JP5862162B2 - Tandem angular contact ball bearings - Google Patents

Tandem angular contact ball bearings Download PDF

Info

Publication number
JP5862162B2
JP5862162B2 JP2011210984A JP2011210984A JP5862162B2 JP 5862162 B2 JP5862162 B2 JP 5862162B2 JP 2011210984 A JP2011210984 A JP 2011210984A JP 2011210984 A JP2011210984 A JP 2011210984A JP 5862162 B2 JP5862162 B2 JP 5862162B2
Authority
JP
Japan
Prior art keywords
balls
outer ring
diameter
inner ring
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011210984A
Other languages
Japanese (ja)
Other versions
JP2013072471A (en
Inventor
孝道 田中
孝道 田中
智治 齋藤
智治 齋藤
伊藤 大
大 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011210984A priority Critical patent/JP5862162B2/en
Publication of JP2013072471A publication Critical patent/JP2013072471A/en
Application granted granted Critical
Publication of JP5862162B2 publication Critical patent/JP5862162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/182Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact in tandem arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/50Other types of ball or roller bearings
    • F16C19/505Other types of ball or roller bearings with the diameter of the rolling elements of one row differing from the diameter of those of another row
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、自動車用のデファレンシャルギヤ、トランスファ装置等の回転機械装置に組み込まれて、ラジアル荷重及びアキシアル荷重が加わった状態で回転する回転軸を支承する為のタンデムアンギュラ型玉軸受の改良に関する。具体的には、必要とされる耐久性を確保しつつ、小型・軽量化、並びに回転抵抗(動トルク)の低減を図り易いタンデムアンギュラ型玉軸受の実現を図るものである。   The present invention relates to an improvement in a tandem angular ball bearing that is incorporated in a rotary machine such as a differential gear and a transfer device for an automobile and supports a rotating shaft that rotates in a state where a radial load and an axial load are applied. Specifically, it is intended to realize a tandem angular ball bearing that facilitates reduction in size and weight and reduction in rotational resistance (dynamic torque) while ensuring the required durability.

自動車用のデファレンシャルギヤを構成するピニオン軸をデファレンシャルケース内に回転自在に支持する回転支持部の回転抵抗(動トルク)を低く抑える為に、円すいころ軸受に代えてタンデムアンギュラ型玉軸受を使用する事が、特許文献1〜5に記載されている様に、従来から考えられている。タンデムアンギュラ型玉軸受は、運転時に円すいころ軸受の場合の様な大きな滑り接触を伴わないので、動トルクを低く抑えられ、デファレンシャルギヤの抵抗を低くできる。そして、このデファレンシャルギヤを搭載した自動車の加速性能や燃費性能を中心とする性能の向上を図れる。   Tandem angular ball bearings are used instead of tapered roller bearings to keep the rotational resistance (dynamic torque) of the rotating support that supports the pinion shaft, which forms the differential gear for automobiles, in the differential case. This is conventionally considered as described in Patent Documents 1 to 5. Tandem angular ball bearings do not involve large sliding contact as in the case of tapered roller bearings during operation, so that the dynamic torque can be kept low and the resistance of the differential gear can be reduced. And the improvement of the performance centering on the acceleration performance and the fuel consumption performance of the automobile equipped with this differential gear can be achieved.

図3は、特許文献1に記載されている、玉軸受のみで(円すいころ軸受を使用せずに)構成した、デファレンシャルギヤ用のピニオン軸の回転支持装置の従来構造の1例を示している。尚、デファレンシャルギヤ全体の構造及び作用は従来から周知であり、特許文献1〜4にも記載されている為、図示並びに詳しい説明は省略し、以下、回転支持装置部分の構造に就いてのみ説明する。デファレンシャルケースの内部に1対の玉軸受1、2を、軸方向に互いに離隔した状態で配置し、これら両玉軸受1、2によりピニオン軸3を支持している。これら両玉軸受1、2は、それぞれ玉に接触角を持たせたアンギュラ型玉軸受であり、これら両玉軸受1、2の接触角の方向を互いに逆向きとしている。従って、前記ピニオン軸3は、デファレンシャルケースの内部に、ラジアル荷重だけでなく、両方向のアキシアル荷重を支承される状態で、回転自在に支持される。   FIG. 3 shows an example of a conventional structure of a rotation support device for a pinion shaft for a differential gear, which is composed of only ball bearings (without using tapered roller bearings) described in Patent Document 1. . Since the structure and operation of the entire differential gear are well known and described in Patent Documents 1 to 4, illustration and detailed description are omitted, and only the structure of the rotation support device portion will be described below. To do. A pair of ball bearings 1 and 2 are arranged in the differential case in a state of being separated from each other in the axial direction, and the pinion shaft 3 is supported by these ball bearings 1 and 2. These ball bearings 1 and 2 are angular ball bearings in which the balls have contact angles, and the contact angles of these ball bearings 1 and 2 are opposite to each other. Therefore, the pinion shaft 3 is rotatably supported in the differential case in a state where not only a radial load but also an axial load in both directions is supported.

前記両玉軸受1、2のうち、比較的大きなラジアル荷重及びアキシアル荷重が加わるピニオンギヤ4の側(ピニオンギヤ側)に配置する玉軸受1として、本発明の対象となる、タンデムアンギュラ型玉軸受を使用している。これに対して、比較的小さなラジアル荷重及びアキシアル荷重しか支承しない、ピニオンギヤ4と反対側(反ピニオンギヤ側)の玉軸受2は、単列アンギュラ型としている。尚、ピニオンギヤ側だけでなく、反ピニオンギヤ側もタンデムアンギュラ型玉軸受とする構造に就いても、特許文献2〜4に記載されている通り、従来から知られている。ピニオンギヤ側の玉軸受1は、ラジアル荷重に加えて、このピニオンギヤ4と噛合したリングギヤ(図示省略)から離れる方向(図3の右向き)のアキシアル荷重を支承する。これに対して反ピニオンギヤ側の玉軸受2は、ラジアル荷重に加えて、前記リングギヤに近付く方向(図3の左向き)のアキシアル荷重を支承する。   Among the ball bearings 1 and 2, a tandem angular ball bearing, which is a subject of the present invention, is used as the ball bearing 1 disposed on the pinion gear 4 side (pinion gear side) to which a relatively large radial load and axial load are applied. doing. On the other hand, the ball bearing 2 on the side opposite to the pinion gear 4 (on the side opposite to the pinion gear) that supports only a relatively small radial load and axial load is of a single-row angular type. In addition, as described in Patent Documents 2 to 4, a structure in which not only the pinion gear side but also the anti-pinion gear side is a tandem angular ball bearing has been conventionally known. The ball bearing 1 on the pinion gear side supports an axial load in a direction away from a ring gear (not shown) meshed with the pinion gear 4 (rightward in FIG. 3) in addition to the radial load. On the other hand, the ball bearing 2 on the anti-pinion gear side supports an axial load in a direction approaching the ring gear (leftward in FIG. 3) in addition to the radial load.

タンデムアンギュラ型玉軸受である、ピニオンギヤ側の玉軸受1は、外輪5と、内輪6と、複数個の玉7a、7bと、1対の保持器8a、8bとを備える。このうちの外輪5は、内周面に、互いに内径が異なる、複列アンギュラ型の外輪軌道9a、9bを設けている。これら両外輪軌道9a、9bの内径は、ピニオンギヤ側の外輪軌道9aの方が大きく、反ピニオンギヤ側の外輪軌道9bの方が小さい。又、前記内輪6は、前記外輪5の内径側に、この外輪5と同心に配置されており、外周面のうちで前記両外輪軌道9a、9bに対向する部分に、互いに外径が異なる、複列アンギュラ型の内輪軌道10a、10bを設けている。これら両内輪軌道10a、10bの外径に関しても、ピニオンギヤ側の内輪軌道10aの方が大きく、反ピニオンギヤ側の外輪軌道10bの方が小さい。   A pinion gear-side ball bearing 1 that is a tandem angular ball bearing includes an outer ring 5, an inner ring 6, a plurality of balls 7a and 7b, and a pair of cages 8a and 8b. Of these, the outer ring 5 is provided with double-row angular outer ring raceways 9a and 9b having different inner diameters on the inner peripheral surface. The inner diameters of these outer ring raceways 9a and 9b are larger in the outer ring raceway 9a on the pinion gear side and smaller in the outer ring raceway 9b on the anti-pinion gear side. Further, the inner ring 6 is disposed concentrically with the outer ring 5 on the inner diameter side of the outer ring 5, and the outer diameters of the outer peripheral surfaces of the inner ring 6 are different from each other at portions facing the outer ring raceways 9 a and 9 b. Double row angular type inner ring raceways 10a and 10b are provided. Regarding the outer diameters of these inner ring raceways 10a and 10b, the inner ring raceway 10a on the pinion gear side is larger, and the outer ring raceway 10b on the anti-pinion gear side is smaller.

更に、前記各玉7a、7bは、前記両外輪軌道9a、9bとこれら両内輪軌道10a、10bとの間に、それぞれの列毎に複数個ずつ、両列で同じ方向の(並列組み合わせ型の)接触角を付与された状態で、転動自在に設けられている。又、前記両保持器8a、8bは、互いに直径が異なり、それぞれが両列の玉7a、7bを、転動自在に保持している。これら両列の玉7a、7bのピッチ円直径(PCD)は、前記各軌道9a、9b、10a、10bの径の違いに対応して、ピニオンギヤ側の列が反ピニオンギヤ側の列に比べて大きい。   Further, each of the balls 7a, 7b has a plurality of balls in each row between the outer ring raceways 9a, 9b and the inner ring raceways 10a, 10b (in a parallel combination type). ) It is provided so as to be able to roll while being given a contact angle. The cages 8a and 8b have different diameters from each other, and hold the balls 7a and 7b in both rows in a freely rollable manner. The pitch circle diameters (PCD) of the balls 7a and 7b in both rows correspond to the differences in the diameters of the tracks 9a, 9b, 10a and 10b, and the row on the pinion gear side is larger than the row on the anti-pinion gear side. .

尚、実際にデファレンシャルケースの内部にピニオン軸3を、上述の様なタンデムアンギュラ型の玉軸受1により回転自在に支持する場合には、前記外輪5を前記デファレンシャルケースに締り嵌めで内嵌すると共に、前記内輪6を前記ピニオン軸3に締り嵌めで外嵌する必要がある。但し、前記タンデムアンギュラ型の玉軸受1を、予め組み立てた状態で、前記外輪5の内嵌作業及び前記内輪6の外嵌作業を行う事はできない。この理由は、前記各軌道9a、9b、10a、10bに圧痕が形成されるのを防止する為である。この為に従来から、特許文献4に記載されている様な構造により、外輪の内嵌作業と内輪の外嵌作業とを別個に行える様にしていた。   When the pinion shaft 3 is actually rotatably supported by the tandem angular ball bearing 1 as described above, the outer ring 5 is fitted into the differential case by an interference fit. It is necessary to externally fit the inner ring 6 to the pinion shaft 3 by an interference fit. However, the inner fitting operation of the outer ring 5 and the outer fitting operation of the inner ring 6 cannot be performed with the tandem angular ball bearing 1 assembled in advance. The reason for this is to prevent the formation of indentations on the tracks 9a, 9b, 10a, 10b. For this reason, conventionally, the inner ring work of the outer ring and the outer ring work of the inner ring can be performed separately by the structure as described in Patent Document 4.

図4〜6は、前記特許文献4に記載された従来構造の第2例を示している。タンデムアンギュラ型の玉軸受1aを構成する外輪5aは、大径側、小径側両外輪軌道9a、9bの軸方向片側(図4、6の左側)に溝肩部を設けておらず(カウンタボアとし)、軸方向他側(図4、6の右側)にのみ溝肩部を設けている。これに対して、内輪6aは、大径側、小径側両内輪軌道10a、10bの軸方向両側に、それぞれ溝肩部を設けている。又、大径側、小径側両保持器8a、8bは、各ポケット11a、11b内に各玉7a、7bを保持した状態で、これら各玉7a、7bが、これら各ポケット11a、11b内から径方向外方に抜け出る事を阻止できる様に構成している。   4 to 6 show a second example of the conventional structure described in Patent Document 4. FIG. The outer ring 5a constituting the tandem angular ball bearing 1a is not provided with a groove shoulder on one axial side (the left side in FIGS. 4 and 6) of both the large diameter side and small diameter side outer ring raceways 9a and 9b (counter bore). The groove shoulder is provided only on the other side in the axial direction (the right side in FIGS. 4 and 6). On the other hand, the inner ring 6a is provided with groove shoulders on both sides in the axial direction of both the large diameter side and small diameter side inner ring raceways 10a and 10b. Further, both the large-diameter side and small-diameter side retainers 8a and 8b hold the balls 7a and 7b in the pockets 11a and 11b, respectively, and the balls 7a and 7b are moved from the pockets 11a and 11b. It is configured so that it can be prevented from coming out radially outward.

前記玉軸受1aを組み立てる場合、先ず、図5に実線で示す様な、内輪側組立体12を組み立てる。この為に、同図に鎖線で示す様に、前記各玉7a、7bを前記両保持器8a、8bの各ポケット11a、11b内に保持してから、図5に矢印で示す様に、これら両保持器8a、8bに保持された各玉7a、7bを、前記内輪6aの外径側に、前記両保持器8a、8bを弾性変形させて、これら各玉7a、7bの内接円の直径を弾性的に拡げつつ、前記内輪6aの軸方向他側(図5の右側)から進入させる。そして、図5に実線で示す様に、前記両保持器8a、8bに保持された前記各玉7a、7bを、前記両内輪軌道10a、10bの外径側に組み付ける。   When assembling the ball bearing 1a, first, an inner ring side assembly 12 as shown by a solid line in FIG. 5 is assembled. For this purpose, as indicated by the chain line in the figure, the balls 7a and 7b are held in the pockets 11a and 11b of the cages 8a and 8b, and then as indicated by arrows in FIG. The balls 7a and 7b held by the two cages 8a and 8b are elastically deformed on the outer diameter side of the inner ring 6a, and the inscribed circles of the balls 7a and 7b are formed. The inner ring 6a is made to enter from the other axial side (the right side in FIG. 5) while elastically expanding the diameter. Then, as indicated by solid lines in FIG. 5, the balls 7a and 7b held by the cages 8a and 8b are assembled to the outer diameter side of the inner ring raceways 10a and 10b.

この様にして組み立てた、前記内輪側組立体12は、図6に示す様に、予めデファレンシャルケースに内嵌固定しておいた、前記外輪5aの内径側に挿入して、前記タンデムアンギュラ型の玉軸受1aの組み立てを完了する。この外輪6aの内周面に形成した、前記両外輪軌道9a、9bのうち、前記各玉7a、7bの進入側となる軸方向片側部分には、それぞれ溝肩部が存在しない為、上述の様な、前記外輪5aの内径側への前記内輪側組立体12の挿入作業を、円滑に行う事ができる。この様に、従来構造の第2例の場合には、前記玉軸受1aを、前記外輪5aと内輪側組立体12との2つの要素に分けて取り扱う事ができる。そして、前記デファレンシャルケースと前記ピニオン軸3との間への組み付け作業時に、前記各玉7a、7bの転動面と、前記両外輪軌道9a、9b及び前記両内輪軌道10a、10bとの接触部に過大な面圧が作用する事を防止できる。この結果、前記各軌道9a、9b、10a、10bに圧痕が形成されるのを防止できる。尚、上述の様な組み付け作業時に、前記各玉7a、7bの転動面が、前記外輪5aの内周面又は前記内輪6aの外周面に存在する尖った角部で損傷を受けるのを防止する為に、これら各周面のうちで、前記組み付け作業時に前記各玉7a、7bの転動面が接触する可能性のある部分を、微分不能な(尖った)角部を持たず、且つ、研磨加工された平滑面とする事も、特許文献5に記載されて、従来から知られている。   As shown in FIG. 6, the inner ring side assembly 12 assembled in this manner is inserted into the inner diameter side of the outer ring 5a, which has been fitted and fixed to a differential case in advance, and is tandem angular type. The assembly of the ball bearing 1a is completed. Of the two outer ring raceways 9a, 9b formed on the inner peripheral surface of the outer ring 6a, there is no groove shoulder on the one side portion in the axial direction on the entry side of the balls 7a, 7b. Such an insertion operation of the inner ring side assembly 12 to the inner diameter side of the outer ring 5a can be performed smoothly. Thus, in the case of the second example of the conventional structure, the ball bearing 1a can be handled by being divided into two elements, the outer ring 5a and the inner ring side assembly 12. During the assembly operation between the differential case and the pinion shaft 3, the rolling surfaces of the balls 7a and 7b and the contact portions between the outer ring raceways 9a and 9b and the inner ring raceways 10a and 10b. It is possible to prevent excessive surface pressure from acting on the surface. As a result, it is possible to prevent indentation from being formed on each of the tracks 9a, 9b, 10a, and 10b. During the assembling work as described above, the rolling surfaces of the balls 7a and 7b are prevented from being damaged at the sharp corners present on the inner peripheral surface of the outer ring 5a or the outer peripheral surface of the inner ring 6a. In order to do this, among these peripheral surfaces, there is no non-differentiable (pointed) corner portion where the rolling surface of each of the balls 7a, 7b may come into contact during the assembly operation, and Further, a smooth surface that has been polished is described in Patent Document 5 and is conventionally known.

何れの構造の場合でも、上述の様なタンデムアンギュラ型の玉軸受1、1aは、円すいころ軸受と異なり、運転時に大きな滑り接触を伴わないので、動トルクを低く抑えられ、デファレンシャルギヤの抵抗を低くできる。又、複列に配置した前記各玉7a、7bにより、前記ピニオンギヤ4と前記リングギヤとの噛合部で発生するラジアル荷重及びアキシアル荷重を支承する為、これら両方向の荷重に関する負荷容量も十分に確保できる。但し、必要とされる耐久性を確保しつつ、小型・軽量化、並びに動トルクの低減を図る面からは、依然として改良の余地がある。この点に就いて、以下に説明する。   In any structure, unlike the tapered roller bearings, the tandem angular ball bearings 1 and 1a as described above do not involve large sliding contact during operation, so that the dynamic torque can be kept low and the resistance of the differential gear can be reduced. Can be lowered. Moreover, since the balls 7a and 7b arranged in a double row support the radial load and the axial load generated at the meshing portion of the pinion gear 4 and the ring gear, it is possible to sufficiently secure the load capacity regarding the loads in both directions. . However, there is still room for improvement in terms of reducing the size and weight and reducing the dynamic torque while ensuring the required durability. This point will be described below.

複列転がり軸受の一種である、前記タンデムアンギュラ型の玉軸受1、1aが本来の機能を発揮する為には、互いに転がり接触する、両列に配置された各玉7a、7bの転動面、並びに、前記両外輪軌道9a、9b及び前記両内輪軌道10a、10bが、何れも正常(平滑面)である事が必要である。何れか一方の列に関して、転動面と外輪軌道と内輪軌道との何れかに、剥離等の損傷が発生し、当該列の機能が損なわれる(転がり疲れ寿命に達する)と、その玉軸受1、1aは損傷した(転がり疲れ寿命に達した)とされ、修理、交換が必要となる。   In order for the tandem angular ball bearings 1 and 1a, which are a kind of double-row rolling bearings, to perform their original functions, the rolling surfaces of the balls 7a and 7b arranged in both rows are in contact with each other. In addition, both the outer ring raceways 9a and 9b and the both inner ring raceways 10a and 10b must be normal (smooth surfaces). When any one of the rows causes damage such as separation on any of the rolling surface, the outer ring raceway, and the inner ring raceway, and the function of the row is impaired (the rolling fatigue life is reached), the ball bearing 1 1a is considered damaged (rolling fatigue life reached), requiring repair and replacement.

ところで、デファレンシャルギヤ等の回転機械装置の運転時に前記玉軸受1、1aには、前記両列の玉7a、7bに、同じ方向のラジアル荷重及びアキシアル荷重が、同じ時間だけ加わり続ける。一方、特に工夫をしない場合、両列の転がり疲れ寿命は、両列の玉7a、7bのピッチ円直径の差等により、同じとはならない。そして、両列の転がり疲れ寿命に大きな差が生じた場合には、転がり疲れ寿命が長い列に関しては、過剰品質となり、コスト低減、小型・軽量化、低トルク化の面から不利になる。即ち、玉軸受1、1a全体としての耐久性向上に繋がらない、一方の列のみの転がり疲れ寿命のみが、他方の列の転がり疲れ寿命に比べて著しく長くなる事は、この一方の列の転がり疲れ寿命を長くする事に要するコストが無駄に嵩む事を意味し、玉軸受1、1aの低コスト化を図る面から不利になる。又、材料、表面性状等、寸法以外の条件を同じとした場合、転がり疲れ寿命は、寸法が大きい程長くなる。従って、前記一方の列の転がり疲れ寿命を無駄に長くする事は、前記玉軸受1、1aの小型・軽量化を図る面から不利になる。更に、この玉軸受1、1aの動トルクは、寸法以外の条件を同じとした場合、この玉軸受1、1aの寸法が嵩む程大きくなるので、前記一方の列の転がり疲れ寿命を無駄に長くする事は、前記玉軸受1、1aの低トルク化を図る面からも不利になる。   By the way, during operation of a rotary machine such as a differential gear, the radial bearing and the axial load in the same direction are continuously applied to the ball bearings 1 and 1a for the same time on the balls 7a and 7b in both rows. On the other hand, unless special measures are taken, the rolling fatigue life of both rows will not be the same due to the difference in pitch circle diameter between the balls 7a, 7b in both rows. If there is a large difference in the rolling fatigue life between the two rows, the row with a long rolling fatigue life becomes excessive quality, which is disadvantageous in terms of cost reduction, size reduction / weight reduction, and torque reduction. In other words, the fact that only the rolling fatigue life of only one row does not lead to an improvement in the durability of the ball bearings 1 and 1a as a whole is significantly longer than the rolling fatigue life of the other row. This means that the cost required for extending the fatigue life is unnecessarily increased, which is disadvantageous in terms of reducing the cost of the ball bearings 1 and 1a. Further, when the conditions other than the dimensions such as the material and the surface properties are the same, the rolling fatigue life becomes longer as the dimensions are larger. Therefore, unnecessarily extending the rolling fatigue life of the one row is disadvantageous in terms of reducing the size and weight of the ball bearings 1 and 1a. Further, the dynamic torque of the ball bearings 1 and 1a increases as the dimensions of the ball bearings 1 and 1a increase when the conditions other than the dimensions are the same, so the rolling fatigue life of the one row is unnecessarily prolonged. This is also disadvantageous in terms of reducing the torque of the ball bearings 1 and 1a.

尚、タンデムアンギュラ型の玉軸受に関して、両列の仕様は必ずしも同じではなく、例えば、両列の玉の直径(以下「玉径」とする。特許請求の範囲に関しても同じ。)を異ならせた構造として、特許文献6に記載された発明が知られている。この特許文献6に記載された発明の構造は、ピッチ円直径が小さい側の列を4点接触型とすると共に、このピッチ円直径が小さい側の玉径を、ピッチ円直径が大きい側の玉径よりも小さくしている。そして、希に作用する、逆方向のアキシアル荷重を支承する能力を担保しつつ、タンデムアンギュラ型玉軸受の小型化を図れる様にしている。
但し、上述の様な引用文献6に記載された発明にしても、両列の転がり疲れ寿命の差を小さくはできない(むしろ大きくなる)。
In addition, regarding the tandem angular ball bearing, the specifications of both rows are not necessarily the same. For example, the diameters of the balls of both rows (hereinafter referred to as “ball diameter”; the same applies to the claims) are made different. As a structure, the invention described in Patent Document 6 is known. The structure of the invention described in this Patent Document 6 is a four-point contact type on the row with the smaller pitch circle diameter, and the ball diameter with the smaller pitch circle diameter is the ball diameter with the larger pitch circle diameter. It is smaller than the diameter. In addition, the tandem angular ball bearing can be reduced in size while ensuring the ability to support an axial load in the opposite direction that acts rarely.
However, even with the invention described in the cited document 6 as described above, the difference in rolling fatigue life between the two rows cannot be reduced (rather increased).

特開2004−169890号公報JP 2004-169890 A 特開2004−245231号公報JP 2004-245231 A 特開2009−138795号公報JP 2009-138895 A 特開2004−124996号公報JP 2004-124996 A 国際公開第2011/062257号パンフレットInternational Publication No. 2011/062257 Pamphlet 特表2010−534303号公報Special table 2010-534303 gazette

本発明は、上述の様な事情に鑑みて、必要とされる耐久性を確保しつつ、小型・軽量化、並びに動トルクの低減を図り易いタンデムアンギュラ型玉軸受を実現すべく発明したものである。   In view of the circumstances as described above, the present invention was invented to realize a tandem angular ball bearing that is easy to reduce size and weight and reduce dynamic torque while ensuring the required durability. is there.

本発明のタンデムアンギュラ型玉軸受は、従来から知られているタンデムアンギュラ型玉軸受と同様に、外輪と、内輪と、複数個の玉とを備える。
このうちの外輪は、内周面に互いに内径が異なる2列の外輪軌道を設けている。
又、前記内輪は、前記外輪の内径側に、この外輪と同心に配置され、外周面に互いに外径が異なる2列の内輪軌道を設けている。
更に、前記各玉は、前記両外輪軌道と前記両内輪軌道との間に、それぞれの列毎に複数個ずつ、両列同士の間で同じ方向の接触角を付与された状態で転動自在に設けている。一般的には、これら両列の玉は、それぞれ独立した保持器により保持する。
The tandem angular ball bearing of the present invention includes an outer ring, an inner ring, and a plurality of balls in the same manner as a conventionally known tandem angular ball bearing.
Of these, the outer ring is provided with two rows of outer ring raceways having different inner diameters on the inner peripheral surface.
The inner ring is disposed concentrically with the outer ring on the inner diameter side of the outer ring, and two rows of inner ring raceways having different outer diameters are provided on the outer peripheral surface.
Further, each of the balls can freely roll between the outer ring raceways and the inner ring raceways in a state where a contact angle in the same direction is given between the rows, a plurality for each row. Provided. In general, the balls in both rows are held by independent cages.

特に、本発明のタンデムアンギュラ型玉軸受に於いては、前記両列の外輪軌道及び内輪軌道のうちでそれぞれの径が小さい側の外輪軌道と内輪軌道との間に設けられた、ピッチ円直径が小さい第一列側の玉径を、それぞれの径が大きい側の外輪軌道と内輪軌道との間に設けられた、ピッチ円直径が大きい第二列側の玉径よりも大きくしている。
且つ、前記第一列側の玉に関する内部隙間(ラジアル隙間及びアキシアル隙間)を、この第二列側の玉に関する内部隙間よりも小さくしている。
この様に、第一列側の玉と第二列側の玉との間で、内部隙間に差を設ける事により、使用状態で、この第一列側の玉が負荷する荷重の大きさを、前記第二列側の玉が負荷する荷重の大きさよりも大きくしている。
例えば、前記第一列側の玉が負荷する荷重の大きさの、前記第二列側の玉が負荷する荷重の大きさに対する割合は、これら両列に関する転がり疲れ寿命に大きな差が生じない様に、コンピュータ解析又は実験により定めるが、例えば、本発明の様に、1.5〜2.5倍(最も好ましくは2倍)とする。
In particular, in the tandem angular contact ball bearing of the present invention, the pitch circle diameter provided between the outer ring raceway and the inner ring raceway on the smaller side of the outer ring raceway and the inner ring raceway in both rows. The ball diameter on the first row side where the diameter is small is made larger than the ball diameter on the second row side where the pitch circle diameter is large, which is provided between the outer ring raceway and the inner ring raceway on the larger diameter side.
Moreover, the internal gap (radial gap and axial gap) related to the balls on the first row side is made smaller than the internal gap related to the balls on the second row side.
In this way, by providing a difference in the internal gap between the ball on the first row side and the ball on the second row side, the magnitude of the load applied to the ball on the first row side in use is reduced. , Larger than the load applied by the ball on the second row side.
For example, the ratio of the load applied by the balls on the first row side to the load applied by the balls on the second row does not cause a large difference in rolling fatigue life for both rows. Although it is determined by computer analysis or experiment, it is 1.5 to 2.5 times (most preferably 2 times) as in the present invention .

上述の様に構成する本発明によれば、必要とされる耐久性を確保しつつ、小型・軽量化、並びに動トルクの低減を図り易いタンデムアンギュラ型玉軸受を実現できる。この理由に就いて、以下に説明する。
先ず、必要とする耐久性の確保は、ピッチ円直径が小さい第一列側の玉径を大きくすると共に、この第一列側の玉が負荷する荷重の大きさを大きくする事により図れる。玉径が大きな、この第一列側の玉の転動面と外輪軌道及び内輪軌道との転がり接触部に存在する接触楕円の面積は、玉径が小さい、第二列側の玉の転動面に関する接触楕円の面積よりも広い。一方、各部の転がり疲れ寿命は、これら各接触楕円部分の面圧に応じて変わり、この面圧が高くなる程、転がり疲れ寿命は短くなる。又、この面圧は、負荷する荷重が大きい程、接触楕円の面積が狭い程、それぞれ高くなる。従って、本発明の様に、前記第一列の玉が負荷する荷重を、前記第二列の玉が負荷する荷重よりも大きくすれば、各要素による面圧の変化を互いに逆方向にして互いに相殺し、前記両列の玉に関する接触楕円の面圧に大きな差が生じる事を防止でき、これら両列の転がり疲れ寿命に、大きな差が生じる事を防止できる。そして、何れの列に関しても、無駄に(何れかの列のみが著しく)耐久性が長くなる事を防止しつつ、必要とされる耐久性を確保し易くできる。
According to the present invention configured as described above, it is possible to realize a tandem angular ball bearing that facilitates reduction in size and weight and reduction in dynamic torque while ensuring the required durability. The reason will be described below.
First, the required durability can be ensured by increasing the ball diameter on the first row side where the pitch circle diameter is small and increasing the load applied by the ball on the first row side. The area of the contact ellipse existing at the rolling contact portion between the rolling surface of the ball on the first row side and the outer ring raceway and the inner ring raceway with a large ball diameter is the rolling of the ball on the second row side with a small ball diameter. It is wider than the area of the contact ellipse on the surface. On the other hand, the rolling fatigue life of each part changes according to the surface pressure of each of these contact ellipses, and the rolling fatigue life becomes shorter as the surface pressure increases. The surface pressure increases as the applied load increases and the contact ellipse area decreases. Therefore, as in the present invention, if the load applied by the balls in the first row is made larger than the load applied by the balls in the second row, the changes in the surface pressure due to the respective elements are opposite to each other. By canceling out, it is possible to prevent a large difference in the surface pressure of the contact ellipse relating to the balls in both rows, and it is possible to prevent a great difference in the rolling fatigue life between these rows. In any row, it is possible to easily ensure the required durability while preventing the durability from being unnecessarily long (only one of the rows is remarkable).

又、何れかの列の耐久性が無駄に(別の列の耐久性に比べて著しく)長くする事を防止できるので、この何れかの列部分の寸法が無駄に大きくなる事を防止できて、タンデムアンギュラ型玉軸受の小型・軽量化を図る面から有利になる。
更に、前記何れかの列部分の寸法を小さく抑えて小型・軽量化を図れる分、タンデムアンギュラ型玉軸受の低トルク化を図る面から有利になる。
尚、ピッチ円直径及び接触楕円部分に加わる面圧の積分値(予圧と荷重との合計)が同じであると仮定した場合、この接触楕円部分でのスピン損失等の影響により、玉径が大きい程、当該玉の列の動トルクが大きくなる。又、動トルクは、ピッチ円直径に比例して大きくなる。本発明の場合には、玉径が大きな第一列の玉のピッチ円直径が小さいので、この第一列の玉径を大きくする事による動トルクの増大を低く抑えられる。
Moreover, since the durability of any row can be prevented from being lengthened (remarkably compared to the durability of another row), the size of any row portion can be prevented from becoming unnecessarily large. This is advantageous in terms of reducing the size and weight of the tandem angular contact ball bearing.
Further, since the size of any one of the row portions can be kept small and the size and weight can be reduced, this is advantageous in terms of reducing the torque of the tandem angular ball bearing.
In addition, when it is assumed that the integrated value of the surface pressure applied to the pitch circle diameter and the contact ellipse portion (the sum of the preload and the load) is the same, the ball diameter is large due to the influence of the spin loss and the like in the contact ellipse portion. As a result, the dynamic torque of the row of balls increases. Further, the dynamic torque increases in proportion to the pitch circle diameter. In the case of the present invention, since the pitch circle diameter of the first row of balls having a large ball diameter is small, an increase in dynamic torque caused by increasing the ball diameter of the first row can be kept low.

本発明の実施の形態の1例を示す、タンデムアンギュラ型玉軸受の部分断面図。BRIEF DESCRIPTION OF THE DRAWINGS The fragmentary sectional view of the tandem angular ball bearing which shows one example of embodiment of this invention. 本発明のタンデムアンギュラ型玉軸受の使用状態の1例を示す略断面図。The schematic sectional drawing which shows an example of the use condition of the tandem angular ball bearing of this invention. タンデムアンギュラ型玉軸受を組み込んだ、デファレンシャルギヤのピニオン軸の回転支持部の断面図。Sectional drawing of the rotation support part of the pinion shaft of a differential gear incorporating a tandem angular ball bearing. 従来構造の第2例を示す、タンデムアンギュラ型玉軸受の断面図。Sectional drawing of the tandem angular ball bearing which shows the 2nd example of conventional structure. この第2例のタンデムアンギュラ型玉軸受を構成する内輪側組立体を組み立てる状態を示す断面図。Sectional drawing which shows the state which assembles the inner ring | wheel side assembly which comprises the tandem angular ball bearing of this 2nd example. この内輪側組立体と外輪とを組み合わせてタンデムアンギュラ型玉軸受とする状態を示す断面図。Sectional drawing which shows the state which uses this inner ring | wheel side assembly and an outer ring | wheel as a tandem angular ball bearing.

本発明の実施の形態の1例に就いて、図1により説明する。本例のタンデムアンギュラ型の玉軸受1bは、外輪5bと、内輪6bと、複数個の玉7c、7dとを備える。
このうちの外輪5bは、内周面に2列の外輪軌道9c、9dを設けている。本例の場合、これら両外輪軌道9c、9dは、内径が互いに異なるだけでなく、断面形状の曲率半径r、rに関しても、互いに異ならせている。具体的には、内径Rcが小さい側の外輪軌道9cの曲率半径rを、内径Rdが大きい側の外輪軌道9dの曲率半径rよりも大きく(r>r)している。又、前記外輪5bの内周面で、前記両外輪軌道9c、9dの小径側に隣接する部分は、それぞれ外輪肩部13a、13bとしている。これら両外輪肩部13a、13bの高さ(径方向寸法)は、前記玉軸受1bの使用時に前記各玉7c、7dに加わるアキシアル荷重に拘らず、これら各玉7c、7dの転動面が前記両外輪肩部13a、13bの縁に乗り上げないだけの、十分な大きさとしている。
An example of an embodiment of the present invention will be described with reference to FIG. The tandem angular ball bearing 1b of this example includes an outer ring 5b, an inner ring 6b, and a plurality of balls 7c and 7d.
Out of these, the outer ring 5b is provided with two rows of outer ring raceways 9c and 9d on the inner peripheral surface. In the case of this example, both the outer ring raceways 9c and 9d have not only different inner diameters but also different curvature radii r 1 and r 2 of the cross-sectional shapes. Specifically, the radius of curvature r 1 of the outer ring raceway 9c on the side with the smaller inner diameter Rc is larger than the radius of curvature r 2 of the outer ring raceway 9d on the side of the larger inner diameter Rd (r 1 > r 2 ). Further, portions of the inner peripheral surface of the outer ring 5b adjacent to the small diameter side of the outer ring raceways 9c, 9d are outer ring shoulder portions 13a, 13b, respectively. The height (radial dimension) of these outer ring shoulder portions 13a and 13b is such that the rolling surfaces of these balls 7c and 7d are independent of the axial load applied to the balls 7c and 7d when the ball bearing 1b is used. The size is large enough not to ride over the edges of the outer ring shoulder portions 13a and 13b.

これに対して、前記外輪5bの内周面で、前記両外輪軌道9c、9dの大径側に隣接する部分は、これら両外輪軌道9c、9dから離れるに従って内径が次第に大きくなる方向に緩やかに傾斜した、部分円すい凹面状のカウンタボア部14a、14bとしている。但し、これら両カウンタボア部14a、14bの小径側端部(図1の右端部)の内径を、それぞれが隣接する前記両外輪軌道9c、9dの最大内径よりも僅かに小さくする事もできる。この場合に、この僅かに小さくする程度を、前記玉軸受1bを所定位置に組み付ける以前の状態での、この玉軸受1bのラジアル内部隙間(前記外輪5bと内輪6bとが径方向に変位可能な寸法)の1/2よりも小さくする事が好ましい。但し、製造公差(例えば0.02mm程度)を考慮して、前記両カウンタボア部14a、14bの小径側端部の内径が、それぞれの転動面の一部を前記内輪軌道10c、10dに当接させた状態での、前記各玉7c、7dの外接円の直径よりも小さくならない様にする。この様に規制すれば、内輪側組立体12(図5〜6参照)を前記外輪5bの内径側に組み付ける作業を容易に(各部に擦り傷等の損傷を生じる事なく)行える。尚、この場合に於ける、前記玉軸受1bを所定位置に組み付ける以前の状態とは、前記玉軸受1b単体の状態ではなく、この玉軸受1bを構成する外輪5bをハウジング等に締り嵌めで内嵌し、同じく内輪6bを回転軸等に締り嵌めで外嵌した状態を言う。要するに、これら外輪5b及び内輪6bの直径が、相手部材への嵌合により弾性的に変化しているが、未だ各玉7c、7dに予圧を付与していない状態を言う。何れにしても、前記外輪5bの内周面のうちで、前記内輪側組立体12の組み付ける作業時に、前記各玉7c、7dの転動面が擦れ合う可能性のある部分は、微分不能な角部を持たず、且つ、研磨加工された平滑面としている。この為には、前記外輪5bの内周面の仕上加工を、総型の砥石で行う事が好ましい。   On the other hand, the portion of the inner peripheral surface of the outer ring 5b adjacent to the larger diameter side of the outer ring raceways 9c, 9d is gradually increased in the direction in which the inner diameter gradually increases as the distance from the outer ring raceways 9c, 9d increases. Inclined, partially conical concave counterbore portions 14a and 14b are provided. However, the inner diameters of the small-diameter end portions (the right end portion in FIG. 1) of both the counter bore portions 14a and 14b can be made slightly smaller than the maximum inner diameters of the two outer ring raceways 9c and 9d adjacent to each other. In this case, the slightly smaller extent is the radial internal clearance of the ball bearing 1b before the ball bearing 1b is assembled at a predetermined position (the outer ring 5b and the inner ring 6b can be displaced in the radial direction). It is preferable to make it smaller than 1/2 of (dimension). However, in consideration of manufacturing tolerances (for example, about 0.02 mm), the inner diameters of the end portions on the small diameter side of both the counterbore portions 14a and 14b are such that a part of the respective rolling surfaces corresponds to the inner ring raceways 10c and 10d. The diameter of the circumscribed circle of each of the balls 7c and 7d in the state of contact is not reduced. By restricting in this way, it is possible to easily assemble the inner ring side assembly 12 (see FIGS. 5 to 6) on the inner diameter side of the outer ring 5b (without causing damage such as scratches on each part). In this case, the state before the ball bearing 1b is assembled at a predetermined position is not the state of the ball bearing 1b alone, but the inner ring 5b constituting the ball bearing 1b is tightly fitted to a housing or the like. A state in which the inner ring 6b is externally fitted to the rotary shaft or the like by an interference fit. In short, the diameters of the outer ring 5b and the inner ring 6b are elastically changed by fitting with the mating member, but the preload is not yet applied to the balls 7c and 7d. In any case, a portion of the inner peripheral surface of the outer ring 5b where the rolling surfaces of the balls 7c and 7d may rub against each other during the assembly operation of the inner ring side assembly 12 is a non-differentiable angle. It has no part and is a polished smooth surface. For this purpose, it is preferable to finish the inner peripheral surface of the outer ring 5b with a grindstone.

又、前記内輪6bは、前記外輪5bの内径側に、この外輪5bと同心に配置しており、外周面に2列の内輪軌道10c、10dを設けている。これら両内輪軌道10c、10dは、外径が互いに異なるだけでなく、断面形状の曲率半径r、rに関しても、互いに異ならせている。具体的には、外径Dcが小さい側の内輪軌道10cの曲率半径rを、外径Ddが大きい側の内輪軌道10dの曲率半径rよりも大きく(r>r)している。又、前記内輪6bの外周面で、前記両内輪軌道10c、10dの大径側に隣接する部分は、それぞれ内輪肩部15a、15bとしている。これら両内輪肩部15a、15bの高さに就いても、前記各玉7c、7dに加わるアキシアル荷重に拘らず、これら各玉7c、7dの転動面が前記両内輪肩部15a、15bの縁に乗り上げないだけの、十分な大きさとしている。 The inner ring 6b is disposed concentrically with the outer ring 5b on the inner diameter side of the outer ring 5b, and two rows of inner ring raceways 10c and 10d are provided on the outer peripheral surface. These two inner ring raceways 10c, 10d are not different outer diameters from each other by, with regard radius of curvature r 3, r 4 of the cross-sectional shape, are made different from each other. Specifically, the radius of curvature r 3 of the outer diameter Dc is smaller side of the inner ring raceway 10c, larger than the radius of curvature r 4 of the outer diameter Dd is larger side inner raceway 10d (r 3> r 4) to . Further, portions of the outer peripheral surface of the inner ring 6b adjacent to the large-diameter side of the inner ring raceways 10c and 10d are inner ring shoulder portions 15a and 15b, respectively. Regardless of the axial load applied to each of the balls 7c and 7d, the rolling surfaces of the balls 7c and 7d are not in contact with the inner ring shoulders 15a and 15b. It is large enough not to ride over the edge.

又、前記内輪6bの外周面で、前記両内輪軌道10c、10dの小径側に隣接する部分に、係合部16a、16bを設けている。この係合部16a、16bの外径は、それぞれが隣接する前記両内輪軌道10c、10dの最小外径よりも少し大きくしている。この様な前記両係合部16a、16bは、前記内輪6bと前記各玉7c、7dとを、後述する保持器8a、8b(図4〜6参照、図1には省略)を介して組み合わせ、前記内輪側組立体12とした状態で、前記内輪6bと前記各玉7c、7dとの分離防止の為に必要である。前記係合部16a、16bの外径と前記両内輪軌道10c、10dの最小内径との差の1/2である、これら両係合部16a、16bの係り代(径方向寸法)δは、前記各玉7c、7dの転動面を傷める事なく、これら各玉7c、7dと前記内輪6bとを組み合わせる事ができ、組み合わせ後にこれら各部材7c、7d、6b同士が不用意に分離しない範囲で、前記両保持器8a、8bの弾性等を考慮して、適切に規制する。具体的には、前記両係合部16a、16bの係り代δを、当該係合部16a、16bを乗り越える前記各玉7c、7dの直径の2〜15%程度に規制する。前記係り代δが2%未満の場合には、前記各部材7c、7d、6bの分離防止が不確実になり、15%を超えると、これら各部材7c、7d、6bを組み合わせる作業が難しくなる。   Further, engaging portions 16a and 16b are provided on the outer peripheral surface of the inner ring 6b at portions adjacent to the small diameter side of the inner ring raceways 10c and 10d. The outer diameters of the engaging portions 16a and 16b are slightly larger than the minimum outer diameters of the inner ring raceways 10c and 10d adjacent to each other. The engaging portions 16a and 16b are combined with the inner ring 6b and the balls 7c and 7d through retainers 8a and 8b (see FIGS. 4 to 6 and omitted in FIG. 1) described later. It is necessary for preventing the inner ring 6b and the balls 7c and 7d from being separated in the state where the inner ring side assembly 12 is used. The engagement allowance (diameter in the radial direction) δ of both the engaging portions 16a and 16b, which is ½ of the difference between the outer diameter of the engaging portions 16a and 16b and the minimum inner diameter of the inner ring raceways 10c and 10d, The balls 7c and 7d can be combined with the inner ring 6b without damaging the rolling surfaces of the balls 7c and 7d, and the members 7c, 7d and 6b are not inadvertently separated after the combination. In view of the elasticity of both the cages 8a and 8b, the regulation is appropriately performed. Specifically, the engagement allowance δ of both the engaging portions 16a and 16b is restricted to about 2 to 15% of the diameter of each of the balls 7c and 7d that get over the engaging portions 16a and 16b. When the engagement allowance δ is less than 2%, separation of the members 7c, 7d, and 6b becomes uncertain, and when it exceeds 15%, it is difficult to combine these members 7c, 7d, and 6b. .

更に、前記各玉7c、7dは、前記両外輪軌道9c、9dと前記両内輪軌道10c、10dとの間に、それぞれの列毎に複数個ずつ、両列同士の間で同じ方向の接触角θc、θdを付与した状態で、転動自在に設けている。又、前記各玉7c、7dのうち、それぞれの径が小さい側の外輪軌道9cと内輪軌道10cとの間に設けられ、ピッチ円直径PCDcが小さい、第一列側の玉7cの玉径Dを、それぞれの径が大きい側の外輪軌道9dと内輪軌道10dとの間に設けられ、ピッチ円直径PCDdが大きい第二列側の玉7dの玉径Dよりも大きく(D>D)している。この様な各玉7c、7dは、これら各玉7c、7dが各ポケット11a、11b内から径方向外方に抜け出る事を阻止できる形状及び寸法を有する保持器8a、8bにより、円周方向に関して等間隔に保持している。 Further, the balls 7c, 7d have a plurality of contact angles in the same direction between the outer ring raceways 9c, 9d and the inner ring raceways 10c, 10d. In a state where θc and θd are given, they are provided to freely roll. Of the balls 7c and 7d, the ball diameter D of the ball 7c on the first row side is provided between the outer ring raceway 9c and the inner ring raceway 10c on the smaller diameter side, and the pitch circle diameter PCDc is small. L a is provided between the outer ring raceway 9d and the inner ring raceway 10d of each larger diameter side, larger than the ball diameter D S of the second row side of the ball 7d pitch diameter PCDd large (D L> D S ). Such balls 7c and 7d are arranged in the circumferential direction by cages 8a and 8b having shapes and dimensions that can prevent the balls 7c and 7d from coming out radially outward from the pockets 11a and 11b. It is kept at regular intervals.

前記各玉7c、7dの接触角θc、θdに関しては、前記玉軸受1bに要求される、ラジアル荷重及びアキシアル荷重に関する負荷容量の関係で、適切に規制する。前記両列の接触角θc、θdの値は、同じであっても、或いは異なっても良いが、何れにしても、10〜40度の範囲で規制する。又、前記各玉7c、7dの玉径D、Dと、前記各軌道9c、9d、10c、10dの断面形状に関する曲率半径r、r、r、rとに関しては、これら各軌道9c、9d、10c、10dと前記各玉7c、7dの転動面との転がり接触部に存在する接触楕円の面積を勘案して、適切に規制する。この面積が広い程、この接触楕円部分の面圧を低く抑えて、転がり疲れ寿命確保の面から有利になるが、その代わりに、この接触楕円部分でのスピン損失が大きくなり、前記玉軸受1bの動トルク低減の面からは不利になる。 The contact angles θc and θd of the balls 7c and 7d are appropriately regulated according to the load capacity related to the radial load and the axial load required for the ball bearing 1b. The values of the contact angles θc and θd in both rows may be the same or different, but in any case, they are regulated within a range of 10 to 40 degrees. Further, the a ball diameter D L, D S of the balls 7c, 7d, each track 9c, 9d, 10c, the radius of curvature about the cross-sectional shape of the 10d r 1, r 2, r 3, with respect to the r 4, these Appropriate regulation is performed in consideration of the area of the contact ellipse existing at the rolling contact portion between each track 9c, 9d, 10c, 10d and the rolling surface of each ball 7c, 7d. The larger the area, the lower the surface pressure of the contact ellipse portion, which is advantageous from the viewpoint of ensuring the rolling fatigue life. Instead, the spin loss at the contact ellipse portion increases, and the ball bearing 1b. This is disadvantageous in terms of reducing dynamic torque.

これらの事を考慮した場合、前記両外輪軌道9c、9dの断面形状に関する曲率半径r、rは、前記各玉7c、7dの玉径D、Dの51〜62%の範囲で規制する。又、前記両内輪軌道10c、10dの断面形状に関する曲率半径r、rは、前記各玉7c、7dの玉径D、Dの50.5〜58%の範囲で規制する。何れにしても、前記両列毎に、外輪軌道9c(9d)の断面形状に関する曲率半径r(r)を、内輪軌道10c(10d)に関する断面形状に関する曲率半径r(r)よりも大きくする。この理由は、前記両外輪軌道9c、9dの形状が円周方向に関して凹であり、前記両内輪軌道10c、10dの形状が円周方向に関して凸である事に対応して、前記各玉7c、7dに関する接触楕円の大きさを、前記両外輪軌道9c、9d側と前記両内輪軌道10c、10d側とで、同じにする為である。尚、前記各寸法D、D、r、r、r、rは、転がり接触部の面圧の最大値が4.2GPa以下に抑えられる様に規制する。低トルク化の為には、この条件を満たす限り、前記各曲率半径r、r、r、rの値をできる限り大きくする事が好ましい。 In consideration of these facts, the outer ring raceways 9c, the radius of curvature r 1 about the cross-sectional shape of 9d, r 2, the respective balls 7c, ball diameter D L of 7d, the range of 51 to 62% of D S regulate. Further, the two inner ring raceways 10c, the radius of curvature r 3 about the cross-sectional shape of the 10d, r 4, the respective balls 7c, 7d of the ball diameter D L, restricts the range of 50.5 to 58% of D S. In any case, the curvature radius r 1 (r 2 ) related to the cross-sectional shape of the outer ring raceway 9c (9d) is calculated from the curvature radius r 3 (r 4 ) related to the cross-sectional shape related to the inner ring raceway 10c (10d). Also make it bigger. This is because the outer ring raceways 9c, 9d are concave in the circumferential direction, and the inner ring raceways 10c, 10d are convex in the circumferential direction. This is because the size of the contact ellipse relating to 7d is the same on both the outer ring raceways 9c, 9d and on both the inner ring raceways 10c, 10d. The dimensions D L , D S , r 1 , r 2 , r 3 , and r 4 are regulated so that the maximum value of the surface pressure of the rolling contact portion is suppressed to 4.2 GPa or less. In order to reduce the torque, as long as this condition is satisfied, it is preferable to increase the values of the respective radii of curvature r 1 , r 2 , r 3 , r 4 as much as possible.

更に、本例の玉軸受1bの場合には、前記ピッチ円直径PCDcが小さく、それぞれの玉径Dが大きい、第一列側の玉7cに関する内部隙間を、前記ピッチ円直径PCDdが大きく、それぞれの玉径Dが小さい、第二列側の玉7dに関する内部隙間よりも小さくしている。本例の場合には、前記玉軸受1bを構成する前記外輪5bと前記内輪6bとを、前記各玉7c、7dを押圧する方向に近づけ、前記第一列側の玉7cの転動面を、前記外輪軌道9c及び内輪軌道10cに軽く当接させた状態で、前記第二列側の玉7dの転動面と、前記外輪軌道9d又は内輪軌道10dとの間に正の内部隙間が存在する様にしている。前記玉軸受1bを実際に回転支持部に組み込んだ状態では、前記外輪5bと前記内輪6bとを更に強く押圧し、前記第二列側の内部隙間も無くして、前記各玉7c、7dに予圧を付与する。この状態でこれら各玉7c、7dに付与された予圧は、前記途中状態で前記第二列側に存在していた正の内部隙間分だけ、前記第一列側で大きくなる。 Further, in the case of the ball bearing 1b of the present embodiment, the pitch circle diameter PCDc small, each ball diameter D L is greater, the internal clearance for the first row side of the ball 7c, the pitch circle diameter PCDd large, each ball diameter D S is small, it is smaller than the internal clearance for the second row side of the balls 7d. In the case of this example, the outer ring 5b and the inner ring 6b constituting the ball bearing 1b are brought closer to the direction in which the balls 7c and 7d are pressed, and the rolling surfaces of the balls 7c on the first row side are set. In the state where the outer ring raceway 9c and the inner ring raceway 10c are in light contact, there is a positive internal gap between the rolling surface of the balls 7d on the second row side and the outer ring raceway 9d or the inner ring raceway 10d. I try to do it. In the state where the ball bearing 1b is actually incorporated in the rotation support portion, the outer ring 5b and the inner ring 6b are pressed more strongly, and the internal clearance on the second row side is eliminated, and the balls 7c and 7d are preloaded. Is granted. In this state, the preload applied to each of the balls 7c and 7d increases on the first row side by the positive internal gap existing on the second row side in the intermediate state.

上述の様に本例の玉軸受1bは、ピッチ円直径PCDcが小さい、第一列側の玉7cの玉径Dを大きくすると共に、この第一列側の玉7cの予圧を大きくし、この第一列側の玉7cが負荷する荷重の大きさを大きくしている。従って、玉径Dが大きな、この第一列側の玉7cの転動面と、それぞれの径が小さい外輪軌道9c及び内輪軌道10cとの転がり接触部に存在する接触楕円は、玉径Dが小さい、第二列側の玉7dの転動面に関する接触楕円よりも大きい(面積が広い)。前記玉軸受1bのうちで、前記外輪5bと前記内輪6bとの相対回転に伴って相手面と転がり接触する面の転がり疲れ寿命は、前記各接触楕円部分の面圧が高くなる程短くなるので、前記玉軸受1bの場合には、前記第一、第二両列の転がり疲れ寿命に、大きな差が生じる事を防止できる。
Ball bearing 1b of the present embodiment as described above, the pitch circle diameter PCDc is small, with a larger ball diameter D L of the first row side of the ball 7c, increasing the preload of the first row side of the balls 7c, The magnitude of the load applied to the balls 7c on the first row side is increased. Therefore, the contact ellipse ball diameter D L is greater, present in the rolling contact portion between the rolling surface of the first row side of the ball 7c, and each diameter is small outer ring raceway 9c and the inner ring raceway 10c is the ball diameter D S is smaller than the contact ellipse related to the rolling surface of the ball 7d on the second row side (the area is wide). Among the ball bearings 1b, the rolling fatigue life of the surface which is in rolling contact with the mating surface with the relative rotation of the outer ring 5b and the inner ring 6b becomes shorter as the surface pressure of each contact ellipse portion becomes higher. In the case of the ball bearing 1b, it is possible to prevent a large difference in the rolling fatigue life between the first and second rows.

この様にして、何れの列に関しても、無駄に(何れかの列のみ著しく)耐久性が長くなる事を防止しつつ、必要とされる耐久性を確保し易くできるので、この何れかの列部分の寸法が無駄に大きくなる事を防止できる。要するに、前記玉軸受1b全体としての耐久性向上に結び付かない、何れか一方の列のみの耐久性向上に繋がるだけの寸法の増大を防止できて、タンデムアンギュラ型玉軸受の小型・軽量化を図る面から有利になる。   In this way, it is possible to easily ensure the required durability while preventing the durability from becoming unnecessarily long (remarkably only in any column), and any column can be secured. The size of the part can be prevented from becoming unnecessarily large. In short, it is possible to prevent an increase in the size that does not lead to an improvement in the durability of the ball bearing 1b as a whole, but only to an improvement in the durability of only one of the rows, thereby reducing the size and weight of the tandem angular ball bearing. It is advantageous from the aspect of aiming.

更に、前記何れかの列部分の寸法を小さく抑えて小型・軽量化を図れる分、タンデムアンギュラ型玉軸受の低トルク化を図る面から有利になる。即ち、無駄な大型化は、前記外輪5bと前記内輪6bとの相対回転時に互いに相対変位する部分の抵抗や慣性質量の増大に繋がるが、本例の玉軸受1bの場合には、上述の様に小型・軽量化を図れる事から、この玉軸受1bの低トルク化を図り易い。   Further, since the size of any one of the row portions can be kept small and the size and weight can be reduced, this is advantageous in terms of reducing the torque of the tandem angular ball bearing. That is, useless enlargement leads to an increase in the resistance and inertial mass of the portions that are displaced relative to each other when the outer ring 5b and the inner ring 6b are relatively rotated. In the case of the ball bearing 1b of this example, as described above, Therefore, it is easy to reduce the torque of the ball bearing 1b.

しかも、本例の場合には、玉径が大きな第一列の玉7cのピッチ円直径PCDcが小さいので、この第一列の玉7cの玉径Dを大きくする事による動トルクの増大を低く抑えられる。即ち、玉軸受を構成する玉の転がり抵抗は、玉径が大きくなる程大きくなる。言い換えれば、ピッチ円直径及び接触楕円部分に加わる面圧の積分値(予圧と荷重との合計)が同じであると仮定した場合、この接触楕円部分でのスピン損失や玉の慣性質量の増大等の影響により、玉径が大きい程、当該玉の列の動トルクが大きくなる。又、動トルクは、ピッチ円直径に比例して大きくなる。本発明の場合には、前記直径が大きな第一列の玉7cのピッチ円直径PCDcを小さくしているので、前記玉軸受1b全体としての動トルクを抑える面から有利になる。 Moreover, in the case of this example, since the ball diameter is the pitch circle diameter PCDc large first row of balls 7c is small, an increase in the dynamic torque caused by increasing the ball diameter D L of the first row of balls 7c It can be kept low. That is, the rolling resistance of the balls constituting the ball bearing increases as the ball diameter increases. In other words, assuming that the pitch circle diameter and the integral value of the surface pressure applied to the contact ellipse part (the sum of the preload and the load) are the same, the spin loss at this contact ellipse part and the increase of the ball's inertial mass, etc. As a result, the dynamic torque of the row of balls increases as the ball diameter increases. Further, the dynamic torque increases in proportion to the pitch circle diameter. In the case of the present invention, the pitch circle diameter PCDc of the first row of balls 7c having a large diameter is made small, which is advantageous in terms of suppressing the dynamic torque of the ball bearing 1b as a whole.

尚、前記各寸法、即ち、前記両外輪軌道9c、9dの内径Rc、Rd、前記両内輪軌道10c、10dの外径Dc、外径Dd、これら各軌道9c、9d、10c、10dの断面形状の曲率半径r、r、r、r、前記各玉7c、7dの接触角θc、θd、前記各玉7c、7dの玉径D、Dは、上述の様な作用・効果を高次元で得られる様に、コンピュータ解析や実験等により、前述した範囲内で、適切に規制する。 The respective dimensions, that is, the inner diameters Rc and Rd of the outer raceways 9c and 9d, the outer diameter Dc and the outer diameter Dd of the inner raceways 10c and 10d, and the cross-sectional shapes of the raceways 9c, 9d, 10c, and 10d. curvature radius r 1, r 2, r 3 , r 4, wherein respective balls 7c, 7d of the contact angle .theta.c, [theta] d, the respective balls 7c, 7d ball diameter D L, D S of the such actions and above In order to obtain the effect in a high dimension, it is appropriately regulated within the above-mentioned range by computer analysis or experiment.

又、前記第一、第二両列の玉7c、7dの数は、前記玉軸受1bの負荷容量確保の面からは、多い程好ましい。例えば、玉径Dと玉の数Zとの積を、ピッチ円の周長(ピッチ円直径PCD×π)で除した値である充填率(D・Z/PCD×π)を、80〜95%の範囲に規制する。充填率が80%未満の場合には、負荷容量の確保が難しくなり、逆に95%を超える場合には、保持器の組み付け(保持器を構成する柱部の設置スペースの確保)が難しくなる。更に、第二列の玉7dのピッチ円直径PCDdに対する第一列の玉7cのピッチ円直径PCDcの割合は、動トルクの低減と転がり疲れ寿命確保とを両立させる面から、98〜70%の範囲に収める。PCDc/PCDdが98%を超えると、前記両列のPCDc、PCDdの差が過小になり、前記各肩部13b、15aの高さを確保できず、前記玉軸受1bの使用時に前記各玉7c、7dに加わるアキシアル荷重により、これら各玉7c、7dの転動面が前記各肩部13b、15aの縁に乗り上げ易くなる。反対に、70%未満の場合には、前記両列のPCDc、PCDdの差が過大になり、前記内輪6bの最小肉厚部の厚さ寸法や、前記係合部16aの高さを確保する事が難しくなる。   Further, the number of the balls 7c and 7d in both the first and second rows is more preferable from the viewpoint of securing the load capacity of the ball bearing 1b. For example, a filling rate (D · Z / PCD × π), which is a value obtained by dividing the product of the ball diameter D and the number Z of balls by the circumference of the pitch circle (pitch circle diameter PCD × π), is 80 to 95. Regulate to the range of%. When the filling rate is less than 80%, it is difficult to secure the load capacity. On the other hand, when it exceeds 95%, it is difficult to assemble the cage (to secure the installation space for the pillars constituting the cage). . Further, the ratio of the pitch circle diameter PCDc of the balls 7c in the first row to the pitch circle diameter PCDd of the balls 7d in the second row is 98 to 70% from the viewpoint of achieving both a reduction in dynamic torque and securing a rolling fatigue life. Fit in range. If PCDc / PCDd exceeds 98%, the difference between PCDc and PCDd in both rows becomes too small, the height of the shoulders 13b and 15a cannot be secured, and the balls 7c are used when the ball bearing 1b is used. , 7d makes it easy for the rolling surfaces of the balls 7c, 7d to ride on the edges of the shoulders 13b, 15a. On the other hand, if it is less than 70%, the difference between PCDc and PCDd in both rows becomes excessive, and the thickness of the minimum thickness portion of the inner ring 6b and the height of the engaging portion 16a are ensured. Things get harder.

又、前記第一、第二両列の玉の玉径の比D/Dは、0.5以上、1未満(0.5≦D/D<1)とする。この比D/Dが1以上の場合には、本発明による効果を得られない。逆に言えば、「D/D<1」であれば、多少なりとも、本発明の効果を得られる。これに対して、この比D/Dが0.5未満の場合には、前記外輪5bの内周面の最大内径と最小内径との比、並びに、前記内輪6bの外周面の最大外径と最小外径との比が、何れも大きくなる。この結果、例えばこれら外輪5bと内輪6bとを冷間鍛造により造る場合に、1個の素材からこれら外輪5bと内輪6bとを造る、所謂2個取りを行えなくなって、製造コストが嵩む。
何れの場合でも、前記外輪5b及び前記内輪6bの各部(特に荷重の作用線の延長線上及びその近傍部分)の肉厚を十分に(例えば、各軌道の最深部での外輪及び内輪の径方向の厚さを、当該軌道と転がり接触する玉径の25%以上)確保する。
Further, the ratio D S / D L of the ball diameters of the first and second rows is 0.5 or more and less than 1 (0.5 ≦ D S / D L <1). When this ratio D S / D L is 1 or more, the effect of the present invention cannot be obtained. Conversely, if “D S / D L <1”, the effect of the present invention can be obtained to some extent. On the contrary, when the ratio D S / D L is less than 0.5, the ratio between the maximum inside diameter and minimum inside diameter of the inner peripheral surface of the outer ring 5b, and maximum outside of the outer peripheral surface of the inner ring 6b The ratio between the diameter and the minimum outer diameter is increased. As a result, for example, when the outer ring 5b and the inner ring 6b are manufactured by cold forging, the so-called two-piece cutting of the outer ring 5b and the inner ring 6b from a single material cannot be performed, and the manufacturing cost increases.
In any case, the thickness of each part of the outer ring 5b and the inner ring 6b (especially on the extension line of the load acting line and its vicinity) is sufficiently sufficient (for example, the radial direction of the outer ring and the inner ring at the deepest part of each track). The thickness of the ball is at least 25% of the diameter of the ball in rolling contact with the track.

本発明のタンデムアンギュラ型玉軸受は、図3に示す様なデファレンシャルギヤのピニオン軸の回転支持部に限らず、各種回転支持部に使用できる。例えば、図2に示す様に、デファレンシャルギヤの左右1対の出力部17a、17bの回転支持部に、本発明のタンデムアンギュラ型玉軸受5b、5bを正面組み合わせ(DF組み合わせ)で組み込んだ場合、玉径の大きな(従って各方向の剛性及び負荷容量の大きな)玉7c、7cが、回転支持部の両端側に位置する。この為、モーメント剛性確保の面から不利な正面組み合わせを採用した場合でも、前記両出力部17a、17bのモーメント剛性を高くできる。   The tandem angular ball bearing of the present invention can be used not only for the rotation support portion of the pinion shaft of the differential gear as shown in FIG. 3, but also for various rotation support portions. For example, as shown in FIG. 2, when the tandem angular ball bearings 5b and 5b of the present invention are assembled in a front combination (DF combination) into the rotation support portions of the left and right output portions 17a and 17b of the differential gear, Balls 7c and 7c having a large ball diameter (and thus having a large rigidity and load capacity in each direction) are positioned on both ends of the rotation support portion. For this reason, even when a front combination which is disadvantageous in terms of securing moment rigidity is adopted, the moment rigidity of both the output portions 17a and 17b can be increased.

又、本発明を実施する場合に、各部の寸法等は、前述した作用・効果を有効に得るべく、前述した範囲で適切に規制する。又、タンデムアンギュラ型玉軸受に加わる荷重を両列の玉が負荷する割合に就いても、前記作用・効果を有効に得る面から、適切に規制する。   Moreover, when implementing this invention, the dimension of each part etc. are suitably controlled in the range mentioned above in order to acquire the effect | action and effect mentioned above effectively. Further, even if the load applied to the tandem angular ball bearings is the ratio of the load of the balls in both rows, it is appropriately regulated from the viewpoint of effectively obtaining the above-mentioned effects.

1、1a、1b 玉軸受
2 玉軸受
3 ピニオン軸
4 ピニオンギヤ
5、5a、5b 外輪
6、6a、6b 内輪
7a、7b、7c、7d 玉
8a、8b 保持器
9a、9b、9c、9d 外輪軌道
10a、10b、10c、10d 内輪軌道
11a、11b ポケット
12 内輪側組立体
13a、13b 外輪肩部
14a、14b カウンタボア部
15a、15b 内輪肩部
16a、16b 係合部
17a、17b 出力部
1, 1a, 1b Ball bearing 2 Ball bearing 3 Pinion shaft 4 Pinion gear 5, 5a, 5b Outer ring 6, 6a, 6b Inner ring 7a, 7b, 7c, 7d Ball 8a, 8b Cage 9a, 9b, 9c, 9d Outer ring raceway 10a 10b, 10c, 10d Inner ring track 11a, 11b Pocket 12 Inner ring side assembly 13a, 13b Outer ring shoulder part 14a, 14b Counter bore part 15a, 15b Inner ring shoulder part 16a, 16b Engagement part 17a, 17b Output part

Claims (1)

内周面に互いに内径が異なる2列の外輪軌道を設けた外輪と、この外輪の内径側にこの外輪と同心に配置され、外周面に互いに外径が異なる2列の内輪軌道を設けた内輪と、前記両外輪軌道とこれら両内輪軌道との間に、それぞれの列毎に複数個ずつ、両列同士の間で同じ方向の接触角を付与された状態で転動自在に設けられた玉とを備えたタンデムアンギュラ型玉軸受に於いて、
前記両列の外輪軌道及び内輪軌道のうちでそれぞれの径が小さい側の外輪軌道と内輪軌道との間に設けられた、ピッチ円直径が小さい第一列側の玉径を、それぞれの径が大きい側の外輪軌道と内輪軌道との間に設けられた、ピッチ円直径が大きい第二列側の玉径よりも大きくし、
且つ、前記第一列側の玉に関する内部隙間を、前記第二列側の玉に関する内部隙間よりも小さくする事により、
使用状態で、前記第一列側の玉が負荷する荷重の大きさを、前記第二列側の玉が負荷する荷重の大きさよりも大きくしており、前記第一列側の玉が負荷する荷重の大きさが、前記第二列側の玉が負荷する荷重の大きさの、1.5〜2.5倍である事を特徴とする、タンデムアンギュラ型玉軸受。
An outer ring provided with two rows of outer ring raceways having different inner diameters on the inner peripheral surface, and an inner ring provided with two rows of inner ring raceways arranged on the outer peripheral surface concentrically with the outer ring and having different outer diameters on the outer peripheral surface And a plurality of balls provided between the outer ring raceways and the inner ring raceways so as to be able to roll in a state where a contact angle in the same direction is given between the rows, in each row. Tandem angular contact ball bearings with
Among the outer ring raceway and the inner ring raceway of the two rows, the ball diameter on the first row side having a small pitch circle diameter provided between the outer ring raceway and the inner ring raceway on the side having a smaller diameter, It is larger than the ball diameter on the second row side where the pitch circle diameter is large, which is provided between the outer ring raceway and the inner ring raceway on the larger side,
And by making the internal gap regarding the ball on the first row side smaller than the internal gap on the ball on the second row side,
In use, the load applied by the balls on the first row side is larger than the load applied by the balls on the second row side, and the balls on the first row side are loaded. A tandem angular contact ball bearing , wherein the load is 1.5 to 2.5 times the load applied by the ball on the second row side .
JP2011210984A 2011-09-27 2011-09-27 Tandem angular contact ball bearings Expired - Fee Related JP5862162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011210984A JP5862162B2 (en) 2011-09-27 2011-09-27 Tandem angular contact ball bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011210984A JP5862162B2 (en) 2011-09-27 2011-09-27 Tandem angular contact ball bearings

Publications (2)

Publication Number Publication Date
JP2013072471A JP2013072471A (en) 2013-04-22
JP5862162B2 true JP5862162B2 (en) 2016-02-16

Family

ID=48477147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011210984A Expired - Fee Related JP5862162B2 (en) 2011-09-27 2011-09-27 Tandem angular contact ball bearings

Country Status (1)

Country Link
JP (1) JP5862162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966302A (en) * 2019-12-27 2020-04-07 慈兴集团有限公司 Double-row angular contact bearing with different axial bearing capacities

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110566574A (en) * 2018-06-06 2019-12-13 株式会社不二越 separated type double-row angular contact ball bearing, outer ring assembly and inner ring assembly
WO2023194929A1 (en) * 2022-04-08 2023-10-12 National Engineering Industries Ltd A tandem ball bearing.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887349B2 (en) * 2003-05-21 2007-02-28 本田技研工業株式会社 Wheel support hub unit
JP2005233406A (en) * 2004-02-23 2005-09-02 Koyo Seiko Co Ltd Double-row slant contact ball bearing and its preloading method
EP2503168B1 (en) * 2009-11-19 2018-07-04 NSK Ltd. Rotation support device for pinion shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966302A (en) * 2019-12-27 2020-04-07 慈兴集团有限公司 Double-row angular contact bearing with different axial bearing capacities

Also Published As

Publication number Publication date
JP2013072471A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5375969B2 (en) Rotation support device for pinion shaft
WO2011062257A1 (en) Tandem angular type ball bearing
JP6268711B2 (en) Multi-point contact ball bearing and manufacturing method thereof
JP4978430B2 (en) Ball spline
JP2012041940A (en) Retainer of cylindrical roller bearing and cylindrical roller bearing
CN102292568A (en) Linear actuator and forklift
JP5862162B2 (en) Tandem angular contact ball bearings
JP2016109253A (en) Rolling bearing
JP2008180246A (en) Tapered roller bearing
KR102311257B1 (en) A Rolling Bearing Having Variable Rated Capacity And A Roller Therefor
JP2008232295A (en) Tapered roller bearing
JP6171444B2 (en) Rolling bearing device and pinion shaft support device for vehicle
US20160025134A1 (en) Cage for angular ball bearing
JP5870701B2 (en) Ball bearing with seal ring
JP2011094716A (en) Thrust roller bearing
JP5600927B2 (en) Tandem angular contact ball bearings
JP5927773B2 (en) Tandem angular contact ball bearings
US20130259414A1 (en) Tandem ball roller bearing and assembly method
JP6236754B2 (en) Tandem double-row angular contact ball bearing, differential device, and automobile
JP5600926B2 (en) Tandem type double row angular contact ball bearing
JP6205690B2 (en) Tandem type double row angular contact ball bearing
JP5810627B2 (en) Tandem angular ball bearings and outer ring side assemblies for tandem angular ball bearings
JP6051725B2 (en) Tandem double-row angular contact ball bearings for automotive differentials
JP2008064230A (en) Thrust bearing
JPWO2019021555A1 (en) Automotive differentials and automotive transmissions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees