press-fitted.
  • the misalignment prevention means 88 of FIG. 6 takes into account that parts such as the pin 89 are necessary in each of the cases of FIGS. 3 to 5 and that the number of assembly steps for incorporating them increases.
  • the outer ring 33 b and the pinion gear 29 are constituted by one annular part 97.
  • the rolling groove 98 on the inner diameter surface of the annular part 97, the inner diameter portion becomes the outer ring 33b, and by providing the tooth profile 99 on the outer diameter surface, the outer diameter portion becomes the pinion gear 29. Since there is no fitting portion between the outer ring 33b and the pinion gear 29, creep does not occur. Also in this case, the anti-rotation function and the retaining function are performed at the same time.
  • each of the misalignment prevention means 88 exhibits a detent function and a retaining function. It can also be said that it is a retaining means. In addition, since both functions are exhibited at the same time, it can be said that the rotation preventing means also serves as the retaining means (conversely, the retaining means also serves as the retaining means).
  • the planetary gear device of the present invention can be suitably used for an automatic transmission for a vehicle and a deceleration differential device for a vehicle.
  • the electric vehicle deceleration differential device includes an electric motor 11, a planetary gear speed reducer 12 arranged in the axial direction coaxially with the electric motor 11, and a shaft coaxial with the speed reducer 12.
  • the planetary gear differential 13 arranged in the direction, the speed reducer 12 and the oil bath lubrication means 14 common to the differential 13 are configured.
  • the casing 15 in which these devices are stored is a combination of a motor casing 15a in which the electric motor 11 is stored, a reduction differential casing 15b in which the reduction gear 12 and the differential device 13 are stored, and a casing lid 15c.
  • a motor casing 15a in which the electric motor 11 is stored
  • a reduction differential casing 15b in which the reduction gear 12 and the differential device 13 are stored
  • a casing lid 15c One end portion of the motor casing 15a is opened, and the open end is closed by the deceleration differential casing 15b.
  • One end of the deceleration differential casing 15b is also opened, and the open end is closed by a casing lid 15c.
  • the electric motor 11 includes a stator 16 fixed to the inner peripheral surface of the motor casing 15a, and a rotor 19 integrally attached to a motor output shaft 17 and a core 18 on the inner diameter side thereof.
  • the motor output shaft 17 is hollow, and its outer end (left end in FIG. 7) is supported by an output shaft support bearing 21 interposed between the motor casing 15a and the inner end (same right end) is It is inserted into the center of the speed reducer 12.
  • the output shaft support bearing 21 is a ball bearing with a seal.
  • a portion of the motor output shaft 17 inserted into the speed reducer 12 is a speed reducer input shaft 22.
  • the portion of the speed reducer input shaft 22 is supported by an input shaft support bearing 23 interposed between the speed reducer differential casing 15b.
  • the input shaft support bearing 23 is also constituted by a ball bearing.
  • the speed reducer 12 has a sun gear 27 integrally provided on the outer peripheral surface of the tip of the speed reducer input shaft 22, and is coaxial with the inner diameter surface of the speed reduction differential casing 15b on the outer diameter side thereof.
  • the ring gear 28 is fixed to the ring gear 28, and the pinion gear 29 and the carrier 32 (see FIG. 11) are provided at three intervals in the circumferential direction between the sun gear 27 and the ring gear 28.
  • the pinion gear 29 meshes with the sun gear 27 and the ring gear 28.
  • the pinion gear 29 is supported on the pinion shaft 31 of the first embodiment described above via a deep groove ball bearing 33 (see FIG. 9), and one end of the pinion shaft 31 is attached to the carrier 32.
  • the deep groove ball bearing 33 includes an inner ring 33a, an outer ring 33b, a ball 33c interposed between the inner ring 33a and the outer ring 33b, and a cage. Illustration of cage is omitted
  • the ring gear 28 is positioned and fixed by applying a side surface thereof to a step portion 34 (see FIG. 8A) formed on the inner surface of the reduction differential casing 15b.
  • the pinion gear 29 is provided with a shaft hole 37 into which the pinion shaft 31 is inserted via the deep groove ball bearing 33.
  • the carrier 32 has a radial clearance h (see FIG. 8A) around the input shaft 22 between the closed surface of the reduction differential casing 15b facing the open end of the motor casing 15a and the pinion gear 29. Mated. As shown in FIG. 11, the carrier 32 is formed by an annular plate having a constant center hole 39, and the radius of rotation thereof is the oil level L (see FIG. 5) of the lubricating oil stored on the inner bottom surface of the speed-reducing differential casing 15b. 7)).
  • Each lubricating hole 45 is formed by a long hole curved in the circumferential direction. Further, at three locations facing the outer diameter side of each lubrication hole 45, convex portions 46 are respectively provided outward from the outer peripheral edge in the axial direction (in the direction of the differential device 13). As will be described later, the convex portion 46 is coupled to the ring gear 49 of the differential device 13 and has a function of scooping up the lubricating oil during rotation. Constitute.
  • a stepped portion 40 having a constant width along the periphery of the center hole 39 is formed on the surface of the carrier 32 facing the closing surface of the deceleration differential casing 15b (the radial surface closing the open end of the motor casing 15a). (See FIGS. 8A and 11), and a thrust bearing 47 using needle rollers is attached to the stepped portion 40. The thrust bearing 47 is brought into contact with the closing surface of the deceleration differential casing 15b, so that the thrust force acting on the carrier 32 is received and the carrier 32 is smoothly rotated.
  • a spacer 20 is interposed around the pinion shaft 31 between one end face in the axial direction of the pinion gear 29 and the carrier 32 and between the other end face and the disk portion 49a of the ring gear 49, respectively. Thereby, the pinion gear 29 is smoothly rotated.
  • the input shaft support bearing 23 is provided at a position closer to the electric motor 11 than the thrust bearing 47, the center hole 39 of the carrier 32 and the thrust bearing 47 prevent the supply of lubricating oil to the bearing 23. You must be careful not to have any.
  • the inner diameter of the carrier 32 and the inner diameter of the thrust bearing 47 it is necessary to set the inner diameter of the carrier 32 and the inner diameter of the thrust bearing 47 to be larger than the outer diameter of the inner ring 23 b constituting the input shaft support bearing 23.
  • the inner diameter of the carrier 32 and the inner diameter of the thrust bearing 47 are set to be equal to or larger than the inner diameter of the outer ring 23a of the bearing 23. The clearance h is secured.
  • the differential device 13 is provided coaxially with the speed reducer 12 inside the speed reduction differential casing 15b.
  • the constituent members include a ring gear 49, a sun gear 51 coaxially provided on the inner diameter side thereof, double pinion type pinion gears 52a and 52b interposed between the ring gear 49 and the sun gear 51, and these pinion gears 52a,
  • the carrier 54 supports the pinion shafts 53a and 53b of the 52b.
  • pinion gears 52a and 52b are used in total, but six may be used.
  • the number of pinion gears 29 of the reduction gear 11 is not limited.
  • the inner end of the first output shaft 35 passes through the shaft hole 55 (see FIGS. 7, 8, and 13) of the sun gear 51 and is coupled to the sun gear 51 by the serration coupling portion 30.
  • the outer end portion of the first output shaft 35 is penetrated by the speed reducer input shaft 22 and the motor output shaft 17 integrated therewith, and is connected to the motor casing 15a via an outer end support bearing 57 (see FIG. 7) formed of a ball bearing. Supported by.
  • the outer end portion of the first output shaft 35 protrudes from the motor casing 15a to the outside (left side in FIG. 7).
  • the second output shaft 36 is provided integrally with the first output shaft 35 at the center of the carrier 54 and is opposite to the first output shaft 35 (right side in FIGS. 7 and 8). Sticks out.
  • the ring gear 49 has a disc portion 49a provided coaxially on the outer periphery of the first output shaft 35 with a radial gap, and an outer peripheral edge of the disc portion 49a outward (in the axial direction and the second direction).
  • the outer peripheral portion 49b is provided by being bent in the direction in which the output shaft 36 protrudes.
  • the other end portion of the pinion shaft 31 on the speed reducer 12 side is inserted and supported on the disc portion 49a, and the convex portion 46 of the carrier 32 is also inserted into the disc portion 49a (see FIG. 7).
  • the carrier 32 and the ring gear 49 on the differential device 13 side are connected. As a result, the deceleration output resulting from the revolution of the pinion gear 29 of the speed reducer 12 is transmitted to the ring gear 49 of the differential device 13.
  • the lubricating hole 56 is also a long hole curved in the circumferential direction.
  • the double pinion type pinion gears 52a and 52b are gears of the same size with the same number of teeth. As shown in FIG. 12, one pinion gear 52a has a larger PCD than the other pinion gear 52b. The pinion gear 52b with the smaller PCD meshes with the sun gear 51.
  • the carrier 54 is provided with a center boss portion 59 at the center of the outer surface of the disc portion 58.
  • the second output shaft 36 is provided on the outer end surface of the center boss portion 59 so as to protrude outward in a coaxial state, and a bearing recess 62 opened inward is provided inside the center boss portion 59.
  • a second output shaft support bearing 61 formed of a ball bearing is interposed between the outer diameter surface of the center boss portion 59 and the casing lid 15c (see FIGS. 7 and 8).
  • the second output shaft support bearing 61 is also a support bearing for the carrier 54. Further, the inner end portion of the first output shaft 35 is inserted into the bearing recess 62, and the inner end portion is supported so as to be relatively rotatable via an inner end portion support bearing 63 formed of a needle roller bearing.
  • the second output shaft support bearing 61 has a seal member 85 attached to the end facing the outside of the casing lid 15c, and no seal member attached to the opposite surface.
  • This is a ball bearing with a so-called one-side seal.
  • an O-ring 86 is interposed between the outer ring and the casing lid 15c so as to seal the portion.
  • the bearing also serves as a sealing function, and the length in the width direction can be reduced.
  • an inclined portion 87 having a small diameter on the inner end support bearing 63 side is provided.
  • the inclined portion 87 has a function of guiding the lubricating oil dropped between the serration coupling portion 30 and the inner end support bearing 63 to the inner end support bearing 63 side.
  • the inner end support bearing 63 is constituted by, for example, a shell needle roller bearing. Since this bearing has flanges bent toward the inner diameter side on both side edges of the outer ring, lubricating oil can be stored inside thereof.
  • the disk portion 58 is provided with shaft holes 64a and 64b on a certain PCD corresponding to the positions of the pinion shafts 53a and 53b (see FIG. 14A). Further, between the small-diameter PCD and the center boss portion 59, lubricating holes 65 are provided at substantially equal intervals in four locations in the circumferential direction. These lubricating holes 65 are also formed by curved long holes.
  • a scooping convex portion 66 protruding in the direction facing the inside of the differential 13 is provided between the shaft holes 64a on the large-diameter PCD along the outer periphery of the disc portion 58.
  • a fitting and fixing projection 67 is provided on the tip surface of the convex portion 66.
  • the disk 54 of the carrier 54 is interposed between the casing lid 15c and a gear group such as the pinion gears 52a and 52b.
  • the pinion shafts 53a and 53b are inserted into the pinion gears 52a and 52b via double-row needle roller bearings 68a and 68b (see FIG. 12).
  • the outer ends of the pinion shafts 53a and 53b are inserted into and supported by the shaft holes 64a and 64b of the carrier 54, respectively.
  • the carrier auxiliary member 70 of the annular plate member is provided between the disc portion 49a of the ring gear 49 and the gear group such as the pinion gears 52a and 52b. Intervened in.
  • the carrier auxiliary member 70 is provided with a pair of shaft holes 71a and 71b having different PCDs at positions corresponding to the pinion shafts 53a and 53b.
  • Scraping recesses 72 are provided at four locations on the entire circumference on the outer peripheral edge of the shaft hole 71b on the small-diameter PCD that is radially opposed to the shaft hole 71b.
  • the screw holes 73a and 73b in the radial direction reaching the shaft holes 71a from the outer peripheral surface of the carrier auxiliary member 70 and reaching the shaft holes 71b from the bottoms of the recesses 72 are provided. Further, four fitting holes 74 formed as long holes are formed in the circumferential direction of the shaft hole 71a on the large-diameter PCD.
  • the fitting fixing protrusion 67 of the carrier 54 is fitted into the fitting hole 74 and then fixed by welding to achieve integration with the carrier auxiliary member 70.
  • the inner ends of the pinion shafts 53a and 53b are inserted into the shaft holes 71a and 71b, respectively, and the pinion shafts 53a and 53b are fixed to the carrier auxiliary member 70 by screws 75 screwed from the screw holes 73a and 73b, respectively.
  • a pin (not shown) is inserted in the pinion shafts 53a and 53b in the radial direction and fixed by a set screw 96 screwed into the screw hole.
  • a spacer 50 is interposed between the outer end surface of each pinion gear 52a, 52b and the carrier 54 and between the inner end surface and the carrier auxiliary member 70 so that the pinion gears 52a, 52b rotate smoothly.
  • a thrust bearing 76 using needle rollers is interposed between the disc portion 58 of the carrier 54 and the sun gear 51 (see FIG. 8A).
  • a thrust bearing 77 using needle rollers is interposed between the disc portion 49 a of the ring gear 49 and the sun gear 51.
  • At least one of the rotation radii of the carrier 54 and the auxiliary member 70 is set so as to reach the oil level L stored on the inner bottom surface of the deceleration differential casing 15b.
  • the electric vehicle deceleration differential is configured as described above, and the operation thereof will be described next.
  • the reduction ratio when the number of teeth of the sun gear 27 is Zs and the number of teeth of the ring gear 28 is Zr is Zs / (Zs + Zr).
  • the first output shaft 35 is integrally coupled with the sun gear 51, and the second output shaft 36 is integrated with the carrier 54, so that the differential output 13 is attached to each of these output shafts 35, 36.
  • the sun gear 51, the pinion gears 52a and 52b, the carrier 54, and the ring gear 49 rotate together and do not rotate relative to each other.
  • the input rotation is evenly distributed to the first and second output shafts 35 and 36 to rotate the left and right wheels at a constant speed.
  • Nc Nr + ⁇ / (1- ⁇ ) ⁇ ⁇ N
  • Zs the number of teeth of the sun gear 51
  • Zr the number of teeth of the ring gear 49.
  • the lubricating oil stored up to the oil level L having a predetermined height on the inner bottom surface of the speed-reducing differential casing 15 b is commonly used for oil bath lubrication of the speed reducer 12 and the differential device 13.
  • the convex portions 46 and the pinion gear 29 provided at three locations on the outer peripheral portion of the carrier 32 pass through the oil below the oil level L of the lubricating oil during the rotation, so that the lubricating oil is scraped.
  • the raising action is performed (see the white arrow in FIG. 16).
  • the scraped up lubricating oil is scattered inside the speed reducer 12 and applied to each component.
  • the lubricating oil thus scraped passes through the lubricating hole 65 of the carrier 54 and the lubricating hole 56 of the sun gear 51 in the axial direction (see the arrow in FIG. 16) or directly supports the second output shaft without passing through them.
  • the bearing 61, thrust bearings 76 and 77 interposed between both end surfaces of the sun gear 51, and double row needle roller bearings 68a and 68b of the double pinion gears 52a and 52b are supplied.
  • the lubrication hole 56 of the sun gear 51 is effective for supplying oil to the thrust bearings 76 and 77 interposed at both end surfaces of the sun gear 51.
  • part of the pinion gears 52a and 52b having a turning radius that extends to the oil surface also contributes to the scraping action.
  • the electric vehicle deceleration differential according to the above embodiment employs oil bath lubrication. By further improving the lubricity of the gear tooth surface in this oil bath lubrication, the durability of the gear is further improved.
  • the differential device 13 includes a sun gear 51, pinion gears 52 a and 52 b, and the ring gear 49.
  • innumerable minute depressions 83 are randomly provided in the tooth tip portion 80, the tooth portion 81, and the tooth bottom portion 82 that form the tooth surface 79 of these gears.
  • the surface roughness parameters of the tooth surface 79 are as follows: Ryni is 2.0 to 5.5 ⁇ m, Rymax is 2.5 to 7.0 ⁇ m, Rqni is 0.3 to 1.1 ⁇ m, and Rsk is 1.6 or less.
  • the minute recess 83 becomes an oil reservoir, sufficient durability can be maintained even in the case of oil bath lubrication. As a result, the gear itself can be reduced in size and the entire apparatus can be reduced in size.
  • both the sun gear 27 and the pinion gear 29 in the reduction gear 12 and the sun gear 51 and the pinion gears 52a and 52b in the differential device 13 may need to be processed. It is necessary to perform the processing on both, for example, even if the smallest gear is subjected to the above processing to increase the life, if the other gear meshing with this has a short life, an unbalance occurs in both the life Because.
  • the tooth surface 79 is smoothed by gyro polishing, barrel polishing or the like, and then a recess forming means is applied to the smoothed tooth surface.
  • the dent formation means is performed by a method in which fine hard particles mainly composed of aluminum oxide or the like are collided by shot peening, liquid honing, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • General Details Of Gearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Gears, Cams (AREA)

Abstract

In order to address the problem of favorably lubricating a pinion gear bearing of a planetary gear device used in a vehicle automatic transmission or a vehicle reduction differential device without using a hydraulic pump, so as to increase the lifespan of the bearing and eliminate the generation of creep between the bearing and the pinion gear, a planetary gear device is constructed such that a deep groove ball bearing (33) is arranged around a pinion shaft (31) attached to a carrier (32), a pinion gear (29) is rotatably supported by the deep groove ball bearing (33), and a positional displacement prevention means is provided between the deep groove ball bearing (33) and the pinion gear (29).

Description

遊星歯車装置Planetary gear set
 この発明は、車両等に搭載されている自動変速機の遊星歯車装置や、モータを駆動源とした電気自動車の車両用減速差動装置に用いられる遊星歯車装置に関するものである。 The present invention relates to a planetary gear device used in a planetary gear device of an automatic transmission mounted on a vehicle or the like, and a reduction gear differential for a vehicle of an electric vehicle using a motor as a drive source.
 前記装置の遊星歯車装置におけるプラネタリー軸受には、従来、図18に示すような針状ころ軸受が使用されている(特許文献1、特許文献2)。 Conventionally, needle roller bearings as shown in FIG. 18 have been used as planetary bearings in the planetary gear unit of the above-mentioned device (Patent Documents 1 and 2).
 この種の針状ころ軸受は、ころ1と、保持器2とからなり、キャリヤ3に取り付けられるピニオンシャフト4の周囲に配置され、ピニオンギヤ5を回転自在に支持している。 This type of needle roller bearing is composed of a roller 1 and a cage 2 and is disposed around a pinion shaft 4 attached to the carrier 3 and rotatably supports the pinion gear 5.
 ピニオンシャフト4内には、図18の右端面から軸線に沿って延在する袋孔6と、袋孔6の途中から半径方向に延在し、ピニオンシャフト4の周面においてころに対向するように開口する径孔7とが形成され、ピニオンシャフト4の外部から袋孔6及び径孔7を介して潤滑油がころ1に対して供給されるようになっている。 In the pinion shaft 4, a bag hole 6 extending along the axis from the right end surface of FIG. 18, and extending radially from the middle of the bag hole 6 so as to face the roller on the peripheral surface of the pinion shaft 4. And the lubricating oil is supplied to the roller 1 from the outside of the pinion shaft 4 through the bag hole 6 and the radial hole 7.
 また、キャリヤ3とピニオンギヤ5との間には、ワッシャ8が配置されている。 Further, a washer 8 is disposed between the carrier 3 and the pinion gear 5.
特開2007-292152号公報JP 2007-292152 A 特開2009-216112号公報JP 2009-216112 A
 ところで、プラネタリー軸受を構成する針状ころ軸受への潤滑油の供給は、上記のように、ピニオンシャフトの中空の袋孔から径孔を介して行っているため、どうしても潤滑不良を招く懸念がある。 By the way, since the supply of the lubricating oil to the needle roller bearings constituting the planetary bearing is performed from the hollow bag hole of the pinion shaft through the diameter hole as described above, there is a concern that the lubrication failure is inevitably caused. is there.
 また、ピニオンギヤがはすば歯車の場合、軸受にはモーメント荷重が作用し、接触面圧の勾配が大きくなると、局所的に面圧が過大になり、短寿命になってしまう場合が生じる。 Also, when the pinion gear is a helical gear, a moment load acts on the bearing, and when the gradient of the contact surface pressure increases, the surface pressure becomes excessively large and the service life may be shortened.
 特に、遊星機構1段で減速比を大きくとろうとすると、ピニオンギヤは、幅寸法に対して径寸法が大きくなり、針状ころ軸受にかかるモーメント荷重が大きくなり、ころのエッジ応力が局所的に過大面圧となり易い。 In particular, when trying to increase the reduction ratio with one stage of the planetary mechanism, the pinion gear has a larger diameter than the width, the moment load applied to the needle roller bearing increases, and the roller edge stress is locally excessive. It tends to be surface pressure.
 特許文献1に開示されたものでは、ころを2列にしているが、局所的な過大面圧の発生は避けられない。 The one disclosed in Patent Document 1 has two rows of rollers, but local excessive surface pressure is unavoidable.
 また、特許文献2のものでは、ワッシャの摺動面圧を減少させているが、摺動による損失をなくすことはできず、また、軸受部分に潤滑油が供給され難い。 Further, in Patent Document 2, although the sliding surface pressure of the washer is reduced, loss due to sliding cannot be eliminated, and lubricating oil is difficult to be supplied to the bearing portion.
 このような潤滑不良の問題は、油圧ポンプを用いれば各部に潤滑油を良好に供給できるので一応解決することができる。しかし、油圧ポンプを設けると、その分だけ装置が大型化して重量が増し、また、油圧ポンプを動かすための消費電力が必要となるので、特に、1充電当たりの走行距離を少しでも延ばしたい電気自動車にとっては好ましくない。 Such a problem of poor lubrication can be solved temporarily by using a hydraulic pump because the lubricating oil can be satisfactorily supplied to each part. However, if a hydraulic pump is provided, the device will be increased in size and weight will be increased, and power consumption will be required to operate the hydraulic pump. In particular, it is necessary to increase the travel distance per charge as much as possible. It is not preferable for automobiles.
 そこで、この発明は、車両の自動変速機や、車両用減速差動装置に用いられる遊星歯車装置のプラネタリー軸受部分の潤滑を、油圧ポンプを使用することなく良好にして、プラネタリー軸受部分の寿命を延長させ、しかもピニオン部分の摩擦損失を小さくすることを課題とするものである。 Therefore, the present invention improves the lubrication of the planetary bearing part of the planetary gear unit of the planetary gear unit used in the automatic transmission of the vehicle and the reduction gear differential for the vehicle without using a hydraulic pump. The problem is to extend the life and reduce the friction loss of the pinion part.
 前記の課題を解決するために、この発明は、キャリヤに取り付けられるピニオンシャフトの周囲に、玉軸受を配置して、玉軸受によってピニオンギヤを回転自在に支持し、玉軸受とピニオンギヤと間に相互の位置ズレ防止手段を設けたものである。 In order to solve the above-described problems, the present invention provides a ball bearing disposed around a pinion shaft attached to a carrier, and the pinion gear is rotatably supported by the ball bearing. Position misalignment prevention means is provided.
 上記玉軸受の内輪とキャリヤとの間には、間座を配置することができる。 A spacer can be arranged between the inner ring of the ball bearing and the carrier.
 上記間座の外径寸法は、上記玉軸受の内輪の外径寸法よりも小さくすることが好ましい。 The outer diameter of the spacer is preferably smaller than the outer diameter of the inner ring of the ball bearing.
 なお、内輪をピニオンシャフトに圧入することにより固定し、内輪との間に一定のスキマをおいてキャリヤを取り付ければ、間座を設けたり、内輪の幅を広げたりしなくてもピニオンギヤ端面をキャリヤに接触しないようにすることは一応可能である。しかし、組み付け時及び使用時においてスキマ管理が必要となる不便がある。これに対し、間座を設けたり、内輪の幅を広げたりする手段によればそのような不便が解消される。 If the inner ring is fixed by press-fitting it into the pinion shaft, and the carrier is attached with a certain clearance between the inner ring and the pinion gear end face, the carrier can be attached without providing a spacer or increasing the width of the inner ring. It is possible to prevent it from touching. However, there is an inconvenience that requires clearance management at the time of assembly and use. On the other hand, such inconvenience is eliminated by means for providing a spacer or expanding the width of the inner ring.
 上記ピニオンギヤは、はすば歯車を使用することができ、平歯車であってもよい。 As the pinion gear, a helical gear can be used, and a spur gear may be used.
 上記位置ズレ防止手段としては、第一に玉軸受とピニオンギヤの回転方向への位置ズレを防止する回り止め手段、第二に玉軸受とピニオンギヤの軸方向への位置ズレを防止する抜け止め手段、第三に玉軸受とピニオンギヤの回転方向と軸方向の両方への位置ズレを防止する抜け止め手段と回り止め手段を兼用した手段がある。 As the position deviation prevention means, firstly, a rotation prevention means for preventing position deviation in the rotational direction of the ball bearing and the pinion gear, and secondly, a retaining means for preventing position deviation in the axial direction of the ball bearing and the pinion gear, Thirdly, there is a means that serves as both a retaining means and a rotation preventing means for preventing the positional deviation in both the rotational direction and the axial direction of the ball bearing and the pinion gear.
 この発明の遊星歯車装置は、車両用自動変速機、電気自動車用減速差動装置に好適に使用することができる。 The planetary gear device of the present invention can be suitably used for an automatic transmission for a vehicle and a reduction differential for an electric vehicle.
 この発明の遊星歯車装置の潤滑機構としては、油浴潤滑を使用することができる。 Oil bath lubrication can be used as the lubrication mechanism of the planetary gear device of the present invention.
 以上のように、この発明によれば、遊星歯車装置のプラネタリー軸受として玉軸受を使用することにより、モーメント荷重が負荷されてもニードル軸受のようにエッジ応力が発生することはない。 As described above, according to the present invention, by using a ball bearing as a planetary bearing of a planetary gear device, edge stress is not generated unlike a needle bearing even when a moment load is applied.
 また、潤滑油が玉軸受の幅面から供給できるため、ニードル軸受のようにピニオンシャフトから供給する必要はない。また、ピニオンシャフトからニードル軸受へと繋がる潤滑用の穴を設ける必要がないので安価に製造できる。 Also, since the lubricating oil can be supplied from the width surface of the ball bearing, it is not necessary to supply it from the pinion shaft like a needle bearing. In addition, since it is not necessary to provide a hole for lubrication from the pinion shaft to the needle bearing, it can be manufactured at a low cost.
 玉軸受の内輪幅面に間座を配置することにより、ピニオンギヤがモーメント荷重で倒れたり、軸方向に移動してもピニオンギヤはキャリヤに接触せず、すべり接触によるトルク損失がない。また、玉軸受の内輪は自転しないため、幅面に配置される間座も自転する必要がなく、キャリヤと接触しているものの、滑り接触によるトルク損失がない。 ¡By placing a spacer on the inner ring width surface of the ball bearing, the pinion gear does not contact the carrier even if the pinion gear collapses due to moment load or moves in the axial direction, and there is no torque loss due to sliding contact. Further, since the inner ring of the ball bearing does not rotate, the spacer disposed on the width surface does not need to rotate, and although it is in contact with the carrier, there is no torque loss due to sliding contact.
 間座の外径寸法を、玉軸受の内輪外径よりも小さくすることにより、潤滑油が玉軸受の幅面から供給されようとする場合に、スムーズに潤滑油が転動体である玉へ供給される。 By making the outer diameter of the spacer smaller than the outer diameter of the inner ring of the ball bearing, when the lubricant is to be supplied from the width surface of the ball bearing, the lubricant is smoothly supplied to the balls that are rolling elements. The
 間座を設ける代わりに、玉軸受の内輪の幅をピニオンギヤよりも大きくすることにより、ピニオンギヤがモーメント荷重で倒れたり、軸方向に移動してもピニオンギヤはキャリヤに接触せず、すべり接触によるトルク損失がない。 Instead of providing a spacer, the width of the inner ring of the ball bearing is made larger than that of the pinion gear, so that even if the pinion gear collapses due to moment load or moves in the axial direction, the pinion gear does not contact the carrier, and torque loss due to sliding contact There is no.
 玉軸受をピニオンギヤの内径面に単に圧入するだけではクリープによって回転方向及び軸方向への位置ズレが発生する懸念があるが、玉軸受とピニオンギヤとの間に位置ズレ防止手段を設けることにより、これらの位置ズレの発生を確実に防止することができる。 If the ball bearing is simply press-fitted into the inner surface of the pinion gear, there is a concern that creep will cause displacement in the rotational direction and axial direction. However, by providing a positional deviation prevention means between the ball bearing and the pinion gear, It is possible to reliably prevent the occurrence of positional deviation.
 特に、位置ズレ防止手段として、玉軸受の外輪とピニオンギヤとを一つの環状部品に設けた構成を採った場合は、部品や組立工数の増加を来さない利点がある。 In particular, when a configuration in which the outer ring of the ball bearing and the pinion gear are provided in one annular part as a positional deviation prevention means, there is an advantage that the number of parts and assembly man-hours will not increase.
遊星歯車装置の第1の実施形態の一部断面図である。It is a partial cross section figure of 1st Embodiment of a planetary gear apparatus. 同じく第2の実施形態の一部断面図である。It is a partial sectional view of a 2nd embodiment similarly. 同じく第3の実施形態の例1の一部断面図である。Similarly, it is a partial cross-sectional view of Example 1 of the third embodiment. 第3の実施形態の例2の一部断面図である。It is a partial sectional view of Example 2 of the third embodiment. 同じく例3の一部断面図である。Similarly, it is a partial sectional view of Example 3. FIG. 同じく例4の一部断面図である。Similarly, it is a partial sectional view of Example 4. FIG. 遊星歯車装置を使用した電気自動車用減速差動装置の実施形態の断面図である。It is sectional drawing of embodiment of the deceleration differential device for electric vehicles which uses a planetary gear apparatus. 図7の一部拡大断面図である。It is a partially expanded sectional view of FIG. 図8Aの一部拡大断面図である。It is a partially expanded sectional view of FIG. 8A. 図7のX1-X1線の断面図である。FIG. 8 is a cross-sectional view taken along line X1-X1 of FIG. 減速機のサンギヤの正面図である。It is a front view of the sun gear of a reduction gear. 図10AのX2-X2線の断面図である。FIG. 10B is a sectional view taken along line X2-X2 in FIG. 10A. 減速機のキャリヤの正面図である。It is a front view of the carrier of a reduction gear. 図11AのX3-X3線の断面図である。FIG. 11B is a cross-sectional view taken along line X3-X3 in FIG. 11A. 図7のX4-X4線の断面図である。It is sectional drawing of the X4-X4 line | wire of FIG. 差動装置のサンギヤの正面図である。It is a front view of the sun gear of a differential. 図13AのX5-X5線の断面図である。It is sectional drawing of the X5-X5 line | wire of FIG. 13A. 差動装置のキャリヤの正面図である。It is a front view of the carrier of a differential gear. 図14AのX6-X6線の断面図である。FIG. 14B is a cross-sectional view taken along line X6-X6 of FIG. 14A. 差動装置のキャリヤ補助部材の正面図である。It is a front view of the carrier auxiliary member of a differential. 図15AのX7-X7線の断面図である。FIG. 15B is a cross-sectional view taken along line X7-X7 in FIG. 15A. 遊星歯車装置を使用した電気自動車用減速差動装置の実施形態の要部の分解断面図である。It is an exploded sectional view of an important section of an embodiment of a reduction differential for electric vehicles which uses a planetary gear device. ギヤの一部を示す拡大斜視図である。It is an expansion perspective view which shows a part of gear. 従来の遊星歯車装置の断面図である。It is sectional drawing of the conventional planetary gear apparatus.
 以下、この発明の実施形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、この発明に係る遊星歯車装置の第1の実施形態におけるピニオンシャフト周辺を示す断面図である。 FIG. 1 is a cross-sectional view showing the periphery of a pinion shaft in a first embodiment of a planetary gear device according to the present invention.
 図1の遊星歯車装置は、キャリヤ32に一端部が取り付けられたピニオンシャフト31の周囲に深溝玉軸受33を介して、はすば歯車等によって構成されるピニオンギヤ29を回転自在に支持している。深溝玉軸受33に限らず、アンギュラ玉軸受や4点接触玉軸受等の玉軸受、すなわち転動体が玉である軸受を用いることができる。 The planetary gear device of FIG. 1 rotatably supports a pinion gear 29 composed of a helical gear or the like via a deep groove ball bearing 33 around a pinion shaft 31 having one end attached to a carrier 32. . Not only the deep groove ball bearing 33 but also a ball bearing such as an angular ball bearing or a four-point contact ball bearing, that is, a bearing whose rolling element is a ball can be used.
 キャリヤ32とピニオンシャフト31を固定するために、キャリヤ32の外径面から径方向にねじ込んだビス44をピニオンシャフト31に押し当てている。 In order to fix the carrier 32 and the pinion shaft 31, a screw 44 screwed in the radial direction from the outer diameter surface of the carrier 32 is pressed against the pinion shaft 31.
 この他の固定手段として、ピンをピニオンシャフトに押し当てそのピンの頭を止めネジによって固定する方法、ピンをピニオンシャフトに径方向に挿入し、そのピンの頭を止めネジによって固定する方法、ピニオンシャフト31の端面をかしめて固定する方法、ピニオンシャフト31をキャリヤ32に圧入する方法等がある。 As other fixing means, a method of pressing the pin against the pinion shaft and fixing the head of the pin with a set screw, a method of inserting the pin radially into the pinion shaft and fixing the head of the pin with a set screw, a pinion There are a method of caulking and fixing the end surface of the shaft 31, a method of press-fitting the pinion shaft 31 into the carrier 32, and the like.
 なお、ピニオンシャフト31の他端部は、減速出力を後段の装置(後述の差動装置13)に伝達する部材(後述のリングギヤ49の円板部49a)に一体化される。 The other end of the pinion shaft 31 is integrated with a member (a disk portion 49a of a ring gear 49 described later) that transmits a deceleration output to a subsequent device (a differential device 13 described later).
 深溝玉軸受33は、内輪33aと、外輪33bと、内輪33aと外輪33bの間に介装される玉33cとからなる。 The deep groove ball bearing 33 includes an inner ring 33a, an outer ring 33b, and a ball 33c interposed between the inner ring 33a and the outer ring 33b.
 内輪33aとキャリヤ32との間には、間座20が配置され、ピニオンギヤ29の幅面とキャリヤ32とが接触しないようにし、ピニオンギヤ29の幅面とキャリヤ32との滑り接触による損失をなくしている。内輪33aとリングギヤ49の円板部49aとの間にも同様の間座20が配置される。間座20の外径寸法は、内輪33aの外径寸法よりも小さく設定される。 A spacer 20 is disposed between the inner ring 33a and the carrier 32 so that the width surface of the pinion gear 29 and the carrier 32 do not come into contact with each other, and loss due to sliding contact between the width surface of the pinion gear 29 and the carrier 32 is eliminated. A similar spacer 20 is also disposed between the inner ring 33 a and the disc portion 49 a of the ring gear 49. The outer diameter dimension of the spacer 20 is set smaller than the outer diameter dimension of the inner ring 33a.
 図1に示したように、キャリヤ32の回転中心を基準とした外径Rは、望ましくはピニオンギヤ29の公転時における内輪33aの外径の軌跡の最大径R1と同等かそれより小さく設定される。前記の最大径R1より大きい場合でも、玉33cのPCDの軌跡の最大径R2を越えない大きさに設定される。 As shown in FIG. 1, the outer diameter R based on the rotation center of the carrier 32 is preferably set to be equal to or smaller than the maximum diameter R1 of the locus of the outer diameter of the inner ring 33a when the pinion gear 29 revolves. . Even when it is larger than the maximum diameter R1, the size is set so as not to exceed the maximum diameter R2 of the trajectory of the PCD of the ball 33c.
 前記のように、間座20が内輪33aの外径寸法より小さく、またキャリヤ32の外径Rが最大径R1と同等又はそれより小さく設定されることにより、油浴潤滑による潤滑油(図1の白抜き矢印a参照)が軸受の幅面から供給された場合の障害となることが避けられる。また、外径Rが最大径R1より大きい場合でも、玉33cのPCDの軌跡の最大径R2を越えない大きさに設定することが望ましい。 As described above, the spacer 20 is smaller than the outer diameter of the inner ring 33a, and the outer diameter R of the carrier 32 is set equal to or smaller than the maximum diameter R1, so that the lubricating oil by oil bath lubrication (FIG. 1) is obtained. It is possible to avoid an obstacle when the white arrow a) is supplied from the width surface of the bearing. Even when the outer diameter R is larger than the maximum diameter R1, it is desirable to set the size so as not to exceed the maximum diameter R2 of the trajectory of the PCD of the ball 33c.
 前記の構成によって、従来の針状ころ軸受を使用した遊星歯車装置のように、ピニオンシャフト31に、ニードル軸受へと繋がる潤滑用の穴を設ける必要がなく、潤滑機構として、油浴潤滑を使用することができる。 With the above configuration, there is no need to provide a hole for lubrication connected to the needle bearing in the pinion shaft 31 as in a planetary gear device using a conventional needle roller bearing, and oil bath lubrication is used as a lubrication mechanism. can do.
 この第1の実施形態、次に述べる第2の実施形態及び第3の実施形態における遊星歯車装置の一例として、後述の電気自動車用減速差動装置(図7から図18参照)における遊星歯車減速機12を挙げることができる。 As an example of the planetary gear device in the first embodiment, the second embodiment and the third embodiment described below, the planetary gear reduction in the later-described electric vehicle reduction differential (see FIGS. 7 to 18). Machine 12 can be mentioned.
 図2は、この発明の第2の実施形態である。この第2の実施形態では、内輪33aの幅をピニオンギヤ29の幅よりも大きくして、ピニオンギヤ29が傾いてもキャリヤ32に接触しないようにしている。また、第1の実施形態において使用された間座20は不要となるので、これを省略している。 FIG. 2 shows a second embodiment of the present invention. In the second embodiment, the width of the inner ring 33a is made larger than the width of the pinion gear 29 so that the carrier 32 is not contacted even if the pinion gear 29 is tilted. Further, since the spacer 20 used in the first embodiment is not necessary, it is omitted.
 図3から図6は、この発明の第3の実施形態の例1から例4を示している。これらはいずれも、前述の図1(第1の実施形態)の構成に加えて、深溝玉軸受33の外輪33bとピニオンギヤ29の間の位置ズレ防止手段88を追加したものである。同様の位置ズレ防止手段を図2(第2の実施形態)に追加することもできる。 3 to 6 show Examples 1 to 4 of the third embodiment of the present invention. In any of these, in addition to the configuration of FIG. 1 (first embodiment) described above, a misalignment prevention means 88 between the outer ring 33b of the deep groove ball bearing 33 and the pinion gear 29 is added. Similar misalignment prevention means can be added to FIG. 2 (second embodiment).
 前記第1及び第2実施形態の場合は、深溝玉軸受33の外輪33bはピニオンギヤ29の内径面に圧入されており、これによって、外輪33bとピニオンギヤ29は一体に回転するようになっていた。 In the case of the first and second embodiments, the outer ring 33b of the deep groove ball bearing 33 is press-fitted into the inner surface of the pinion gear 29, so that the outer ring 33b and the pinion gear 29 rotate together.
 しかし、両者の間の締め代が不足する場合は、ピニオンギヤ29が負荷を受けて回転したときに外輪33bとの間に生じるクリープ等によって回転方向や軸方向への位置ズレを生じるおそれがある。第3の実施形態は、このような位置ズレを防止するために、外輪33bとピニオンギヤ29の間に位置ズレ防止手段88を備えている。 However, when the tightening allowance between the two is insufficient, there is a possibility that positional deviation in the rotational direction or the axial direction may occur due to creep or the like generated between the pinion gear 29 and the outer ring 33b when the pinion gear 29 rotates under load. In the third embodiment, in order to prevent such a positional deviation, a positional deviation prevention means 88 is provided between the outer ring 33 b and the pinion gear 29.
 図3(第3の実施形態の例1)の位置ズレ防止手段88は、深溝玉軸受33とピニオンギヤ29の回転方向の位置ズレを防止するための回り止め手段と、軸方向の位置ズレを防止する抜け止め手段により構成される。抜け止め手段は省略される場合がある。 3 (Example 1 of the third embodiment), the misalignment prevention means 88 prevents rotation of the deep groove ball bearing 33 and the pinion gear 29 in the rotational direction, and prevents misalignment in the axial direction. It is comprised by the retaining means to do. The retaining means may be omitted.
 上記の回り止め手段の構成は、外輪33bの外径面にピン89を立てる一方、ピニオンギヤ29の端面に係合凹部90を設け、ピニオンギヤ29を軸方向に嵌入し係合凹部90をピン89に係合させる構成である。 In the configuration of the above-described rotation preventing means, the pin 89 is raised on the outer diameter surface of the outer ring 33 b, while the engagement concave portion 90 is provided on the end surface of the pinion gear 29, and the pinion gear 29 is fitted in the axial direction. It is the structure to engage.
 抜け止め手段の構成は、外輪33bの外径面に設けた周溝91に弾性あるスプリットリングによって形成された止め輪92を嵌める一方、ピニオンギヤ29の内周面に係合溝93を設けた構成である。止め輪92を縮径させつつピニオンギヤ29を外輪33bの外径面に軸方向から嵌合させ、さらに進めて係合凹部90をピン89に係合させると、止め輪92の復元作用によりその一部が係合溝93に係合される。 The configuration of the retaining means is a configuration in which a retaining ring 92 formed by an elastic split ring is fitted into a circumferential groove 91 provided on the outer diameter surface of the outer ring 33b, while an engaging groove 93 is provided on the inner circumferential surface of the pinion gear 29. It is. When the pinion gear 29 is fitted to the outer diameter surface of the outer ring 33b from the axial direction while the retaining ring 92 is reduced in diameter, and further advanced to engage the engaging recess 90 with the pin 89, the retaining ring 92 is restored by its restoring action. The part is engaged with the engaging groove 93.
 図4(同例2)の位置ズレ防止手段88は、ピニオンギヤ29を径方向に貫通し外輪33bに達するピン穴94を設け、その外輪33bのピン穴94の部分にピン95を圧入している。ピン95の先端はピニオンギヤ29のピン穴94の部分に残置される。この場合は、回り止め機能と抜け止め機能が同時に果たされる。 4 (same example 2) is provided with a pin hole 94 that penetrates the pinion gear 29 in the radial direction and reaches the outer ring 33b, and presses the pin 95 into the pin hole 94 portion of the outer ring 33b. . The tip of the pin 95 is left in the pin hole 94 portion of the pinion gear 29. In this case, the anti-rotation function and the retaining function are performed at the same time.
 図5(同例3)の位置ズレ防止手段88は、図4の場合において、ピニオンギヤ29の端面からピン95の直上に達する止めネジ96を軸方向にねじ込むことにより、ピン95の抜け止めを図っている。ピン95の抜け出しが防止されるので、ピン95による一層確実な回り止めが図られる。この場合も、回り止め機能と抜け止め機能が同時に果たされる。この場合はピン95を圧入しなくても良い。 In the case of FIG. 4, the misalignment prevention means 88 in FIG. 5 (same example 3) prevents the pin 95 from coming off by screwing a set screw 96 reaching the pin 95 from the end face of the pinion gear 29 in the axial direction. ing. Since the pin 95 is prevented from slipping out, the pin 95 can be more reliably prevented from rotating. Also in this case, the anti-rotation function and the retaining function are performed at the same time. In this case, the pin 95 may not be press-fitted.
 図6(同例4)の位置ズレ防止手段88は、図3から図5の場合がいずれもピン89等の部品が必要となり、またこれらを組み込むための組立工数が増加することを考慮して、この場合は、外輪33bとピニオンギヤ29とを一つの環状部品97により構成している。その環状部品97の内径面に転走溝98を設けることによって内径部分を外輪33bとし、外径面に歯形99を設けることによって外径部分をピニオンギヤ29としたものである。外輪33bとピニオンギヤ29の嵌合部分が存在しないので、クリープは発生することがない。この場合も、回り止め機能と抜け止め機能が同時に果たされる。 The misalignment prevention means 88 of FIG. 6 (same example 4) takes into account that parts such as the pin 89 are necessary in each of the cases of FIGS. 3 to 5 and that the number of assembly steps for incorporating them increases. In this case, the outer ring 33 b and the pinion gear 29 are constituted by one annular part 97. By providing the rolling groove 98 on the inner diameter surface of the annular part 97, the inner diameter portion becomes the outer ring 33b, and by providing the tooth profile 99 on the outer diameter surface, the outer diameter portion becomes the pinion gear 29. Since there is no fitting portion between the outer ring 33b and the pinion gear 29, creep does not occur. Also in this case, the anti-rotation function and the retaining function are performed at the same time.
 上記図4(第3の実施形態の例2)から図6(同例4)の位置ズレ防止手段88は、いずれも回り止め機能と抜け止め機能が発揮されるので、それぞれが回り止め手段であり、また抜け止め手段であるともいうことができる。また、両方の機能を同時に発揮するので、回り止め手段が抜け止め手段を兼ねた構成(逆に、抜け止め手段が回り止め手段を兼ねた構成)であるということもできる。 4 (example 2 of the third embodiment) to FIG. 6 (same example 4) as described above, each of the misalignment prevention means 88 exhibits a detent function and a retaining function. It can also be said that it is a retaining means. In addition, since both functions are exhibited at the same time, it can be said that the rotation preventing means also serves as the retaining means (conversely, the retaining means also serves as the retaining means).
 この発明の遊星歯車装置は、車両用自動変速機、車両用減速差動装置に好適に使用することができる。 The planetary gear device of the present invention can be suitably used for an automatic transmission for a vehicle and a deceleration differential device for a vehicle.
 以下、この発明の遊星歯車装置を使用した電気自動車用減速差動装置について説明する。 Hereinafter, a reduction gear differential for an electric vehicle using the planetary gear device of the present invention will be described.
 電気自動車用減速差動装置は、図7に示したように、電動モータ11、その電動モータ11と同軸状態に軸方向に配置された遊星歯車減速機12、その減速機12と同軸状態に軸方向に配置された遊星歯車差動装置13及び前記減速機12と差動装置13に共通の油浴潤滑手段14とによって構成される。 As shown in FIG. 7, the electric vehicle deceleration differential device includes an electric motor 11, a planetary gear speed reducer 12 arranged in the axial direction coaxially with the electric motor 11, and a shaft coaxial with the speed reducer 12. The planetary gear differential 13 arranged in the direction, the speed reducer 12 and the oil bath lubrication means 14 common to the differential 13 are configured.
 これらの装置を収納したケーシング15は、電動モータ11を収納したモータケーシング15aと、減速機12及び差動装置13を収納した減速差動ケーシング15b並びにケーシング蓋15cを組み合わせたものである。モータケーシング15aの一端部が開放され、その開放端が減速差動ケーシング15bによって閉塞されている。減速差動ケーシング15bも一端が開放され、その開放端がケーシング蓋15cによって閉塞されている。 The casing 15 in which these devices are stored is a combination of a motor casing 15a in which the electric motor 11 is stored, a reduction differential casing 15b in which the reduction gear 12 and the differential device 13 are stored, and a casing lid 15c. One end portion of the motor casing 15a is opened, and the open end is closed by the deceleration differential casing 15b. One end of the deceleration differential casing 15b is also opened, and the open end is closed by a casing lid 15c.
 電動モータ11は前記モータケーシング15aの内周面に固定されたステータ16と、その内径側においてモータ出力シャフト17にコア18と一体に取り付けられたロータ19によって構成される。 The electric motor 11 includes a stator 16 fixed to the inner peripheral surface of the motor casing 15a, and a rotor 19 integrally attached to a motor output shaft 17 and a core 18 on the inner diameter side thereof.
 前記モータ出力シャフト17は中空であり、その外端部(図7の左端部)はモータケーシング15aとの間に介在された出力シャフト支持軸受21によって支持され、内端部(同右端部)は減速機12のセンターに挿入される。前記出力シャフト支持軸受21はシール付き玉軸受によって構成される。前記モータ出力シャフト17のうち減速機12に挿入された部分は、減速機入力シャフト22となっている。 The motor output shaft 17 is hollow, and its outer end (left end in FIG. 7) is supported by an output shaft support bearing 21 interposed between the motor casing 15a and the inner end (same right end) is It is inserted into the center of the speed reducer 12. The output shaft support bearing 21 is a ball bearing with a seal. A portion of the motor output shaft 17 inserted into the speed reducer 12 is a speed reducer input shaft 22.
 前記減速機入力シャフト22の部分が減速差動ケーシング15bとの間に介在された入力シャフト支持軸受23によって支持される。この入力シャフト支持軸受23も玉軸受によって構成される。 The portion of the speed reducer input shaft 22 is supported by an input shaft support bearing 23 interposed between the speed reducer differential casing 15b. The input shaft support bearing 23 is also constituted by a ball bearing.
 減速機12は、図9に示したように、前記減速機入力シャフト22の先端部外周面に一体に設けられたサンギヤ27、その外径側において前記減速差動ケーシング15bの内径面に同軸状態に固定されたリングギヤ28、前記サンギヤ27とリングギヤ28の間において周方向の3個所に等間隔をおいて介在されたピニオンギヤ29及びキャリヤ32(図11参照)により構成される。 As shown in FIG. 9, the speed reducer 12 has a sun gear 27 integrally provided on the outer peripheral surface of the tip of the speed reducer input shaft 22, and is coaxial with the inner diameter surface of the speed reduction differential casing 15b on the outer diameter side thereof. The ring gear 28 is fixed to the ring gear 28, and the pinion gear 29 and the carrier 32 (see FIG. 11) are provided at three intervals in the circumferential direction between the sun gear 27 and the ring gear 28.
 ピニオンギヤ29はサンギヤ27とリングギヤ28に噛み合う。また、前記ピニオンギヤ29は、前述した第一の実施形態のピニオンシャフト31に深溝玉軸受33(図9参照)を介して支持され、そのピニオンシャフト31は一端部がキャリヤ32に取り付けられる。 The pinion gear 29 meshes with the sun gear 27 and the ring gear 28. The pinion gear 29 is supported on the pinion shaft 31 of the first embodiment described above via a deep groove ball bearing 33 (see FIG. 9), and one end of the pinion shaft 31 is attached to the carrier 32.
 前記深溝玉軸受33は、前述のように、内輪33aと、外輪33bと、内輪33aと外輪33bの間に介装された玉33cと保持器とからなる。保持器の図示は省略する As described above, the deep groove ball bearing 33 includes an inner ring 33a, an outer ring 33b, a ball 33c interposed between the inner ring 33a and the outer ring 33b, and a cage. Illustration of cage is omitted
 前記リングギヤ28は、減速差動ケーシング15bの内面に形成された段差部34(図8A参照)にその側面を当てることにより位置決めされ固定される。 The ring gear 28 is positioned and fixed by applying a side surface thereof to a step portion 34 (see FIG. 8A) formed on the inner surface of the reduction differential casing 15b.
 前記ピニオンギヤ29は、図9及び図10に示したように、深溝玉軸受33を介してピニオンシャフト31を挿入するシャフト穴37が設けられる。 9 and 10, the pinion gear 29 is provided with a shaft hole 37 into which the pinion shaft 31 is inserted via the deep groove ball bearing 33.
 前記キャリヤ32は、モータケーシング15aの開放端に面した減速差動ケーシング15bの閉塞面と、ピニオンギヤ29との間において、入力シャフト22の回りに径方向のすき間h(図8A参照)をおいて嵌合される。キャリヤ32は、図11に示したように、一定の中心穴39を有する環状板によって形成され、その回転半径は、減速差動ケーシング15bの内底面に溜められた潤滑油の油面L(図7参照)にもぐるように設定される。 The carrier 32 has a radial clearance h (see FIG. 8A) around the input shaft 22 between the closed surface of the reduction differential casing 15b facing the open end of the motor casing 15a and the pinion gear 29. Mated. As shown in FIG. 11, the carrier 32 is formed by an annular plate having a constant center hole 39, and the radius of rotation thereof is the oil level L (see FIG. 5) of the lubricating oil stored on the inner bottom surface of the speed-reducing differential casing 15b. 7)).
 前記キャリヤ32の中心穴39と外周縁との間において、前記ピニオンシャフト31が挿通される3個所のシャフト穴41が同じPCD上に等間隔で設けられる。各シャフト穴41の径方向の外周縁に径方向と直角の切欠き面42が形成され、その切欠き面42からシャフト穴41に達するネジ穴43が径方向に設けられる。シャフト穴41にピニオンシャフト31が挿通され、そのネジ穴43にビス44がねじ込まれ、キャリヤ32とピニオンシャフト31とが固定される(図1から図6、図8A参照)。その他の固定手段があることは前述のとおりである。 Between the center hole 39 and the outer peripheral edge of the carrier 32, three shaft holes 41 through which the pinion shaft 31 is inserted are provided at equal intervals on the same PCD. A notch surface 42 perpendicular to the radial direction is formed on the outer peripheral edge of each shaft hole 41 in the radial direction, and a screw hole 43 reaching the shaft hole 41 from the notch surface 42 is provided in the radial direction. The pinion shaft 31 is inserted into the shaft hole 41, and a screw 44 is screwed into the screw hole 43 to fix the carrier 32 and the pinion shaft 31 (see FIGS. 1 to 6 and 8A). As described above, there are other fixing means.
 前記シャフト穴41の相互間の前記PCD上に、3個所の潤滑穴45が設けられる。各潤滑穴45は周方向に湾曲した長穴によって形成される。さらに、各潤滑穴45の外径側に対向した3個所において、外周縁から軸方向外向き(差動装置13の方向)に凸部46がそれぞれ設けられる。この凸部46は、後述のように、先端部が差動装置13のリングギヤ49に結合され、回転時に潤滑油を掻き上げる作用を行うものであり、前述の油浴潤滑手段14の一部を構成する。 Three lubrication holes 45 are provided on the PCD between the shaft holes 41. Each lubricating hole 45 is formed by a long hole curved in the circumferential direction. Further, at three locations facing the outer diameter side of each lubrication hole 45, convex portions 46 are respectively provided outward from the outer peripheral edge in the axial direction (in the direction of the differential device 13). As will be described later, the convex portion 46 is coupled to the ring gear 49 of the differential device 13 and has a function of scooping up the lubricating oil during rotation. Constitute.
 また、前記減速差動ケーシング15bの閉塞面(モータケーシング15aの開放端を閉塞する径方向の面)に対向したキャリヤ32の面に、前記中心穴39の周縁に沿った一定幅の段差部40(図8A、図11参照)が設けられ、その段差部40に針状ころを用いたスラスト軸受47が取り付けられる。前記スラスト軸受47を前記の減速差動ケーシング15bの閉塞面に当接させることにより、キャリヤ32に作用するスラスト力を受け、そのキャリヤ32を円滑に回転させるようにしている。 Further, a stepped portion 40 having a constant width along the periphery of the center hole 39 is formed on the surface of the carrier 32 facing the closing surface of the deceleration differential casing 15b (the radial surface closing the open end of the motor casing 15a). (See FIGS. 8A and 11), and a thrust bearing 47 using needle rollers is attached to the stepped portion 40. The thrust bearing 47 is brought into contact with the closing surface of the deceleration differential casing 15b, so that the thrust force acting on the carrier 32 is received and the carrier 32 is smoothly rotated.
 なお、ピニオンギヤ29の軸方向の一方の端面とキャリヤ32との間、及び同じく他方の端面とリングギヤ49の円板部49aとの間において、それぞれピニオンシャフト31の回りに間座20が介在され、これによって前記ピニオンギヤ29の回転を円滑に行うようにしている。 A spacer 20 is interposed around the pinion shaft 31 between one end face in the axial direction of the pinion gear 29 and the carrier 32 and between the other end face and the disk portion 49a of the ring gear 49, respectively. Thereby, the pinion gear 29 is smoothly rotated.
 前記入力シャフト支持軸受23はスラスト軸受47よりも電動モータ11側に寄った位置に設けられているので、キャリヤ32の中心穴39やスラスト軸受47によって当該軸受23への潤滑油の供給を妨げることが無いよう配慮しなければならない。 Since the input shaft support bearing 23 is provided at a position closer to the electric motor 11 than the thrust bearing 47, the center hole 39 of the carrier 32 and the thrust bearing 47 prevent the supply of lubricating oil to the bearing 23. You must be careful not to have any.
 このため、この実施形態においては、キャリヤ32の内径及びスラスト軸受47の内径を、前記入力シャフト支持軸受23を構成する内輪23bの外径より大に設定する必要がある。この条件を満たすべく、図示の場合(図8A参照)は、キャリヤ32の内径及びスラスト軸受47の内径を当該軸受23の外輪23aの内径と同一又はこれより大きく設定することにより、軸受23に対する給油すき間hを確保するようにしている。 Therefore, in this embodiment, it is necessary to set the inner diameter of the carrier 32 and the inner diameter of the thrust bearing 47 to be larger than the outer diameter of the inner ring 23 b constituting the input shaft support bearing 23. In order to satisfy this condition, in the illustrated case (see FIG. 8A), the inner diameter of the carrier 32 and the inner diameter of the thrust bearing 47 are set to be equal to or larger than the inner diameter of the outer ring 23a of the bearing 23. The clearance h is secured.
 次に、差動装置13について説明する。差動装置13は、前記の減速差動ケーシング15bの内部において、前記の減速機12と同軸状態に設けられる。その構成部材は、リングギヤ49、その内径側において同軸状態に設けられたサンギヤ51、前記リングギヤ49とサンギヤ51の間に介在され相互に噛み合ったダブルピニオン式のピニオンギヤ52a、52b、これらのピニオンギヤ52a、52bのピニオンシャフト53a、53bを支持したキャリヤ54とにより構成される。 Next, the differential device 13 will be described. The differential device 13 is provided coaxially with the speed reducer 12 inside the speed reduction differential casing 15b. The constituent members include a ring gear 49, a sun gear 51 coaxially provided on the inner diameter side thereof, double pinion type pinion gears 52a and 52b interposed between the ring gear 49 and the sun gear 51, and these pinion gears 52a, The carrier 54 supports the pinion shafts 53a and 53b of the 52b.
 図の場合、ピニオンギヤ52a、52bは全部で8個使用しているが、6個でもよい。減速機11のピニオンギヤ29も個数の制限はない。 In the figure, eight pinion gears 52a and 52b are used in total, but six may be used. The number of pinion gears 29 of the reduction gear 11 is not limited.
 なお、電気自動車用減速差動装置において、ダブルピニオン式を採用することは従来公知である(特開平7-323741号公報参照)。 Note that it is conventionally known that a double pinion type is adopted in a deceleration differential for an electric vehicle (see Japanese Patent Application Laid-Open No. 7-323741).
 前記サンギヤ51のシャフト穴55(図7、図8、図13参照)に第一出力シャフト35の内端部が貫通され、セレーション結合部30によってサンギヤ51と結合される。第一出力シャフト35の外端部は、減速機入力シャフト22及びこれと一体のモータ出力シャフト17に貫通され、玉軸受でなる外端部支持軸受57(図7参照)を介してモータケーシング15aによって支持される。第一出力シャフト35の外端部は、モータケーシング15aから外部(図7の左方)に突き出している。 The inner end of the first output shaft 35 passes through the shaft hole 55 (see FIGS. 7, 8, and 13) of the sun gear 51 and is coupled to the sun gear 51 by the serration coupling portion 30. The outer end portion of the first output shaft 35 is penetrated by the speed reducer input shaft 22 and the motor output shaft 17 integrated therewith, and is connected to the motor casing 15a via an outer end support bearing 57 (see FIG. 7) formed of a ball bearing. Supported by. The outer end portion of the first output shaft 35 protrudes from the motor casing 15a to the outside (left side in FIG. 7).
 第二出力シャフト36は、後述のように、キャリヤ54のセンターに前記第一出力シャフト35と同軸状態に一体に設けられ、第一出力シャフト35と反対向き(図7、図8の右方)に突き出している。 As will be described later, the second output shaft 36 is provided integrally with the first output shaft 35 at the center of the carrier 54 and is opposite to the first output shaft 35 (right side in FIGS. 7 and 8). Sticks out.
 前記のリングギヤ49は、第一出力シャフト35の外周に径方向のすき間をおいて同軸状に設けられた円板部49aと、その円板部49aの外周縁を外向き(軸方向かつ第二出力シャフト36の突き出す向き)に屈曲して周縁部49bが設けられたものである。前記円板部49aに減速機12側のピニオンシャフト31の他端部が挿入支持され、またキャリヤ32の凸部46も円板部49aに差し込まれることによって(図7参照)、減速機12側のキャリヤ32と差動装置13側のリングギヤ49が連結される。これにより減速機12のピニオンギヤ29の公転による減速出力が差動装置13のリングギヤ49に伝達される。 The ring gear 49 has a disc portion 49a provided coaxially on the outer periphery of the first output shaft 35 with a radial gap, and an outer peripheral edge of the disc portion 49a outward (in the axial direction and the second direction). The outer peripheral portion 49b is provided by being bent in the direction in which the output shaft 36 protrudes. The other end portion of the pinion shaft 31 on the speed reducer 12 side is inserted and supported on the disc portion 49a, and the convex portion 46 of the carrier 32 is also inserted into the disc portion 49a (see FIG. 7). The carrier 32 and the ring gear 49 on the differential device 13 side are connected. As a result, the deceleration output resulting from the revolution of the pinion gear 29 of the speed reducer 12 is transmitted to the ring gear 49 of the differential device 13.
 前記のサンギヤ51のシャフト穴55の周りにおいて、周方向に3個所の潤滑穴56が略等間隔を保ち同一PCD上に設けられる(図13参照)。この潤滑穴56も周方向に湾曲した長穴である。 Around the shaft hole 55 of the sun gear 51, three lubricating holes 56 are provided on the same PCD at substantially equal intervals in the circumferential direction (see FIG. 13). The lubricating hole 56 is also a long hole curved in the circumferential direction.
 前記のダブルピニオン式のピニオンギヤ52a、52bは、同一歯数の同一サイズのギヤであり、図12に示したように、相互に噛み合うとともに、一方のピニオンギヤ52aは他方のピニオンギヤ52bより大きいPCDを有しリングギヤ49に噛み合い、PCDの小さい方のピニオンギヤ52bがサンギヤ51と噛み合う。 The double pinion type pinion gears 52a and 52b are gears of the same size with the same number of teeth. As shown in FIG. 12, one pinion gear 52a has a larger PCD than the other pinion gear 52b. The pinion gear 52b with the smaller PCD meshes with the sun gear 51.
 キャリヤ54は、図14に示したように、円板部58の外側面のセンターにセンターボス部59が設けられる。そのセンターボス部59の外端面に前記の第二出力シャフト36が同軸状態に外向きに突き出して設けられ、またセンターボス部59内部に内向きに開放された軸受凹部62が設けられる。 As shown in FIG. 14, the carrier 54 is provided with a center boss portion 59 at the center of the outer surface of the disc portion 58. The second output shaft 36 is provided on the outer end surface of the center boss portion 59 so as to protrude outward in a coaxial state, and a bearing recess 62 opened inward is provided inside the center boss portion 59.
 前記センターボス部59の外径面とケーシング蓋15cとの間に玉軸受でなる第二出力シャフト支持軸受61が介在される(図7、図8参照)。この第二出力シャフト支持軸受61は、キャリヤ54の支持軸受でもある。また、軸受凹部62に前記第一出力シャフト35の内端部が挿入され、その内端部が針状ころ軸受でなる内端部支持軸受63を介して相対回転自在に支持される。 A second output shaft support bearing 61 formed of a ball bearing is interposed between the outer diameter surface of the center boss portion 59 and the casing lid 15c (see FIGS. 7 and 8). The second output shaft support bearing 61 is also a support bearing for the carrier 54. Further, the inner end portion of the first output shaft 35 is inserted into the bearing recess 62, and the inner end portion is supported so as to be relatively rotatable via an inner end portion support bearing 63 formed of a needle roller bearing.
 前記の第二出力シャフト支持軸受61は、図8Bに示したように、ケーシング蓋15cの外部に面した端部にシール部材85が装着され、その反対面にはシール部材が装着されていない、いわゆる片側シール付きの玉軸受である。また、その外輪とケーシング蓋15cとの間にOリング86が介在され、その部分のシールを図っている。これにより軸受がシール機能を兼ねることとなり、幅方向長さを小さくすることができる。 As shown in FIG. 8B, the second output shaft support bearing 61 has a seal member 85 attached to the end facing the outside of the casing lid 15c, and no seal member attached to the opposite surface. This is a ball bearing with a so-called one-side seal. Further, an O-ring 86 is interposed between the outer ring and the casing lid 15c so as to seal the portion. As a result, the bearing also serves as a sealing function, and the length in the width direction can be reduced.
 前記第一出力シャフト35のセレーション結合部30と内端部支持軸受63との間に当該内端部支持軸受63側が小径となる傾斜部87が設けられる。この傾斜部87は、セレーション結合部30と内端部支持軸受63間に落下した潤滑油を内端部支持軸受63側へ誘導する機能を有する。 Between the serration coupling portion 30 of the first output shaft 35 and the inner end support bearing 63, an inclined portion 87 having a small diameter on the inner end support bearing 63 side is provided. The inclined portion 87 has a function of guiding the lubricating oil dropped between the serration coupling portion 30 and the inner end support bearing 63 to the inner end support bearing 63 side.
 前記内端部支持軸受63は、例えばシェル形針状ころ軸受によって構成される。この軸受は外輪の両側縁に内径側に屈曲された鍔を有するので、その内側に潤滑油を溜め込むことができる。 The inner end support bearing 63 is constituted by, for example, a shell needle roller bearing. Since this bearing has flanges bent toward the inner diameter side on both side edges of the outer ring, lubricating oil can be stored inside thereof.
 前記円板部58には、前記のピニオンシャフト53a、53bの位置に対応してそれぞれシャフト穴64a、64bが一定のPCD上に設けられる(図14A参照)。また、小径のPCDと前記センターボス部59の間に、周方向の4個所に略等間隔をおいて潤滑穴65が設けられる。これらの潤滑穴65も湾曲した長穴によって形成される。 The disk portion 58 is provided with shaft holes 64a and 64b on a certain PCD corresponding to the positions of the pinion shafts 53a and 53b (see FIG. 14A). Further, between the small-diameter PCD and the center boss portion 59, lubricating holes 65 are provided at substantially equal intervals in four locations in the circumferential direction. These lubricating holes 65 are also formed by curved long holes.
 また、前記円板部58の外周に沿って前記大径のPCD上のシャフト穴64aの相互間に差動装置13の内部を向く方向に突き出した掻き上げ用の凸部66が設けられる。その凸部66の先端面に嵌合固定突起67が設けられる。 Further, a scooping convex portion 66 protruding in the direction facing the inside of the differential 13 is provided between the shaft holes 64a on the large-diameter PCD along the outer periphery of the disc portion 58. A fitting and fixing projection 67 is provided on the tip surface of the convex portion 66.
 前記のキャリヤ54は、その円板部58がケーシング蓋15cとピニオンギヤ52a、52b等のギヤ群の間に介在される。各ピニオンギヤ52a、52bに複列の針状ころ軸受68a、68b(図12参照)を介してピニオンシャフト53a、53bが挿通される。各ピニオンシャフト53a、53bの外端部が前記キャリヤ54のシャフト穴64a、64bにそれぞれ挿通され支持される。 The disk 54 of the carrier 54 is interposed between the casing lid 15c and a gear group such as the pinion gears 52a and 52b. The pinion shafts 53a and 53b are inserted into the pinion gears 52a and 52b via double-row needle roller bearings 68a and 68b (see FIG. 12). The outer ends of the pinion shafts 53a and 53b are inserted into and supported by the shaft holes 64a and 64b of the carrier 54, respectively.
 ピニオンギヤ52a、52bは全体で8個となるので、これらを安定よく支持するために、環状板体のキャリヤ補助部材70が、リングギヤ49の円板部49aとピニオンギヤ52a、52b等のギヤ群の間に介在される。 Since the total number of pinion gears 52a and 52b is eight, in order to support them stably, the carrier auxiliary member 70 of the annular plate member is provided between the disc portion 49a of the ring gear 49 and the gear group such as the pinion gears 52a and 52b. Intervened in.
 前記キャリヤ補助部材70には、図15に示したように、ピニオンシャフト53a、53bに対応した位置にそれぞれPCDの異なった一対のシャフト穴71a、71bが設けられる。小径のPCD上にあるシャフト穴71bに径方向に対向した外周縁に掻き上げ用の凹部72が全周の4個所に設けられる。 As shown in FIG. 15, the carrier auxiliary member 70 is provided with a pair of shaft holes 71a and 71b having different PCDs at positions corresponding to the pinion shafts 53a and 53b. Scraping recesses 72 are provided at four locations on the entire circumference on the outer peripheral edge of the shaft hole 71b on the small-diameter PCD that is radially opposed to the shaft hole 71b.
 前記キャリヤ補助部材70の外周面から各シャフト穴71aに達し、また各凹部72の底部から各シャフト穴71bに達する径方向のネジ穴73a、73bがそれぞれ設けられる。また、大径のPCD上にあるシャフト穴71aの周方向の間に長穴でなる嵌合穴74が4個所に形成される。嵌合穴74にキャリヤ54の嵌合固定突起67を嵌合したのち溶接によって固定し、キャリヤ補助部材70との一体化を図る。 The screw holes 73a and 73b in the radial direction reaching the shaft holes 71a from the outer peripheral surface of the carrier auxiliary member 70 and reaching the shaft holes 71b from the bottoms of the recesses 72 are provided. Further, four fitting holes 74 formed as long holes are formed in the circumferential direction of the shaft hole 71a on the large-diameter PCD. The fitting fixing protrusion 67 of the carrier 54 is fitted into the fitting hole 74 and then fixed by welding to achieve integration with the carrier auxiliary member 70.
 前記の各シャフト穴71a、71bにそれぞれピニオンシャフト53a、53bの内端部が挿入され、それぞれネジ穴73a、73bからねじ込んだビス75によってピニオンシャフト53a、53bがキャリヤ補助部材70に固定される。この場合もピニオンシャフト53a、53bにピン(図示せず)を径方向に挿通し、そのピンをネジ穴にねじ込んだ止めネジ96によって固定する方法もある。 The inner ends of the pinion shafts 53a and 53b are inserted into the shaft holes 71a and 71b, respectively, and the pinion shafts 53a and 53b are fixed to the carrier auxiliary member 70 by screws 75 screwed from the screw holes 73a and 73b, respectively. In this case, there is also a method in which a pin (not shown) is inserted in the pinion shafts 53a and 53b in the radial direction and fixed by a set screw 96 screwed into the screw hole.
 なお、前記各ピニオンギヤ52a、52bの外端面とキャリヤ54との間、及び内端面とキャリヤ補助部材70との間にそれぞれピニオンギヤ52a、52bが円滑に回転するように間座50が介在される。  A spacer 50 is interposed between the outer end surface of each pinion gear 52a, 52b and the carrier 54 and between the inner end surface and the carrier auxiliary member 70 so that the pinion gears 52a, 52b rotate smoothly. *
 また、前記キャリヤ54の円板部58とサンギヤ51の間に針状ころを用いたスラスト軸受76が介在される(図8A参照)。同様に、リングギヤ49の円板部49aとサンギヤ51の間にも針状ころを用いたスラスト軸受77が介在される。これらのスラスト軸受76、77はいずれも当該サンギヤ51の潤滑穴56の内径側に配置される。 Further, a thrust bearing 76 using needle rollers is interposed between the disc portion 58 of the carrier 54 and the sun gear 51 (see FIG. 8A). Similarly, a thrust bearing 77 using needle rollers is interposed between the disc portion 49 a of the ring gear 49 and the sun gear 51. These thrust bearings 76 and 77 are both arranged on the inner diameter side of the lubrication hole 56 of the sun gear 51.
 なお、前記キャリヤ54及びその補助部材70の回転半径の少なくとも一方は、減速差動ケーシング15bの内底面に溜められた油面Lにもぐるように設定される。 It should be noted that at least one of the rotation radii of the carrier 54 and the auxiliary member 70 is set so as to reach the oil level L stored on the inner bottom surface of the deceleration differential casing 15b.
 電気自動車用減速差動装置は以上のように構成され、次にその作用について説明する。 The electric vehicle deceleration differential is configured as described above, and the operation thereof will be described next.
 図7に示した電動モータ11が駆動されると、そのモータ出力シャフト17が回転し、同時にモータ出力シャフト17と一体の減速機入力シャフト22及びその入力シャフト22と一体の減速機12のサンギヤ27が回転する。サンギヤ27に噛み合ったピニオンギヤ29は自転しつつ公転する。その公転によってキャリヤ32が減速回転され、その減速回転が差動装置13側へ出力される。 When the electric motor 11 shown in FIG. 7 is driven, the motor output shaft 17 rotates, and at the same time, the reduction gear input shaft 22 integral with the motor output shaft 17 and the sun gear 27 of the reduction gear 12 integral with the input shaft 22. Rotates. The pinion gear 29 meshed with the sun gear 27 revolves while rotating. By the revolution, the carrier 32 is decelerated and rotated, and the decelerated rotation is output to the differential device 13 side.
 サンギヤ27の歯数をZs、リングギヤ28の歯数をZrとした場合の減速比は、周知のように、Zs/(Zs+Zr)となる。 As is well known, the reduction ratio when the number of teeth of the sun gear 27 is Zs and the number of teeth of the ring gear 28 is Zr is Zs / (Zs + Zr).
 差動装置13においては、第一出力シャフト35がサンギヤ51と一体に結合され、また第二出力シャフト36がキャリヤ54に一体化されているので、これらの各出力シャフト35、36に取り付けられた左右の車輪(図示省略)に作用する負荷が均等である場合は、サンギヤ51、ピニオンギヤ52a、52b、キャリヤ54及びリングギヤ49は一体となって回転し、相対回転することがない。言い換えれば、入力回転が第一及び第二出力シャフト35、36に均等に分配され、左右の車輪を等速回転させる。 In the differential 13, the first output shaft 35 is integrally coupled with the sun gear 51, and the second output shaft 36 is integrated with the carrier 54, so that the differential output 13 is attached to each of these output shafts 35, 36. When the loads acting on the left and right wheels (not shown) are equal, the sun gear 51, the pinion gears 52a and 52b, the carrier 54, and the ring gear 49 rotate together and do not rotate relative to each other. In other words, the input rotation is evenly distributed to the first and second output shafts 35 and 36 to rotate the left and right wheels at a constant speed.
 これに対し、左右の車輪に作用する負荷に差が生じると、ピニオンギヤ52a、52bの自転と公転によって入力回転は、負荷の差に応じて第一及び第二出力シャフト35、36に差動分配される。 On the other hand, when a difference occurs in the load acting on the left and right wheels, the input rotation is differentially distributed to the first and second output shafts 35 and 36 according to the load difference due to the rotation and revolution of the pinion gears 52a and 52b. Is done.
 即ち、第一出力シャフト35に作用する負荷が相対的に大きくなり、これと一体のサンギヤ51の回転数Nsが、リングギヤ49の入力回転数NrよりΔNだけ小さくなった場合、キャリヤ54の回転数Ncは、
 Nc=Nr+λ/(1-λ)・ΔN
となり、第二出力シャフト36が増速される。但し、λは歯車比(=Zs/Zr)、Zsはサンギヤ51の歯数、Zrはリングギヤ49の歯数である。
That is, when the load acting on the first output shaft 35 becomes relatively large and the rotational speed Ns of the sun gear 51 integrated therewith becomes smaller by ΔN than the input rotational speed Nr of the ring gear 49, the rotational speed of the carrier 54. Nc is
Nc = Nr + λ / (1-λ) · ΔN
Thus, the speed of the second output shaft 36 is increased. Where λ is the gear ratio (= Zs / Zr), Zs is the number of teeth of the sun gear 51, and Zr is the number of teeth of the ring gear 49.
 逆に、第二出力シャフト36に作用する負荷が相対的に大きくなり、これと一体のキャリヤ54の回転数Ncが、入力回転数NrよりΔNだけ小さくなった場合、サンギヤ51の回転数Nsは、
 Ns=Nr+(1-λ)/λ・ΔN
となり、第一出力シャフト35が増速される。
Conversely, when the load acting on the second output shaft 36 becomes relatively large and the rotation speed Nc of the carrier 54 integrated therewith is smaller than the input rotation speed Nr by ΔN, the rotation speed Ns of the sun gear 51 is ,
Ns = Nr + (1-λ) / λ · ΔN
Thus, the first output shaft 35 is accelerated.
 次に、減速機12及び差動装置13の潤滑作用について、図16に基づいて説明する。 Next, the lubricating action of the speed reducer 12 and the differential 13 will be described with reference to FIG.
 減速差動ケーシング15bの内底面の所定高さの油面Lまで収納された潤滑油は、減速機12及び差動装置13の油浴潤滑に共通に使用される。 The lubricating oil stored up to the oil level L having a predetermined height on the inner bottom surface of the speed-reducing differential casing 15 b is commonly used for oil bath lubrication of the speed reducer 12 and the differential device 13.
 減速機12においては、キャリヤ32の外周部の3個所に設けられた凸部46及びピニオンギヤ29が、回転の途中において潤滑油の油面L以下の油中を通過することにより、潤滑油の掻き上げ作用を行う(図16の白抜き矢印参照)。掻き上げられた潤滑油は減速機12の内部に飛散され各部品に掛けられる。 In the speed reducer 12, the convex portions 46 and the pinion gear 29 provided at three locations on the outer peripheral portion of the carrier 32 pass through the oil below the oil level L of the lubricating oil during the rotation, so that the lubricating oil is scraped. The raising action is performed (see the white arrow in FIG. 16). The scraped up lubricating oil is scattered inside the speed reducer 12 and applied to each component.
 その一部は、キャリヤ32の潤滑穴45、その中心穴39をそれぞれを軸方向に通過するか(図16の矢印参照)、又はこれらを通過することなく直接、スラスト軸受47、入力シャフト支持軸受23、転がり軸受33等に供給される。 A part of them passes through the lubrication hole 45 and the center hole 39 of the carrier 32 in the axial direction (see the arrow in FIG. 16) or directly without passing through these, the thrust bearing 47, the input shaft support bearing. 23, supplied to the rolling bearing 33 and the like.
 この場合、前述の給油すき間hがあるので、このすき間hを軸方向に通過してスラスト軸受47及び入力シャフト支持軸受23への給油が行われる。 In this case, since there is the aforementioned oil supply gap h, oil is supplied to the thrust bearing 47 and the input shaft support bearing 23 through the gap h in the axial direction.
 なお、油面にもぐるような回転半径をもったピニオンギヤ29の一部も掻き上げ作用に寄与する。 It should be noted that a part of the pinion gear 29 having a turning radius that extends to the oil surface also contributes to the scraping action.
 一方、差動装置13においては、キャリヤ54の外周部の4個所に設けられた凸部66、ピニオンギヤ52a、52b、キャリヤ補助部材70の凹部72が、それぞれ潤滑油の掻き上げ作用を行う(図16の白抜き矢印参照)。 On the other hand, in the differential device 13, the convex portions 66, the pinion gears 52a and 52b, and the concave portion 72 of the carrier auxiliary member 70 provided at four locations on the outer peripheral portion of the carrier 54 respectively perform a scooping action of the lubricating oil (see FIG. (See 16 open arrows).
 掻き上げられた潤滑油は、キャリヤ54の潤滑穴65、サンギヤ51の潤滑穴56を軸方向に通過するか(図16の矢印参照)、又はこれらを通過することなく直接、第二出力シャフト支持軸受61、サンギヤ51の両端面に介在されたスラスト軸受76、77、ダブルピニオンギヤ52a、52bの複列の針状ころ軸受68a、68b等に供給される。 The lubricating oil thus scraped passes through the lubricating hole 65 of the carrier 54 and the lubricating hole 56 of the sun gear 51 in the axial direction (see the arrow in FIG. 16) or directly supports the second output shaft without passing through them. The bearing 61, thrust bearings 76 and 77 interposed between both end surfaces of the sun gear 51, and double row needle roller bearings 68a and 68b of the double pinion gears 52a and 52b are supplied.
 前記サンギヤ51の潤滑穴56は、当該サンギヤ51の両端面に介在されたスラスト軸受76、77への給油に有効である。 The lubrication hole 56 of the sun gear 51 is effective for supplying oil to the thrust bearings 76 and 77 interposed at both end surfaces of the sun gear 51.
 この場合も油面にもぐるような回転半径をもったピニオンギヤ52a、52bの一部も掻き上げ作用に寄与する。 In this case as well, part of the pinion gears 52a and 52b having a turning radius that extends to the oil surface also contributes to the scraping action.
 上記実施形態に係る電気自動車用減速差動装置は、油浴潤滑を採用している。この油浴潤滑におけるギヤの歯面の潤滑性をさらに向上させることによって、ギヤの耐久性がさらに向上する。 The electric vehicle deceleration differential according to the above embodiment employs oil bath lubrication. By further improving the lubricity of the gear tooth surface in this oil bath lubrication, the durability of the gear is further improved.
 即ち、対象となるギヤとしては、減速機12においては、サンギヤ27、ピニオンギヤ29及びリングギヤ28がある。また、差動装置13においては、サンギヤ51、ピニオンギヤ52a、52b及び同リングギヤ49がある。図17に示したように、これらのギヤの歯面79を形成する歯先部80、歯たけ部81及び歯底部82に無数の微小なくぼみ83がランダムに設けられる。 That is, as the target gears, in the speed reducer 12, there are a sun gear 27, a pinion gear 29, and a ring gear 28. The differential device 13 includes a sun gear 51, pinion gears 52 a and 52 b, and the ring gear 49. As shown in FIG. 17, innumerable minute depressions 83 are randomly provided in the tooth tip portion 80, the tooth portion 81, and the tooth bottom portion 82 that form the tooth surface 79 of these gears.
 前記歯面79の表面粗さパラメータは、Ryniが2.0~5.5μm、Rymaxが2.5~7.0μm、Rqniが0.3~1.1μm、Rskが1.6以下である。 The surface roughness parameters of the tooth surface 79 are as follows: Ryni is 2.0 to 5.5 μm, Rymax is 2.5 to 7.0 μm, Rqni is 0.3 to 1.1 μm, and Rsk is 1.6 or less.
 前記の微小なくぼみ83が油溜まりとなるので、油浴潤滑の場合であっても十分な耐久性を保つことができる。その結果、ギヤ自体の小型化、装置全体の小型化に資することができる。 Since the minute recess 83 becomes an oil reservoir, sufficient durability can be maintained even in the case of oil bath lubrication. As a result, the gear itself can be reduced in size and the entire apparatus can be reduced in size.
 減速機12、差動装置13それぞれについて、少なくとも径が最も小さいギヤに前記の微小なくぼみ83を無数に形成する加工を施すことがギヤの潤滑性を向上させ長寿命化を図るために有効である。場合によっては、減速機12においてはサンギヤ27とピニオンギヤ29の両方、差動装置13においてはサンギヤ51とピニオンギヤ52a、52bの両方に当該加工を施す必要がある場合もある。両方に当該加工を施す必要があるのは、例えば、最も小さいギヤに上記加工を施して長寿化されても、これに噛み合う他方のギヤが短寿命であれば、両方の寿命にアンバランスが生じるからである。 For each of the speed reducer 12 and the differential 13, it is effective to improve the lubricity of the gear and extend the life by processing the infinite number of the minute depressions 83 on at least the gear having the smallest diameter. is there. In some cases, both the sun gear 27 and the pinion gear 29 in the reduction gear 12 and the sun gear 51 and the pinion gears 52a and 52b in the differential device 13 may need to be processed. It is necessary to perform the processing on both, for example, even if the smallest gear is subjected to the above processing to increase the life, if the other gear meshing with this has a short life, an unbalance occurs in both the life Because.
 前記の微小なくぼみ83をランダムに形成するには、歯面79をジャイロ研磨、バレル研磨等によって平滑化したのち、平滑化した歯面にくぼみ形成手段を施すことにより行う。その場合のくぼみ形成手段としては、ショットピーニング加工、液体ホーニング加工等によって酸化アルミニウム等を主成分とした微小な硬質粒子を衝突させる方法により行う。 In order to form the minute recesses 83 at random, the tooth surface 79 is smoothed by gyro polishing, barrel polishing or the like, and then a recess forming means is applied to the smoothed tooth surface. In this case, the dent formation means is performed by a method in which fine hard particles mainly composed of aluminum oxide or the like are collided by shot peening, liquid honing, or the like.
 11 電動モータ
 12 減速機
 13 差動装置
 14 油浴潤滑手段
 15 ケーシング
 15a モータケーシング
 15b 減速差動ケーシング
 15c ケーシング蓋
 16 ステータ
 17 モータ出力シャフト
 18 コア
 19 ロータ
 20 間座
 21 出力シャフト支持軸受
 22 減速機入力シャフト
 23 入力シャフト支持軸受
 23a 外輪
 23b 内輪
 27 サンギヤ
 28 リングギヤ
 29 ピニオンギヤ
 30 セレーション結合部
 31 ピニオンシャフト
 32 キャリヤ
 33 深溝玉軸受
 33a 内輪
 33b 外輪
 33c 玉
 34 段差部
 35 第一出力シャフト
 36 第二出力シャフト
 37 シャフト穴
 39 中心穴
 40 段差部
 41 シャフト穴
 42 切欠き面
 43 ネジ穴
 44 ビス
 45 潤滑穴
 46 凸部
 47 スラスト軸受
 49 リングギヤ
 49a 円板部
 49b 周縁部
 50 間座
 51 サンギヤ
 52a、52b ピニオンギヤ
 53a、53b ピニオンシャフト
 54 キャリヤ
 55 シャフト穴
 56 潤滑穴
 57 外端部支持軸受
 58 円板部
 59 センターボス部
 61 第二出力シャフト支持軸受
 62 軸受凹部
 63 内端部支持軸受
 64a、64b シャフト穴
 65 潤滑穴
 66 凸部
 67 嵌合固定突起
 68a、68b 針状ころ軸受
 70 キャリヤ補助部材
 71a、71b シャフト穴
 72 凹部
 73a、73b ネジ穴
 74 嵌合穴
 75 ビス
 76 スラスト軸受
 77 スラスト軸受
 79 歯面
 80 歯先部
 81 歯たけ部
 82 歯底部
 83 くぼみ
 85 シール部材
 86 Oリング
 87 傾斜部
 88 回り止め手段
 89 ピン
 90 係合凹部
 91 周溝
 92 止め輪
 93 係合溝
 94 ピン穴
 95 ピン
 96 止めネジ
 97 環状部品
 98 転走溝
 99 歯形
DESCRIPTION OF SYMBOLS 11 Electric motor 12 Reduction gear 13 Differential device 14 Oil bath lubrication means 15 Casing 15a Motor casing 15b Reduction differential casing 15c Casing lid 16 Stator 17 Motor output shaft 18 Core 19 Rotor 20 Spacer 21 Output shaft support bearing 22 Reduction gear input Shaft 23 Input shaft support bearing 23a Outer ring 23b Inner ring 27 Sun gear 28 Ring gear 29 Pinion gear 30 Serration coupling part 31 Pinion shaft 32 Carrier 33 Deep groove ball bearing 33a Inner ring 33b Outer ring 33c Ball 34 Step part 35 First output shaft 36 Second output shaft 37 Shaft Hole 39 Center hole 40 Stepped portion 41 Shaft hole 42 Notched surface 43 Screw hole 44 Screw 45 Lubrication hole 46 Convex portion 47 Thrust bearing 49 Ring gear 49a Disc portion 4 b Peripheral portion 50 Spacer 51 Sun gear 52a, 52b Pinion gear 53a, 53b Pinion shaft 54 Carrier 55 Shaft hole 56 Lubrication hole 57 Outer end support bearing 58 Disc portion 59 Center boss portion 61 Second output shaft support bearing 62 Bearing recess 63 Inner end support bearings 64a, 64b Shaft hole 65 Lubrication hole 66 Protruding part 67 Fitting fixing protrusion 68a, 68b Needle roller bearing 70 Carrier auxiliary member 71a, 71b Shaft hole 72 Recessed part 73a, 73b Screw hole 74 Fitting hole 75 Screw 76 Thrust bearing 77 Thrust bearing 79 Tooth surface 80 Tooth tip 81 Tooth portion 82 Tooth bottom 83 Indentation 85 Seal member 86 O-ring 87 Inclined portion 88 Non-rotating means 89 Pin 90 Engaging recess 91 Circumferential groove 92 Retaining ring 93 Engagement Groove 94 pin hole 95 pin 96 G 97 Annular part 98 Rolling groove 99 Tooth profile

Claims (16)

  1.  キャリヤに取り付けられるピニオンシャフトの周囲に、玉軸受を配置して、玉軸受によってピニオンギヤを回転自在に支持し、玉軸受とピニオンギヤと間に相互の位置ズレ防止手段を設けたことを特徴とする遊星歯車装置。 A planetary gear comprising a ball bearing arranged around a pinion shaft attached to a carrier, the pinion gear rotatably supported by the ball bearing, and a mutual displacement preventing means provided between the ball bearing and the pinion gear. Gear device.
  2.  上記ピニオンギヤの幅面がキャリヤと接触しないようにしたことを特徴とする請求項1に記載の遊星歯車装置。 The planetary gear device according to claim 1, wherein a width surface of the pinion gear is prevented from contacting a carrier.
  3.  上記玉軸受の内輪とキャリヤとの間に間座を配置したことを特徴とする請求項2に記載の遊星歯車装置。 The planetary gear device according to claim 2, wherein a spacer is arranged between the inner ring of the ball bearing and the carrier.
  4.  上記間座の外径寸法を上記玉軸受の内輪の外径寸法よりも小さくしたことを特徴とする請求項3に記載の遊星歯車装置。 4. The planetary gear device according to claim 3, wherein the outer diameter of the spacer is smaller than the outer diameter of the inner ring of the ball bearing.
  5.  上記玉軸受の内輪の幅を、ピニオンギヤの幅よりも大きくしたことを特徴とする請求項2に記載の遊星歯車装置。 3. The planetary gear device according to claim 2, wherein the width of the inner ring of the ball bearing is larger than the width of the pinion gear.
  6.  上記位置ズレ防止手段が、上記玉軸受とピニオンギヤの相互の回り止め手段によって構成されたことを特徴とする請求項1から5のいずれかに記載の遊星歯車装置。 The planetary gear device according to any one of claims 1 to 5, wherein the positional deviation preventing means is constituted by mutual rotation preventing means of the ball bearing and the pinion gear.
  7.  上記回り止め手段が、玉軸受の外輪とピニオンギヤとを一つの環状部品により構成し、その環状部品の内径部に外輪、外径部にピニオンギヤを設けた構成であることを特徴とする請求項6に記載の遊星歯車装置。 7. The anti-rotation means has a configuration in which an outer ring and a pinion gear of a ball bearing are constituted by one annular part, an outer ring is provided on an inner diameter part of the annular part, and a pinion gear is provided on an outer diameter part. The planetary gear device described in 1.
  8.  上記位置ズレ防止手段が、上記玉軸受とピニオンギヤの相互の回り止め手段と抜け止め防止手段とにより構成されたことを特徴とする請求項1から5のいずれかに記載の遊星歯車装置。 The planetary gear device according to any one of claims 1 to 5, wherein the positional deviation prevention means includes a mutual rotation prevention means and a slip prevention prevention means of the ball bearing and the pinion gear.
  9.  上記位置ズレ防止手段が、前記玉軸受とピニオンギヤの相互の抜け止め防止手段を兼ねた回り止め手段によって構成されたことを特徴とする請求項1から5いずれかに記載の遊星歯車装置。 The planetary gear device according to any one of claims 1 to 5, wherein the positional deviation prevention means is constituted by a rotation preventing means that also serves as a prevention means for preventing the ball bearing and the pinion gear from coming off each other.
  10.  上記抜け止め手段を兼ねた回り止め手段が、玉軸受の外輪とピニオンギヤとを一つの環状部品により構成し、その環状部品の内径部に外輪、外径部にピニオンギヤを設けた構成であることを特徴とする請求項9に記載の遊星歯車装置。 The anti-rotation means that also serves as the retaining means is configured such that the outer ring of the ball bearing and the pinion gear are configured by one annular part, and the outer ring is provided on the inner diameter part of the annular part, and the pinion gear is provided on the outer diameter part. The planetary gear device according to claim 9, wherein
  11.  請求項1から10のいずれかに記載の遊星歯車装置を使用する車両用自動変速機。 An automatic transmission for a vehicle using the planetary gear device according to any one of claims 1 to 10.
  12.  潤滑機構が油浴潤滑である請求項11に記載の車両用自動変速機。 The automatic transmission for vehicles according to claim 11, wherein the lubrication mechanism is oil bath lubrication.
  13.  請求項1から10のいずれかに記載の遊星歯車装置を使用する電気自動車用減速差動装置。 A reduction differential for an electric vehicle using the planetary gear device according to any one of claims 1 to 10.
  14.  潤滑機構が油浴潤滑である請求項13記載の電気自動車用減速差動装置。 The electric vehicle deceleration differential according to claim 13, wherein the lubrication mechanism is oil bath lubrication.
  15.  前記車両用減速差動装置を構成する減速機または差動装置のギヤのうち、少なくとも径が最も小さいギヤの歯面に粗面加工が施されたことを特徴とする請求項13又は14に記載の電気自動車用減速差動装置。 15. The roughened surface of the gear surface of the gear having the smallest diameter among the gears of the speed reducer or the differential gear constituting the vehicle speed reduction differential device is provided according to claim 13 or 14. Reducer differential for electric vehicles.
  16.  前記粗面加工による歯面の表面粗さパラメータは、Ryniが2.0~5.5μm、Rymaxが2.5~7.0μm、Rqniが0.3~1.1μm、Rskが1.6以下であることを特徴とする請求項15に記載の電気自動車用減速差動装置。 The surface roughness parameters of the tooth surface by the rough surface processing are as follows: Ryni is 2.0 to 5.5 μm, Rymax is 2.5 to 7.0 μm, Rqni is 0.3 to 1.1 μm, and Rsk is 1.6 or less. The deceleration differential for an electric vehicle according to claim 15, wherein:
PCT/JP2012/068942 2011-08-18 2012-07-26 Planetary gear device WO2013024676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-179141 2011-08-18
JP2011179141A JP2013040665A (en) 2011-08-18 2011-08-18 Planetary gear device

Publications (1)

Publication Number Publication Date
WO2013024676A1 true WO2013024676A1 (en) 2013-02-21

Family

ID=47715000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068942 WO2013024676A1 (en) 2011-08-18 2012-07-26 Planetary gear device

Country Status (2)

Country Link
JP (1) JP2013040665A (en)
WO (1) WO2013024676A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206513A (en) * 2013-04-07 2013-07-17 安徽江淮汽车股份有限公司 Idle gear pad
CN103206516A (en) * 2013-04-07 2013-07-17 安徽江淮汽车股份有限公司 Double-groove-sided gear pad
CN103291861A (en) * 2013-06-14 2013-09-11 南京航空航天大学 Multi-stage reduction gear box with input and output on same side
CN110529580A (en) * 2019-07-26 2019-12-03 江苏摩多利传动机械制造有限公司 Planetary reducer output shaft not fenestration
CN111684175A (en) * 2018-01-30 2020-09-18 美蓓亚三美株式会社 Wheel module and moving mechanism
US11035434B2 (en) * 2017-09-29 2021-06-15 Aktiebolaget Skf Bearing assembly equipped with a rolling bearing and scissors gear, in particular for a balancing shaft

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6726925B2 (en) 2014-10-03 2020-07-22 住友重機械工業株式会社 Eccentric swing type speed reducer
JP2018044638A (en) * 2016-09-15 2018-03-22 Ntn株式会社 Gear assembly and planetary gear mechanism using the same and gear mechanism incorporated motor
JP7105569B2 (en) * 2018-01-30 2022-07-25 ミネベアミツミ株式会社 Wheel module and travel mechanism

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712149A (en) * 1980-06-25 1982-01-22 Mitsubishi Electric Corp Planet gear transmission
JPH01178220U (en) * 1988-06-07 1989-12-20
JPH03168329A (en) * 1989-11-29 1991-07-22 Tochigi Fuji Ind Co Ltd Supercharger
JPH08105520A (en) * 1994-08-12 1996-04-23 Toyota Motor Corp Lubricating device for power transmission mechanism
JPH08247225A (en) * 1995-03-14 1996-09-24 Shinko Electric Co Ltd Automatic alignment mechanism of planetary gear type reduction gear
JPH10252871A (en) * 1997-03-17 1998-09-22 Fuji Heavy Ind Ltd Lubricating structure of transmission for vehicle
JP2009127842A (en) * 2007-11-28 2009-06-11 Ntn Corp Gear

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712149A (en) * 1980-06-25 1982-01-22 Mitsubishi Electric Corp Planet gear transmission
JPH01178220U (en) * 1988-06-07 1989-12-20
JPH03168329A (en) * 1989-11-29 1991-07-22 Tochigi Fuji Ind Co Ltd Supercharger
JPH08105520A (en) * 1994-08-12 1996-04-23 Toyota Motor Corp Lubricating device for power transmission mechanism
JPH08247225A (en) * 1995-03-14 1996-09-24 Shinko Electric Co Ltd Automatic alignment mechanism of planetary gear type reduction gear
JPH10252871A (en) * 1997-03-17 1998-09-22 Fuji Heavy Ind Ltd Lubricating structure of transmission for vehicle
JP2009127842A (en) * 2007-11-28 2009-06-11 Ntn Corp Gear

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206513A (en) * 2013-04-07 2013-07-17 安徽江淮汽车股份有限公司 Idle gear pad
CN103206516A (en) * 2013-04-07 2013-07-17 安徽江淮汽车股份有限公司 Double-groove-sided gear pad
CN103206513B (en) * 2013-04-07 2015-12-02 安徽江淮汽车股份有限公司 A kind of idle gear pad
CN103291861A (en) * 2013-06-14 2013-09-11 南京航空航天大学 Multi-stage reduction gear box with input and output on same side
US11035434B2 (en) * 2017-09-29 2021-06-15 Aktiebolaget Skf Bearing assembly equipped with a rolling bearing and scissors gear, in particular for a balancing shaft
CN111684175A (en) * 2018-01-30 2020-09-18 美蓓亚三美株式会社 Wheel module and moving mechanism
CN111684175B (en) * 2018-01-30 2023-10-27 美蓓亚三美株式会社 Wheel module and moving mechanism
CN110529580A (en) * 2019-07-26 2019-12-03 江苏摩多利传动机械制造有限公司 Planetary reducer output shaft not fenestration

Also Published As

Publication number Publication date
JP2013040665A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
WO2013024676A1 (en) Planetary gear device
WO2012160887A1 (en) Reduction differential gear apparatus for electric vehicle
US9005066B2 (en) Motor assembly with speed reducer
WO2012014634A1 (en) Reduction differential gear for electric vehicle
WO2011062257A1 (en) Tandem angular type ball bearing
JPH11257360A (en) Rolling bearing with seal ring and automobile transmission
JP4828847B2 (en) Differential equipment
JP6021694B2 (en) Wheel drive series
JP2021089058A (en) Thrust receiving structure of rotor
RU2666482C1 (en) Mechanism for power transmission
WO2012114847A1 (en) Planetary gear device
JP2012102844A (en) Reduction differential gear for electric vehicle
JPWO2008029697A1 (en) Continuously variable transmission
JP2012241770A (en) Electric vehicle reduction differential gear
JP2012031934A (en) Reduction differential gear for electric vehicle
JP2012137113A (en) Shaft device
JP4228869B2 (en) Differential gear device for vehicle
JP5862162B2 (en) Tandem angular contact ball bearings
JP2012042006A (en) Speed reduction differential device for electric vehicle
JP6587975B2 (en) Support structure for rotating member
US9169912B2 (en) Drive device for the road wheels of a vehicle
JP2005003198A (en) Rolling bearing and transmission for hybrid car or fuel cell car using the same
JP2012041947A (en) Speed reduction differential device for electric vehicle
KR20170031015A (en) Planetary gear drive
JP2012177430A (en) Reduction differential gear with electric vehicle motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823306

Country of ref document: EP

Kind code of ref document: A1